

Exhibit 1016 – Part 3 Exhibit 1016 — Part 3

Screen formatting

Group Caption Field Size and Format

1. Voyage Details Outward Inward
From Code(3) Name(15) Code(3) Name(15)

To Code(3) Name(15) Code(3) Name(l5)

Date (dd/mm/yy) (dd/mm/yy)
Time (hh.mm) (hh.mm)

. Accommodation

Cabin (D, N or null) (D, N or null)

Berths — M (nn or null) (nn or null)

—— F (nn or null) (nn or null)
Seats — R (nn or null) (nn or null)

— C (nn or null) (nn or null)
. Vehicle Details

Car Registration (8 alphameric or null)

Length (99.9)
Overl.83m (y/n)

Caravan Length (99.9 or null)
Overl.83m (y/n)

M/C Registration (8 alphameric or null)
Solo/Combination (s/c)

. Passenger Details
Adults (nn)

Children (nn or null)
. Customer Details

Name (20 alpha)

Address (X 3 lines) (3><20 alpha)
Post Code (8 alphameric or null)

Telephone Number (12 alphameric or null)

. Campsite Reservation (T/C/S or null)

. Insurances

Holiday (y/n)
Vehicle (y/n or null)

Trailer (y/n)

Car Make (10 alpha)

Model ([5 alpha)

Return Date (dd/mm/yy)

Age of Vehicle (nn years)

Winter Sports (y/n)
Fig. 7.5 Adding the item formats.

182 Chapter 7

7.5 Where should the Information be Displayed?

7.5.1 General Guidelines on Positioning

Having decided what items to display and in what format, the next stage is to

position these into the available space on the physical screen. This is not just
a case of squeezing them in wherever they will fit!

So much information is displayed in Fig. 7.2 that it is difficult to identify

individual items or groups of items. Clutter is a subjective measure; whether

a particular layout seems cluttered will depend on the individual user and the
task which the screen is designed to assist. For example, a screen used for data

entry from source documents by trained key operators can be more crowded

than one designed for the display of output data messages or for input by an

untrained operator. However, there are a number of rules of thumb
concerning spacing which provide guidance:

leave approximately half of the total screen area blank;
leave a blank line after every fifth row of a tabular format;

leave four or five spaces between the columns of a columnar format.

These rules of thumb are precisely that, they should be used merely as

guidelines, not followed slavishly. Whilst it is quite possible to produce an

acceptable format in particular cases which does not follow them, a conscious
design decision should have been taken to contradict them.

Where items must be split across more than one screen, the split should
occur at a natural break, if such exists. Not only should the break not occur

within a logical group, all groups required for a particular decision should

also appear on a single screen. Consider what happens ifa ferry booking is not

accepted. This may occur either because the desired accommodation is not
available or because there is insufficient vehicle space; it can be assumed that

there is always sufficient passenger space. The customer may change his

voyage or may forgo the desired accommodation or both. Thus the clerk

requires voyage, accommodation and vehicle details to be displayed on a

single screen. It is not essential that the other groups appear on this screen

since they do not affect the success of the booking. This analysis also suggests
seven logical groups as indicated in Fig. 7.5 rather than the six groups of Fig.
7.3.

On any screen, logical groups should be clearly identifiable as separate
entities. This can be achieved by leaving several spaces around the borders of

Screen formatting

voyage Details
dve Dover East ost Ostende

blg Boulogne flk Folkestone
26.10.86 31.10.86

14.05 17.50

Fig. 7.6 Using ‘boxing’ to delimit logical groups.

each group or by explicitly ‘boxing’ with vertical and horizontal line segments

(as in Fig. 7.6) with different attributes for fields in different groups.
The users’s eye should be guided through the screen by the physical

patterns created by the blocks of text. These blocks should be balanced. Fields
should not be tucked up against the margins of the screen but centred about
the vertical and horizontal axes. In cases such as menu screens where only a

relatively small amount of information is to be displayed, it should appear
centred in the leftmost two thirds of the screen. To reinforce this symmetry,

data fields and captions should be aligned vertically within a logical group;

where possible, this alignment should be preserved across all logical groups.
There should be an obvious starting point. The normal convention is to

start at the top left hand corner and proceed left to right and top to bottom.

Although boxing can suggest other conventions, it should only be changed as
the result of a conscious design decision. The same type of information should

appear in a consistent and predictable relative position on the screen
throughout the application.

Aesthetics are important. A screen that is attractively presented is likely to

invoke a positive response from a user and be easier to follow. You cannot

reasonably expect a user to take more trouble completing a form on the screen
than the designer took developing it!

7.5.2 A Template for Screen Layouts

If screen layouts are to be consistent both within and across applications, they
must all be based on a common template. Figure 7.7 illustrates such a

template.

The top two or three lines of the screen are reserved for title and status

information. Titling information often includes a description of the

Title & Status Information

Upper Message Area

Screen Body

Lower Message Area

Standard Facilities & Escape Hatch

Fig. 7.7 A screen template.

GL30l General Ledger System 13 Jan 86
ost/sa1es/invoices posting to ledger . .. PLEASE WAIT

Fig. 7.8 Where am I? Is it still working?

application and/or particular task within it to which the screen relates. The
current date and time may be displayed towards the right—hand margin. It is
also common for each screen to be assigned a unique reference number; if a

user encounters any problems with the system, this reference provides a

convenient way for systems staff to identify the precise point at which the
problem occurred.

The title area can be used to confirm the position in the system which the

user has reached. In a menu hierarchy, the status area may indicate the path

he has taken through the system by displaying the options chosen on previous

menus, as in Fig. 7.8. It can also be used to provide confirmation that the
system is still operating.

Optional upper and lower message areas provide consistent locations for
messages which give instruction to the user or indicate exceptional conditions.

Screen formatting

Q: (F2) 11.26.77
Worl(shaetRai1;eC}opyIbveFi1ePriJrtGza1:l'irntaQfi.tFormat, Iabal.-Pre£:.x, Erase, Name, Justify, Protect, Ilnpmtect, Input:

3 C D E F G H
1985 1986 1987 1988 1989 1990

1126.77 1133.11 1242.27 1304.38 1369.60 1438.08
300.77 315.81 331.60 348.13 365.59 383.87

826.00 867.30 910.67 956.20 1004.01 1054.21

15.29 15.29 15.29 15.29 15.29 15.29
20.70 20.70 20.70 20.70 20.70 20.70
31.45 31.45 31.45 31.45 31.45 31.45
48.76 48.76 48.76 48.76 48.76 48.76
25.98 25.98 25.98 25.98 25.98 25.98

Expafia 142.18 142.18 142.18 142.18 142.18 142.18

Operatirxy Hrofit 683.82 725.12 768.49 814.02 861.83 912.03
Financing fits 457.90 457.90 457.90 457.90 457.90 457.90

Profit before Tax 225.92 267.22 310.59 356.12 403.93 454.13

‘ . 7.9 Status and message areas in a spreadsheet structure.

Instructions which pertain to how the screen should be processed appear in

the upper area; those which pertain to how it is disposed appear in the lower
area. You need to know ‘how to do it‘ before you start and ‘what to do with

it afterwards’ when you have finished! Either area can be used for help or

error messages. It is more common to display help messages in the upper

portion of the screen and error messages in the lower. Messages requiring
action by the user (e.g. to confirm the values input in form filling) would

normally appear in the lower area. The use of an upper message area is well
illustrated by hybrid dialogue structures. This area is used for the display both
of command menus and of error messages (see Fig. 7.9)

The screen body contains the main information which the screen is seeking

to impart. In a menu structure, it contains the list of options; the menu header
might be considered to appear in either the upper message area or the screen
body. In our form filling example, it is the area within which the form is
displayed and the input fields echoed. In a hybrid dialogue, such as the
spreadsheet illustrated in Fig. 7.9, it contains the cells of the spreadsheet.

One or two lines are reserved at the bottom of the screen to display standard

facilities which are available on all screens. The message areas contain
instructions specific to that particular screen body. A possible use of this area,
to indicate the meaning of function key input, is illustrated in Fig. 7.10. It is
called an escape hatch because it often contains a facility which enables the
user to ‘escape’ from the normal processing flow.

prior = F2

Fig. 7.10 The Escape Hatch.

This particular template splits the screen horizontally into a number of
fixed ‘windows’; it is a simple example of the techniques discussed in Chapter
10 for handling dynamic windows. The fact that the layout of every screen

consistently conforms to some recognised template is more important than

which particular template is chosen.

7.5.3 Positioning Error Messages

With a Question and Answer structure, the error message is normally

displayed alongside or underneath the answer field. For example,

From: dvx Port code not recognised

An error message is usually unnecessary in a menu structure since the most.

likely cause of error is miskeying or a slip with a pointing device. If an error

message is to be displayed, it usually appears below the list of options and in
the lower message area.

In both the command language and the forms structure, a number of

answers are input and so there are potentially a number of error messages.
Most command language structures stop after detecting the first error and

hence will display a single error message. In teletype mode, this message is

displayed below the input line and the dialogue advances to the next line with

a request for reinput. The display of error messages is slightly more

problematical in a form structure. The user usually completes the form and
returns to edit any fields in error. Therefore, the layout must accommodate

the display of a variable number of error messages.
With a simple form, such as that in Fig. 7.11, it may be possible to display

an error message alongside the field in error. This is the normal way to display

a confirmation message, such as the description corresponding to a code.

This approach is seldom possible with a highly formatted form. In our ferry
booking example, an attempt to leave space for a possible error message

alongside each input field is likely to destroy the balance of the screen. It is

improbable that sufficient space can be reserved in a single area, such as the

Screen formatting

Invoice Number: [Vl2345]

Invoice Date [12/11/89] Postdated Invoices not accepted
Customer Code-: [C23] Clough Brothers Ltd.

Invoice Amount: [100.00]

VAT Amount : [l5.00]
Invoice Total : [151.00] Invoice Total does not tally

Fig. 7.11 A simple form with error messages shown alongside fields.

lower message area, to display all the possible error messages simultaneously.

As we saw in Chapter 5, the system usually flags the input fields in error,

positions the cursor at the first field in error and displays the corresponding
message. As each input field is re-entered, the cursor moves to the next one in
error and displays its error message.

7.6 Highlighting

Highlighting is the use of ‘strong’ attributes to make a particular area stand
out from the rest of the screen and thereby attract the user’s attention to it.

Clearly the user’s attention can only be attracted to a limited number of areas
and if highlighting is overused, it becomes confusing rather than helpful. This

is fine if the designer’s objective (as in a video game) is to prevent the input

process being too easy but it is unlikely to be desirable in most applications.
Initially the designer should specify a layout without any highlights and

then go through each field asking himselfwhat positive advantage would arise

from the addition of a highlight. If the system only displays the information
which is relevant to the user, there should be limited need for emphasis. Many

existing systems demonstrate the temptation of highlighting; it is Very easy to

add just that bit more...
We have defined the attributes of a field in terms of aforeground colour, a

background colour, a bold contrast level and a blink setting. These various
features have different attention-getting powers; some are harder to ignore

than others. To avoid diluting their impact, use only the minimum

highlighting necessary to attract the user’s attention. A person’s attention can
be attracted with a delicate nudge rather than a punch in the ribs, provided

that they have not been subjected to constant battering! A combination of

highlighting features is needed only when an exceptional emphasis is required.
A blinking foreground is the strongest visual attention-getter and hence

188 Chapter 7

potentially the most distracting. It is best restricted to a single character

position alongside the field to be highlighted. Blinking the text of a message
is a good way of making it difficult to read!

Colour is the next strongest attention getter. Different colours in the

spectrum have different warmths and perceived brighmesses. Areas shaded

with backgrounds in the warmer colours at the red end of the spectrum

appear larger than those shaded in colours at the blue end of the spectrum.

Areas with backgrounds in white and colours towards the middle of the

spectrum appear brighter and are easier to view under a wide range of

ambient lighting. The best separation of two areas occurs when one is shaded
in black or a colour from near one end of this spectrum and one is shaded in
white or a colour from near the middle. The same consideration applies to

distinguishing foreground content from the background of a field.
Users like the use of colour. Humans can distinguish many thousands of

different colours but can cope with only a limited number at one time. There

is also a danger in applying guidelines from colour printing to a screen. Much

of the impact of colour printing arises from its use of subtle hues; the brash

palette of colours provided by most colour screens does not permit such
subtlety and there can be wide variations in the same colour produced on

different screens. Certain juxtapositions of these colours, like a blue

foreground on a red background, are positively unpleasant to the eye. The
only real way of assessing how the colours will appear is to view them on the
screen.

The implications of colour blindness can be overstated; it is typically an
inability to discriminate between two very specific shades of these colours,

accentuated by particular ambient lighting conditions. More important is the

fact that all humans bring expectations of the meaning of different colours —

red means stop, danger, etc.; colour coding within the system should be

consistent with these expectations. A system which uses red for status

messages that confirm everything is satisfactory and green for error messages
is likely to be confusing.

The consequences of the above for the use of colour on a screen are

summarised in Fig. 7.12.

On many monochrome screens, the effect ofdifferent colour attributes is to

produce different shades of the screen’s base colour; thus, on a green screen,
different background colours might result in different intensities ofgreen. The

eye is less able to distinguish different contrast levels than different colours

and the designer should beware of unwanted and nauseous highlights

occurring when a system is ported from a colour to a monochrome device.

Screen formatting 189

Use the minimum of number of colours and not more than three or four on

any screen.

Use background colours in large blocks.

Use bright colours for emphasis and weaker colours for background areas.
To distinguish two areas of background, or to distinguish foreground and

background, contrast black or a shade from one end of the spectrum with
white or a second shade from near the middle.

Use colour coding consistent with the user’s expectation.

Try it out on the actual screen.

Fig. 7.12 Guidelines for using colour.

Good results can be achieved with two levels, using the higher intensity

background to ‘box’ the area to be emphasised. Inverse video is an example
of this effect which is commonly used to highlight messages indicating

exceptional conditions such as an input error; the area with the lighter
background draws the user’s eye. A number of upmarket workstations with

black and white displays present a completely inversed image —— printing is
black on white! However, there is a danger ofa ‘shimmering’ effect from large

areas of inverse video which is very tiring on the eyes; it should be possible for
a user to select normal or inverse presentation.

The use of different foreground intensities is the least intrusive attention

getter. It is particularly effective for distinguishing data fields from output
messages such as prompts and captions; the field to be emphasised has the
bold attribute set on. A designer is usually spared any temptation to use

multiple intensities since most screens support only two levels — bold off
(normal) and on (high).

Other highlighting features are possible on some displays. The content of

a field may be underscored or displayed in a variety of type styles or sizes; the

characters of any given type font are specified as a pattern of bits which

correspond to on/off settings of the pixels in a character position. Neither

technique has the same impact that it does in hard copy and a multiplicity of

fonts hinders rather than helps discrimination and may increase the sense of
clutter on the screen.

Finally there is sound. Anyone who has sat in a room with a large number

of terminals ‘beeping’ for input like hungry chicks, or in an amusement arcade
full of video games endlessly repeating snatches of electronic Wagner, will

appreciate the crass intrusiveness of sound as an attention getter. Sound is
effective where it is really important to attract the attention of a user who may

190 Chapter 7

not be watching the screen and is therefore not susceptible to a visual
highlight. Tests on aircraft cockpit warning systems have shown that its effect

is rapidly diluted. Frustrated composers should ensure that they have

included an ‘off switch’ for silent running in their design.

There appears to be little need for highlighting in our ferry booking
example. Blinking will be used only as a single character block cursor to
indicate the current cursor position. Different foreground intensities will be

used to distinguish input fields from captions in the screen body and from the
other template areas; a similar effect could be obtained by using two colours

but there is no real need for colour. Error input fields will be indicated by
using a different background intensity or inverse video; these will be

associated with the error message in the lower message area by using the same
highlight for the error message. No sound will be used.

7.7 Producing a Draft Design

Having decided the information to be displayed, its format, how it is to be

grouped on the screen and what highlighting is required, it is time to start
producing some pictures.

A number of clerical forms to assist the design of screen layouts have been
produced; these have merits in terms of providing a documentary record but

all have a major drawback: what the layout looks like on paper bears little
ressemblance to how it will appear on the screen. The form is covered in a

matrix of squares indicating the character positions and, in most cases, the
aspect ratio of the form differs from that of the screen. The font, which will
probably be handwritten, will be different; in fact, the forms seem to

encourage many people to use upper case exclusively. Furthermore, there is

no way to create the effect of highlights. The only way to get a true impression
is to display the draft design on the screen.

A proposed layout for the screen is illustrated in Fig. 7.13. Two lines are

reserved at the top of the screen for titling information. There is no upper
message area since it is assumed that the existence of a source document

renders completion instructions redundant. The body of the screen contains

the three logical groups necessary to confirm a booking, and also the

passenger details; these logical groups are differentiated by position and
spacing.

Captions are aligned within groups and input fields are delimited by
bracketing; note how several captions have been changed from the initial

Screen formatting 191

proposals in Fig. 7.5. A lower message area of three lines is reserved for the
display, in a different background contrast, of error messages and confirma-
tion by the system of the booking. The bottom line displays the interpretation
of function/cursor keys.

After the completion of input, the screen appears as in Fig. 7.14. Input
fields are echoed with the bold attribute set to ‘on’. The port names are

alongside the input codes. Coded input and the registration number are

displayed in upper case regardless ofhow they were input. The lower message
area contains a confirmation by the system that the booking has been

accepted; this appears after the user has pressed the F1 key to confirm the

input (provided no errors have been encountered). If the booking could not
be accepted because of insufficient space, a corresponding message would be

displayed and the cursor returned to the first input field.

FastFerries Reservations

utward '

Accommodation:

Cabin (D/N): =

Vehicle Details: = ; .

Car Registration; [] Length: [.] In High-sided: []

' ‘ Trailer Length: [.] m High-sided: []

I‘ ChiIdren:[]

back = A forward = v confirm = Fl cancel = ‘-

Fig. 7.13 A draft layout.

Chapter 7

[CH8] Cherbourg

[WEY] Weymouth

Vehicle Details:

ar Registration: [CAll123B] Length: [3.5] m High-sided: [N]
' Length: [3.0] m High-sided‘. [V]

Fig. 7.14 The screen after completion of input.

Once the booking has been confirmed by the system, the screen body

changes so that the other logical groups can be entered. This is illustrated in

Fig. 7.15. Note that the group containing the voyage details is preserved for
information, and that the options in the escape hatch have changed to allow

the user to flip back to the prior screen and amend it if desired. Note the
different conventions used for input of the type ofcamping reservation (which

are mutually exclusive) and of the types of insurance (which are not).

As a final stage, the system will probably produce a summary which can be

printed to provide a customer copy. This obviously no longer needs to have
the same layout as the form. Its design is left as an exercise for the reader.

7.8 Evaluating the Design

These layouts are not presented as the optimum solution but merely as an

Screen formatting

FastFerrics Reservations

Vo .; Details:

Cherbourg

Postcode:["

Telephone: [

’ ‘ g . Winter Sports Y/N): [} __
Caming Reservation (T/C/S) " '”“ -- "

ck= forward v

Fig. 7.15 The screen for the remaining logical groups.

illustration of the process; hopefully, they represent an acceptable starting

point‘ The next stage is to evaluate the proposed design and repeat the process
until an acceptable format is achieved. How can a screen layout be evaluated?

Are there any objective measures which we can apply to test whether the
screen is uncluttered, balanced and so forth?

The answer to this latter question is strictly neither yes nor no; a number of

general mechanisms have been suggested but are not yet completely
formulated. One problem is that the viewer of a screen is heavily influenced

by the information content, which tends to cloud his judgement of the

presentation. A general mechanism would divorce the content from the
format; two suggestions for achieving this are boxing analysis and hot spot
analysis.

Boxing analysis divides the screen up into physical groups; a group is an
area of text characters with at least one blank space all around its perimeter.

The smallest possible rectangle is drawn around each group, dividing the

194 Chapter 7

screen into a set of boxes. Drawing axes about the centre of the screen gives

an impression of the balance of the layout. The number and size ofboxes gives
an impression of the ‘business’ of the layout; a large number of small boxes
suggests a ‘fussy’ layout.

Hot spot analysis attempts to identify the parts of the screen to which a
viewer’s eye would be drawn by the ‘intensity’ of the image at that point. The

intensity at each point is computed as a moving average of the number ofnon-
blank character positions around that point; increasing density is displayed

by using characters which ‘switch on’ an increasing number of dots in the
character matrix or increasing background intensities. One would expect a

small number of hot spots symmetrically positioned about the central axes.
These mechanisms are described and illustrated in the reference quoted in

the bibliography at the end of the chapter. However, even these techniques

lack a quantitative measure: What is a ‘large number’ or a ‘small box’? Is a

point surrounded by the character ‘.’ hotter than one surrounded by the
character ‘W’? These questions are yet to be answered.

Another argument against the general approach suggests that the attempt
to divorce content from format is mistaken; a layout should be judged by

fitness for its particular purpose rather than as an abstract piece of graphic

design. By this token, the only way that the layout can be evaluated is by
prospective users actually interacting with that screen. Although general

techniques may be useful to a designer in eliminating some design flaws before
the user evaluation takes place, there is no substitute for this type of
evaluation.

Screen layout, like all aspects of the interface design, is an iterative process.

A large number of layouts may need to be modified many times before an

acceptable version of the system is produced. If the designer must produce
individual code to generate an example of each layout, this will be an

unacceptably lengthy process; an automated mechanism, a screen design aid,
is required to support this.

7.9 Screen Design Aids

The output processes described in Chapter 3_ go some way to reducing the
effort of generating a screen layout. Rather than coding all the statements

necessary to display output from scratch, the designer has merely to assign
values to field data structures. A reader who has attempted any of the

exercises will be assured of the savings this involves. However, it is still fairly

time—consuming. To define a field the user must specify

Screen formatting 195

- the content (not difficult);

- the slot; this means that the designer must already have checked this out

roughly;
- the attributes; the effect of these must be a guess.

When this has been done for all fields, the code containing these

assignments must be compiled, linked with library routines and executed.

Any change in any aspect of any field definition means that the whole process
must be repeated. Unfortunately, the designer is unlikely to have a real idea
of what the screen looks like until the code is executed. It would be

considerably easier if the designer could sit in front of a screen and ‘paint’ the

proposed layout on it; he could then evaluate the screen’s appearance as it
develops. Figure 7.16 illustrates a screen design aid of this type.

The screen is divided into three parts. The upper message area contains

information on the current cursor position and the current values of the

attributes. The lower message area contains a menu bar which, among other

things, allows the attributes to be changed. The screen body contains the
screen that is being designed. The user enters text at any position by moving

the cursor to that position and keying; this overwrites the character already
there. Attributes can be changed by selecting Option 3 from the menu bar,

and scrolling through the attributes in the upper message area, changing
individual values to taste. To paint the attributes into an existing field, the

designer positions the cursor to the start of the slot and presses a control key;
another control key is used to indicate the end. The slot thus marked is

redisplayed with the new attributes. The same effect can be produced with a
mouse by pointing the mouse at the start of the field, pressing a button and

dragging the mouse to the end of the field keeping the button pressed. New
fields will take the existing values of the attributes.

row=2l=10 .- -
fore xxxxx back xxxxx blink = off bold = on just = centre

Fl = help F2 = sho F3 2 change attribes ESC = exit

Fig. 7.16 A screen design and

196 Chapter 7

Because some of the rows of the screen are taken up with information

relating to the screen design aid, it would appear that no screen can be

designed that uses these particular lines. One way round this problem is to
allow the designer to scroll the screen body up and down, thus allowing the

screen to be larger than the screen body. The full screen as it would appear in

an application program can be displayed by selecting Option 2 of the menu
bar. This is a toggle-switch; selecting it again redisplays the menu bars.

A screen design aid provides the designer with immediate feedback on the
visual effect of the screen as he creates it. Changes can be effected simply by

overpainting. The minimum requirement of a screen design aid is for it to

provide facilities for creating, storing, retrieving and editing ‘static’ layouts.
Further facilities are useful: a mechanism for naming the fields created by the

screen design aid, and for linking these names to variables in the application

program that is to use these screens; a mechanism for specifying the filtering
and validation that is to take place at each field, and for automatically

generating the appropriate code. Such facilities mean that the values of the
various parameters in QandA_DIBs which define the dialogue can be

specified by painting them on the screen. A number of proprietary packages
exist which support some or all of these features and many installations have

also developed their own. If such facilities do not already exist, their provision
should be a high priority to any designer.

7.10 Summary

The screen design process involves:

deciding what information is to appear;

deciding how and where each field will appear;

deciding what highlighting is required;
developing a draft layout;

evaluating the effectiveness of the layout.

To ensure consistency, the overall layout of all screens should conform to

a standard screen template. This template should identify the position of the
information whose communication is the primary purpose of the display and

of supplementary information (titling, status and instructions) which support
the user’s interpretation and manipulation of the primary information.

The screen should contain all the information needed by the user at that

point and only that information. The information should be organised so that

Screen formatting 197

its physical positioning reflects its logical grouping and is presented in an
immediately usable format. The designer must understand the task in order

to be able to assess these requirements.

A cluttered screen will impede the user’s reception ofthe information which

it contains; there are a number ofstandard guidelines covering the format and

spacing of messages which are applicable. Where related information must be
split across several physical screens, care must be taken that each screen still
contains all the information necessary to process that particular screen.

Highlights attract a user’s attention to particular areas of the screen and

help to classify the information displayed in different areas. There are

guidelines which can prevent the misuse or overuse of highlighting; intended
highlights must still be tested on the screen on which they will be used because

of wide variations in the way they are implemented.

Although some objective measures for evaluating screen designs have been

suggested, these cannot replace trials with the intended users.

In order to support these trials and rapidly reflect their results in the design,
a screen design aid is an invaluable tool.

Discussion Exercises

D1. Design the screen layouts which you feel are necessary to support the

processing by a mail sale clerk of a telephone order from an existing agent.
The layout(s) should contain explicit illustrations for the handling both of
items which are in stock and of items which are unavailable. Illustrate how

erroneous input will be handled and give examples of error messages and any

help facilities which you feel are necessary.

D2. Several companies have expressed interest in the use of Prestel for direct

sales to the public. A single product, ‘Bert Blogg’s Biggest Hits‘, available on
record or cassette at the giveaway price of £3.99, will be advertised on TV.

Members of the public, who subscribe to the Prestel service and have a full
alphanumeric keyboard, can obtain any number of copies of the product by

completing a Prestel response frame. Prestel allows full screen addressing, all

the common highlighting features and simple graphics. It is designed to utilise
a 20 line by 40 column colour TV monitor. If you have never encountered

Prestel, an idea of the display facilities can be obtained by watching the

Teletext services such as Ceefax or Oracle. For a Prestel response frame, input

fields can be defined with simple validation checks.

198 Chapter 7

Design the layout of a response frame which will enable users to order the
product by specifying their name, address and credit card number (Visa,
MasterCard and American Express are the only cards accepted).

D3. A software package is required to assist junior-school teachers in the
development of vocabulary in slow learners; these are typically 9-10 year
olds with a reading age of 5-6. The teacher will define a set of simple graphic
representations (for example, a boat, a window or a flower) and will associate
with each drawing a list of 5 words of 8 or less letters. A child sitting at a
microcomputer will see the picture displayed and must choose the approp-
riate word. Pupils progress independently through a series of ten pictures.

The software will run on a typical home computer with a standard

keyboard and 22 X 40 colour monitor. The pictures and wordsets will be
stored on a disk. Design the screen layout which a pupil will see displayed and
indicate how a word can be selected. Discuss what should happen if an
incorrect choice is made.

Programming Exercises

P1. Determine the effect of different video attributes on the device you are

using by producing a colour matrix which displays the possible combinations
of background and foreground colour. The FieldType definition assumes 8
colours, so the matrix should be an 8 X 8 array of fields; the field in position
(i,j) will have background colour[i] and foreground colourfi]. This exercise
produces quite interesting effects even with a monochrome screen.

P2. Program the mail sale system for a single clerk. You need random access
via a key to both the agents file and the products file. If your language
supports indexed sequential files, then implement the files as:

Agents File : organisation — indexed
access method — dynamic

Products File : organisation — indexed
access method — dynamic

If your language only supports relative files, then use agency numbers of
Al, A2, A3,. . . and have the file self-indexed (i.e. record Al is stored at record
position 1, record A2 at record position 2, and so on). Similarly for the
products file, with product codes of P1, P2,...

Design your program so that the order is built up in memory, with the

Screen formatting 199

individual lines of the order being stored in the elements of an array.
Implement ‘Send Order to Picking/Invoicing’ simply as a procedure that

prints the order in an appropriate format.

Further Reading

Bass L. J. (1985) ‘A Generalized User Interface for Applications Programs’,
Comm.ACM, 28, 6.

Galitz W.O. (1981) Handbook of Screen Format Design, QED.

Mason R. E. A. and Carey T. T. (1983) ‘Prototyping Interactive Systems’,
Comm.ACM, 26, 5.

Mehlmann M. (1981) When People Use Computers, Prentice Hall.

Pakin S. E. and Wray P. (1982) ‘Designing Screens for People to Use Easily’,
Data Man, July.

Smith S. and Mosier J. L. (1984) Design Guidelines for User Interface
Software, MITRE Corporation.

Streveler D. J. and Wasserman A. I. (I984) ‘Quantitative Measures of the
Spatial Propenies of Screen Designs’, INTERACT ’84.

Chapter 9

Simple adaptation

9.1 Introduction

We have seen that it is important for the dialogue to match the expectations

and psychological limitations of the user; these depend both on the nature of

the task being undertaken and on the nature and level of experience of the

user. The use of hybrid dialogue structures, as discussed in Chapter 5, lessens

the problem of a system encompassing a variety of different tasks. However,
it is seldom sufficient to cater for the fact that any of these tasks can be

undertaken by a variety of users whose levels of experience span the spectrum
from beginner to expert. It is extremely desirable, therefore, that there be

sufficient flexibility in the dialogue that it is capable of being adapted, or of

adapting itself, to accommodate a potentially wide spread of user experience.

Adaptability in dialogues can be categorised into three types: fixed, full and
cosmetic.

With fixed adaptation the user explicitly chooses the level of dialogue

support. The need to provide some type of adaptation was recognised early
on; it is self—evident that a beginner needs more support than an expert, and

early work focussed on fulfilling this particular need. It was typified by a rule
of two in which a system provided two forms of dialogue:

a verbose form providing explicit support for the beginner;
a brief form aimed at the expert, offering little or no support.

A menu structure can be considered a verbose form, and a Q&A structure
a brief form. The ‘Rule of Two’ has been extended to a ‘rule of N’, and a

number ofpopular packages allow the user explicitly to choose one ofN levels

of dialogue. For example, one well known word processor provides four
levels of help which can be set by the user. There are several limitations in this
approach:

° It does not recognise a continuous spectrum of user skill; users do not

change from beginner to expert in discrete jumps.

° A user may be an expert in one area of the system, and a complete novice
in other areas.

215

216 Chapter 9

How does the system decide whether the user is novice or expert? One

common approach is for the system to ask the user to choose the desired
level at the outset. Surely any way of phrasing such a question is likely to

elicit an answer which tells you more about the user’s self-confidence than
his competance!

With full adaptation the dialogue attempts to maintain a model of the user
which changes with his usage of the system, and which controls the style of

dialogue, adapting automatically as a result of these changes. But what

predictors should the dialogue use when deciding about changes to the
model? The time that it takes a user to respond? The number of errors he

makes? The number of times he requests help? The nature of the errors and

the type of help required? Recognising the characteristics of the user is one of

the major problem areas in implementing adaptation in the dialogue; it
assumes that the dialogue has a knowledge both of potential users and of the
tasks. Much recent research has focussed on how the interface can develop

and maintain models of its users as a basis for adaptation, utilising techniques

of Artificial Intelligence.

Cosmetic adaptation seeks to provide flexibility of dialogie styles without

either attempting to react to the user’s behaviour or explicitly requiring him

to select a particular style. It achieves this by providing shortcuts (called
accelerators) such as

abbreviation and partial matching
synonyms

type ahead and answer ahead
default answers and macros

multi—1evel help

which an experienced user can utilise if he wishes. They are cosmetic in the
sense that, like cosmetics, they represent essentially superficial enhancements
to the basic structure but are, nevertheless, valuable in reducing tedium and

in permitting limited personalisation of the interface. In this chapter we
consider how such features can be incorporated into the dialogue.

9.2 Flexibility in Matching

As we have seen, selection inputs involve matching the user’s input message

against a list of possible targets represented as

Simple adaptation

type Targe-tListType = array[1..MaxTargets] of FieldType;
var NumberOfTargets : byte;

TargetList : TargetListType;

The matching itself can be undertaken in a number of ways; the type of

matching to be used at any point is specified by a parameter in the relevant

QandA.DIB.

9.2.1 Normal Matching

The MatchString algorithm reproduced in Fig. 9.1 requires an exact match

between the subject and one of the targets. It is the designer’s responsibility to
ensure that the targets are all unique. If they are not, then Matchstring will
select the first match.

9.2.2 Abbreviated Matching

Abbreviation has the obvious merit of reducing the volume of input. This

might appear to favour inexperienced users who are likely to be less
competent with the keyboard. However, abbreviation may impair the

learning afforded to a novice through using the full input. Abbreviations tend

to develop with usage — in the 19505, that domestic novelty now known as

the TV was still called a television. Some systems automatically complete the
input 1.6. they echo the complete target, rather than the abbreviation which
the user entered.

function MatchString(subject:string;
TargetList:TargetListType:
NumberOfTargets:integer):byte:

var k,match : byte:
begin
match:=0;
k:=1;

while (k<=Number0fTargets) and (match=0) do
if TargetList[k].content=subject then match:=k

else k:=k+l;

MatchString:=match:
end; {MatchString)

Fig. 9.1. Normal matching.

218 Chapter 9

If natural item descriptions can be chosen so that a single character

uniquely identifies each item, this is undoubtedly desirable. If, however,

opaque or eccentric names or abbreviation rules have to be invented to permit

single character abbreviations, any gain from the abbreviation is likely to be
offset by a loss of naturalness.

Where abbreviations are permitted, there should be a consistent rule for

creating them which pertains throughout the system. For example:

a valid abbreviation is any number of characters greater than or equal to

the minimum necessary to identify uniquely the item required.

Figure 9.2 shows the abbreviations by which some options may be

identified. In abbreviated matching the number of characters in the input
string governs how many characters take part in the comparison. Because of

this, it may match more than one target. For example, the abbreviation ‘p’
would match both ‘property’ and ‘personal’. So there are three possible
outcomes of this matching:

no match — does not match any of the targets
unique match — matches one and only one target
ambiguous match — matches more than one target

We will use a PASCAL ‘set’

MatchSet : SetOfByte;

to record the ordinal numbers of the items of TargetList which matched the

input string. If MatchSet is empty we have the ‘no match’ case; if MatchSet

contains a single value, we have the ‘unique match’ case; and if Matchsct

contains more than one value, we have the ‘ambiguous match’ case.
The AbbreviatedMatch procedure shown in Fig. 9.3 utilises the

QandA_D1B, matching the content of the ‘answer’ field against the
TargetList.
item valid abbreviations

motor moto
contents cont conten content

property prop proper propert
personal pers person persona
life '
miscellaneous ‘ ' misc ' miscel miscell-
end

Figure 9.2

Simple adaptation

procedure Abbrevietednatch(QendA_DIB:QendA_DIBtype:var MatchSet:set0£Byte);
var k:byte:
begin
with QandA_DIB do

begin
Hatchset:-[]:
it length(ansuer.content)<>o than

for k:=l to NumberofTargets do
if length(answer.content)<-1angth(TargetL1st[k].content) then

if answer.content-copy(TargetList[k].content,1,
1ength(answer.content)) then

Hatchset:-MetchSet+[k];
end:

and; (Abbrevinteduatch)

Fig. 9.3.

if count(Matchset)-0 then
begin
Changerieldcontent(Errornessage,

‘Please re-enter - valid replies are');
Displayrield(Errornessaqe);end

else
if count(MatchSet)>1 then

begin
ChangeFie1dContent(Erroruessage,

'choice is ambiguous - which of');
Disp1ayFie1d(Etrornessage)7
end;

where
function count(Metchset:seto£Byte):byte:
{returns the number of entries in Matcnset)
var counter,k : byte;
begincounter:-0;
for k:-l to HaxTargets do

if (k in Matchset) then counter:—eounter+1:count:-counter:
and: (count)

Fig. 9.4.

The input routine will keep requesting input until an option is ‘matched’,
i.e. until a unique match is obtained. However, the error handling routine

may well wish to distinguish between invalid and ambiguous inputs. In

particular we may wish to display different messages to reflect these different
types of error, as illustrated by the code fragment in Fig. 9.4.

Another form of abbreviation which is adopted for file names by many

operating systems is the wild card technique. For example, both CP/M and
MS~DOS interpret the string:

B:XX*.??Y

220 Chapter 9

as identifying all files on drive B whose names start with the characters XX

followed by any number of characters and with an extension which consists

of any two characters followed by a Y. The matching process in such cases is

more complicated than the example given and is more akin to parsing a
command string.

9.2.3 Partial Matching

Abbreviation provides a mechanism for accelerating input and reducing
potential typing errors. But it can hardly be considered a mechanism for error

tolerance as discussed in Chapter 6. An error tolerant approach would cater

in the matching process for simple typing or spelling errors. If MatchSct is

empty at the end of the matching, the dialogue may simply tell the user that

his response is incorrect, and ask him to re-enter it. Alternatively, it could try
a ‘partial’ match on his current response.

On the assumption that errors are more likely to be made in the later input
characters, you might progressively reduce the strictness of the match. One

simple method is to delete the rightmost character of the ‘subject’, and then

compare the new ‘subject’ with each of the match strings. This is repeated
until either match(es) are found or ‘subject’ is reduced to a single character.
This method may also produce an ambiguous match. A procedure for partial
matching is shown in Fig. 9.5.

This partial matching algorithm has the advantage that it will still match

correctly when the user types in more than enough uniquely to identify an
item, and makes a mistake in the non-significant characters, e.g. by typing
‘prpo’ rather than ‘prop’. Both the normal matching algorithm and the
abbreviated matching algorithm will reject such a case as invalid.

procedure Partialmatch(QandA_DIB:QandA_DIBtype;
var MatchSet:SetofByte);var k:byte;

begin
with QandA_DIB do

begin
MatchSet:=[];

while (1ength(answer.content)<>o) and (count(MatchSet)-0) dobegin
Abbreviatednatch(QandA_DIB,MatchSet);
de1ete(answer.content,length(answer.content),1):end;

end;
end; (Partia1Match)
Fig. 9.5.

Simple adaptation 221

A number of more general approaches for implementing partial matching

exist, all of which rely on establishing a metric so that the ‘distance’ of the

input from each of the possible responses can be measured. The response(s)
selected are those which are ‘closest’ to the input. Partial matching is

particularly appropriate where the input consists of names (notorious for
their eccentric spellings) or narrative input (for example, in searching a

database by keyword) is involved. The Soundex system is one example of
matching names based on their sound.

The name input is converted as follows:

remove all non-alphabetic characters (such as ‘—'
retain the first letter of the name

drop all vowels A E I O U and the letters W H and Y

assign the following numbers to the remaining letters:

l=BFPV

2=CG.IKQSXZ
3=DT
4=L

5=MN

6=R

coalesce adjacent identical numbers to a single number

form the code from the original first letter and the first three of the

numbers; if less than 3 numbers remain, pad out with zeros

Thus FARBES, FFORBES, and FORBOUYS which all convert to F612,

would all match an input of FORBES but so would FAIRPIECE. This
illustrates both an advantage of such a mechanism and a drawback; it tends

to result in ambiguous matches which require the system to ask for
confirmation from the user. The Soundex system is clearly based on the

‘phonetic’ closeness ofdifferent characters; a similar ‘metric’ might be applied
to the relative closeness of keys on a keyboard.

9.3 Synonyms

A dialogue which supports synonyms allows an object to be ‘named’ by a
number of different identifiers, in a variety of formats, or by a variety of

mechanisms. For example, MS-DOS allows both DEL and ERASE as

222 Chapter 9

equivalent command names for deleting files and also allows DEL to be
‘spelt’ del. We have seen in Chapter 5 that it is easy to implement menus in
which the user may select an option either by scrolling or by keying its
identifier.

The merit of synonyms is that a user can use the identifier which seems
most natural to him and hence the one which he is most likely to remember.

The drawback is that this multiplicity can both confuse the user and

complicate the processing required for matching; in particular it can slow
down the response of the system if a large number of alternate names must be

scanned. Another point to consider is whether there is much rationale for
alternate identifiers unless the user can choose his own. This immediately

leads to the problem of what happens if different users choose the same

identifier for different objects, e.g. ‘list’ both to display on the screen and for
printer output.

It is easy to build a limited and standard set of synonymous identifiers into
the dialogue. One method is to associate a translation table with the
TargetList of valid responses, as in Fig. 9.6. When the matching routine
returns the ordinal of the choice, this is used as an index into the table;

consequently both ‘delete’ and ‘erase’ would return option 2.
Another possibility is to use a cover routine for each synonym which calls

the basic option. For example

procedure erase(files:filename);
begin
delete(files);

end; {erase}

TargetList Translation

Cur1'entTarget:=MatchString(subject,TargetList,Number0fTargets);
if CurrentTarget<>0 then

Trans1atedTarget:=Translation(CurrentTarget);

Fig. 9.6.

Simple adaptation 223

One form of synonym which should always be supported (unless there is a

specific reason not to do so) is to allow input in any combination ofupper and
lower case so that, for example, both ‘property’ and ‘pRoPErTy’ would

match ‘Property’. Novice users, and some not so novice, encounter problems
with case sensitive input, by inadvertently leaving the Caps Lock key on. Even

though UNIX is very generous with synonyms, it is case sensitive; for

example, ‘ls’ causes a directory listing and ‘LS’ a search for a user defined

object with that name. Of course, if you have already reserved most of the

good names for the operating system, you may feel that you should restrict
their influence! Converting an uppercase character to its lowercase equival-
ent, or vice versa, is trivial since

ord(UpperCaseChar) = ord(LowerCaseChar)+N

where N is an integer which depends on the particular character set.

A single space (or a combination of spaces) is often used as a delimiter to

separate the various elements of a command language string. Input should be
insensitive to the actual number of spaces entered, and so multiple spaces

should be reduced to a single space. (There are exercises at the end of the

chapter to convert case and to remove redundant spaces.)

9.4 Defaults

The essence of a default value is that the system will assume a particular

response unless the user specifically types a different one. Thus, in cases where
the user frequently enters the same answer to a particular request, the input

can be reduced to the single keystroke necessary to confirm the default value.

Situations requiring a standard answer arise frequently. For example, when
entering transaction data into an accounting system, a unique posting

reference number and posting date are usually supplied. The reference

number is typically the next integer in sequence and the date is typically the

current date; it is unnecessary for the user to input these explicitly unless they

are different from this assumption. Similar examples apply in command
languages. The command DIR in CP/M and MS-DOS lists the directory of

the current drive unless the user explicitly specifies a different drive.

The user must be aware of what default value the system is assuming. In

Q&A and form filling structures, the default can be displayed with the prompt

or field caption

224

Posting Reference [1047]?

Posting Date [26/10/85]’?

or in the position which the response would occupy

N
Since some users find overtyping existing values confusing, the ReadField

keyboard process of Chapter 5 displays the default in the answer field, but
clears the field as soon as the user enters the first character of the reply.

In a menu structure, the default is usually indicated by its position (the first

item on a menu organised by frequency of use) or by a video highlight. In a
scroll menu, moving round the options could be considered as temporarily
changing the default value.

In a command language, there is no way to display a default value and so
the user must remember it. However, since a command language is aimed at

experienced users who have to remember the command syntax anyway.. ..
The commonest way for a user to accept the default value is to enter a null

input, i.e. just press the ‘Carriage Return’ or ‘Enter’ key. If command
language with positional parameters is being used, the user simply omits the
entry, which results in two adjacent separators

MODE COM1:9600,,8,1

This would be interpreted as a null reply for the fourth token, leading to the
default value (even parity in this example) being used. In a command
language with keyword parameters, a default value is selected simply by
omitting the relevant parameter keyword and value.

Since users often get the habit of pressing the return key almost

automatically, the default value in cases where the outcome is irreversible is
customarily the one that preserves the status quo. Thus NO would be the
default response to

A>era *. *

Sure [Y/N]?

Defaults assume that one answer will be the most common; it is foolish to

implement a default value which is constantly being overridden. A major
problem is that, like everything else in the dialogue, the most common answer
is likely to change with the user and over time. Thus there must be some
mechanism for changing the default values within the system; if these values

Simple adaptation 225

are coded into a program source such changes will be very tedious! The reader

may care to consider how this might be overcome; we will return to it in a later
section.

The dialogue processes of Chapters 4 and 5 use the following mechanism

for defaults. The default answer for a particular QandA_DIB is stored in the
answer field of that DIB. When the Q&A procedure is invoked to accept

input via this DIB, the current content of the answer field is displayed. If the

AcceptField key is pressed immediately, this default content is accepted;

pressing any other valid key causes the field to be cleared, and input which
falls within the filter is accepted and displayed in the field.

The user may not just provide the same answers to isolated questions; his

usage of the system may be such that he commonly traverses the same paths,

i.e. he regularly inputs the same sequence of answers. For example, he may

often select a report using the same selection criteria. This could be achieved

by repeatedly pressing the return key to accept each default.

Report No [1] -2 <CR>

Products [ALL] : <CR>
Markets [EUR] : <CR>

Sources [UK] : <CR>

but it would be tedious. What is needed is a mechanism for ‘cataloguing’ a

series of standard responses such as that provided by operating systems, e.g.
BAT files of MS-DOS. Macros provide such a mechanism. The user stores his

responses for selecting a commonly used report under some name, e.g.

MYREPORT. The user responds to the first prompt with the name of the
macro (and some indication that it is a macro) and the stored answers are

individually fed to each prompt and processed as though they came directly
from the keyboard:

Report No [1] : *MYREPORT

How this may be accomplished should become apparent in the next section.

9.5 Type ahead and Answer ahead

9.5.1 Type ahead

We saw in Chapter 3 that, for most devices, if the user presses a key while the

226 Chapter 9

CPU is executing a task process, the system will generate an interrupt which
will:

' cause the CPU to suspend execution of the task process;
' start execution of the keyboard I/0 process; this will take the character

typed, store it in the keyboard buffer, and on completion of this;
' cause the CPU to resume execution of the suspended task process.

Users who follow regular paths through a system soon become familiar with
the sequences of questions and possible responses. Suppose the user types
m o t o r <carriage return> while a task process is executing. On completion
of the task process the buffer will contain:

finn-
If the next request for input requires the user to select from a menu of

‘motor, contents ,end’, the options will be displayed and the user
asked to choose. However, the system will find the answer already in the
buffer since the user typed it ahead of being asked (hence type ahead) and will
continue immediately. There is little point in subjecting the user to a display
of the menu or prompt if his answer is already in the buffer. Ideally this would
only apply to complete answers; a partial answer would be processed in the
usual way. Figure 9.7 illustrates the type ahead mechanism.

The advantage of type-ahead is that the user can form his own ‘input
closures’ independent of the timing of prompts from the system. One

Dialogue

P0” Input

Keyboard Terminator
Buffer

Read
Pointer

Keyboard Buffer
Fig. 9.7. Type ahead.

Simple adaptation

Dialogue

Keyboard
ISR

Keyboard Buffer

Poll Keyboard
if Answer

Buffer empty

Answer Buffer

procedure GetReplyFromBuffer(reply,mode,buffer);
(mode = 0 if variable length replies are delimited by separator
mode - m > 0 if replies of fixed length m are expected)

begin
if mode=0 then (variable length replies)

(locate next answer)
begin
k:-pos(buffer,separator):
if k=0 then (no separator, so take all)

begin
rep1y:=buffer; buffer:=";
end

else
begin (separator)
rep1y:=copy(buffer,1,k-1);
buffer:=copy(buffer,k+1,length(buffer)-k);end

else (fixed length replies)
begin
rep1y:=copy(buffer,l,mode):
buffer:=copy(buffer,mode+1,1ength(buffer)-mode);
end;

end; (GetRep1yFromBuffer)

Read Next

Answer

Fig. 9.8. Answer ahead.

228 Chapter 9

difficulty is that the type ahead buffer provided by the operating system may
be relatively small, for example 15 characters, thus limiting how far ahead the
user may type. When the buffer becomes full, excess characters are ignored.

9.5.2 Answer ahead

The user is not restricted to answering only the next question; a number of

sucessive replies may be provided. This is called answer ahead. If the replies
are not of a fixed length, each reply must be delimited by a separator such as

Carriage Return or ‘/’. The separator must be chosen with care since it must
not occur in the normal input stream. To ease typing, it should ideally be a

single unshifted character (or at least a single keystroke). Since the keyboard
buffer is normally of very limited capacity, a dialogue answer buffer is needed

to implement answer ahead; the dialogue process will take each answer in turn
from the buffer by locating the next separator, as illustrated in Fig. 9.8. Note
that there is a difference between type ahead and answer ahead in that the

dialogue answer buffer is filled only when the system requests input.
A further problem with answer ahead occurs if the user enters an invalid

input in the middle of the buffer. It would be possible to provide a mechanism
for editing the buffer after it has been input — many interactive systems
provide a means to recall the last line input, edit and then resubmit it — but
in many cases this is more cumbersome than merely clearing the buffer and
restarting from that point. The buffer should also be cleared if the user
requests help.

Additional routines are needed to support type ahead and answer ahead. In

order to decide whether the prompt should be suppressed, the dialogue

process must be able to test whether the user has typed/answered ahead:

function KeyhoardEvent:boolean;

{returns ‘true’ if keyboard buffer is not empty, otherwise ‘false’}

function DialogueAnswerBufferEmptyzboolean;

{returns ‘true’ if the dialogue answer buffer is empty, otherwise ‘false’}

If a type/answer ahead is incorrect, the dialogue must be able to flush the
remainder of the buffer

procedure ClearKbd;

{clears the keyboard buffer of any characters that may have been typed
ahead of them being requested}

Simple adaptation

procedure ClearAnswerBuffer;
{clears the dialogue answer buffer}

9.6 Command Language as Answer ahead

Suppose we have a QandA_DIB which prompts for a command name:

QandA_DIB_l

command?

The user input is matched against TargetList which holds the permitted
commands. When matched, a sequence of QandA_DIBs is processed to

accept the parameters for that command. For example:

' COPY

QandA_DIB_l K?-> QandA_DIB_2 —>-iQandA_DIB_3 I
to?

command? from?

A typical dialogue might be:

command? COPY

from? A:FILE1

to? C:FILE2

Compare this with the following ‘command language’ string:

command? COPY bb Azfilel bbbbb e:FILE2

If the string is preprocessed to a standard format by converting all
letters to the same case (e. g. upper case), and removing superfluous blanks, we
obtain:

COPY A:FILE1 C:FILE2

l l l
answerl answer2 answer3

delimiter delimiter

This can be considered as an answer ahead to the previous sequence of

230 Chapter 9

QandA_DIBs with space as the delimiter. Because the answers to the ‘from?’
and ‘to?’ questions have been provided ahead of the questions being asked,
these prompts have been suppressed. Hence, a command dialogue can be
viewed as question-and-answer with answer ahead. The example chosen has
used positional parameters but a similar argument will handle keyword
parameters and the inclusion of ‘switches’ in the command string. Recogni-
tion of this fact can guide us when designing a command language.

With a command language, the user has the sensation of being in control:
- the dialogue is user—driven. Because answer-ahead places greater demands
on short-term memory, consistency and memorability are extremely
important:

0 The names assigned to commands should be meaningful, and easy to
remember. Wherever possible, congruent pairs of names should be used
(for example, GET and PUT, INSERT and DELETE, and so on).

' A standard delimiter (such as space or comma) should be adopted, and
used consistently. Thus, the designer should avoid capricious differences in
syntax such as

pip newfile=oldfile
ren newfile oldfile

' A standard escape convention should be used.

In the hands of experienced users, a well designed command language can
lead to fast interaction; many computer professionals are very skilled at

interacting with operating systems via command languages. However, it can
take a long time to become proficient, and releaming can be a major exercise
after an extensive interval away from the system.

If the command language is designed on the basis of Q&A with answer
ahead, then it can cater for a range of user skills. For an experienced user,
‘closure’ will occur at the end of a complete command string; for an

inexperienced or ‘rusty’ user, it may occur within a command string. If the
user types only part of the answer, (perhaps because he doesn’t know the full
format of the command, or perhaps because he has forgotten it after some
time away from the system) then some questions will be unanswered, and so
the system can prompt him for the remaining answers. For example, if the
user types:

command? COPY

and then presses Carriage Return, or a Help key system or pauses for a given

Simple adaptation 231

interval, the system can prompt with a form requesting the remainder of the
information:

from? A:FILE1 to? C:FILE2

By regarding it as a special case of Q&A, a command language can be made
more flexible; in fact, we have introduced an implicit Rule of two. On the one

hand, experienced users using answer ahead see the dialogue as a traditional

command language; on the other hand, novices can be given the syntax of the

commands, and specific help can be provided for each parameter. This

mechanism can be extended further to an implicit rule of N. The possible
values for command parameters could be scrolled through each answer box;

a user may either type in a parameter value or scroll through the possible

options using the supressed menu technique described in Chapter 4.

9.7 Multi-level Help

We saw in Chapter 6 that a good help message must be specific to the user’s
problem. This implies that a series of help messages are necessary at each

point where input is requested from the user, rather than a single all-
embracing message.

As a minimum, the system should distinguish between a user who has

merely forgotten the precise ‘phrasing’ of the response (i.e. who requires a
menu of the available options or formats) and a user who does not understand

what input is being requested. This distinction can be achieved by implement-

ing two different help requests. For example, an input of MENU displays the

available options (the TargetList from the QandA_DIB), and an input of
HELP provides a message which displays not only the options but a brief
explanation of what each does.

However, like the rule of two, this is a rather crude distinction; a more

subtle mechanism would allow N levels, although not all N would necessarily
be appropriate at all points in the dialogue. Equally, the systems designer is
likely to feel that there is some N above which more dramatic assistance is

needed than can be supplied automatically.

One method ofsupplying multi-level help is based on displaying a first-level

help message and then asking the user if he requires more. This process is
repeated until either the user is satisfied or there is no more help that can be

given. The sample dialogue at the start of Chapter 6 uses this approach which
effectively introduces a Help sub-dialogue with a Q&A structure.

232 Chapter 9

Option? : HELP
...... ..firstlevel help

A more elegant mechanism relies on the system tracking the number of
times the user has requested help at that point in the dialogue, for example by
maintaining a CurrentHelpLevel, as shown in Fig. 9.9.

if reply=help then
begin
if currentHe1pLeve1>MaxHe1pLeve1 then

begin
changerieldcontent(nelpnessage,‘no more help available‘);
Displayrleld(fielpnessage)7end

else
begin
Givenelp(startAt[currentHe1pLeve1]); (See Figure 6.5)
Currentfielpnevel:-CurEentHe1pLeve1+1;end:

Butter:-"7 {can't answer-ahead!)
end:

Fig. 9.9. Multi-level help.

The mechanism described in Section 6.4.2 can be easily extended to

incorporate multi—level help. Instead of containing a single value N pointing
at the first record of a single help message, the help message parameter in the

QandA_DIB would contain an array of first-record pointers, one for each
level of help, and its own current and maximum help levels.

CurrentHe]pLevel : byte;

MaxHelpLevel 2 byte;
StartAt : array[l..Globa1MaxHe1pLevel] of integer;

9.8 Multi-language Considerations

Amongst the earliest people to recognise the desirability of separating the

interface from the task processing in a system were systems designers working
in multinational companies in the 1960s. Systems which had been developed

at great cost in North America or the UK were appropriate for operations
elsewhere in the world but were difficult to transport because the prospective

users, who were not fluent in English, found difliculty in understanding the

Simple adaptation 233

messages. Changing these messages was difficult as they were scattered as
literals throughout the programs making up the system. Therefore a

programmer was needed to go through the source programs, locating and
changing these to produce a new source for the European location; of course

it helped if this programmer knew French, German, Italian . . . or alternatively
if there was a translator who knew COBOL.

Life would have been much easier if all these messages — prompts, help

messages, error messages — had been held on a data file divorced from the

syntax of the programming language involved. Then a translator could have
been given a listing of the file to translate, and data preparation staff could
have keyed in this translation to create another file. The literals could be

referenced in the program via a number, for example:

Retrieve(MessageFile,MsgNo,Message);

DisplayField(Message);

There is litle point in displaying output in the user’s native language if he

still has to respond in English; the valid responses must also be held on file for
ease of translation.

Ledger? : sales ==== Livre? 2 clients

We have already seen the desirability of holding help messages on tile.

Combining this with the multi-language capability requires a file which

contains a record or group of records associated with each input request
which details

the prompt message

the series of help messages

the TargetList of valid responses
the error message to be displayed if the response is invalid.

Since we have abstracted the parameters associated with any input request

into a QandA_DIB data structure, this is equivalent to saying that the data
values associated with each QandA_DIB must be held on file. Records are

also needed for the other types of message, e.g. output data messages such as

report titles, status messages, etc. The structure of the dialogue procedure can

be adjusted to reflect this requirement, by including a routine to set up the
DIB associated with any input step from the relevant file.

This mechanism enables the designer to allow for personalised dialogues.

We have considered it from the point of view of providing a native language

facility in systems which are to run at a variety of installations. However it

234 Chapter 9

need not be restricted to providing the same dialogue in English or French or

some other language. There is no reason why, where a clerk and a manager

both use the same system for different functions, a different dialogue should

not be provided merely by supplying a different data file which will run with
the same dialogue process and the same background tasks.

A user can be restricted to a particular subset of the system’s facilities by

defining only that subset on the dialogue file. For example, a user who is
allowed to read but not amend a personnel database would never see any

reference to updating facilities, since the TargetList on his dialogue file would
not contain the response ‘update’. Different default values can be supported
for different users and even the default paths described in Section 9.4 could be
stored on this file.

On a terminal-based system, the required file can be identified automati-

cally by some mechanism such as a log-in code, and on a stand-alone based

system by providing the user with a diskette containing his personal dialogue.

A little thought should indicate the undesirability of asking the user which

dialogue he requires: if it is a choice of language, in which language do you ask
for the choice?

It is also possible that the character used in answer ahead, and ControlDIB
values such as the ‘standard’ response which users input to request the default
or to request help, may vary for different users. These can also be held on the

dialogue file but since they are the same at each input request, they do not
need to be stored for every individual request and could be held in a header
record at the start of the file.

The mechanism is not without drawbacks. We have already mentioned the

problem of efficient storage. There will also be some degradation in response
since a number of retrievals from file will be needed to set up the messages. In

Chapter 11 we discuss how these reservations can be overcome, and consider
how all the various dialogue structures and facilities can be accommodated in

a generalised dialogue manager.

9.9 Summary

The dialogue must incorporate some element of adaptability to cater for
varying levels of expertise in different users and in the same user in different

parts of the system.

Fixed adaption is a crude mechanism since it requires the user to choose a

particular level of support explicitly. Full (or automatic) adaption is

Simple adaptation 235

extremely difficult to implement since it requires the system to recognise a
user’s characteristics from his inputs. Cosmetic adaption provides accelera-

tors which can, but need not, be utilised by an experienced user and provide
a limited amount of personalisation.

Rather than requiring an exact match with an entry in the TargetList, the

system may accept abbreviated or partial matches. Partial matches provide

some error tolerance but it is often difficult to define a metric for deciding
which target has been matched and such metrics often result in ambiguity.

Synonyms allow a user to identify system objects by a variety of identifiers,

in a variety of formats or by a variety of mechanisms. They permit
personalisation of the dialogue but may confuse rather than assist novice
users.

Defaults reduce the input load by enabling a user to select a common

response or set of responses (a macro) with a single input.

With type ahead and answer ahead, a user may supply a series of responses

without waiting for the system to prompt for them individually. This allows

a user to form his own closures rather than having closures imposed by the
system.

Interpreting a command language structure as a Q&A structure with

answer ahead, suggests both guidelines for the design of command languages
and ways in which such a structure can adapt to cater for both novice and
expert users.

A multi-level help facility is necessary to provide support which is specific

to a user’s problem. Such a mechanism is easily implemented by storing
pointers to the relevant message levels in the QandA.DIB.

We saw earlier that developing a common abstraction (the QandA_DIB)

facilitated the production of generalised processes which could implement
any dialogue structure. Holding the values for these data structures on a

dialogue file enables personalised dialogues to be produced for any group of
users.

Discussion Exercises

D1. Two common keying errors are:

' the transposition of 2 letters e.g. TSET for TEST;

' the substitution of one letter by another e.g. TWST for TEST, often by
hitting an adjacent key to the one intended.

236 Chapter 9

Suggest a possible partial matching metric which could be used to handle
these cases.

D2. An alternative way of implementing multi-level help is to superimpose

multiple messages onto the structure described in Section 6.4.2 (a single

pointer in the HelpMessage field of the QandA_DIB pointing to the first
record of the first—level help message).

QandA_DIB <——— message 1-?» <— message 2 —>

Messages can be assumed to occupy an integral number of records. However,
some mechanism is needed to distinguish between the various messages. ,

Initially the QandA_DIB pointer points to the first record of the first message.
After one call for help, this pointer will be left pointing at the first record of
the second message. And so on.

What are the advantages and disadvantages of this approach?

D3. Dialogue files provide a mechanism for supporting personalised

dialogues for different users. Discuss the record format which is needed for
such a file.

Programming Exercises

Pl. Implement a routine to convert all ASCII lowercase alphabetics in an

input string to uppercase.

P2. Implement a routine which will remove all redundant spaces from an

input string, i.e. convert all multiple spaces within the string to single spaces
and remove any leading or trailing spaces.

P3. Many operating systems support a macro facility whereby a series of
command lines can be stored in a ‘batch’ file. When the batch file is invoked,

the sequence of commands is executed as though they had been typed at the
keyboard.

Suggest how such a facility can be used to support synonyms; for example,

to provide a variant of the intrinsic file copy function by one with a different
name and different parameter order.

P4. Amend the ReadField keyboard process to incorporate an answer-ahead .

Simple adaptation 237

mechanism which is independent of the operating system keyboard buffer.

The dialogue process will maintain a global variable as a buffer. (How long
should this buffer be?) Whenever a user is requested for input, he may type as

many successive answers as he likes; this input string is read into the buffer.

A prompt will be displayed and input requested only if the buffer is empty.
Assume that the user terminates each input with a carriage return.

PS. If in Question P2 all the valid responses were single character replies, it
would be silly to insist on a carriage return being typed either after a single

reply or after a string of answer-ahead replies. How else could the system
determine if the user had completed entering the answer—ahead string?

Further Reading

Benbasat A. et al. (1984) ‘Command Abbreviation Behaviour in

Human—Computer Interaction’, Comm.A CM, 27, 4.

Durham I. et al. (1983) ‘Spelling Correction in User Interfaces’, Comm.ACM,
26, 10.

Good D. M. et al. (1984) ‘Building a User Derived Interface’, Comm.ACM,
27, 10.

Mozeico H. (1982) ‘A Human/Computer Interface to Accommodate User

Learning Stages’, Comm.A CM, 25, 2.

Schneider M.L. er al. (1984) ‘An Experimental Evaluation of Delimiters in a

Command Language Syntax’, Int.J.Man—Machine Studies, 20, 6.

Wasserman T. (1973) ‘The Design of Idiot—Pro0f Interactive Systems’,
AFIPS, 42.

