The AltaVista Tunnel:
Using the Internet to
Extend Corporate
Networks

The public Internet has become a low-cost
connection medium for joining remote employ-
ees or offices to a private intranet and for per-
mitting impromptu high-speed connections
between business partners. This connectivity
is offset by a significant loss in security. The
AltaVista Tunnel, a DIGITAL product, offers
secure network-level routing over Internet
connections by combining two well-known
networking technologies: tunneling and secure
channels. This paper discusses the design and
implementation of the AltaVista Tunnel and
describes our experience in deploying the
product within DIGITAL.

DOCKET

Kenneth F. Alden
Edward P. Wobber

The public Internet is fast becoming a ubiquitous and
inexpensive medium for connecting remote employ-
ees or offices to a private intranet or for permitting
impromptu high-speed connections between business
partners. This gain in connectivity is offset by a signifi-
cant loss in security, however. The Internet is notori-
ous for electronic break-ins and eavesdropping.

The AltaVista Tunnel, a DIGITAL product, offers
network-layer routing over secure Internet connec-
tions. This allows, for example, a mobile user to con-
nect securely to his or her corporate network using the
Internet. Similarly, a corporate network can employ
the AltaVista Tunnel to securely link remote offices
with Internet connections. Although our product uses
the Internet for packet transport, all traffic is encapsu-
lated within cryptographically secured connections.
Because the AltaVista Tunnel is a network-layer
router, client applications can run without modifica-
tion. Moreover, our product is firewall independent
and therefore can be used in concert with most com-
mon firewalls. The AltaVista Tunnel supports both
static connections to remote offices and intermittent
connections to single-user machines. Currently, imple-
mentations exist for the UNIX, Windows 95, and
Windows NT platforms.

In this paper, we begin with an overview of the ben-
efits and pitfalls presented by using the Internet for
private network connectivity. Next, we describe the
design of the network protocol used by the AltaVista
Tunnel, with a particular focus on the security concerns
that led to this design. We then discuss how we imple-
mented our design. Finally, we briefly describe our
experience deploying the tunnel product in a large cor-
porate network, provide performance data, and discuss
some of the security risks this technology entails.

Overview

Before the Internet became pervasive, corporate net-
works were built from leased and dial-in telephone
lines. Such networks carried substantial costs for both
communications equipment and telephone service.
Usually, security relied on the inaccessibility of the
physical medium, and over the years, the risk of wiretap
has proved to be slight when compared to password

Digital Technical Journal Vol.9 No.2 1997

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

cracking or other higher-level attack. The reason for
this is that most telephone systems are both proprietary
and centrally managed, and they are therefore not easy
to subvert in the large without a substantial budget.

The Internet brings opportunity and challenge to
the modern corporate network designer. Global con-
nectivity makes it possible to replace expensive leased
lines and communications equipment with Internet
connections. However, such connections lack the
physical security of telephone lines. Furthermore,
direct connection to the Internet poses numerous,
well-documented security problems. Consequently,
many organizations find it necessary to isolate their
private networks behind firewalls—filtering routers
that place constraints on packets allowed to pass
between protected and public networks. The policy
decisions made in configuring firewalls always involve
a difficult trade-off between security and functionality.

Cryptography makes it possible to emulate most of
the properties of physically secure wire using Internet
connections. When encapsulated at a suitable protocol
level, cryptographically secured data can be allowed to
traverse firewalls without substantially weakening
security policy. However, the encapsulation protocol
must require no implicit trust in the router nodes and
links that make up the fabric of the insecure network.
To solve this problem, the protocol employed by
the AltaVista Tunnel uses a synthesis of two well-
understood networking constructs: tunneling proto-
cols* and secure channels.?

Protocol Design

In computer networks, tunneling is the act of encapsu-
lating one communications protocol within another.
For example, a DECnet-in-1P tunnel might transport
DECnet datagrams over an Internet Protocol (1P) net-
work using IP datagrams. In this arrangement, IP
datagrams act only as a transport mechanism—there is
no need for the active nodes in the IP network to inter-
pret or to manipulate the encapsulated DECnet pack-
ets. A tunnel alone, however, cannot guarantee that an

intermediate node (“man-in-the-middle”) will not
intentionally read or modify the data portions of tun-
neled packets. To prevent such unwanted tampering,
we cryptographically secure encapsulated packets for
passage over the public network. Abstractly, data
passed over this secure channel appears once and
only once at the receiver as sent by the sender.
Furthermore, an attacker observing the public net-
work cannot read this data. Thus, tunnel encapsula-
tion ensures that private-network datagrams cannot
interact with the routing algorithms of the public net-
work, whereas secure channels guarantee that the tun-
neled data arrive intact from an authenticated source
and that privacy is maintained.

Figure 1 depicts a secure tunnel in operation. Nodes
A and B are tunnel endpoints, that is, packet routers
that forward to and from tunneled routes. Node A
processes datagrams in private network X and deter-
mines which, if any, should be routed to private net-
work Y. Node A then encapsulates all such datagrams
and sends them securely across its tunnel connection
to node B. Node B checks the integrity of each trans-
mission and then decapsulates and forwards the
datagrams to network Y. The process is symmetric,
although this is not pictured.

These methods can be used to connect any sort of
private network; however, our product is specifically
designed to connect IP networks by tunneling IP data-
grams. Given the dominance of IP in the network mar-
ketplace, the choice of network type is easy. The choice
of protocol from which to construct tunnel connec-
tions is more difficult. There are three obvious can-
didates: IP, User Datagram Protocol (UDP), and
Transmission Control Protocol (TCP).

Since IP is a network protocol, there is no notion of
port-level addressing. This implies that IP-in-1P tun-
nels must be implemented very close to the operating
system, and any multiplexing of tunnel connections
must be explicitly added. Since our goal was for our
tunneling product to be firewall and operating system
independent, we rejected IP in favor of a higher-level
protocol.

NETWORK X TUNNELED NETWORK Y
IP PACKET
. -
2 E
IP = P = P
PACKET NODE A o PACKET o | NODE B PACKET
fr T
—— INTERNET —

Figure 1
A Secure Tunnel in Operation

6 Digital Technical Journal

DOCKET

_ ARM

Vol.9 No.2 1997

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The choice between UDP and TCP depends on
whether datagrams or byte streams best apply to tun-
neling. Since our application is inherently connection
oriented, TCP offers a natural fit, while any UDP
design must include an explicit means for reliable con-
nection maintenance. In addition, byte streams elimi-
nate constraints caused by packet boundaries, so
fragmentation and maximum size determination pose
few difficulties. Furthermore, byte streams enable
forms of cryptography and data compression that
would be awkward to implement using datagrams. Of
course this flexibility does not come without cost. TCP
adds an extra layer of reliable transmission, and per-
packet headers are large.

The previous discussion lends no clear advantage to
either protocol option. We chose to implement the
AltaVista Tunnel using IP-in-TCP in order to simplify
firewall security policy. As shown in Figure 2, a tunnel
connection usually traverses at least one firewall. In
practice, a tunnel virtual connection is composed of
several distinct TCP connections laid end-to-end.
Where TCP connections meet, there is a bidirectional
relay process that shuffles packets in either direction.
Such a relay service is included with most firewalls.®
We also offer an intelligent relay that participates in the
tunnel connection protocol and therefore allows more
flexibility in choosing destination endpoints.

By using TCP connections and relays, we minimize
the policy changes required to permit tunnel traversal.
All that is necessary is to enable TCP connections
between the tunnel endpoint, which is on the private
network, and the relay, which is just outside the fire-
wall. (Note that relays are logically outside the firewall,
although they might be implemented on the firewall
machine.) Whether a generic or an intelligent relay is
used, firewall-traversal connections always originate
on a locally controlled network. Furthermore, TCP
connection requests are infrequent, and therefore
TCP traversals are more tractable to log at the firewall
than are datagrams. Although the firewall industry has
begun to develop standards for IP-in-1P tunnels,**® our
choice of IP-in-TCP gives us the clear advantage

that tunnel endpoints need not be packaged with
or dependent on a specific firewall implementation.
Eventually, the emerging standards will probably pre-
vail for static tunnels; however, no standards exist for
transient (mobile) users and our solution remains
quite viable.

Implementation

As with many tunnel implementations,* we provide
tunneling by tricking the operating system’s routing
layer into forwarding packets to an emulated network
device. This device does not transmit packets directly,
but rather it encapsulates them as data within a higher-
level protocol. The AltaVista Tunnel implementation
contains three major components: the tunnel applica-
tion, the protocol handler, and the pseudo-device dri-
ver. The main function of the tunnel application is to
interact with the user or system administrator and to
modify the system routing tables to make tunneled
routes available. This code also maintains a database of
acceptable partner endpoints and matching crypto-
graphic keys. The protocol handler implements the
tunnel encapsulation protocol and all associated cryp-
tography. The pseudo-device driver is responsible for
redirecting packets from the local IP stack to the
encapsulation protocol handler and vice versa.

Figure 3 shows how the components of the
AltaVista Tunnel cooperate to process tunneled IP
packets. The diagram depicts a single-user client and a
tunnel server. Although the same basic structure
applies to all tunnel endpoint software, there are sub-
stantial differences between single-user and server con-
figurations, and between the UNIX and Windows
implementations. For example, the single-user version
usually runs only while the user is actively connected.
On the server side, the tunnel application is a daemon
process that continuously waits for connection requests
and services existing connections. The following three
sections discuss the individual system components in
detail and, where appropriate, point out the differences
between the various software configurations.

SINGLE-USER TUNNEL
TUNNEL\ RELAY\ FIREWALL /s SERVER
Y 1 7
1 T
LTCP] O Zan ik
LOCALLY
CONTROLLED PRIVATE
INTERNET NETWORK NETWORK

Figure 2
Tunnel with Intelligent Relay

Digital Technical Journal Vol.9 No.2 1997 7

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SINGLE-USER TUNNEL TUNNEL SERVER
USER
TUNNEL APPLICATION |APPLICATIONS TUNNEL APPLICATION |
L L
L] L]
PROTOCOL Pk Tt PrROTOCOL |F[™ = "1 psTtAcK
HANDLER 1 HANDLER
—— ! - —
= . T
NETWORK ! NETWORK
PSEUDO-DEVICE DEVICE PSEUDO-DEVICE |! DEVICE
1
t . v
¥ - JrerneT R
= = = INTERNET = = = = 3!
PRIVATE NETWORK
KEY:
= = = ENCRYPTED
UNENCRYPTED

Figure 3
System Components and Data Flow

The Tunnel Application

The primary function of the tunnel application is to
present a user interface (Ul). Although each instantia-
tion of the user interface is slightly different, the func-
tion of the application remains the same. The
AltaVista Personal Tunnel 97, a single-user configura-
tion, offers a straightforward graphical user interface
(GUI) (see Figure 4) that allows the user to register a
set of target tunnel servers, select from this set, and
then establish and tear down connections. The
emphasis is on simplicity. A tunnel connection may be
started from either a command line interface or the
GUI. If the GUI is used to start a tunnel, the GUI win-
dow can be minimized and ignored until the end of
the tunnel session. The application logs all interesting
events, reflects current state through the user inter-
face, and notifies the user of exceptional events. In this
configuration, only traffic from local applications is
directed over the tunnel, and no inbound tunnel con-
nection requests are accepted.

In the server configuration, the tunnel application is
significantly more complicated. The primary function
of the server code is to restrict tunnel access to autho-
rized clients. To achieve this, the server application is
also responsible for issuing cryptographic credentials
and maintaining an authorization database. In addi-
tion to accepting connections, a tunnel server is capa-
ble of initiating them. In the “workgroup” tunnel
configuration, two servers cooperate to maintain a
permanent connection, for example between a corpo-
rate network and a remote office local area network
(LAN). A tunnel server is a full-fledged router—its job
is to forward packets from the protected network into
the tunnel and vice versa. We offer servers for both the
UNIX and the Windows NT environments.

Digital Technical Journal Vol.9 No.2 1997

DOCKET

_ ARM

Routing

As mentioned in the Implementation section, our tun-
nel works by manipulation of the system routing table.
In some environments, such as Windows 95, there is
no fully integrated notion of packet routing (some-
times called IP forwarding). However, there is support
for multiple network devices. Each network device has
a uniquely assigned IP address so that the IP stack can
determine which device to use when transmitting
packets. The AltaVista Tunnel pseudo-device appears
to the operating system as just another network
device. There is a one-to-one relationship between
tunnel connections and pseudo-devices. During con-
nection establishment, the tunnel application activates
a pseudo-device and modifies the routing table to
include any newly reachable private network or net-
works. The application then restores the original state
upon termination of the connection.

The tunnel server is implemented in a richer routing
environment. Each server typically routes an entire 1P
class-C subnetwork (254 addresses) but may support
partial subnetworks or multiple networks as well. A
tunnel server can maintain multiple connections, and
this is accomplished by assigning a different IP address
to each pseudo-device/tunnel connection. IP pseudo-
device addresses at both ends of the tunnel are assigned
dynamically or statically from a pool of IP addresses
controlled by the server. The operating system, com-
bined with a routing management program such as
gated,” performs all necessary route propagation. As
discussed in the next section, each tunnel user can be
restricted to a specific set of IP addresses. This approach
allows network managers to establish routing policy
based on user class. To obtain fine-grain control over
a given tunnel connection, the server can also run a
packet-filtering program such as screend® to restrict the
IP protocols entering and exiting that tunnel.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

= = Alta¥ista Personal Tunnel - [crl]
File Tunnelz Edit

View Log 'Window Help

PSI=] B3

D|2|E| &|E=(@ S| 2w

Idzer Mame ITunneIMgr@digital.cnm Connect
Server Feyld Iu:rl Lizzonnect
Tunnel Server IEHL_digitaI.cDm Fart IEEEE
1zt Firewall Itunnel-firewall.digital.n:n:um Part IEiEEiE
2nd Firewaall I Fart ||
—Log
[09/04,/97 08:44: 23] Looking up host addresz infaormatiorn.... -
[09/04./97 08:44:23] Starting tunnel to CRL. digital com...
[09/04,97 08:44: 34] Connected, now authorizing...
[09/04,/97 08:44: 35] Authonized, loading pzeudo adapter...
[09/04./97 08:44:35] Pzeudo adapter initialized.
(0940497 08:44:35] Tunnel up, client IP address is: 16.11.160.63 -
1| | d

For Help, press F1

|| Disconnected [READ:D

[WRITE:0 Yy

Figure 4
The AltaVista Personal Tunnel 97 User Interface

Key Management and Access Control

In practice, a secure channel protocol is only as strong
as the techniques it employs for naming and key distri-
bution. In the AltaVista Tunnel system, we must name
both tunnel servers and human users. (Tunnel users
must be authenticated by name, not by IP address,
since many users acquire 1P addresses dynamically from
their Internet service provider.) Because no ubiquitous
infrastructure exists to support such a namespace, our
software currently assumes a flat, server-specific nam-
ing structure, much in the style of PGP.? We use RSA
public-key cryptography® to establish secure connec-
tions. Each tunnel endpoint maintains a key file that
contains a sequence of names and matching public
keys—one (name, key) pair per potential destination.
Each key file also contains the password-encrypted pri-
vate key of its maintainer. The key file is signed by this
private key to prevent tampering. Note that the com-
promise of any given (nonserver) key file does not
affect the security of other endpoints. Although we

DOCKET

_ ARM

could have obtained a similar result with symmetric key
encryption, we believe that the current design will
allow our system to scale up gracefully through the
addition of public key certification.

When a new user is registered, the tunnel server
generates a new RSA key and key file for that user. The
user’s public key is inserted into the server’s key file,
and conversely, the server’s key is inserted into the
user’s key file. To obtain enough randomness for key
generation, we carefully measure the elapsed time (in
machine instructions) to perform each of a sequence
of disk seeks. These results are then hashed to provide
a seed for a pseudorandom number generator. There is
substantial evidence that the air turbulence between
hard-disk heads and platters contributes sufficient ran-
domness for such purposes.**

Both single-user and server tunnel applications use
key files, and the credentials stored therein, as a mini-
mum requirement for successful authentication and
authorization. Our server software places additional

Digital Technical Journal Vol.9 No.2 1997

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

