
1 GOOGLE-1016
Google Inc. v. Micrografx LLC

IPR2014-00532

2

US. Patent Jul. 13,1999 Sheet 1 0f 7 5,923,877

FOREIGN

POINTER

CLASS

14

iNHERlT FOREIGN
OBJECT

CLASS

12

TYPE OF

FOREIGN

POINTER

24

INSTANTIATE

INSTANTIATE

 FOREIGN POINTER

FOREIGN

OBJECT 18

LISTS

ENCLOSING

OBJECT

22 16

FIG. 1

30

FOREIGN

OBJECT

ACTIVE

POINTER

LIST

RESTRICTIVE

POINTER

LIST

PASSIVE

POINTER

LIST

32 36

FOREIGN

POINTER

FOREIGN

POINTER

FOREIGN

POINTER
FOREIGN

POINTER

FOREIGN

POINTER

FOREIGN

POINTER

FIG. 2

3

US. Patent Jul. 13,1999 Sheet 2 0f7 5,923,877

I?[(?. {3

DESTROY

FOREIGN OBJECT

OPTIONALLY SEND "WILL INVALIDATE"

MESSAGE TO EACH FOREIGN POINTER

EACH FOREIGN POINTER FOLLOWS OWN

WILL INVALIDATE STRATEGY

SEND “INVALIDATE" MESSAGE TO

EACH FOREIGN POINTER

EACH FOREIGN POINTER FOLLOWS

OWN INVALIDATE STRATEGY

EACH FOREIGN POINTER STOPS

POINTING T0 FOREIGN OBJECT

FIG. 3

FOREIGN POINTER

SIGN ON TO

FOREIGN OBJECT

192

60

194

FOREIGN POINTER SIGNS ON

AS ACTIVE. PASSIVE. OR
RESTRICTING POINTER

TO A FOREIGN OBJECT

52 202

204

FOREIGN OBJECT ADDS

FOREIGN POINTER T064
ONE OF THREE LISTS

206

66

DELETE FOREIGN OBJECT

FROM MEMORY 208

210

FIG. 4

FOREIGN OBJECT 138 ENCLOSING OBJECT
14o / 196 150

FOREIGN

OBJECT 156
INHERITANGE

FOREIGN

POINTER .

INVALIDATE
METHOD

METHOD

I FOREIGN 154
/ POINTER

— 152

CALL WILL

I NVALI DATE

STRATEGY

\ E k WILL INVALIDATE , , ,
’\
191

144

4

US. Patent Jul. 13,1999 Sheet 3 0f7 5,923,877

272

BROADCAST

FIG. 6B

TAPES IN USE

280 PASSIVE

FIG. 60

El U D El El

(VCR) 292

5

US. Patent Jul. 13,1999 Sheet 4 0f7 5,923,877

FIG. 7

FIG. 8

REMOVE FOREIGN 300
DELETE 330 POINTER FROM

FOREIGN OBJECT FOREIGN OBJECT

332 302

NOTIFY FOREIGN OBJECT

LOCATE FOREIGN

POINTER IN LISTS

REMOVE FOREIGN

POINTER FROM LIST

ANY ACTIVE

0R RESTRICTIVE

POINTER ON

LIST?

RESTRICTIVE

POINTER IN

LIST?

 334

RETURN

"FALSE"

304

306

308

AUTO SELF—DESTRUCT

IF DESIRED

312

.310

 FOREIGN

POINTER

CLASS

400

FOREIGN-

POI NTER_T0

TEMPLATE

402

FOREIGN

LIST

TEMPLATE

404

NOTIFIER

FOREIGN LIST

TEMPLATE

POINTER-

T0. IMMORTAL
TEMPLATE

NOTIFIER_

POINTER_T0
TEMPLATE

406 415

FIG. 9

LOCKED_

POINTER_T0

TEMPLATE
412

6

US. Patent Jul. 13,1999 Sheet 5 0f7 5,923,877

FIG. 10

424 ENCLOSING
OBJECT

420 426
FOREIGN POINTER

 BUSINESS
CLASS

(FOREIGN
OBJECT)

CHANGE FOREIGN

OBJECT

FOREIGN

POINTER TO
<BUSINESS

CLASS)

540

FIG. 1 1
REMOVE FOR N POINTER

520 FORE]GN_,POINTER_T0 FROM pEIIEVIous 542
[NVALIDATE STRATEGY FOREIGN OBJECT

RECEIVE INVALIOATE 544
522 MESSAGE FROM OWNED

FOREIGN OBJECT POINTER
9

526 SET ITSELF To NULL
546

548

FIG. 12

ASSIGN OWNERSHIP

OF POINTER 550

624 FIG. 1 3
 ENCLOSING

620 OBJECT
626

 NOTIFIER FOREIGN POINTER
POINTER T0

(BUSINESS CLASS>

BUSINESS

CLASS

(FOREIGN
OBJECT)

7

US. Patent Jul. 13,1999 Sheet 6 0f 7 5,923,877

FIG. 7 5

POINTER_T0_IMMORTAL
INVALIDATE STRATEGY

RECEIVE INVALIDATE

FROM FOREIGN OBJECT

THROW AN EXCEPTION

666

640 660

FIG.

NOTIFIER WILL

INVALIDATE STRATEGY

RECEIVE WILL INVALIDATE

MESSAGE FROM FOREIGN OBJECT

CALL NOTIFYING METHOD

0N ENCLOSING OBJECT

646

642 662

644 664

680 LOCKED_POINTER_T0 CHANGE
FOREIGN OBJECT STRATEGY

POINTER
SET TO

NULL?

FIG. 16 684

RETURN

IIFALSEII

FOLLOW FOREIGN_POINTER_T0

CHANGE FOREIGN OBJECT STRATEGY686

FOREIGN

OBJECT

FOREIGN

OBJECT

FOREIGN

OBJECT

8

US. Patent Jul. 13,1999

FIG. 78
FOREIGN LIST

ADD OBJECT STRATEGY

ADD FOREIGN OBJECT T0

' FOREIGN LIST

840

842

 OBJECT

SUCCESSFULLY

ADDED?

ADD FOREIGN POINTER

(THE FOREIGN LIST) TO
846 FOREIGN OBJECT

FIG. 20 POINTER FROM LIST

 FOREIGN

OBJECT
NOTIFIER

FOREIGN LIST

Sheet 7 0f 7

FIG. 7 .9

FOREIGN LIST REMOVE

OBJECT STRATEGY

REMOVE FOREIGN POINTER

(THE FOREIGN LIST)
FROM FOREIGN OBJECT

To BE REMOVED

REMOVE FOREIGN OBJECT

FROM FOREIGN LIST

ND
855

5,923,877

860

862

 864

FOREIGN LIST POINTER 880

INVALIDATE STRATEGY

RECEIVE INVALIDATE

MESSAGE FROM 882
FOREIGN OBJECT

DELETE RESPECTIVE
884

ENCLOSING

OBJECT

934

9

5,923,877

1

OBJECT-ORIENTED PROGRAMMING
MEMORY MANAGEMENT FRAMEWORK

AND METHOD

BACKGROUND OF THE INVENTION

Memory management is one of the most difficult, most
error-prone, but also most important aspects of object-
oriented programming. An object-oriented program imple-
mented in C++, for example, is based around a collection of
objects which represent either a physical or abstract part of
the world which the program addresses. When the program
runs, memory must be allocated for those objects. The C++
language has two operators, “new” and “delete”, related to
memory allocation. The programmer uses operator “new” to
allocate memory for an object and uses operator “delete” to
free up the allocated memory when the object is no longer
needed by the program. It may be seen that the task of
memory management is primarily a decision of when to call
operator “delete".

Objects within the program may refer to each other by I’
having pointers to the allocated memory. For example, an
employee object may have a pointer to the memory allocated
for the object representing that employee’s manager. Objects
can send messages to the object they point to, so that they
can receive information and give commands from and to the
object. These operations may result in a change in the
memory location pointed to. Several memory management
problems related to the use of pointers require careful
attention and consideration by the programmer. These prob-
lems include wild pointers, limited memory, and memory
leaks.

The central problem with memory management is that an
object with a pointer to another object is not notified when
that object is deleted so that the pointer is no longer valid.
This is known as a wild pointer problem in the computer
programming industry. If an object then sends a message to
the now deleted object via the Wild pointer, the results are
often unpredictable. The program may crash immediately,
the results may be invalid, or, as is frequently the case, the
method on the wild pointer starts a chain reaction of invalid
operations that leads to a crash at a later point in the
program. It is extraordinarily difficult to debug such occur-
rences. There is a saying in the industry: “the result of even
one wild pointer is pain, misery, and death.” (C++ FAQs by
Cline and Lomow, pg 324).

One way to avoid wild pointers is never to call operator
“delete”. This may be a valid solution only if the program
has an unlimited amount of memory for its use. Typically, a
program will deal with many more objects during the entire g
run of the program than it needs at any one time. Therefore,
it is impractical and unrealistic to continue to maintain
memory space for unused objects.

Even if there is enough memory to allocate all objects an
application needs, if some objects allocated by operator
“new” during program execution are not deleted at some
point during program execution, the allocated memory
remains unavailable for other programs or additional runs of
the same program until the computer is restarted. This
problem is commonly called a memory leak. When a pro-
gram with a memory leak is run repeatedly, eventually the
leak is so severe that other programs will crash or new
programs cannot be started even if no other program is
running.

To avoid the problems of wild pointers, limited memory,
and memory leaks, the programmer must delete each object
at the right time. Determining when is the right time is very

10

15

40

45

60

65

2

diflicult. Although C++ provides one basic way of allocating
dynamic memory, the allocated objects are used for diverse
reasons. The “right time” to delete the objects depends on
the way these objects and pointers pointing to them are used.

One use for pointers is to point to one object which may
be a part of another object. For example, a Video tape may
have several video segments recorded on it, so each video
segment object is a part of a video tape object. In order to
know which tape object a video segment object is a part of,
the video segment object may have a back pointer to a tape
object. It may be seen that when a video tape object is
deleted, all video segment objects that have a back pointer
to it should also be deleted to avoid generating wild pointers.

Another difficulty is posed when one object may have a
list of objects of another type. A video tape object may
include a list of video segment objects it contains.
Additionally, a planned broadcast object may have a list of
video segment objects residing on one or more video tape
objects that will be shown during the course of the broad-
cast. Further, the same Video segments may be used for
several broadcasts, and therefore are listed on several broad-
cast lists at the same time. Each list that contains an object
has a pointer to that object. When an object containing a list
is deleted, the list is also deleted. The difficult memory
management decision, however, is whether the individual
objects on the list should also be deleted. In this example,
when a broadcast object is deleted from memory, the video
segment objects may not be, in general, deleted. However,
when a video tape object is deleted, all the video segment
objects on its list should also be deleted. The C++ language
does not provide any explicit syntax for making the distinc-
tion between these two types of relationships. The program-
mer must provide explicit code to properly distinguish and
treat these two cases differently or wild pointers may result.

A further difficulty is posed when an object may also be
temporarily related to another object. For example, a video
cassette recorder (VCR) may be playing a video tape. In this
case, the VCR object has a pointer to the Video tape object.
Syntactically, this relationship appears the same as the back
pointer that a video segment object has to its video tape.
However, unlike the back pointer example, the VCR object
should not be deleted when the video tape object is deleted.
In fact, the VCR object may point to dilferent video tape
objects at different points in the broadcast, or may not point
to any video tape object at all. This difference in relationship
requires distinction and different memory management strat-
e gies.

In all the above examples, the objects pointed to are
sharable; that is, many objects may have pointers to the same
object. Another common use of pointers is for an object that
is owned by another object and should only be pointed to by
the owning object. For example, a VCR object may have a
strategy for what it does when it reaches the end of a tape:
rewind the tape and play it again, rewind it and eject it, or
just stop. In object-oriented programming, objects can rep-
resent actions such as these end-of—tape strategies.
Therefore, the VCR object has a pointer to a strategy object,
which may change during the course of a broadcast. In this
scenario, different VCR objects are not pointing to the same
strategy objects, but a new strategy object is created for each
VCR object. This relationship is called “remote ownership”
and typically requires a different memory management
strategy to avoid problems.

One of the biggest advantages of object-oriented pro-
gramming is the ability to reuse objects in multiple appli-
cations without having to modify the original code. To allow

10

5,923,877

3

for code reuse, new objects must be able to point to
previously coded objects without change to the previously
written code. Such pointers are called anonymous pointers,
such that the class pointed to has no code specifically
referring to the class with the pointer. Deletion of objects
pointed to by anonymous pointers is another primary cause
of wild pointers.

In conventional programming, memory management
must be explicitly and carefully coded for each and every
object. Often explicit coding is used to manage anonymous
pointers. l-‘or example, when a broadcast object is deleted,
the video segments it uses should not be deleted since one
or more of them may be scheduled to be shown in other
broadcasts. However, a video segment object should be
deleted if is not needed by other broadcasts. The program-
mer may manage this by writing explicit code to maintain a
list of all open broadcasts and their video segments, which
is referred to when a broadcast is deleted. There may be
other business reasons to delete an object. For example, if a
video segment object is deleted because of censorship, it '.
should be deleted from all broadcasts. The programmer is
required to write specific code to check all broadcasts and
delete the video segment from all broadcasts scheduled to
use it. Such explicit coding goes directly against the basic
object-oriented design principles of encapsulation and reuse.
In addition to being time consuming and error-prone to
implement, the explicit code has to be modified everywhere
it is in place when the application is expanded or the objects
are reused in another context.

Garbage collection is a known technique for automati-
cally managing memory based on the concept of scope of a
variable. A garbage collection product is Great Circle made
by Geodesic Systems of Chicago, Ill. When memory is
allocated for an object, but no currently active variable
points to that object, the object can be automatically deleted
without specific code written by the programmer. The dis-
advantage with automatic garbage collection is that it is
based on the syntax of pointers in memory. For example,
garbage collection schemes cannot distinguish between
removing a video segment from one broadcast because it is
not scheduled to be shown next time, and removing a video
segment from its video tape because it is censored and
should not be shown on any broadcast ever again. Explicit
coding is still required to fill in this gap.

Some other techniques have been developed to solve
some memory management problems but are not complete
solutions. The smart pointer from the C++ compiler from
Borland International Inc., Scotts Valley, Calif, for example,
handles only the problem of remote ownership. Reference
counting wrappers are also available to enable programmers ~
to keep track of how many objects point to a particular
object with simplified code. However, these techniques do
not address all memory management problems encountered.

Currently, conventional memory management is done in
a haphazard and tedious manner, which may require many
sleepless hours to code and debug. Most often, software
products are made available to the consumers before prob-
lems of improper memory management are completely
resolved. The result is the sometimes frequent appearance of
dialog windows informing users some non-specified error
has occurred popping up on computer terminals and locked-
up computer applications.

SUMMARY OF TIIE INVENTION

Accordingly, there is a need for a framework and method
for providing memory management in object-oriented pro-
gramming to avoid wild pointer and other problems.

10

30

35

40

45

60

10

4

In accordance with the present invention, a memory
management framework and method are provided which
eliminates or substantially reduces the disadvantages asso-
ciated with prior programming practices.

In one aspect of the invention, an object-oriented memory
management framework includes a foreign pointer class
having a plurality of encapsulated methods and variables for
memory management. The foreign pointer class provides
one or more instances of active, passive, and restrictive
foreign pointers. The framework further includes a foreign
object class for providing one or more instances of foreign
objects, where each foreign object encapsulated an active list
variable, a passive list variable, and a restrictive list variable
for recording therein any foreign pointer pointing thereto.

In another aspect of the invention, a method for memory
management in object-oriented programming includes the
steps of encapsulating memory management methods and
variables in a foreign pointer class, and a foreign object
class. The foreign pointer class provides one or more
instances of active, passive, and restrictive foreign pointers
for conveying diverse relationships. Each foreign object has
encapsulated an active list variable, a passive list variable,
and a restrictive list variable for recording any foreign
pointer pointing thereto.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, ref—
erence may be made to the accompanying drawings, in
which:

FIG. 1 is a simplified block diagram of a foreign object
and a foreign pointer;

FIG. 2 is a simplified block diagram of a foreign object
and its lists of active, restrictive, and passive foreign point-
ers;

FIG. 3 is a simplified flowchart of an exemplary foreign
pointer sign-on process;

FIG. 4 is a simplified block diagram showing an exem-
plary destroy foreign object process by the transmission of
a “Will invalidate” message and an “Invalidate” message;

FIG. 5 is a simplified flowchart of an exemplary destroy
foreign object process;

FIGS. 6A76C are simplified diagrams illustrating the
exemplary scenarios in which active, passive, and restrictive
foreign pointers are used;

FIG. 7 is a simplified flowchart of an exemplary remove
foreign pointer from foreign object process;

FIG. 8 is a simplified flowchart of an exemplary delete
foreign object process;

FIG. 9 is a simplified class inheritance diagram;

FIG. 10 is a simplified block diagram of a foreign
pointerito foreign pointer;

FIG. 11 is a simplified flowchart of an exemplary foreign
pointer invalidate process;

FIG. 12 is a simplified flowchart of an exemplary change
foreign object process;

FIG. 13 is a simplified block diagram of a notifier_
pointer to foreign pointer;

FIG. 14 is a simplified flowchart of an exemplary
notifier_pointer_to will invalidate process;

FIG. 15 is a simplified flowchart of an exemplary
pointer_to_immortal invalidate strategy;

FIG. 16 is a simplified flowchart of an exemplary lockedi
pointerito change foreign object strategy;

11

5,923,877

5

FIG. 17 is a simplified block diagram of a foreign list;

FIG. 18 is a simplified flowchart of an exemplary foreign
list add foreign object strategy;

FIG. 19 is a simplified flowchart of an exemplary foreign
list remove foreign object strategy;

FIG. 20 is a simplified flowchart of an exemplary foreign
list pointer invalidate strategy; and

FIG. 21 is a simplified block diagram of a notifier foreign
list.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred emhodiment(s) of the present invention is
(are) illustrated in FIGS. 1—20, like reference numerals
being used to refer to like and corresponding parts of the
various drawings.

Referring to FIG. 1, a framework 10 defining two classes
that encapsulate methods and variables are foreign object
class 12 and foreign pointer class 14, according the teach- .
ings of the present invention. Foreign object and pointer
classes 12 and 14 are used as base classes or super classes
for application-specific classes coded by the programmer.
Foreign object and pointer classes 12 and 14 function
together to encapsulate the basic methods of memory man-
agement according to the teachings of the present invention.

Foreign object class 12 may be used as a base class for any
class of objects requiring memory management. The pro-
grammer may do so by deriving a business class as “public
virtual foreign object”. Foreign pointer class 14 is a pure
virtual class that encapsulates communication methods with
foreign objects 16 that inherit from foreign object class 12.
As shown, foreign object 16 is an instance of foreign object
class 12 and includes lists 18 which keep track of foreign
pointers 20 that are pointed thereto. Foreign pointer 20 is
enclosed by an enclosing object 22 and is an instance of a
type of foreign pointer 24 as defined in framework 10. The
specific type of foreign pointer 24 has inherited specific
behaviors from foreign pointer class 14. Foreign pointer 20,
constructed in this manner, is used instead of the conven-
tional pointers to point to foreign objects 16. As shown in
FIG. 2, each foreign object 30 maintains three lists: active,
restrictive, and passive foreign pointer lists 32—36. Each list
records the foreign pointers 40—45 of each type that point to
foreign object 30. This structure supports the use of anony-
mous pointers since neither the foreign object nor the actual
business classes derived from it need to contain explicit code
about particular types of pointers or the business classes that
contain those pointers. The particular kind of foreign pointer
used by an object to point to a foreign object determines the .,
memory management behavior and strategy. When a foreign
object is deleted, it sends a special message, “invalidate”, to
each of the foreign pointers that point to it, regardless of
type. The foreign pointers then executes their respective
memory management strategy. This behavior is encapsu-
lated in foreign pointers without programmer’s explicit
coding.

Referring to FIG. 3, an exemplary flowchart 60 illustrates
how foreign pointers may be initiated. In block 62, each
foreign pointer, when initiated, signs on as active, passive,
or restrictive pointer. In response, the foreign object being
pointed to by the pointer adds the new pointer to one of its
active, restrictive, and passive pointer lists 32—36 (FIG. 2),
as shown in block 64. The initiation then terminates in block
66.

FIGS. 4 and 5 illustrate a process for destroying a foreign
object to remove it from memory by calling the “delete”

10

15

30

35

40

45

60

65

11

6

operator or destructor in C++, for example. FIG. 4 shows an
exemplary process flow and FIG. 5 is a simplified block
diagram. Referring first to FIG. 4, a foreign object 138, like
any object-oriented object, has a layered structure with
multiple layers 140—144. Topmost layer I40 contains the
behavior inherited from the foreign object class. Subsequent
layers 142 describe other behavior, with the bottom-most
layer 144 containing a destructor of the business class. The
programmer may optionally insert a call to a “will invali-
date” strategy into the destructor. The function of the will
invalidate strategy is described below. As it is true with all
objects, when an object is being destroyed, it is deleted in
layers, beginning with the bottom-most layer. An enclosing
object 150 includes a foreign pointer 152 pointing to foreign
object 138 that has encapsulated an invalidate method 154
and a will invalidate method 156.

Referring also to FIG. 5 for the destroy foreign object
process flow beginning in block 190, foreign object 138 may
optionally send a “Will invalidate" message 191 to each
foreign pointer pointing to it, as shown in block 192, by
inserting a call therefor in the destructor or bottom-most
layer 144 of foreign object 138. Each foreign pointer,
including foreign pointer 152, upon receiving “Will invali-
date” message 191, uses its own will invalidate strategy 154
and operates accordingly, as shown in block 194.

Subsequently upon completion of the foreign pointer’s
will invalidate strategy 154, foreign object 138 sends an
“Invalidate” message 196 from its topmost layer 140 (which
has the foreign object inheritance) to each foreign pointer
152 pointing to it, as shown in block 202. Each foreign
pointer 152 then proceeds to executes its own invalidate
strategy 156, a shown in block 204, with the end result that
each foreign pointer no longer points to the foreign object,
as shown in block 206. Foreign object 138 is then com-
pletely deleted, as shown in block 208. The process ends in
block 210.

Constructed in this manner, if enclosing object 250
desires to perform certain operations, such as obtaining
some information from foreign object 138 immediately prior
to foreign objects deletion from memory, it has the oppor-
tunity to do so upon the receipt of“Will invalidate” message
191. Without this special mechanism, by the time foreign
object 138 issues “Invalidate” message 196 from its topmost
layer 140, all layers below topmost layer 140 has already
been deleted. Therefore, it would be too late for enclosing
object 150 to perform the desired operations by the time it
receives “lnvalidate” message 196.

As set forth above in FIG. 2, a foreign pointer may be one
of three types. For example, a video tape object may be
pointed to by multiple objects using different types of
foreign pointers: active, passive, and restrictive. FIGS.
6A—6C provide exemplary applications for the three types of
foreign pointers. For example, a planned broadcast business
application 272, which is a schedule of a television
broadcast, may point to a Video tape object 270 with an
active pointer 274. This indicates that broadcast 272 plans to
show tape 270. On the other hand, a window list box 280
displayed on a terminal listing all the tapes currently in use
may point to video tape 282 with a passive pointer 284.
Further, a video cassette recorder (VCR) object 290 may use
a restrictive pointer 292 to point to a video tape object 294
when the tape is inserted into the VCR.

The active, passive, and restrictive distinction may be
illustrated with the scenario that something has occurred so
that the last object pointing to the video tape is broadcast
272, list box 280, or VCR 290. If planned broadcast 272

12

5,923,877

7

becomes the last object to point to video tape 50 with an
active foreign pointer 274, video tape object 270 should not
be deleted from memory because an active foreign pointer is
involved. However, there may exist overriding reasons, such
as censorship, to insist that video tape 270 be delete from
memory. Video tape 270 may be deleted as long as planned
broadcast 272 is notified.

In contrast, if list box 280 listing all the tapes currently in
use becomes the last object to point to Video tape 282, this
is insullicient reason to keep video tape object 282 in
memory, because a passive foreign pointer 284 is involved.
Conceptually, if a tape object is not pointed to by anything
else but passive pointers, it has outlived its usefulness. Thus,
if an object is pointed to by only passive pointers, it may be
deleted.

In the case of restrictive pointer 292, video tape object
294 should not be deleted at all because it is currently being
used by VCR 290. Thus, an object being pointed to by one
or more restrictive pointers are not to be deleted.

FIG. 7 is a flowchart representing an exemplary process 1’
300 to remove a foreign pointer from a foreign object. Re fer
also to FIGS. 1 and 2 for block diagrams showing the
structures of the objects involved. In block 302, foreign
object 16 that was pointed to by foreign pointer 20 is first
notified. Foreign object 30 searches its three lists of active,
passive and restrictive pointers 32—36 and locates the
present pointer in one of the lists, as shown in block 304.
Foreign pointer 20 is then removed from the appropriate list,
as shown in block 306. If the removed foreign pointer was
the last active or restrictive pointer in that foreign object’s
lists and no other active or restrictive pointers remain in the
lists, as determined in block 308, then the foreign object may
automatically self-destruct to delete itself from memory, as
shown in block 310. The automatic self-deletion may be
performed since the only remaining foreign pointers point-
ing to the foreign object, if any, are passive pointers.
Execution then ends in block 312.

Referring to FIG. 8, an exemplary delete foreign object
process flow is shown, beginning in block 330. Delete
foreign object 330 may be called when a programmer
desires to remove a foreign object from memory. Delete
foreign object 330 first examines restrictive foreign pointer
list 34 (FIG. 2) of foreign object 30 to determined whether
any restrictive pointer is currently pointing to foreign object
30, as shown in block 332. If list 34 shows that one or more
restrictive pointers are currently pointing to foreign object
30, then a predetermined value, such as boolean false, is
returned in block 334 before the process ends in block 336.
The return value is indicative of whether the foreign object
was successfully deleted.

If restrictive pointer list 34 shows no restrictive pointer
currently points to foreign object 30, then the destroy foreign
object method shown in FIG. 5 is called, as shown in block
338. A predetermined value, such as true, is then returned to
indicate that the foreign object was deleted, as shown in
block 340, before the process terminates in block 336.

It may be seen from the foregoing that the type of foreign
pointer dictates how the removal of a foreign pointer from
a foreign object and the deletion of a foreign object are
performed. Thus, memory management strategies differ
depending on whether the foreign pointer involved is an
active, a passive, or a restrictive pointer.

FIG. 9 is a class hierarchy of foreign pointer class 400
according to framework 10 of the present invention. Two
subclasses inherit from foreign pointer class 400: foreignm
pointerito 402 and foreign list 404. Foreignipointerito

10

30

35

40

45

60

12

8

subclass 402 is a template class of singular foreign pointers,
i.e., pointers that only point to one foreign object. Foreign
list 404, on the other hand, is a template class of foreign
pointers that point to more than one foreign object. More
specialized template classes inherit from foreign pointer
to class 402: notifieripointerito 406, pointeritom
immortal 410, and pointeritoiimmortal 410. A further
template class, locked_pointer_to 412, inherits from
pointeritoiimmortal 410. A notifier foreign list template
416 further inherits from foreign list template 404.

The subclasses of foreign pointers contain additional
specialized behavior to aid in memory management. An
enclosing object having a notifieripointerito pointer point-
ing to a foreign object may perform operations immediately
prior to the deletion of the foreign object. A lockedi
pointerito pointer, once it is set to point to an object, cannot
be changed. Further, a locked pointer to pointer provides
exception handling when the object it points to is deleted. A
pointeritoiimmortal pointer also throws an exception
when the object it points to is being deleted. Notifier foreign
list behaves much like a notifieripointerito pointer and
also provides advanced notification that a foreign object is
about to be deleted.

Referring to FIG. 10, a block diagram of a foreigni
pointer to pointer 420, which acts like an anonymous
pointer, is enclosed by an enclosing object 424 and pointing
to a foreign object 426. Instead of declaring a pointer to a
business class derived from the foreign object class, the
programmer declares a foreign_pointer_t0 <business
class> to use foreignipointerito pointers. Foreigni
pointer_to is a template containing an actual pointer 422 to
the business class, initialized to NULL if the programmer
did not initialize it. This eliminates a common source of

error resulting from uninitialized pointers.

Operators included in the foreignipointerito template
allow the programmer to use the foreign pointer as if it were
a regular C++ pointer. However, as shown in the flowchart
beginning in block 520 in FIG. 11, when foreignipointeri
to receives an “Invalidate” message indicating that foreign
object 426 is deleted (block 522), foreign pointer 422 is reset
to NULL to eliminate the wild pointer that would otherwise
result (block 526) before terminating in block 528.

For foreign_pointer_to pointers, an ownership variable
is further provided to implement whether remote ownership
is implemented. If ownership is set to true, the foreign object
pointed to is automatically deleted when the pointer no
longer points to it. Implemented in this unique manner,
remote ownership status may be turned on or off.

FIG. 12 is a flowchart of an exemplary change foreign
object process flow, beginning in block 540. Change foreign
object is used to take a foreign pointer off a first foreign
object and then point it to a second foreign object. In block
542, the foreign pointer is removed from the first foreign

_, object by executing the exemplary process flow shown in
FIG. 7. If the ownership variable of the foreign pointer is
true, as determined in block 544, then the first foreign object
is deleted automatically, as shown in block 546. The foreign
pointer then signs on to the second foreign object by
following the process flow shown in FIG. 3, as shown in
block 548. In block 550, the ownership of the foreign pointer
is then determined. The process ends in block 552.

Referring to FIG. 13, a diagram of a notifieripointerito
pointer derived from the foreignipointerito template is
shown. Frequently an object 624 may need to perform other
actions when the pointer 620 it contains is reset, as in the
case when the foreign object 626 it points to is being deleted.

13

5,923,877

9

Notifieripointerito contains a back pointer 630 to enclos-
ing object 624 and a notifying method 632. Notifying
method 632 is used to notify enclosing object 624 of foreign
object 626’s impending demise via back pointer 630. Thus,
prior to the deletion of foreign object 626, enclosing object
624 is notified so that it may perform needed actions before
foreign object 626 is deleted, such as obtaining certain
information from foreign object 626. As set forth above and
in FIG. 4, the programmer may insert a call to a will
invalidate method or strategy in the destruetor (bottom-most
layer) of foreign object 626 to initiate the advance notifica-
tion to enclosing object 624.

FIG. 14 is an exemplary implementation of a notifier_
pointerito will invalidate strategy, beginning in block 640.
Notifier pointer to pointer receives the “Will invalidate”
message from the foreign object that is about to be deleted,
as shown in block 642. This causes a call to notifying

method 632 (FIG. 13), as shown in block 644. Notifying
method 632 may use back pointer 630 to enclosing object

624 to provide advance notification that foreign object 626 I’
will soon be deleted. Enclosing object 624, upon receiving
the notification, may then proceed to perform operations that
require foreign object 626’s cooperation. Without the use of
notifier foreign pointers, enclosing object 624 would not
have the opportunity to perform these operations prior to the
deletion of the foreign object.

Referring to FIG. 15 for an exemplary invalidate strategy
660 for the specialized foreign pointer, pointer_to_
immortal. Recall from the foregoing that foreign objects
being pointed to by pointeritoiimmortal are not to be
destroyed. Thus, when the foreign object issues the “invali-
date” message, pointer_to_immortal receives the message
and responds by throwing an exception, as shown in blocks
662 and 664. Execution then ends in block 666. The pro-
grammer may decide what operations are performed during
exception handling.

Recall that lockedipointerito is a class of foreign point-
ers that inherit its behaviors from pointeritoiimmortal.
FIG. 16 is a flowchart of an exemplary change foreign object
method for lockedipointerito pointers 680. A determina-
tion is made in block 682 whether the pointer is set to
NULL, i.e. not pointing to any object. If the pointer is not set
to NULL, then a predetermined value, such as boolean false,
is returned to indicate that no change was made, as shown
in block 684. Otherwise, the foreign pointer change foreign
object method shown in FIG. 12 and described above is
followed, as shown in block 686, to change the lockedi ~
pointer_to pointer from a first foreign object to a second
foreign object. The process ends in block 688.

In addition to pointers to single foreign objects, a foreign
list of pointers to multiple foreign objects is also provided by
the framework of the present invention, as first described
above in conjunction with FIG. 9. As shown in FIG. 17,
foreign list 800 is a foreign pointer that contains multiple
conventional, i.e. non-foreign, pointers 802—806, which
point to respective foreign objects 810—814. Each foreign
object has three lists, active, passive and restrictive
820—824, that refer back to foreign list 800, but not pointers
802—806.

FIG. 18 is an exemplary process flow for foreign list add
foreign object strategy 840. The foreign object is first added
to the foreign list, as shown in block 842. This may be done

10

30

35

40

45

60

13

10

by assigning a foreign list pointer 802 to point to the foreign
object. If the foreign object was successfully added, as
determined in block 844, then the appropriate list (active,
passive, or restrictive depending on the type of foreign list)
of the newly added foreign object is updated to reflect the
addition of foreign list pointer. The process then terminates
in block 848. If the addition of the foreign object is not
successful, step 848 is skipped.

To remove a foreign object from the foreign list, the
exemplary process flow 860 shown in FIG. 19 may be
followed. The foreign list is first removed from the foreign
pointer pursuant to the exemplary process shown in FIG. 7,
as shown in block 862. The foreign object is then removed
from the foreign list, as shown in block 864. The process
ends in block 866.

A foreign list invalidate strategy 880 is shown in FIG. 20.
This strategy is executed when a foreign object pointed to by
one of the foreign list’s pointers is being deleted. Foreign list
first receives the “Invalidate” message (or optionally the
“Will invalidate” message) from the foreign object, as
shown in block 882. The pointer pointing to that foreign
object is then deleted or set to NULL, as shown in block 884.
The process ends in block 886.

A foreign list may also have notifieripointerito
behavior, shown as notifier foreign list template 416 in FIG.
9. As shown in FIG. 21, notifier foreign list 900 is a also
foreign pointer that contains multiple normal pointers
902—906, which point to respective foreign objects 910—914.
Notifier foreign list 900 is recorded on the appropriate

pointer list (active, passive, or restrictive) of each foreign
object 920—924. Notifier foreign list 900 is contained within
an enclosing object 930 that uses it to point to the foreign
objects. Notifier foreign list 900 further includes a notifier
method 932 that functions in a similar manner as the notifier

method for notilier_pointer_to. Notifier foreign list 900
further has a pointer 934 pointing to enclosing object 930 to
provide the advance notification upon receipt of the “Will
invalidate” message from one of the foreign objects.

Although the present invention and its advantages have
been described in detail, it should be understood that various

changes, substitutions and alterations can be made therein
without departing from the spirit and scope of the invention
as defined by the. appended claims.

What is claimed is:

1. A computer-implemented object-oriented memory
management framework, comprising:

a set of foreign pointer objects each encapsulating a
plurality of memory management methods and
variables, said set of foreign pointer objects operable
for instantiating one or more instances of active,
passive, and restrictive foreign pointers;

a set of foreign objects encapsulating a plurality of
memory management methods and variables, operable
for instantiating one or more instances of foreign
objects, each foreign object having an active list
variable, a passive list variable, and a restrictive list
variable for recording therein any active, passive, and
restrictive foreign pointer pointing thereto; and

means for pointng an instance of the foreign pointer
object to memory allocated to a foreign object defined
in a computer application and deleting said foreign
object according to said memory management methods
and variables.

14

5,923,877

11

2. The framework, as set forth in claim 1, wherein said

pointing means comprises:

means for pointing an active foreign pointer object at one
or more foreign objects for indicating said one or more
foreign objects are not to be destroyed when they are
only pointed to by active foreign pointer objects; and

said active list variable recording said active foreign
pointer object therein.

3. The framework, as set forth in claim 1, wherein said

pointing means comprises:

means for pointing a passive foreign pointer object at one
or more foreign objects for indicating said one or more
foreign objects are to be destroyed when they are only
pointed to by passive foreign pointer objects; and

said passive list variable recording said passive foreign
pointer object therein.

4. The framework, as set forth in claim 1, wherein said

pointing means comprises:

means for pointing a restrictive foreign pointer object at
one or more foreign objects for indicating said one or
more foreign objects are not to be destroyed when said
restrictive foreign pointer object is pointing thereto;
and

said restrictive list variable recording said restrictive
foreign pointer object therein.

5. The framework, as set forth in claim 1, wherein said set

of foreign pointer objects further comprises a set of
foreign_pointe-r_to foreign pointer objects for providing
instances of foreign pointer objects to a single foreign
object.

6. The framework, as set forth in claim 5, wherein said set
of foreignipointerito foreign pointer objects further com-
prises a set of notifier pointer to foreign pointer objects
for providing an instance of a notifier foreign pointer object
encapsulating a notification method and a back pointer
pointing to an object enclosing said notifier foreign pointer
object for advance notification thereto prior to said foreign
object being deleted.

7. The framework, as set forth in claim 6, wherein said set

of notifieripointerito foreign pointer objects further com-
prises:

a will invalidate method for calling said notification
method upon receipt of a will invalidate message from
said foreign object; and

an invalidate method for setting said notifieripointerito
foreign pointer instance to NULL upon receipt of an
invalidate message from said foreign object.

8. The framework, as set forth in claim 5, wherein said set

of foreign_pointer_to foreign pointer objects further com-
prises a set of pointeritoiimmortal foreign pointer objects
for providing an instance of foreign pointer object having an
invalidate method which throws an exception upon receiv-
ing an invalidate message from said foreign object.

9. The framework, as set forth in claim 8, wherein said set

of pointeritoiinimortal foreign pointer objects further
comprises a set of lockedipointerito foreign pointer
objects for providing an instance of foreign pointer object
having an invalidate method which does not permit said
foreign pointer object to change from pointing to one foreign
object to another.

10. The framework, as set forth in claim 1, wherein said

set of foreign pointer objects further comprising a set of

10

30

35

40

45

60

14

12

foreign list objects for providing instances of foreign list
objects each being capable of having more than one pointer
object pointing to more than one foreign object.

11. The framework, as set forth in claim 10, wherein said

set of foreign list objects further comprises a set of notifier
foreign list objects for providing an instance of foreign list
object having a notification method and a back pointer
object to an object enclosing said notifier foreign list object
for advance notification thereto prior to one of said foreign
objects being deleted.

12. The framework, as set forth in claim 11, wherein said

set of notifier foreign list objects further comprises:

a will invalidate method for calling said notification
method upon receipt of a will invalidate message from
one of said foreign objects; and

an invalidate method for setting said notifieripointerito
foreign pointer instance to NULL upon receipt of an
invalidate message from said foreign object.

13. An object-oriented method for memory management
in a computer, comprising the steps of:

encapsulating memory management methods and vari-
ables in a set of foreign pointer objects, said foreign
pointer objects providing one or more instances of
active, passive, and restrictive foreign pointer objects;

encapsulating memory management methods and vari-
ables in a set of foreign objects for providing one or
more instances of foreign objects, each foreign object
having an active list variable, a passive list variable,
and a restrictive list variable for recording any foreign
pointer object pointing thereto; and

pointing an instance of a foreign pointer object to memory
allocated to a foreign object defined in a computer
application and deleting said foreign object according
to said memory management methods and variables
encapsulated in the foreign pointer object and foreign
object.

14. The method, as set forth in claim 13, further com-

prising the steps of:

signing on an active foreign pointer object for pointing at
one or more foreign objects for indicating said foreign
object is not to be deleted from the allocated memory
when said active foreign pointer object is the only
foreign pointer object pointing thereto; and

recording in said active list variables of said foreign
objects said active foreign pointer object.

15. The method, as set forth in claim 13, further com-

prising the steps of:

signing on a passive foreign pointer object for pointing at
one or more foreign objects for indicating that said
foreign object is to be deleted front the allocated
memory when said passive foreign pointer object is the
only foreign pointer object pointing thereto; and

recording in said passive list variables of said foreign
objects said passive foreign pointer object.

16. The method, as set forth in claim 13, further com-

prising the steps of:

signing on a restrictive foreign pointer object for pointing
at one or more foreign objects for indicating that said
foreign object is not to be deleted from the allocated
memory when said restrictive foreign pointer object is
pointing thereto; and

recording in said restrictive list variables of said foreign
objects said restrictive foreign pointer object.

15

5,923,877

13

17. The method, as set forth in claim 13, further com-
prising the step of removing a foreign pointer object from a
foreign object.

18. The method, as set forth in claim 17, wherein said
foreign pointer object removing step comprises the steps of:

notifying a foreign object that a foreign pointer object
pointing thereto is to be removed;

locating said foreign pointer object in one of said active,
passive, and restrictive list variables;

deleting said foreign pointer object from said list vari-
ables; and

optionally auto self-destroying said foreign object from
the allocated memory if no active or restrictive foreign
pointers objects remain in said list variables.

19. The method, as set forth in claim 13, further com-

prising the step of deleting a foreign object.
20. The method, as set forth in claim 19, wherein the

foreign object deleting step comprises the steps of:

making a determination of whether any restrictive foreign ',
pointer object is pointing to said foreign object; and

destroying said foreign object in response to determining
that no restrictive foreign pointer object is pointing to
said foreign object.

21. The method, as set forth in claim 20, wherein said

making a determination step comprises the step of making a
determination of Whether any restrictive foreign pointer
object is recorded in said restrictive pointer list variable.

22. The method, as set forth in claim 20, wherein said
foreign object destroying step comprises the steps of:

sending an invalidate message to each foreign pointer
object pointing to said foreign object;

removing a reference of each foreign pointer object to
said foreign object in response to receiving said invali-
date message; and

deleting said foreign object.
23. The method, as set forth in claim 22, further com-

prising the step of setting each foreign pointer object to
NULL in response to receiving said invalidate message.

24. The method, as set forth in claim 22, further coni-

prising the step of throwing an exception in response to
receiving said invalidate message.

25. The method, as set forth in claim 22, further com-

prising the steps of:

sending a will invalidate message to each foreign pointer
object pointing to said foreign object; and

each foreign pointer object executing a will invalidate
strategy in response to receiving said will invalidate .,
message.

26. The method, as set forth in claim 24, wherein said will

invalidate strategy executing step comprises the step of
notifying an object enclosing each foreign pointer object in
response to receiving said will invalidate message.

27. The method, as set forth in claim 26, wherein said

notifying step further comprises the steps of:

encapsulating an additional pointer object for pointing to
said enclosing object; and

executing a notifying strategy on said enclosing object via
said additional pointer object.

28. The method, as set forth in claim 13, further com-

prising the steps of:

removing a foreign pointer object from a list variable of
a first foreign object being pointed to by said foreign
pointer object;

10

30

35

40

45

60

15

14

making a determination of whether said first foreign
object was owned by an object enclosing said foreign
pointer object;

deleting said first foreign object in response to said
foreign object being owned by said enclosing object;

signing on said foreign pointer object to a second foreign
object; and

deten‘nining ownership of said second foreign object.
29. The method, as set forth in claim 28, further com-

prising the step of making a determination whether a foreign
pointer object is set to NULL prior to said foreign pointer
object removing step in response to said foreign pointer
object being set to NULL.

30. The method, as set forth in claim 29, further com-

prising the step of returning a value indicative of non-
performance in response to said foreign pointer object not
being set to NULL.

31. The method, as set forth in claim 13, further com-

prising the steps of:

encapsulating, in one foreign pointer object, more than
one foreign pointer objects for pointing to more than
one foreign objects; and

each said foreign objects having said active, passive, and
restrictive list variable recording said foreign pointer
object.

32. The method, as set forth in claim 31, further coni-

prising the steps of:

adding a foreign object to being pointed to by said foreign
pointer object; and

adding said foreign pointer object to one of said active,
passive, and restrictive list variables of said newly
added foreign object.

33. The method, as set forth in claim 31, further com-

prising the steps of:

removing a foreign object being pointed to by said foreign
pointer object; and

removing said foreign pointer object from one of said
active, passive, and restrictive list variables of said
removed foreign object.

34. The method, as set forth in claim 31, further com-

prising the steps of:

sending an invalidate message to a foreign pointer object
pointing to one of said foreign objects; and

deleting said foreign object from one of said active,
passive, and restrictive list variables in response to
receiving said invalidate message.

35. The method, as set forth in claim 31, further com-

prising the steps of:

encapsulating an additional pointer object for pointing to
an object enclosing said foreign pointer object; and

executing a notifying strategy on said enclosing object via
said additional pointer object.

36. The method, as set forth in claim 13, further com-

prising the step of inheriting from said set of foreign pointer
objects a set of foreignipointerito foreign pointer objects
for providing a foreign pointer object to a single foreign
object.

37. The method, as set forth in claim 13, further com-

prising the step of inheriting from said set of foreign pointer
objects a set of notifieripointerito foreign pointer objects
for providing an instance of a notifier foreign pointer object
encapsulating a notification method and a back pointer

16

5,923,877

15

pointing to an object enclosing said notifier foreign pointer
object for advance notification thereto prior to said foreign
object being deleted.

38. The method, as set forth in claim 13, further com-

prising the step of inheriting from said set of foreign pointer
objects a set ofpointer_to_immorta] foreign pointer objects
for providing an instance of foreign pointer object encap-
sulating an invalidate method which throws an exception
upon receiving an invalidate message from said foreign
object‘

39. The method, as set forth in claim 13, further com-

prising the step of inheriting from said set of foreign pointer
objects a set of locked_pointer_to foreign pointer objects
[or providing an instance of foreign pointer object encap-
sulating an invalidate method which throws an exception

5

10

15

16

16

when said foreign pointer object instance is changed from
pointing to one foreign object to another.

40. The method, as set forth in claim 13, further com-
prising the step of inheriting from said set of foreign pointer
objects a set of foreign list objects for providing instances of
foreign objects each being capable of having more than one
pointer object pointing to more than one foreign object.

41. The method, as set forth in claim [3, further com-

prising the step of inheriting from said set of foreign pointer
objects a set of notifier foreign list objects for providing an
instance of foreign list objects encapsulating a notification
method and a back pointer to an object enclosing said
notifier foreign list object instance for advance notification
thereto prior to one of said foreign objects being deleted.

