REPLACEMENT EXHIBIT 2035

f

n :; yr

٦-

c; m n-

ry.

10%

tty the m.

the

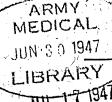
a.

Jed

are, with the mod and log

13

JOURNAL


OF THE

AMERICAN CHEMICAL SOCIETY

ARTHUR B. LAMB, EDITOR

ASSOCIATE EDITORS

PAUL D. BARTLETT PAUL H. EMMETT N. HOWELL FURMAN HENRY GILMAN EDWARD MACK, JR. R. H. F. MANSKE C. S. MARVEL S. M. McElvain Kenneth S. Pitzer Clifford B. Purves John E. Ricci FREDERICK D. ROSSINI GEORGE SCATCHARD LEE IRVIN SMITH A. H. B. VICKERY VINCENT DU VIGNEAUD

CONTENTS

GENERAL, PHYSICAL AND INORGANIC CHEMISTRY

Stuart R. Brinkley, Jr., and Sol Weller: Generalized Form of
the Reaction-Rate Law for Homogeneous Reactions
Herbert C. Brown and Moddie D. Taylor: Dissociation of
the Addition Compounds of Trimethylboron with the
Ethylamines; Configuration of the Ethylamines
Robert L. Burwell, Jr., P. Allen Smudski and Thomas P.
May: Ethylene Adsorption Isotherms at -183°
Robert E. Connick: The Interaction of Hydrogen Peroxide
and Hypochlorous Acid in Acidic Solutions Containing
Chloride Ion
B. F. Daubert and E. S. Lutton: X-Ray Diffraction Analyses
of Synthetic Unsaturated Monacid Diglycerides
W. E. Davis: The Effect of Molecular Weight Distribution
on the Reduced Viscosity-Concentration Coefficient
II. L. Fink, M. R. Cines, F. E. Frey and J. G. Aston: Solid
Solution Studies. I. Equilibria in the Binary Systems
2,2-Dimethylbutane-2,3-dimethylbutane and 2,2-Di-
methylbutane-Cyclopentane
Usorge C Porhec and Herbert H Anderson: Eluoroiso-
cyanates of Silicon
Liames Of Sincon
Henry S. Frank and Robert L. Oswalt: The Stability and
Light Absorption of the Complex Ion FeSCN++
William D. Harkins: A General Theory of the Mechanism
of Emulsion Polymerization
Roy E. Hunt and Wallace Davis, Jr.: Filters for the Isola-
tion of the 3130 A. Spectral Group of the Mercury Arc.
A. L. Jones and L. B. Yeatts: A Magnetic Study of the Type
- Jones and D. D. Teatis. A Magnetic Study of the Type

1310	of Bonding Existing in Some Complexes of Ferric Iron with Sulfonated Pyrocatechol	127
1010	Webster B. Kay: Vapor Pressures and Saturated Liquid and Vapor Densities of Cyclopentane, Methylcyclopentane,	
1332	Ethylcyclopentane and Methylcyclohexane	127
1525	Sedimentation Equilibrium. L. G. Longsworth: A Moving Boundary Method for the Measurement of Non-electrolyte Transport in Mixed	7
1509	Solvents Winifred M. Blum: Activity of Or-	1288
1449	E. m. f. Measurements with the Lead Amalgam-Lead	1240
1453	Phosphate Blectrode. I. Náray-Szabó and J. Neugebauer: The Crystal Structure of Sodium lodate	1280
4	William Primak, R. Keith Osterheld and Roland Ward: The	
1501	tive Phosphors of the Alkaline Earth Sulfides and Selen-	1283
1241	Max T. Rogers: The Electric Moments of Some Unsaturated	1243
1321	Max T. Rogers: The Magnetic Anisotropy of Coronene,	1500
1428	Sidney D. Ross and C. Gardner Swain: Application of the	***
1415	II. The Oxidation of Oxalic Acid by Ceric Sulfate R. E. Rundle: Electron Deficient Compounds	1323 1323

(Continued on second page of cover

PUBLISHED MONTHLY BY THE AMERICAN CHEMICAL SOCIETY

Copyright 1947, by the American Chemical Society

Entered at the Post Office at Easton, Pa., as Second-class Matter. Acceptance for mailing at special rate of postage provided for in Section 1103, Act of October 3, 1917, authorized July 13, 1918

Manuscripts submitted for publication and books sent for review in the Journal of the American Chemical Society, and all inquiries regarding them should be sent to the Editor, Arthur B. Lamb, Chemical Laboratory of Harvard University, 12 Oxford Street, Cambridge 38, Massachusetts

[CONTRIBUTION FROM THE UNIVERSITY OF CHICAGO TOXICITY LABORATORY1]

Study of the Hydrolysis of Several Physostigmine Analogs

By SAUL W. CHAIKIN

Physostigmine (I) and many of its analogs have been the subject of much study with regard to certain physiological properties which they exhibit

when introduced into the animal body.2-6 phenyl carbamate nucleus has been shown to be the active group in the alkaloid.2 · Physostigmine and certain other phenyl carbamate derivatives strongly inhibit choline esterase. The constriction of the pupil of the eye (miosis) of the test animal when the compound is instilled into the eye has been taken as an index of the physiological action and this has been found to depend on variations in the chemical structure of the carbamate used.

Physostigmine is not stable in aqueous solution. A systematic study of analogs of this compound was undertaken by Aeschlimann and Reinerts with the object of finding a drug suitable for therapeutic use with a greater degree of stability to hydrolysis. They found the N,N-dialkyl carbamates to be considerably more stable in water solution than the N-monoalkyl compounds and to have a physiological action of the same order of magnitude. The mode of decomposition which they proposed for the N-methyl phenyl carbamates is the formation, in slightly alkaline solution, of the phenol and the isocyanate. The odor of isocyanate was detected when solutions of N-methyl carbamates were boiled.

CH₃NHCOOC₆H₄R → CH₃NCO + HOC₆H₄R With excess alkali

It was also reported that hydrolysis was greatly suppressed when the pH of the solution was less than 5. P. D. Bartlett' observed that the methylamine produced on hydrolysis in a solution at a hydrogen ion concentration of ca. pH 9 catalyzed further decomposition of an N-methyl car-

Experiments with this class of compounds were carried out in this Laboratory involving tests of

(1) This work was done under contract with the Medical Division of the Chemical Warfare Service.

(2) E. Stedman, Biochem. J., 20, 719-734 (1926).
(3) E. Stedman, ibid., 23, 17-24 (1929).

(4) Aeschlimann and Reinert, J. Pharm. Exp. Therap., 48, 413-444 (1931).

(5) White and Stedman, ibid., 41, 259 (1931).

(6) Stevens and Beutel, THIS JOURNAL, 63, 308-311 (1941).

(7) P. D. Bartlett, et al., unpublished data.

toxicity following subcutaneous injection into mice.8 It became of some interest to know the stability in vitro of the mono- and di-alkyl carbamates under conditions of hydrogen ion concentration and temperature similar to those in the blood and tissue fluids of animals (pH 7.4 and 38°).

The compounds studied were the N-methyl (M), N,N-dimethyl (DM) and the N,N-pentamethylene (PM) derivatives of 4-dimethylamino-3-isopropylphenyl carbamate methiodide. Since

the substituents on the benzene ring are the same in each case, differences in hydrolytic stability of these compounds are due to differences in the carbamate residue.

Experimental

Materials.—The sample of M used was applied by R. L. Shriner, M. E. Synerholm and J. C. Speck, Jr., who were the first synthesizers of this compound. The melting point was given as 184.5° (dec.).

Anal. Calcd. for C14H23O2N2I: I, 33.55. Found: I, 33.50.

DM was first synthesized by Stevens and Beutel⁶ and the sample used in this investigation was submitted by H. Gilman. The melting point was reported as 159° (dec.).9

Anal. Calcd. for $C_{18}H_{25}O_2N_2I$: N, 7.15; I, 3: Found: N, 7.19 and 7.01; I, 32.40, 32.13 and 32.41.

V. A. Englehardt and L. I. Smith originally prepared PM. The melting point was reported as 161° (dec.).

Anal. Calcd. for $C_{18}H_{29}O_2N_2I$: C, 50.00; H, 6.76. Found: C, 50.21; H, 7.00.

(8) C. F. Failey, W. Elder and B. Ginsburg, unpublished data University of Chicago Toxicity Laboratory.

(9) The following is a note from a letter from H. Gilman giving information about the compound DM: "The melting point reported by Stevens and Beutel, This Journal, 63, 310 (1941) was 170°. Subsequently, we learned by private communication that the corrected melting point was 165.5°. A melting point determination of their sample taken in the same bath and at the same time as ours was 158° (ours melting at 159°),"

The sample of P (identified later) was synthesized by H. Gilman and D. A. Shirley. The melting point was given as 205° (dec.).

Anal. Calcd. for $C_{12}H_{20}ONI$: I, 39.5. Found: I, 39.6 and 39.3.

Procedure.—The course of the hydrolysis was followed by measuring the change in absorption of light by solutions of carbamate using wave lengths at which the difference in absorption by the carbamate and phenol was great. The Beckman Quartz Spectrophotometer Model DU was used after having been calibrated against solutions of known absorption maxima. The carbamates were all found to be stable in acid solution so that a standard procedure was followed involving removing aliquots from the buffered hydrolyzing solution at intervals and adding them to an acid solution to stop the hydrolysis. Spectral absorption curves were prepared (Fig. 1) for M, DM, PM and P (a pure sample of the phenol which is produced on hydrolysis of the carbamates). For purposes of comparison all spectrophotometric data have been corrected to a concentration of 0.15 mM per liter. In all cases the concentrations of the solutions prepared were within 5% of this value. The curve for P is useful in determining completeness of hydrolysis and in ascertaining the effect of hydrolysis products other thau phenol on the absorption curve of the completely hydrolyzed carbamate.

The hydrolysis rate was measured as follows. A 250-ml. volumetric flask containing phosphate buffer (NaH₂-PO₄ 0.002 M, Na₂HPO₄ 0.01 M) adjusted to pH 7.4 was immersed in a water-bath maintained at 38° until thermal equilibrium was attained. The flask was removed and a sample of carbamate weighing about 15 mg. was introduced. The solution was quickly mixed and replaced in the bath. At intervals, 10-ml. aliquots were withdrawn and added to 0.17 ml. of 6 N hydrochloric acid which so acidified the solution as to stop hydrolysis. Absorption of light of 275 mµ wave length by the solution was then measured. Quartz cuvettes of 1.00-cm. optical

depth were used.

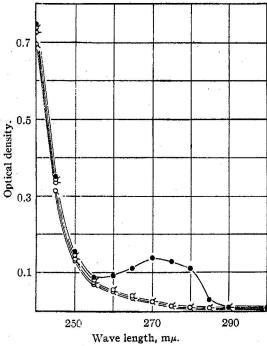


Fig. 1.—Spectral absorption of P, M, DM and PM, conen. of reagents: NaH₂PO₄, 0.002 M; Na₂HPO₄, 0.01 M; HCl, 0.1 M; compound, 0.15 mM; ●, P; Q, M; O-, DM; Q, PM.

The solutions used in preparing the curves in Fig. 1 contained 0.04 mM. of compound in a 250-ml. volumetric flask containing phosphate buffer and hydrochloric acid of the same concentration as given above. The blank used for the readings was a solution of buffer and acid, also of the above concentrations.

Results and Discussion

It was found that the solutions of DM and PM at 38° and pH 7.4 showed no significant hydrolysis during the period of observation of four days. M was found to be unstable under these conditions. Since the hydrolysis of M is more rapid in alkaline solution it is undoubtedly second order, but the hydroxyl ion concentration being held constant in these experiments, the rate depends only on the carbamate concentration. A plot of the log of the fraction hydrolyzed against time results in a straight line (Fig. 2). Calculation of reaction constants can therefore be made by methods ordinarily applied to first order reactions. When complete hydrolysis of M is effected spectral absorption data for the region from 255 to 300 mu are identical, within experimental error, with those of curve P. At shorter wave lengths the deviation gradually increases until at 240 m μ it is 5% higher than curve P. This deviation may be caused by other products of hydrolysis but since it occurs outside the region taken for hydrolysis measurements it is of no consequence in this connection. The half life for M at 38° and pH 7.4 is seen from Fig. 2 to be fifty-two minutes and the velocity constant 0.0133.

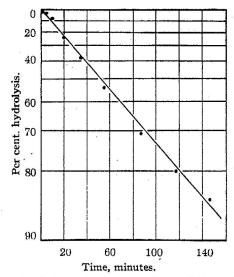


Fig. 2.—Hydrolysis-time curve for M at pH 7.4 and 38°.

This study is concerned only with the rate of disappearance of the carbamate (or the rate of appearance of the phenol) and not with the route of mechanism by which such a transformation occurs. The work of Bartlett,⁷ mentioned earlier, indicates that the hydrolysis reaction is probably

specific amine or general base catalyzed 10 in which case variation of reaction rate with buffer concentration (at pH 7.4) may be expected.

Summary

Hydrolytic stability of three physostigmine (10) L. P. Hammett, "Physical Organic Chemistry," 1st ed.,

(10) L. P. Hammett, "Physical Organic Chemistry," 1st ed., McGraw-Hill Book Company, Inc., New York, N. Y., 1940, pp. 344-345 and 215-218.

analogs at 38° and pH 7.4 was investigated by measurement of light absorption of the phenolic hydrolysis product at a wave length of $275~\text{m}\mu$. The two N,N-dialkyl carbamates were stable under these conditions during a four day observation period. The N-methyl carbamate was found to be unstable and to have a half life of 52~minutes and a velocity constant of 0.0133.

CHICAGO, ILLINOIS

RECEIVED DECEMBER 12, 1946

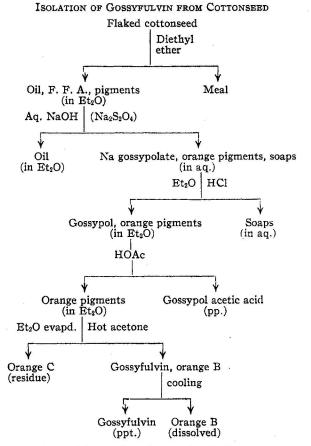
[CONTRIBUTION FROM THE SOUTHERN REGIONAL RESEARCH LABORATORY1]

The Pigments of Cottonseed. III.² Gossyfulvin, a Native Cottonseed Pigment Related to Gossypol³

BY CHARLOTTE H. BOATNER, ROBERT T. O'CONNOR, MAIZIE C. CURET AND CAROLYN S. SAMUELS

An orange colored pigment, gossyfulvin, has previously been detected in cottonseed. Although gossyfulvin has been shown to differ from gossypol in many of its properties it can be readily converted into the latter pigment. Since the work on gossyfulvin was reported, larger quantities of the pigment have been prepared by the procedure outlined in the accompanying diagram and it has therefore been possible to obtain further insight into its structure and its relationship to gossypol.

Gossyfulvin forms rather large orange-colored rhombohedra (Fig. 1), changing at 212° to a more deeply colored form which melts with decomposition at 238–239° (cor.). The crystalline form and habit of gossyfulvin differentiate it sharply from gossypol, which latter pigment, upon recrystallization from diethyl ether and petroleum naphtha, forms clusters of dog-toothed prisms (Fig. 2), m. p. 182.5–183.5°.


Gossyfulvin reacts with strong mineral acids when its chloroform solutions are treated with concentrated aqueous solutions of these acids yielding gossypol in amounts equal to as much as 86.8% of the weight of gossyfulvin treated. On the basis of the experimentally determined elementary composition, C₂₄H₃₄N₂O₈, the molecular weight of gossyfulvin is 598.

Gossypol obtained after recrystallization from diethyl ether and petroleum naphtha at low temperatures and dried without elevation of temperature yields analytical values which agree with those calculated for $C_{30}H_{32}O_{9}$.

Comparison of gossyfulvin with such nitrogen derivatives of gossypol as diamino- and dianilinogossypol, reveals several significant differences,

- One of the Laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, United States Department of Agriculture. Article not copyrighted.
 For previous paper of this series see Boatner, Samuels, Hall
- (2) For previous paper of this series see Boatner, Samuels, Hall and Curet, This Journal, 69, 668-672 (1947).
- (3) Presented before the 109th Meeting of the American Chemical Society, Atlantic City, New Jersey, April 8 to 12, 1946.
 (4) Boatner, Caravella and Samuels, This JOURNAL, 66, 838

(4) Boatner, Caravella and Samuels, This Journal, 66, 838 (1944).

e. g., the melting point of gossyfulvin lies between those of the other nitrogen derivatives. The compounds differ with respect to solubility and stability. Diaminogossypol dissolved in diethyl ether or warmed in acetic acid is reported⁵ to evolve ammonia and revert to gossypol. Dianilinogossypol, on the other hand, is one of the most stable of the compounds formed from gossypol, and is hydrolyzed to gossypol only upon re-

(5) Miller and Adams, ibid., 1736-1738 (1937).

