
CRC Handbook of Chemistry and Physics

A Ready-Reference Book of Chemical and Physical Data

Editor-in-Chief

David R. Lide, Ph.D.

Former Director, Standard Reference Data National Institute of Standards and Technology

CRC Press

Boca Raton London New York Washington, D.C.

GILLETTE 1022

© 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 by CRC Press LLC

© 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973 by THE CHEMICAL RUBBER CO. Copyright 1918, 1920 by The Chemical Rubber Company (Copyright renewed 1946, 1948 by The Chemical Rubber Publishing Company)

Copyright 1922 (Copyright renewed 1950), 1925 (Copyright renewed 1953), 1926 (Copyright renewed 1954), 1927 (Copyright renewed 1955), 1929 (Copyright renewed 1957), 1936, 1937 (Copyright renewed 1965 by The Chemical Rubber Co.), 1939, 1940 (Copyright renewed 1968 by the Chemical Rubber Co.), 1941 (Copyright renewed 1969 by The Chemical Rubber Co.), 1942 (Copyright renewed 1970 by The Chemical Rubber Co.), 1943 (Copyright renewed 1971 by The Chemical Rubber Co.), 1944 (Copyright renewed 1972 by The Chemical Rubber Co.), 1945 (Copyright renewed 1973 by The Chemical Rubber Co.), 1947, 1949, 1950, 1951, 1952 (Copyright renewed 1980 by CRC Press, Inc.), 1953 (Copyright renewed 1981a by CRC Press, Inc.), 1954 (Copyright renewed 1982 by CRC Press, Inc.), 1955 (Copyright renewed 1983 by CRC Press, Inc.), 1956 by Chemical Rubber Publishing Company

© 1957, 1958, 1959, 1960, 1962 by Chemical Rubber Publishing Company

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

MI rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press LLC, provided that \$.50 per page photocopied is paid directly to Copyright Clearance Center, 27 Congress Street, Salem, MA 01970 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-0482-2/01/\$0.00+\$.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

CRC Press LLC's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0482-2
Library of Congress Card Number 13-11056
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

Other compounds are of industrial value; lead chromate is chrome yellow, a valued pigment. Chromium compounds are used in the textile industry as mordants, and by the aircraft and other industries for anodizing aluminum. The refractory industry has found chromite useful for forming bricks and shapes, as it has a high melting point, moderate thermal expansion, and stability of crystalline structure. Chromium is an essential trace element for human health. Many chromium compounds, however, are acutely toxic, chronically toxic, and may be carcinogenic. They should be handled with proper safeguards. Natural chromium contains four isotopes. Twenty other isotopes are known. Chromium metal (99.95%) costs about \$600/kg. Commercial grade chromium (99%) costs about \$75/kg.

Cobalt — (Kobald, from the German, goblin or evil spirit, cobalos, Greek, mine), Co; at. wt. 58.93320(1); at. no. 27; m.p. 1495°C; b.p. 2927°C; sp. gr. 8.9 (20°C); valence 2 or 3. Discovered by Brandt about 1735. Cobalt occurs in the mineral cobaltite, smallite, and erythrite, and is often associated with nickel, silver, lead, copper, and iron ores, from which it is most frequently obtained as a by-product. It is also present in meteorites. Important ore deposits are found in Congo-Kinshasa, Australia, Zambia, Russia, Canada, and elsewhere. The U.S. Geological Survey has announced that the bottom of the north central Pacific Ocean may have cobalt-rich deposits at relatively shallow depths in waters close to the Hawaiian Islands and other U.S. Pacific territories. Cobalt is a brittle, hard metal, closely resembling iron and nickel in appearance. It has a magnetic permeability of about two thirds that of iron. Cobalt tends to exist as a mixture of two allotropes over a wide temperature range; the \beta-form predominates below 400°C, and the α above that temperature. The transformation is sluggish and accounts in part for the wide variation in reported data on physical properties of cobalt. It is alloyed with iron, nickel and other metals to make Alnico, an alloy of unusual magnetic strength with many important uses. Stellite alloys, containing cobalt, chromium, and tungsten, are used for high-speed, heavy-duty, high temperature cutting tools, and for dies. Cobalt is also used in other magnet steels and stainless steels, and in alloys used in jet turbines and gas turbine generators. The metal is used in electroplating because of its appearance, hardness, and resistance to oxidation. The salts have been used for centuries for the production of brilliant and permanent blue colors in porcelain, glass, pottery, tiles, and enamels. It is the principal ingredient in Sevre's and Thenard's blue. A solution of the chloride (CoCl2 · 6H2O) is used as sympathetic ink. The cobalt ammines are of interest; the oxide and the nitrate are important. Cobalt carefully used in the form of the chloride, sulfate, acetate, or nitrate has been found effective in correcting a certain mineral deficiency disease in animals. Soils should contain 0.13 to 0.30 ppm of cobalt for proper animal nutrition. Cobalt is found in Vitamin B-12, which is essential for human nutrition. Cobalt of 99.9+% purity is priced at about\$500/kg. Cobalt-60, an artificial isotope, is an important gamma ray source, and is extensively used as a tracer and a radiotherapeutic agent. Single compact sources of Cobalt-60 vary from about \$1 to \$10/curie, depending on quantity and specific activity. Thirty isotopes and isomers of cobalt are known. WALL TO SHARE THE RESIDENCE OF THE PARTY OF

Columbium — See Niobium.

Copper — (L. cuprum, from the island of Cyprus), Cu; at. wt. 63.546(3); at. no. 29; f.p. 1084.62 °C; b.p. 2562°C; sp. gr. 8.96 (20°C); valence 1 or 2. The discovery of copper dates from prehistoric times. It is said to have been mined for more than 5000 years. It is one of man's most important metals. Copper is reddish colored, takes on a bright metallic luster, and is malleable, ductile, and a good conductor of heat and electricity (second only to silver in electrical conductivity). The electrical industry is one of the greatest users of copper. Copper occasionally occurs native, and is found in many minerals such as cuprite, malachite, azurite, chalcopyrite, and bornite. Large copper ore deposits are found in the U.S., Chile, Zambia, Zaire, Peru, and Canada. The most important copper ores are the sulfides, oxides, and carbonates. From these, copper is obtained by smelting, leaching, and by electrolysis. Its alloys, brass and bronze, long used, are still very important; all American coins are now copper alloys; monel and gun metals also contain copper. The most important compounds are the oxide and the sulfate, blue vitriol; the latter has wide use as an agricultural poison and as an algicide in water purification. Copper compounds such as Fehling's solution are widely used in analytical chemistry in tests for sugar. High-purity copper (99.999 + %) is readily available commercially. The price of commercial copper has fluctuated widely. The price of copper in December 1999 was about \$1.75/kg. Natural copper contains two isotopes. Twenty-six other radioactive isotopes and isomers are known.

Curium — (Pierre and Marie Curie), Cm; at. wt. (247); at. no. 96; m.p. 1345°C; sp. gr. 13.51 (calc.); valence 3 and 4. Although curium follows americium in the periodic system, it was actually known before americium and was the third transuranium element to be discovered. It was identified by Seaborg, James, and Ghiorso in 1944 at the wartime Metallurgical Laboratory in Chicago as a result of helium-ion bombardment of 239Pu in the Berkeley, California, 60-inch cyclotron. Visible amounts (30 µg) of 242Cm, in the form of the hydroxide, were first isolated by Werner and Perlman of the University of California in 1947. In 1950, Crane, Wallmann, and Cunningham found that the magnetic susceptibility of microgram samples of CmF₃ was of the same magnitude as that of GdF₃. This provided direct experimental evidence for assigning an electronic configuration to Cm⁺³. In 1951, the same workers prepared curium in its elemental form for the first time. Sixteen isotopes of curium are now known. The most stable, 247Cm, with a half-life of 16 million years, is so short compared to the earth's age that any primordial curium must have disappeared long ago from the natural scene. Minute amounts of curium probably exist in natural deposits of uranium, as a result of a sequence of neutron captures and B decays sustained by the very low flux of neutrons naturally present in uranium ores. The presence of natural curium, however, has never been detected. 242Cm and 244Cm are available in multigram quantities. 248Cm has been produced only in milligram amounts. Curium is similar in some regards to gadolinium, its rareearth homolog, but it has a more complex crystal structure. Curium is silver in color, is chemically reactive, and is more electropositive than aluminum. CmO₂, Cm₂O₃, CmF₃, CmF₄, CmCl₃, CmBr₃, and CmI₃ have been prepared. Most compounds of trivalent curium are faintly yellow in color. ²⁴²Cm generates about three watts of thermal energy per gram. This compares to one-half watt per gram of ²³⁸Pu. This suggests use for curium as a power source. 244Cm is now offered for sale by the O.R.N.L. at \$185/mg plus packing charges. 248Cm is available at a cost of \$160/µg, plus packing charges, from the O.R.N.L. Curium absorbed into the body accumulates in the bones, and is therefore very toxic as its radiation destroys the red-cell forming mechanism. The maximum permissible total body burden of ²⁴⁴Cm (soluble) in a human being is 0.3 μCi (microcurie).

Deuterium, an isotope of hydrogen — see Hydrogen.

Dubnium — (named after the Joint Institute of Nuclear Research in Dubna, Russia). Db; at.wt. [262]; at.no. 105. In 1967 G. N. Flerov reported that a Soviet team working at the Joint Institute for Nuclear Research at Dubna may have produced a few atoms of 260105 and 261105 by bombarding ²⁴³Am with ²²Ne. Their evidence was based on time-coincidence measurements of alpha energies. More recently, it was reported that early in 1970 Dubna scientists synthesized Element 105 and that by the end of April 1970 "had investigated all the types of decay of the new element and had determined its chemical properties." In late April 1970, it was announced that Ghiorso, Nurmia, Harris, K. A. Y. Eskola, and P. L. Eskola, working at the University of California at Berkeley, had positively identified Element 105. The discovery was made by bombarding a target of 249Cf with a beam of 84 MeV nitrogen nuclei in the Heavy Ion Linear Accelerator (HILAC). When a 15N nuclear is absorbed by a 249Cf nucleus, four neutrons are emitted and a new atom of 260 105 with a half-life of 1.6 s is formed. While the first atoms of Element 105 are said to have been detected conclusively

