
COMPUTING
PRACTICES

Controlling the Complexity of Menu
Networks

James W. Brown
Jet Propulsion Laboratory

1. In t roduct ion
There are many techniques com-

monly used for communication be-
tween humans and computer sys-
tems. They vary widely in their ease
of learning and use, and their general
applicability. One technique for hu-
man-computer interaction is menu
selection. It makes the most of the
computer 's ability to find and display
large quantities of information rap-
idly and the human's ability to make
decisions in the context of a specific
problem. It also recognizes the slow-
ness of the input channel, i.e., fingers
typing (or hunt and pecking) on a
keyboard.

2. Menu Networks
The menu selection technique

presents the user with a sequence of
"frames" or "pages," each contain-
ing some text and a list of options.
The text offers information to the
user, and the options allow the user
to choose what to do or where to go

CR Categories and Subject Descriptors: H. 1.2
[Models and Principles]: User/Machine Sys-
tems_human factors; H.3.3 [Information Stor-
age and Retrieval[: Information Search and
Retrieval-query formulation; H.3.5 [Informa-
tion Storage and Retrieval]: On-Line Infor-
mation Services.
General Terms: Design, Human Factors.
Additional Key Words and Phrases: Menu
systems, graphs, networks, structured design
tools.
This paper presents the results of one phase
of research conducted at the Jet Propulsion
Laboratory, California Institute of Technol-
ogy, under Contract NAS7-100, sponsored by
the Information Systems Office of the Na-
tional Aeronautics and Space Administration,
Office of Space Science and Applications.
Author's present address: J.W. Brown, Jet
Propulsion Laboratory, California Institute of
Technology, 4800 Oak Grove Drive, Pasa-
dena, CA 91109.
© 1982 ACM 0001-0782/82/0700-0412 75¢.

SUMMARY: A common approach to the design of user inter-
faces for computer systems is the menu selection technique.
Each menu frame can be considered a node in an information/
action network. The set of nodes and the permissible transi-
tions between them (menu selections) form a directed graph
which, in a system of substantial size, can be large and
enormously complex. The solution to this problem of unman-
ageable complexity is the same for menu networks as for
programs: the disciplined use of a set of well-defined one-in-
one-out structures. This paper defines a set of such structures
and offers some guidelines for their use.

next, from a limited set of possibili-
ties. The user indicates a choice by
typing a single character, pointing,
or other techniques [4]. The selection
made determines which frame will
be displayed next.

Since each frame has several op-
tions linking it to other frames, a
frame can be thought of as a node in
a network or graph, and the option
links then correspond to "arcs" or
"edges." Moreover, since the option
selection represents a one-way tran-
sition from one node to the next, the
menu system (the collection of
frames and option links) forms a di-
rected graph.

Menu systems are commonly
used for two purposes: controlling
the actions of computer applications
systems and presenting information.

In the illustrations we have taken some
liberties with the graph-theoretic notion of an
arc, several arcs having been combined into
one with the joining dot notation.

Systems of the former type typically
contain tens or hundreds of frames,
with the latter possibly containing
tens of thousands [7, 8]. If the links
between frames allow for great rich-
ness of interconnection, the resulting
graph can become so complex that
understanding or modification be-
comes virtually impossible.

Such a situation is analogous to
the unmanageable complexity which
can occur with a large computer pro-
gram containing many multiway
branches; e.g., a program whose con-
trol flow consists of a hundred to ten
thousand computed ~OTOS, each
with six to eight destinations, all in-
terconnected, apparently at random.
This kind of disaster has been
averted by several modern tech-
niques, especially top-down struc-
tured programming. In fact, that
technique suggests a useful approach
to the design of menu networks,
which can be called "structured
subgraphs."

412 Communications
of
the ACM

July 1982
Volume 25
Number 7
SKYHAWKE Ex. 1023, page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- ~ . j - , , , . J

CONCATENATION (SEQUENCE)

SELECTION (IF - THEN - ELSE)

ITERATION (DO - WHILE)

Fig. 1. Basic Structured Subgraphs.

3. Basic Structures
Following the example of struc-

tured programming, we define a
basic set of one-in-one-out elemen-
tary graphs, which can be used as
building blocks to form arbitrarily
large networks. Like the control-flow
graph of a structured program, any
network constructed by appropriate
concatenation or nesting of these
structures will be representable as a
planar graph. In yet another analogy
to structured programming, we find
that three basic structures, equivalent
to sequence, selection, and iteration,
are sufficient to deal with a wide
variety of applications, but some or-
derly extensions to these provide
much greater convenience and clar-
ity.

Figure l presents the three basic
structures. The terms in parentheses
relate the structures to commonly
used programming constructs. We
see that these do not represent very
interesting or useful cases in the con-
text of menu systems. The first, con-
catenation, simply leads the user
from one frame to the next without
the necessity or opportunity of mak-
ing any decision. The two frames
could have been combined into one.
The second structure, selection, al-
lows the user a choice between two
options. This is useful in some in-
stances, but rather restrictive. The

third form, iteration, is the strangest.
It is hard to imagine many uses for
such a structure in a menu system.
Soon we shall see that the value of
the basic structures lies in using them
as templates for combining more
complex structures.

4. Ex tended Structures
As in structured programming,

the basic structures are rather confin-
ing, and so we look for useful ways
to generalize them. Figure 2 illus-
trates three generalizations which are
very useful in real applications. The

OPTION (IF- THEN)

1 OF N (CASE)

M OF N (CASE + WI.flLE)
(o_<M_< N)

Fig. 2. Extended Structured Subgraphs.

first is a modification of IF-THEN-
ELSE having a null ELSE-branch. This
is commonly the entry point to any
kind of menu network. The first
frame asks, "Do you know how to
use the system, or do you need
help?"

The second frame (the THEN-
branch) provides an explanation of
how to use the system and proceeds
back (without the need for user ac-
tion) to the "main-line." This ap-

proach can be observed throughout
a network which provides shortcuts
for experienced users. It is also useful
for implementing other kinds of op-
tional side paths.

The second extended structure,
the "one-of-N," is the most common
in most systems. It is the basis for the
term "menu selection" and, as we
shall see, generalizes into a tree struc-
ture, which is a very common form
of a menu network.

The third extended structure,
"M-of-N," is less commonly seen but
is very useful. It permits the user to
pick any number of entries (includ-
ing zero) from a list, in any order.
This is very important in applica-
tions with no obvious, natural order
for presenting things. In such cases
each user needs the freedom to make
decisions in the order that seems ap-
propriate at the time, given the user's
specific knowledge, background, and
orientation with respect to the prob-
lem at hand.

5. HELP Faci l i t ies
Menu systems are typically used

in applications with little or no user
training involved. A very well-de-
signed menu network would be com-
pletely self-teaching, unambiguous,

HELP (CALL- RETUI~I)

PREVIEW HELP

Fig. 3. HELP Structures.

413 Communications
of
the ACM

July 1982
Volume 25
Number 7

SKYHAWKE Ex. 1023, page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

COMPUTING
PRACTICES

and surprise-free. It may be possible
to approach this ideal in application
areas whose underlying subject mat-
ter has a well-defined and well-
known structure, and the wording of
the menu frames and options is care-
fully polished by incorporating feed-
back from many users over a long
period of time. However, this degree
of refinement cannot be achieved in
many cases, and so it is necessary to
provide HELP facilities which can be
invoked when a user becomes con-
fused.

Figure 3 illustrates one approach
to providing such a facility. The help
option is not explicitly included in
the main frame's option list, but is
invoked instead by some special,
global mechanism. This mechanism
may involve keying in "HELP", a "?",
or simply "H", or pressing a special
HELP key on terminals so equipped.
This simple mechanism can only in-
voke a single help frame from any
given main frame, although the help
frame itself may generalize to a help
network.

An extension of this technique is
"preview help." This associates a dif-
ferent help frame with each option
on the main frame. If an option is
selected by entering a corresponding
digit or letter, the help frame for that
option can be selected by preceding
or following the selection character
with a question mark. Preview help
is useful when a user does not un-
derstand the implications of making
a particular selection and is afraid to
"leap" before looking. The user can
ask for clarification about any or all
options before selecting one.

What is important to note about
these help structures is that they are
analogous to subroutine calls. They
always return to the place from
which they were called. No special
action from the user, beyond perhaps
indicating "ready," should be re-
quired to cause the return.

In order to keep drawings of the
graphs uncluttered, help frames
should not normally be included ex-
plicitly in the drawings. In practice,
a well-designed network would in-
clude both types of help structures at
every decision node where confusion
might possibly arise. Single frames
for each help node are usually best.
Expanding a help node into a more
complex subnetwork runs the risk of
causing the user to forget why help
was requested in the first place or
that the current context is a help
network rather than the "main"
one.

6. Building Composite
Structures

As in top-down structured pro-
gramming, large networks can be
constructed by combining the basic
structures in two ways: nesting and

concatenation. These are illustrated
in Figure 4. Nesting is performed by
replacing any single-exit node with a
one-in-one-out structure. Concate-
nation simply connects the outgoing
"half-arc" of one structure with the
incoming half-arc of another. Where
arcs join at joining dots, they can be
redrawn to terminate properly on
frame nodes. This appears to destroy
the one-in-one-out property, but it
actually does not. An alternative
would be to define the joining dots
as null nodes and keep them in the
graph. This is simply a matter of the
convenience of external representa-
tion versus mathematical rigor. The
representation can be chosen to suit
the purpose.

If the concatenation is done with-
out crossing any lines, the graph al-
ways remains planar and well-struc-
tured. How important this is remains
to be determined.

Fig. 4. Building Composite Structures.

414 Communicat ions July 1982
of Volume 25
the ACM Number 7

SKYHAWKE Ex. 1023, page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Fig. 5. A Nonstruetured Planar Subgraph.

7. Noncanonica l Forms
At this point one might well ask

whether the structures and opera-
tions described above are sufficient
for all interesting applications. In the
case of programming, the answer
would be a fairly emphatic yes (al-
though with certain applications one
must add provisions for dealing with
interrupts and concurrent processes).
In the case of menu systems, the
answer might be no. There is at least
one type of commonly encountered
network, which is known to be useful
although highly nonplanar. This is
the cross-linked, multiple-tree struc-
ture often seen in multiply-indexed
library databases, organization/per-
son/task networks, and elsewhere.
An important question is whether
organizing information into network
structures which seem "natural," al-
though not "structured" in the sense
defined above, leads to problems of
unmanageable complexity when the
networks become large. Our initial
experience, discussed below, indi-
cates that it may.

What are some other possibly
useful forms? The subgraph in Fig-
ure 5 is simple-looking, planar, one-
in-one-out, but note that it cannot be
extended to more (or less) than three
selection nodes without destroying
some of its properties. (Observe that
the 1-of-N and M - o f - N structures
extend uniformly for any N greater
than zero.) A fourth selection node,
with an arc leading from the existing
center node, cannot be added with-
out making the result nonplanar.
Would such a structure be useful in
a real menu system? Perhaps, but it
might also be a warning signal that
some redesign is in order.

Figure 6 presents a structure that,
at first glance, seems the same as

Figure 5. However, it is greatly dif-
ferent, both topologically and psy-
chologically. It extends uniformly to
any N, without becoming nonplanar.
It is used to allow the user to choose
many or all of the N selections with-
out returning to the precedent node.
Its successful use necessitates that the
list of selections be either short and
simple enough for the user to keep
in short-term memory (since it will
not be seen again) or sufficiently reg-
ular so individual items do not have
to be remembered (e.g., the months
of the year). It also requires that the
user know in advance something
about the local topology, and that
each of the N selectable nodes be
simple and nonconfusing.

The "next" option appears to be
appropriate only with the l-of-N
structure. It can be generalized to the
"circular next" at the cost of intro-
ducing a minor local nonplanarity.
This does not appear to be too trou-
blesome as long as the user is able to
cope with the "next" concept in the
first place.

8. Is the GOTO Harmful?
In considering the GOTO state-

ment, we perhaps come to a place
where the analogy between menu
networks and computer programs
weakens. A branch implies a deci-
sion, and in a menu network the
decision-maker is a human being.
The human user is present precisely
because the decisions required can-
no t be preprogrammed. On the other
hand, the user has a very limited
ability to comprehend the static
structure of an entire large network,
whereas the computer can do so with
ease. None of this tells us whether it
is safe or desirable to use GOTO, only
that the lessons learned in program-
ming [2] may need to be modified.

We should note that there are
two types of GOTO in a menu system:
a static or preprogrammed path in
the network which violates the basic
structuring rules, and a dynamic
jump which a user may wish to con-
struct from any node to a n y other.
The first may be likened to an ex-
press highway allowing a large vol-
ume of traffic to bypass the local

road network, or to a direct trunk
group bypassing the basic hierarchy
of a telephone network. The second
type is more akin to teleportation,
allowing the user to arrive instantly
at any desired destination without
having to pass the places between the
jump-off point and the destination.

Direct paths are commonly
found in the kinds of networks men-
tioned above, and they seem to be
useful and manageable. Both the
highway network and the telephone
network are larger than any menu
network we are soon likely to see, yet
users can navigate them with ease.
Maintaining and modifying them re-
quire massive efforts, but these ef-
forts do not grow disproportionately
with the size of the networks.

Conversely, the phenomenon of
users becoming lost or disoriented in
menu systems is common enough
[7], except perhaps in networks
which are simple trees. Without a
great deal of difficult experimenta-
tion 2, it is impossible to relate the
likelihood of getting lost with any
measure of network complexity :~.

[5] outlines some directions such exper-
imentation might take.

:~ [1] discusses the relative merits of sev-
eral complexity measures.

I OF N WITH NEXT

1 OF N WITH CIRCULAIt NEXT

Fig. 6. The " N e x t " Option.

415 Communications
of
the ACM

July 1982
Volume 25
Number 7

SKYHAWKE Ex. 1023, page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

COMPUTING
PRACTICES

9. Implementation Experience
The ideas described above were

developed in the course of designing
the menu-driven user interface for
the N A S A Oceanic Pilot System.
This system is a pilot project in-
tended to demonstrate techniques for
providing convenient, rapid access to
large volumes of satellite-derived
data for the oceanographic research
community. One of the requirements
for the system is that infrequent,
nonexpert users be able to easily use
it. For this reason the menu selection
technique was chosen as the primary
user interface. Command language
and OBMS query language interfaces
supplement the menu interface for
expert users.

The menu interface allows access
to the following basic system capa-
bilities:

(1) A bibliography of ocean remote
sensing literature;

(2) A directory of available data
sets, consisting of high-level
"abstracts" and availability in-
formation;

(3) A detailed inventory of avail-
able data, including temporal
and spatial location and access
information;

(4) Extraction of user-specified
subsets of the archival data sets;

(5) Formatting of extracted data
into a variety of output prod-
ucts, such as tabulations, plots,
maps, magnetic tapes, and disk
files;

(6) Support functions such as sav-
ing and retrieving request spec-
ifications and files, status mon-
itoring, accounting, etc.

In addition, the menu system in-
cludes a self-teaching option for new
users. This feature guides the user
through the various capabilities of
the menu processor itself and pro-
vides brief overviews of the various
system capabilities.

A prototype menu network was
initially designed and implemented
with the designers' view of a typical
use scenario in mind. The prototype
network consisted of about 50 nodes,
organized without regard to the
structuring ideas described above.
When the prototype was exposed to
trial users, who were in fact more
knowledgeable about the system
than real users were expected to be,
several important points quickly be-
came evident. First, users can easily
get lost in even a relatively small
network. Second, users demand
more flexibility in the order in which
they specify or receive information
than designers are likely to think
necessary. Third, modifying an un-
structured network, even if small, is
unacceptably difficult.

These observations led to the
conclusion that a more disciplined
methodology would be needed for
the real network. The author's ex-
perience with top-down structured
programming led naturally to the
ideas discussed in this paper. A re-
view of the literature on human fac-
tors in computer systems, starting
with [6], indicated that no other
work had been done in this area.
Therefore, the concepts presented
here may be considered tentative
first steps in this direction.

Although our prototype menu
network proved imperfect, the results
of our application were encouraging.
The version of the network delivered
for initial operational use is nearly
an order of magnitude larger than
the prototype, as illustrated in Table

I. It has undergone several modifi-
cations as features were added or
relocated, but all changes have been
made smoothly. Users still get lost
occasionally, but not as frequently as
in the prototype. It is not clear,
though, that the structuring was re-
sponsible for the latter effect, since
considerable effort also went into
polishing the wording of those menu
frames which caused confusion.

One area of the implementation
which remains unsatisfactory is the
bibliography. The initial version pro-
vides access only by subject and is
organized as a basic tree with limited
cross-indexing added. The effort re-
quired to organize the references into
a hierarchy of subject categories and
then implement the access frames
was substantial. In addition, users
sometimes want access by author,
institution, title, report type, project,
sensor, and key word. Creating ac-
cess trees for each of these categories
is a formidable task and still would
not always provide the kinds of mul-
tiple selectors which users desire.

As a result, we plan to redesign
the bibliography as a relational data-
base, using the menu system to help
users build queries. This is expected
to yield much more flexible and se-
lective access for users, while sub-
stantially reducing the effort of add-
ing new entries to the database.

10. Design Aids
The initial version of the frame

network was developed manually,
assisted by a single program which
analyzes the network and produces

I

Table I. Oceanic Pilot System Menu Network~ ln i t ia l Version.

Category Number of Number of
non-HELP Frames HELP Frames

Bibliography 1
access paths 50
citations 203

Data set directory 1
access paths 17
citations 10

Data inventory and extraction 37 13
Output product specification 34 12
Support (request manipulation, file saving, etc.) 21 21
Tutorial 20 3
Total 392 51
72 frames invoke 67 programs as subprocesses.

416 Communications July 1982
of Volume 25
the ACM Number 7

SKYHAWKE Ex. 1023, page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

