
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: McFarland et al.

U.S. Patent No.: 5,959,633 Attorney Docket No.: 19473-0309|P1

Issue Date: Sep. 28, 1999

Appl. Serial No.: 08/726,091

Filing Date: Oct. 4, 1996
Title: METHOD AND SYSTEM FOR PRODUCING GRAPHICAL IMAGES

Mail Stop Patent Board

Patent Trial and Appeal Board
U.S. Patent and Trademark Office

P.O. Box 1450

Alexandria, VA 22313-1450

PETITION FOR INTER PARTES REVIEW OF UNITED STATES

PATENT NO. 5 959 633 PURSUANT TO 35 U.S.C. 311-319 37 C.F.R. 42

TABLE OF CONTENTS

I. INTRODUCTION 1

ll. MANDATORY NOTICES UNDER 37 C.F.R § 42.8 2

A. Real Parties-In-Interest Under 37 C.F.R. § 42.8(b)(1) 2

B. Related Matters Under 37 C.F.R. § 42.8(b)(2) 2

C. Lead And Back-Up Counsel Under 37 C.F.R. § 42.8(b)(3) 3
D. Service Information 3

III. PAYMENT OF FEES — 37 C.F.R. §42.103 3

IV. REQUIREMENTS FOR IPR UNDER 37 C.F.R. § 42.104 3

A. Grounds for Standing Under 37 C.F.R. § 42.104(a) 3

B. Challenge Under 37 C.F.R. § 42.104(b) and Relief Requested 3

V. SUMMARY OF THE ‘633 PATENT 4

A. Brief Description 4

B. Summary of the Original Prosecution 6

VI. Claim Construction under 37 C.F.R. §§ 42.104(b)(3) 8

VII. THERE IS A REASONABLE LIKELIHOOD THAT AT LEAST ONE CLAIM

OF THE ‘633 PATENT IS UNPATENTABLE 10

A. Ground 1 sets forth a reasonable likelihood to prevail on at least one

of Claims 1-4, 6, 8-11, 13, and 15 11

B. Ground 2 sets forth a reasonable likelihood to prevail on at least one

of Claims 1-4, 6, 8-11, 13, and 15 14

VIII. [GROUND 1 CLAIM CHART] — Anticipation of Claims 1-4, 6, 8-11, 13, and

15 under §102 by Walton 20

IX. [GROUND 2 CLAIM CHART] — Obviousness of Claim 1-4, 6, 8-11, 13, and

15 under §103 by Eick in view of Kruglinski 39

X. CONCLUSION 60

GOOGLE1001

GOOGLE1002

GOOGLE1003

GOOGLE1004

GOOGLE1005

GOOGLE1006

GOOGLE1007

GOOGLE1008

EXHIBITS

U.S. Patent No. 5,959,633 to McFarland et al. (“the ’633 patent”)

Prosecution History of the ’633 patent (Serial No. 08/726,091)

Declaration of Dr. Anselmo Lastra

U.S. Patent No. 5,883,639 to Walton et al. (“Walton”)

U.S. Patent No. 5,564,048 to Eick et al. (“Eick”)

Select portions of Inside Visual C++, Second Edition: Version 1.5 by

David J. Kruglinski, September 1, 1994 (“Krug|inski”)

Select portions of The American Heritage Dictionary of the English

Language (3rd ed. 1992)

Micrografx, LLC, v. Google, Inc. and Motorola Mobility, LLC, Civil Ac-

tion No. 3:13—cv—03595—N, Plaintiff Micrografx, LLC’s Preliminary Dis-

closure of Asserted Claims and Infringement Contentions dated Janu-

ary 6, 2014

I. INTRODUCTION

Google Inc., Samsung Telecommunications America, LLC, Samsung Electronics

America, Inc., and Samsung Electronics Co., Ltd. (“Petitioners”) petition for Inter Partes Re-

view (“|PR”) under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42 of claims 1-4, 6, 8-11, 13, and

15 (“the challenged claims”) of U.S. Patent 5,959,633 (“the ’633 patent”). Below, Petitioners

demonstrate there is a reasonable likelihood of prevailing (“RLP”) in their challenge of at

least one claim identified as unpatentable in this Petition.

The ’633 patent discloses a purported improvement to “computer graphics programs

[that] provide tools within a computer program that allow a user to draw and edit a variety of

shapes,” but which were limited to drawing a predetermined set of shapes. GOOGLE1001

at 1:11-22. According to the ’633 patent, that improvement was to “provid[e] a shape library

external to the computer program” in which each shape had “external capabilities” that could

produce “a graphical image of the shape.” Id. at 1:41-50. As a result, according to the ’633

patent, “[n]ew shapes may be easily added without rewriting the underlying computer pro-

gram.” Id. at 1:60-62.

But the claimed invention was not new. To the contrary, the ’633 patent was improv-

idently granted without full consideration to the wide body of applicable prior art. For exam-

ple, U.S. Patent No. 5,883,639 (“Walton”) [GOOGLE1004] discloses the exact limitations

that served as the basis for allowance, namely, “an external shape stored outside the com-

puter program” that includes “external capabilities” capable of “production of a graphical im-

age of the external shape.” See GOOGLE1002, Amendment filed Jan. 26, 1999, at 12.

Specifically, Walton discloses accessing external shapes in the form of graphics objects,

each object including an external shape (“graphic element’’) and external capabilities (“be-

havior element’’) that, among other things, can produce a graphical image of the shape.

GOOGLE1004 at 13:13-17; GOOGLE1003, 111] 36-45. Walton is not alone, as the other ref-

erences cited herein likewise disclose this same functionality.

In sum, if the Office had been aware of Walton or the other cited references, the ‘633

patent neverwould have issued. Petitioners therefore request the Board to institute inter

partes review of the challenged claims on the grounds set forth below.

ll. MANDATORY NOTICES UNDER 37 C.F.R § 42.8

A. Real Parties-In-Interest Under 37 C.F.R. § 42.8(b)(1)

Google Inc., Samsung Telecommunications America, LLC, Samsung Electronics

America, Inc., and Samsung Electronics Co|., Ltd. are the real parties-in-interest.

B. Related Matters Under 37 C.F.R. § 42.8(b)(2)

Petitioners are not aware of any reexamination certificate or certificate of correction

for the ‘633 patent. The Patent Owner (Micrografx, LLC) is a non-practicing entity that filed

complaints alleging infringement of the ‘633 patent in lawsuits against Petitioners (Micro-

grafx, LLC, v. Google, Inc. and Motorola Mobility, LLC, N.D. Tex., Case No. 3:13—cv—03595—

N; Micrografx, LL C, v. Samsung Telecommunications America, LLC, Samsung Electronics

America, Inc., and Samsung Electronics Co., Ltd., N.D. Tex., Case No. 3:13-cv-03599-N).

Both complaints were filed on September 9, 2013, and both actions remain pending. Peti-

2

tioners have also petitioned — on this same day — for Inter Partes Review of two other pa-

tents at issue in the above-noted litigation: U.S. Patent 6,057,854 (Davis, Jr. et al.) and

U.S. Patent 6,552,732 (Davis, Jr. et al.).

C. Lead And Back-Up Counsel Under 37 C.F.R. § 42.8(b)(3)

Petitioners provide the following designation of counsel.

LEAD COUNSEL BACK-UP COUNSEL

John C. Phillips, Reg. No. 35,322 Michael T. Hawkins, Reg. No. 57,867

12390 El Camino Real 3200 RBC Plaza, 60 South Sixth Street

San Diego, CA 92130 Minneapolis, MN 55402
Tel: 858-6784304 / Fax 858-678-5099 Tel: 612-337-2569 I Fax 612-288-9696

D. Service Information

Please address all correspondence and service to the address of both counsel listed

above. Petitioners also consent to electronic service by email at 19473-0309|P1@fr.com

(referencing No. 19473-0309|P1 and cc’ing phi||ips@fr.com and hawkins@fr.com).

Ill. PAYMENT OF FEES — 37 C.F.R. § 42.103

Petitioners authorize the Patent and Trademark Office to charge Deposit Account

No. 06-1050 for the petition fee set in 37 C.F.R. §42.15(a) and for any other required fees.

IV. REQUIREMENTS FOR IPR UNDER 37 C.F.R. § 42.104

A. Grounds for Standing Under 37 C.F.R. § 42.104(a)

Petitioners certify that the ‘633 patent is eligible for IPR and that Petitioners are not

barred or estopped from requesting IPR.

B. Challenge Under 37 C.F.R. § 42.104(b) and Relief Requested

Petitioners request IPR of claims 1-4, 6, 8-11, 13, and 15 of the ‘633 patent on the

grounds listed in the table below. In support, this Petition includes claim charts for each of

these grounds and a supporting evidentiary declaration of Dr. Anselmo Lastra.

(GOOGLE1003).

Basis for Rejection

1-4, 6, 8-11, Anticipated under§ 102 by U.S. Patent No. 5,883,639 to Wal-

13, and 15 ton et al. (“Walton”)

1-4, 6, 8-11, Obvious under§ 103 by U.S. Patent No. 5,564,048 to Eick et

13, and 15 al. (“Eick”) in view of Inside Visual C++, Second Edition: Ver-

sion 1.5 by David J. Kruglinski (Kruglinski)

Walton and Eick are both prior art under at least 35 U.S.C. §102(e), having an effec-

tive filing date years before Oct. 4, 1996. Kruglinski is prior art under at least 35 U.S.C.

§102(b), having a publication date before Oct. 4, 1995 (U.S. Copyright Reg. No.

TX0004058221). None of these references were considered by the Examiner during prose-

cution of the ‘633 patent.

V. SUMMARY OF THE ‘633 PATENT

A. Brief Description

The ‘633 patent is directed to a computer system for producing graphical images

for use in a computer graphics program. GOOGLE1001 at 125-59. The specification of the

‘633 patent contends that prior art systems “only enable a user to draw and edit a limited

number of shapes. If additional shapes are desired, the computer program in the system

must be modified to include the additional tools needed to draw and edit the desired shape.”

Id. at 1:14-18. As described below, this characterization of the prior art was flawed, as there

were numerous prior art references that overcome the supposed limitations. The ‘633 pa-

tent further explains that “one computer graphics system incorporates a limited component

plug-in capability utilizing tab|es.” Id. at 1:23-34. But this characterization of the prior art

also was inconsistent with the state of the art at the time. The external shapes, according to

the ‘633 patent, are computer programing objects libraries, or other data structures that are

stored external to a computer program and that include data for use in producing graphical

images. Id. at 3:17-29. External shapes include capabilities that “allow the generation of

information required to produce a graphical image.” Id. at 3:29-31. These capabilities can

include “action methods” and “symbol methods.” Id. “Action methods” define functions for

receiving user interaction received by the application from an input device for creation or

manipulation of graphical images defined by the external shapes. Id. at 6:19-29; 5:1-18.

Examples of action methods include “the create action and edit actions.” Id. at 5:12-13.

“Symbol methods” define functions for creating, editing, rendering, modifying, reading,

and/or writing a graphic image. Id. at 7:14-16; 5:19-25. One example of a symbol method

includes a rotate function for rotating a graphic image. Id. at 5:25-30.

External shapes include external action data, which is data that is operated on by

one or more action methods to define an external action. Id. at 6:4-6. External shapes fur-

ther include external symbol data, which is data that is operated on by symbol methods to

“create, edit, render, modify, read, or write a graphical object.” Id. at 7:14-16.

Independent claim 1 is written nominally as a system claim, but in reality recites a

generic computer, with method steps being recited in the context of a “computer program

stored in [a] storage medium.” Claim 8 and its dependent claims are so-called Beauregard

claims, reciting the identical method steps to Claim 1 and its dependent claims (or in the

case of claim 15, nearly identical method steps) in the context of a “computer program en-

coded on a computer-readable medium.” Independent claims 1 and 8 recite broad ele-

ments of accessing an external shape object or library that includes capabilities for produc-

ing a graphical image. Such functionality was well known in the art at the time the applica-

tion that matured into the ‘633 patent was filed. The dependent claims recite similarly broad

features that were also well known in the art at the time of filing. Indeed, numerous soft-

ware programming platforms implemented in the early to mid 1990’s offered identical func-

tionality of providing objects or libraries including capabilities for creating and manipulating

graphical images that are stored external to applications. See GOOGLE1003 at 1] 17.

B. Summary of the Original Prosecution

The ‘633 patent was filed on October 4, 1996. Prior to this filing date, several dif-

ferent systems and programming platforms described in patent applications and in other

printed publications taught methods in which external objects and/or libraries containing

code defining how to draw graphical images are accessed by one or more computer pro-

grams. None of these prior art references were before the Examiner during the prosecution

of the ‘633 patent. Instead, the two independent claims 1 and 8 at issue in this IPR were

allowed in April 1999 after a brief examination involving prior art references that did not pro-

vide an accurate picture of the state of the art.

After all original 28 claims were rejected in the first office action, the applicant argued

that claims 1-15 were patentable because the primary reference cited by the examiner did

not explicitly suggest “an external shape stored outside the computer program” as recited in

independent claims 1 and 8. GOOGLE1002 at pp. 101-104. In response to this argument,

the examiner cited an additional reference (U.S. Patent No. 5,790,117 to Halviatti et at.) as

teaching “an external shape stored outside the computer program.” Id. at pp. 109-110.

The applicant countered that Halviatti does not teach an “external shape” and that

the examiner did not provide a motivation to modify the primary reference (Visio) with the

teachings of Halviatti. Id. at pp.124-126. However, the applicant did not address how the

resulting combination of the systems described by Visio and Halviatti references would func-

tion or how such a resulting combination would not include an “external shape.” Id. Rather

than provide reasoning giving a motivation to modify the system taught by Visio with the

teachings of Halviatti, the examiner allowed all claims with no express reasons for allow-

ance other than the note in the Notice of Allowability that “this communication is responsive

to the correspondence filed 1-26-99].” Id. at pp.129-130. Independent claims 1 and 8 were

therefore allowed because the examiner accepted the applicant’s argument that the cited

references, in isolation, did not disclose:

“a computer program further operable to: access an external shape

stored outside the computer program, the external shape comprising ex-

ternal capabilities; and delegate the production of a graphical image of

the external shape to the external capabilities.”

Id., pp. 114, response filed Jan. 26, 1999.

As described in more detail below, more pertinent prior art never considered by the

examiner expressly disclosed an “external shape” and all other features of claims 1-4, 6, 8-

11, 13, and 15.

VI. Claim Construction under 37 C.F.R. §§ 42.104(b)(3)

Claims are to be given their “broadest reasonable construction in light of the specifi-

cation.” 37 C.F.R. § 42.100(b). The constructions are intended to aid in this proceeding,

and should not be understood as waiving any arguments concerning indefiniteness or claim

breadth that may be raised in any litigation, which requires different construction standards.1

“external shape stored outside the computer program” (claims 1, 8) — an object,

library component, or other data structure that contains source code, that is stored external

to a computer program, and that includes data for use in producing a graphical image.

GOOGLE1003 at 1] 21. This interpretation is consistent with the broadest reasonable inter-

pretation of these terms and with the specification of the ‘633 patent. See GOOGLE1001 at

2:66-3:7; 3:52-57; GOOGLE1003 at 1] 21 .

1 The Patent Owner’s preliminary infringement contentions are attached as Exhibit

GOOGLE1008 for the Board’s reference.

“external capabilities” (claims 1, 8, 15) — As defined in the ‘633 patent, “capabili-

ties” are “action methods, symbol methods, or any other functions that allow the generation

of information required to produce a graphical image.” GOOGLE1001 at 3:29-31. “External

capabilities,” therefore, are such capabilities that are external to a computer program.

GOOGLE1003 at 1] 22. This interpretation is consistent with the broadest reasonable inter-

pretation of these terms and with the specification of the ‘633 patent. Id. at 1] 22.

“delegate” (claims 1,2, 8, 9) — the plain meaning of “delegate” is “to commit or en-

trust to another.” GOOGLE1007 at p. 493. The ‘633 patent provides no express meaning

for the term “delegate” that is different from this aforementioned definition. This interpreta-

tion is consistent with the broadest reasonable interpretation of these terms and with the

specification of the ‘633 patent. See GOOGLE1001 at 3:17-31; GOOGLE1003 at 1] 23.

“external action” (claims 2-4, 9-1 1) — functions and data that are external to the

computer program and that are operable to receive user interaction. GOOGLE1003 at 1] 24.

This interpretation is consistent with the broadest reasonable interpretation of these terms

and with the specification of the ‘633 patent. See GOOGLE1001 at 621-29.

“external symbol” (claims 2, 3, 6, 9, 10, 13) — functions and data that are external

to the computer program and that are operable for creating, editing, rendering, modifying,

reading, and/or writing a graphical image. GOOGLE1003 at 1] 25. This interpretation is

consistent with the broadest reasonable interpretation of these terms and with the specifica-

tion of the ‘633 patent. See GOOGLE1001 at 7:11-16.

VII. THERE IS A REASONABLE LIKELIHOOD THAT AT LEAST ONE CLAIM OF THE

‘633 PATENT IS UNPATENTABLE

As detailed below, claims 1-4, 6, 8-11, 13, and 15 of the ‘663 patent are anticipated

by at least one reference (Grounds 1) and rendered obvious by another combination of ref-

erences (Ground 2). The two Grounds are not cumulative or redundant. Instead, they rely

upon different primary references that individually assert unique benefits to the user and,

additionally, they address the dependent claims in different ways, including using different

statutory grounds of§ 102 and § 103. See GOOGLE1003 at 111] 26-164.

For example, the Walton patent, on which Ground 1 is based, describes a system for

allowing users to create graphical user interfaces “without knowledge of programming Ian-

guages and without having to learn a large set of complicated commands.” GOOGLE1004

at 3:55-59. The system of Walton allows non-programming savvy lay-users to create a user

interface and animations for graphical images by providing examples of how objects should

respond to user input through a process of “animation by example.” Id. at 3:59-67. The user

can add “graphical objects” to the user interface and identify how the graphical objects are

to respond to user input. Id. at 426-20.

By contrast, the Eick patent, on which Ground 2 is based, describes a C++ pro-

gramming environment which provides graphical object classes, drawing classes, and func-

tion classes that allow a programmer to call the classes from applications written by the

programmer. See GOOGLE1005 at Abstract; 4:19-42; 5:35-55. The system of Eick allows

10

a “programmer [to] use components from the [class] library in his program.” (Id.at 1:51-57.)

Specifically, the class libraries taught by Eick are intended for “use in object-oriented

graphics programming.” Thus the system of Eick is implemented for the benefit of computer

programmers writing graphics programs in object-oriented languages, such as C++, while

the system described by Walton is implemented for the benefit of non-programmers when

creating user interfaces. The two Grounds of rejection differ in the way in which they ad-

dress the claim elements of the ‘633 patent in numerous other ways, as detailed below.

A. Ground 1 sets forth a reasonable likelihood to prevail on at least one of

Claims 1-4, 6, 8-11, 13, and 15

Referring to Ground 1 (charted below), Walton discloses accessing external graph-

ical objects, each of which includes an external shape (“graphic element’’) and external ca-

pabilities (“behavior element’’) that, among other things, can produce a graphical image of

the shape. GOOGLE1004 at 13:13-17; GOOGLE1003 at 111] 36-45. Walton also discloses

delegating the production of a graphical image to the external capabilities. GOOGLE 1004

at 11:8-9; 13:19-31; GOOGLE1003 at 111] 46-49. Walton also discloses that the graphical

objects are stored externally from a program (“user code”). GOOGLE1004 at 8:54-65;

21:10-16; 21:44-46.

More specifically, the system taught by Walton utilizes external graphical object li-

braries for storing graphical object data and input, drawing, and manipulation functions for

various graphical objects that allow user applications to access the graphical objects and

associated functionality stored within the external libraries. See GOOGLE1004 at 9:24-25;

11

9:46-47; 6:8-10; 6:17-20; 8:54-65; 21:10-16; GOOGLE1003 at 111] 36-49. Annotated Fig. 3

of Walton below shows a modular arrangement for storing graphical object data and func-

tionality in a “library of graphical objects 320” that is stored externally to an application, la-

beled as “user’s source code 360:”

/\ nrsruu
shape objects are
stored external to the

computer program

Walton discloses that graphical objects are “stored as objects in an object-oriented

database system and connected to other objects or user code” and that such techniques for

storing the graphical objects external to the user code were “commonly used in object-

oriented systems” at the time that the Walton patent was written. GOOGLE1004 at 8:54-59.

12

Walton further discloses that these external graphical objects can be “accessed by the user

code 120” by connecting to “a client server via an interprocess communications mechanism

of a type known to those skilled in the art.” Id. at 8:58-62. Walton describes that storing the

graphical objects externally to the user application is “particularly advantageous in that the

user application code can read input and send outputs to the display screen using the cre-

ated graphics objects without requiring the designer to write interface code.” Id. at 8:24-27.

Walton further discloses delegating drawing and other functions relating to the exter-

nal shapes to the externally stored graphical objects. For example, Walton indicates that “a

graphical object in accordance with the invention must be able to draw itself if asked to do

so.” Id. at 13:19-21 (emphasis added). Walton additionally discloses that each “graphical

object is responsible for controlling itself” and that a graphical object is responsible for

“chang[ing] its graphical representation . . . on the display” in response to user input or other

events. Id. at 11:8-9; 13:26-30.

For at least these reasons, and the additional explanations set forth in the chart be-

low, there is a reasonable likelihood that claims 1-4, 6, 8-11, 13, and 15 of the ‘633 patent

are anticipated by Walton. See, e.g., GOOGLE1003 at 111] 26-49 (providing evidence that

claim 1 is anticipated); see also 111] 50-86. Moreover, to the extent the Patent Owner argues

that any element of claims 1-4, 6, 8-11, 13, and 15 is not expressly disclosed in the Walton

patent, such element would be inherently disclosed or rendered obvious in view of the dis-

closure of the Walton patent and in light of the knowledge of a POSITA, especially in light of

the fact that Walton provides a system (for storing, externally to a computer program, graph-

ical elements having external capabilities) that is virtually the same as the preferred embod-

iment of the ‘633 patent. GOOGLE1003 at 1] 88.

B. Ground 2 sets forth a reasonable likelihood to prevail on at least one of

Claims 1-4, 6, 8-11, 13, and 15

Referring to Ground 2 (charted below), Eick is directed to a computer graphics sys-

tem for drawing shapes in an object-oriented programming environment, such as C++. See

GOOGLE1005 at 4:19-42. The system allows a program to call drawing classes from a

class library and delegate various drawing functions to the called classes. See Id. at 1:51-

57; 4:15-17; 5:35-55. Each class can inherit other classes to provide various functions and

shape drawing capabilities to the inheriting class. See Id. at 6:6-9; 9:22-27; 13:1-8. For ex-

ample, Eick discloses that any graphical object class “can inherit . . . any number of the

functionality classes 203 defined by class library 21 1 Id. at 6:6-9. Inherited classes allow

a graphical object class “to respond to drawing commands” and perform functions, such as

“draw[ing] either the frame or a filled shape” for the graphical object. Id. at 53-56; 22:16-19.

FIG. 5 shows library class F|oatDraw inheriting the classes VzDrawingArea, VzDrawer, and

VzMouseable:

14

FIG‘. 5

_ 305 323- _ 335
'_ r"

V: [lR.IL‘I'Il NC I V: DRMITR I V: IICIUSEAELEAREA “-:/JR
I z ’

\ "- X I /' /
‘~~. I ‘I

x ,/'

sg , 503
- rum um

I case

The inherited VzMouseab|e class allows F|oatDraw to receive user input from a

mouse, while the inherited VzDrawer class draws the actual object defined by a class that

inherits F|oatDraw. Id. at 5:23-34; 5:58-60; 6:54-61; 22:16-19. The drawing classes (such

as VzBarLayout and F|oatDraw) that are called from the class library are able to use func-

tions and capabilities provided in inherited classes to draw and manipulate graphical objects

on a display screen. See Id. at 8:40-47; 9:56-10:14; GOOGLE1003 at 111] 89-92.

For example, the graphical object class “VzBarLayout” has capabilities for “drawing

either rows or columns of bars and [allowing a user to use] the mouse to manipulate them.”

Id. at 8:40-44. Eick further discloses that the VzBarLayout class inherits the VzDrawingArea

and VzMouseab|e classes and “is used to draw . . . either rows (horizontal) or columns (ver-

tical) of bars” in response to tracked mouse movements. Id. at 13:1-3. The VzBarlayout

class that draws bar shapes also inherits the VzDrawer class. Id. at 8:44-47.

Additionally, while Eick does not explicitly state that its C++ graphic object libraries

are external libraries, the functionality described in Eick suggests implementation of the li-

braries of Eick as external libraries. (GOOGLE1003 at 1] 105.) For example, Eick discloses

15

that ‘‘libraries of components of graphical user interface programs” can be implemented to

allow a “programmer [to] use components from the library in his program and thus avoid

having to write and debug them himself.” (GOOGLE1005 at 1:51-57.) Eick also describes

the graphic object libraries not as being written as part of a graphics program, but as stand-

alone objects that “may be used in writing a graphics program.” (GOOGLE1005 at 4:14-17.)

Additionally, persons of ordinary skill in the art prior to October 1996 commonly un-

derstood that a C++ library could be made into an external library, such as a .DLL or a

shared library. GOOGLE1003 at 111] 106-111. For example, Kruglinski, a text on a C++

programming language, describes that any class can be compiled into an external DLL li-

brary, describing such libraries as “an important part of Windows-based programming....

DLLs are Windows-based program modules that can be loaded and linked at run time.

Many applications can benefit by being split into a series of main programs and DLLs.” Id.

Kruglinski describes an example project in which several classes are grouped into a

DLL. Id. at pg. 645. The classes in Krug|inski’s example project "have mostly the same

source code as their statically linked counterparts, except for some added code that

demonstrate resource searching and runtime class access." Id. This use of external DLL

files for storing libraries mirrors language in the ‘633 patent describing how external shapes

are accessed by a user program. See the ‘633 patent at 3:52-67 (describing that the “shape

collection modules 212 and 214 comprise a dynamic link library (DLL) that allows executa-

16

ble routines to be stored separately as files with DLL extensions and to be loaded only when

needed by the program that calls them”); see also 4:27-32.

There are a number of reasons that would have prompted a person of ordinary skill

in the art (POSITA) to combine this functionality disclosed in Kruglinski with the teachings of

Eick. First, a POSITA would have been prompted to store the classes of Eick as DLL librar-

ies as taught by Kruglinski because Eick describes that its library is written in C++, and a

POSITA would understand, as taught in Kruglinski, that when programming in C++, “[m]any

applications can benefit by being split into a series of main programs and DLLs.”

GOOGLE1006 at pg. 635; see also GOOGLE1003 at 111] 108-111 One such benefit is sug-

gested by Eick, which discloses that splitting an application into a series of main programs

and DLLs would allow a programmer to write a graphics program without having to worry

about writing and debugging the graphic object class libraries. GOOGLE1005 at 1:51-57.

Second, as a POSITA would have understood, storing libraries as DLL files allows

for programs to be designed as a series of “modules” that can share various libraries, there-

by allowing for quicker loading of programs, which would have prompted a POSITA to mod-

ify the system of Eick with the teachings of Kruglinski. Kruglinksi recognized this benefit:

“You might have separate programs, or modules, for Payroll, Accounts Receivable, and so

forth, but these programs have a lot of functionality in common. All modules might share

the same list management and database access classes, for example. If you put the

shared code in one or more DLLs, the individual modules will be smaller on disk and there-

17

fore guicker to load.’’ GOOGLE1006 at pg. 635 (emphasis added). This same benefit was

recognized by the ‘633 patent, touting that “the invention provides for modular production.”

GOOGLE1001 at2:1-2.

Third, a POSITA would have been motivated to implement the libraries of Eick as

external DLL files to achieve the benefit of allowing multiple applications to access the li-

braries, as taught by Kruglinski. See GOOGLE1003 at 1] 110.

Fourth, a POSITA would have been prompted to modify Eick’s system with this well-

known feature of Kruglinski because doing so would be merely the use of a known tech-

nique (e.g., storing of libraries as external DLL files) to improve similar devices (e.g., object

oriented programs implementing object libraries) in the same way. Indeed, “when a patent

‘simply arranges old elements with each performing the same function it had been known to

perform’ and yields no more than one would expect from such an arrangement, the combi-

nation is obvious.” KSR Int’I Co. v. Teleflex Inc., 550 U.S. 398, 417 (2007). Here, both Eick

and Kruglinski disclose the creation of class libraries using C++, with Kruglinski describing

an improvement for the creation, storage, and access of such libraries. A POSITA would

have readily applied the capability to store C++ class libraries as external DLL files (as

taught by Kruglinski) to Eick’s C++ class libraries, so as to provide a predictable result (e.g.,

a prior art method for storing class libraries). GOOGLE1003 at 1] 111. Also, the resulting

combination would continue to provide the original functionality taught by Eick (e.g., classes

defining shapes having associated capabilities stored within libraries) while also providing

18

the additional benefits of external library storage described in Kruglinski. Id. at 111 1 1. Thus,

the combination of Eick (which describes a C++ library) and Kruglinski (which is a text on

the C++ programming language) is merely combining prior art elements according to known

method to yield predictable results. KSR, 550 U.S. at 417.

Fifth, both Eick and Kruglinski are in the same field (object—oriented computer pro-

gramming), and therefore a POSITA would have been motivated to utilize the object-

oriented computer programming techniques taught by Kruglinski when implementing the

computer graphics system of Eick.

For at least these reasons and the additional explanations described in the chart be-

low and the accompanying declaration by Dr. Lastra, there is a reasonable likelihood that

claims 1-4, 6, 8-11, 13, and 15 of the ‘633 patent are rendered obvious by Eick in view of

Kruglinski. See, e.g., GOOGLE1003 at 111] 89-116 (providing evidence that claim 1 is ren-

dered obvious); see also 111] 117-162. Moreover, to the extent the Patent Owner argues that

any element of claims 1-4, 6, 8-11, 13, and 15 is not expressly disclosed by the combination

of Eick in view of Kruglinski, such element would be inherently disclosed or rendered obvi-

ous in view of the disclosures of the Eick and Kruglinski references and in light of the

knowledge of a POSITA. See Id. at 1] 164. Any such minor elements of the claims at issue

that the Patent Owner argues are not expressly addressed by this petition would be known

by a POSITA and could be easily and readily applied to the teachings of Eick and Kruglin-

ski.

19

VIII. [GROUND 1 CLAIM CHART] — Anticipation of Claims 1-4, 6, 8-11, 13, and 15

under §102 by Walton

Claim Element U.S. Pat. 5,883,639 to Walton et al.

[1 .P] A computerized system Walton discloses a computerized system.

comprising: (GOOGLE1003 at 111] 30-31.) For example, Walton de-

scribes "[a] visual software engineering system."

(GOOGLE1004 at 7:44-47; see also Abstract (“A sys-

tem for providing a simple, easy to learn and flexible

means of creating user interfaces to products under

development without the need of a programming lan-

guage or the need to learn a large set of complicated

commands.”); 4:38-41 (''In accordance with a preferred

embodiment of the invention, a system is provided

for creating and animating graphical objects by di-

rectly manipulating the graphical objects on a display

screen") (emphasis added).)

Walton discloses that the system is “preferably imple-

mented in software on a computer and is accessed

via a window system 402.” (emphasis added) (Id. at

9:52-54; see also 7:51-57 ("Since UN|X® work stations

are in widespread use as developmental platforms in

real-time projects, the preferred embodiment of the in-
vention is described for use on UN|X® work stations.

Also, since C and C++ computer languages are the

primary implementation languages of interface devel-

opers, the source code listings attached as APPENDIX
A have been reared in these |anuaes." .

[1 .1] a storage medium; Walton discloses a storage medium. (GOOGLE1003

at 1] 32.) For example, Walton discloses that a “user

can also store the entire design of his or her user inter-

face on disk” and that “objects [can] be saved and re-

stored from disk fi|es.” (GOOGLE1004 at 4:29-33;

21:44-46.) Additionally, Walton describes that its sys-

tem is “implemented in software on a computer and is

accessed via a window system 402." (Id. at 9:52-54;

see also 7:51-57 (describing implementation in C++ on

UNIX workstations.) A POSITA would know that soft-
ware re uires a storae medium to execute on a com-

20

—uter. GOOGLE1003 at‘|] 32.
[1 .2] a processor coupled to the Walton discloses a processor coupled to the storage

storage medium; medium. (GOOGLE1003 at 1] 33.) Walton discloses

that “[a] software interface is also easily connected to

the actual code being constructed by the developer,

where such code may be running on the develop-

ment host, in an instruction set simulator on the host,

in the physical product's processor, or on all three

at once.” (emphasis added) (GOOGLE1004 6:29-34.)

Based on Wa|ton’s teaching and the broadest reason-

able interpretation of “coupled” in this element, the pro-

cessor would be coupled to a storage medium for the

processor to be “running” the code. (GOOGLE1003 at

1] 33.

[1 .3] a computer program stored Walton discloses a computer program stored in the

in the storage medium, the com- storage medium that is operable to run on the proces-

puter program operable to run on sor. (GOOGLE1003 at 111] 34-35.) For example, Walton

the processor, the computer pro- describes a computer program in the form of user soft-

gram further operable to: ware. (GOOGLE1004 at8:16-21 (‘‘In particular, the

user software may be used to access the graphical

obiect, and by providing the behavior function name

and the desired behavior state, the graphical object

may be manipulated on the display screen directly from

the user application code.”) (emphasis added); 6:29-34

(“A software interface is also easily connected to the

actual code being constructed by the developer,

where such code may be running on the development

host, in an instruction set simulator on the host, in the

physical product's processor, or on all three at once.”)

(emphasis added); 10:17-21 (“A detailed description of

each of the modules of FIGS. 4(a) and 4(b) will now be

given a source code listing of the following preferred

embodiment of the VSE system 400”); 9:35-40 (‘‘In ad-

dition, the behavior states of the graphical objects cre-

ated by the graphics editor 310 may also be linked to
user source code 360 such that the source code 360

can manipulate the states of the graphical objects.”)

(emphasis added).)

The user code / software described b Walton runs on

21

[1 .4] access an external shape

stored outside the computer pro-

gram, the external shape com-

prising external capabilities; and

a computer. (9:50-54 ("As will be more apparent from

the following, the VSE system 400 is preferably imple-

mented in software on a computer and is accessed

via a window system 402.") (emphasis added).) Based

on Wa|ton’s teaching and the broadest reasonable in-

terpretation of this element, the computer program run-

ning on the processor of the computer would be stored

in the storae medium. GOOGLE1003 at 111] 34-35.

Walton discloses accessing an external shape stored

outside the computer program, the external shape

comprising external capabilities, in accordance with the

broadest reasonable interpretation standards ex-

pressed above. (GOOGLE1003 at 111] 36-45.) Walton

describes accessing external shapes in the form of

graphical objects, each object including an external

shape (“graphic element’’) and external capabilities

(“behavior e|ement”). (GOOGLE1004 at 13:13-17 (“A

graphical object is the key object for the VSE system

400 of the invention. Preferably, the VSE object con-

sists of two major parts, the graphic element and the

behavior e|ement.”).)

Walton describes computer programs in the form of

user source code. (Id. at 9:36-47; see also 18:40-46.)

FIG. 3 shows the library of graphical objects 320 (i.e.,

“external shapes”) being stored external to the com-
roram user source code 360 .

22

LIBRARY OF
GRAPHICAL OBJECTS

Walton discloses that “the user software may be used

to access the graphical object, and by providing the

behavior function name and the desired behavior state,

the graphical object may be manipulated on the display

screen directly from the user application code.” (Id. at

8:16-21; see also 9:4-8 (“[T]he user program preferably

includes an interface 230 for accessing this animation

information and for calling the obiect and its associ-
ated behavior and behavior value for the chosen ani-

mation.”) (emphasis added).)

Walton discloses that shapes are stored as objects. (Id.

at 6:38-40 (“The present invention is preferably de-

signed using an object based technology where a

drawn shape is a separately movable object.”); see al-
so 12:57-67.

23

Walton discloses that each shape object has external

capabilities in the form of “input and output behavior
states” and that these “behavior states can also be

stored in external database 370.” (Id. at 9:24-25; 9:46-

47; see also 5:34-35 (“storing the defined output be-

havior with the corresponding graphical object for re-

spective input states”); 6:8-10; 6:17-20 (“retrieving

graphical objects with pre-defined input behavior states

from a library.’’).) Walton discloses that the graphical

objects are stored external to the computer program in

that “[t]he resulting objects are then stored as ob-

jects in an obiect-oriented database system and

connected to other objects or user code 120 in accord-

ance with techniques commonly used in object-

oriented systems. The information so stored is ac-

cessed by the user code 120 by. . . communicating

to a client server via an interprocess communications

mechanism of a type known to those skilled in the art.”

(emphasis added) (Id. at 8:54-62; see also 21:10-16

("The client server 414 is the part of the VSE system

400 that connects user code to the VSE system 400 . .

.[C]|ient server 414 establishes the connection between

a user program and the VSE system 400 and passes

information between the two as required."); 14:19-21

(describing that user code can “receive graphical ob-

jects from other graphical editors outside of the VSE

system 400.”).)

The graphics objects can also be saved to disk, exter-

nal to the user code. For example, "Universe 420 is

also provided as a place for storing all VSE graphical

objects." (Id. at 10:1-2; see also 21:44-46 (“The uni-

verse 420 also allows objects to be saved and restored
from disk files and views of the universe 420 to be

added and deleted’’.); 11:23-30 (“The graphical file is

created to store the graphical representations of ob-

jects for displaying or printing the appearance of those

objects, while the design file contains the information
the rahical file does alon with descritions of ob'ect

24

relationships and object behavior functions. In other

words, the graphical file stores pictures of objects,

while the design file stores the appearance and behav-

ior of objects.”).)

Walton further describes that the graphics objects have

external capabilities in the form of “behavior states”

that are stored external to user source code (Id. at

9:35-42 (''In addition, the behavior states of the

graphical objects created by the graphics editor

310 may also be linked to user source code 360

such that the source code 360 can manipulate the

states of the graphical objects. For this purpose, the

user may access the stored behavior function and val-

ues for both input and output.") (emphasis added).)

The graphic objects (i.e., “external shapes” in the par-

lance of the ‘633 patent) of Walton include external ca-

pabilities in the form of functions that allow the graph-

ical objects to produce a graphical image.

(GOOGLE1003 at 111] 40-41, 44.) For example, “a

graphical object in accordance with the invention misi
be able to draw itself if asked to do so and to indicate

that it has been selected." (emphasis added)

(GOOGLE1004 at 13:19-22; see also 1128-9 (“the

graphical element is responsible for controlling itself’);

25:62-26:4 (“the graphics for creating an interface to an

object are created and then input and output behav-

ior are added (as by clicks on mouse buttons). The

object is then tested and saved. The user then cre-

ates the desired application code and runs the ap-

plication which calls upon particular objects. The

user application code is then connected to the VSE

system 400 and the results displayed.’’) (emphasis

addedj)

Walton describes the Visual Software Engineering

(VSE) objects as “stor|ing| behavior as well as

graphics information. This behavior information may
reresent an ossible rahics transformation of a

25

[1 .5] delegate the production of a

graphical image of the external

shape to the external capabili-
ties.

graphics object, such as change of color, move, rotate,

scale, stretch, fill, map, unmap, raise and lower.’’ (em-

phasis added) (Id. at 8:33-37; see also 9:40-42 (“the

user may access the stored behavior function and val-

ues for both input and output.”) Walton describes stor-

ing an object as a “graphical file stor[ing] pictures of

objects” and a “design file stor[ing] the appearance and

behavior of [the] objects.” (Id. at 11:28-30; see also

13:15-17 (“the VSE object consists of two major parts,

the graphic element and the behavior e|ement.”);

13:26-30 (“a VSE object of the invention tracks a be-

havior function (graphics manipulation) such that when

a value change occurs (a behavior event), the VSE ob-

ject can change its graphical representation and up-

date itself on the display.’’); 18:63-64 (“When an object

in universe 420 is saved to a design file or a palette,
definitions for its associated behavior functions are

saved as well.” .

Walton describes delegating the production of a graph-

ical image of the external shape to the external capabil-

ities, in accordance with the broadest reasonable inter-

pretation standards expressed above. (GOOGLE1003

at ‘|j‘|j 46-49.) For example, as discussed in claim ele-

ment 1.4 above and incorporated here, Walton de-

scribes graphical objects stored outside of a computer

program. (GOOGLE1004 at 8:54-65 (“[t]he resulting

objects are then stored as ob'jects in an object-

oriented database system and connected to other

ob'jects or user code 120 in accordance with tech-

niques commonly used in object-oriented systems. The

information so stored is accessed by the user code

120 by . . . communicating to a client server via an in-

terprocess communications mechanism of a type

known to those skilled in the art.”) (emphasis added);

see also 5:34-35 (“storing the defined output behavior

with the corresponding graphical object for respective

input states”); 6:8-10; 6:17-20 (“retrieving graphical ob-

jects with pre-defined input behavior states from a li-

brary.”); 9:46-47 (describing that objects and “behavior
states can also be stored in external database 370.”

26

[2.1] The computerized system of

claim 1, wherein the computer

program is further operable to:

access an external shape stored
outside the comuter

(emphasis added).)

Walton further discloses that the production of the

graphical object is delegated to the external capabilities

of an object in that “the graphical object is responsible

for controlling itself.” (Id. at 11:8-9; see also 13:19-21

(“a graphical object in accordance with the invention

must be able to draw itself if asked to do so.”) (em-

phasis added).) Specifically, for a graphical object to

be displayed, "a VSE object of the invention tracks a

behavior function (graphics manipulation) such that

when a value change occurs (a behavior event), the

VSE object can change its graphical representation

and update itself on the display.” (emphasis added) (Id.

at 13:26-30.)

Walton further describes delegation of production of a

graphical object to external capabilities of the graphical

object in the form of “input and output behavior states.”

(Id. at 9:24-25; see also 8:7-21.) Walton discloses that

the “behavior information may represent any possible

graphics transformation of a graphics object, such as

change of color, move, rotate, scale, stretch, fill, map,

unmap, raise and lower.’’ (Id. at 8:33-37; see also 9:40-

42 (“the user may access the stored behavior function

and values for both input and output.”) Walton de-

scribes storing an object as a “graphical file stor[ing]

pictures of objects” and a “design file stor[ing] the ap-

pearance and behavior of [the] objects.” (Id. at 11:28-

30; see also 13:15-17 (“the VSE object consists of two

major parts, the graphic element and the behavior ele-

ment.”); 18:63-64 (“When an object in universe 420 is

saved to a design file or a palette, definitions for its as-
sociated behavior functions are saved as well.” .

As detailed above, Walton discloses all elements of

claim 1. As demonstrated in claim element 1.4 above

and incorporated here, Walton discloses accessing an

external shape in the form of a graphic object.

(GOOGLE1004 at 13:13-17 (“A graphical object is the
ke ob'ect for the VSE s stem 400 of the invention.

27

[2.2] the external shape compris-

ing an external action and an ex-

ternal symbol; and

Preferably, the VSE object consists of two major parts,

the graphic element and the behavior e|ement.”).) Wal-

ton discloses that “the user software may be used to

access the graphical object, and by providing the be-

havior function name and the desired behavior state,

the graphical object may be manipulated on the display

screen directly from the user application code.” (Id. at

8:16-21; see also 9:4-8 (“[T]he user program preferably

includes an interface 230 for accessing this animation

information and for calling the object and its associated
behavior and behavior value for the chosen anima-

tion.”).)

Walton also discloses that shapes are stored as ob-

jects. (Id. at 6:38-40 (“The present invention is prefera-

bly designed using an object based technology where

a drawn shape is a separately movable object.”); see

also 12:57-67.) Moreover, Walton discloses that the

graphical objects are stored external to the computer

program in that “[t]he resulting objects are then stored

as objects in an object-oriented database system and

connected to other objects or user code 120 in accord-

ance with techniques commonly used in object-

oriented systems. The information so stored is ac-

cessed by the user code 120 by . . . communicating

to a client server via an interprocess communications

mechanism of a type known to those skilled in the art.”

(emphasis added) (Id. at 8:54-62; see also 9:46-47

(describing that objects and “behavior states can also

be stored in external database 370.”) (emphasis

added); 21:10-16; 14:19-21; FIG. 3 (showing the “li-

brary of graphical objects 320” being stored outside the
roram “user source code 360” . .

Walton discloses that the external shape objects have
external actions in the form of functions and data that

are external to the computer program and that are op-
erable to receive user interaction for use in the crea-

tion, editing, rendering, modification, reading, and /or

writing of graphical images. (GOOGLE1003 at 111] 55-

61. For examle, Walton discloses that each shae

28

object has external actions in the form of “input and

output behavior states” and that these “behavior states
can also be stored in external database 370.”

(GOOGLE1004 at 9:24-25; 9:46-47.) Behavior states

can define “user input operation[s]” that are associated

with a shape object. (Id. at 4:52-55; see also 15:47-52.)

Walton further discloses “retrieving graphical objects

with pre-defined input behavior states from a library.”

(Id. at 6:17-20; see also 9:41-42 (“the stored behavior

function [includes] input and output.”); 6:8-10 (“storing

the defined input behavior states with corresponding

graphical objects.”); 11:13-14 (describing that the sys-

tem “asks the object itself what requests are legal.’’).)

Additionally, Walton describes an object as defining

input “behavior events” that lead to predefined outputs

stored as part of the object: "a VSE object of the inven-

tion tracks a behavior function (graphics manipula-

tion) such that when a value change occurs (a be-

havior event), the VSE obiect can change its graph-

ical representation and update itself on the dis-

p|_ay.” (emphasis added) (Id. at 13:26-30; see also

13:45-50 (“While receiving such user input, the graph-

ical object registers with the behavior router 412 what

events it wants next. When an event sequence has oc-

curred, it can set the value of a behavior function and

can also map events such as coordinate values and

buttons to behavior function va|ues.”).)

Walton further discloses “map[ping] a user defined in-

put region . . . to a user input operation” for an object.

(Id. at 15:49-50; see also 16:20-28 (“the details for a
function of the behavior editor 408 includes the function

name, the minimum and maximum numbers that estab-

lish the range of values currently defined for the

function's input parameter, the selected value within

the minimum to maximum range that should be passed

to the function when the object is initially instantiated,

and an action list that textually describes the
ra hicalo erations that are erformed b the

29

[2.3] delegate the production of

graphical image of the external

shape to the external action and

the external symbol.

function and for what ranges of input values the

operations are performed”) (emphasis added).)

As demonstrated above in claim element 1.4 and in-

corporated here, Walton discloses storing an external

symbol as part of a graphical object. (Id. at 11:28-30

(describing storing an object as a “graphical file

stor[ing] pictures of objects” and a “design file stor[ing]

the appearance and behavior of [the] objects.”); 13:15-

17 (“the VSE object consists of two major parts, the

graphic element and the behavior e|ement.”); 11:23-30

(“The graphical file is created to store the graphical

representations of objects for displaying or printing the

appearance of those objects, while the design file con-

tains the information the graphical file does along with

descriptions of object relationships and object behavior

functions. In other words, the graphical file stores pic-

tures of objects, while the design file stores the ap-

pearance and behavior of objects.”.)

The graphics elements are manipulated by “behaviors

[including] change color, move, rotate, scale, stretch,

fill, map, unmap, raise, lower and the like.’’ (Id. at

13:37-38.) Walton further describes that a VSE exter-

nal graphical object “keeps the graphical state of the

object as well as all the operations that can be per-

formed on it. Graphical state information includes, for

example, current graphical transformation, type of ob-

ject, colors, line styles, and the like.'' (Id. at 21 :65-
22:4.

Walton discloses delegating the production of graphical

image of the external shape to the external action and

the external symbol. (GOOGLE1003 at 111] 62-66.)

Walton describes that the production of the graphical

object is delegated to its external action and external

symbol in that “a graphical object in accordance with
the invention must be able to draw itself if asked to

do so and to indicate that it has been selected." (em-

phasis added) (GOOGLE1004 at 13:19-22; see also
11:8-9 “the rahical element is resonsible for con-

30

trolling itself’); 25:62—26:4 (“the graphics for creating an

interface to an object are created and then input and

output behavior are added (as by clicks on mouse but-

tons). The object is then tested and saved. The user

then creates the desired application code and runs

the application which calls upon particular obiects.

The user application code is then connected to the

VSE system 400 and the results displayed.’’) (empha-

sis added).)

Specifically, for a graphical object to be displayed, "a

VSE object of the invention tracks a behavior function

(graphics manipulation) such that when a value

change occurs (a behavior event), the VSE obiect

can change its graphical representation and update

itself on the display.” (emphasis added) (Id. at 13:26-

30.) For example, "for an object that accepts input

from the user, a mouse or keyboard event may cause

the object to execute one of its behavior functions."

(18:19-21; see also 8:7-21("|n accordance with the in-

vention, an animation window is created which allows

the user to assign a behavior function name to a graph-

ical object and then manipulate the graphical object

using a graphics editor to illustrate by example what

the designer wants that particular graphical object to

do. The present behavior of the manipulated graphical

object is then stored as a behavior state with the cur-

rent manipulation (display state) of the graphical object.

In this manner, the designer creates "frames" of anima-

tion which may be later called upon to create the de-

sired sequence of actions. In particular, the user soft-

ware may be used to access the graphical object, and

by providing the behavior function name and the de-

sired behavior state, the graphical object may be ma-

nipulated on the display screen directly from the user

application code.”); 10:6-7 ("VSE primitive objects 424

are also provided for representing an object that the

user has drawn on the display.'').)

Walton further describes deleation of roduction of a

31

[3.1] The computerized system

of claim 2, wherein the computer

program is further operable to

receive user input in a manner

defined by the external action;
and

graphical object to “input and output behavior states.”

(Id. at 9:24-25.) Walton discloses that the “behavior

information may represent any possible graphics trans-

formation of a graphics object, such as change of color,

move, rotate, scale, stretch, fill, map, unmap, raise and

lower.’’ (Id. at 8:33-37.)

Walton further describes client code “initiat[ing] a be-

havior event” by “ask[ing] objects . . . to execute their

respective F(integer value) behavior functions” for a

specified parameter value. (Id. at 18:41-44.) Stored

object code defines “graphical changes an object goes

through” when a “behavior function is called with differ-

ent values or ranges of values.” (Id. at 18:55-59; see

also 18:10-12 (“Each object, however, has its own def-

inition for the action or actions performed by the behav-

ior function.”); 18:3-5 (describing that upon receiving a

user input, the system “contacts each object and re-

quests the object to execute its version of the behavior
function with the desired value” .

As detailed above, Walton discloses all elements of

claims 1 and 2. Walton also discloses receiving user

input in a manner defined by the external action.

(GOOGLE1003 at 111] 67-68.) Walton describes that a

graphical object can define acceptable types of input.

(GOOGLE1004 at 9:22-25 ("The invention of FIG. 3 is

particularly characterized by an animator 340 which

allows the user to define by example what input and

output behavior states a graphical object should

have.”).)

Walton discloses that the external actions stored as

part of each graphic object define functions for receiv-

ing user interaction received by the computer program

from an input device for manipulation of shapes that

are not contained within the computer program.

(GOOGLE1003 at 111] 67-68.) For example, Walton

discloses that each shape object has external capabili-

ties in the form of “input and output behavior states”
and that these “behavior states can also be stored in

32

external database 370.” (GOOGLE1004 at 9:24-25;

9:46-47.) Walton further discloses “retrieving graphical

objects with pre-defined input behavior states from a

library.” (emphasis added) (Id. at 6:17-20; see also

9:41-42 (“the stored behavior function [includes] input

and output.”); 6:8-10 (“storing the defined input be-

havior states with corresponding graphical ob-

jeLt:~*..”) (emphasis added); 11:13-14 (describing that

the system “asks the object itself what request are le-

gal.”).)

Walton discloses how a user can identify which user

inputs to associate with a particular graphical object.

(Id. at 5:2-17(“Preferab|y, the manipulating means

comprises means for pressing and releasing one or

more buttons on the example mouse pad under control
of the hardware mouse and associated hardware

mouse pad, whereby a button to be depressed on the

example mouse pad is selected by the user by using

the hardware mouse and the button on the example

mouse pad is depressed by the user by depressing a

corresponding button on the hardware mouse pad. The

manipulating means preferably also comprises means

for moving the example mouse on its associated ex-

ample mouse pad under control of the hardware

mouse and associated hardware mouse pad. As a re-

sult, the example mouse is selected by the user by us-

ing the hardware mouse and is moved by moving the

hardware mouse such that the example mouse is

moved a corresponding amount on its associated ex-

ample mouse pad on the display screen relative to the

movement of the hardware mouse.”)

Walton additionally discloses defining the input states

as particular types of external actions (received user

input). (13:42-50 (“the graphical object can also be set

up to track sequences of user input such as a mouse

button depression followed by a mouse drag, followed
b mouse button release. While receivin such user

33

[3.2] manipulate the graphical

image in response to the user

input in a manner defined by the

external symbol.

input, the graphical obiect registers with the behav-
ior router 412 what events it wants next. When an

event sequence has occurred, it can set the value of a

behavior function and can also map events such as
coordinate values and buttons to behavior function val-

emhasis added .

Walton describes that a graphics object can be ma-

nipulated in response to behaviors executed in re-

sponse to user input. (GOOGLE1003 at 111] 69-72;

GOOGLE1004 at 18:19-21 (“For an object that accepts

input from the user, a mouse or keyboard event may

cause the obiect to execute one of its behavior

functions,”) (emphasis added); GOOGLE1004 at 5:2-

17(“Preferab|y, the manipulating means comprises

means for pressing and releasing one or more buttons

on the example mouse pad under control of the hard-

ware mouse and associated hardware mouse pad,

whereby a button to be depressed on the example

mouse pad is selected by the user by using the hard-

ware mouse and the button on the example mouse pad

is depressed by the user by depressing a correspond-

ing button on the hardware mouse pad. The manipulat-

ing means preferably also comprises means for moving

the example mouse on its associated example mouse

pad under control of the hardware mouse and associ-

ated hardware mouse pad. As a result, the example

mouse is selected by the user by using the hardware

mouse and is moved by moving the hardware mouse

such that the example mouse is moved a correspond-

ing amount on its associated example mouse pad on

the display screen relative to the movement of the

hardware mouse.”).)

The graphics object uses its defined behaviors to ma-

nipulate a graphics image. (Id. at 13:26-28 (‘‘Preferably,

a VSE object of the invention tracks a behavior function

(graphics manipulation) such that when a value

change occurs (a behavior event), the VSE obiect

can change its graphical representation and update

itself on the dis la . emhasis added ;see also

34

[4] The computerized system of
claim 2 wherein the external ac-

tion comprises a plurality of ex-
ternal methods and external da-

ta.

13:37-38 (“behaviors [can include] change color, move,

rotate, scale, stretch, fill, map, unmap, raise, lower and

the like.’’); 6:43-47 ("Mouse events that occur over

these objects will cause the objects to execute their

internal behavior. For example, a mouse click over a

"button" object may cause the button to invert its bor-

der colors to simulate the button being pressed.");

16:43-56.)

Walton further describes client code “initiat[ing] a be-

havior event” by “ask[ing] objects . . . to execute their

respective F(integer value) behavior functions” for a

specified parameter value. (Id. at 18:41-44.) Stored

object code defines “graphical changes an object goes

through” when a “behavior function is called with differ-

ent values or ranges of values.” (Id. at 18:55-59; see

also 18:10-12 (“Each object, however, has its own def-

inition for the action or actions performed by the behav-

ior function.”); 18:3-5 (describing that upon receiving a

user input, the system “contacts each object and re-

quests the object to execute its version of the behavior
function with the desired value” .

As detailed above, Walton discloses all elements of

claims 1 and 2. Walton further discloses that the ex-

ternal action comprises a plurality of external methods

and external data. (GOOGLE1003 at 111] 73-74.) For

example, Walton describes multiple behavior states

(having multiple external methods and external data)

associated with each object. (GOOGLE1004 at 5:62-

64 (“The invention also preferably comprises a method

of defining user input to graphical objects as re-

spective behavior states of the graphical obiects.”)

(emphasis added); see also 5:34-35 (“storing the de-

fined output behavior with the corresponding graphical

object for respective input states”); 6:8-10; 6:17-20 (“re-

trieving graphical objects with pre-defined input be-

 from a library.’’) (emphasis added);

17:24-30 (“An input object (i.e., an object whose ap-

pearance changes in response to a keyboard or mouse
referabl 'ust a suerset of an out ut ob'ect.

35

[6] The computerized system of
claim 2 wherein the external

symbol comprises a plurality of
external methods and external

data.

The input obiect's necessapy changes in appear-

ance are mapped to states of a behavior function

so that it is only necessapy to map keyboard or

mouse events to the range of values accepted by

the behavior function.”) (emphasis added); 9:40-42

(“For this purpose, the user may access the stored be-

havior function and values for both input and output.").)

Walton further describes an external action comprising

a plurality of external methods as well as external data.

(GOOGLE1003 at 1] 74.) For example, Walton disclos-

es client code “initiat[ing] a behavior event” by “ask[ing]

objects . . . to execute their respective F(integer value)

behavior functions” for a specified parameter value.

(GOOGLE1004 at 18:41-44.) Stored object code de-

fines “graphical changes an object goes through” when
a “behavior function is called with different values or

ranges of values.” (Id. at 18:55-59; see also 18:10-12

(“Each object, however, has its own definition for the

action or actions performed by the behavior function.”);

18:3-5 (describing that upon receiving a user input, the

system “contacts each object and requests the object
to execute its version of the behavior function with the

desired value” . emhasis added .

As detailed above, Walton discloses all elements of

claims 1 and 2. Walton also discloses that the external

symbol comprises a plurality of external methods and

external data. (GOOGLE1003 at 111] 75-77.) For exam-

ple, Walton discloses that graphical objects are saved

as multiple files, each file including information for ren-

dering the object, including graphical files (external da-

ta) and design files (external methods). (GOOGLE

1004 at 11:23-30 (“The graphical file is created to

store the graphical representations of objects for

displaying or printing the appearance of those objects,

while the design file contains the information the graph-

ical file does along with descriptions of object rela-

tionships and object behavior functions. In other

words, the graphical file stores pictures of objects,
while the desi n file stores the a earance and behav-

36

ior of objects.”) (emphasis added).)

Behaviors stored as part of graphic objects include ex-

ternal methods for manipulating the underlying

graphics image and keeping track of external data in

the form of behavior information. (8:34-38 “VSE objects
in accordance with the invention thus store behavior as

well as graphics information. This behavior infor-

mation may represent any possible graphics trans-

formation of a graphics obiect, such as change of

color, move, rotate, scale, stretch, fill, map, unmap,

raise and lower.’’) (emphasis added); see also 21 :65-

22:4 ("A VSE primitive object 424 is the part of the VSE

system 400 that represents an object that the user has

drawn on the screen. It keeps the graphical state of

the obiect as well as all the operations that can be

performed on it. Graphical state information includes,

for example, current graphical transformation, type of

object, colors, line styles, and the like.'') (emphasis

[8.P] A computer program en- Walton discloses a computer program encoded on a

coded on a computer-readable computer-readable medium. (GOOGLE1003 at 111] 79-

medium, the computer program 80.) For example, Walton describes a computer pro-

operable to: gram in the form of user software. (GOOGLE1004 at

8:16-21 (‘‘In particular, the user software may be used

to access the graphical object, and by providing the

behavior function name and the desired behavior state,

the graphical object may be manipulated on the display

screen directly from the user application code.”); 6:29-

34; 10:17-21.) The software runs on a computer. (Id.

at 9:50-54 ("As will be more apparent from the follow-

ing, the VSE system 400 is preferably implemented in

software on a computer and is accessed via a window

system 402."); see also 7:44-59.) Based on Wa|ton’s

teaching and the broadest reasonable interpretation of

this element, the computer program running on the

processor of the computer would be encoded on a

computer-readable medium of the computer.

GOOGLE1003 at 111] 79-80.

8.1 access an external shae See corresondin exlanations for claim 1

37

stored outside the computer pro-

gram, the external shape com-

prising external capabilities; and

delegate the production of a

graphical image of the external

shape to the external capabili-
ties.

Claim 9

Claim 10

Claim 11

Claim 13

[15] The computer program of
claim 8 wherein the external ca-

pabilities comprise a plurality of
external methods and external

data.

Claim 2 corresponds to claim 2. See explanations for
claim 2.

Claim 10 corresponds to claim 3. See explanations for
claim 3.

Claim 11 corresponds to claim 4. See explanations for
claim 4.

Claim 13 corresponds to claim 6. See explanations for
claim 6.

As detailed above, Walton discloses all elements of

claim 8 (See explanations for claim 1). Walton also

discloses external capabilities in the form of external
methods of the external action and external methods of

the external symbol. (GOOGLE1003 at 1]1] 83-86.) For

example, Walton describes an external action compris-

ing a plurality of external methods as well as external

data. (GOOGLE1003 at 1]1] 83-86.) Walton discloses

client code “initiat[ing] a behavior event” by “ask[ing]

objects . . . to execute their respective F(integer value)

behavior functions” for a specified parameter value.

(GOOGLE1004 at 18:41-44.) Stored object code de-

fines “graphical changes an object goes through” when
a “behavior function is called with different values or

ranges of values.” (Id. at 18:55-59; see also 18:10-12

(“Each object, however, has its own definition for the

action or actions performed by the behavior function.”);

18:3-5 (describing that upon receiving a user input, the

system “contacts each object and requests the object
to execute its version of the behavior function with the

desired value’’).) (emphasis added)

Walton discloses external data in the form of external

data of the external action and external data of the ex-

ternal s mbol. GOOGLE1003 at 1] 84. For examle,

38

Walton discloses that graphical objects are saved as

multiple files, each file including information for render-

ing the object, including graphical files (external data)

and design files (external methods). (GOOGLE 1004

at 11:23-30 (“The graphical file is created to store the

graphical representations of objects for displaying or

printing the appearance of those objects, while the de-

sign file contains the information the graphical file does

along with descriptions of object relationships and ob-

ject behavior functions. In other words, the graphical

file stores pictures of objects, while the design file
stores the a earance and behavior of ob'ects.” .

IX. [GROUND 2 CLAIM CHART] — Obviousness of Claim 1-4, 6, 8-11, 13, and 15

under §103 by Eick in view of Kruglinski

Claim Element Eick in view of Kru o linski

[1 .P] A computerized system

comprising:

[1 .1] a storage medium;

[1 .2] a processor coupled to

the storae medium;

Eick discloses a computerized system. (GOOGLE1003 at

‘|]‘|] 93-94.) For example, Eick discloses “an object-oriented

programming system 101 [] used to produce code for a

graphical user interface. Object-oriented programming sys-

tem 101 includes a compiler 107 for an object-oriented

programming language which produces object code 109

for CPU 111. When CPU 111 executes code 109, the exe-

cution results in outputs 123 to display 113.... A user of

CPU 111 may employ keyboard 117 and/or mouse 119 to

provide inputs to window 115 [that] affect the execution

of code 109, and consequently may result in changes to
window 115.” GOOGLE1005 at 4:20-31.

Eick discloses "a storage medium." (GOOGLE1003 at 1]

95.) For example, Eick describes using an Iris Indigo

computer with 64 megabytes of memory. (GOOGLE1005

at 4:36-40 (‘‘In a preferred embodiment, the object-oriented

programming language is C++, compiler 107 is the Unix

Software Laboratories (USL) C++ compiler, running on an

Iris Indigo (Silicon Graphics Inc.) with 64 MBytes

Eick discloses a processor coupled to the storage medium.
GOOGLE1003 at 1] 96. For examle, Eick describes us-

39

[1 .3] a computer program

stored in the storage medium,

the computer program opera-

ble to run on the processor,

the computer program further

operable to:

[1 .4] access an external shape

stored outside the computer

program, the external shape

comprising external capabili-

fies;and

ing a CPU to execute software code. (GOOGLE1005 at

4:25-26 (“When CPU 111 executes code 109, the execu-

tion results in outputs 123 to display 113.”).) Based on

Eick’s teaching and the broadest reasonable interpretation

of “coupled” in this element, the software code would be

stored on a storage medium of Eick’s computer for the

CPU to access and execute it. GOOGLE1003 at 1] 96.

Eick discloses a computer program stored in the storage

medium, the computer program operable to run on the

processor. (GOOGLE1003 at 1] 97.) For example, Eick

describes the VZ library, which is “[a] library of C++ clas-

ses for use in writing data visualization programs.”

(GOOGLE1005 at Abstract.) Eick discloses that "Object-

oriented programming system 101 includes a compiler 107

for an object-oriented programming language which pro-

duces object code 109 for CPU 111. When CPU 111 exe-

cutes code 109, the execution results in outputs 123 to

display 113. In response to these outputs, display 113 pro-

duces window 115." (Id. at 4:22-26.) Eick discloses that

accessing of libraries and other functions recited within

Eick “may be used in writing a graphics program.” (Id. at

4:14-17.) Eick further discloses “An Example Graphics

Program” that is implemented using the below detailed

functionality. (Id. at 9:1-5)

Eick in view of Kruglinski discloses accessing an external

shape stored outside the computer program, the external

shape comprising external capabilities, in accordance with

the broadest reasonable interpretation standards ex-

pressed above. (GOOGLE1003 at 111] 89-92; 98-111.) Eick

provides a C++ drawing class (VzDrawer) for creating

shapes. (GOOGLE1005 at 6:54-61 ("VzDrawer 323 [is] a

functionality class which gives an area obiect the ability

to respond to drawing commands. Added operations

include outputting the area as a Postscript file, doing dou-

ble buffering, convening between coordinate systems,

specifying fonts and measuring the size of strings, and Q

ing drawing operations such as drawing points, lines,

rectangles, ovals, polygons, filling polygons, and the like.'')

emhasis added ; see also 22:16-19 “The remainin

40

methods [of the VzDrawer class] draw into the current ob-

ject. They draw either the frame or a filled shape and use

either the pixel-based or floating valued coordinate sys-

tems. There are therefore ususally four routines for each

drawing command.”) (emphasis added); 20:36-59, (provid-

ing a list of drawing routines, including DrawPoint(),

DrawLine(); FrameRecl(); FiIIRect(); FrameOva|(); Fil|O—

va|(); FramePo|y(); Fi||Po|y() for drawing shapes.).)

Eick further describes a C++ class “VzBar|ayout” that is

capable of “drawing either rows or columns of bars and

using the mouse to manipulate them.” (Id. at 8:40-44; see

also 13:1-3 (“A VzBarLayout is--a VzDrawingArea and a
VzMouseab|e that is used to draw and track the mouse for

either rows (horizontal) or columns (vertical) of bars.”).)

The VzBar|ayout class that draws bar shapes inherits the

VzDrawer class. (Id. at 8:44-47.) Eick also describes the

insertion of other shapes such as buttons, sliders, win-

dows, and menus. (Id. at 7:27-31 ("The area classes de-

fine operations on areas such as windows, sliders, buttons,

menus, and so on in display 113. In many graphical user

interface systems, these areas are represented by native

objects provided by the graphical user interface system.");

see also 9:56-59 (“Objects of class F|oatDraw 503 have

three operations: reading a file to produce the information

from which window 401 may be produced, drawing |the|

window 401, and responding to mouse selections of line

representations 405.”) (emphasis added).)

Eick's shapes are defined by object specifications that de-

fine the capabilities of an object. (Id. at 5:1-4 ("an object's

class determines what operations can be performed on the

object. The operations themselves are specified by means

of function specifications in the class specifications 103.”).)

For example, the object may perform graphics operations

and respond to input: “the program may perform graphics

operations on the window represented by an object of

class F|oatDraw 503 and will also respond to mouse inputs

on the window.” (Id. at 9:27-30; see also 5:23-34 ("An ex-
amle of the above is rovided b the V2 libra 's class

41

VzMouseab|e, which includes a virtual function DoMouse.

The virtual function interface defines how information

concerning the behavior of the mouse is passed to

code 109, but does not define what action is taken in re-

sponse to the information.”) (emphasis added); see also

5:58-60 (“the functionality class VzMouseab|e provides the

functionality of responding to a mouse.”).)

Eick provides "a library of C++ classes called Vz" (Id. at

2:64; see also 6:6-9 (“an object class specification 209

which inherits from any of the entity classes 201 defined by

class library 211 can inherit any and any number of the

functionality classes 203 defined by class library 211.”);

9:22-27 (‘‘FIG. 5 shows how classes of V2 library 301 are

used in specifying F|oatDraw 503. F|oatDraw 403 inherits

the library area class VzDrawingArea 305 and the library

functionality classes VzDrawer 323 and VzMouseab|e

335.”).) FIG. 5 shows library class F|oatDraw inheriting

VzDrawingArea, VzDrawer, and VzMouseab|e:

FIE}. 5

_ 305 313 _ 335
'_ K’

V: DRAVHHG I V: DRAWER | ‘I’: MOLISEABLEAREA K:
I /I

x\\ I ff
\. I /
\ ,3’

501 I so:- now am

I cuss

While Eick does not explicitly state that its C++ graphic ob-

ject libraries are external libraries, the desired functionality

described in Eick suggests implementation of the libraries

of Eick as external libraries. (GOOGLE1003 at 1] 105.)

For example, Eick discloses that ‘‘libraries of components

of graphical user interface programs” can be implemented

to allow a “programmer [to] use components from the

library in his program and thus avoid having to write
and debu them himself.” emhasis added

42

(GOOGLE1005 at 1:51-57.) Such a teaching from Eick

indicates that the libraries are external to the programmer’s

program and are accessed by the program, rather than in-

cluded as a part of the program. (GOOGLE1003 at 1] 105.)

Eick also describes the graphic object libraries not as be-

ing written as part of a graphics program, but as stand-

alone objects that “may be used in writing a graphics pro-

gram.” (GOOGLE1005 at4:14-17.)

Additionally, to the extent that Eick does not expressly dis-

close that its libraries are implemented as external librar-

ies, it was well known to persons of ordinary skill in the art

that any C++ library could be made into an external library

such as a .DLL or a shared library. (GOOGLE1003 at 1]

106-111.) For example, Kruglinski, a text on a C++ pro-

gramming language, describes that any class can be com-

piled into an external DLL library. (GOOGLE1006 at pg.

635 ("The dynamic link library has always been an im-

portant part of Windows-based programming.... DLLs are

Windows-based program modules that can be loaded and

linked at run time. Many applications can benefit by being

split into a series of main programs and DLLs.”).)

Kruglinski describes an example project "that combines the

CStudent class CPersistentFrame class and the

CRowView class into a single dynamic link library." (Id.

at pg. 645.) The classes in the example project for DLL

"have mostly the same source code as their statically

linked counterparts, except for some added code that

demonstrate resource searching and runtime class ac-

cess." (Id.) This use of external DLL files for storing librar-

ies mirrors language in the ‘633 patent describing how ex-

ternal shapes are accessed by a user program. (See

GOOGLE1001 at 3:52-67 (“shape collection modules 212

and 214 comprise a dynamic link library (DLL) that allows

executable routines to be stored separately as files with

DLL extensions and to be loaded only when needed by the

program that calls them.”; 4:27-32 (“The shared library 130

may also be a DLL. However, the present invention con-
temlates an suitable software architecture usin (J namic

43

[1 .5] delegate the production

of a graphical image of the ex-

ternal shape to the external

capabilities.

link libraries, plug-ins, extensions, initialization files, or oth-

er modular arrangement that allows utility functions to be

stored externally to computer graphics application 122.”).)
For the reasons described above in Section V||.B. and in-

corporated here, a person of ordinary skill in the art would

have been prompted to modify Eick’s system to include

storing the Eick’s graphical object libraries as external DLL
files as tauht b Krulinski .

The resulting combination of Eick in view of Kruglinski dis-

closes the delegation of the production of a graphical im-

age of the external shape to the external capabilities, in

accordance with the broadest reasonable interpretation

standards expressed above. (GOOGLE1003 at 111] 112-

116.) For example, Eick describes objects including func-

tionality for drawing shapes of the objects. (GOOGLE1005

9:56-59 (“Objects of class F|oatDraw 503 have three oper-

ations: reading a file to produce the information from which

window 401 may be produced, drawing |the| window

M and responding to mouse selections of line represen-

tations 405.”) (emphasis added).) Eick additionally dis-

closes that the VzBarLayout class “is used to draw . . . ei-

ther rows (horizontal) or co|umns(vertica|) of bars” based

on tracked mouse movements. (Id. at 13:1-3.) As another

example, Eick describes that “an object of class Float-
Draw” can inherit “functiona|ities” from several classes that

allow “the program [to] perform graphics operations” in re-

sponse to mouse inputs. (Id. at 9:26-30.)

Eick further describes yet another external capability in the

form of a DoExpose function that is responsible for drawing

the graphics images. (Id. at 9:56-63 (“Objects of class

F|oatDraw 503 have three operations: reading a file to pro-

duce the information from which window 401 may be pro-

duced, drawing window 401, and responding to mouse se-

lections of line representations 405. All of these opera-

tions are specified as virtual functions 102, the read

operation as the ReadFi|e virtual function at 617, th_e

drawing operation as the DoExpose function at 619,

and the response to the mouse selections at DoMouse

621.” emhasis added . For examle, the DoExose

44

function can draw lines. (Id. 10:6-13 (“The display of col-

umns 403 and line representations 405 is produced when

window 401 is exposed by the implementation of DoEx-

pose at 625 in FIG. 6B. The function determines the cur-

rent size of the window and then uses the arrays produced

by Read File to produce the display. Aline representation

405 is drawn for each line; if there is a match in the line,

the line representation 405 is highlighted.’’) (emphasis

addedl)

The DoExpose function is called any time a shape needs

to be redrawn. (Id. at 23:15-19 (disclosing that DoExpose

is a “pure virtual member-function. It is called when a re-

gion of the VzDrawingArea needs to be redrawn. The rec-

tangle passed frames the region.”).) The VzDrawer class

also has external capabilities for producing graphical im-

ages. (Id. at 22:16-19 (“The remaining methods [of

VzDrawer class] draw into the current object. They draw

either the frame or a filled shape and use either the pix-

el-based or floating valued coordinate systems. There are

therefore usually four routines for each drawing com-

mand.”) (emphasis added); see also 20:36-59, (providing a

list of drawing routines, including DrawPoint(), DrawLine();

FrameRect(); FiIIRect(); FrameOva|(); Fi||Ova|();

FramePo|y(); Fi||Po|y() for drawing shapes.).)

While Eick does not explicity disclose that its C++ graph-

ical objects (i.e., external shapes) are “external,” the de-

sired functionality described in Eick suggests implementa-

tion of the graphical objects of Eick as external libraries.

(GOOGLE1003 at 111] 105; 116.) For example, Eick dis-

closes that ‘‘libraries of components of graphical user inter-

face programs” can be implemented to allow a “program-

mer [to] use components from the library in his program

and thus avoid having to write and debug them himself.”

(GOOGLE1005 at 1:51-57.) Additionally, the resulting

combination of Eick in view of Kruglinski (explained above

with respect to element 1.4, the explanation of which is in-

corporated here within) would provide Eick’s graphical ob-

'ects, and thus their associated functionalities i.e., the “ex-

45

[2.1] The computerized sys-

tem of claim 1, wherein the

computer program is further

operable to: access an exter-

nal shape stored outside the

computer program,

ternal capabilities”) implemented as external DLL files as

expressly suggested by Kruglinski. (GOOGLE1003 at 1]

106-111; 116;GOOGLE1006 at pp. 635; 645) For the rea-

sons described above and incorporated here, a person of

ordinary skill in the art would have been prompted to modi-

fy Eick’s system to include storing the Eick’s graphical ob-
'ect libraries as external DLL files as tauht b Krulinski .

As detailed above, the resulting combination of Eick in

view of Kruglinski provides all elements of claim 1. The

resulting combination of Eick in view of Kruglinski also pro-

vides accessing an external shape stored outside the

computer program. (GOOGLE1003 at 111] 117-119.) For

example, Eick provides a C++ drawing class (VzDrawer)

for creating shapes. (GOOGLE1005 6:54-61 ("VzDrawer

323, a functionality class which gives an area object the

ability to respond to drawing commands. Added operations

include outputting the area as a Postscript file, doing dou-

ble buffering, convening between coordinate systems,

specifying fonts and measuring the size of strings, and do-

ing drawing operations such as drawing points, lines, rec-

tangles, ovals, polygons, filling polygons, and the like.'')

see also 22:16-19 (“The remaining methods [of the

VzDrawer class] draw into the current object. They draw

either the frame or a filled shape and use either the pixel-

based or floating valued coordinate systems. There are

therefore ususally four routines for each drawing com-

mand.”); 20:36-59, (providing a list of drawing routines, in-

cluding DrawPoint(), DrawLine(); FrameRect(); Fi||Rect();

FrameOva|(); Fi||Ova|(); FramePo|y(); Fi||Po|y() fordrawing

shapes.).)

While Eick does not explicity disclose that its C++ graph-

ical objects (i.e., external shapes) are “external,” the de-

sired functionality described in Eick suggests implementa-

tion of the graphical objects of Eick as external libraries.

(GOOGLE1003 at 111] 105; 119.) For example, Eick dis-

closes that ‘‘libraries of components of graphical user inter-

face programs” can be implemented to allow a “program-

mer [to] use components from the library in his program
and thus avoid havin to write and debu them himself.”

46

[2.2] the external shape com-

prising an external action and

an external symbol; and

(GOOGLE1005 at 1:51-57.) Additionally, the resulting

combination of Eick in view of Kruglinski (explained above

with respect to element s1.4 and 1.5, the explanation of

which is incorporated here within) would provide Eick’s

graphical objects (i.e., the “external shapes”), and thus

their associated functionalities (i.e., “external capabilities”)

implemented as external DLL files as taught by Kruglinski.

(GOOGLE1003 at 111] 106-111; 119; GOOGLE1006 at pp.

635; 645

The resulting combination of Eick in view of Kruglinski pro-

vides the external shape comprising an external action and

an external symbol. (GOOGLE1003 at 111] 120-128.) As

detailed with respect to element 2.1 above, Eick provides a

C++ drawing class (VzDrawer) for creating shapes.

(GOOGLE1005 6:54-61; see also 22:16-19; 20:36-59.)

Eick further describes a C++ class “VzBar|ayout” that is

capable of “drawing either rows or columns of bars and

using the mouse to manipulate them.” (Id. at 8:40-44.) The

class VzBar|ayout includes external actions in the form of

the inherited class “VzMouseab|e” that is used by the

VzBar|ayout object to “track the mouse” and further in-

cludes an external symbol in the form of information for

drawing “either rows (horizontal) or columns (vertical) of

bars.” (Id. at 13:1-3.) The VzBar|ayout class that draws bar

shapes inherits the VzDrawer class. (Id. at 44-47.)

Eick further describes “[o]bjects of the class F|oatDraw” as

including external symbols in the form of “information from

which window 401 may be produced” and external actions

in the form of information for “responding to mouse selec-

tions of line representations 405.” (Id. at 9:56-59.) Float-

Draw uses this information for “drawing [the] window 401

(Id.) Eick further describes that F|oatDraw includes exter-
nal actions in the form of code that allows the class to “re-

spond to mouse inputs on the window” to “perform

graphics operations on the window represented by an ob-

ject of class F|oatDraw 503.” (Id. at 9:27-30.) FIG. 5 shows

library class F|oatDraw inheriting external symbols

VzDrawinArea, VzDrawer , and an external action

47

(VzMouseab|e):

FIE}. 5

_ 305 323- _ 5.’:-5

'— K’ DV: DRAVHHG I V: DRAWER |, V: MDIJSEABLE
ILREJ5. "- /I

'~. I J,"'~.

». : x
‘-. ,-"

sin I 503- mm um

I cuss

Eick also describes the insertion of other shapes such as

buttons, sliders, windows, and menus. (Id. at 7:27-28)

("The area classes define operations on areas such as

windows, sliders, buttons, menus, and so on in display

113. In many graphical user interface systems, these are-

as are represented by native objects provided by the

graphical user interface system."); see also 22:62-64;)

Eick's shapes are defined by object specifications that de-

fine the external symbols and actions for an object. (Id. at

5:1-4 ("an object's class determines what operations can

be performed on the object. The operations themselves

are specified by means of function specifications in the

class specifications 103.")

Eick further describes action classes, including “VzMouse-

able” and “VzKeyab|e” that can be inherited by the above-

described shape classes that define how input is received

by the shape classes. (Id. at 5:23-34 ("An example of the

above is provided by the V2 library's class VzMouseab|e,
which includes a virtual function DoMouse. The virtual

function interface defines how information concerning

the behavior of the mouse is passed to code 109, but

does not define what action is taken in response to the in-

formation. A class which inherits VzMouseab|e must pro-

vide an ordinary function 104 for DoMouse.") (emphasis

added ; 7:1-2 “VzMouseab|e 335 is a class which rovides

48

[2.3] delegate the production
of rahical imae of the ex-

an area object with the ability to respond to input from a

mouse.”); 5:58-60 (“the functionality class VzMouseable

provides the functionality of responding to a mouse.”); 7:9-

15 (“VzKeyab|e 339 is a class which provides an area ob-

ject with the ability to respond to input from the key-

board.”).)

Eick discloses additional examples of external symbol in-

formation in the form of VZ color management classes

containing external symbol information for manipulating

and creating shapes. (Id. at 17:1-6 ("A VzCo|orManager is

a VzFunctiona|ity which adds the ability to define colors

and color ranges and to create and use overlay layers.
There are no virtual functions in this class which the user

needs to define. The intended purpose is for other classes

to inherit from this class and gain access to the color man-

agement routines.”) (emphasis added).)

As described above, Eick provides "a library of C++ clas-

ses called VZ" (Id. at 2:64; see also 6:6-9; 9:22-27.) While

Eick describes that its library is written in C++, Eick does

not explicitly state that the library is an “external” library.

However, it was well-known to persons of ordinary skill in

the art that any C++ library could be made into an external

library such as a .DLL or a shared library. (GOOGLE1003

at 111] 105-107; 128.) For example, Kruglinski, a text on a

C++ programming language, describes that any class can

be compiled into an external DLL library. (GOOGLE1006 at

pg. 635 ("The dynamic link library has always been an im-

portant part of Windows-based programming.... DLLs are

Windows-based program modules that can be loaded and

linked at run time. Many applications can benefit by being

split into a series of main programs and DLLs.”).) For the

reasons described above and incorporated here, a person

of ordinary skill in the art would have been prompted to

modify Eick’s system to store the C++ class libraries of

Eick as external DLL files (as taught by Kruglinski).

GOOGLE1003 at 111] 106-111; 128.

The resulting combination of Eick in view of Kruglinski pro-
vides for deleatin the roduction of rahical imae of

49

ternal shape to the external

action and the external sym-
bol.

the external shape to the external action and the external

symbol. (GOOGLE1003 at 111] 129-136.) For example, Eick

describes objects including functionality for drawing

shapes of the objects. (GOOGLE1005 at 9:26-30 (“By vir-
tue of the functionalities inherited from classes 323 and

335, the program may perform graphics operations on the

window represented by an object of class F|oatDraw 503

and will also respond to mouse inputs on the window.”).)

Eick additionally discloses that the VzBarLayout class “is

used to draw . . . either rows (horizontal) or col-

umns(vertica|) of bars” based on tracked mouse move-

ments. (Id. at 1321-3.)

The F|oatDraw shape class inherits the DoExpose function

(external symbol information defining manipulation of a

shape) and DoMouse (an external action). (Id. at 9:56-63

(“Objects of class F|oatDraw 503 have three operations:

reading a file to produce the information from which win-

dow 401 may be produced, drawing |the| window 401,

and responding to mouse selections of line representations

405. All of these operations are specified as virtual func-

tions 102, the read operation as the ReadFi|e virtual func-

tion at 617, the drawing operation as the DoExpose

function at 619, and the response to the mouse selections

at DoMouse 621 .”) (emphasis added).) For example, the

DoExpose function can create lines. (Id. at 1026-13 “The

display of columns 403 and line representations 405 is

produced when window 401 is exposed by the implemen-

tation of DoExpose at 625 in FIG. 6B. The function deter-
mines the current size of the window and then uses the

arrays produced by ReadFi|e to produce the display. @

representation 405 is drawn for each line; if there is a

match in the line, the line representation 405 is highlight-

ed.”) (emphasis added).) Indeed, the DoExpose function is

called any time a shape needs to be redrawn. (Id. at 23:15-

19 (“virtual void DoExpose(int left, int top, int width, int

height)=0 A pure virtual member-function. It is called when

a region of the VzDrawingArea needs to be redrawn. The

rectangle passed frames the region.”).)

50

The VzDrawer class also has other external symbols for

producing graphical images. (Id. at (“The remaining meth-

ods [of VzDrawer class] draw into the current object. They

draw either the frame or a filled shape and use either the

pixel-based or floating valued coordinate systems. There

are therefore ususally four routines for each drawing com-

mand.”)

Furthermore, the C++ class “VzBar|ayout” is capable of

producing graphical images by “drawing either rows or col-

umns of bars and using the mouse to manipulate them.”

(Id. at 8:40-44.) The class VzBar|ayout includes external
actions in the form of the inherited class “VzMouseab|e”

that defines inputs used by the VzBar|ayout object and fur-

ther includes an external symbol in the form of information

for producing graphical images of “either rows (horizontal)

or columns (vertical) of bars.” (Id. at 13:1-3.) The VzBar-

layout class that draws bar shapes inherits the VzDrawer

class. (Id. at 44-47.)

The "VzCo|orManager 321 ...class specifies the functionali-

ty needed to control the use of colors in an area of a dis-

play 113. Operations added by this class include allocating

colors, mapping colors to a scale of values, overlaying col-

ors, turning colors off and on, and establishing foreground

and background color." (Id. at 6:48-53.)

The VZDrawer class (and therefore the VzBar|ayout class)

has the VzCo|orManager capabilities. (Id. at 6:54-56

("VzCo|orManager 321 is in turn inherited by VzDrawer

323, a functionality class which gives an area obiect the

ability to respond to drawing commands.") (emphasis

added))

As described above with respect to claim element 2.2, Eick

further describes external action classes, including

“VzMouseab|e” and “VzKeyab|e,” that can be inherited by

the above-described shape classes and that define how

input is received by the shape classes. (Id. 7:1-2
“VzMouseab|e 335 is a class which rovides an area ob-

51

[3.1] The computerized sys-

tem of claim 2, wherein the

computer program is further

operable to: receive user input

in a manner defined by the

external action; and

ject with the ability to respond to input from a mouse.”);

7:9-15 (“VzKeyab|e 339 is a class which provides an area

object with the ability to respond to input from the key-

board.”); 5:23-34; 5:58-60).)

While Eick does not explicity disclose that its C++ graph-

ical objects (i.e., the ‘633 patent’s “external shapes”) are

“external,” the desired functionality described in Eick sug-

gests implementation of the graphical objects of Eick as

external libraries. (GOOGLE1003 at 111] 105; 136.) For

example, Eick discloses that ‘‘libraries of components of

graphical user interface programs” can be implemented to

allow a “programmer [to] use components from the library

in his program and thus avoid having to write and debug

them himself.” (GOOGLE1005 at 1:51-57.) Additionally,

the resulting combination of Eick in view of Kruglinski (ex-

plained above with respect to element s1.4 and 1.5, the

explanation of which is incorporated here within) would

provide Eick’s graphical objects, and thus their associated

functionalities (i.e., “external capabilities”) implemented as

external DLL files as taught by Kruginski. (GOOGLE1003

at 111] 106-111; 136; GOOGLE1006 at o .635; 645

As detailed above, the resulting combination of Eick in

view of Kruglinski provides all elements of claim 2. This

combination also provides receiving user input in a manner

defined by the external action. (GOOGLE1003 at 111] 137-

141.) For example, Eick’s classes “VzMouseab|e” and

“VzKeyab|e” can be inherited by shape classes and define

how input is received by the shape classes.

(GOOGLE1005 at 5:23-34 ("An example of the above is

provided by the V2 library's class VzMouseab|e, which in-
cludes a virtual function DoMouse. The virtual function in-

terface defines how information concerning the behav-

ior of the mouse is passed to code 109, but does not

define what action is taken in response to the information.

A class which inherits VzMouseab|e must provide an ordi-

nary function 104 for DoMouse. For example, the ordinary

function 104 might provide that if the mouse is used to se-

lect a portion of the text on display in a window, the select-
ed ortion is hi hlihted in the disla and saved for use in

52

[3.2] manipulate the graphical

image in response to the user

input in a manner defined by

the external symbol.

a later operation such as moving or deleting the text.")

(emphasis added); 7:1-2 (“VzMouseable 335 is a class

which provides an area object with the ability to respond to

input from a mouse.”); 5:58-60 (“the functionality class

VzMouseab|e provides the functionality of responding to a

mouse.”); 7:9-15 (“VzKeyab|e 339 is a class which pro-

vides an area object with the ability to respond to input

from the keyboard.”).)

The F|oatDraw shape class inherits the DoExpose function

(external symbol information defining manipulation of a

shape) and DoMouse (an external action defining what in-

put can be received). (Id. at 9:56-63 (“Objects of class

F|oatDraw 503 have three operations: reading a file to pro-

duce the information from which window 401 may be pro-

duced, drawing window 401, and responding to mouse

selections of line representations 405. All of these oper-

ations are specified as virtual functions 102, the read op-

eration as the Read File virtual function at 617, the drawing

operation as the DoExpose function at 619, and the re-

sponse to the mouse selections at DoMouse 621 .”)

(emphasis added); see also 9:27-30 (“the program may

perform graphics operations on the window represented by

an object of class F|oatDraw 503 and will also respond to

mouse inputs on the window.”).)

Additionally, the VzBar|ayout class, which is capable of

producing graphical images by “drawing either rows or col-

umns of bars and using the mouse to manipulate them,”
includes external actions in the form of the inherited class

“VzMouseab|e” that defines the manner in which user input

can be received. Id. at 8:40-44; 1321-3.

The resulting system of Eick in view of Kruglinski also dis-

closes the manipulation of the graphical image in response

to the user input in a manner defined by the external sym-

bol. (GOOGLE1003 at 111] 142-145.) For example, Eick

plainly discloses "[t]he ordinary function which is executed

in response to a selection of a highlighted line by responds

to selection by the mouse is DoMouse at 627 in FIG. 6C.
This function obtains the current mouse osition in the

53

window, erases an area in memory used for overlaying on

a window, determines from the mouse position what line

representations 405 were selected, checks whether any of

them contains a match for the search text, and if it does,

the text is drawn at the proper position in the overlay,

thus causing it to be displayed as shown at 407 in FIG. 4."

(emphasis added) (GOOGLE1005 at 10:14-24.)

The VzDrawer class also has other external symbols for

producing graphical images. (Id. at (“The remaining meth-

ods [of VzDrawer class] draw into the current object. T_tmy

draw either the frame or a filled shape and use either

the pixel-based or floating valued coordinate systems.

There are therefore usually four routines for each drawing

command.”) (emphasis added).)

Furthermore, the class “VzBar|ayout” is capable of produc-

ing graphical images by “drawing either rows or columns of

bars and using the mouse to manipulate them.” (Id. at

8:40-44.) The class VzBar|ayout includes external actions
in the form of the inherited class “VzMouseab|e” that de-

fines inputs used by the VzBar|ayout object and further in-

cludes an external symbol in the form of information for

producing graphical images of “either rows (horizontal) or

columns (vertical) of bars.” (Id. at 13:1-3.) The VzBar|ayout

class that draws bar shapes inherits the VzDrawer class.

(Id. at 44-47.)

The F|oatDraw shape class inherits the DoExpose function

(external symbol information defining manipulation of a

shape). (Id. at 9:56-63 (“Objects of class F|oatDraw 503

have three operations: reading a file to produce the infor-

mation from which window 401 may be produced, drawing

|the| window 401, and responding to mouse selections of

line representations 405. All of these operations are speci-

fied as virtual functions 102, the read operation as the

ReadFi|e virtual function at 617, the drawing operation as

the DoExpose function at 619, and the response to the

mouse selections at DoMouse 621 .”) (emphasis added);
see also 9:27-30 “the erform rahics o-

54

[4] The computerized system
of claim 2 wherein the external

action comprises a plurality of
external methods and external

data.

erations on the window represented by an object of class

F|oatDraw 503 and will also respond to mouse inputs on
the window.” .

As detailed above, the resulting combination of Eick in

view of Kruglinski provides all elements of claim 2. This

resulting combination would also provide that the external

action comprises a plurality of external methods and exter-

nal data. (GOOGLE1003 at 111] 146-151.) For example,

Eick’s VzMouseab|e and VzKeyab|e classes define how

input is received by shape classes and include external

methods and external data. (GOOGLE1005 at 5:23-34

("An example of the above is provided by the V2 library's

class VzMouseab|e, which includes a virtual function Do-

Mouse. The virtual function interface defines how infor-

mation concerning the behavior of the mouse is

passed to code 109, but does not define what action is

taken in response to the information. A class which inherits

VzMouseab|e must provide an ordinary function 104 for

DoMouse.") (emphasis added); 5:58-60 (“the functionality

class VzMouseab|e provides the functionality of respond-

ing to a mouse.”); 7:1-2 (“VzMouseab|e 335 is a class

which provides an area object with the ability to respond to

input from a mouse.”); 7:9-15 (“VzKeyab|e 339 is a class

which provides an area object with the ability to respond to

input from the keyboard.”); 3523-10 ("The functionality

classes provide the objects defined by the area classes

with the capability of responding to particular inputs.

Functionality classes of particular interest in the V2 library

include the VzMouseab|e class for making an area of the

screen responsive to inputs from the mouse, the VzKeya-

ble class for making the area responsive to inputs from the

keyboard.") (emphasis added).)

Eick discloses "any object which inherits any of the entity

classes may inherit any of the functionality classes." (Id. at

34:52-54.) For example, Eick, FIG. 6A, block 613 shows

class F|oatDraw inherits from VzMousab|e. Based upon

Eick’s explicit teaching described herein, Eick indicates

that F|oatDraw could have likewise inherited from VzKeya-

ble. GOOGLE1003 at 111] 148; 151.

55

[6] The computerized system
of claim 2 wherein the external

symbol comprises a plurality
of external methods and ex-

The VzMouseab|e class provides a method for handling an

external action, such as mouse input. (GOOGLE1005 at

721-8 (“The constructor establishes which types of

mouse input will cause the methods of this class to be

called, such as mouse clicking only, or clicking and drag-

ging or all mouse motion. There are operations for getting

and setting which types of mouse input will trigger a re-

sponse, and there is a virtual call back function for specify-

ing how the area object is to respond to input from the

mouse.") (emphasis added).)

The VzMouseab|e class includes a class called DoMouse

that provides external data in the form of identifying which

button was clicked on a mouse. (Id. at 29:17-26 ("virtual

void DoMouse(VzMouseActions, int button, VzNativeEvent

const*) Called when any one of the selected VzMouseAc-

tions occurs. The default action is to do nothing. The actual

VzMouseAction and button are passed. If the VzAction

does not involve a button, the button argument is zero.

Additionally, a pointer to the triggering VzNativeEvent is

also passed. In at least the X-Windows/OSF-Motif imple-

mentation of the V2 library, this is needed to pop-up a

menu with button 3.").)

The VzKeyab|e class additionally provides a method for

handling an external action, such as keyboard input. (Id. at

7:9-15. ("The constructor establishes a data structure for

storing keyboard state, there are added operations for get-

ting and setting the keyboard state, and there is a virtual

call back function for specifying how the area object is to

respond to input from the keyboard.").) The VzKeyab|e

class also includes external data in the form of specifying

which key to watch for input. (Id. at 27:50-64 (describing

storing “the last (not current) key that was pressed or re-

As detailed above, the resulting combination of Eick in

view of Kruglinski provides all elements of claim 2. This

combination also discloses that the external symbol com-
rises a luralit of external methods and external data.

56

ternal data. (GOOGLE1003 at 111] 152-157.) For example, Eick’s class

F|oatDraw, which as addressed above includes external

actions and external symbols, includes multiple methods

used by the external symbol of F|oatDraw to create and

manipulate the graphic images created by F|oatDraw.

(GOOGLE1005 at 9:56-63 (“Objects of class F|oatDraw

503 have three operations: reading a file to produce the

information from which window 401 may be produced,

drawing |the| window 401, and responding to mouse se-

lections of line representations 405. All of these operations

are specified as virtual functions 102, the read operation

as the ReadFi|e virtual function at 617, the drawing opera-

tion as the DoExpose function at 619, and the response to

the mouse selections at DoMouse 621 .”) (emphasis add-

ed).)

The DoExpose function is an example of an external sym-

bol function. For example, the DoExpose function can

draw lines. (Id. at 1026-13 (“The display of columns 403

and line representations 405 is produced when window

401 is exposed by the implementation of DoExpose at 625
in FIG. 6B. The function determines the current size of the

window and then uses the arrays produced by ReadFi|e

to produce the display. A line representation 405 is

drawn for each line; if there is a match in the line, the line

representation 405 is highlighted.’’) (emphasis added).)

The DoExpose function is called any time a shape needs

to be redrawn. (Id. at 23:15-19 (“virtual void DoExpose(int

left, int top, int width, int height)=0 A pure virtual member-

function. It is called when a region of the VzDrawingArea

needs to be redrawn. The rectangle passed frames the re-

gion.”).)

The VzDrawer class also has other external symbols and

associated methods for producing graphical images. (Id.

at (“The remaining methods [of VzDrawer class] draw into

the current object. They draw either the frame or a filled

shape and use either the pixel-based or floating valued

coordinate systems. There are therefore usually four rou-
tines for each drawin command.”

57

[8.P] A computer program en-

coded on a computer-readable

medium, the computer pro-

gram operable to:

Furthermore, the class “VzBar|ayout” includes external

symbols that include methods for drawing rows of bars,

and methods for drawing columns of bars (Id. at 8:40-44

(“drawing either rows or columns of bars and using the

mouse to manipulate them.”).) Other methods inherited

by VzBar|ayout include VzF|oating (for performing bar size

calculations), VzContinuousHigh|ighting, VzDrag and

VzLeave. (Id. at 13:25-50.) The VzBar|ayout class that

draws bar shapes inherits the VzDrawer class. (Id. at 44-

47.) The VzBar|ayout class includes external data, includ-

ing threshold values such as a threshold height value
stored for rows of bars and a threshold width value stored

for the height of bars. (Id. at 13-5-8.) VzBar|ayout also

includes external data for indicating the size of gaps be-

tween bars (VzGaps). (Id. at 13:22-24.)

The "VzCo|orManager 321 ...class specifies the functional-

ity needed to control the use of colors in an area of a dis-

play 113. Operations added by this class include allocat-

ing colors, mapping colors to a scale of values, overlaying

colors, turning colors off and on, and establishing fore-

ground and background color." (Id. at 6:48-53.) The

VZDrawer class (and therefore the VzBar|ayout class) has

the VzCo|orManager capabilities. (Id. at 6:54-56 ("VzCo|-

orManager 321 is in turn inherited by VzDrawer 323, a

functionality class which gives an area object the ability to
resond to drawin commands." .

Eick discloses a computer program encoded on a comput-

er-readable medium. (GOOGLE1003 at 1] 159.) For ex-

ample, Eick describes the VZ library, which is “[a] library of

C++ classes for use in writing data visualization programs.”

(GOOGLE1005 at Abstract.) More specifically, Eick ex-

plains that "Object-oriented programming system 101 in-

cludes a compiler 107 for an object-oriented programming

language which produces object code 109 for CPU 111.

When CPU 111 executes code 109, the execution results

in outputs 123 to display 113. In response to these out-

puts, display 113 produces window 115." (Id. at 4:22-26.)
A POSITA would know that the code executed b the CPU

58

GOOGLE1003 at 1] 158.6
[8.1] access an external shape See corresponding explanations for claim 1

stored outside the computer

program, the external shape

comprising external capabili-

ties; and delegate the produc-

tion of a graphical image of

the external shape to the ex-
ternal caabilities.

2.

claim 3.

claim 4.

claim 6.

[15] The computer program of The resulting combination of Eick in view of Kruglinski pro-

claim 8 wherein the external vides external capabilities in the form of external methods

capabilities comprise a p|ura|i- of the external action (see explanation for claim 4) and ex-

ty of external methods and ex- ternal methods of the external symbol (see explanation for

ternal data. claim 6). (GOOGLE1003 at 111] 146-157; 162.) Eick dis-
closes external data in the form of external data of the ex-

ternal action (see explanation for claim 4) and external da-

ta of the external symbol (see explanation for claim 6).

GOOGLE1003 at 111] 146-157; 162.

59

X. CONCLUSION

Claims 1-4, 6, 8-11, 13, and 15 of the ‘633 patent are invalid over the prior art pursu-

ant to Grounds 1-2 set forth above. Accordingly, Petitioners requests inter partes review of

claims 1-4, 6, 8-11, 13, and 15.

Respectfully submitted,

Dated: March 24, 2014 /John C. Phillipsl

John C. Phillips, Reg. No. 35,322

Michael T. Hawkins, Reg. No. 57,867

Fish & Richardson, P.C.

3200 RBC Plaza

60 South Sixth Street

Minneapolis, MN 55402
T: 858-678-4304

F: 877-769-7945

(Trial No. |PR2014-) Attorneys for Petitioner

60

CERTIFICATE OF SERVICE

Pursuant to 37 CFR §§ 42.6(e)(4)(i) et seq. and 42.105(b), the undersigned certifies

that on March 24, 2014, a complete and entire copy of this Petition for Inter Partes Review

and all supporting exhibits were provided by Federal Express, cost prepaid, to the Patent

Owner by serving the correspondence address of record as follows:

Maschoff Brennan

1389 Center Drive, Suite 300

Park City UT 84098

/Diana Bradleyl

Diana Bradley

Fish & Richardson P.C.

60 South Sixth Street, Suite 3200

Minneapolis, MN 55402

(858) 678-5667

