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CHAPTER 2

THEORIES, PRINCIPLES, AND GUIDELINES

We want principles,

not only deVe1oped,~the work of the closet,‘

Horace Mann, Thoughts, 1867



Designing the User Interface

2.1 INTRODUCTION

Successful designers of interactive systems know that they can and

must go beyond intuitive judgments made hastily when a design problem
emerges, Fortunately, guidance for designers is beginning to emerge in

the form of: ‘ ‘

high—lcvel theories or models

middle-level principles

specific and practical guidelines and

strategies for testing.

The theories or models offer a way to organize the design process,

whereas the middle-level principles are useful in weighing alternatives.

The practical guidelines provide helpful reminders of rules, uncovered by

previous designers. Early prototype evaluation encourages exploration

and enables iterative design to correct inappropriate decisions.

Acceptance testing is the trial—by-fire to determine whether a system is
ready for distribution; its presence may be seen as a challenge, but it is

also a gift to designers since it establishes clear measures of success.

In many contemporary systems, there is a grand opportunity to improve
the human interface. The cluttered and multiple‘ displays, complex and

tedious "procedures, inadequate command languages, inconsistent
sequences of actions, and insufficient informative feedback can generate

debilitating stress and anxiety that lead to poor performance, frequent
minor and occasional serious errors, and job dissatisfaction:

This chapter begins with a review of theories, concentrating on the

syntactic/semantic model. Section 2.3 then deals with frequency of use,
task profiles, and interaction styles. Eight principles of interaction are

offered in Section 2.4. Strategies for preventing errors are described in

Section 2.5. Specific guidelines for data entry and display appear in

Sections 2.6 and 2.7. Testing strategies are presented in Section.2.8 and

covered in detail in Chapter 10. Section 2.9 attempts to deal with the
difficult question of the balance between automation and human control.
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2.2 A HIGH-LEVEL THEORY: SYNTACTIC/

SEMANTIC MODEL OF USER KNOWLEDGE

Distinctions between syntax and semantics have long been made by

compiler writers who sought to separate out the parsing of input text from

the operations that were invoked by the text. Interactive system designers

can benefit from a syntactic/semantic model of user knowledge. In

outline, this explanatory model suggests that users have syntaetif

knowledge about device-dependent details and semantic knowledge about

concepts. The semantic knowledge is separated into task concepts

(objects and actions) and computer concepts (objects and actions) (see

Figure 2.1). A person can be an expert in the computer concepts, but a
novice in the task, and vice versa.

The syntactic/semantic model of user behavior was originated to

describe programming (Shneiderman & Mayer, 1979; Shneiderman,

ACHON OBJECT ‘ ACTION OBJECT
TASK COMPUTER

SEMANTlC SYNTACTIC

Figure 2.1: A representation of the user’s knowledge in long—term memory. The
Syntactic knowledge is varied, device dependent, acquired by rote memorization,

and easily forgotten. The semantic knowledge is separated into the computer
and task domains. Within these domains, knowledge is divided into actions and

objects. Semantic knowledge is structured, device independent, acquired by
meaningful learning, and stable in memory.
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Figure 2.2b: A second example of a transition diagram indicates user actions on

the arrows and ‘computer responses or states in the boxes and circles. (Source:
Transition diagram editor from Interactive Development)

1980) and has been applied to database manipulation facilities

(Shneiderman, 1981) as well as to direct manipulation (Shneiderman,
1983).

Other strategies for modeling interactive system usage involve

transition diagrams (Kieras & Polson. 1985) (Figure 2.2). These

diagrams are helpful during design, for instruction, and as a predictor of

learning time, performance time. and errors.

Figure 2.2a: This generalized transition network for the Displaywritcr shows the

sequence of permissible actions. If the users begin at the EDIT state and issue a
FIND command, they follow the paths in the FIND subdiagram. (Kieras and

Polson, “An approach to the formal analysis of user complexity,” International

Journal of Man—Machine Studies 22 [1985], 365-394. Used by permission of
Academic Press Inc. [London] Limited.)
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Other theories include the four—level approach of Foley and Van Dam

(1982):

The highest level is the conceptual model or the user’s
mental model of the interactive system. Two conceptual

models for text editing are line editors and screen editors.

The semantic level describes the meanings conveyed by the

user's command input and by the computer’s output

display.

The syntax level defines how the units (words) that convey
semantics are assembled into a complete sentence that

instructs the computer to perform a certain task.

The lexical level deals with device dependencies and the

precise mechanism by which a user specifies the syntax.

Card, Moran, and Newell (1980, 1983) proposed the GOMS (goals,

operators, methods, and selection rules) model and the keystroke-level
model. They postulated that users formulate goals and subgoals that are
achieved by methods or procedures for accomplishing each goal. The

operators are “elementary perceptual, motor, or cognitive acts, whose
execution is necessary to change any aspect of the user’s mental state or

to affect the task environment’; (Card, Moran & Newell, 1983: 144).
The selection rules are the control structure for choosing among the

several methods available for accomplishing a goal.

The keystroke—leve1 model is an attempt to predict perfomiance times

for error—free expe11 performance of tasks by summing up the time for

keystroking, pointing, homing, drawing, thinking, and waiting for the

system to respond. These models concentrate on expert users and

error—free performance, with less emphasis on learning, problem-solving,

error handling, subjective satisfaction, and retention.

Kieras and Polson (1985) used production rules to describe the

conditions and actions in an interactive text editor. The number and

complexity of production rules gave accurate predictions of learning and

performance times for five text editing operations: insert, delete, copy,
move, and transpose.
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Norman (1984) offers a stages and levels model of human-computer
interaction. The four stages of an interaction are:

1. Forming an intention: internal mental characterization of a
goal.

Selecting an action: review possible actions and select most
appropriate. T

Executing the action: carry out the action using the
computer.

Evaluating the outcome: check the results of executing the
action.

Norman’s levels correspond roughly to Foley and Van Dam’s separation
of concerns, that is, the user forms a conceptual intention,'refo11nulat_es it

into the semantics of several commands, and eventually produces the
action of moving the mouse to select a point on the screen. Norman
describes how errors often occur as intentions are reformulated to lower
levels. V '

Refinements to these theories and more detailed models will
undoubtedly emerge. There is a need for many theories about the
multiple aspects of interactive systems. The next section expands on the
syntactic/semantic model of user" behavior.

2.2.1 Syntactic knowledge

When using a computer system, users must maintain a profusion of
device—dependent details in their human memory. These low~level
syntactic details include the knowledge of which key erases a character
(delete, backspace, CTRL-H, rightmost mouse button, or ESCAPE), what
command inserts _a new line after the third line of a text file (CTRL—I,
INSERT key, I3’, I .3, or 3I), which icon to click on to scroll text
forward, which abbreviations are permissible, and which of the numbered
function keys produces the previous screen.

The learning, use, and retention of this knowledge is hampered by two
problems. First, these’ details vary across systems in an unpredictable
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manner. Second, acquiring syntactic knowledge is often a struggle

because the arbitrariness of these minor design features greatly reduces

the effectiveness of paired-associate learning. Rote memorization

requires repeated rehearsals to reach competence, and retention over time

is poor unless the knowledge is frequently applied. Syntactic knowledge

is usually conveyed by example and repeated usage. Formal notations,

such as Backus-Naur Form, are useful for knowledgeable computer
scientists but confusing to most users. A '

A further problem with syntactic knowledge, in some cases, is the

difficulty of providing a hierarchical structure or even a modular structure

to cope with the complexity. For example. how is a user to remember

these details of using an "electronic mail system: Press RETURN to

terminate a paragraph. CTRL—D to terminate a letter. Q to quit the
electronic mail subsystem, and logout to terminate the session. The

knowledgeable computer user understands these four forms of termination

as commands in the context of the full system. but the novice may be

confused by four seemingly similar situations that have radically different

syntactic forms.

A final difficulty is that syntactic knowledge is system dependent. A

user who switches from one machine to another may face different
keyboard layouts, ‘commands. function key usage. and sequences of

actions. To be sure. there may be some overlap. For example,

arithmetic expressions might be the same in two languages; but

unfortunately. small differences can be the most annoying. One system
uses K to keep a file and another uses K to kill the file. or S to save
versus S to send.

Expert frequent users can overcome these difficulties and they are less

troubled by syntactic knowledge problems. Novices and intermittent

users, however. are especially troubled by syntactic irregularities. Their

burden can be lightened by using menus (see Chapter 3). a reduction in

the arbitrariness of the keypresses. use of consistent patterns of

commands. meaningful command names and labels on keys, and fewer

details that must be memorized (see Chapter 4).

In summary. syntactic knowledge is arbitrary, system dependent, and

ill-structured. It must be acquired by rotememorizalion and repetition.
Unless it is regularly used. it fades from memory.
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2.2.2 Semantic knowledge—c0mpu_ter concepts

Semantic knowledge in human long-term memory has two components:

computer concepts and task concepts (Figure 2.1). Semantic knowledge

has a hierarchical structure ranging from 1ow—level actions to middle-level

strategies to high—level goals (Shneiderman _& Mayer, 1979; Soloway et

al., 1982; Card et al., I983). This presentation enhances the earlier
syntactic/semantic model and other models by decoupling computer
concepts from task concepts. This enhancement accommodates the two

most common forms of expertness: task experts who may be novice
computer users and computer user experts who may be new to a task.

Different training materials are suggested for task or computer experts.

Novices in both domains need yet a third form of training.

Semantic knowledge is conveyed by showing examples of use, offering

a general theory or pattern, relating the concepts to previous knowledge
by analogy, describing a concrete or abstract model, and by indicating

examples of incorrect use. There is an attraction to-showing incorrect use

to indicate clearly the bounds of a concept, but there is also a danger

since the learner. may confuse correct and incorrect use. Pictures are

often helpful in showing the relationships among semantic knowledge
concepts.

Computer concepts include objects and actions at high and low levels.

For example, a central set of computer object concepts deals with

storage. Users come to understand the high—level concept that computers

store information. The concept of stored information can be refined into

the Object concepts of the directory and the files of information. In turn,

the directory object is refined into a set of directory entries that each have
a name, length, date of creation, owner, access control, and so on. Each

file is an object that has a lower level structure consisting of lines, fields,

characters, pointers, binary numbers, and so on.

The computer actions are also decomposable into lower level actions.

The high-level actions or goals, such as creating a text data file, may
require load, insertion, and save actions. The _rni_d—level action of saving
a file is refined into the actions of storing a file and backup file on one of
many disks, of applying accessicontrol rights, of overwriting previous
versions, of assigning a name to the file, and so on. Then, there are
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many low—level details about permissible file types or sizes, error

conditions such as shortage of storage space, or responses to hardware or

software errors. Finally, there is the low—level action of issuing a specific

command, carried out by the syntactic detail of pressing the RETURN

key.

These computer concepts were designed by highly trained experts in

the hope that they were logical, or at least “made sense” to the designers.

Unfortunately, the logic may be a very complex product of underlying

hardware, software, or performance constraints, or it might be just poorly

chosen. Users are often confronted with computer concepts that they

have great difficulty absorbing; but hopefully. designers are improving

and computer literacy training is raising knowledge levels. For example,
the action ‘of terminating a command by pressing RETURN is more and

more widely known, even by nonprogramniers.

Users can learn computer concepts by seeing a demonstration of

commands, hearing an explanation of features, or by trial and error. A

common practice is to create a model of concepts, either abstract,
concrete, or analogical, to convey the computer action. For example,

with the file—saving concept, an instructor might draw a picture of a disk
drive and a directory to show where the file goes and how the directory
references thefile. Alternatively, the instructor might make a library

analogy and describe how the card catalog acts as a directory for books

saved in the library. V

Since semantic knowledge about computer concepts has a logical

structure and since it can be anchored to familiar concepts, this
knowledge is expected to be relatively stable in memory. If you
remember the high-level concept about saving _a file, you will be able to

conclude that thefile must have a name, a size, and a storage location.
The linkage to other objects and the potential for a visual presentation
support the memorability of this knowledge.

These computer concepts were once novel and known to only a small

number of scientists, engineers, and data processing professionals. Now,
these concepts are taught at the elementary school level,’ argued over

during coffee breaks in the office,‘ and exchanged in the aisles of

corporate jets. When educators talk of computer literacy, part of their
plans cover these computer concepts.
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In summary, the user tnust acquire semantic knowledge about computer

concepts. These concepts are hierarchically organized, acquired by

meaningful learning or analogy, independent of the syntactic details,

hopefully transferable across different computer systems, and relatively

stable in memory. Computer concepts can be usefully sorted out into

objects and actions.

2.2.3 Semantic knowledge—task concepts

The primary way for people to deal with large and complex problems

is to decompose them into several smaller problems in a hierarchical
manner until each subproblem is manageable. Thus, a book is

decomposed into the task objects of chapters, the chapters into sections,

the sections into paragraphs, and the paragraphs into sentences. Each

sentence is approximately one unit of thought for both the author and the

reader. Most designed objects have similar decompositions: computer

programs, buildings, television sets, cities, paintings, and plays, for

example. Some objects are more neatly and easily decomposed than

others; some objects are easier to understand than others.

Similarly, task actions can be decomposed into smaller actions. A
construction plan can be reduced to a series of steps; a baseball game has

innings, outs, and pitches; and creating a business letter involves creating
an address, date, addressee, body, signature, and so on.

In writing a business letter with a computer, the user has to integrate

smoothly the three forms of knowledge. The user must have the

high—level concept of writing (task action) a letter (task object), recognize

that the letter will be stored as a file (computer object), and know the

details of the save command (computer action and syntactic

knowledge). The user must be fluent with the middle—leve1 concept of

composing a sentence and must recognize the mechanism for beginning,

writing, and ending a sentence. Finally, the user must know the proper

low—1evel details of spelling each word (task), comprehend the motion of

the cursor on the screen (computer concept), and know which keys to

press for each letter (syntactic knowledge).

Integrating the three forms of knowledge, the objects and actions, and

the multiple levels of semantic knowledge is a substantial challenge that
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takes great motivation and concentration. Learning materials that

facilitate the acquisition of this knowledge are difficult to design,

especially because of the diversity of background knowledge and

motivation levels of typical learners. The syntactic/semantic model of

user knowledge can provide a guide to educational designers by

highlighting the different kinds of knowledge that users need to acquire

(see Chapter 9).

Designers of interactive systems can apply the syntactic/semantic model

to systematize their efforts. Where possible, the semantics of the task

objects should be made explicit and the user’s task actions should be laid

out clearly. Then the computer objects and actions can be identified,

leaving the syntactic details for the end. In this way, designs appear to

be more comprehensible to users and more independent of specific
hardware.

2.3 PRINCIPLES: RECOGNIZE THE DIVERSITY

The remarkable diversity of human abilities, backgrounds, cognitive

styles, and personalities challenges the interactive system designer.

When multiplied by the wide range of situations, tasks, and frequencies

of use, the set of possibilities becomes enormous. The designer can

respond by choosing from a spectrum of interaction styles.

A preschooler playing a graphic computer game is a long way from a

reference librarian doing bibliographic searches for anxious and hurried

patrons. Similarly,\‘a professional programmer using a new operating

system is a long way from a highly trained and experienced air traffic

controller. Finally, a student learning from a computer—assisted

instruction lesson is a long way from a hotel reservations clerk serving

customers for many hours a day.

These sketches of users highlight the differences in background

knowledge, training in the use of the system. frequency of use, goals of

the user, and the impact of a user error. No single design could satisfy

all these users and situations. so before beginning a design. the

characterization of the users and the situation must be precise and

complete.
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2.3.1 Usage profiles

“Know the user” was the first principle in Hansen’s (1971) list of user

engineering principles. It's a simple idea, but a difficult goal and,

unfortunately, an often undervalued goal. No one would argue against

this principle, but many designers assume that they understand the users

and their tasks. Successful designers are aware that other people learn,
think, and solve problems in very different ways (see Section 1.5). Some

users really do have an easier time with tables than graphs. with words

instead of numbers, with slower rather than faster display rates, or with a
rigid structure rather than an open—ended form. '

It is difficult for most designers to know whether boolean expressions

are too difficult a concept for library patrons at a junior college, fourth

graders learning programming, or professional electric power utility
controllers.

All design should begin with an understanding of the intended users,

including profiles of their age, sex, physical abilities, education, cultural

or ethnic background, training, =motivation, goals, and personality. There

are often several communities of users for a system, so the design effort

is multiplied. In addition to these profiles, users might be tested for such

skills as comprehension of boolean expressions, knowledge of set theory,

fluency in a foreign language, or skills in human relationships. Other

tests might cover such task—specific abilities as knowledge of airport city

codes, stockbrokerage terminology, insurance claims concepts, or map
1COI1S.

The process of knowing the user is never ending, because there is so

much to know and because the users keep changing. Every step in

understanding the users and in recognizing them as individuals whose

outlook is different from the designer’s own is likely to be a step closer
to a successful design.

For example, a generic separation into novice, knowledgeable

intermittent, and frequent users might lead to these differing design goals:

Novice users: This community is assumed to have no syntactic

knowledge about using the system and probably little semantic knowledge

of computer issues. They may even have shallow knowledge of the task

and, worse still, they may arrive with anxiety about using computers that
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inhibits learning. Overcoming these limitations is a serious challenge to

the designer. Restricting vocabulary to a small number of familiar,
consistently used terms is essential to begin developing the user’s
knowledge of the system. The number of possibilities should be kept
small and the novice user should be able to carry out a few simple tasks

to build confidence, reduce anxiety, and gain positive reinforcement from

success. Informative feedback about the accomplishment of each task is

helpful, and constructive, specific error messages should be provided
when errors do occur. Carefully designed paper manuals and step-by—step

online tutorials may be effective. '

Knowledgeable intermittent users: Many people will be

knowledgeable but intermittent users of a variety of systems. They will
be able to maintain the semantic knowledge of the task and the computer

concepts, but they will have difficulty maintaining the syntactic
knowledge. The burden of memory will be lightened by simple and
consistent structure in the command language, menus, terminology, and

so on, and by the use of recognition rather than recall. Consistent

sequences of actions, meaningful messages, and frequent prompts will all
help to assure knowledgeable intermittent users that they are performing
their tasks properly. Protection from danger is necessary to support

relaxed exploration of features or attempts to invoke a partially forgotten
command. These users will benefit from online help screens to fill in

missing pieces of syntactic or computer semantic knowledge.
Well-organized reference manuals will also be useful.

Frequent users: The knowledgeable “power” users are thoroughly
familiar with the syntactic and semantic aspects of the system and seek to

get their work done rapidly. They demand rapid response times, brief
and less distracting feedback, and the capacity to carry out actions with

just a few keystrokes or selections. When a sequence of three or four
commands is performed regularly, the frequent user is eager to create a
macro or other abbreviated form to reduce the number {of steps. Strings

of commands, shortcuts through menus, abbreviations, and other

accelerators are requirements.

These characteristics of these three classes of usage must be refined for

each environment. Designing for one class is easy; designing for several
is much more difficult.
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When multiple usage classes must be accommodated in one system, the

basic strategy is to permi_t a level-structured (some times called layered or
spiral approach) to learning. Novices can be taught a minimalsubset of
objects and actions with which to get started, After gaining confidence

from hands—on experience, the users can progress to ever greater levels of
semantic concepts and the accompanying syntax.’ The learning plan
shouldlbe governed by the progress through the task semantics. For users
with ‘strong knowledge of the task and computer semantics, rapid
presentation of syntactic details is possible.

For example, novice users of a bibliographic search system might be
taught author or title searches first, followed by subject searches that
require boolean combinations of queries. ‘The progress is governed by
the task domain, notby commands. ,

The level—structured approach must be carried out not only in the
design of the software, but also in the user manuals, help screens, error
messages, and tutorials. M V

Another approach ‘ to accommodating different usage classes is to
permit user control of the density of informative feedback that the system
provides. Novices want more informative feedback to confirm their
actions, whereas frequent users ‘want less distracting feedback. Similarly,
it seems that frequent users prefer more densely packed displaysvthan do
novices. Finally, the pace of interaction may be varied from slow for
novices to fast for frequent users, ‘ - '

2.3.2 Task profiles

After carefully drawing the user profile, the tasks must be identified.

Task analysis ‘has a long, ‘but mixed history (Bailey, 1982). Every
designer would agree that the set of-tasks must'be decided on before
design can proceed, but too often the task analysis is done informally or
implicitly. If implementers find that another command can be added, the
designer is often tempteduto include the command in the hope that some
users will find it helpful. Design or implementation convenience should
not dictate system functionality or command features.

High—level task actions can be decomposed into multiple middle—level
task actions that can be further refined into atomic actions that the user
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executes with a single command. menu selection, and so on. Choosing
the most appropriate set of atomic actions is a difficult task. lf the
atomic actions are too small, the users will become frustrated by the large
number of actions necessary to accomplish a higher level task. If the

atomic actions are too large and elaborate, the users will need many such

actions with special options, or they will not be able to get exactly what

they want from the system.

The relative task frequencies will be important in shaping a set of

commands, a menu tree. etc. Frequently performed tasks should be
simple and quick to carry out. even at the expense of lengthening some
infrequent tasks. V "L

Relative frequency of use is one of the bases for making architectural
design decisions. For example, in a text editor:

Frequent actions might be performed by special keys, such
as the four cursor arrows, the INSERT, and the DELETE

key.

lntermediate frequency actionslmight be performed by a
single letter plus the CTRL key. or by a selection from a
pull—down 'menu. Examples include underscore. Center.
indent, subscript, or superscript.

Less frequent actions might require going to a command
mode and typing the command name; for example, MOVE
BLOCK or SPELLING CHECK.

Still less frequent actions or complex actions might require
going through a sequence of menu selections or form
fill—ins; for example, to change the printing format or to

revise network protocol parameters.

A matrix of users and tasks can help sort out these issues (Figure 2.3).

In each box, the designer can put a check mark to indicate that this user
carries out this task. A more precise analysis would lead to inclusion of

frequencies instead of simple check marks. '
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FREQUENCY OF TASK BY JOB TITLE

Task

Query by Update Query Add Evaluate
Patient Data across Relations System

Patients

Job title

Nurses

Physicians

Supervisors

Appointments personnel
Medical record

maintainers . . .04 .01
Clinical researchers _ .08

Database programmers .02 .02 .05

Figure 2.3: Hypothetical frequency of use data for a medical clinic information

system. Queries by patient from appointments personnel are the highest
frequency task.

2.3.3 Interaction styles

When the task analysis is complete and the semantics of the task

objects and actions can be identified, the designer can choose from these

primary interaction styles (Table 2.1):

- menu selection

° form fill—in

* command language

° natural language

- direct manipulation.

Chapters 3 through 5 explore these styles in detail, but first a

comparative overview sets the stage.
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INTERACTION STYLE

Aiai/ANT'A'c;Es DISADVANTACES

Menu selection

shortens learnin‘g‘ danger of many menus

reduces lreystrokes ‘ may slow frequent users
Structures decision-making consumes screen space
permits use of dialdg management requires rapid display rate

tools

easy to support error handling

Form nli,-in_
sirnplifies data entry consumes screen space
requires modest training
assistance is convenient

permits use of form
management tools

Command language
flexibilty poor error handling
appeals to “power” users requires substantial training and
supports user initiative memorization

convenient for creating user
defined macros

Natural language

relieves burden of learning syntax requires clarification dialog
may require more keystrokes

may not show context
unpredictable

Direct Manipulation

visually presents task concepts may be hard to program
easy to learn may require graphics display
easy to retain and pointing devices
errors can be avoided I

encourages exploration

high subjective satisfaction 

Table 2.1: Advantages and disadvantages of the five primary interaction styles.
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Menu selection: The users read a list of items. select the one most

appropriate to their task, apply the syntax to indicate their selection,
confirm the choice, initiate the action, and observe the effect. If the

terminology and meaning of the items are understandable and distinct,

then the users can accomplish their task with little learning or

memorization and few keystrokes. The greatest benefit may be that there

is a clear structure to decision making since only a few choices are

presented at a time. This interaction style is appropriate for novice and

intermittent users and can be appealing to frequent users if the display

and selection mechanisms are very rapid.

For designers, menu selection systems require careful task analysis to

ensure that all functions are supported conveniently and that terminology

is chosen carefully and used consistently. Dialog management tools to

support menu selection are an enormous benefit in ensuring consistent

screen design, validating completeness, and supporting maintenance.

Form fill-in: When data entry is required, menu selection usually

becomes cumbersome, and form fill—in (also called fill—in—the—blanks) is

appropriate. Users see a display of related fields, move a cursor among
the fields, and enter data where desired. With the form fill—in interaction

style, the users must understand the field labels, know the permissible

values and the data entry method, and be capable of responding to error

messages. Since knowledge of the keyboard, the labels, and permissible

fields is required, some training may be necessary. This interaction style

is most appropriate for knowledgeable intermittent users or frequent

users. Chapter 3 provides a thorough treatment of menus and form
fill—in.

Command language: For frequent users, command languages provide

a strong feeling of locus of control and initiative. The users learn the

syntax and can often express complex possibilities rapidly, without

having to read distracting prompts. However, error rates are typically

high, training is necessary, and retention may be poor. Error messages

and online assistance are hard to provide because of the diversity of

possibilities plus the complexity of mapping from tasks to computer

Concepts and syntax. Command languages and lengthier query or

programming languages are the domain of the expert frequent users who

often derive great satisfaction from mastering a complex set of semantics
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and syntax. Chapter 4 covers command languages and natural language
interaction in depth.

Natural language: The hope that computers will respond properly to
arbitrary natural language sentences or phrases engages many researchers

and system developers, in spite of limited success thus far. Natural

language interaction usually provides little context for issuing the next

command, frequently requires “clarification dialog.” and may be slower
and more cumbersome than the alternatives. Still, where users are

knowledgeable about a task domain whose scope is limited and where

intermittent use inhibits command language training, there exist
opportunities for natural language interfaces.

Direct manipulation: When a clever designer can create a visual

representation of the world of action, the users’ tasks can be greatly
simplified by allowing direct manipulation of the objects of interest.
Examples include display editors, LOTUS 1—2—3, air traffic control

systems, and video games. By pointing at visual representations of

objects and actions, users can rapidly carry out tasks and immediately
observe the results. Keyboard entry of commands or menu choices is

replaced by cursor motion devices to select from a visible set of objects

and actions. Direct manipulation is appealing to novices,_ easy to

remember for intermittent users, and with careful design it can be rapid
for frequent users. Chapter 5 describes direct manipulation and its
applications;

Blending several interaction styles may be appropriate when the

required tasks and users are diverse. Commands may lead the user to a

form fill—in where data entry is required or menus may be used to control
a direct manipulation environment when a suitable visualization of actions
cannot be found.

2.4 EIGHT GOLDEN RULES OF DIALOG DESIGN

Later chapters cover constructive guidance for design of menu selection,

command languages, and so on. This section presents underlying
principles of design that are applicable in most interactive systems.
These underlying principles of interface design include:
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Strive for consistency. This principle is the most frequently

violated one, and yet the easiest one to repair and avoid.

Consistent sequences of actions should be required in

similar situations, identical terminology should be used in

prompts, menus, and help screens. and consistent

commands should be employed throughout. Exceptions,

such as nonprinting of passwords or no abbreviation of the

DELETE command, should be comprehensible and limited
in number.

Enable frequent users to use shortcuts. As the frequency of

use increases, so does the desire to reduce the number of

interactions and increase the pace of interaction.

Abbreviations, special keys, hidden commands, and macro

facilities are appreciated by frequent knowledgeable users.

Shorter response times and faster display rates are other

attractions for frequent users.

Ofler informative feedback. For every operator action there

should be some system feedback. For frequent and minor

actions the response can be very modest, whereas for

infrequent and major actions the response should be more

substantial. Visual presentation of the objects of interest

provides a convenient environment for explicitly showing

changes (see direct manipulation in Chapter 5).

Design dialogs to yield closure. Sequences of actions

should be organized into groups with a beginning, middle,

and end. The informative feedback at the completion of a

group of actions gives the operator the satisfaction of

accomplishment, a sense of relief, the signal to drop

contingency plans and options from his/her mind, and an

indication that the way is clear to prepare for the next group
of actions.

Ofier simple error handling. As much as possible, design

the system so the user cannot make a serious error. If an

error is made, try to have the system detect the error and

offer simple, comprehensible mechanisms for handling the

error. The user should not have to retype the entire

61
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command, but only need repair the faulty part. Erroneous

commands should leave the system state unchanged or give
instructions about restoring the system.

Permit easy reversal of actions. As much as possible,

actions should be reversible. This relieves anxiety since the

operator knows that errors can be undone, and encourages

exploration of unfamiliar options. The units of reversibility

may be a single action,’ a data entry, or a complete group of
actions.

Support internal locus of control. Experienced operators

strongly desire the sense that they are in charge of the
system and that the system responds to their actions.

Surprising system actions, tedious sequences of data entries,

incapacity or difficulty in obtaining necessary information,

and the inability to produce the action they want all build

anxiety and dissatisfaction. Gaines (1981) captured part of

this principle with his rule to “avoid acausality” and his
encouragement to make users the initiators of actions rather

than the responders.

Reduce short-term memory load. The limitation of human

information processing in sho1t—term memory (“seven plus

or minus two chunks”) requires that displays be kept

simple, multiple page displays be consolidated, frequent

window motion be reduced, and sufficient training time be

permitted for codes, mnemonics, and sequences of actions.

Where appropriate, online access to command syntax forms,
abbreviations, codes, and other information should be

provided.

These ‘underlying principles must be interpreted, refined, and extended

for each environment. The principles presented in the ensuing sections

focus on increasing the productivity of users by providing simplified data

entry procedures, comprehensible displays, and rapid informative

feedback that increase feelings of competence, mastery, and control over
the system.
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2.5 PREVENTING ERRORS

Users of text editors, database query facilities, air traffic control
systems, and other interactive systems make ‘mistakes far more frequently
than might be expected. Ledgard et al. (1980) found that novice users of
a 15-command subset of a text editor made mistakes» in 19 percent of
their commands._ Experienced users made mistakes in 10 percent of their

commands. In a more demanding environment, Card et al. (1980)
reported that experienced professional users of text editors and operating
systems made mistakes or used inefficient strategies in 31 percent of the
tasks assigned to them. Barber (1979) found that professional workers in

a challenging decision—making job made errors in 7 percent to 46 percent
of their transactions, depending on the response time of the computer

system. Other studies are beginning to reveal the magnitude of the

problem and the loss of productivity due to user errors.

One direction for reducing the loss in productivity due to errors is to
improve the error messages provided by the computer system.
Shneiderman (1982) reported on five experiments in which changes to

error messages led to improved success at repairing the errors, lower
error rates, and increased subjective satisfaction. Superior error messages

were more specific, positive in tone, and constructive (telling the user

what to do, rather than merely reporting the problem). Rather than vague
and hostile messages, such as SYNTAX ERROR or ILLEGAL DATA,

designers were encouraged to use informative messages, such as
UNMATCI-lE.'D LEFT FARENTHESIS or MENU CHOICES ARE IN

THE RANGE OF‘ 1 TO 6.

But improved error messages are only helpful medicine. A more
effective approach is to prevent the errors from occiirring. This goal is

more attainable than it may seem in many systems.

The first step is to understand the nature of errors. One perspective is
that people make mistakes or “slips” (Norman, 1983) that can be avoided
by organizing screens and menus functionally, designing commands or
menu choices to be distinctive, and making it difficult for users to do

irreversible actions. Norman offers other guidelines such as “do not have
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modes,” offer feedback about the state of the system, and design for
consistency of commands. Norman’s analysis provides practical
examples and a useful theory. The ensuing sections refine his analysis
and describe three specific techniques for reducing errors by ensuring
complete and correct actions: correct matching pairs, complete sequences,
and correct commands.

2.5.1 Techniques for ensuring correct actions

Correct matching pairs. This is a common problem with many
manifestations and several simple prevention strategies. Examples
include the failure to provide:

the right parenthesis to close an open left parenthesis.

If a bibliographic search system allowed boolean‘
expressions such as

COMPUTERS AND (PSYCHOLOGY OR SOCIOLOGY)

and the user failed to provide the right parenthesis at the
end, the system would produce a SYNTAX ERROR

message or hopefully a more meaningful message such as
UNMATCHED LEFT FARENTHESES.

the ” to close a string in BASIC. The command lO

PRINT "HELLO" is in error if the rightmost ” is missing.
the @B or other markers to close a boldface, italic, or

underscored text in word processors. 7 If the text file

contains @BThis is boldface(_DB then the three

words between the @B markers appear in boldface on the

printer. If the rightmost @B is missing, then the remainder
of the file is printed in boldface. ’

the termination of a centering command in a text formatter.

Some text formatters have a pair of commands such as .ON

CENTER and .OFF‘ CENTER surrounding lines of text to
be centered. The omission of the latter command causes
the entire file to be centered.
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In each of these cases, a matching pair of markers is necessary for

operation to be complete and correct. The omission of the closing

market can be prevented by using an editor, preferably screen—oriented,

that puts both the beginning and ending components of the pair on the
screen in one action. For example, typing a left parenthesis generates a

left and right parenthesis and puts the cursor in between to allow creation

of the contents. An attempt to delete one of the parentheses will cause

the matching parenthesis (and possibly the contents as well) to be deleted.
Thus, the text can never be in a syntactically incorrect form.

Some people find this rigid approach to be too restrictiveand may

prefer a milder form of protection. When the user types a left

parenthesis, the screen displays a message in the lower left corner
indicating the need for a right parenthesis, until it is typed.

Another approach is to replace the requirement for the ending marker.

Many microcomputer versions of BASIC do not require an ending ” to

terminate a string. They use a carriage return to signal the closing of a

string. Variants of this theme occur in line-oriented text editors that
allow omission of the final / in a CHANGE /OLD STRING/NEW

STRING/ command. Many versions of LISP offer a special character,

usually a ‘right square bracket, to terminate all open parentheses.

In each of these cases, the designers have recognized a frequently

occurring error and have found a way to eliminate the error situation.

Complete sequences. Sometimes an action requires several steps or

commands to reach completion. Since people may forget to complete

every step of an action, designers attempt to offer a sequence of steps as

a single action. In an automobile, the driver does not have to set two

switches to signal a left turn. A single switch causes both turn signal

lights on the left side of the car to flash. When a pilot lowers the landing

gear, hundreds of steps and checks are invoked automatically.

This same concept can be applied to interactive uses of computers.

For example:

- dialing up, setting communication parameters, logging on,

and loading files is a frequently executed sequence for

many users. Fortunately, most comrnunications software
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packages enable users to specify these processes once and

then execute them by simply selecting the appropriate
name. _
programming. language, loop constructs require ,a
WHILE—D0—BEGIN—END,. or F‘OR'—-NEXT structure, , but
sometimes users forget to put the complete structure in'or
delete one component but not the other components. One

solution would be for ‘users to indicate that they wanted a
loop, and the system couldsupply the complete and correct

syntax, that would be filled in‘ by the user. This approach
reduces typing and the possibility of making a typographical
error or a slip, such as the omission of one component.

Conditional constructs require an IF—THEN—ELSE or

CASE—OF‘—-END structure; but again, users may forget a
component when creating or deleting. Here again, if users
could indicate that they wanted a conditional construct, the
system could provide the syntactic template and prompt for

the contents to be filled in (Teitelbatim & Reps, I981).

programming plans (Soloway et al., 1982) may contain
several components that must be created and deleted one

component at a time. The counter plan requires a data
declaration of the integer variable, initialization to zero;

incrementation, and a test. If the user could indicate thata
counter plan is desired, then the system could provide the
complete template, prompt the user for inclusion of each
component, or merely remind the user of the need to

complete the plan.

a user of a text editor should be able to indicate that section

titles are to be centered, in upper case, and underlined
without having to issue a series of commands each time a

section title is entered. Then if a change is made _in style,
for example, to eliminate underlining, a single command

would guarantee t_hat all commands were made correctly.

air traffic controllers may formulate plans to change the
altitude of a plane from 14,000 feet to 18,000 feet in two

steps, but after raising the plane to 16,000 feet, the
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controller may get distracted and fail to complete the action.

The controller should be able to record the plan and then

have the computer prompt for completion.

The notion of complete sequences of actions may be difficult to

implementibecause users may need to issue atomic actions as well as
complete sequences. In this case, users should be allowed to define

sequences of their own—the macro or subroutine concept should be
available at every level of usage.

Designers can gather information about potential complete sequences

by studying sequences of commands actually issued and the pattern of
errors that people actually make.

Correct commands. Industrial designers recognize that successful

products must be safe and must prevent the user from making incorrect
use of the product. Airplane engines cannot be put into reverse until the
landing gear have touched down, and cars cannot be put into reverse
while traveling forward at faster than five miles per hour. Cameras

prevent double exposures, even though this is sometimes desired, and
appliances have interlocks to prevent tampering while the power is on,
even though expert users occasionally need to perform diagnoses.

The same principles can be applied to interactive systems. Consider
these typical errors made by the users of computer systems: they invoke a
command that is not available, make a menu selection choice that is not

permitted, request a file that does not exist, or enter a data value that is
not acceptable. These errors are often caused by annoying typographic
errors, such as using an incorrect command abbreviation, pressing a pair

of keys rather than a desired single key, misspelling a file name, or
making a minor error such as omitting, inserting, or transposing
characters. Error messages range from the annoyingly brief ? or WHAT?

to the vague UNRECOGNIZED COMMAND or SYNTAX ERROR to the
condenming BAD FILE NAME or ILLEGAL COMMAND. The brief ‘.7 is
suitable for expert users who have made a trivial error and can recognize
it when they see the command line on the screen. But if an expert has
ventured to use a new command and has misunderstood its operation,

then the brief message is not helpful even for experts.
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Whoever made the mistake and whatever were its causes, users must

interrupt their planning to deal with the problem and their frustration in

not getting what they wanted. As long as a command must be made up
of a series of keystrokes on a keyboard, there is a substantial chance of

making an error in entering the sequence of keypresses. Some

keypressing sequences are more error—prone than others, especially those

that require shifting or unfamiliar patterns. Reducing the number of

keypresses can help, but it may place a greater burden on learning and

memory since an entry with reduced keystrokes; for example, RM may be

more difficult to remember than the full command name REMOVE (see
Chapter 4).

Some systems offer automatic command completion that allows the
users to type just a few letters of a meaningful command. The users may

request the computer to complete the command by pressing the space bar

or the computer may complete it as soon as the input is sufficient to

distinguish the command from others. Automatic command completion

can save keystrokes and is appreciated by many users, but it can also be

disruptive because the user must consider how much to type for each

command and must verify that the computer has made the completion that
was intended.

Another approach is to have the computer offer the permissible
commands, menu choices, or file names on the screen and let the user

select with a pointing device, such as a mouse, lightpen, or arrow keys.

This is effective if the screen has ample space, the display rate is rapid,

and the pointing device is fast and accurate. When the list grows too

long to fit on the available screen space, some approach to hierarchical
decomposition must be used.

Imagine that the twenty commands of an operating system were

constantly displayed on the screen. After selecting the PRINT command

(or icon), the system automatically offers the list of thirty files for
selection. Two lightpen, touchscreen, or mouse selections can be done in

less time and with higher accuracy than can typing the command PRINT
JAN—JUNE—EXPENSES.

In principle, a programmer need type a variable name only once.

After it has been typed, the programmer can selectit, thus eliminating the

chance of a misspelling and an UNDECLARED VARIABLE message.
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It is not always easy to convert a complex command into a small

number of selections and reduce errors. Pointing devices are often crude,

slow, and annoying to use. The Xerox Star and the Apple Macintosh are

successful and practical applications of these concepts, but there is still

room for further invention and application of this concept.

2.6 GUIDELINES: DATA DISPLAY

Guidelines for display of data are being developed by many
organizations. A guidelines document can help by promoting consistency
among multiple designers, recording practical experience, incorporating
the results of empirical studies, and offering useful rules of thumb. The

creation of 21 guidelines document engages the design community in a

lively discussion of input or output formats, command sequences,
terminology, and hardware devices‘ (Lockheed, 1981; Gaines & Shaw,
1984; Rubinstein & Hersh, 1984; Brown, 1986).

2.6.1 Organizing the display

Smith and Mosier (1984) offer five high-level objectives for data
display (page 93):

Consistency of data display. This principle is frequently

violated, but it is easy to repair. During the design process,

the terminology, abbreviations, formats, and so on should

all be standardized and controlled by using a written (or
computer—managed) dictionary of these items.

Eflicient information assimilation by the user. The format

should be familiar to the operator and related to the tasks

required to be performed with this data. This objective is

served by rules for neat columns of data, left justification

for alphanumeric data, right justification of integers, lining

up decimal points, proper spacing, comprehensible labels‘,

and appropriate use of coded values.
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Minimal memory load on user. Do not require users to
remember information from one screen for use on another

screen. Arrange tasks such that completion occurs with few

commands, minimizing the chance of forgetting to perform

a step. Provide labels and common formats for novice or
intermittent users.

Compatibility of data display with data entry. The format

of displayed information should be clearly linked to the

format of the data entry.

5. Flexibility for user control of data display. Users can get
the information in the form most convenient for the task

they are working on.

This compact set of high—level objectives is a useful starting point, but

each project needs to expand these into application—specific and

hardware—dependent standards and practices. For example, these detailed

comments for control room design come from a report from the Electric

Power Research Institute (Lockheed, 1981):

be consistent in labeling and graphic conventions
standardize abbreviations

use consistent format in all displays (headers, footers,

paging, menus, etc.)

present a page number on each display page and allow

actions to call up a page by entering its page number

present data only if they assist the operator

present information graphically, where appropriate, using

widths of lines, positions of markers on scales, and other

techniques that relieve the need to read and interpret

alphanumeric data

present digital values only when knowledge of numerical

value is actually necessary and useful

use high resolution monitors and maintain them to provide

maximum display quality

design a display in monochromatic form, using spacing and
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arrangement for organization; and then judiciously add color

where it will aid the operator

involve operators in the development 'of new displays and
procedures.

Chapter 8 further discusses data display issues.

2.6.2 Getting the user’s attention

Since substantial information may be presented to users for the normal

performance of their work, _exceptional conditions or time-dependent
information must be presented so as to attract attention. Multiple
techniques exist for attention getting:

Intensity: use two levels only.

Marking: underline, enclose in a box, point to with an
arrow, or use an indicator such as an asterisk, bullet, dash,

or an X. _

Size: use up to four ‘sizes.
Choice of fonts: use up to three fonts.

Inverse video: use normal or inverse;

Blinking: use blinking or nonblinking (2-4 hertz).

Color: use up to four standard colors, with additional colors
reserved for occasional use. ,

Audio: use soft tones for regular positive feedback, harsh
sounds for rare emergency conditions.

A few words of caution are necessary. There is a danger in creating

cluttered displays by overuse of these techniques. Novices need simple,

logically organized, and well-labeled displays that guide their actions.
Expert operators do not need extensive labels on fields; subtle

highlighting or positional presentation is sufficient. Display formats must

be tested with users for comprehensibility.
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Similarly highlighted items will be perceived as being related. Color
coding is especially powerful in linking related items, but then itbecornes
more difficult to cluster items across color codes. Operator control over
highlighting, for example, allowing the operator in an air traffic control
environment to assign orange to aircraft above 18,000 feet, may provide
a useful resolution to concerns about personal preferences. Highlighting
can be accomplished by intensity, blinking, or other methods.

Audio tones can provide informative feedback about progress, such as
the clicks in keyboards or ringing sounds in telephones, Alarms for
emergency conditions do_rapidly alert operators, but a mechanism to
suppress alarms must be provided, Testing is necessary to ensure that
operators can distinguish among alarm levels. Prerecorded or synthesized
messages are an intriguing alternative, but since they may interfere with
communications among operators they should be used cautiously.

2.7 GUIDELINES: DATA ENTRY

Data entry tasks can occupy a substantial fraction of the operator’s time
and are the source of frustrating and potentially dangerous errors. Smith
and Mosier (1984) offer five high—level objectives for data entry (page
19):

1. Consistency of data entry transactions. Similar sequences of
actions under all conditions; similar delimiters,
abbreviations, etc.

Minimal input actions by user. Fewer input actions mean
greater operator productivity ‘and usually less chance for

error. Making a choice by a single keystroke, lightpen
touch, finger press, e'tc., rather than by typing in a lengthy
string of characters is potentially advantageous. Selecting
from a list of choices eliminates the need for memorization,
structures the decision—making task, and eliminates‘ the

possibility of typographic errors. However, if the operators
must move their hands from a keyboard to a separate input
device, the advantage is defeated, because home row
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position is lost. Experienced operators often prefer to type

six to eight characters instead of moving to. a lightpen,
joystick, or other selection device.

‘A second aspect of this guideline is that redundant data

entry should be avoided. It is annoying for an operator to

enter the same information in two locations since it is
perceived as a waste of effort and an opportunity for error.
When the same information is required in two places, the

system should copy the information for the operator, who

still has the option of overriding by retyping.

Minimal memory load on user. Reduce the need for the

operator to remember lengthy lists of codes and complex

syntactic command strings.

Compatibility of data entry with data display. The format‘

of data entry information should be closely linked to the
format of displayed information.

Flexibility for user control of data entry, Experienced
operators may prefer to enter information in a sequence they
can control. On some occasions in an air traffic control

environment, the arrival time is the prime field in the
controller’s mind. .On other occasions, the altitude is the

prime field. Flexibility should be used cautiously since it

goes against the consistency principle.’

2.8 PROTOTYPING AND ACCEPTANCE TESTING

A critical component of clear thinking about interactive system design

is the replacement of the vague and misleading notion of “user

friendliness” with the five measurable quality criteria:

' time to learn

- speed of performance

' rate of errors by users
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- subjective satisfaction

- retention over time.

Once the decision about the relative importance of each of the human
factors quality criteria has been made, specific measurable objectives
should be established to inform customers and users and to guide
designers and implementers. The acceptance test plan for a system
should be included in the requirements document and should be written
before the design‘ is made. Hardware and software test plans are
regularly included in requirements documents; extending the principle to
human interface development is natural (see Chapter 10);

The requirements document for a word processing system might
include this acceptance test: A

The subjects willbe 35 secretaries hired from an employment agency
with no word processing experience,“ but typing skills in‘ the 35 to 50
words per minute range. They will be given 45 minutes of‘training on
the basic features. At least 30 of the 35 secretaries should be able to
complete 80 percent of the typing and editing tasks in the enclosed
benchimark test correctly within 30 minutes. A

Another testable requirement for the same system might be:
After four half days of regular use of the system, 25 out of these 35
secretaries should be able to carry out the advanced editing tasks in the
second benchmark test within 20 minutes while making fewer than sixerrors.

This second acceptance test captures performance after regular use.
Thehchoice of the’ benchmark tests is critical and highly system
dependent. The test materials and procedures must also be refined by
pilot testing before. use.

VA third item in the acceptance test plan might focus on retention:
After two weeksfat least 15 of the test subjects should be recalled and
be required to perform the third benchmark test. In 40 minutes, at
least 10 of the subjects must be able to complete 75 percent of the
tasks correctly. ’ ‘

Such performance tests constitute the definition of “user friendly” for
this system. By having an explicit definition, both the managers and the
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designers will have a clearer understanding of the system goals and

whether they have succeeded. The presence of a precise acceptance test

plan will force greater attention to human factors issues during the design

and ensure that pilot studies are run to determine if the project can meet
the test plan goals.

In a programming workstation project, the early requirement for

performance helped shape the nature of the interface. That requirement
was:

New professional programmer users should be able to sign on, create a

short program, and execute it against a stored test data set, without
assistance and within 10 minutes.

Specific goals in acceptance tests are useful, but competent test

managers will notice and record anecdotal evidence, suggestions from

participants, subjective reactions of displeasure or satisfaction, their own

comments, and exceptional performance (both good and bad) by

individuals. The precision of the acceptance test provides an environment

in which unexpected events are most noticeable.

2.9 BALANCE OF AUTOMATION AND HUMAN

CONTROL

The principles in the previous sections are in harmony with the goal of

simplifying the user’s task—eliminating human actions when no judgment

is required. The users can then avoid the annoyance of handling routine,

tedious, and error-prone tasks and can concentrate on critical decisions,

planning, and coping with unexpected situations. The computers should

be used to keep track of and retrieve large volumes of data, follow preset
patterns, and carry out complex mathematical or logical operations (Table

2.2 has a detailed comparison of human and machine capabilities).

The degree of automation will increase over the years as procedures

become more standardized, hardware reliability increases, and software

verification and validation improves. With routine tasks, automation is

preferred since the potential for error may be reduced. However, I

believe that there will always be a critical human role because the real
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Humans Generally Better Machines Generally Better 
Sense low level stimuli

Detect stimuli in noisy background
Recogniie constant patterns in varyingsituations

Senseunusual and unexpected events

Remember principles and strategies

Retrieve pertinent details without a priori
connection

Draw upon experience & adapt decisions to
situation

Select alternatives if original approach fails
Reason inductively: generalize from

observations

Act in unanticipated emergencies & novel
situations

Apply principles to solve varied problems
Make subjective evaluations
Develop new solutions
Concentrate on important tasks when

overload occurs

Adapt physical response to changes in
situation

Sense stimuli outside human’s range
Count or measure physical quantities

Store quantities of coded information
accurately

Monitor prespecitied events, especially
infrequent

Make rapid and consistent responses to
input signals

Recall quantities of detailed information
accurately

Process quantitative data in prespecified
ways

Perform repetitive preprogrammed actions
reliably

Exert great, highly controlled physical force

Perform several activities simultaneously
Maintain operations under heavy

information load

Maintain performance over extended
periods of time

Table 2.2. Relative capabilities of humans and machines. (Compiled from Brown, C.
Marlin Human—Computer Interface Design Guidelines, New Jersey: Ablex Publishing
Company, 1986; McCormick, E.J. Human factors engineering. New York: McGraw-Hill,
1970, pp. 20-21; and Estes, W.K. Is human memory obsolete? American Scientist.
1980, 68, pp. 62-69.)

world is an “open system” (there are a nondenumerable number of

unpredictable events and system failures). By contrast, computers
constitute a “closed system” (there are only a denumerable number of
predictable normal and failure situations that can be accommodated in

hardware and software). Human judgment is necessary for the
unpredictable events in which some action must be taken to preserve
safety, avoid expensive failures, or increase product quality.
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For example, in air traffic control, common operations include changes

to altitude, heading, or speed. These are well understood and potentially

automatable by a scheduling and route allocation algorithm, but the

operators must be present to deal with the highly variable and

unpredictable emergency situations. An automated system might

successfully deal with high volumes of traffic, but what would happen if

the airport manager changed runways because of turbulent weather? The

controller would have to reroute planes quickly. But suppose one pilot

called in to request special clearance to land because of a failed engine

while a second pilot reported a passenger with a potential heart attack.

Human judgment is necessary to decide which plane should land first and

how much costly and risky diversion of normal traffic is appropriate.

The air traffic controller cannot just jump into the emergency; he or she

must be intensely involved in the situation in order to make an informed,

rapid, and optimal decision. In short, the real world situation is so

complex that it is impossible to anticipate and program for every

contingency; human judgment and values are necessary in the

decision—making process.

Another example of the complexity of real world situations in air

traffic control emerges from an incident in May, 1983. An Air Canada

Boeing 727 jet had a fire on board, and the controller cleared away traffic

and began to guide the plane in for a landing. The smoke was so bad

that the pilot had trouble reading his instruments and then the onboard

transponder burned out so that the air traffic controller could no longer

read the plane’s altitude from the situation display. In spite of these
multiple failures, the controller and the pilot managed to bring the plane

down quickly enough to save the lives of many, but not all, of the
passengers.

The goal of system design in many applications is to give the operator
sufficient information about current status and activities so that when

intervention is necessary, the operator has the knowledge and the capacity

to perform correctly. Increasingly, the human role will be to respond to

such anomalies as unanticipated situations, failing equipment, improper

human performance, and incomplete or erroneous data (Eason, 1980).

The entire system must be designed and tested, not only for normal
situations, but also for as wide a range of anomalous situations as can be


