

Exhibit 1014 – Part 6 Exhibit 1014 — Part 6

156 Chapter 4 Command Languages

replication is necessary to validate whether the results are consistent when
users must remember and type commands. Factors influencing the results
may be the relative number of commands and objects and the familiarity the
user has with each.

Finally, pilot studies by James Foley at George Washington University
suggest that object first may be more appropriate when using selection by
pointing on graphic displays is used. Different thinking patterns may be
engaged when users are faced with visually oriented interfaces (right brain)
and when they use syntax—oriented command notations (left brain). The

object-first approach also fits conveniently with the strategy of leaving an
object selected (and highlighted) after an action is complete, so that, if the

same object is used in the next action, it is already selected.

4.4.2 Symbols versus keywords

Further evidence that command structure affects performance comes from a
comparison of 15 commands in a commercially used symbol-oriented text

editor, and revised commands that had a more keyword-oriented style
(Ledgard et al., 1980). Here are three sample commands:

Symbol editor

FIND:/TOOTH/;*l

LIST;1O

RS:/KO/,/OK/;*

Keyword editor
BACKWARD TO “TOOTH”

LIST 10 LINES

CHANGE ALL “K0” T0 “OK”

The revised commands performed the same functions. Single-letter abbre-
viations (L; 1 0 or L 1 O L) were permitted in both editors, so the number of
keystrokes was approximately the same. The difference in the revised

commands was that keywords were used in an intuitively meaningful way,
but there were no standard rules of formation. Eight subjects at three levels
of text—editor experience used both versions in this counterbalanced order

within—subjects design.

The results (Table 4.1) clearly favored the keyword editor, indicating that
command—formation rules do make a difference. Unfortunately, no specific
guidelines emerged except that we should avoid using unfamiliar symbols
for new users of a given text editor, even if the users are experienced with
other text editors. It is interesting that the difference in percentage of task
completed between the symbol and keyword editor was small for the
experienced users. One conjecture, supported in other studies, is that

experienced computer users develop skill in dealing with strange notations
and therefore are less affected by syntactic variations.

4.4 The Benefits of Structure 157

Table 4.1

Impact of revised text—editor commands on three levels of users. (Source: Ledgard
et al., 1980.)

Percentage of Percentage of
Task Completed Erroneous Commands

Users Symbol Keyword Symbol Keyword

Inexperienced 28 42 19 1 1
Familiar 43 62 18 6.4

Experienced 74 84 9.9 5.6

4.4.3 Hierarchical structure and congruence

Carroll (1982) altered two design variables to produce four versions of a 16-

command language for controlling a robot (Table 4.2). Commands could be
hierarchical (Verb—object—qualifier) or nonhierarchical (verb only) and con-

gruent (for example, ADVANCE /RETREAT or RIGHT / LEFT) or noncongruent
(GO/ BACK or TURN/ LEFT). Carroll uses congruent to refer to meaningful

pairs of opposites (symmetry might be a better term). Hierarchical structure
and congruence have been shown to be advantageous in psycholinguistic
experiments. Thirty-two undergraduate subjects studied one of the four
command sets in a written manual, gave subjective ratings, and then carried
out paper-and-pencil tasks.

Subjective ratings prior to performing tasks showed that subjects disap-

proved of the nonhierarchical noncongruent form, and gave the highest
rating for the nonhierarchical congruent form. Memory and problem-
solving tasks showed that congruent forms were clearly superior, and that

the hierarchical forms were superior for several dependent measures. Error
rates were dramatically lower for the congruent hierarchical forms.

This study assessed performance of new users of a small command

language. Congruence helped subjects to remember the natural pairs of
concepts and terms. The hierarchical structure enabled subjects to master 16
commands with only one rule of formation and 12 keywords. With a larger
command set—say, 60 or 160 commands—the advantage of hierarchical
structure should increase, assuming that a hierarchical structure could be
found to accommodate the full set of commands. Another conjecture is that
retention should be facilitated by the hierarchical structure and congruence.

Carroll's study was conducted during a half-day period; with 1 week of

regular use, differences probably would be reduced substantially. However,
with intermittent users or with users under stress, the hierarchical congruent
form might again prove superior. An online experiment might have been
more realistic and would have brought out differences in command length

158 Chapter 4 Command Languages

Table 4.2

Command sets and partial results. (Source: Carroll 1982.)

Congruent Noncongruent

Non- Non-
Hierachical hierarchical Hierachical hierarchical

MOVE ROBOT FORWARD ADVANCE MOVE ROBOT FORWARD GO
MOVE ROBOT BACKWARD RETREAT CHANGE ROBOT BACKWARD BACK
MOVE ROBOT RIGHT RIGHT CHANGE ROBOT RIGHT TURN
MOVE ROBOT LEFT LEFT MOVE ROBOT LEFT LEFT
MOVE ROBOT UP STRAIGHTEN CHANGE ROBOT UP UP
MOVE ROBOT DOWN BEND MOVE ROBOT DOWN BEND
MOVE ARM FORWARD PUSH CHANGE ARM FORWARD POKE
MOVE ARM BACKWARD PULL MOVE ARM BACKWARD PULL
MOVE ARM RIGHT SWING OUT CHANGE ARM RIGHT PIVOT
MOVE ARM LEFT SWING IN MOVE ARM LEFT SWEEP
MOVE ARM UP RAISE MOVE ARM UP REACH
MOVE ARM DOWN LOWER CHANGE ARM DOWN DOWN
CHANGE ARM OPEN RELEASE CHANGE ARM OPEN UNHOOK
CHANGE ARM CLOSE TAKE MOVE ARM CLOSE GRAB
CHANGE ARM RIGHT SCREW MOVE ARM RIGHT SCREW
CHANGE ARM LEFT UNSCREW CHANGE ARM LEFT TWIST

Subjective Ratings (1 = Best, 5 : Worst)
1.86 1.63 1.81 2.73

Test 1 14.88 14.63 7.25 11.00
Problem 1 errors 0.50 2.13 4.25 1.63
Problem 1 omissions 2.00 2.50 4.75 4.15

that would have been a disadvantage to the hierarchical forms because of the
greater number of keystrokes required. However, the hierarchical forms could

all be replaced with three-letter abbreviations (for example, MAL for
MOVE ARM LEF T), thereby providing an advantage even in keystroke counts.

4.4.4 Consistency, congruence, and mnemonicity

An elegant demonstration of the importance of structuring principles comes

from a study of four command languages for text editing (Green and Payne,
1984). Language L4 (Figure 4.6) is a subset of the commercial word processor

based on the EMACS editor, but it uses several conflicting organizing

principles. The authors simplified language L3 by using only the CTRL key,
and using congruence and mnemonic naming where possible. Language L2
uses CTRL to mean forward and META to mean backward, but mnemonicity is
sacrificed. Language L1 uses the same meaningful structure for CTRL and
META, congruent pairs, and mnemonicity.

4.4 The Benefits of Structure 159

 'm:

move pointer forward a paragraph
move pointer backward a paragraph
move pointer forward a sentence
move pointer backward a sentence
view next screen

view previous screen
move pointer to next line
move pointer to previous line
move pointer forward a word
move pointer backward a word
redisplay screen
undo last command
kill sentence forward
kill line
delete character forward
delete character backward
delete word forward
delete word backward

move pointer forward a character
move pointer backward a character
move pointer to end of file
move pointer to beginning of file
move pointer to end of line
move pointer to beginning of line
forward string search
reverse string search

Figure 4.6

L1

CTRL-l
META-[
CTRL-S
META-S
CTRL-V
META-V
CTRL-<
META-<
CTRL-W
META—W
CTRL—R
META-G
CTRL-Z
CTRL-K
CTRL-D
META-D
CTRL-DEL
META-D
CTRL-C
META—C
CTRL-F
META—F
CTRL-L
META—L
CTRL—X
META-X

L2

CTRL—A
META—A
CTRL-B
META—B
CTRL—C
META—C
CTRL-D
META-D
CTRL—E
META-E
CTRL-F
META-G
CTRL-H
CTRL-I
CTRL-]
META-I
CTRL-K
META-K
CTRL-L
META—L
CTRL—M
META-M
CTRL—N
META-N
CTRL-O
META-O

L3

CTRL-]
CTRL-l
CTRL-)
CTRL-(
CTRL-V
CTRL-~"
CTRL—N
CTRL-F
CTRL-l
CTRL-I
CTRL-Y
CTRL-U
CTRL-S
CTRL-K
CTRL-D
CTRL-DEL
CTRL—X
CTRL-W
CTRL-F
CTRL—B
CTRL-~>
CTRL-~<
CTRL-Z
CTRL-A
CTRL-S
CTRL-R

L4

META—]
META-[
META—B
META-A
CTRL-V
META-V
CTRL—N
CTRL-F
META-F
META-B
CTRL-L
CTRL-G
META-K
CTRL-K
CTRL-D
CTRL-DEL
META-D
META-DEL
CTRL-F
CTRL-B
META—~>
META—~<
CTRL—E
CTRL—A
CI‘RL—S
CTRL-K

The four languages used in the study discussed in the text. (Green, T. R. G. and Payne,
S.]., ”Organization and learnability in computer languages," International Ioumal of Man-
Machine Studies 21 (1984) 7-18. Used by permission of Academic Press Inc. [London]
Limited.)

Forty undergraduate subjects with no word-processing experience were
given 12 minutes to study one of the four languages (Figure 4.6). Then, they
were asked to recall and write on paper as many of the commands as

possible. This step was followed by presentation of the command descrip-
tions, after which they were asked to write down the associated command
syntax. The free-recall and prompted-recall tasks were both repeated. The
results showed a statistically significant difference for languages, with

subjects using L4 demonstrating the worst performance. The best perfor-
mance was attained with Li, which has the most structure. An online test
would have been a useful followup to demonstrate the advantage obtained

with practice and over a longer period.

160 Chapter 4 Command Languages

In summary, sources of structure that have proven advantageous includethese:

0 Positional consistency

0 Grammatical consistency

0 Congruent pairing
- Hierarchical form

In addition, as discussed in the next section, a mixture of rneaningfulness,
mnernonicity, and distinctiveness is helpful,

One remaining form of structure is visual or perceptual form. The up- and
down-arrows are highly suggestive of function, as are characters such as

right— and left-angle brackets, the plus sign, and the ampersand.
WORDSTAR takes advantage of a perceptual clue embedded in the
QWERTY keyboard layout:

E

X

CTRL—E moves the cursor up one line, CTRL-X moves the cursor down
one line, CTRL-S moves the cursor one character left, CTRL-D moves the

cursor one character right, CTRL—A moves the cursor one word left, and

CTRL—F moves the cursor one word right. Other word processors use a
similar principle with the CTRL—W, A, S, and Z keys or the CTRL-1,], K, and
M keys.

?::

4.5 Naming and Abbreviations

In discussing command-language names, Schneider (1984) takes a delightful
quote from Shakespeare's Romeo and Iuliet: ”A rose by any other name would
smell as sweet.” As Schneider points out, the lively debates in design circles
suggest that this concept does not apply to command-language names.
Indeed, the command names are the most visible part of a system and are
likely to provoke complaints from disgruntled users.

Critics (Norman, 1981, for example) focus on the strange names in UNIX,
such as MKD IR (make directory), CD (change directory), LS (list directory),
RM (remove file), and PWD (print working directory); or in IBM's CMS, such
as S0 (temporarily suspend recording of trace information), LKED (link edit),
NUCXMAP (identify nucleus extensions), and GENDIRT (generate directory).
Part of the concern is the inconsistent abbreviation strategies that may take
the first few letters, first few consonants, first and last letter, or first letter of

4.5 Naming and Abbreviations 161

each word in a phrase. Worse still are abbreviations with no perceivable
pattern.

4.5.1 Specificity versus generality

Names are important for learning, problem solving, and retention over time.
With only a few names, a command set is relatively easy to master; but with
hundreds of names, the choice of meaningful, organized sets of names

becomes more important. Similar results were found for programming tasks,
where variable name choices were less -important in small modules with
from 10 to 20 names than in longer modules with dozens or hundreds of
names.

In a word—processing training session (Landauer et al., 1983), 121 students
learned one of three command sets containing only three commands: the old

set (delete, append, substitute), a new supposedly improved set
(omit, add, change), and a random set designed to be confusing (allege,
ciphe r, deliberate). Task performance times were essentially the same
across the three command sets, although subjective ratings indicated a

preference for the old set. The random names were highly distinctive and the
mismatch with function may have been so disconcerting as to become
memorable. These results apply to only small command sets.

With larger command sets, the names do make a difference, especially if
they support congruence or some other meaningful structure. One naming-
rule debate revolves around the question of specificity versus generality

(Rosenberg, 1982). Specific terms can be more descriptive, and if they are
more distinctive, they may be more memorable. General terms may be more
familiar and therefore easier to accept. Two weeks after a training session

with 12 commands, subjects were more likely to recall and recognize the
meaning of specific commands than of general commands (Barnard et al.,
1982).

In a paper—and—pencil test, 84 subjects studied one of seven sets of eight
commands (Black and Moran, 1982). Two of the eight commands—the

commands for inserting and deleting text—are shown here in all seven
versions:

Infrequent, discriminating words i n s e rt de 1 et e

Frequent, discriminating words add 1:‘ emove

Infrequent, nondiscriminating words amble p e rce i ve

Frequent, nondiscriminating words walk vi ew

General words (frequent, nondiscriminating) a l te r c 0rre c t

Nondiscriminating nonwords (nonsense) GAC MIK

Discriminating nonwords (icons) a be — adbc ab c — ac

g A

162
Chapter 4 Command Languages

The ”infrequent, discriminating" command set resulted in faster learning
and superior recall than did other command sets. The general words were
correlated with the lowest performance on all three measures. The non-

sense words did surprisingly well, supporting the possibility that, with

small command sets, distinctive names are helpful even if they are not
meaningful.

4.5.2 Abbreviation strategies

Even though command names should be meaningful for human learning,
problem solving, and retention, they must satisfy another important crite-
rion. They must be in harmony with the mechanism for expressing the
commands to the computer. The traditional and widely used command-
entry mechanism is the keyboard, which indicates that commands should

use brief and kinesthetically easy codes. Commands requiring shifted keys
or CTRL keys, special characters, or difficult sequences are likely to cause

higher error rates. For text editing, when many commands are applied and
speed is appreciated, single-letter approaches are attractive. Overall, brevity
is a worthy goal since it can speed entry and reduce error rates. Many word-
processor designers have pursued this approach, even when mnemonicity
was sacrificed, thereby making use more difficult for novice and intermittentusers.

In less demanding applications, designers have used longer command
abbreviations, hoping that the gains in recognizability would be appreciated

over the reduction in key strokes. Novice users may actually prefer typing
the full name of a command because they have a greater confidence in its
success (Landauer et al., 1983). Novices who were required to use full
command names before being taught two-letter abbreviations made fewer

errors with the abbreviations than those who were taught the abbreviations
from the start and than did those who could create their own abbreviations
(Grudin and Barnard, 1985).

The phenomenon of preferring the full name at first appeared in our
study of bibliographic retrieval with the Library of Congress's SCORPIO
system. Novices preferred typing the full name, such as BROWSE or SELECT,

rather than the traditional four-letter abbreviations BRWS or SLCT, or the
single-letter abbreviations B or S. After five to seven uses of the command,

their confidence increased and they attempted the single-letter abbrevia-
tions. A designer of a text adventure game recognized this principle and
instructs novice users to type EAST, WEST, NORTH, or SOUTH; after five full-

length commands, the system tells the user about the single-letter abbrevia-
tions. A related report comes from some users of IBM's CMS, who find that

the minimal length abbreviations are too difficult to learn; they stick with the
full form of the command.

4.5 Naming and Abbreviations 163

With experience and frequent use, abbreviations become attractive for,
and even necessary to satisfy, the ”power” user. Efforts have been made to
find optimal abbreviation strategies. Several studies support the notion that
abbreviation should be made by a consistent strategy (Ehrenreich and Porcu,
1982; Benbasat and Wand, 1984; Schneider, 1984). Here are six potential
strategies:

1. Simple truncation: Use the first, second, third, etc. letters of each command.
This strategy requires that each command be distinguishable by the
leading string of characters. Abbreviations can be all of the same length or
of different lengths.

. Vowel drop with simple truncation: Eliminate vowels and use some of what
remains. If the first letter is a vowel, it may or may not be retained. H, Y,

and W may or may not be considered as vowels.
. First and last letter: Since the first and last letters are highly visible, use

them; for example, use ST for SORT.

. First letter of each word in a phrase: Use this popular technique, for example,
with a hierarchical design plan.

. Standard abbreviations from other contexts: Use familiar abbreviations such
as QTY for QUANTITY, XTALK for CROSSTALK (a software package), PRT
for PRINT, or BAK for BACKUP.

6. Phonics: Focus attention on the sound; for example, use XQT for execute.

Truncation appears to be the most effective mechanism overall, but it has
its problems. Conflicting abbreviations appear often, and decoding of an
unfamiliar abbreviation is not as easy as when vowel dropping is used
(Schneider, 1984).

4.5.3 Guidelines for using abbreviations

Ehrenreich and Porcu (1982) offer this compromise set of guidelines:

1. A simple, primary rule should be used to generate abbreviations for most
items; a simple secondary rule should be used for those items where there
is a conflict.

. Abbreviations generated by the secondary rule should have a marker (for
example, an asterisk) incorporated in them.

. The number of words abbreviated by the secondary rule should be kept to
a minimum.

4. Users should be familiar with the rules used to generate abbreviations.

. Truncation is an easy rule for users to comprehend, but it may also
produce a large number of identical abbreviations for different words.

. Use fixed-length abbreviations in preference to variable-length ones.

164 Chapter 4 Command Languages

7. Abbreviations should not be designed to incorporate endings (e.g., ING,
ED, s).

8. Unless there is a critical space problem, abbreviations should not be used

in messages generated by the computer and read by the user.

Abbreviations are an important part of system design and they are
appreciated by experienced users. Users are more likely to use abbreviations
if they are confident in their knowledge of the abbreviations and if the

benefit is a savings of more than one to two characters (Benbasat and Wand,

1984). The appearance of new input devices and strategies (for example,
selecting by pointing) will change the criteria for abbreviations. Each

situation has its idiosyncrasies and should be evaluated carefully by the
designer, applying empirical tests where necessary.

4.6 Command Menus

To relieve the burden of memorization of commands, some designers offer
users brief prompts of available commands. The early online version of the
Official Airline Guide used such prompts as this:

ENTER +,L#,X#, S#, R#,M,RF (#=LINE NUMBER)

This prompt reminds users of the commands related to fares that have

been displayed, and the related flight schedules:

+ move forward one screen

L# limitations on airfares

X# detailed information on a listed flight
S # schedule information for the listed fare

R# return flight information for this route
M main menu

RF return fares

Experienced users come to know the commands and do not need to read

the prompt or the help screens. Intermittent users know the concepts and
refer to the prompt to jog their memory and to get help in retaining the
syntax for future uses. Novice users do not benefit as much from the prompt
and must take a training course or consult the online help.

The prompting approach emphasizes syntax and serves frequent users. It
is closer to but more compact than a standard numbered menu, and

preserves screen space for task-related information. The early WORDSTAR

4.6 Command Menus 165

A:GETTVS PAGE 1 LINE 9 COL 62 INSERT UN
< < (M A I N M E N U > > >

--Cursor Movement-- l —DeIete— : —Miscel1aneou5- : —Dther Menus-
char left ‘D char right l‘G char E “I Tab ‘B Reform i (from Main only)
word left ‘F word right {DEL chr If: “V INSERT DN/OFF :‘J Help “K Block
line up “X line down {AT word rtI*L Find/Replce againl“D Duick "P Print

——Scra1]ing-- IRETURN End paragraphX“U Dnscreen
line down ‘N line 1 “N Insert a RETURN
screen up ‘R screen down i ‘U Stop a command

L-—--9----!——-—!----!----!--—-!--—-!----!—---!————!————! —————— ——R
Fourscure and seven years ago our fathers brought forth on

this continent a new nation Conceived in liberty and dedicated to
the proposition that all men are created equal. Now we are
engaged in a great civil war testing whether that nation. or any
nation en conceived and so dedicated, can long endure.

We are met on a great battlefield of that war. He have come
to dedicate a portion of that field as a final resting-place for
those who here gave their lives that that nation might live.

Figure 4.7

The early Wordstar offered the novice and intermittent users help menus
containing commands with one- or two—worcl descriptions.

editor offered the novice and intermittent user help menus containing
Commands with one- or two-word descriptions (Figure 4.7). Frequent users

could turn off the display of help menus, thereby gaining screen space for
additional text.

Several interactive systems on personal computers have another, still
more attractive form of prompts called command menus. Users are shown a

list of descriptive words and make a selection by pressing the left and right
arrow keys to move a light bar. When the desired command word is
highlighted, the user presses the return key to carry out the command.
Often, the command menu is a hierarchical structure that branches to a
second- or third—level menu.

Even though arrow-key movement is relatively slow and is not preferred
by frequent users, command-menu items can be selected by single-letter
keypresses. This strategy becomes a hierarchical command language; it is
identical to the typeahead (BLT) approach of menu selection. Novice users
can use the arrow keys to highlight their choice, or can type single-letter
choices, but frequent users do not even look at the menus as they type

sequences of two, three, four, or more single letters that come to be thought
of as a command (Figure 4.5).

The Lotus 1-2-3 (Figure 4.8) implementation is especially fast and elegant.
As command words are selected, a brief description appears on the line

below, providing further assistance for novice users without distracting

experts from their concentration on the task. Experienced users appear to
work as fast as touch typists, making three to six keystrokes per second.

Pop-up or pull-down menus that use mouse selection constitute another
form of command menu. Frequent users can work extremely quickly, and
novices can take the time to read the choices before selecting a command.

166 Chapter 4 Command Languages

wnrkshert Range Cnnv Move File Print. Graph Data [link

Type xaacoss Reset View Save Clptlufls Name nun
Pflflt F)la

No Yes
Fin Yable sun auerv Dsstrmute

impart. Directoryaeuawe, saw. cumume. Xtrant, Erase. Lust. (Move a cell or rarvue of Cells) Enter range FWD":i (Copy a cell or range of cells) Entar range mom
Formab Lanel4Praf'ix. Erase, Name, JustiYyy Frntectv Unprotectu Input

Blcmal. Insert. Delntsg Culumn-Llirflchu Erase. vines. Lnnduw. Status

Figure 4.8

The first two levels of command menus from LOTUS 1-2-3 reveal the rich function

available to users. At the third level, users may receive another menu or enter values.
(Printed with permission of Lotus Development Corporation, Cambridge, MA.)

With a fast display, command menus blur the boundaries between com-
mands and menus.

4.7 Natural Language in Computing

Even before there were computers, people dreamed about creating machines
that would accept natural language. It is a wonderful fantasy, and the success

of word-manipulation devices such as word processors, printing presses,
tape recorders, and telephones may give encouragement to some people.
Although there has been some progress in machine translation from one

natural language to another (for example, Japanese to English), most effec-
tive systems require constrained or preprocessed input, or postprocessing of
output. Undoubtedly, improvements will continue and constraints will be
reduced, but high-quality reliable translations of complete documents with-
out human intervention seems difficult to attain. Structured texts such as

weather reports are translatable; technical papers are marginally translat-
able; novels or poems are not translatable. Language is subtle; there are
many special cases, meaning is not easily programmed into machines, and
context has a powerful and pervasive effect.

Although full comprehension and generation of language seems inacces-
sible, there are still many ways that computers can be used in dealing with
natural language, such as for interaction, queries, database searching, text
generation, and adventure games. So much research has been invested in

natural-language systems that undoubtedly some successes will emerge, but
widespread use may not develop because the alternatives may be more

appealing. More rapid progress can be made if carefully controlled experi-

4.7 Natural Language in Computing 167

mental tests are used to discover the designs, users, and tasks for which

natural—language applications are most beneficial.

4.7.1 Natural-language interaction

Researchers hope that someday computers will respond easily to commands
users issue by typing or speaking in natural language. Natural-language
interaction (NLI) might be defined as the operation of computers by people
using a familiar natural language (such as English) to give instructions and
receive responses. Users do not have to learn a command syntax or to select
from menus. Early attempts at generalized “automatic programming” have
faded, but there are continuing efforts to provide domain-specific assistance.

The problems with NLI lie in not only implementation on the computer,
but also desirability for large numbers of users for a wide variety of tasks.
People are different from computers, and human—human interaction is not
necessarily an appropriate model for human operation of computers. Since
computers can display information 1000 times faster than people can enter
commands, it seems advantageous to use the computer to display large
amounts of information, and to allow novice and intermittent users simply

to choose among the items. Selection helps to guide the user by making clear
what functions are available. For knowledgeable and frequent users, who

are thoroughly aware of the available functions, a precise, concise command
language is usually preferred.

In fact, the metaphors of artificial intelligence (smart machines, intelligent

agents, and expert systems) may prove to be mind—1imiting distractions that
inhibit designers from creating the powerful tools that become commercially
successful. Spreadsheets, WYSIWYG word processors, and direct—manipula-
tion graphics tools emerged from a recognition of what users were using
effectively, rather than from the misleading notions of intelligent machines.
Similarly, the next generation of groupware to support collaboration, visual-
ization and simulation packages, tele-operated devices, and hypermedia
stem from user-centered scenarios, rather than the machine-centered artifi-

cial-intelligence fantasies.
The SSOA model can help us to sort out the issues. NLI does not provide

information about actions and objects in the task domain; users are usually

presented with a simple prompt that invites a natural-language query. But
the user may be knowledgeable about the task domain—for example, about
the meaning of database objects and permissible actions. NLI also does not
necessarily convey knowledge of the computer concepts—for example, tree-
structuring of information, implications of a deletion, Boolean operations, or
query strategies. NLI does relieve the user of learning new syntactic rules,
since it presumably will accept familiar English language requests. There-
fore, NLI can be effective for the user who is knowledgeable about some task

L I.

168 Chapter 4 Command Languages

domain and computer concepts but who is an intermittent user who cannot
retain the syntactic details. Lately, some members of the artificial-intellr
gence community have understood the power of direct manipulation for

conveying the system state and suggesting possible actions, and have

attempted to blend visual presentation of status with natural-language
input.

NLI might apply to checkbook maintenance (Shneiderman, 1980), where

the users recognize that there is an ascending sequence of integer—numbered
checks, and that each check has a single payee field, single amount, single
date, and one or more signatures. Checks can be issued, voided, searched,
and printed. In fact, following this suggestion, Ford (1981) created and tested
an NLI system for this purpose. Subjects were paid to maintain their

checkbook registers by computer using an APL—based program that was
incrementally refined to account for unanticipated entries. The final system
successfully handled 91 percent of users’ requests, such as these:

Pay to Safeway on 3/24/86 $29.75.
June 10 $33.00 to Madonna.

Show me all the checks paid to George Bush.
Which checks were written on October 29?

Users reported satisfaction with the system and were eager to use the
system even after completing the several months of experimentation. This
study can be seen as a success for NLI, but alternatives might be even more
attractive. Showing a full screen of checkbook entries with a blank line for
new entries might accomplish most tasks without any commands and with
minimal typing (similar to what is used in Quicken from Intuit). Users could

do searches by entering partial information (for example, George Bush in
the payee field) and then pressing a query key.

There have been numerous informal tests of NLI systems, but only a few
have been experimental comparisons against some other design. Research-
ers seeking to demonstrate the advantage of NLI over command-language
and menu approaches for creating business graphics were surprised to find
no significant differences for time, errors, or attitude (Hauptmann and
Green, 1983).

A more positive result was found with users of HAL, the restricted

natural-language addition to Lotus 1-2-3 (Napier et al., 1989). HAL users
Could avoid the command-menu / WEY (for Worksheet Erase Yes), and could
type requests such as \erase worksheet, \insert row, or \total all

columns, starting with any of the 180 permissible verbs. In an empirical
study, after 1.5 days of training, 19 HAL users and 22 Lotus 1-2-3 users

worked on three substantial problem sets for another 1.5 days. Performance
and preference strongly favored the restricted natural language version, but
the experimenters had difficulty identifying the features that made a differ-

4.7 Natural Language in Computing 169

ence: ”It is not clear whether Lotus HAL was better because it is more like

English or because it takes advantage of context, but we suspect the latter is
more important." By context, the authors meant features such as the cursor

position or meaningful variable names that indicate cell ranges.
Some NLI work has turned to automatic speech recognition and speech

generation to reduce the barriers to acceptance. There is some advantage to
use of these technologies, but the results are still meager. A promising

application is the selection of painting tools by discrete—word recognition
(see Section 6.4.1), thus eliminating the frustration and delay of moving the
cursor from the object to the tool menu on the border and back again
(Pausch, 1991). Selections are voiced but feedback is visual. Users of the

mouse plus the voice commands performed their tasks 21-percent faster
than did the users who had only the mouse. Alternatives to voice, such as
keyboard or touchscreen, were not tested.

There is some portion of the user spectrum that can benefit from NLI, but

it may not be as large as promoters believe. Computer users usually seek

predictable responses and are discouraged if they must engage in clarifica-
tion dialogs frequently. Since NLI has such varied forms, the users must
constantly be aware of the computer's response, to verify that their actions
were recognized. Finally, visually oriented interactions, embracing the
notions of direct manipulation (see Chapter 5), make more effective use of
the computer's capacity for rapid display. In short, pointing and selecting in
context is often more attractive than typing or even speaking an English
sentence.

It is surprising that designers of expert systems have attempted to embed
NLI. Expert systems already tax the user with complexity, lack of visibility of
the underlying processes, and confusion about what functions the system
can and cannot handle. A precise, concise notation or selection in context
from a list of alternatives seems far more suitable in providing users with

predictable and comprehensible behavior (Hayes-Roth, 1984) (Figure 4.9).

4.7.2 Natural-language queries

Since general interaction is difficult to support, some designers have pursued
a more limited goal of nutuml—language queries (NLQ) against relational data-
bases. The relational schema contains attribute names, and the database con-

tains attribute values, both of which are helpful in disambiguating queries. A
simulated query system was used to compare a subset of the structured SQL
database facility to a natural—language system (Small and Weldon, 1983). The

SQL simulation resulted in faster performance on a benchmark set of tasks.
Similarly, a field trial with a real system, users, and queries pointed to the ad-
vantages of SQL over the natural-language alternative (Iarke et a1., 1985). Be-
lievers in NLQ may claim that more research and system development is

Chapter 4 Command Languages

Sample Session from an Expert System for Oil Drilling Advisor
What is the name of WELL-159?

AGF7—93E

What is the profile of AGF7—93E?
DEVIATED

Please enter information about FORMATION—1:

upper-limit 1ower—limit main-rock— homogenousl
meters meters type interbedded
747 806 SHALE HOMOGENOUS

Please enter information on PROBLEM—1:

problem-type prior-action total-depth casting—shoe depth
STICKING REAMING 1111 METERS 747 METERS

Please enter the composition of the drill-string starting from
the bit (type ? for assistance):?
BIT 9"5/8 STAPB"5/8 SHORTDC7"3/4STA9"5/8...NDP5

What was the drilling method employed when the problem occurred:
ROTARY

What is the depth of the freepoint?
UNKNOWN

Figure 4.9

This extract demonstrates one designer's attempt at an expert-system dialog. User
input is shown in upper-case letters. Users must type in values even when
selection from a menu would be more meaningful, more rapid, and less error-
prone. Furthermore, there does not appear to be any way to go back to change
values, to view values, or to reuse values from previous sessions. (F. Hayes-Roth,
The l<nowledge—based expert system: A tutorial, IEEE Computer 17, 9 (September
1984), 11-28. Copyright 1984 IEEE.)

needed before NLQ, can be excluded, but improvements in menus, com-
mand languages, and direct manipulation seem equally likely.

Supporters of NLQ can point with some pride at the modest success of

the commercially available INTELLECT system, which has approximately
400 installations on large mainframe computers (Figure 4.10); the system's
appeal has faded in recent years, however, as users turn to other ap-
proaches. Business executives, sales representatives, and other people use
INTELLECT to search databases on a regular basis. Several innovative

implementation ideas help to make INTELLECT successful. First, the parser
uses the contents of the database to parse queries; for example, the parser
can determine that a query containing Cleveland refers to city locations,

because Cleveland is an instance in the database. Second, the system

4.7 Natural Language in Computing 171

PLEGSE ENTER VUUR VIPST REQUEST
HHAT‘S IN THE DATABASE?
FIELDS IN THE FILE UF EMPLOYEES
NAME JOB SALARVAGE FRMILY CITV
FMPIHVFE NUMRFR
NHD NURKS IN NEW VUWB CITY
PRINT TFE JOB AND NRVE OF ALL EHPLCVEES WITH CITY NEH VUHK
PROFEESIDNDL NAME
UCCUPHTIDN
MACHINIST ANEELIN
PHVSICIQN ANGUS
WHAT IS THE NUMBER UF ANGUS
CDUNT THE EMPLDVEEE HITH NAME = ANGUS
ANEHEF: I

EMPLDVFE
NUMBER
0034

TH SEX FEMALE & CITY = NEH YORK
PROFESSIONAL
UCCUPATIDN
MQCHINIST
GDNINISTWATDR
ELECTRICIAN

EEEELE_EflELQi§E§_£N_NEw,VDRK CXFVewrmr THE Nana OF ALL EMPLDVEES wITH sex = FEMALE 3 cciv > NEW YORK
NRME
QVEELIN
EQNTEEURV
EDRGRDS

U35,UeNX,E§!,!QB5_§£I!-dEd_eEE_9!§B_§9_!§6E§_QLQcauwr THE EMPLDVEE5 WITH crrv = NEW YORK a sex = MALE a AGE>3o
ANSWER: V

'?fiE‘mnME AND AGE or ALL EMFLDVEES HITH CITY : NEH vunk 5sex = MALE 5 AG£>3o
VEARS

NAME OF
AGE

ANGUS A3ELEV A9
HILTON an

Figure 4.10

Demonstration session with Intellect. User input is underscored. Intellect rephrases
user input into a structured query language, which users often mimic as they
become more knowledgeable. (AI Corp., Cambridge, MA.)

administrator can conveniently include guidance for handling domain-
specific requests, by indicating fields related to who, what, where, when,

how, etc. queries. Third, INTELLECT rephrases the user’s query and
displays a response, such as PRINT THE CHECK NUMBERS WITH PAYEE
= GEORGE BUSH. This structured response serves as an educational aid,

and users gravitate toward expressions that mimic the style. Eventually, as

172 Chapter 4 Command Languages

users become more knowledgeable, they often use concise, commandlike

expressions that they believe will be parsed successfully. Even the promot-

ers of INTELLECT recognize that novice users who are unfamiliar with the
task domain will have a difficult time, and that the ideal user is a knowl-

edgeable intermittent user.

A more successful product is Q 8: A from Symantec, which provides

rapid, effective query interpretation and execution on IBM PCs (Figure 4.11).
The package makes a very positive impression, but few data have been
collected about actual usage. The designers cite many instances of happy
NLQ users and find practical applications in their daily work, but the

popularity of the package seems to be more closely tied to the fine word
processor plus database, and the form fillin facilities. A further NLQ package
is CLOUT, which is part of the Rbase package.

An innovative blend of NLQ and menus was developed under the name

NLMENU (Tennant et al., 1983) and is distributed by Texas Instruments
under the name NaturalLink. Natural—language phrases are shown as a
series of menus. As phrases (for example, FIND /COLOR/AND/ NAME OF
PARTs/ WHOSE COLOR IS) are chosen by a pointing strategy, a query is
formed in a command window. Users receive information from the menus,

obviating the need for a query. For example, if the database of parts and
suppliers contains only red, green, and blue parts, only these choices appear
in the window containing the PART COLOR menu. Users can see the full
range of possible queries and thereby can avoid the frustration of probing

the boundaries of system functionality. With this strategy, typing is elimi-
nated, and the user is guaranteed a semantically and syntactically correct
query.

4.7.3 Text-database searching

Searching of textual databases is a growing application for natural-language

enthusiasts who have developed filters and parsers for queries expressed in
natural language. For example, in a legal application (Find cases of
tenants who have sued landlords for lack of heat) the filter

eliminates pronouns and other noise words, provides synonyms from a
thesaurus (rente r s), deals with singulars versus plurals, and handles other
problems such as misspellings or foreign terms. Then, the parser separates

the query into standard components, such as plaint i ff, defendant, and
cause; the query can now be used to search a more structured database.

Another application with textual databases is to use natural-language
parsing strategies to parse the stored text and to arrange it into more

structured formats. The advantage here is that the parsing can be done once
in advance to structure the entire database and to speed searches when users
pose queries. Legal (Supreme Court decisions or state laws), medical

(scientific journal articles or patient histories), and journalistic (Associated

4.7 Natural Language in Computing 173

Type your request in English in the box above, then press a.

Examples:
"List the average salary and average bonus from the forms on
which sex is male and the department is sales."

"Get the forms of the Administration employees, sorted by cityfl

Press F1 for more information.

WHERE ARE THE 3 MOST EXPENSIVE HOUSES WITH A FIREPLACE?

Shall I do the following?

Create a report showing
the Address and
the Neighborhood and
the Cost and
the Home Type

from the forms on which
the Home Type includes "HOUSE" and
the Fireplace is YES and
the Cost is maximum

Yes - Continue No — Cancel Request

Address Neighborhood Cost Home Type

7924 Jones Street Chevy Chase, MD $411,950 House
4719 Dorset Ave. Chevy Chase, MD $678,235 House
1287 Highland Ct. Potomac, MD $782,125 House

Figure 4.11

Q&:A supports a natural language front end for its database. Users can type
questions in English and produce database search results. This figure shows the
three stages: forming a query, verifying it, and receiving the results. (Q&A is a
product of Symantec Corp., Cupertino, CA.)

Press news stories or Dow Jones reports) texts have been used. This

application is promising because even a modest increase in suitable retriev-
als is appreciated by users, and incorrect retrievals are tolerated better than
are errors in NLI.

174 Chapter 4 Command Languages

4.7.4 Natural-language text generation

Although the artificial-intelligence community often frowns on natural-
language text generation (NLTG) as a modest application, it does seem to be a
worthy one (Fedder, 1990). It handles certain simple tasks, such as the

preparation of structured weather reports (8 0 percent chance of
light rain in northern suburbs by late Sunday afternoon)

from complex mathematical models. These reports can be sent out automati-
cally, or even can be used to generate spoken reports available over the

telephone. More elaborate applications of NLTG include preparation of
reports of medical laboratory or psychological tests. The computer generates
not only readable reports (White-blood-cell count is 12, 000), but
also warnings (This value exceeds the normal range of 3000
to 8000 by 50 percent) or recommendations (Further examina-
t ion for systemic infection is recommended). Still more in-

volved NLTG scenarios involve the creation of legal wills, contracts, or
business proposals.

On the artistic side, computer generation of poems and even novels is a
regular discussion point in literary circles. Although computer-generated
combinations of randomly selected phrases can be provocative, it is still the
creative work of the person who chose the set of possible words and decided

which of the outputs to publish. This position parallels the customary
attitude of crediting the human photographer, rather than the camera or the
subject matter of the photograph.

4.7.5 Adventure and educational games

A notable and widespread success of NLI techniques is in the variety of
adventure games (Figure 4.12). Users may indicate directions of movement
or type commands, such as TAKE ALL OF THE KEYS, OPEN THE‘. GATE,
or DROP THE CAGE AND PICK UP THE swono. Part of the attraction of

NLI in this situation is that the system is unpredictable, and some explora-
tion is necessary to discover the proper incantation.

4.8 Practitioner's Summary

Command languages can be attractive when frequent use of a system is
anticipated, users are knowledgeable about the task domain and computer
concepts, screen space is at a premium, response time and display rates are

slow, and numerous functions that can be combined in many ways are

supported. Users have to learn the semantics and syntax, but they can
initiate rather than respond, rapidly specifying actions involving several

4.8 Practitioner's Summary 175

Male t , ‘11 ’ in
the ‘%’§"§i u3o?r§.’.a3‘,’"%£§“£:..323;1.::i’§. 1.333 and
FIE. the Scarecrow, as we tra-u»:I through

gke Harvglous Land of Oz in seafch gger- e . ~ - J r a s

we r?§§ath3"‘p1zi§$33t3i‘14iz3§3'13$-mafize to
Peturfi to your Hunt En and Uncie HeBP9
In Kansas.

P G 1:. I HIZQRB.
Preggsé ron°uYz3§n credits.

Press P far TRERSURE preview.

the dean.

aver a POIIID hzllsrde.
_ '“5, trees an fiauers

swaying 1“ x- “n breeze. There 15
segeth1n 3%" ' 7 d marvelous about
th1s Ean . Q ; ‘h leads south fron
your aaarstep tr &_L izng hrqnk. _
Fag? Qf feet shod lfi griver SIIPPEPS 15
sticking nut from underneath the house.
take 5l1ppers_

Figure 4.12

This adventure game is modeled on the Wizard of Oz story. The user types
phrases such as open the door or take sl ippers or abbreviations such as s to
move south. More complex phrases, such as put the hat on the s carecrow,
are possible. (Courtesy of Spinnaker Software, Cambridge, MA.)

Chapter 4 Command Languages

objects and options. Finally, complex sequences of commands can be easily
specified and stored for future use as a macro.

Designers should begin with a careful task analysis to determine what
functions should be provided. Hierarchical strategies and congruent struc-
tures facilitate learning, problem solving, and human retention over time.

Laying out the full set of commands on a single sheet of paper helps to show
the structure to the designer and to the learner. Meaningful specific names
aid learning and retention. Compact abbreviations constructed according to
a consistent rule facilitate retention and rapid performance for frequent
users.

Innovative strategies, such as command menus, can be effective if rapid
response to screen actions can be provided. Natural—language interaction

can be implemented partially, but its advantage for widespread application
has yet to be demonstrated.

4.9 Researcher‘s Agenda

Designers could be helped by development of strategies for task analysis,
taxonomies of command—language designs, and criteria for using commands
or other techniques. The benefits of structuring command languages based
on such concepts as hierarchical structure, congruence, consistency, and
mnemonicity have been demonstrated in specific cases, but replication in

varied situations is important. Experimental testing should lead to a more
comprehensive cognitive model of command language learning and use
(Table 4.3).

A generator of command—language systems would be a useful tool for

research and development of new command languages. The designer could
provide a formal specification of the command language, and the system

Table 4.3

Command Language Guidelines

Create an explicit model of objects and actions.
Choose meaningful, specific, distinctive names.

Implement a hierarchical structure where possible.
Provide a Consistent structure (hierarchy, argument order, action—object).
Support Consistent abbreviation rules (preferably truncation to one letter).
Offer frequent users the capability to create macros.
Use command menus on high—speed displays when appropriate.
Limit the number of commands and the ways of accomplishing a task.

References 177

would generate an interpreter. With experience in using such a tool, design

analyzers might be built to critique the design, to detect ambiguity, to check
for consistency, to verify completeness, to predict error rates, or to suggest

improvements. Even a simple but thorough checklist for command-lan-
guage designers would be a useful contribution.

Novel input devices and high-speed, high-resolution displays offer new

opportunities, such as command and pop-up menus, for breaking free from
the traditional syntax of command languages. Natural-language interaction

still holds promise in certain applications, and empirical tests offer us a good
chance to identify the appropriate niches and design strategies.

References

Barnard, P. I. and Hammond, N. V., Cognitive contexts and interactive communica-
tion, IBM Hursley (U.K.) Human Factors Laboratory Report HF070 (December
1982).

Barnard, P., Hammond, N., MacLean, A., and Morton,]., Learning and remembering
interactive commands, Proc. Conference on Human Factors in Computer Systems,
available from ACM, Washington DC (1982), 2-7.

Barnard, P. I., Hammond, N. V., Morton, J., Long, J. B., and Clark, 1. A., Consistency
and compatibility in human—computer dialogue, International Journal of Man-
Machine Studies 15 (1981), 87-134.

Benbasat, Izak and Wand, Yair, Command abbreviation behavior in human—com-

puter interaction, Communications of the ACM 27, 4 (April 1984), 376-383.

Black, J., and Moran, T., Learning and remembering command names, Proc. Confer-
ence on Human Factors in Computer Systems, available from ACM Washington, DC
(1982), 8-11.

Carroll, John M., Learning, using and designing command paradigms, Human
Learning 1, 1 (1982), 31-62.

Carroll, J. M., and Thomas, J, Metaphor and the cognitive representation of
computing systems, IEEE Transactions on Systems, Man, and Cybernetics, SMC-12, 2
(March/ April 1982), 107-115.

Ehrenreich, S. L., and Porcu, Theodora, Abbreviations for automated systems:
Teaching operators and rules. In Badre, Al, and Shneiderman, Ben, (Editors),
Directions in Human—Computer Interaction, Ablex, Norwood, N] (1982), 111-136.

Fedder, Lee., Recent approaches to natural language generation. In Diaper, D.,
Gilmore, D., Cockton, G., and Shackel, B. (Editors), Human—Computer Interaction:
Interact '90, North—Holland, Amsterdam, The Netherlands (1990), 801-805.

Ford, W. Randolph, Natural Language Processing by Computer — A New Approach, Ph.
D. Dissertation, Department of Psychology, Johns Hopkins University, Baltimore,
MD (1981).

Green, T. R. G. and Payne, S. I., Organization and learnability in computer languages,
International Iournal of Man—Machine Studies 21 (1984), 7-18.

