
1 GOOGLE-1014
Google Inc. v. Micrografx LLC

IPR2014-00532

2

C++

Programming

Language

Second Edition

Bjarne Stroustrup

AT&T Bell Laboratories

Murray Hill, New Jersey

A
77

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts - Menlo Park, California - ewY0r1<
Don Milis. Ontario - Wokjngham.England - Amsterdam - Bonn

Sydney - Singapore - Tokyo - Madrid - San Juan - Milan -- Paris

3

Library of Congress Cataloging-in-Publication Data

Stroustrup, Bjarne.
The C++ programming language I Bjame Stroustrup. -- 2nd ed.

p. cm.

Includes bibliographical references and index.
ISBN 0-201-53992-6

1. C++ (Computer program language) 1. Title. I]. Title: C plus
plus programming language.
QA76.73.Cl5S79 1991
005. 13‘ 3--dc20 91-27307

C[P

1%

Copyright © l99l by AT&T Bell Telephone Laboratories. Incorporated.

Reprinted with corrections June, 1993

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system.

or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the publisher. Printed in the United States of
America.

This book was typeset in Times and Courier by the author, using a Linotronic 2[}UP phototype-

setter and a DEC VA): 8550 running the l{)th edition of the UNIX operating system.

DEC. PDP. and VAX are trademarks of Digital Equipment Corporation. UNIX is a registered
trademark of AT&T Bell Laboratories.

ll-MA-9'7 96 95 94

4

Preface

The road goes ever on and on.

— Bilbo Baggins

As promised in the fil'SI edition of this book, C++ has been evolving to meet the needs

of its users. This evolution has been guided by the experience of users of widely

varying backgrounds working in a great range of application areas. The C++ user-

community has grown a hundredfold during the six years since the first edition of this

book; many lessons have been learned, and many techniques have been discovered

and/or validated by experience. Some of these experiences are retlected here.

The primary aim of the language extensions made in the last six years has been to

enhance C++ as a language for data abstraction and object-oriented programming in

general and to enhance it as a tool for writing high-quality libraries of user-defined

types in particular. A “high-quality library," is a library that provides a concept to a
user in the form of one or more classes that are convenient, safe, and efficient to use.

in this context, safe means that a class provides a specific type-safe interface between

the users of the library and its providers: e{f_j‘i‘ci'enr means that use of the class does not

impose significant overheads in run—time or space on the user compared with hand-
written C code.

This book presents the complete C++ language. Chapters I through 10 give a

tutorial introduction; Chapters l 1 through 13 provide a discussion of design and soft-

ware development issues; and, finally, the complete C++ reference manual is

included. Naturally, the features added and resolutions made since the original edi-

tion are integral parts of the presentation. They include refined overloading resolu-

tion, memory management facilities, and access control mechanisms, type—safe link-

age, const and static member functions, abstract classes, multiple inheritance,

templates, and exception handling.

C++ is a general-purpose programming language; its core application domain is

5

systems programming in the broadest sense. In addition, C++ is successfully used in
many application areas that are not covered by this label. Implementations of C++

exist from some of the most modest microcomputers to the largest supercomputers
and for almost all operating systems. Consequently. this book describes the C++ lan-

guage itself without trying to explain a particular implementation, programming envi-_
ronment, or library.

This book presents many examples of classes that, though useful, should be classi-

fied as “toys." This style of exposition allows general principles and useful tech-

niques to stand out more clearly than they would in a fully elaborated program, where
they would be buried in details. Most of the useful classes presented here, such as

linked lists, arrays, character strings. matrices, graphics classes, associative arrays,
etc., are available in “bulletproof” and/or “goldplated” versions from a wide variety
of commercial and non-commercial sources. Many of these “industrial strength"
classes and libraries are actually direct and indirect descendants of the toy versions
found here.

This edition provides a greater emphasis on tutorial aspects than did the first edi-

tion of this book. However, the presentation is still aimed squarely at experienced
programmers and endeavors not to insult their intelligence or experience. The discus-
sion of design issues has been greatly expanded to reflect the demand for information

beyond the description of language features and their immediate use. Technical detail

and precision have also been increased. The reference manual, in particular, repre-
sents many years of work in this direction. The intent has been to provide a book

with a depth sufficient to make more than one reading rewarding to most program-
mers. In other words, this book presents the C++ language, its fundamental princi-
ples, and the key techniques needed to apply it. Enjoy!

Acknowledgments

In addition to the people mentioned in the acknowledgements section in the preface to
the first edition, I would like to thank Al Aho, Steve Buroff, Jim Coplien, Ted Gold-

stein, Tony Hansen, Lorraine Juhl, Peter Iuhl. Brian Kernighan, Andrew Koenig, Bill
Leggett. Warren Montgomery, Mike Mowbray, Rob Murray, Jonathan Shopiro, Mike
Vilot. and Peter Weinberger for commenting on draft chapters of this second edition.
Many people influenced the development of C++ from 1985 to 1991. I can mention

only a few: Andrew Koenig, Brian Kernighan, Doug Mcllroy, and Jonathan Shopiro.
Also thanks to the many participants of the “external reviews" of the reference man-

ual drafts and to the people who suffered through the first year of X3] 16.

Murray Hill, New Jersey Bjame Strousn-up

6

Preface to the first Edition

Language shapes the way we think.
and determines what we can think about

— B.L.Whor_-f

C++ is a general purpose programming language designed to make programming

more enjoyable for the serious programmer. Except for minor details, C++ is a super-

set of the C programming language. In addition to the facilities provided by C, C++

provides flexible and efficient facilities for defining new types. A programmer can

partition an application into manageable pieces by defining new types that closely

match the concepts of the application. This technique for program construction is

often called data abstraction. Objects of some user-defined types contain type infor-

mation. Such objects can be used conveniently and safely in contexts in which their

type cannot be determined at compile time. Programs using objects of such types are

often called object based. When used well, these techniques result in shorter, easier

to understand, and easier to maintain programs.

The key concept in C++ is class. A class is a user-defined type. Classes provide

data hiding, guaranteed initialization of data, implicit type conversion for user—defined

types, dynamic typing, user-controlled memory management, and mechanisms for

overloading operators. C++ provides much better facilities for type checking and for

expressing modularity than C does. It also contains improvements that are not

directly related to classes, including symbolic constants, inline substitution of func-

tions, default function arguments, overloaded function names, free store management

operators, and a reference type. C++ retains C’s ability to deal efficiently with the

fundamental objects of the hardware (bits, bytes, words, addresses, etc.). This allows

the user—defined types to be implemented with a pleasing degree of efficiency.

C++ and its standard libraries are designed for portability. The current implemen-

tation will run on most systems that support C. C libraries can be used from a C++

7

vi Preface to the first Edition

program, and most tools that support programming in C can be used with C++.

This book is primarily intended to help serious programmers learn the language
and use it for nontrivial projects. It provides a complete description of C++, many
complete examples, and many more program fragments.

Acknowledgments

C++ could never have matured without the constant use. suggestions, and constructive
criticism of many friends and colleagues. In particular, Toni Cargill. Jim Coplien, Stu
Feldman, Sandy Fraser, Steve Johnson, Brian Kemighan, Bart Locanthi, Doug Mell-
roy, Dennis Ritchie, Larry Rosler, Jerry Schwarz. and Jon Shopiro provided important
ideas for development of the language. Dave Presotto wrote the current implementa-
tion of the stream HO library.

In addition, hundreds of people contributed to the development of C++ and its
compiler by sending me suggestions for improvements, descriptions of problems they
had encountered, and compiler errors. I can mention only a few: Gary Bishop,
Andrew Hume, Tom Karzes, Victor Milenkovic, Rob Murray, Leonie Rose, Brian
Schmult, and Gary Walker.

Many people have also helped with the production of this book, in particular, Jon
Bentley, Laura Eaves, Brian Kemighan, Ted Kowalski, Steve Mahaney. Jon Shopiro,
and the participants in the C++ course held at Bell Labs, Columbus, Ohio, June 26—27,
1985.

Murray Hill, New Jersey Bjarne Srrousrrup

8

Contents

Acknowledgments

Preface to First Edition

Acknowledgments

Contents

Notes to the Reader

The Structure of ThisBook

Implementation Notes
Exercises

Design Notes
Historical Note

C and -C++

Efficiency and Structure

Philosophical Note

Thinking, about Programming in C++
Rules ofThumb

Note to C Programmers
References

-:5—oqooooo\o~.e.L»mro~

9

A Tour of C++ 13

1.1 introduction 13

1.2 Programming Paradigms 14

1.3 "A Better C" 22

1.4 Support for Data Abstraction 30

1.5 Support for Object-Oriented Progrtnnming 36
1.6 Limits to Perfection 4]

Declarations and Constants 43

2.] Declarations 43

2.2 Names 48

2.3 Types 48

2.4 Literals 64
2.5 Named Constants 68

2.6 Saving Space

2.7 Exercises 73

Expressions and Statements 75

3.1 A Desk Calculator 75

3.2 OperatorSummary 88

3.3 Statement Summary 100
3.4 Comments and Indentation 104

3.5 Exercises 106

Functions and Files 109

4.1 Introduction 109
4.2 Linkage 111}

4.3 Header Files 112

4.4 Linkage to Non-C++ Code 1 19
4.5 How to Make a Library 121

4.6 Functions 123

4.7 Macros 138
4.8 Exercises 140

143

5.1 1ntroductionandOverview 143
5.2 Classes and Members 144

10

ix

5,3 Interfaces and Implementations 153

5.4 Minor Class Features 161

5.5 Construction and Destruction 170

5.6 Exercises 178

Derived Classes 131

6.1 Introduction and Overview 181

6.2 Derived Classes 182

6.3 Abstract Classes 191

6,4 A Complete Program 193

6,5 Multiple Inheritance .. _. 201
6.6 Access Control 211

6.7 Free Store 215

6.8 Exercises 222

Operator Overloading 2.25

7.1 Introduction 225

7.2 OperatorFunctions 226

7.3 User-defined Type Conversion 229
7.4 Literals 236

7.5 Large Objects 236

7.6 Assignment and Initialization 237

7.7 Subscripting 240
7.8 FunctionCall 242

7.9 Dereferencing 244
7.11) Increment and Deerement 246

7.11 A String Class 248
7.12 Friends andMembers 251

7.13 Caveat 252

7.14 Exercises 253

Templates 255

8.1 Introduction 255

8.2 A Simple Template 256

8.3 List Templates 259

8.4 FunctionTemplates 270

8.5 Template Function Overloading Resolution 277

8.6 Template Arguments 279

8.7 Derivation and Templates 281

11

8.8 An AssociativeArray

8.9 Exercises 291

Exception Handling 293

9.1 Error Handling 293

9.2 Discrimination of Exceptions 297

9.3 Naming ofExceptions 300

9.4 Resource Acquisition 308

9.5 Exceptions that are not Errors 315

9.6 Interface Specifications 317

9.7 Uncaught Exceptions 320

9.8 Error—Handling Alternatives 321

9.9 Exercises 324

Streams 325

10.1 Introduction 325

10.3 Input 330

10.4 Formatting 337

10.5 Files and Streams 350

10.6 C lnput;'Output 356

10.7 Exercises 358

Design and Development 361

11.1 Introduction 361

11.2 Aims and Means 364

11.3 The Development Process 367

11.4 Management 382

11.5 Rules ofThumb 387

11.6 Annotated Bibliography 388

Design and C++ 39]

12.1 Design and Programming Language 391

12.2 Classes 402

12.3 Components 422

12.4 Interfaces and Implementations 425

12.5 Rules of Thumb 42?

12

Design of Libraries

13.1 Introduction

13.2 Concrete Types

13.3 Abstract Types

13.4 Node Classes

13.5 Run—tirne Type Information
13.6 Fat Interfaces

13.7 Application Frameworks
13.8 Interface Classes

13.9 Handle Classes

13.10 Memory Management
13.11 Exercises

Reference Manual

121 Introduction

r.2 Lexical Conventions

r.3 Basic Concepts
r.4 Standard Conversions

r.5 Expressions
L26 Statements

r.7 Declarations

L8 Declarators

r.9 Classes

r.l0 Derived Classes

r.l1 Member Access Control

r.l2 Special Member Functions

r.13 Overloading

r.l4 Templates

L15 Exception Handling

r.I6 Preprocessing

L17 Appendix A: Grammar Summary

1218 Appendix B: Compatibility

ANSUISO Resolutions

Index

13

Templates

l’0m' quote heir.

— B.Strousrrup

This Chapter introduces the template concept that allows container classes,

such as lists and associative arrays, to be simply defined and implemented

without loss of static type checking or run—time efficiency. Similarly, tem-

plates allow generic functions, such as sort (l, to be defined once for a

family of types. A family of list classes is defined as an example of tem-

plates and their interaction with other language features. Some variants of

a sort () function template is presented to demonstrate techniques for

using templates to compose code from semi-independent parts. Finally, a

simple associative array template is defined and used in a couple of small

example programs.

8.1 Introduction

One of the most useful kinds of classes is the container class, that is, a class that holds

objects of some (other) type. Lists. arrays. associative arrays, and sets are container

classes. Specifying a container of objects of a single known type can be done with the

facilities described in Chapters 5 and 7. For example §5.3.2 defined a set of ints.

However, container classes have the interesting property that the type of objects they

contain is of little interest to the definer of a container class. but of crucial importance

to the user of a particular container. Thus we want to have the type of the contained

object be an argument to a container class: The definer specifies the container class in

tenns of that argument, and the users specify what the type -of contained objects is to

be for each particular container (each object of the container class). The Vector

template in §l.4.3 was an example of this.

14

256 Templates Chapter 8

This chapter first presents the notion of a template class by examining a simple
stack template. Then a more complete and realistic example of a couple of related

list templates is presented. Function templates and the rules for what can be a func-

tion template argument are stated. Finally, an associative array template is presented.

8.2 A Simple Template

A class template specifies how individual classes can be constructed much as a class

declaration specifies how individual objects can be constructed. We can define a

stack of elements of an arbitrary type:

template<class T)
class stack {

etacktint s) [V = p = new TIsz=s]; }
‘stack[) { delete[] v; }

void push(T a) { *p++ = a: }
T popt) { return *——p; }

int size() const { return p—v; }
}:

All run—time error checking has been left out for simplicity. Apart from that. the
example is complete and realistic.

The template <cl ass T> prefix specifies that a template is being declared and
that an argument T of type type will be used in the declaration. After its introduction,

T is used exactly like other type names. The scope of T extends to the end of the clec~

laration that template <class T> prefixes. Note that template<c.l.ass T>

says that T is a type name; it need not actually be the name of a class. For so below,
T turns out to be char.

The name of a class template followed by a type bracketed by < > is the name of a

class (as defined by the template) and can be used exactly like other class names. For
example:

stack<char> sc(100); // stack of characters

defines an object so ofa class stack<c:har>.

Except for the special syntax of its name, stack<char> works exactly as if it
had been defined:

15

Section 8.2 A Simple Tempiate 257

class stack_char {
char* v;

char* p;
int 52;

public:

etack_char(int s) [V = p = new char[sz=s]; }

“stack”char() [delete[] v; }

void push(char a) { *p++ = a; }

char popl) { return *——p; }

int size() const { return p—v; }
1;

One can think of a template as a clever kind of macro that obeys the scope, naming,

and type rules of C++. That would be an oversimplification, but it is an oversimplifi-

cation that might help avoid some gross misunderstandings. In particular, use of a

template need not imply any run-time mechanisms beyond what is used for an equiva-

lent “hand-written" class, nor does it necessarily imply any savings in the amount of

code generated.

[L is usually a good idea to debug a particular class, such as stacl-t_char, before
turning it into a template such as stack<T>. Similarly, when trying to understand a

template it is often useful to imagine its behavior for a particular type such as int or

shape* before trying to comprehend the template in its full generality.

Given the class template declaration, stacks can now be defined and used like
this:

stack<shape*> ssp[200); // stack of pointers to shapes
stack<Point> sp{400): // stack of Points

void f(stack<complex>& sc) // ‘reference to stack

// of complex’ argument
{

sc.push(complex(l.2l);

complex 2 = 2.5*Sc.pop();

stack<int>*p = 0: // pointer to stack of ints
p = new stack<int>(8D0}: // Stack of ints

// on the free store

for (int i = 0; i<400; i++) {

p—>push(i);

sp.push(Point(i,i+400});
}

/1’

}

Because the stack member functions were all inline. the only function calls

16

258 Templates Chapter 8

generated for this example were the ones generated for free store allocation and
deallocation.

Template functions need not be inline; stack could equally well have been
defined:

template<class T> class stack {

stack(int);

“stack();

void push('I');

T poptl;

int size{) const;
};

In that case, definitions of the stack member function must be provided somewhere
exactly as for non—template class member functions. Such functions are themselves

parameterized by the type argument to their template class; thus these functions are

defined by function templates. When defined outside the template class, this must be
explicit. For example:

template<class T> void stack<T>::push{T a)
{

*p++ = ar-
}

ternplate<c:lasS :I'> stack<T>::stack(int s)
{

v = p = new T[sz=s];
}

Note that within the scope of st;-1ck<T> qualification with <T> is redundant so that
stack<T>: :stack is the name for the constructor.

It is the impIementation’s job — not the programmer’s — to ensure that versions of

template functions are generated for each argument type to the template. Thus for the
example above, the implementation would generate definitions for the constructors

for staok<shape*>, stack<Point>, and stack<int>, the destructors for

stack-<shape*> and stack<Point>, the push {) functions for

stac:k<complex>, stack<int>, stack<Point>, and the pop () function for
stack<complex>. The generated functions will be perfectly ordinary member
functions. For example:

void stack<complex>: :push(complex a) { *p++ = a: }

differs from “ordinary member functions” only in the syntax for the class name.

17

Section 8.2 A Simple Template 259

Just as there can be only one function defining a class member function in a pro-
gram. there can be only one function template defining a class template member func-

tion in a program. When a function definition is needed for a class template member
function for a particular type. it is the itnplementation‘s job to find the template for
the member function and generate the appropriate version. An implementation may

require the programmer to help find template source by following some convention.

It is important to write templates so that they have as few dependencies on global
information as possible. The reason is that a template will be used to generate func-

tions and classes based on unknown types and in unknown contexts. Almost any sub-
tle context dependency will surface as a debugging problem to a programmer who is

unlikely to be the original author of the template. The rule of avoiding references to

global names as far as possible should be taken extra seriously in template design.

8.3 List Templates

When writing a realistic collection class, one often needs to deal with relationships

between the classes involved in the implementation, with memory management

issues, and with the need to iterate over a collection. It is also common to design sev-
eral related classes together (§l2.2). As an example, we will present a family of
singly linked list classes and templates.

8.3.1 An Intrusive List

First, we will build a simple list that relies on a link field in objects put onto the list.

Later, we use that list as a building block for a more general list that does not require
a link field in objects put onto it. The class declarations with only their public func-
tions will be presented first; the implementation will be presented in the next section.

The idea is to avoid obscuring the design points with implementation details.

First we define a type slink, that is, a link in a singly linked list:

struct slink [
slink* next;

slink() { next=O; }

slink(slink* pl { next = p; }
}:

We can now define a class that can contain objects of any class derived from slink:

class slist_base {
//' ...

public:

int inserttslink*): // add at head of list

int appendtslinlrf); // add at tail of list

slink* getllr // remove and return head of list
//

18

260 Templates Chapter 8

This class is intrusive because it can be used only if the elements provide the slink

as a handle for slist_base to use. The name slist__base indicates that the
class will be used as a base for singly linked list classes. As ever, when one designs a
family of related entities there is a problem selecting names for the various members

of the family. Since class names cannot be overloaded the way function names can,
we cannot use overloading to reduce the name proliferation.

An slist_base can be used like this:

void f()
{

slist_base slb;
s1b.insert(new slink);
// ...

slink* p = slb.get();
// ...

delete p;
}

However, because slinks don't carry information (beyond their identity), this is not
very interesting. To use a slist_base, one needs to derive a useful class from

slink. In a compiler one might have a name node that needs to be on a list:

class name : public slink [
//

};

void ftconst char* 3)
{

slist_base slb;
slb.insert{new name(s));
// . . .

name* p = (name*)slb.get(};
// ...

delete p:
}

This works, but because slist_base is defined in terms of slinks and not

names, it is necessary to use an explicit cast to convert the sl:i_nk* returned by
slist_base: :get () into a name*. This is inelegant. In a large program with
many lists and many classes derived from slink, it is also error prone. What we
would like is a type—safe version of slist_base:

template<class T>

class Islist : private slist_base {
public:

void insert{T* a} { slist_base::insert{a); }
T* getll { return (T*) slist_base::get(): }
// ...

}:

19

Section 8.3.1 An Intrusive List 261

The cast inside Islist: zget () is perfectly reasonable and safe because class

Islist ensures that every object on the list really is of type T or of a type derived

from T. Note that s1ist_base is a private base class of Islist. We do not

want users accidentally messing around with the unsafe implementation details.

The name Islist stands for “intrusive singly linked list." This template can be
used like this:

void ftconst char* 5)
{

Islist<name> ilst;

ilst.inseIt(new namelsl);

//

name* p = ilst.get();
//

delete p;
}

Attempted misuses are caught at compile time:

class expr : public slink {
//

l:

void gtexpr* e)
i

I3liet<name> ilstr

ilst.inseIt(e): // error: Islist<na.me>::inserttl

// expects a name*
//

}

There are several important things to note about the example so far. First. the scheme

is type safe (barring silly mistakes in the very limited context of the access functions

in Islist). Second, type safety is achieved without the expenditure of time or

space because the access functions in Islist are trivial iniine functions. Third,

because all the real work is done by the — yet to be presented — implementation of

slist—_bas-e, there is no replication of code, and the source code of the implemen-

tation (the slist_base functions) need not be available to a user. This is consid-

ered commercially important by some. [I also provides a separation between an inter-

face and its implementation so that reimplenientation without requiring re—

compilation of user code becomes possible. Finally, a simple intrusive list is close to

optimal in time and space. In other words, this strategy has near optimal properties of

time, space, data hiding, and type checking while providing great flexibility and econ-

omy of expression.

However, an object can be on an Islist only provided it is derived from

slink. This implies that we cannot have an Islist of ints, that we cannot have

a list of some previously defined type that is not based on slink, and that having an

object on two Islists takes some work (§6.5.1).

20

262 Templates Chapter 8

8.3.2 A Non-intrusive List

After our "digression” into the building and use of intrusive lists, we can proceed to

building a non-intrusive list, that is, a list that does not require its elements to provide
facilities to help the implementation of the list class. Because we no longer can
assume that an object on the list has link field, the list implementation will have to
provide one:

template<class T>

struct Tlink : public slink {
T info:

Tlinktconst T& a) : info(a) { }
l;

A Tlink<T> holds a copy of an object of type T in addition to the link field pro-
vided by its base class slink. Note that the use of the initializer info (a) , rather

than the assignment info=a. is essential for efficient operation for types with non-
trivial copy constructors and assignment operators (§7.l1). For such a type — say
St ring — defining the constructor,

Tlinldconst Ts a) [info = a; }

would have caused a default St ring to be constructed and then assigned to.
Given this link class and the Islist class, the definition of the non-intrusive list

is almost trivial:

template<class T>

class Slist : private slist_base {
public:

void inserttconst T& a)

{ s1ist_base::insert(new Tlink<T>(a)); }
void append(const T& a)

{ slist_base::append(new Tlink<T>(a)); }
T getli:
//

l:

template<class-T>

T Sli$t<T>::get()
{

Tlink<T>* lnk = (Tlink<T>*) slist base::get();
T 1 = 1nk—>info; *
delete lnk;
return i;

}

The use ofslist is as simple as the use of Islist. The difference is that it is pos-
sible to have an object on an Slist without first deriving its class from slink and
to have an object on two lists:

21

Section 8.3.2 A Non-intrusive List 263

void f(int 1}

l
Slist<int> lstl;

S1ist<int> 1st2;

1st1.insert(i};

lst2.insert{i);
//

int il lstl.get(l:
int i2 lstl.get(l:
//

}

However, an intrusive list, such as Islist, does have a consistent advantage in run-

time efficiency and most often in compactness: Each time we put an object on an

Slist, the list needs to allocate a Tlink object; each time we take an object off an

Slist, the list needs to deallocate a Tlink object; and in each case a T is copied.

Where the overhead is a problem, two things can be done. First, Tlink is a prime

candidate for a ncar~optimal specialputpose allocator as described in §5.5.6; this will

reduce the run-time overhead to something that is most often acceptable. Second, it is

often a good idea to keep objects on a “primary list" that is intrusive and to use non-

intrusive lists only where membership of several lists is needed:

void f(name* p]
{

Islist<name> lstl;

Slist<name*> 1st2;

lstl.insert(p): // link through object ‘*p’

1st2.insert(p); // use separate link object to hold ‘p’
H

J

Naturally, such tricks can typically be played only within a particular component of a

program (to avoid confusion about the types of lists used in inter-component inter

faces) but that is exactly where run-time efficiency and compactness games are worth

playing.

Because of the copying of the argument to insert {) in the Tlink constructor,

Slist: is suitable only for small objects such as integers. complex numbers. and

pointers. For objects where copying is expensive or unacceptable for semantic rea-

sons. it is often a good idea to put pointers on the list rather than the objects them-
selves. This was done for lst2 in f (3 above.

Note that because an argument to Slist: zinsert () is copied. passing an

object of a derived class to an insert () function expecting an object ofa base class

will not work as (naively) expected:

22

264 Templates Chapter 8

class smiley : public circle { /* ... */ }:

void g1{Slist<circle>& olist, const smileys grin]
{

olist.insert(grinl; // trap!
}

Only the circle part of the smiley will be stored. Note that this nasty problem is
detected by the compiler in the case where it is most likely to occur. Had the base
class in question been an abstract class, the compiler would have refused to “slice”
the object of the derived class:

void g2(Slist<shape>& olist, const circle& c)
{

olist.insert(c); // error: attempt to create
// object of abstract class

1

Pointers must be used to avoid the problem of slicing:

void g3(Slist<shape*>& plist, const smileye grin)
{

plist.insert(&grin): // fine
l

Don’t use a reference as an argument to a class template. For example:

void g4(SliSt<Shape&>& rlist, const smileys grin)
{

rlist.insert(grin): // error: generated code contains

// reference to reference (Shape&&)l

References used like that most often cause type errors when the template is expanded.
In this case the expansion of

Slist::insert(T&);

gives rise to the illegal declaration

Slist::insert(shape&&};

A reference is not an object, so it is not possible to have a reference to a reference.

Since lists of pointers are so useful it is at good idea to name them specifically:
template<class T>

class Splist : private Slist<void*> {
public:

void insert(T* pl { Slist<Void*>::insert(p}; }
void append(T* p) { Slist<void*>::append(p); }
T* get() { return (T*) Slist<void*>;:get(); 1

23

Section 8.3.2 A Non-intrusive List 265

template<class T>

class Isplist : private slist_base {
public:

void insert(T* pl { sl:l.st_base::i.nsert{p); }

void append(T* pl { slist__base::appendlPl; l

T* getll { return (T*) slist_base::get(); }
i:

This also improves type checking and further reduces code replication.

It is often useful for the element type of a template itself to be a template class.
For example, a sparse matrix of dates could be defined like this:

typedef S}.ist< S1List<date> > dates:

Please note the use of spaces here. Leaving out the space between the first and the

second > would cause a syntax error when >> in

typedef Slist<S1ist<date>> dates;

was interpreted as a right shift operator. As ever, a name introduced by a typedef

is a synonym for the type it names and not a new type. Typedefs can be useful for

longer template class names just as they are for other longish type names.

Note that a template argument used in several ways in a template should be men-

tioned once only in the list of template arguments. Thus, a template using a ‘I object
and a list of T5 is defined like this

template<class T> class mytemplate {

T obj:
S1ist<T> slst;

//
l:

and not like this

template-cclass T, class Slist;<T> > class mytemplate {

T obj:
Slist<T> slst;

//

l;

The rules for what can be a template argument can be found in §8.6 and §r.l4.2.

8.3.3 A List Implementation

Implementing the sli5t_base functions is straightforward. The only real problem

is what to do in case of an error, for example, what to do in case a user tries to get 1)

something off an empty list. This will be handled by providing an error function,

slist_handler () . Further strategies relying on exceptions will be discussed in
Chapter 9.

The complete declaration of class slist_base is:

24

266 Templates

class slist_base {
slink* last; // last—>next is head of list

public:

void insertts-link* a); // add at head of list

void append(slink* a): // add at tail of list

slink* gEt{): // return and remove head

void clearll { last = 0; }

slist_base() { last 0; J

slist_base(slink* al { last = a—>next = a; }

friend class 3list_base_iter;
};

Storing a pointer to the last element of the circular list enables simple implementation
of both an append (} and an insert l) operation:

void slist_base::insert(slink* a} // add to head of list
{

if {last}

a->next = 1ast—>next;
else

last = a;

last—>next = a;
1

Note that last—->next is the first element on the list.

void slist_base::append(s1ink* a) // add to tail of list
{

if (last) [
a—>next = last—>next;

last = last—>next = a:
}
else

last = a—>next = a:

slink* slist_base::get() // return and remove head of list
{

if (last == 0) slist_handler("get from empty slist"):
slink* f = last—>next:

if {f == last)
last 0:

else

last—>next = f->next;
return f;

}

For flexibility, it is a good idea to have sl:Lst_handler be a pointer to

25

Section 8.3.3 A List Implementation 267

function rather than a function. The call

s1ist_handler ("get from empty list") ,-

will then be equivalent to

(*s1ist_handler}("get from empty list");

As in the case of the tie-w_handler () (§3.2.6) it is useful to provide a function

typedef void (*PFV](const char*);

PFV set_slist_handler(PFV a)
{

PFV old = slist_handler:

slist_handler = a;
return old;

}

PFV slist_handler = &default_slist_handler;

to help users manage their handlers. Exceptions, as described in Chapter 9, provide
both an alternative way of handling errors and a way of implementing an

slist_hancller.

8.3.4 Iteration

Class slist_base provides no facilities for looking into a list, only the means for
inserting and deleting members. It does, however, declare a class

slist_base_iter to be a friend. so we can declare a suitable iterator. Here is one
in the style presented in §'/‘.8:

class slist_base_iter {
slink* Ce; // current element

slist_base* cs: // current list
public:

inline slist_base_iter(slist_base& S):
inline slink* operator()();

}:

slist_base_iter::slist_base_iter(slist_base& s)
{

cs - &s;

ce — cs—>last;

26

268 Templates Chapter 8

slink* slist_base_iter::operator()()

// return 0 to indicate end of iteration
{

slink* ret = ce ? (ce=ce—>next) : 0;
if {ce == cs—>last) ce = 0;
return ret;

}

From this, iterators for Slist and Islist are easily constructed. First we must
declare the iterators friends of their respective collection classes:

template<class T> class Isliethiter;

template<class T> class Islist {

friend class IsliSt_iter<T>;
// ...

};

template<class T> class Slist_iter;

template<class T> class Slist {

friend class Slist_iter<T>:
//

};

Note the way the names of the iterators are introduced without defining their template
Classes. This is the way one handles mutual dependencies between templates.

Next we can define the iterators:

template<class T>

class Islist_iter : private slist_base_iter {
public:

Ielist_iter(Islist<T>& 3) : sliet_base_iter(e) { }
T* operator()()

[return (T*) s1ist_base_iter::operator()(); }
};

template<class T>

class Slist_iter : private slist_base_iter {
public:

Slist_iter(Slist<T>& s) : elist_base_iter[s) { }
inline T* operator()();

};

template<class T> T* S1ist_iter<T>::operator()U
{

T1ink<T>* lnk = (Tlink<T>*) slist_base_iter::operator()(
return lnk ? &lnk->info: 0;

27

Section 8.3.4 Iteration 269

Note that we again used the trick of deriving a family of classes (that is, a class tem-

plate) from a unique base class. This uses inheritance to express commonality and to

prevent unnecessary code replication. The importance of avoiding code replication in

the implementation of simple, frequently used classes such as lists and iterators can-
not be overstated. Such iterators can be used like this:

void f(name* n)
{

Islist<name> lstl;

Slist<name> J.st2;

lstl.insert(n);

lst2.insert(n);
//

Islist_iter<name> iterl(lst1);
const name* p;

while (p=iter1()) {

Slist_iter<name> iter2(lst2);
const name* q:

while (q=iter2()) {

if (p == q) cout << "found " << *p << ’\n';
}

}

There are several techniques for providing iteration for container classes. A

designer of a program or a library will have to choose one style and stick to it. The9!

style presented above is sometimes deemed “too cute. A less cute variant can be

had by simply renaming operator ll () as next () . Both variants have the prop
city that cooperation between the iterator class and its container class is assumed so

that it is possible to handle the case where elements are added to or removed from the

container while an iterator is active. This and several other techniques would not be

feasible if iteration depended on user code holding pointers to elements in the con-

tainer. Typically, a container or its iterator supports a notion of resetting an iteration
to “the beginning" and the notion of a ‘ ‘current element.”

If the notion of a current element is provided by the container itself rather than by
the iterator, the iteration becomes intrusive to the container in the same way links

stored in element were to the contained objects. That is, it becomes hard to have two

simultaneous iterations for a container, but the time and space properties of iteration

approach optimum. For example:

class slist_base {
// . . .

slink* last; // last—>next is head of list

slink* current: // current element

public:

28

270 Templates

// ...

s1ink* head!) { return last?last—>next:0; }
slink* current{] { return current: }

void set_current(slink* pl { current = p: }

slink* firstll { set_current(head()l: return current;]
slink* nexttl;

s1ink* prevt);

ln the same way as both intrusive and non-intrusive lists could be used for the same

object for space and lime efficiency, both intrusive and non-intrusive iteration can be
used for the same container:

void f(ISlist<name>& ilst)

// dumb search for duplicates:
{

1ist_iter<name> slowtilstlr // use iterator
name* p;

while (p = slowlll {

i1st.set_currentlp): // rely on current element
name* q:

while [q = ilist.next(])

if lstrcmp(p->string,q->string) == 0)
cout << "duplicate " << p << ’\n’;

For yet another style of iterator see §8.8.

8.4 Function Templates

The use of template classes implies template member functions. In addition, global
function templates, that is function templates that are not members of a class, can be

defined. A function template defines a family of functions in the same way a class
template defines a family of classes. This idea will be explored through a series of
examples of how one might provide a sort () function. Each variant of sort () in

the subsections below illustrates a general technique.

As ever, the focus of the discussion is program organization rather than algorithm
design so a trivial algorithm is used. These variants of the sort (J template are pre-
sented to demonstrate language features and useful techniques. The variants are not
ordered according to “how good" they are. and there is also a lot to be said for the

traditional non—ternplate version (passing a pointer to a comparison function) in many
contexts.

29

Section 8.4.1 A Simple Global Function Template 271

3.4.1 A Simple Global Function Template

Consider first the simplest sort () template:

template<cless T> void sort(Vector<T>&);

void f(Vector<int>& vi,

Vector<String>& vc,
Vector<int>& vi2,

Vector<char*>& vs)

sort(vi); // aort(Vector<int>& V);
sorttvcl: // sort(Vector<String>& v);
sort(vi2l; // sort(Vector<int>& V);
sort(vs); // sort(Vector<char*>& V};

i

For each call, the argument type detennines the sort function to be used. The pro»

grarnrner must provide a definition for the function template, and the language imple-
mentation must ensure that the proper variants of the template are created and called.

For example, a simple bubble sort template might look like this:

template<class T> void sort{Vector<T>& V)
/1:

Sort the elements into increasing order

Algorithm: bubble sort
*/

unsigned int n = v.size(};

for (int i=0: i<n—1; i++)

for (int j=n-1; i<j; j--)

if (v[j] < v[j—l]l { // swap v[j] and v[j—l]
T temp = v[j];

v[j] = v[j—l];

v[j—l] = temp;

}

Please compare this to the bubble sort function from §4.6.9. The significant differ-

ence is that in the version here all the information needed is passed in the single argu-

ment V‘. Because the type of the elements is known (from the argument type), the

comparison operator can be used directly rather than being passed as a pointer to
function, and there is no need to mess around with the sizeof operator. This seems

more elegant and is also more efficient than the traditional version. There is a prob-

lem, though. Some types do not have a < operator, and others, such as char*, have a

< that does not do what is intended by the template function definition above. In the

former case. an attempt to generate a version of sort () for such a type will fail (as

one would hope it would); in the latter, surprising code will be generated.

30

272 Templates Chapter 8

To sort a Vector of char*s, we can simply specify a suitable implementation
of sort (vector<char*>&) :

void sort(Vector<char*>& V)
i

unsigned int n = v.size();

for (int i=0; i<n—l; i++)

for [int j=n-1; i<j; j——)

if (strcmp(v[j],v[j-l])<0) {

// swap v[j] and v[j—l]
char* temp = V[j]:
Vljl = Vljrll;

v[j—1] = temp;

Because a user-specified “special" definition of sort () is provided for vectors of
character pointers, that special definition will be used, and no version sort () needs
to be generated from the template for arguments of type Vector<char*>&. The
ability for the programmer to provide separate definitions of template functions for
specially important or “odd" types provides a valuable degree of flexibility and can
be an important tool for perfonnance tuning.

8.4.2 Adding Operations by Derivation

in the example above, the comparison function was “hard-wired" into the sort 0
function. An alternative would be to require the Vector class template to provide it.
However, that requirement makes sense only for element types that have meaningful
concepts of comparison. An traditional solution to that dilemma is to define sort ()
only for vectors that do have < defined:

template<class T> void sort(SortableVector<T>& v)
{

unsigned int n = v.size();

for (int i=0; i<n—l; i++)

for (int j=n—l; i<j; j——)

if (v.lessthan(v[jl,v[j-1])) [

// swap v[j] and v[j-1]
T temp = v[j];

VD] = vij-1]:

v[j—1] = temp;

Class Sortablevector might be defined like this:

31

Section 8.4.2 Adding Operations by Derivation 273

template<class T> class Sortablevector

public Vector<T>, public Comparator<T> {

public:
SortableVector{int s) : Vector<T>(s) { }

is

To make this work we need to define a general Comparator class template:

template<class T> class Comparator {

public:
static lessthan(T& a, T& b}

{ return a<b; }
//

};

To handle the problem that < has the wrong semantics (for our purpose) for type

c:har*, we define a special version of the class:

class Comparator<char*> {

public:
static lessthantconst char* a, const char* b)

{ return strcmp(a,b}<0; }
//

}:

This declaration of a special version of a class template for char* closely mirrors the

use of a special version of a function template for char* above. To have effect such

a specialized version of a template class must be seen before its use. Otherwise, the

class generated from the template will be used. Since a class must have exactly one

definition in a program, attempting to use both a specialized version of a template

class and the version generated from the template is an error.

Since we already have a special version of Comparator for char* we don’t

need a special version of Sort ablevect or for char*, so we can finally write:

void f(SortableVector<int>& vi,

SortableVector<String>& vc,
SortableVector<int>& vi2,

SortableVectcr<char*>& vs)

sort(vi);

sort(vc};

sort(vi2);

sorttvsi;

}

Having two kinds of Vectors can be a bit of a nuisance, but at least
Sortablevector is derived from Vector so that a function that does not care

about sorting need not worry about Sort ablevectors; the implicit conversion of

a reference to a derived class to a reference to its public base takes care of that. The

reason Sortablevector was derived from both Vector and Comparator

32

274 Templates Chapter 8

(rather than adding functions to a class derived from Vector only) was simply that
we had Comparator lying around from a previous example. This illustrates a style
of composition found in larger libraries. A class like Comparator is a likely candi-
date for a library class, where it could be used to express the requirements for compar-
isons in many contexts.

8.4.3 Passing Operations as Function Arguments

An alternative to passing the comparison function as part of the Vector type is to
pass it as a second argument to the sort () function. This second argument is an
object ofa class that specifies how comparison is to be done:

templat:e<c1ass T> void sort (Vector<T>s v, Comparator<T>s cmp)
{

unsigned int n = v.size():

for (int i=0; i<n—1; i++)

for (int j=n—l; i<j; j——)

if (cmp.1esst:hanlv[j],v[j—1])) {

// swap v[j] and v[j-1]
T temp v[j];

Vijl = [j-1]:
v[j—1] temp;

}

This variant is a generalization of the traditional technique of passing the comparison
operator as a pointer to function. We can now rewrite the user code:

void f(Vector<int>& vi,

VeCtor<St.ring>& vc,
Vector<int>& vi2,
vector<char*>& vs)

COmpa.’t.’atOr<iI‘1t> oi;

Comparator-<char*> cs;

Comparator<String> cc;

sort (vi, ci) ; N sort (Vector<1nt>s};

sort (vc, cc); // sort (Vec:tor<String>&),-
sort (vi2, ci): // sort (Vect:or<int>&) ;

sort (V5. C5]: // sort (Vector<cha3:*>&];
l

Note that including the Comparator as a template argument ensures that inlining
can be used for the lessthan operator. This technique is particularly useful if the
function template requires several functions rather than a single comparison function
and especially if the behavior of these functions are controlled by some data in the
obj ect they are part of.

33

Section 8.4.4 Passing Operations implicitly 275

3.4.4 Passing Operations Implicitly

In the previous section, the Comparator objects are not really used in the computa-

tion; they are simply “dummy arguments” used to drive the type system. Such a

“dummy argument” is a useful and general — if not completely elegant — technique.

However, where — as in the example above — an object is used to pass in operations

only, that is, where the object’s value and address is not used at all in the called func-

tion, the operations can be passed implicitly instead. For example:

template<class T> void sort (Vector<T>& V)
{

unsigned int n = v.s:i..ze().'

for {int i=0; i<n—1: i++)

for (int j=n~l; i<j; j——)

if {Comparator-<T>::lessthan(v[j],v[j—1])) {
// Swap v[j] and v[j—1}
T temp = v[j];

vljl = vlj-ll:

v[j—l] = temp,-

}

This allows our example to revert to its original version:

void f(Vector<int>& vi,

Vector<String>& vo,
Vector<int>& vi2,

Ve-::tor<char*>& vs)

sort (vii; // sort (Veotor<int>&);

sort (vc); // sort (Vector<String>&);
sort (V12): // sort (Vector-<int>&);

sort (vs): // sort (Vector<char*>&):
l

The key advantage of this version and the previous (two versions) compared to the

original simple sort (1 template is that the code for the sorting algorithm is sepa-

rated from the code doing element-type-specific operations such as lessthan. This

separation of concerns increases in importance as programs grow and is of particular

interest in the context of library design where the library designer cannot know the

template argument types and the users cannot know (or do not want to know) the

details of the algorithms. In particular, had the sort () routine been a more compli-

cated, optimized, “industrial strength” algorithm from a library, a user would have

been reluctant to write the special version for type char* as was done in §8.4.l.

Providing the special char* version of the Comparator class is trivial, though,
and will have a variety of uses.

34

276 Templates

8.4.5 Adding Operations as Class Template Arguments

In some cases, having the connection between the sort () function template and the
Cornparat or class template implicit can be a problem. The implicit connection can
easily be overlooked and can also be hard to understand. Also. since it is “wired
into” the sort () function it is not possible to use that sort () function to sort
Vectors of a single type using different comparison criteria (see exercise 3 in §8.9).
By wrapping the sort {} function in a class we can allow the Comparator to be
specified directly:

template<class T, class Comp> class Sort [
public:

static void sort{Vector<T>&);
l:

template<class T, class Comp>
void Sort<T,Comp>::sort(Vector<T>& V)
{

unsigned int n = v.size(};

for (int i=0; i<n-1; i++)

for (int j=n—l; i<j; j-—)

if (Comp::lessthan(v[j],v[j-1]J) {
T temp = v[j];

V[j] = Vijrli:

v[j—l] = temp;

We can now select the appropriate sort () by qualifying it with a Sort class with
appropriate element and coniperator types:

void f(Vector<int>& vi,

Veotor<String>g vc,
Veotor<int>& vi2,

Veotor<char*>& vs)

Sort< int,Comparator<int> >::sort(vi);
Sort< String,Comparator<String> >::sort(vc);
Sort< int,Comparator<int> >::sort(vi2);
Sort< char*,Comparator<char*> >::sort{vsJ;}

This last variant is a powerful model for composition of code from separate parts.
The example can even be further simplified by using the comparator type as the only
template argument:

35

Section 8.4.5 Adding Operations as Class Template Arguments 277

template<class Comp> class Sort {

public:

class Comp::T.- // Comp must have a member type T
static void sort(Vector<Comp::T>&i:

};

The sort () function will 5011 any Vector that Comp can compare elements of:

void f(VeCtor<int>& vi,

Vector<String>& vc.
vector<int>& vi2 ,
Vector<char*>& vs)

Sort< Comparator<int> >::sort(vi);

Sort< Comparator<String> >::sort[vo);
Sort< Comparator<int> >::sort(vi2};

Sort< Comparator<char*> >::sort(vs);
i

This implies that the comperator must give a name to its element type

template<class T> class Comparator {
public:

typedef T T; // define Comparator<T>::T
static int lessthan (T& a, T& b) {

return a < b;

}
//

i;

so that Sort<Comp>: : sort () can refer to the element type as Comp: : T.

8.5 Template Function Overloading Resolution

No conversions are applied to arguments on template functions. Instead. new ver-

sions are generated whereever possible. For example:

template<class T> T sqrt(T);

void f(int i, double d, complex 2)
{

complex 21 sqrtlii; K/ sqrt(int)
complex z2 - sqrtidl; // sqrtldouble)
complex z3 — sqrtizi: // sqrt(complexi
//

}

This will generate a sqrt function from the template for each of the three argument

types. If the user wants something different — say a call of sqrt (double) given an

int argument — explicit type conversion must be used:

36

278 Templates

template<class T> T 3qrt(T);

void f(int i, double cl, complex 2)
{

complex 21 = sqrt(double(i)J: // sqrt[double}
complex z2 sqrt(d): /1’ sqrttdouble}

complex 23 = sqrt(z}; // sqrtloomplex}
//

}

Here, only sqrt (double) and sqrt (complex) definitions will be generated
from the template.

A template function may be overloaded either by other functions of its name or by
other template functions of that same name. Overloading resolution for template
functions and other functions of the same name is done in three stepsrz

[I] Look for an exact match (§r.l3.2) on functions; if found, call it.
[2] Look for a function template from which a function that can be called with an

exact match can be generated; if found. call it.

[3] Try ordinary overloading resolution (§r.l3.2) for the functions; if a function is
found, call it. If no match is found the call is an error.

In each case. if there is more than one alternative in the first step that finds a match,
the call is ambiguous and is an error. For example:

template<class T)»

T max(T a, T b} { return a>b?a:b; };

void f(int a, int b, char c, char cl}
{

int ml = max(a,b); // max(int,int)
char m2 = max(c,d): // max(char,cl1arl

int m3 = max(a,c); // error: cannot: generate
// max(int,char)

}

Because no conversions are applied before selecting a template function to generate
and call (rule 2 above), the last call cannot_bc resolved to max (a, int (c)) . The
programmer can resolve this by explicitly declaring max (int, int). This would
bring rule 3 into action:

template<class T>

T max(T a, T lo) { return a>b?a:b; };

int max (int, int) ,-

1' These mics are very strict and likely to be relaxed to allow pointer and reference conversions and possibly
also other standard conversions, In that case. ambiguity control would be applied as always.

37

Section 8.5 Template Function Overloading Resolution 279

void fiint a, int b, char c, char d)
{

int m1 = max(a,b); // max(int,int)
char m2 = ma:-:(c,d); // max(char,chari

int m3 = max(a,c},- // max(int,int)

There is no need to provide a definition for max (int, int); it will be generated
from the template by default.

The max () template could have been written to accept the example as originally
written:

template<class T1, class T2>
Tl ma:-:(Tl a, T2 bl { return a>b?a:b: }:

void flint a, int b, char c, char d)
{

int ml = max{a,.b): // int max(int,int)

char m2 = max{c,d); // char max(char,char}I
int m3 = max(a,c); 7/ int max(int,char)

However, the C and C++ type rules for built-in types and operators are such that defi-

nition and use of such two—argument templates often get tricky. For example, the

choice of T1 as the result type would be wrong, or at least surprising, for a call

max(c,i): // Char max(char,int)

The use of two (or more) template arguments for functions taking a variety of arith-

metic types can also lead to the generation of a surprising number of different func-

tions and thus to a surprising amount of generated code. Forcing type conversion by
explicit function declarations is most often a more manageable alternative.

8.6 Template Arguments

A template argument need not be a type name; see §r.l4.2. In addition to type argu-

ments, variable names, function names, and constant expressions can be used. In par-
ticular, integers can be useful as template arguments:

template-<class T, int sz> class buffer {
T v[sz];
//

}:

38

280 Templates Chapter 8

void fl)

{

buffer<char,128> bufl;

buffer<complex,20> buf2;
//

Making sz an argument of the template buffer itself rather than of its objects
implies that the size of a buffer is known at compile time so that a buffer can be
allocated without use of free store. This makes a template such as buffer useful for

implementing container classes, where the use of free store can be the prime factor
determining their run-time efficiency. For example, implementing a string class so
that short strings are allocated on the stack is often a win because in many applica-
tions almost all strings are very short. The buffer template is useful in the imple-
mentation of such types.

Each template argument of a function template must affect the type of the function

by affecting at least one argument type of functions generated from the template.
This ensures that functions can be selected and generated based on their arguments.
For example:

template<class T> void f1(T); // fine

template<class T> void f2(T*); // fine
template<class T> T f3(int); // error

template<int i> void f4(int[][i]): // error

template<int i> void f5(int = i); // error

template<class T, class C> void f6(T): // error

template<class T> void f7(const Ts, complex]; // fine

template<class T> void f8(Vector< List<T> >); // fine

In each case. the error is caused by a type argument not being used in a way that
affects the argument types of the function.

There are _no such constraints on arguments to class templates. The reason is that

the arguments to a class template must be specified whenever an object of a template
class is specified. On the other hand, for class templates we must answer the ques-
tion, “When are two types the same?” Two template class names refer to the same
class if their template names are identical and their arguments have identical values

(modulo typedefs, constant expression evaluation, etc.). For example, consider the
buffer template again:

template<class T, int sz>

class buffer {
T visa];
//

l:

39

Section 8.6 Template Arguments 281

void f()

{

buffer<char,20> bufls

buffer<complex,20> buf2;
buffer<char,20> buf3;

buffer<char,l00> buff};

bufl — buf2; // error: type mismatch
bufl — buf3; // fine

bufl — buf4; // error: type mismatch

//

}

Where non—type arguments are used for class templates, it is possible to construct

some ambiguous looking constructs. For example:

template<int i>
c1assX{ /* */ };

Void f(int a, int b)
{

X < a > b >: // X<a> h followed by a syntax error
// or x< (a>b] >,- ?

i

This example is a syntax error because the first matching > terminates the template

argument. In the unlikely case that you would want to specify a class template argu-

ment by a greater than expression, use parentheses: X< (a>b) >.

8.7 Derivation and Templates

As demonstrated above, the combination of derivation (inheritance) with tempiates

can be a powerful tool. A template expresses a commonality across the types used as

template arguments, and a base class expresses commonality of representation and

calling interface. A few simple mistakes should be avoided.

Two types generated from a common template are different, and have no inheri-

tance relationship, unless their template arguments are identical. For example:

template<class T>

class Vector { /* */ },-

Vector<int> V1:

Vector< short > V2;
Vector<int> V3:

Here v1 and v3 are of the same type and v2 is of a completely different type. The

fact that there is an implicit conversion from short to int does not imply that there

is an implicit conversions from Vector<short> to Vector<j.nt>:

40

282 Templates

V2 = v3: // error: type mismatch

This is, I suspect, what one would expect since no built-in conversions exists between
int [J and short [].

Similarly:

class circle : public shape { /* */ };

Vector<circ1e*> v4;

Vector<shape*> V5;
Vector<c:Lrcle*> V6;

Here V4 and v6 are of the same type and V5 is of a completely different type. The
fact that there are implicit conversions from circle to shape and from circle*
to shape* does not imply that there are implicit conversions from
Vector<cirole*> to Vector<shape*> or from Vector<circle*>* to
Vector<shape*>*:

v5 V5; // error: type mismatch

The reason is that, in general, the structure (representation) of one class generated
from a class template is such that an inheritance relationship cannot be assumed. For
example. the generated class may contain an object of the argument type rather than
just a pointer. Furthermore, had such conversions been allowed. we would have been
vulnerable to a hole in the type system. For example:

void f(Vector<circle>* pc)
i

Vec:tor<shape>* ps = pc; // error: type mismatch
(*ps) [2] = new square; // put a square peg

// into a round hole
l

As shown with Islist, Tlink, Slist, Splist, Islist_iter,
Slist_iter, and Sortable-Vector, templates provide a useful way of deriving
families of classes. Without templates the derivation of similar classes can become
tedious and thus error prone. Conversely, without derivation, use of templates would
imply massive replication of class template member function code, massive replica-
tion of declarative information in class templates, and massive replication of functions
using the templates.

8.7.1 Specifying Implementation through Template Arguments

Container classes often have to allocate storage. Occasionally, it is necessary — or
simply convenient - to give users the opportunity to chose between different alloca-
tion strategies and to supply their own. This can be done in several ways. One way is
to use a template to compose a new class out of the interface to the desired container
and an allocator class using the placement technique described in §6.7.2:

41

Section 8.7.1 Specifying Implementation through Template Arguments 283

template<ClaS3 T. class A> class Controlled_container
public Container<T>, private A {

//

void some_function()
{

//

T* p = new(A::operator new{sizeof(T))) T;
//

l

//
}:

Here it is necessary to use a template because we are designing a container class;

derivation from Container<T> is needed to allow a Contro1led_container

to be used as a container; and the use of the template argument A is necessary to allow

a variety of allocators to be used. For example:

class Shared : public Arena { /* ... */ };

class Fast_allocator { /* ...*/ };
class Persistent : public Arena { /* ... */ };

Contro1led_container<Process_descriptor,Shared> ptbl;

Controlled_container<Node,Fast_allocator> tree:

Controlled_container<Personnel_reCOrd,Persistent> payroll;

This is a general strategy for providing non-trivial implementation information for a

derived class. it has the advantage of being systematic and allowing inlining to be

used. It does tend to lead to extraordinarily long names, though. As usual, typedef

can be used to introduce synonyms for type names of undesirable length. For exam-

ple:

typedef

Controlled_container<Personnel_record.Persistent) pp_record;

pp_record payroll;

Typically. one would use a template to define a class such as pp_reco rd only if the

“implementation information” added is significant enough to make hand coding it

into a derived class unattractive. Examples are a general (and possibly standard in

some library) Comparator class template (§8.4.2) and non-trivial (and possibly

standard in some library) Allocator classes. Note that the derivation in such

examples has a distinct “main line” (here the Container) that provides the user

interface and “side lines” that provide implementation details.

42

284 Templates

8.3 An Associative Array

An associative array is probably the most useful general non-built-in type. An 3SSO~
ciative array, often called a map and sometimes a d1'ct:'onar_v, keeps pairs of values.
Given the one value, called the key, one can access the other, called the vatue. An
associative array can be thought of as an array where the index need not be an integer:

template<class K, class V> class Map {// .

public:

Vs operator[]{const K&); // find the V

// corresponding to K
// and return

// a reference to it//

};

Thus, a key of type K names a value of type V. We assume that keys can be compared
using equality, ==, and the less-than operator, <, so that we can keep the array sorted.
We also assume that keys and values can be copied. Note that a Map differs from the
assoc type presented in §7.7 by making no further assumptions.

#include <String.h>
#include <iostream. h>

#include "Map.h"

int main{)
{

Map<String,int> count;
String word;

while (cin >> word) count [word]++,-

for (Mapiter<String,int> p = count.first{); p; p++)
cout << p.value{} << ’\t' << p.key() << '\n';

return 0;
}

The String was used to avoid having to worry about memory management and
overflows the way one would have to with a char*. An iterator, Maplter, was
used to visit (and write) each value in order; Maprter provides iteration by imitatingpointers. Given

It was new. It was singular. It was simple. It must succeed.

as input this program produced:

43

Section 8.8 An Associative Array 285

It

must
new .

Simple.

singular.
succeed.
was

There are, of course, many ways of designing an associative array, and given a defini-

tion of Map and its associated iterator class, there are many ways of implementing

them. Here, a trivial implementation is chosen. It uses a linear Search that makes it

unsuitable for large arrays. An “industrial strength" implementation would be

designed with criteria, such as speed of lookup and compactness of representation, in

mind: see Exercise 4 in §8.9. Here, I simply use a doubly linked list of Links:

template<class K, class V> class Map;

template<class K, class V> class Mapiter;

temp.'Late<class K, class V> class Link {
friend class Map<K,V>:
friend class Mapiter<K,V>;

private:
const K key;
V value;

Link* pre;
Link* suc;

Link(const K& k, const V& V} : keylk), valuelvl { }

‘Link() { delete suc; } f/ delete all links recursively
1:

Each Link holds a (key,value) pair. Friendship is used to ensure that Links

can be created, manipulated, and destroyed only by the appropriate Map and iterator

classes. Note the forward declarations of the Map and Mapiter class templates.

The Map template itself looks like this:

template<class K, class V> class Map {

friend class Mapiter<K,V>:
Link<K,V>* head;
Link<K,V>* current;

V def_val;

K def_key:
int sz;

static K kdefl): // default K value
static V vdefl); // default V value

44

Templates

void find(const K&);

void init() { s2 = 0: head = 0; current 0; }

public:

Maptj : def_key(kdef()), def_val(vdef[))
{ init(); }

Map(const K& k, const V& d) : def_key(k), def_val{d)
{ init()I }

“Map() { delete head; } // delete all links recursively

Mapfconst Map&);

Map& operator= (const Mapé);

V5 operator[] (ccnst Ks);

int size() const { return sz; }
void clearti { delete head; init(); }
void remove(const K& k);

// iteration functions:

Mapiter<K,v> elementtconst K& k)
{

(void) operator[](k); // move current to k
return Mapiter<K,V>[this,current):

l

Mapiter<K,V> first(} { return Mapiter<K,V>{this,head); }
Mapiter<K,V> lastt);

}:

template<class K, class V> K Map<K,V>::kdef()
{ static K k; return k; }

template<c1ass K, class V> V Map<K,V>::vdef()
{ static V v; return v; }

The elements are stored in a sorted doubly linked list. For simplicity, no attempt is
made to minimize lookup time (see Exercise 4 in §8.9). The critical operation is
operator[] 0:

temp1ate<class K, class V>

V& Map<K,V>::operator[]{const K& k)
i

if (head == 0} {

current = head = new Link<K,V>(k,def_val);
current->pre = current—>suc = 0;
return current—>value;

45

Section 8.8 An Associative Array 287

Link<K,V>* p head;
for (H) {

if (p—>key == k) { // found
current = p:
return current—>value;

}

if (k < p—>key) { // insert before p
current = new Link<K,V>(k.def_val);
current—>pre = p~>pre;

current—>suc = p;

if (p == head) // becomes new head
head = current;

else

p—>pre—>suc = current;
p—>pre = current;
return current—>va1ue;

}

Link<K,V>* s = p—>suc;

if (s == 0) // insert after p (at end)

current = new Link<K,V>(k.def_vali;
current—>pre = p:
current—>suc = 0;

p—>suc = current;
return current—>value;

}

The subscript operator returns a reference to the value corresponding to the key given

as an argument. If no corresponding value is found, a new element with a default
value is returned. This allows the subscript operator to be used on the left hand side

of assignments. The default values for keys and values is set by the Map constructors.

The subscript operator also sets the value current used by the iterators.

The implementation of the remaining member functions is left as an exercise for
the reader:

temp1ate<class K, class V> void Map<K,V>::remcve(const K& k)
{

// see exercise section 8.10 [2]
}

template<clas5 K, class V) Map<K,V>::Map{const Map<K,V>& m)
{

// copy the map and all its elements
}

46

288 Templates

template<class K, class V>

Map<K,V>& Map<K,V>::operator=(const Map<K,V>& m)
{

// copy the map and all its elements
}

Now all we need is a notion of iteration. A Map has member functions first () .
last () . and element (const K&) that retum an iterator positioned at the first
element, the last element, and the element with key indicated by an argument. respec-
tively. This makes sense because we keep the elements ordered by their keys.

A Map iterator D-lapiter looks like this:

template <class K, class v> class Mapiter {
friend class Map<K, V>;

Map<K,V>* m:

Link<K,v>* p;

Mapiter(Map<K,V>* mm, Link<K,V>* pp}
{m=mm;p=pp:]

public:

Mapiter(} { m = O; p = 0: }
Mapiter(Map<K,V>& mm);

operator void*() { return p; }

const Ks key(};
Va valuet);

Mapitera operator——(): // prefix
void operator——{int); // postfix
Mapiters operator++(); // prefix
void operator++(int): // postfix

};

Once positioned, Mapiter's key () and value () functions refer to the key and
value of the element referred to by the iterator, respectively.

template<class K, class V> const K& Mapiter<K,V>::key()l

if (p) return p—>key; else return m—>def_key:}

template<class K, class V> V& Mapiter<K,V>::value()
{

if (p) return p—>value; else return m—>def_val;}

In analogy to pointers, operators ++ and ——- are provided for moving forward and
backward in the Map:

47

Section 3.8 An Associative Array 289

Mapiter<K,V>& Mapiter<K,V>::operat0r--{J // prefix decrement
{

if (p) p = p—>pre;
return *this;

void Mapiter<K,V>::operator—-(int) // postfix decrement
{

if (p) p = p—>pre;

Mapiter<K,V>& Mapiter<K,V>::operator++(} // prefix increment
I

if (p) p = p->suc;
return *this;

void Mapiter<K,V>::operator++(int} // postfix increment
{

if (p) p = p—>suC;
}

The postfix operations were made to return no value because the cost of creating and
returning a new Mapit er on each iteration could be significant and because the use-

fulness of doing that would be slight.

A Mapiter can be initialized to refer to the head of a Map:

template<class K, class V> Mapiter<K,V>::Mapiter{Map<K,V?& mm)
{

m = &m:n; p = m—>head:
]

The conversion operator operator void* () returns zero if the iterator does

not refer to an element, and non-zero otherwise. This means that one can test an itera-

tor iter like this:

void f(Mapiter<const char*,Shape*>& iter)
{

/1’

if {iter} {
// refers to element of map

}

else [

// doesn't refer to element of map

48

290 Tent plates Chapter 8

The same technique is used to control stream I/O operations §l0.3.2.

If an iterator doesn't refer to an element of a map, its key () and value () func-
tions return references to the default objects.

In case you have now forgotten the purpose of all this, here is another little pro-
gram using a Map. We will assume that the input is a list of pairs of values such as:

hammer 2

nail 100
saw 3
saw 4

hammer 7
nail
nail

We would like to sort this, to have values of matching items added, and to print them
together with the sum of the values:

First we will write a function that reads lines and enters the items found into a table

keyed on the first item on the line:

template<class K, class V>

void readlines(Map<K,V>& key]
I

K word;

while (cin >> word) {
Vval = 0;

if (cin >> val)

keylwordl += val;
else

return;

Next we provide a simple main (J program to call the readlines (} function and
print the resulting table:

49

Section 8.8 An Associative Array 29!

main{)

{

Map<String,int> tb1("nil",0l;
readlinesttbl);

int total = 0;

for (Map1ter<String,int> pltbll; p: ++p) {
int val = p,value();
total += val:

cout << p.keyll << '\t' <4 val << '\n';
]

cout << “ —————————————— -—\n":

cout << "total\t" << total << '\n';

8.9 Exercises

1.

2.

9.

(*2) Write a set of doubly linked lists to complement the family of singly linked
lists defined in §8.3.

(*3) Define a String template that takes the character type as a template argu-
ment and show how it could be used for both “ordinary characters” and a hypo-
thetical lchar class (supposed to represent characters in a non-English or
extended character set). Make sure that people who use this template does not suf-
fer significantly in time. space, or convenience compared to an ordinary string
class.

(* 1.5) Define a class Record with two data members count and price. Sorta
Vector or Records on each field. Do not modify the sort function or the
Vector template.

(*2) Complete the Map class template by defining the missing member functions.
. (*2) Re-implement Map from §8.8 using a doubly linked list class.
. ($2.5) Re-implement Map from §8.8 using a balanced tree as described in Knuth

vol. 3, §6.2.3.

. (*2) Compare the perfonrlance of a Map where Link is implemented with and
without a class specific allocator.

. (*3) Compare the performance of the word count program from §8.8 against a
program not using a Map. Use the same style of N0 in both cases. Do the com-
parison against several versions of the Map class including the one from your
library (if yours provides a Map).
(*2.5) Use Map to implement a topological sort function. Topological sort is
described in Knuth vol. 1 (second edition), pp 262.

ll). (>32) Make the sum program from §8.8 work correctly for long names and names
containing spaces such as “thumb tack."

ll.(>?<2) Make readline templates for different kinds of lines. For example

50

292 Templates Chapter 8

(item,count,price).

12. (*2) Write a shell sort variant of the Sort class from §8.4.5 and show how to
choose the sorting algorithm used through the template argument. Shell sort is
described in Knuth vol. 3. §5.2.l_

I3. 1) Change Map and Mapiter so that postfix ++ and —— returns a Mapiter.
I4. [* I .5} Use the templates-as-modules technique from §8.4.5 to write a sort function

that will work on both Vector<'1‘> and T [] inputs.

