©

o
©

a
~
o

X
Ll
L
s
<
I
>
X
2]

SRR RE] MABEDIITED mITEREe e
rvfwm& 3 3 ¢ E

R T e T T L
TP-326-110

ENGINEERING THE
HUMAN-COMPUTER
INTERFACE

Edited by

Andy Downton

Department of Electronic Systems Engineering
University of Essex

McGRAW-HILL BOOK COMPANY

London - New York - St Louis - San Francisco - Auckland
Bogota - Caracas - Hamburg - Lisbon - Madrid - Mexico - Milan
Montreal - New Delhi - Panama - Paris - San Juan - Sdo Paulo

Singapore - Sydney - Tokyo - Torontpye | ,nvERSITY [IBRARY

WASHINGTON & LEE UNIVERSITY
LEXINGTON VA. 24450

SKYHAWKE Ex. 1017, page 2

Published by

134 McGRAW-HILL Book Company (UK) Limited
¢ SHOPPENHANGERS ROAD - MAIDENHEAD - BERKSHIRE - ENGLAND
vl TEL: 0628 23432
) FAX: 0628 770224

British Library Cataloguing in Publication Data

Engineering the human -computer interface. — (Essex series in
telecommunication and information systems).
1. Man. Interactions with computer systems
I. Downton, Andy I1. Series
004.019

ISBN 0-07-707321-5 '

Library of Congress Cataloging-in-Publication Data

Engineering the human-computer interface/editor, Andy Downton.
p. cm.—(Essex series in telecommunication and information systems)
Includes bibliographical references and index.
ISBN 0-07-707321-5
I. Human-computer interaction. 2. User interfaces (Computer systems)
I. Downton, A. C. I1. Series.
QA76.9.H85E53 1991
005.1—dc20 90-24975 CIP

Copyright © 1991 McGraw-Hill Book Company (UK) Limited. All
rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior permission of McGraw-Hill Book Company (UK) Limited.

1234 CUP 94321

Typeset by Computape (Pickering) Ltd, Pickering, North Yorkshire
and printed and bound in Great Britain at the University Press, Cambridge

JUL 2 8 1992 |

SKYHAWKE Ex. 1017, page 3

——7 a

4 Dialogue styles:
basic techniques and
guidelines

ANDY DOWNTON

’

4.1 Introduction
4.1.1 History

Computer dialogue styles have been transformed over the last
twenty-five years by the introduction of first minicomputers and then
microprocessors. The introduction of the first minicomputer (the DEC
PDPS), though primarily viewed as a breakthrough in dedicated

| real-time computing, also represented a landmark in human-computer
interaction. Whereas mainframes had typically been run in a batch
mode, minicomputers were used interactively, introducing for the first
time the need to provide a programmed interface between the user and
the computer.

Since the early 1970s the microprocessor has become a ubiquitous
part of most electronic systems. The widespread availability of

| microcomputers based upon microprocessor technology has accelerated
the trends first begun by minicomputers, by putting significant raw
computing power in the hands of inexperienced users for the first time.
System performance in this case is clearly dependent upon maximizing
the usability of the computer rather than using its processing power
efficiently, and thus much of the processing power of personal
computers is now expended not in processing data but in facilitating
communication with the user. Even where the basic level of
communication (via the operating system) is rather traditional
(typically, a terse command line dialogue where the user is expected to

‘ know the names of commands acceptable to the machine), applications

| such as word processors, database managers, spreadsheets, etc., overlay
this with simpler menu-selection command mechanisms.

Increasingly, machines like the Apple Macintosh model their user
interface upon familiar metaphors such as the office desk, and use a
pointer device (the mouse) to select and manipulate objects. This
example illustrates the close interrelationship between the capabilities of

SKYHAWKE Ex. 1017, page 4

B

66 ENGINEERING THE HUMAN-COMPUTER INTERFACE

the technology and the style of the user interface, because the WIMP
(variously an acronym for windows, icons, mouse, pull-down menus, or
windows, icons, menus, pointers) style of user interaction was fully
explored and evaluated in the early 1970s at the Xerox Palo Alto
Research Center using dedicated minicomputer workstations. In spite of
their apparent visual appeal and friendliness, however, the software
complexity of such graphics-oriented interfaces is high, and thus it was
not until 16- and 32-bit microprocessors were introduced that sufficient
processing power was available to enable such systems to become
practicable at low cost.

4.1.2 Application areas

Although the archetypal concept of a human—computer dialogue
conjures up images of the user sitting in front of a terminal interacting
with a keyboard and video display, the expression admits a much wider
range of interpretations than this. Many familiar home, office and
entertainment systems now contain embedded microcontrollers with
which dialogues of a sort are conducted.

A minimal example of such a system is the familiar digital watch
(Figure 4.1). Typically, this incorporates, in addition to clock, day and
date functions, a stopwatch with lap timer, a presettable countdown
timer, and one or more alarms. It may seem natural and obvious with
hindsight that all these functions can be readily controlled and initialized
with only four pushbuttons, but in the absence of a known solution the
problem would be much more taxing. Furthermore, given only the
specification of the required functionality, and the availability of a single
four-bit input, it is clear that many possible solutions could be generated,
varying widely in simplicity, consistency, flexibility and ease of use.

Other examples of domestic equipment containing a microcontroller
are now commonplace: video cassette recorders, teletext TV sets,
microwave and conventional ovens, and automatic washing machines

Adjust Alarm Stop/
Lap/Reset
882 BE
Mode 12/24 Hour/
Start/Stop

Figure 4.1 The digital watch—a minimal example of
human—-computer dialogue

SKYHAWKE Ex. 1017, page 5

—T

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 67

all enable the mode of operation to be programmed using a rudimentary
pushbutton dialogue, typically augmented by feedback from a display
panel. Such dialogues can generally be categorized as simple forms of
menu selection, and are readily formalized using state transition
diagram techniques (see Sections 6.5 and 7.5.1).

In the office, business and industrial environment, too, examples of
embedded systems abound: photocopiers, intelligent VDU terminals,
telephones, PABXs, machine tools and industrial process controllers are
all controlled using dialogues of greater or lesser sophistication. Word
processors, video games and personal computers running databases,
spreadsheets, graphics and communication packages represent the
conventional concept of computers and provide a more versatile and
flexible potential for human—computer interaction. The availability of
video displays, keyboards and graphic input devices opens up
opportunities for much richer, more powerful and more extensive
dialogues using menus, form-filling, command languages and /or direct
manipulation to specify commands.

4.1.3 Dialogue design objectives

In all these application areas, the concept of developing the engineering
design using top-down techniques starting from systems analysis and
specification is well understood: what is often overlooked is that exactly
the same process of step-wise refinement should and can be applied to
the process of interface and dialogue design. Instead, the user—interface
design is often based upon unsupported implicit assumptions made by
the design engineer about the nature of the task, the user’s model of the
task, and the characteristics of the users.

As part of the design process, the designer needs to be armed with a
comprehensive understanding of the types of interfaces and dialogue
styles available, their appropriateness for different categories of users,
and their system implications in terms of display, input device and
processing power requirements. The objective of this chapter is to
provide an overview and taxonomy of different dialogue styles;
Chapters 6 and 7 then discuss some of the techniques and tools
available to support different human-computer dialogue models and
illustrate the models and dialogue styles using some example research
systems. Chapter 5, on knowledge analysis of tasks, is concerned with
ways of eliciting knowledge of user models and methods which can
provide a specification for the required dialogue.

4.2 Dialogue properties

Before reviewing specific styles of dialogue in detail, it is worth while
considering some desirable generic characteristics of these dialogues.
Alison Kidd (1982) cites five important properties:

SKYHAWKE Ex. 1017, page 6

68 ENGINEERING THE HUMAN-COMPUTER INTERFACE ‘

® initiative;

e flexibility;

® complexity; |
@

.

power;
information load;

to which can also be added:

consistency;
feedback;
observability;
controllability;
efficiency;
balance.

e o 0 0 0 0

These properties are considered in more detail below.

4.2.1 Initiative

Initiative is the most fundamental property of any dialogue, since it
defines the overall style of communication and thus, to a large extent,
the type of user for whom the system is intended. The two most |
common styles are computer-initiated and user-initiated. In |
computer-initiated dialogues, the user responds to explicit prompts from

the computer to input commands or command parameters: typically,

(s)he will be presented with a series of options from which a selection |
must be made (menu selection), or a number of boxes into which |
parameters must be inserted (form-filling), or questions to which
answers must be specified in a more or less restricted way (for example
yes/no vs. natural language). The key characteristic is that the dialogue
consists of a closed set of options defined by the computer.

By contrast, user-initiated dialogues are open-ended in nature: the
user is expected to know a valid set of command words and their
allowable syntax, and possibly a semantic structure for the system if
I operation in several different modes is possible. A typical example of a
| user-initiated dialogue would be the command language of a computer
operating system; superimposed upon this could be the semantic
structure of a variety of other command language-driven programs such
as editors and debuggers, each with their own distinct style of dialogue.

Dialogues need not be purely computer-initiated or user-initiated.
Variable-initiative dialogues are becoming more common, particularly in
systems intended for wide ranges of users. In many current systems, the |
level of user initiative required is chosen by the users themselves (for
example by selecting between user-initiated and computer-initiated
modes), but adaptive dialogue styles are also becoming more common. |

At their simplest, adaptive dialogue systems adjust the level of
assistance by monitoring, for example, the delay in the user inputting a

SKYHAWKE Ex. 1017, page 7

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 69

command or parameter: when a prespecified limit is exceeded,
additional assistance on options available is displayed. Alternatively,
when parameters are omitted from a command line, they can be
prompted for by the system. In either case, a user-initiated dialogue is
partially transformed to a computer-initiated style. Conversely, a
computer-initiated menu selection system can be adapted to a
user-initiated mode by allowing selections from subsequent menus to be
given without waiting for the intervening menu(s) to be displayed (see
Section 4.12 for an example of this). More complex techniques, for
example the use of knowledge-based systems to predict users’

| capabilities by monitoring the content of their interactions (adaptive
intelligent dialogues—see Chapter 7) remain a research problem at

present.

Finally, we can distinguish mixed-initiative dialogues as being
common in natural-language communication with computers: here, the
free format of both input and output to the system allows the possibility
of either the computer or the user leading the dialogue at different
times.

4.2.2 Flexibility

| A flexible system is one in which a particular objective can be achieved
in a variety of different ways. This is not simply a matter of providing
a very large command repertoire in the hope of covering every

| possibility, but should follow from an analysis of users’ models of the

! activity. The objective is then to map the system onto representative

users’ models, rather than to force the users to work within a

framework defined by the designer.

One of the less frequently recognized reasons for the success of the
Apple Macintosh personal computer is that a great deal of attention has
been paid in the design of its interface to this concept. Most functions
can be accomplished in several different ways, corresponding to
different models which the user may have of his or her activity (e.g., see
Figure 4.2). Generally, users are unaware of this characteristic, since
there is little incentive to investigate alternative methods of
accomplishing a function once success has been achieved, but they may
notice a higher success rate in trying out new functions than is common
| with other machines (which itself will tend to generate a positive
\ response to the system).

Flexibility can also be conferred by providing opportunities for the
user to customize and extend the interface to meet their own personal
requirements. This capability is most commonly observed in the
provision of programmable function keys on microcomputers, or

| programmable control code alternatives (power keys) to pull-down or
pop-up menu selection options on WIMP interfaces.

The price paid for flexibility is in the complexity and efficiency of the

SKYHAWKE Ex. 1017, page 8

70 ENGINEERING THE HUMAN-COMPUTER INTERFACE

|
|

!

Mousc

Cursor

e Cursor keys
positioning

l = ¥ L 1‘ ‘

| W]nrd' Double click t‘lick and drag | Click and (none)
selection = | shift-click
e

¥ ¥ Ty
Word Mouse/menu Command-X Backspace |
deletion select CUT
: * i E
¥
I End

Figure 4.2 Word deletion strategies under Apple™ Macintosh
MacWrite |

interface software: clearly there is an overhead in providing additional
functionality over and above the minimum required to perform the task.
This overhead can however by minimized by careful organization of the
command structure to eliminate duplication (see Section 4.2.6 below).

4.2.3 Complexity

In general, there is no benefit in making an interface more complex than
necessary. Often, an apparently complex interface is in fact a symptom
of a failure to analyse the structure of the interaction and organize the
commands accordingly. Logical grouping is important in reinforcing the
user’s model of the system, and is commonly achieved by the use of l
hierarchy or orthogonality or both.

Hierarchy I

This is the structuring of commands according to related characteristics
and their relative importance. Rather than having a flat command
structure requiring memorization of a large number of individual
unrelated commands, the commands are grouped into a hierarchical
tree, where related commands are associated in different branches of the

SKYHAWKE Ex. 1017, page 9

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 7

Figure 4.3 Tree structure of commands

tree (Figure 4.3). This maximizes the chance of memorizing the
commands by recoding groups of commands as individual ‘chunks’,
while at the same time simplifying decision making by offering a
restricted set of options according to the current position in the tree.

Orthogonality

This is the structuring of commands according to independent
characteristics (Figure 4.4). For example, specifying three independent
command characteristics A, B and C, each of which is chosen from a set
of 10 options, provides the capability to represent up to 1000 distinct
commands, while requiring only 30 independent items (Al ... A10, Bl
... B10, C1 ... C10) to be memorized. This technique is most commonly
exploited in specifying command parameters.

A

Figure 4.4 Orthogonality in command structures

SKYHAWKE Ex. 1017, page 10

72 ENGINEERING THE HUMAN-COMPUTER INTERFACE

4.2.4 Power

Power is defined as the amount of work accomplished by the system per
user command. Users (particularly expert and experienced users)
generally react positively to the availability of powerful commands, and
conversely can be irritated by the pedantry of a system that requires
excessive user input to achieve a specific function. Note that a
requirement for powerful commands may conflict with the need for
flexibility, and may affect the complexity of the system.

4.2.5 Information load

The information load which the dialogue imposes on the user in terms

of both memory and decision making should be appropriate to the level }
of user. If too high a load is incurred, this leads to anxiety on the part }
of the user, which has a negative effect both on cognitive processing !
capability and attitude towards the system. If there is too low a load, |
this leads to resentment since the user sees the system as inhibiting his

or her performance. Matching the information load to the user presents '
particular difficulties, since different loads are optimal for different [
categories of users, but any user who uses a system regularly will

become more proficient and hence change categories over a period of

time. Variable initiative dialogues provide one possible way of coping

with this problem.

4.2.6 Consistency

mental model of any computer system. A consistent system will

encourage this by helping the user to extrapolate successfully from his

or her current knowledge to explore new commands and command

options. Once the user has used a particular command in one context, it

is reasonable for him or her to expect that it will also work in any other)

context which he or she perceives as similar. |
Consistency should apply to all aspects of user interface design. ‘

|

|
Consistency is an important attribute in helping the user to develop his ’

Commands should have a standardized syntax and parameter ordering;
displays should have a consistent layout; the data entry format should
be compatible and consistent with the data display format.

4.2.7 Feedback {

Immediate feedback is needed for any user input. The feedback should
unambiguously indicate the type of activity taking place, for example
text input, mode selection, command input, pointing. It is amazing how
many widely used systems fail to observe this fundamental requirement!

SKYHAWKE Ex. 1017, page 11

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 73

4.2.8 Observability

An observable system is one in which the system function is apparent
and clear at a surface level, even if the underlying processing is complex.
This can sometimes be difficult to achieve, particularly where a simple
model of a complex underlying activity is presented to the user.
Difficulties arise where the user exceeds the bounds of the model (for
example due to errors) and the system is no longer able to present
responses which the user can understand in terms of the model.

4.2.9 Controllability

Controllability is the converse of observability, and implies that the user
is always in control of the system. For this to be true, the interface must
provide means by which the user can determine:

@ where he has been;
® where he is now;
® where he can go from here.

4.2.10 Efficiency

Efficiency in a closely coupled human-computer system is defined in
terms of the throughput achieved by the person and the computer
working together. Thus, although the efficiency of the engineering and
software aspects of the system may be important if they affect the
response time or display rate of the system, often the designer can
afford to buy his way out of trouble (by specifying a more powerful
computer if necessary), knowing that developments in technology will
minimize the cost of this decision in due course. In contrast, the cost of
skilled staff is increasing all the time, emphasizing the importance of
using their time as effectively as possible, even at the expense of
devoting a large proportion of the total available processing power to
the user interface. The development and exploitation of workstations
and computer-aided engineering vividly illustrate this point.

4.2.11 Balance

A basic design strategy for any human-computer system should be to
subdivide the tasks in an optimum way between the person and the
computer. Table 4.1 illustrates some of the relative capabilities of each.
Essentially these differences reflect the complementary strengths and
weaknesses of humans and computers: humans cope best with changing
circumstances, uncertainty and incomplete knowledge, while computers
are better suited to dealing with repetitive and routine activity, reliable |

SKYHAWKE Ex. 1017, page 12

74 ENGINEERING THE HUMAN-COMPUTER INTERFACE

Table 4.1 Relative aptitudes of humans and computers (adapted from
Shneiderman, 1987)

Human aptitudes Computer aptitudes
Estimation Accurate calculation
Intuition Logical deduction
Creativity Repetitive activity
Adaptation Consistency
Subconscious concurrency Multitasking
Abnormal/exceptional processing Routine processing
Associative memory Data storage and retrieval
Non-deterministic decision making Deterministic decision making
Pattern recognition Data processing

World knowledge Domain knowledge

Error proneness Freedom from error

storage and retrieval of data, and accurate computation of both
numerical and logical functions.

At the interface between the human and the computer, the
complementary aptitudes must be brought together in an appropriate
way, otherwise the overall efficiency of the human—computer system will
be degraded. Interface design therefore involves choices which affect not
only the hardware configuration, but also the way in which the tasks are
divided, and the structure of the dialogue between the person and the
machine.

4.3 Human characteristics

Human characteristics, as they affect the design of systems and their
user interfaces, can in some senses be viewed as an onion-like structure.
At the centre is the system itself, and around this in concentric layers
are the various human characteristics (Figure 4.5). Human cognition
should be taken into account in designing the dialogue organization,
whereas perception and motor control should respectively influence the
graphical structure of the interface and the design of input devices. The
dialogue style should be chosen with reference to the experience and
expertise of the user. The influence on interface design of each of these
characteristics is briefly reviewed below.

4.3.1 Ergonomics

The basic physical characteristics of humans provide initial criteria for
judging the efficacy of human-computer interfaces, and indeed for

SKYHAWKE Ex. 1017, page 13

o~ 1

LS e e D A B Tt B

|

D e e

e

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 75

Ergonomics

,,///
= o \\\
J .
P , = e \‘\
//J- . o \
. - Perception | \ &
/ / : \
I l."
[s
i f @ \
[\ £
i R I 2.0
- B
= 52
£ s
P
| 5 5
| | B =
| \ o
| ! =9
! =<]
\ e
'1._‘ ' /
\ k.4

Figure 4.5 Onion-skin structure of human-—-computer interaction

specifying the surrounding environment (lighting, seating, table height,
keyboard and screen angles, etc.). Anthropometric data concerning
human dimensions and their statistical ranges and distribution are
widely available (e.g., see Bailey, 1982, Chapter 5 for a review and
sample tables). Although statistical averages can be calculated for any
parameter, Bailey illustrates the fallacy of designing for the ‘average’
person by demonstrating that among a sample of 4063 men measured in
a survey (Daniels and Churchill, 1952), no two were average in all 10
dimensions commonly used in clothing design. (‘Average’ was
considered to be the middle 30 per cent of the measured range for each
dimension.) A more satisfactory strategy is therefore to design for a
particular percentile range, for example 5-95 per cent. In many cases
(e.g., keyboards) a single design can meet this requirement, but where
the range of human variation is large (e.g., seat height) then user control
can be provided to allow optimization.

SKYHAWKE Ex. 1017, page 14

76 ENGINEERING THE HUMAN-COMPUTER INTERFACE

4.3.2 Perception, cognition and motor skills

In human-computer interface design, dynamic as well as static physical
characteristics are important. Since these depend not only on human
physical dimensions but also on muscular control, they are often
categorized under the heading of motor control parameters (see Chapter
2). Parameters concerned with arm, hand and finger movement speeds
are generally of most concern to interface designers, though voice
control is also of fundamental importance to those in the
speech-processing field, and has led to the development of complex and
detailed models of the vocal tract (e.g., see Holmes, 1988).

If motor control represents the output of the human information
processor, then perception provides the inputs. Vision and hearing are
by far the most important perceptual faculties from the point of view of
interface design, and the more important characteristics of each are
briefly reviewed in Chapter 2. Further detail can be found in Card,
Moran and Newell (1983), Chapter 2; in Bailey (1982), Chapters 4 and
7, and in Monk (1984), Chapter 1.

Cognitive models of the type developed in Chapter 2 provide the most
specifically useful information and insight into user interface design.
Short-term memory, long-term memory and the communication channel
between them are used extensively in interactions with a computer; in
closely-coupled activity between the human and computer, decision
making and problem solving form the major human contribution to the
dialogue.

4.3.3 Personality factors

Though less readily measured than more basic physical, perceptual,
cognitive and motor characteristics, personality and motivation should
also be considered in human-computer dialogue design. Characteristics
such as extroversion and introversion, not to mention different
behaviour patterns between sexes, can have a major impact on
dialogues. Similarly, tolerance, harassment, mood and fatigue can all
make the difference between ready acceptance and total rejection of a
computer system. Unfortunately, these factors tend to introduce an
element of instability in human—computer dialogues: for example,
anxiety increases the difficulty in learning about a new computer system,
which in turn reduces performance, which increases anxiety, and so on.

4.3.4 Experience and expertise

Background knowledge concerning the experience and expertise of the
expected user population is important in designing the interface.
Experience relates to the general understanding which the user has of
the problem, and of computer technology in general; expertise implies

SKYHAWKE Ex. 1017, page 15

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 77

the more specific detailed knowledge which the designer may expect the
user to have in carrying out the task using the system. Clearly, neither

| of these factors is likely to remain static unless the system is used very
infrequently; nevertheless, this situation can arise in the case of, for

| | example, computer-based public information systems.
| However, the concept of an ‘expert’ as someone with extensive

knowledge of the system has been shown to be simplistic, at least in
large systems with open learning (Draper, 1984). In a survey of use of
the. UNIX operating system and its screen editor, vi, by 94 users over 8
months, it was shown that there were no ‘experts’ using the system in
the sense of people who used all the commands. Only 69 per cent of the
total available UNIX commands were used at all over the period of the
survey, and the highest individual vocabulary was 60 per cent of these.
Users’ expertise was idiosyncratic: 18 individuals used one or more
commands not used by any other users. Thus schemes for classifying
users, such as that proposed in the next section, should ideally take
account of the context in which the user is working—an argument in
favour of adaptive interface styles.

| The same survey also showed that ‘experts’ were by far the heaviest
users of the UNIX manuals, whereas the reverse might be expected to
be the case. A possible inference from this is that expertise is not so
much based on innate knowledge about the system, but is more a case

| of understanding how to use the system and its documentation to tackle
and solve new problems. This is analogous to the skill of a librarian,

| whose expertise in navigating through the library’s cross-referencing
systems is often called upon by library users to help solve their own

Il specialized problems. Thus expertise may be more associated with the

| acquisition of techniques and strategies for problem solving rather than
any defined static body of knowledge.

4.3.5 Common user classifications

| The characteristics described in the previous section can be represented
as three orthogonal axes on a graph (Figure 4.6). Although any
combination of characteristics can occur in principle (the axes are
continuous), there are nevertheless a few frequently encountered user

| types which characterize many human—computer interface scenarios.

Casual users

| These are not very knowledgeable about the task or knowledge domain
which they wish to interact with, and are also unfamiliar with the
| system they will be using. Frequency of access may be low, and hence
| | there is little motivation to study manuals or other training aids. Use of
| the system and its logical structure must be self-evident. Examples of
systems intended for casual users include databases such as Prestel and

SKYHAWKE Ex. 1017, page 16

78 ENGINEERING THE HUMAN-COMPUTER INTERFACE

4 System

» Frequency of use

s
Task

Figure 4.6 Dimensions of human capability in human-computer
interaction

Teletext, computerized library search facilities, and computer-based
banking facilities accessible to the general public. Most computer
messaging systems ought to be designed for casual users, but are not!

Novice users

Although these may start out with the same characteristics as casual
users, they are distinguished by being much more frequent users. There
is therefore much more motivation for them to read manuals and other
off-line training aids, and thus less need for on-line support. As
experience and use increase, they may eventually become expert users.
This category covers many white-collar workers who use office and
data-processing systems regularly.

Knowledgeable intermittent users

Typically, these are professional staff who use a wide range of different
types of computer support equipment. They generally have a clear idea
of the task they wish to accomplish, and a good general understanding
of the capabilities of computer technology, but only a limited amount of
familiarity with the specific systems they need to use. Motivation to use
the system is high in the general sense that they are aware of the ‘power’

SKYHAWKE Ex. 1017, page 17

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 79

improvements which the use of computers can bring, but tolerance is
limited since they cannot afford to expend too much time learning the
syntax of a system which will be used infrequently.

Expert users

Sometimes known as power users, these are fully conversant with both
the task and the system they are using. Their main objective is to exploit
to the maximum the capabilities the system provides for improving their
performance. Excessive feedback and support is generally an irritant for
these users, who are more interested in exploring ways of increasing the
power of their interaction.

4.4 Task characteristics

Task characteristics are the complementary component of background
knowledge which is required alongside knowledge of the characteristics
of the human users before dialogue design can begin. Determination of
task characteristics is accomplished using task analysis, which is
analogous to the use of systems analysis to define requirements in other
engineering fields. Task analysis can be thought of as comprising two
major components, task taxonomy and developing the user model.
Although determination of these components is best achieved using the
formal techniques described in Chapter 5, in many cases a less formal
approach can still yield valuable insights. Simply being aware of the
need to envisage the task from the user’s point of view, and taking steps
to involve users in the early stages of design and prototyping are major
positive steps.

4.4.1 Task taxonomy

Task taxonomy describes the somewhat mechanistic process of
determining the set of tasks the system will be required to perform. The
taxonomy will typically be represented as some kind of tree structure,
with major tasks at its root and subtasks of each major task as the
branches. The full structure may require several levels to map down
from the primary functions to the basic atomic actions. The objective of
the process is to develop a clear and logical hierarchy of functionality
around which the dialogue can be built. In addition, producing the
taxonomy will per se give the designer insights into how the system
should be organized, both for clarity to the user and efficient
engineering, by suggesting logical groupings of functions, and
highlighting incompatibilities. Many methods of generating task and
dialogue taxonomies have been proposed, for example command
language grammar (CLG) (Moran 1981), task, action, language (TAL)

SKYHAWKE Ex. 1017, page 18

80 ENGINEERING THE HUMAN-COMPUTER INTERFACE

(Reisner, 1981, 1982) and goals, operators, methods and selection rules
(GOMS) (Card et al., 1983). Some of these have been discussed in more
depth in Chapter 3.

4.4.2 User’s task models

The task taxonomy is produced primarily according to the designer’s
perception of the required structure of system functionality, but this
may differ markedly from the user’s view. Many of the formal methods
of task analysis (see Chapter 5) are intended to elicit an explicit user’s
task model by questioning users about their knowledge of a particular
task, both in terms of the structure of the task and the objects and
actions on those objects which constitute carrying out the task. By
questioning a variety of users, and establishing the representativeness
and commonality of particular structures, objects and actions, an
objective view of the task is obtained.

This process is not the same as design-by-committee, which produced
little more than a list of ‘wants’ with no inherent structure or
association of value with function. An example of this latter strategy is
embodied in the widely used UNIX vi editor, which provides an
enormous number of functions, most of which are very rarely or never
used by most programmers (Draper, 1984). Two principle reasons for
this can be suggested. First, the command structure is flat: commands
are not grouped in any logical way to encourage users to explore a
variety of different methods of accomplishing a task. As a result, users
tend to learn a minimum functional set of commands and add new ones
to their repertoire only rarely. Second, the naming conventions for
commands are haphazard: it is apparent that vi was designed and
developed incrementally over a period of time. Had the full design been
specified at the outset, a much more logical command set could have
been chosen.

4.4.3 Creative system design

If human-computer system design consisted merely of mechanizing
existing methods of performing a task, the opportunities for creative
engineering design would be very limited. The opportunity for creativity
is provided where the designer attempts to reconcile the information
which emanates from the procedures of Sections 4.4.1 and 4.4.2in a
coherent way. The designer should not necessarily be bound to ‘use the
user’s model’ (Gaines, 1981), even though this is almost always better
than using the designer’s model! More important is that, whatever the
model used, it should be readily discernible, predictable and consistent
to the user.

Thimbleby points out the fallacy in always basing new designs upon
their functional predecessor, using the car and horseless carriage as his

SKYHAWKE Ex. 1017, page 19

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 81

example (Monk, 1984, Chapter 10). The problem is that organizing a
system and its interface in a way which is inherently familiar to the user
may expose technological limitations which substantially constrain the
overall system performance. The job of the designer is to balance these
purely technical constraints against the needs of the user to produce a
compromise solution which provides optimum performance from the
user and system in partnership.

4.5 Dialogue style classification

Sections 4.6-4.10 discuss dialogue styles under five headings: menus,
form-filling, command languages, natural language and direct
manipulation. These headings represent a reasonable classification of
styles, but of course the boundaries are indistinct and some specific
examples are not readily categorizable under any particular heading.
For example, where does the boundary lie between a command
language and a natural language dialogue? Early ‘adventure’ games
used a form of so-called ‘natural language’ where the user could input
any statement she or he wished, but the system only parsed the first four
letters of each of the first two words. Undoubtedly the dictionary of
valid words was larger than the typical command language, but was this
really natural language, even if it appeared so to the user?

Another problem of classification is that several different dialogue
styles may well be exploited for different purposes within a single
system. For example, the Apple Macintosh variously uses direct
manipulation (e.g., for file copying and transfer operations as part of its
desktop metaphor), menus (e.g., pull-down menus for selecting options
from the basic command list in the top status line), and form-filling (e.g.
for specifying file names). In addition it provides other mechanisms such
as dialogue boxes (for presenting system messages) and a variety of
buttons for activating functions.

‘ Martin (1973) defined over 20 styles of dialogue for alphanumeric I
display terminals alone, but Kidd (1982) noted that these could all be
classified within the general categories of menus, form-filling, command
languages and natural language. Her review was however written before
the widespread introduction of graphics-based workstations and the
WIMP style of interface, and thus largely ignored the concept of direct
manipulation (Shneiderman, 1983). In view of the current prevalence of
window system front-ends in computer workstations, together with the
widespread use of graphically based displays in other areas such as
industrial process control, air traffic systems and defence, it now seems
reasonable to treat direct manipulation graphic systems as another
distinctive dialogue style.

Sections 4.6-4.10 therefore review the distinctive characteristics of the
five basic dialogue styles: Section 4.11 then presents various principles

SKYHAWKE Ex. 1017, page 20

82 ENGINEERING THE HUMAN-COMPUTER INTERFACE

and guidelines which are relevant to all types of dialogue. Finally.
Section 4.12 presents a case study of dialogue design based on a
commercial teletext subtitle origination system.

4.6 Menus
4.6.1 Structures

The primary design problem in organizing a menu-based dialogue
results from the fact that most realistic tasks require more commands
than can conveniently be represented on a single menu. One possible
solution is a linear (or circular) series of menus where the last option of
each menu is ‘other options’. This can work well for a limited number
of menus where options are ordered according to their frequency of use,
but is obviously impractical for large menu systems.

The most widely used technique is the hierarchical tree (Figure 4.3),
which allows selection from a large number of choices with a relatively
small number of options in each menu and few levels of the hierarchy.
For example, a tree with 3 levels and 8 choices at each level can choose
between 512 options. The structure need not be purely hierarchical.
Additional paths allowing particular nodes to be reached by more than

[PTIE size Styte Formaot speilling thew

Athans wE———
Aot Gorce

Bookmen

Fre.®

Chicago

Courler
HGDEE D PEE
Geneva
CONTENTS| TIpesx

Helvelica

Renden

Los Angeles
GarnTe g

AN OVE wri.dls

Andy Doy Honaco

M Helvetica Narrow
Mew Century Schlbk
New Tork

o w

SECTION A -

Figure 4.7 Example scrollable pull-down menu. (© 1989 Claris
Corporation. All rights reserved. Claris and MacWrite are trademarks
of Claris Corporation. Macintosh is a trademark of Apple Computer
Inc.)

SKYHAWKE Ex. 1017, page 21

- N = - == ———— - - _—

Services
Exit SunVi

Figure 4.8 Example of pop-up menus with submenus. (Sun
workstation)

one route can often be useful in representing alternative navigation
strategies, and return paths offering shortcuts back up the hierarchy can
be valuable where multiple selections must be made.

The hierarchy may be represented as a series of sequentially presented
menus, but other formats are also possible. Pull-down menus (as on the
Apple Macintosh, Figure 4.7), Microsoft Windows and other window
systems) are principally a two-level hierarchy, while pop-up menus (e.g.,
on Sun workstations (Figure 4.8)) may allow submenus to be selected by
dragging the mouse to the right from one of the initial selections,
potentially to a depth of several levels (a similar capability has been
added to Macintosh pull-down menus in recent software releases).
Where a large number of menu options are required (for example to
show alternative fonts in a word processor) a scrollable menu may be
used, which shows only a subset of the available options initially.

4.6.2 Breadth versus depth: number of menu options
A binary decision such as: i
Do you need help (y/n)?

represents a minimal menu, but the desirable maximum number of
choices on a single screen is less clear (and in any case depends to some
extent on character size and screen resolution). A considerable amount

SKYHAWKE Ex. 1017, page 22

W

84 ENGINEERING THE HUMAN-COMPUTER INTERFACE

of research has been carried out on the menu depth-versus-breadth
issue. but results are generally equivocal. There seems some consensus
that menus should not contain more than about 12 items per frame to |
minimize search time and maintain a clear uncluttered display; equally |
it is generally agreed (and has been demonstrated experimentally) that
providing less than 4 choices per frame slows down navigation in large
hierarchical menu selection systems.

It is not necessary for every menu to contain the same number of
options; a more important criterion is that groups of options contained
within a single menu should be logically compatible and consistent.
Appropriate groupings should normally be defined by the task
taxonomy (Section 4.4.1). However, where menu length varies care
should be taken to ensure that style, layout and structure are consistent
between different menus. For example, menu selection methods (see
next section) should not change from one menu to the next, list
structure should be consistent (e.g., alphabetic, or most frequently used
‘ items first), and screen layout should remain consistent so that the
choices and cursor position do not vary.

4.6.3 Selection mechanisms

' Three methods of selection are commonly used for menus. The first and
most obvious is to list the options numerically and choose between them
by typing the number of the required selection, as for example in the
Prestel system (Figure 4.9). An alternative is to select the item by typing
its name, or more commonly, an abbreviation of this name (see Section
4.12 for an example). This can have advantages in being able to
construct memorable acronyms by concatenating command
abbreviations at several successive levels of the menu hierarchy, such as
IOT—*Input Offline Titles’ (from the example in Section 4.12).

Finally, the menu choice can be made by pointing to the item, using
cursor keys, a mouse, a joystick, a touch screen or any of the pointing
devices discussed in Chaper 8. Typically, feedback will be provided to
indicate the currently selected choice by the use of reverse video or a
different colour (see Figure 4.8); the choice is then confirmed by
clicking the mouse button or carrying out some other confirmatory
act.

' 4.6.4 Organization

Menu organization and screen design (see Sections 4.11.2 and 4.11.3)
are seldom given the attention they deserve by design engineers whose
training and experience is usually more technically oriented. Aesthetic
appeal and the ability to visualize the system from the user’s point of
view are vitally important; unfortunately, these skills vary widely among

SKYHAWKE Ex. 1017, page 23

| _ i I

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 85

Accommodation Holi dags
Air Travel Late Holidays.

Car Hire Cruise-Flights &
Coaches Special QOffers
Country Info Rail

Cruises InforAdvice~s
Ferries Entertaimnment

Key eg

21 News and Events 23 Message Services
22 Traftfic Reports 24 Brochure QOrders

Figure 4.9 Numerical menu choice on the British Prestel system

engineers and computer scientists and are seldom formally developed or

evaluated as part of training. In the same way as possession of a

personal computer and desk-top publishing software does not guarantee

any ability to construct appealing printed material, dialogue design

tools do not automatically produce the most effective and attractive

interface design. ;

The organization of menus in a multiple-menu system is the single
factor which most affects the user’s perception of the interface, since the
underlying dialogue and model of the system are defined by this
| organization. There is strong experimental evidence that both error
rates and access time are reduced when menus are structured
meaningfully rather than randomly. The semantic organization should
normally be in accordance with the user’s model of the task, rather than
some other unrelated structure such as alphabetic ordering; hence the
need to establish task characteristics before proceeding to interface
design.

Prototyping tools for menu-based systems are widely available
(Chapter 7), and can be used to simulate the user interface of systems
not yet built, allowing early evaluation and thus providing feedback to
the designer, either confirming the validity of the interface model or
highlighting inconsistencies.

SKYHAWKE Ex. 1017, page 24

86 ENGINEERING THE HUMAN-COMPUTER INTERFACE

4.6.5 Advantages and disadvantages

The advantages and disadvantages of menu selection as a dialogue
technique are summarized in Table 4.2. Compared with other methods,
minimal typing is required (none if a mouse or other pointing device is
used), hence there is less opportunity for keying errors, a particular
advantage for infrequent keyboard users. Similarly, the low memory
Joad and frequent closure encountered in a menu selection task, and the
well-defined structure, help to simplify decision making for inexperienced
users, who are always presented with a fixed, limited set of options to
select from. These same advantages also mean that menu selection
systems can be used effectively even in interruptive surroundings where
attention has to be divided between the system and other activities.

Software design for menu-based systems is generally straightforward,
though care must be taken with data validation, display layout and
error handling. Methods for navigating backwards as well as forwards
through the menus should be provided, by means of abort, backtrack,
and/or undo mechanisms. The design of hierarchical menu structures is
inherently compatible with structured software design but in addition,
dialogue design CAD tools are now becoming available for many
menu-based systems, allowing rapid prototyping and permitting
aesthetic characteristics such as screen layout to be designed by
specialists in graphic design who may not have the requisite software
design skills.

The main disadvantages of menu mode resuit from the requirement to
display a large amount of auxiliary data to assist in menu selection.
Depending upon display rate, this may result in irritatingly slow
response (more commonly perceived as a problem by experienced and
expert users than by infrequent users), and also requires substantial
display space, which may constrain the choice of display type, or restrict
the amount of other material which can be simultaneously displayed.

However, type-ahead or bypass mechanisms can allow the user to
input the next selection without waiting for all menu options to be
displayed (as, for example, on Prestel), and provide an elegant method
for novices and experts to be accommodated compatibly on the same

Table 4.2 Advantages and disadvantages of menu-mode dialogues

Advantages Disadvantages

Minimal typing Sometimes slow

Low memory load Consumes screen space

Well-defined structure Not suited to data entry
Straightforward software design Not suited to user-initiated dialogues
CAD tools available Not suited to mixed initiative dialogues

SKYHAWKE Ex. 1017, page 25

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 87

system. An alternative approach is simply to provide a
high-performance display system with sufficiently rapid response,
powerful commands and aesthetic appeal to satisfy the ‘power’ user as
well as the novice or intermittent user, as exemplified in window system
menu-based command mechanisms.

A more fundamental problem concerns the type of interaction
required. Menu selection is very suitable for decision-making tasks, but
unsatisfactory for data entry, where large amounts of text need to be
keyed into the system. If, for example, a number of parameters to a
command must be specified, and these cannot readily be encoded with a
menu (for example in an airline reservation where source and
destination airports, departure and arrival times, flight number, and the
name of the passenger must be specified), then a form-filling mode of
dialogue will be much more suitable.

4.6.6 Conclusions

Menu-based dialogues are very suitable for casual, intermittent and
novice users, all of whom can benefit from the explicit structure and
simple interaction inherent in menu selection. For expert users, menu
systems may be acceptable if system response and display rate are fast
enough to avoid annoying delays.

4.7 Form-filling
4.7.1 Structures and organization

Form-filling is a useful metaphor in human—computer dialogues because
humans are inherently familiar with the concept of filling in forms, and
because computers are widely used to manipulate and process databases
of information, which are stored as records containing different fields of
related information. These records are generally most conveniently
visualized as forms. Familiar examples include airline bookings, library
records, address lists, parts lists, personnel records, etc. (Figure 4.10).

The key benefit of form-filling cited by Shneiderman (1987, p. 122) is
that all information in the record is simultaneously visible, giving the
user a feeling of control over the dialogue. This implies that, whereas it
is possible to implement a menu selection dialogue on any alphanumeric
display device including a printing terminal, form-filling dialogues
require a terminal which supports cursor control, so that the full screen
of form information can be displayed and the cursor then moved
around to each of the required data entry fields.

Although most users are familiar with the task of form-filling, the
implementation of this task via the syszem may be less obvious. Unlike
menu selection, the user usually has a significant degree of control over
the process of data entry, and various application-specific syntactic rules

SKYHAWKE Ex. 1017, page 26

88 ENGINEERING THE HUMAN-COMPUTER INTERFAGE

Figure 4.10 Example form-filling dialogue (from a university
admissions database)

must therefore be learnt before proficiency is attained. Typical syntactic
variables might include the following:

® Display protection—some areas of the display (generally all except the
data entry fields) may not be accessible to the user.

® Display field constraints—data fields may be of fixed or variable
length; user data entries may be constrained or free format.

® Field content—the user generally has to have some idea of permissible
field contents: guidance may or may not be included as part of the
form display.

® Optional fields—some fields may be optional; is this indicated
textually or by some other display convention such as lower intensity
level, different display colour, etc.?

® Defaults—are default entries possible? If so, are they indicated in the
protected display area or in the data entry area?

® Help—additional help concerning filling in different fields may be
available but concealed from the basic form display; if so, how is this
additional information accessed?

® Field termination—data entry to a field may be terminated by the
ENTER key, the RETURN key, or by filling the last available
character space, or by moving to another field.

SKYHAWKE Ex. 1017, page 27

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 89

® Navigation—the cursor may be moved around the form using the
TAB key in a fixed sequence, or using cursor control keys or another
. pointing device in any desired order.
‘ ® Error correction—the user may be able to correct errors by
backspacing, by overwriting, by clearing and re-entering the field
| content, etc.
‘ ® Completion—how is completion of the whole form indicated?

As with menu systems, dialogue design tools for defining form-filling
dialogues are readily available. In this case however, since there is a
| widespread need for tailored databases to support a variety of different
database manipulation tasks, the dialogue design tools are often
integrated with database application generator programs (for example
Aston-Tate’s dBASE and Microsoft’s Excel).

4.7.2 Advantages and disadvantages

The advantages and disadvantages of form-filling as a dialogue
technique are summarized in Table 4.3. The most significant advantage
of this method is the basic familiarity with the concept of form-filling
which any user has—all users can thus be classified as knowledgeable
intermittent users, even though they may in fact be casual or novice
users. Like menu mode, form-filling is a structured dialogue with low
memory load for the user because it is computer-initiated. Data entry is
simplified, but not as restricted as for menu mode, hence some training
is required so that the user is aware of what constitutes a ‘reasonable’
response for each field. This may be viewed as an advantage compared
with the flexibility of command and natural languages (see below), but a
disadvantage compared with the minimal dialogue requirements of
menu mode.

Software design is again relatively straightforward owing to the
constrained nature of the dialogue, but more care is required in parsing
and validating data entries than for menu mode. Many form-filling
dialogue design tools are available as part of standard database

Table 4.3 Advantages and disadvantages of form-filling dialogues

Advantages Disadvantages

Form-filling metaphor familiar Sometimes slow

Simplified data entry

Limited training required

Low memory load

Well-defined structure
Straightforward software design
Dialogue design tools widely used

Consumes screen space !

Not ideal for command selection
Requires display cursor control
Navigation mechanism not explicit
Some training needed

SKYHAWKE Ex. 1017, page 28

I —eeee

90 ENGINEERING THE HUMAN-COMPUTER INTERFACE

application generators, but these may not be useful (except for interface
simulation purposes) if the form-filling dialogue is intended to be part of
a larger embedded system whose scope extends beyond the capabilities
of the standard database package.

The basic disadvantages of form-filling mode are similar to menu
mode: potentially slow response and the need for a large amount of
screen space. In some ways, form-filling is complementary to menu
mode in that the two dialogue styles are optimized for different dialogue
types: form-filling is better for parameter entry, but less suited to
command selection. Other disadvantages result from the need for users
to have some familiarity with the syntax of the required dialogue, and
the need for the display to be cursor-addressable—a possible hardware
constraint.

4.7.2 Conclusions

Form-filling dialogues can be made suitable for all types of users, since
all users are familiar with the basic concept of their use. Casual users
may not have the specific system knowledge to complete the form unless
any system-specific syntax is explicitly indicated as part of the on-screen
data. Form-filling is better suited to parameter entry than command
selection, and thus can often be used to advantage as a complementary
dialogue technique where both styles of interaction are required.

To a large extent, the quality of form-filling dialogue depends upon
the organization, presentation and content of the information provided
in the form. Parameter fields need to be presented in a logical sequence
while textual content needs to be succinct yet informative and
unambiguous, form layout should be clear and uncluttered, and
straightforward error recovery procedures are needed. Guidance on
these requirements is presented in Section 4.1 1.

4.8 Command languages

4.8.1 Structures and organization

Command language dialogues are user-initiated and generally consist of
the user typing a command or command string of syntactically correct
words without prompting or help from the system. The most frequently
encountered example of a command language for most computer users
is the operating system language for their computer system. Other
common examples of command languages include languages for text
editors such as vi on UNIX systems. The distinctive feature of any
command language dialogue is that no explicit support is provided to
the user to show him the allowable set of commands: instead the user is
expected to know (or learn) these commands. One implication of this is

SKYHAWKE Ex. 1017, page 29

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 91

that the choice of command names is of particular importance in
command language dialogues because these names must be memorized.

As with the menu dialogue mode, several command structures are
possible. The simplest is a command list, as for example with the
command set for the vi editor, which uses nearly every character of the
ASCII character set (including control characters) to define some
command (see Table 4.4 for a small example)! A disadvantage of this
approach is the flat structure which results, making it difficult to
remember the full command set, particularly since command names are
not generally related in any logical or consistent way to their function.
In consequence, this approach is advised only where the set of discrete
commands required is fairly small. (It is generally a mistake to provide
too much functionality in a system, just as it is to provide too little.
Task analysis should reveal common strategies for achieving an
objective; implementing additional ‘1-per-cent’ functionality simply
increases the amount of code and documentation, and thus may both
reduce execution speed and slow user familiarization.)

Hierarchical command lists are also possible with command
languages, and exactly parallel menu hierarchies, except that no explicit

Table 4.4 Sample cursor control commands for the Unix vi screen

editor

Command Function

(space) right one character

AB back one page

AD scroll down half a page

AF forward one page

AH left one character [
AN down one character

AP up one character

AU scroll up half a page

+ start of next line

- start of previous line '
/< string > scan forwards for <string>

?<string> scan backwards for <string>

B back one word, ignoring punctuation
G<line no.> Qo to line <line number >

H start of top line

M start of middle line

L start of bottom line

w forward one word, ignoring punctuation
b back one word

e end of current word

w forward one word

SKYHAWKE Ex. 1017, page 30

=== —

92 ENGINEERING THE HUMAN-COMPUTER INTERFACE

prompting of allowable commands is provided in the command
language. It is common to use subsequent words after the initial
command word as qualifiers or parameters which specify the action of
the command in more detail. The meaning of the subsequent words (or
fields) of the command may be specific to each particular command (in
which case it is accurate to view the cqmmand string as representing a
hierarchy), or it may be possible for each of the words to identify a
particular orthogonal characteristic of the command string, in which
case the language may be viewed as an orthogonal structure. (Figure
4.4).

A practical problem in attempting to construct an orthogonal
command language is that, in most cases, the required functionality
cannot easily be accommodated by this structure. For example, the
generic three-dimensional structure for an operating system command
language might be of the form:

operation parameter filename

While this might fit some commands well (¢.2., edit, delete,
compile), others would not map easily onto the template (€.g., COPY
(requires both source and destination filenames), directory (no
filename required)). In consequence, many command languages exhibit
characteristics both of hierarchy and of orthogonality: typically the
initial word specifies the basic command, with subsequent words adding
command parameters (hierarchy), but at the same time there is some
effort to generalize parameter structure across all commands
(orthogonality).

4.8.2 Command syntax

Given this typical mixture of command language hierarchy and
orthogonality, three command syntax styles have emerged, as follows:

Positional syntax

A positional syntax interprets the command words strictly according to
their position within the command string. This type of syntax has been
widely used in simple microcomputer operating systems such as CP/M

and MSDOS. For example,

copY TEMP FILE1l

in a CP/M system might be assumed to have the meaning ‘copy the file
temp to filename filel’. In fact, the command copies in the reverse
direction, succinctly illustrating one of the greatest dangers in using a
positional syntax, namely, errors due to incorrect sequencing of the
parameters. In this case, the ‘logical’ sequence of parameters is incorrect
indicating an obvious error in the command structure, but in many

SKYHAWKE Ex. 1017, page 31

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 93

cases the appropriate sequence for parameters in unclear, both to the
designer and to the user. Where several parameters can follow the
command, scope for error is increased: for 2 parameters only 1 incorrect
sequence is possible, but for 3, five are possible and for 4, twenty-three.

Keyword syntax |

Keyword syntax identifies each command parameter by an immediately
preceding keyword. The actual sequence of parameters is then
unimportant. Thus the previous example might be expressed validly by
either of the following expressions using a keyword syntax:

COPY FROM FILE1l TO TEMP
COPY TO TEMP FROM FILE1

The delimiter between the keyword and its associated parameter is part
of the syntax of the particular command language; space, equals (=)
and hyphen (-) symbols are all commonly used. This method eliminates
the possibility of sequencing errors, but at the expense of including
additional redundant characters in the command line.

Mixed syntax

Mixed syntax simply combines the features of keyword and positional
syntaxes to increase the allowable options, as for example in the UNIX
command:

cc -o outfile cfile.c

where the parameter ‘-0’ is used as a keyword to indicate that the next
field specifies an output filename, and the field ‘cfile.c’ specifies a source
file using positional notation. Although widely used and apparently
more flexible than the use of keyword or positional syntax alone, mixed
syntax can introduce confusion as to the required command string
format where positional and keyword syntax rules conflict.

4.8.3 Advantages and disadvantages

Table 4.5 summarizes the advantages and disadvantages of command
language dialogues. The advantages quoted are all only true for expert
users: command languages have no real advantages for other types of
users and many disadvantages.

The disadvantages highlight the reasons why command languages are
suited to expert users. The need for substantial training and regular use
to maintain proficiency define an expert user, and are likely to
discourage any except the highly motivated. The reliance on the user’s
knowledge of allowable commands imposes a high memory load, but
eliminates the need for extensive displays of menu options or other

SKYHAWKE Ex. 1017, page 32

I —
1

94 ENGINEERING THE HUMAN-COMPUTER INTERFACE

Table 4.5 Advantages and disadvantages of command language

dialogues

Advantages Disadvantages
Fast Long training
Efficient Needs regular use
Precise High memory load
Concise Poor error handling
Fiexible

User-initiated

Appealing

support, leading to concise and compact use of the display. Providing
meaningful error messages is much more difficult for command
languages because the input is much less constrained, and the variety of
possible errors is much larger than for menus or form-filling.

4.8.4 Conclusions

In summary, the command language dialogue style has several attractive
advantages for frequent and experienced users, but is usually very
discouraging for any other type of user. Where command languages are
a legitimate choice, care is still needed to minimize training
requirements and errors. Kidd (1982) gives the following succinct advice
to minimize memory load and typing errors:

e choose memorable, non-confusable command words;

use consistent command formats;

keep command strings short;

provide an explanatory backup online ‘Help’ facility;

use the ‘natural’ ordering sequence for command parameters where
possible;

place optional and/or least used items at the end of the command list;
use defaults to reduce typing where appropriate;

e provide clear and explicit messages;

and, if frequent errors persist,

® revert to a computer-initiated style!

4.9 Natural language
4.9.1 Justification

Science fiction has for many years propagated the idea of
natural-language dialogue between humans and computers, but this

SKYHAWKE Ex. 1017, page 33

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 95

superficial view is not supported by practical experience in the HCI
field. The basis of the view may be an extrapolation from the fact that
humans converse successfully with each other using ‘natural language’,
but the flaw here lies in equating the computer with one of the humans
involved in the dialogue.

As indicated in Table 4.1, human and computer aptitudes are
complementary rather than equivalent, hence an optimal dialogue
should aim to exploit the strengths of each partner. For example,
natural-language dialogue between two humans normally assumes a
symmetric communication channel: speech input and recognition speed
in one direction is matched by speech output speed in the other. But
human dialogue with computers generally uses asymmetric channels: the
computer can output text to the screen very much faster than the human
can type it in. Furthermore, the computer may have the capability to
provide graphical or pictorial output as well as text. With these
constraints on communication speed, it makes good sense to minimize
typed input by the user (for example by use of menu selection), whereas
extensive textual output can be supported.

Another aspect of the symmetry problem is the comparison between
the style of input and output. In human-human communication each
participant uses natural language, but the analogy fails when one
human is replaced by a computer. On the one hand, if the computer
uses natural language to ‘speak’ to the user, the underlying structure of
the system being used immediately becomes more opaque and less
readily determined; on the other, if the structure is made clearer, for
example by means of forms or menus of options, then what is the point
of requiring a (largely redundant) natural language input? (One class of
system where the opacity of natural language is actually exploited is the
ubiquitous adventure game: not only can the player attribute
reassuringly ‘human’ capabilities to the computer, but also determining
the underlying ‘game model’ represents the major intellectual function
of the interaction.)

To add to these conceptual problems, natural-language dialogue is
substantially more complex to program than any other dialogue style
discussed. Natural-language recognition still represents a major
linguistic research problem, and current natural-language processing
systems are generally constrained to operate within limited knowledge
domains using constrained syntax and restricted vocabularies.

An exception to this generally negative view of the potential of
natural-language dialogues may exist in the case of natural-language
speech communication with computers. Where data input is required to
be by means of speech (in hands-off command and control operations,
for example, or in speech input to computers via a telephone line—see
Chapter 14), alternative dialogue modes such as single-word discrete
input may require significant user training, ruling them out for casual
and intermittent users. Acceptance of natural-language input for

SKYHAWKE Ex. 1017, page 34

et S e R —

96 ENGINEERING THE HUMAN-COMPUTER INTERFACE

speech-controlled systems eliminates the need for the user to acquire
specific syntactic knowledge about the interaction style.

4.9.2 Advantages and disadvantages

The advantages and disadvantages of natural-language dialogue are
summarized in Table 4.6. The main advantage of natural language is the
fact that no special syntax is needed. Natural language is also potentially
flexible and powerful, though in practice these advantages depend to a
large extent on how restrictive the specific dialogue implementation is.
A further advantage is the potential for supporting mixed initiative
dialogues, in contrast to the other dialogue styles discussed.

The major disadvantages of natural-language dialogues are those of
natural language itself: by comparison with any purpose-designed
artificial language, natural language is ambiguous, imprecise and verbose.
In addition, in speech input applications, spoken natural language is
significantly less well structured, accurate and syntactically correct than
written language. From the designer’s viewpoint, the software required
to support a reasonably flexible natural-language dialogue is
substantial: as a result natural-language input to computers is seldom as
efficient, either in dialogue content or interface programming, as other
dialogue styles.

A final problem with natural languages concerns the underlying
perception of the system which a natural-language dialogue
promulgates. Users can easily be misled by this style of dialogue into
attributing much more intelligence to the system than is justified. This is
due partly to the realistic and apparently thoughtful style of natural
language response which such systems are programmed to generate
(even when the system has in fact ‘understood’ very little of its natural
language input), and partly to the fact that the difficulty in following the
underlying logic of the computer’s deductions from its input data
readily persuades the user that these processes must be profound.

This point is amply illustrated by ELIZA (Weizenbaum, 1966; Weil,

Table 4.6 Advantages and disadvantages of natural-language

dialogues

Advantages Disadvantages

No special syntax Ambiguous

Flexible and powerful Imprecise

Natural Verbose

Mixed initiative Opaque
Complex software design
Inefficient

SKYHAWKE Ex. 1017, page 35

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 97

1965), a computer program written over twenty years ago to study
natural-language dialogue between humans and machines. Its mode of
operation was simply to identify key words within a specific knowledge
domain from the input (Weil discusses examples where the system was
programmed to respond as though it were a psychiatrist), and perform
simple transformations to generate its response. For example, by
converting first-person pronouns to second person and repeating the
input sentence with a question mark at the end, an apparently plausible
response is generated, with an implied request for elaboration:

Input: My boyfriend made me come here
Response: Your boyfriend made you come here?

By means of a variety of tricks of this type, ELIZA was able to conduct
convincing conversations with a variety of users, some of whom
believed that they were communicating with a human rather than a
computer, yet the underlying basis on which responses were generated
was straightforward, and certainly involved no deep analysis of the
meaning of the input.

4.9.3 Conclusions

In general, it appears that natural language does not have much to offer
as a basis for dialogue design in most applications, being both complex
to program and inefficient for most dialogue situations. The main
exception to this may be where a speech-based dialogue is required,
particularly if both input and output use the speech modality. In this
case, the ephemeral nature of speech output, and the difficulty of
generating speech input with strict syntactic constraints may justify the
use of what otherwise is a verbose, vague and ambiguous method of
communication.

4.10 Direct manipulation
4.10.1 Styles and metaphors

Most computer users are by now familiar with the WIMP (Window,
Icon, Menus, Pointer) style of dialogue popularized by such machines as
the Apple Macintosh, but the desktop metaphor used by this machine is
only one example of a direct-manipulation dialogue. The essential
characteristic of such dialogues is that some kind of direct representation
of the task is presented to the user by the system, with the result that the
desired operation or command is achieved by directly manipulating the
virtual reality embodied in the display. The primary advantage of using
a metaphor to represent the actual function is that operations and
commands can be readily suggested by analogy between the computer
representation and its real life equivalent.

SKYHAWKE Ex. 1017, page 36

d

98 ENGINEERING THE HUMAN-COMPUTER INTERFACE

& Fide tdit lhew Special
& 9 &

Bept.Res Handbook z
1 596K in disk 1, 397K available -

(i il Telet Set
Resl-bwk ivthe page ResHbook Conbents page

{ysection 2 [)seetian | T yseetion 3 [ysection 4

{)section s {Fysection & {7} Adrin.) Bection 7
: « ACD's folder = EE

18 596K in disk 1, 297K available

Dept Res Haodhonk
1 O ject Driented Prog
Section B Chapter 4
Bection B Chapter S

Figure 4.11 Macintosh desktop screen showing icons, folders and
windows

Thus in the case of the Macintosh desktop (Figure 4.11), by using the
metaphor of a folder to present a disk directory, the user may be
expected to deduce that he can open the folder and see what is inside
(list the directory in a new window), and then manipulate files within
the folder (extract, insert, duplicate, discard into the wastebasket, etc.).
The concept of hierarchical directories is readily conveyed by inserting a
folder into an existing open folder (window). Open folders become
documents (windows) on the desktop (screen) and documents can
overlap, be placed on top of each other, and moved around at will.
Icons with graphical images suggestive of their function are used to
represent application programs such as word processors, graphics and
communication packages. Supporting desktop operations requires
significant processing power, but the biggest problem faced by the
desktop metaphor is the limited size and screen resolution attainable
using CRT technology, compared with an actual desk! In addition,
direct manipulation commonly assumes the availability of some variety
of pointing device, such as a mouse, stylus or finger (for touch screens).

4.10.2 Objects and actions

Although these concepts seem simple and obvious with hindsight, the
trick of designing an effective direct-manipulation system lies in

SKYHAWKE Ex. 1017, page 37

DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 89

choosing a simple and readily understood metaphor. Central to this
metaphor is an orthogonal division between objects which are
represented as physical images (such as icons) on the screen, and
actions, which are conveyed dynamically by manipulating the objects.
The choice of metaphor is thus constrained by the need on the one hand
to choose objects which are recognizable and memorable, and on the
other to produce a set of actions which can be readily represented
graphically and are as consistent as possible across all objects
(Rosenburg and Moran, 1984). Furthermore, it may be possible within
the metaphor to code particular tasks either as objects or actions, for
example, the Xerox Star workstation represents the printer as an icon or
resource which can be selected, whereas the Apple Macintosh treats
printing as an action chosen using a menu.

Graphic design plays a fundamental part in creating an illusion of
manipulable objects. Design of direct-manipulation interfaces requires a
new breed of graphical designer who is not only capable of mastering
the aesthetics of presenting static images on a bit-mapped graphics
display, but also can cope with the dynamic aspects of such displays.
Animation may be used in a wide variety of ways: to indicate selection
of an object (e.g., inverse video), to indicate different modes (e.g.,
different cursor types), to indicate progress of a time-consuming
operation (e.g., the watch or hourglass icon), to provide a visual focus
on the object which is being manipulated. The example above might
suggest that using animated graphics is a key to success: as the examples
in the next section show, however, not all direct-manipulation interfaces
require such complexities.

4.10.3 Examples

Process control

Process control systems in industries such as chemical engineering and
power systems generation and distribution have for many years used
visual representations of their systems as the interface between the
human system controller and the computer-based control system. In
most cases this is relatively easily achieved technically since the system
being represented is static and so the basic display model can consist
mainly of a symbolic pictorial representation of the system on a board.
Fixed controls (switches, potentiometers, etc.) are used to adjust
parameters of the system, and basic status information is supplied by
means of illumination intensity, colour and other simple displays at
appropriate points on the board.

SKYHAWKE Ex. 1017, page 38

e e e e e

00 ENGINEERING THE HUMAN-COMPUTER INTERFACE

100 ENGINEERING THE HUMAN-COMPUIEZ = =2 —= ———————

Air traffic control and weapons guidance

Radar systems have always relied to a large extent upon the remarkable
pattern recognition capabilities of the human to isolate the radar return
corresponding to a plane from surrounding clutter. In essence, the
three-dimensional world in which the plane flies is translated into a
readily interpreted two-dimensional plan. Similarly, weapons guidance
systems provide a simplified visual representation of the world with the
target and method of controlling the weapon so as to hit the target
emphasized.

Simulators and video games

Simulators are widely used in fields such as flight training and power
station control to provide cheaper tuition than could be achieved by
using the system itself, and to explore aspects of control which would be
dangerous or impossible on a real system. Aircraft simulators may be so
realistic as to appear almost identical to the actual aircraft visually and
perceptually, but even with very much simplified display information,
users can learn a great deal about the principles of flight, if the model
accurately simulates flight dynamics. One class of video games simulates
flight, car racing, and other sports with varying degrees of realism and
accuracy, but in all cases the model represents a metaphor of the actual
activity. Other video games may be more abstract in nature;
nevertheless, there is usually an element of familiarity in the basic theme
of the game which encourages analogy and experimentation on the part
of the user.

Screen editors

Screen editors, where the computer screen represents a window in a text
file and text is identified by moving a cursor on the screen using a mouse
or cursor keys or both, are now the norm in most computer systems.
The WYSIWYG concept (what you see is what you get) is central to
modern word processors. However, in earlier interactive systems
line-based editors were common, representing a command language
approach to text editing (e.g., see the UNIX editor ed). While some
gurus still welcome the power of line editors, the vast majority of
computer users much prefer the visual clarity of a screen editor.

Graphics

Graphics generation of any sort on computer systems might seem to
require graphics displays, pointing devices and digitizers, as embodied
in a wide variety of microcomputer drawing, painting and business

SKYHAWKE Ex. 1017, page 39

