e L

INTERNATIONAL APPLICATION PUBLISHED UNDER WO 9608765A1
(51) International Patent Classification 6 : (11) International Publication Number: WO 9608765
GO6F Al
/44 (43) International Publication Date: 21 March 1996 (21.03.96)
(21) International Application Number: PCT/CA95/00513 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,
CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE,
(22) International Filing Date: 15 September 1995 (15.09.95) KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN,

MW, MX, NO, NZ, PL, PT, RO, RY, SD, SE, SG, SI, 8K,
TJ, T™™, TT, UA, UG, US, UZ, VN, European patent (AT,

(30) Priority Data: BE, CH, DE, DK, ES, FR, GB, GR, [E, IT, LU, MC, NL,
08/306,481 15 September 1994 (15.09.94) US PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD,

Sz, UG).

(71) Applicant (for all designated States except US): VISUAL
EDGE SOFTWARE LIMITED [CA/CA]; Suite 100, 3950
Cote Vertu, Saint Laurent, Quebec H4R 1V4 (CA). Published

With international search report.

(72) Inventors; and

(75) Inventors/Applicants (for US only): FOODY, Daniel, M.
[CA/CA};, Apartment PH 211, 625 De Maisoneuve,
Montreal, Quebec H3H 2N4 (CA). FOODY, Michael, A.
[CA/CA]; 21 Gabriel Roy, Nunn's Island, Quebec H3E
1M3 (CA).

(74) Agent: DUDLEY, Bruce; Gowling, Strathy & Henderson, Suite
2600, 160 Elgin Street, Ottawa, Ontario K1P 1C3 (CA).

(54) Title: SYSTEM AND METHOD FOR PROVIDING INTEROPERABILITY AMONG HETEROGENEOUS OBJECT SYSTEMS

(S7) Abstract PROCESS 1, IMPLEMENTED USING ITS “FOREIGN"
A system and method in accordance with a NATVE™ OBJECT SYSTEM OBJECT SYSTEM

preferred embodiment enable objects from two or more 101 102
heterogeneous object systems in a digital computer to Zz . z
interoperate and be combined in the creation of a larger
object-oriented software project, as well as uses of such
system and method. Objects from a foreign object 105
system are unmodified, yet appear to be native to the)
object system in which they are used or accessed. A
native proxy object (indistinguishable from other native PROXY THE THE REAL
objects) is constructed for the real foreign object. The SYSTEM
proxy object contains an identifier to the real object, OBJECT

as well as a pointer to a software description of how
to access and manipulate the object - e.g. how to call 01
its methods, set its properties, and handle exceptions.
When the proxy object is manipulated, it follows the 100
instructions in the software description which, in tum,

results in the corresponding manipulation of the foreign

object.

3
T
I

;

0BJECT
01

103

i

oF howto || o0

MANIPULATE
THE OBJECT

[A)OC KET

L A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

a Cbee d'Ivoire
CM Cameroon

CN China

(o] Czechoslovakia
cz Czoch Republic
DE Germany

DK Denmark

ES Spain

n Finland

FR Prance

GA Gabon

9988

SESSESERCAS MZANIRE

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

aly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg

FOR THE PURPOSES OF INFORMATION ONLY

-EEELPEFERS EEEFEFET

SR&§

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

{

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

WO 96/08765 PCT/CA95/00513

10

15

20

25

30

35

SYSTEM AND METHOD FOR PROVIDING INTEROPERABILITY AMONG
HETEROGENEOUS OBJECT SYSTEMS
hnical Field

The present invention relates to object-oriented

software systems and related methods for digital computers.
.] i

Using obJect oriented software techniques, software
applications for digital computers are created by combining
software objects. To facilitate this process, object-
oriented software systems typically provide an architecture
specification, called the object model, which enables all
objects developed to the specification to work together
seamlessly in an application. Examples of object models
would include the Object Management Group's Common Object
Request Broker Architecture (CORBA), and Microsoft's Common
Object Model (COM.) Such systems also typically provide
software, called the object system, which implements the
basic features provided for in the object model.

There are numerous object systems, some very general in

- nature such as Microsoft's Object Linking and Embedding

(OLE) (which follows the COM object model;, or IBM's
Distributed System Object Model (DSOM), and Iona's ORBIX,
(which both follow the CORBA object model). See for
example: the OLE 2 Programmers Reference, Volume 1l and 2,
Microsoft Press, 1994; the IBM SOMobjects Developer Toolkit
V2.0, Programmers Reference Manual, 1993; Iona ORBIX,
Advanced Programmers Guide, 1994; and The Common Object
Request Broker: Architecture and Specification Ch. 6., OMG,
1991; these references are hereby incorporated herein by
reference.

Other object systems are designed to provide specific
functionality, for example, in areas such as groupware or
relational database - e.g. Lotus Notes. Still other object
systems are specific to particular to applications - e.g.

SUBSTITUTE SHEET (RULE 26)

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

WO 96/08765 PCT/CA95/00513

10

15

20

25

30

35

DOC KET

_ ARM

Novell's AppWare Bus, Hewlett Packard's Broadcast Message
Server, and Microsoft Visual Basic's VBX object mechanism.
See for example: the Lotus Notes Programmers Reference
Manual, 1993; the Novell Visual AppBuilder Programmers
Reference Manual, 1994; the Hewlett Packard Softbench BMS,
Programmers Reference Manual, 1992; and Microsoft Visual
Basic 3.0 Professional Features Book 1, Control Development
Guide, 1993; these references are also hereby incorporated
herein by reference.

In creating a software application it is desirable to
combine objects from various object systems, because
different object systems are best suited to different tasks,
and because the best solution is usually built from the best
parts (i.e. objects.) However, objects from various object
systems don't naturally work together for a number of
reasons.

Object systems are rendered incompatible due to
differences in the means by which objects are created,
methods are called and properties are set in each object
system, including differences in the fundamental mechanisms
used as well differences in low-level calling conventions
such as the physical layout of types and classes. For
example at the fundamental level, some object systems, such
as COM, use direct C++ calling mechanisms. Others such as
DSOM pre-process source code so that in place of a direct
call, a function from the object system is called which, 1in
turn, returns a pointer to the real method. This pointer is
dereferenced to actually call the method. Still other
object systems such as OLE Automation provide specialized
functions developers must use to call methods (this is often
referred to as a Dynamic Invocation Interface or DII). These
functions take the method to be called as an argument, as
well as the method's arguments (usually packed into a
particular format), and they call the method for the

developer. There are numerous other broad differences and

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

WO 96/08765 PCT/CA95/00513

10

15

20

25

30

35

variants in fundamental calling mechanisms. Each of these
fundamental mechanisms also differ in detail. For example,
CORBA requires an environment pointer argument (and has an
optional context argument), while other object systems do
not.

In addition to the vast differences in fundamental
calling. mechanisms, there are many differences in low-level
calling conventions, sometimes referred to as procedure
calling conventions. For example, different object systems
handle the return value from methods differently when the
type of the return value is a float or a structure. In one
case the value may be returned on the processor stack, while
in another the value may be placed in a register. Thus,
using the return value of a method from a different object
system would result in an error. Other examples of
differences in procedure calling conventions would include
how structures are packed into memory, and how arguments are
placed on the stack.

Various object systems also support various types which
may not be compatible with other object systems. Simple
examples of types include language types such as integers,
floats, etc. More complex language types include arrays,
strings, and objects. There are also semantic types such as
*variable types" like the CORBA Any, and the COM VARIANT.
Semantic types differ from language types in that they have
a particular semantic meaning to the system. While certain
semantic types may conceptually mean the same thing among
various object systems, their corresponding language
representation and implementation may be entirely different.
A common example is strings. In COM, strings are
represented using a "BSTR" (a non-NULL terminated string
which contains length information), while in CORBA, strings
are the traditional C language byte array (NULL terminated
with no length information). As a result, a COM obiect
couldn't pass a BSTR to a CORBA object because any functions

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

