

US 20070092957A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0092957 A1

Apr. 26, 2007 (43) **Pub. Date:**

Donaldson et al.

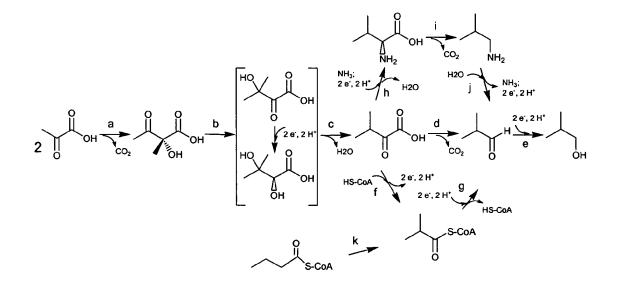
- (54) FERMENTIVE PRODUCTION OF FOUR **CARBON ALCOHOLS**
- (76) Inventors: Gail K. Donaldson, Newark, DE (US); Andrew C. Eliot, Wilmington, DE (US); Dennis Flint, Newark, DE (US); Lori Ann Maggio-Hall, Wilmington, DE (US); Vasantha Nagarajan, Wilmington, DE (US)

Correspondence Address: E I DÛ PONT DE NEMOURS AND COMPANY LEGAL PATENT RECORDS CENTER **BARLEY MILL PLAZA 25/1128 4417 LANCASTER PIKE** WILMINGTON, DE 19805 (US)

- (21) Appl. No.: 11/586,315
- (22) Filed: Oct. 25, 2006

Related U.S. Application Data

(60) Provisional application No. 60/730,290, filed on Oct. 26, 2005.


Publication Classification

(51) Int. Cl. C12P 7/04 (2006.01)C12N 1/21 (2006.01)C12N 1/18 (2006.01)(52) U.S. Cl. 435/157; 435/252.3; 435/252.33; 435/254.21; 435/254.22; 435/254.23

(57)ABSTRACT

Methods for the fermentative production of four carbon alcohols is provided. Specifically, butanol, preferably isobutanol is produced by the fermentative growth of a recombinant bacterium expressing an isobutanol biosynthetic pathway.

Patent Application Publication Apr. 26, 2007

FERMENTIVE PRODUCTION OF FOUR CARBON ALCOHOLS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application Ser. No. 60/730, 290, filed Oct. 26, 2005.

FIELD OF THE INVENTION

[0002] The invention relates to the field of industrial microbiology and the production of alcohols. More specifically, isobutanol is produced via industrial fermentation of a recombinant microorganism.

BACKGROUND OF THE INVENTION

[0003] Butanol is an important industrial chemical, useful as a fuel additive, as a feedstock chemical in the plastics industry, and as a foodgrade extractant in the food and flavor industry. Each year 10 to 12 billion pounds of butanol are produced by petrochemical means and the need for this commodity chemical will likely increase.

[0004] Methods for the chemical synthesis of isobutanol are known, such as oxo synthesis, catalytic hydrogenation of carbon monoxide (*Ullmann's Encyclopedia of Industrial Chemistry*, 6th edition, 2003, Wiley-VCHVerlag GmbH and Co., Weinheim, Germany, Vol. 5, pp. 716-719) and Guerbet condensation of methanol with n-propanol (Carlini et al., *J. Mol. Catal. A: Chem.* 220:215-220 (2004)). These processes use starting materials derived from petrochemicals and are generally expensive and are not environmentally friendly. The production of isobutanol from plant-derived raw materials would minimize green house gas emissions and would represent an advance in the art.

[0005] Isobutanol is produced biologically as a by-product of yeast fermentation. It is a component of "fusel oil" that forms as a result of incomplete metabolism of amino acids by this group of fungi. Isobutanol is specifically produced from catabolism of L-valine. After the amine group of L-valine is harvested as a nitrogen source, the resulting α -keto acid is decarboxylated and reduced to isobutanol by enzymes of the so-called Ehrlich pathway (Dickinson et al., J. Biol. Chem. 273(40):25752-25756 (1998)). Yields of fusel oil and/or its components achieved during beverage fermentation are typically low. For example, the concentration of isobutanol produced in beer fermentation is reported to be less than 16 parts per million (Garcia et al., Process Biochemistry 29:303-309 (1994)). Addition of exogenous L-valine to the fermentation increases the yield of isobutanol, as described by Dickinson et al., supra, wherein it is reported that a yield of isobutanol of 3 g/L is obtained by providing L-valine at a concentration of 20 g/L in the fermentation. However, the use of valine as a feed-stock would be cost prohibitive for industrial scale isobutanol production. The biosynthesis of isobutanol directly from sugars would be economically viable and would represent an advance in the art. There have been no reports of a recombinant microorganism designed to produce isobutanol.

[0006] There is a need, therefore, for an environmentally

addresses this need by providing a recombinant microbial production host that expresses an isobutanol biosynthetic pathway.

SUMMARY OF THE INVENTION

[0007] The invention provides a recombinant microorganism having an engineered isobutanol biosynthetic pathway. The engineered microorganism may be used for the commercial production of isobutanol. Accordingly, in one embodiment the invention provides a recombinant microbial host cell comprising at least one DNA molecule encoding a polypeptide that catalyzes a substrate to product conversion selected from the group consisting of:

[0008] i) pyruvate to acetolactate (pathway step a)

[0009] ii) acetolactate to 2,3-dihydroxyisovalerate (path-way step b)

[0010] iii) 2,3-dihydroxyisovalerate to α -ketoisovalerate (pathway step c)

[0011] iv) α -ketoisovalerate to isobutyraldehyde, (pathway step d), and

[0012] v) isobutyraldehyde to isobutanol; (pathway step e)

wherein the at least one DNA molecule is heterologous to said microbial host cell and wherein said microbial host cell produces isobutanol.

[0013] In another embodiment, the invention provides a recombinant microbial host cell comprising at least one DNA molecule encoding a polypeptide that catalyzes a substrate to product conversion selected from the group consisting of:

[0014] i) pyruvate to acetolactate, (pathway step a)

[0015] ii) acetolactate to 2,3-dihydroxyisovalerate, (pathway step b)

[0016] iii) 2,3-dihydroxyisovalerate to α -ketoisovalerate, (pathway step c)

[0017] iv) α -ketoisovalerate to isobutyryl-CoA, (pathway step f)

[0018] v) isobutyryl-CoA to isobutyraldehyde, (pathway step g), and

[0019] vi) isobutyraldehyde to isobutanol; (pathway step e)

wherein the at least one DNA molecule is heterologous to said microbial host cell and wherein said microbial host cell produces isobutanol.

[0020] In another embodiment, the invention provides a recombinant microbial host cell comprising at least one DNA molecule encoding a polypeptide that catalyzes a substrate to product conversion selected from the group consisting of:

[0021] i) pyruvate to acetolactate, (pathway step a)

[0022] ii) acetolactate to 2,3-dihydroxyisovalerate, (pathway step b)

[0023] iii) 2,3-dihydroxyisovalerate to α -ketoisovalerate, (pathway step c)

Find authenticated court documents without watermarks at docketalarm.com.

2

[0025] v) valine to isobutylamine, (pathway step i)

[0026] vi) isobutylamine to isobutyraldehyde, (pathway step j), and

[**0027**] vii) isobutyraldehyde to isobutanol: (pathway step e)

wherein the at least one DNA molecule is heterologous to said microbial host cell and wherein said microbial host cell produces isobutanol.

[0028] In another embodiment, the invention provides a method for the production of isobutanol comprising:

[0029] 1) providing a recombinant microbial host cell comprising at least one DNA molecule encoding a polypeptide that catalyzes a substrate to product conversion selected from the group consisting of:

[0030] i) pyruvate to acetolactate (pathway step a)

[0031] ii) acetolactate to 2,3-dihydroxyisovalerate (path-way step b)

[0032] iii) 2,3-dihydroxyisovalerate to α -ketoisovalerate (pathway step c)

[0033] iv) α -ketoisovalerate to isobutyraldehyde, (pathway step d), and

[0034] v) isobutyraldehyde to isobutanol; (pathway step e)

wherein the at least one DNA molecule is heterologous to said microbial host cell; and

[0035] 2) contacting the host cell of (i) with a fermentable carbon substrate in a fermentation medium under conditions whereby isobutanol is produced.

[0036] In another embodiment, the invention provides a method for the production of isobutanol comprising:

[0037] 1) providing a recombinant microbial host cell comprising at least one DNA molecule encoding a polypeptide that catalyzes a substrate to product conversion selected from the group consisting of:

[0038] i) pyruvate to acetolactate, (pathway step a)

[0039] ii) acetolactate to 2,3-dihydroxyisovalerate, (pathway step b)

[0040] iii) 2,3-dihydroxyisovalerate to α -ketoisovalerate, (pathway step c)

[0041] iv) α -ketoisovalerate to isobutyryl-CoA, (pathway step f)

[0042] v) isobutyryl-CoA to isobutyraldehyde, (pathway step g), and

[0043] vi) isobutyraldehyde to isobutanol; (pathway step e)

wherein the at least one DNA molecule is heterologous to said microbial host cell; and

[0044] 2) contacting the host cell of (i) with a ferment-

[0045] In another embodiment, the invention provides a method for the production of isobutanol comprising:

[0046] 1) providing a recombinant microbial host cell comprising at least one DNA molecule encoding a polypeptide that catalyzes a substrate to product conversion selected from the group consisting of:

[0047] i) pyruvate to acetolactate, (pathway step a)

[0048] ii) acetolactate to 2,3-dihydroxyisovalerate, (path-way step b)

[0049] iii) 2,3-dihydroxyisovalerate to α -ketoisovalerate, (pathway step c)

[0050] iv) α -ketoisovalerate to valine, (pathway step h)

[0051] v) valine to isobutylamine, (pathway step i)

[0052] vi) isobutylamine to isobutyraldehyde, (pathway step j), and

[0053] vii) isobutyraldehyde to isobutanol: (pathway step e)

wherein the at least one DNA molecule is heterologous to said microbial host cell; and

[0054] 2) contacting the host cell of (i) with a fermentable carbon substrate in a fermentation medium under conditions whereby isobutanol is produced.

[0055] In an alternate embodiment the invention provides an isobutanol constraining fermentation medium produced by the methods of the invention.

BRIEF DESCRIPTION OF THE FIGURES AND SEQUENCE DESCRIPTIONS

[0056] The invention can be more fully understood from the following detailed description, figure, and the accompanying sequence descriptions, which form a part of this application.

[0057] FIG. 1 shows four different isobutanol biosynthetic pathways. The steps labeled "a", "b", "c", "d", "e", "f", "g", "h", "i", "j" and "k" represent the substrate to product conversions described below.

[0058] The following sequences conform with 37 C.F.R. 1.821-1.825 ("Requirements for Patent Applications Containing Nucleotide Sequences and/or Amino Acid Sequence Disclosures—the Sequence Rules") and are consistent with World Intellectual Property Organization (WIPO) Standard ST.25 (1998) and the sequence listing requirements of the EPO and PCT (Rules 5.2 and 49.5(a-bis), and Section 208 and Annex C of the Administrative Instructions). The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.

[0059] A Sequence Listing is provided herewith on Compact Disk. The contents of the Compact Disk containing the Sequence Listing are hereby incorporated by reference in compliance with 37 CFR 1.52(e). The Compact Disks are submitted in triplicate and are identical to one another. The disks are labeled "Copy 1—Sequence Listing", "Copy 2—Sequence Listing", and CRF. The disks contain the following file: CL3243 Seq List Conv.ST25 having the

Find authenticated court documents without watermarks at docketalarm.com

TABLE 1

Summary of Gene and Protein	SEQ ID Numbe	rs	Summary of Gene and Pro-
Description	SEQ ID NO: Nucleic acid	SEQ ID NO: Peptide	Description
Klebsiella pneumoniae budB	1	2	P. putida 1pdV
(acetolactate synthase)	70	179	(lipoamide dehydrogenase)
Bacillus subtilis alsS (acetolactate synthase)	78	178	C. beijerinckii ald (coenzyme A acylating aldehyde
Lactococcus lactis als	179	180	dehydrogenase)
(acetolactate synthase)	2		C. acetobutylicum adhe1
<i>E. coli</i> ilvC (acetohydroxy acid reductoisomerase)	3	4	(aldehyde dehydrogenase) C. acetobutylicum adhe
S. cerevisiae ILV5	80	181	(alcohol-aldehyde dehydrogenase)
(acetohydroxy acid			P. putida nahO
reductoisomerase)	182	183	(acetaldehyde dehydrogenase)
<i>M. maripaludis</i> ilvC (Ketol-acid reductoisomerase)	182	185	T. thermophilus (acetaldehyde dehydrogenase)
B. subtilis ilvC	184	185	$E. \ coli$ avtA
(acetohydroxy acid			(valine-pyruvate transaminase)
reductoisomerase) <i>E. coli</i> ilvD (acetohydroxy acid	5	6	B. licheniformis avtA (valine-pyruvate transaminase)
dehydratase)	5	0	<i>E. coli</i> ilvE
S. cerevisiae ILV3	83	186	(branched chain amino acid
(Dihydroxyacid dehydratase)	197	100	aminotransferase)
M. maripaludis ilvD (Dihydroxy-acid dehydratase)	187	188	S. cerevisiae BAT2 (branched chain amino acid
B. subtilis ilvD	189	190	aminotransferase)
(dihydroxy-acid dehydratase)	_		M. thermoautotrophicum
Lactococcus lactis kivD (branched- chain α -keto acid decarboxylase),	7	8	(branched chain amino acid aminotransferase)
codon optimized			S. coelicolor
Lactococcus lactis kivD (branched-	191	8	(valine dehydrogenase)
chain α -keto acid decarboxylase),	102	102	B subtilis bcd
Lactococcus lactis kdcA (branched-chain alpha-ketoacid	192	193	(leucine dehydrogenase) S. viridifaciens
decarboxylase)			(valine decarboxyase)
Salmonella typhimurium	194	195	A. denitrificans aptA
(indolepyruvate decarboxylase) Clostridium acetobutylicum pdc	196	197	(omega-amino acid:pyruvate transaminase)
(Pyruvate decarboxylase)	190	197	R. eutropha
E. coli yqhD (branched-chain alcohol	9	10	(alanine-pyruvate transaminase)
dehydrogenase)	109	100	S. oneidensis
S. cerevisiae YPR1 (2-methylbutyraldehyde reductase)	198	199	(beta alanine-pyruvate transaminas <i>P. putida</i>
S. cerevisiae ADH6	200	201	(beta alanine-pyruvate transaminas
(NADPH-dependent cinnamyl alcohol			S. cinnamonensis icm
dehydrogenase) <i>Clostridium acetobutylicum</i> bdhA	202	203	(isobutyrl-CoA mutase) S. cinnamonensis icmB
(NADH-dependent butanol	202	205	(isobutyrl-CoA mutase)
dehydrogenase A)			S. coelicolor SCO5415
Clostridium acetobutylicum bdhB	158	204	(isobutyrl-CoA mutase)
Butanol dehydrogenase B. subtilis bkdAA	205	206	S. coelicolor SCO4800 (isobutyrl-CoA mutase)
(branched-chain keto acid			S. avermitilis icmA
dehydrogenase E1 subunit)	207	200	(isobutyrl-COA mutase)
<i>B. subtilis</i> bkdAB (branched-chain alpha-keto acid	207	208	<i>S. avermitilis</i> icmB (isobutyrl-CoA mutase)
dehydrogenase E1 subunit)			(isobity) continuties)
<i>B. subtilis</i> bkdB	209	210	
(branched-chain alpha-keto acid			[0060] SEQ ID NOs:11-38,
dehydrogenase E2 subunit) $R_{\rm emitter}$ is dV	211	21.2	145, 147-157, 159-176 are the
B. subtilis lpdV (branched-chain alpha-keto acid	211	212	oligonucleotide cloning, scree
dehydrogenase E3 subunit)			used in the Examples describe
P. putida bkdA1	213	214	-
(keto acid dehydrogenase E1-alpha			[0061] SEQ ID NO:39 is the
subunit)	o1 -	01.6	cscBKA gene cluster described
P. putida bkdA2 (keto acid dehydrogenase E1-beta	215	216	[0062] SEQ ID NO:70 is the
subunit)			glucose isomerase promoter 1.6
P. putida bkdB	217	218	

DOCKE.

Δ

Description	SEQ ID NO: Nucleic acid	SEQ I NO: Peptic
<i>P. putida</i> 1pdV	219	220
(lipoamide dehydrogenase)		
C. beijerinckii ald	221	222
(coenzyme A acylating aldehyde		
dehydrogenase) C. acetobutylicum adhe1	223	224
(aldehyde dehydrogenase)	223	224
C. acetobutylicum adhe	225	226
(alcohol-aldehyde dehydrogenase)		
P. putida nahO	227	228
(acetaldehyde dehydrogenase)		
T. thermophilus	229	230
(acetaldehyde dehydrogenase)	221	222
<i>E. coli</i> avtA (valine-pyruvate transaminase)	231	232
<i>B. licheniformis</i> avtA	233	234
(valine-pyruvate transaminase)	255	254
E. coli ilvE	235	236
(branched chain amino acid		
aminotransferase)		
S. cerevisiae BAT2	237	238
(branched chain amino acid		
aminotransferase)	220	240
<i>M. thermoautotrophicum</i> (branched chain amino acid	239	240
aminotransferase)		
S. coelicolor	241	242
(valine dehydrogenase)		
B subtilis bcd	243	244
(leucine dehydrogenase)		
S. viridifaciens	245	246
(valine decarboxyase)	2.47	240
A. denitrificans aptA (omega-amino acid:pyruvate	247	248
transaminase)		
R. eutropha	249	250
(alanine-pyruvate transaminase)		
S. oneidensis	251	252
(beta alanine-pyruvate transaminase)		
P. putida	253	254
(beta alanine-pyruvate transaminase)	255	250
S. cinnamonensis icm (isobutyrl-CoA mutase)	255	256
S. cinnamonensis icmB	257	258
(isobutyrl-CoA mutase)	231	230
S. coelicolor SCO5415	259	260
(isobutyrl-CoA mutase)		
S. coelicolor SCO4800	261	262
(isobutyrl-CoA mutase)		
S. avermitilis icmA	263	264
(isobutyrl-COA mutase)	275	265
S. avermitilis icmB (isobutyrl-CoA mutase)	265	266

[0060] SEQ ID NOs:11-38, 40-69, 72-75, 85-138, 144, 145, 147-157, 159-176 are the nucleotide sequences of oligonucleotide cloning, screening or sequencing primers used in the Examples described herein.

[0061] SEQ ID NO:39 is the nucleotide sequence of the cscBKA gene cluster described in Example 16.

[0062] SEQ ID NO:70 is the nucleotide sequence of the glucose isomerase promoter 1.6GI described in Example 13.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.