Exhibit 1017 — Part 3

140 ENGINEERING THE HUMAN-COMPUTER INTERFACE

they construct for achieving the goal and subsequent subgoals. The
procedures represented at this level of the TKS provide a description of
the rules task performers would expect to follow, and the alternative
procedures they would follow under particular conditions. A task
performer’s plan at this level of representation is related to our notion
of task structuring where certain task components precede, prime or
follow one another. Task structuring determines the sequence or
ordering of procedures necessary for successful task execution. This
information provides the system designer with a view as to how people
structure their tasks under certain circumstances: it also allows the
system designer to decide how the user will expect to make use of the
objects and actions (functions) and identifies the most frequent or
preferred procedure for achieving a subgoal. This information can be
used to set up default modes of operation in the program design.

Finally, at the object and action level, the taxonomic substructure
identifies the representative actions and objects within the domain and
the features of those task elements. The work on concept and object
knowledge of Rosch and her colleagues (Rosch et al., 1976) leads to the
suggestion that if the designer chooses to support this task and provide
a visible representation of the objects and the actions that can be carried
out on those objects, then the taxonomic substructure provides an
informative and detailed description of the features a person will expect
to associate with those objects. Additionally, the degree of
representativeness of task objects and/or actions, and the centrality of
the procedures containing those components (actions and objects),
provides the designer with an indication of which are deemed to be
typical and necessary for successful task completion. The consequences
of overlooking both central and representative task components in
system and user-interface design are likely to have severe consequences
for the ultimate usability of the system.

5.6.2 Empirical support for TKSs

Empirical evidence for the improvement in usability afforded by
modelling TKSs is provided by Davis (1988) in a pilot study of graph
and table drawing. The first part of the study identified representative
objects and actions, central procedures and sequencing of task
procedures for the above 2 tasks across a population of 12 subjects. An
experiment was then carried out in which 3 further groups of subjects
were required to undertake graph and table drawing tasks using 1 of 3
different interfaces with the same underlying functions.

One interface was structured so that it positively supported
representative and central task components, and task sequencing
identified by the TKS modelling stage. The second interface was
unstructured; representative and central task components were
supported but representative objects were not identified with their

SKYHAWKE Ex. 1017, page 79

KNOWLEDGE ANALYSIS OF TASKS 141

associated actions and the sequencing of task procedures was not
supported. A further control group had an interface which contained
neither central nor representative task components, and which had no
explicit task structure.

The results of the pilot study showed that subjects found the
structured interface easier to use, and also this interface had a higher
preference value from subjects. Additionally, the structured interface
resulted in quicker task execution, and the resulting graph and table
drawings were better quality in that they were more complete. Also, the
unstructured but central and representative interface design produced
better performance than the control group interface, but less than the
structured interface group. The findings thus support the theoretical
view that TKSs provide important information about users which can
be used to design improved user interfaces.

5.7 Relating KAT to design practices

Software systems design occurs in many different ways, resulting in a
certain reluctance on the part of academics and industrialists alike to
speak of an ideal design process. However, it is becoming increasingly
clear that task analysis has a part to play in current and future design
practices.

In this section, the contribution KAT might make to current design
practices is briefly considered. It is not, however, the intention to argue
for the use of KAT in specific design methodologies, structured or
otherwise, since KAT is potentially appropriate to many current design
methodologies and practices.

The traditional system development life cycle described in Chapter 1
typically involves the following stages. First, a feasibility study is carried
out to establish whether it would be possible to build a system to
support users’ tasks, and if there is a market for such a product. After
the feasibility study has been completed, a requirements specification
would be prepared, followed by the design of the system. The system
design, determined by the nature and the content of the requirements set
out in the requirements definition, is then implemented, the
implementation is tested and the system subsequently released. After a
period of time in use by the customer the system is updated and
maintained.

We can envisage a scenario where task knowledge requirements
identified by KAT could augment existing user requirements in the
software (and/or hardware) design life cycle. First, we would expect
user requirements to be taken into account in any feasibility study. This
would involve a small-scale task analysis. Using KAT at this stage
identifies commonalities across tasks through within-role relations and
also by the identification of generic task elements. At the requirements

SKYHAWKE Ex. 1017, page 80

142 ENGINEERING THE HUMAN-COMPUTER INTERFACE

definition stage a full-scale task analysis using the KAT methodology
would be carried out to establish and document user task requirements
in terms of users’ plans, goals, subgoals, strategies, procedures and
representative and central actions and objects.

The results of a TKS model can be easily decomposed into general,
specific and interface design models, as shown by Johnson ez al., (1988),
where the KAT methodology was used to produce frame-based
representations of a messaging system, the virtual interface to that
system and the dialogue structure.

KAT may also play a role in usability and learnability evaluation,
before and/or after the construction of & prototype or full
implementation. The use of KAT in evaluation relates to whether
aspects of a person’s task knowledge, identified by KAT, have been
carried over into the designed, prototyped or fully implemented system.
This specifically involves finding out whether all appropriate tasks have
been supported; whether generic task elements have been taken into
account; whether representative and central task actions and objects
have been represented; whether sequencing of task procedures have
been supported rather than violated; and finally, whether defaults have
been correctly specified and supported.

If these factors are taken into account the user will be expected to be
in a position to transfer appropriate extant knowledge to the newly
created environment and as a result the system designed will be easier to
use and learn. Furthermore, predictions can be made as to where this
transfer will be unsupported, whether interference is likely to occur, and
in which areas training might be necessary.

5.8 Conclusions

In this chapter we have described a theory and method of modelling the
knowledge people possess about tasks and roles in a given domain,
known as knowledge analysis of tasks (KAT). The information
contained within the task models constructed within the KAT
methodology is very rich and can be used as an information source to
which designers can be given access; it prevents the designer having to
rely on his or her own intuitions about peoples’ task knowledge.
Empirical evidence suggests that the TKS models identify important
features of knowledge that can influence the usability of systems when
the design recommendations arising from a TKS are followed. Finally,
the contribution made by KAT and TKS models to current design
practices is considered.

SKYHAWKE Ex. 1017, page 81

_—,‘

KNOWLEDGE ANALYSIS OF TASKS 143

Acknowledgement

The research described in this chapter was developed as part of an
ICL-funded University Research Contract research project on ‘The
development of task analysis as a design tool’.

References

Annett, J. and K. D. Duncan (1967) ‘Task analysis and training design’, Journal |
of Occupational Psychology, 41, 211-221. |

Card, S. K., T. P. Moran and A. Newell (1983) ‘The Psychology of Human |
Computer Interaction’, Lawrence Erlbaum Associates, Hillsdale, New g
Jersey.

Davis, S. (1988) ‘Knowledge structures in the human computer interface’.
Unpublished manuscript, Queen Mary College, University of London.

Diaper, D. and P. Johnson (1989) ‘Task analysis for knowledge descriptions:
theory and application in training’, in Cognitive Ergonomics, J. B. Long and
A. Whitefield (eds), Cambridge University Press, Cambridge.

Fleishman E. A. and M. K. Quaintance (1984). Taxonomies of Human
Performance, Academic Press, New York.

Galambos, J. A. (1986) ‘Knowledge structures for common activities’, in
Knowledge Structures, J. A. Galambos, R. P. Abelson and J. B. Black (eds),
Lawrence Erlbaum Associates, Hillsdale, NJ.

Graesser, A. C. and L. F. Clark (1985) Structures and Procedures of Implicit
Knowledge, Ablex Publishing, Norwood, NJ.

Johnson, P. (1985) ‘Towards a task model of messaging’, in People and
Computers; Designing the User Interface, P. Johnson and S. Cook (eds.),
Cambridge University Press, Cambridge.

Johnson, P., D. Diaper and J. Long (1984) ‘Tasks, skill and knowledge; task
analysis for knowledge based descriptions’, in Human—Computer
Interaction—INTERACT '84, B. Shackel (ed.) North-Holland, London.

Johnson, P., H. Johnson and F. Russell (1988) ‘Collecting and generalizing
knowledge descriptions from task analysis data’, ICL Technical Journal, 6,
137-155.

Johnson, P., J. Johnson, R. Waddington and A. Shouls (1988) ‘Task related
knowledge structures: analysis, modelling and application’, in People and
Computers: from Research to Implementation, D. M. Jones and R. Winder
(eds), Cambridge University Press, Cambridge.

Keane, M. and Johnson, P. (1987) ‘Preliminary analysis for design’ in People
and Computers, D. Diaper and R. Winder (eds), Cambridge University
Press, Cambridge.

Kieras, D. and P. Polson (1985) ‘An approach to the formal analysis of user
complexity’, International Journal of Man-Machine Studies, 22, 365-394.

Kelly, G. A. (1955) The Psychology of Personal Constructs, Norton, New York.

Leddo, J. and R. P. Abelson (1986) ‘The nature of explanations’, in Knowledge
Structures, J. A. Galambos, R. P. Abelson and J. B. Black (eds), Lawrence
Eribaum Associates, Hillsdale, NJ.

Olson, J. R. (1987) ‘Cognitive analysis of people’s use of software’, in
Interfacing Thought: Cognitive Aspects of HCI, J. M. Carroll (ed.), MIT
Press; Cambridge Mass.

Payne, S. J. and T. R. G. Green (1986) ‘Task-action grammars: a model of the
mental representation of task languages’, Human Computer Interaction, 2,
93-133.

SKYHAWKE Ex. 1017, page 82

144 ENGINEERING THE HUMAN-COMPUTER INTERFACE

Rosch, E. (1978) ‘Principles of categorization’, Cognition and Categorization, E.
Rosch and B. Lloyd (eds), Lawrence Erlbaum Associates, Hillsdale, NJ.

Rosch, E. (1985) ‘Prototype classification and logical classification: the two
systems’, in New Trends in Conceptual Representation: Challenges to
Piaget’s Theory?, E. K. Scholnick (ed.), Lawrence Erlbaum Associates,
Hillsdale, NJ.

Rosch, E., C. Mervis, W. Gray, D. Johnson and P. Boyes-Braem (1976) ‘Basic
objects in natural categories’, Cognitive Psychology, 8, 382—439.

Schank, R. C. (1982) Dynamic memory: A Theory of Reminding and Learning in
Computers and People, Cambridge University Press, New York.

Welbank, M. (1983) A Review of Knowledge Acquisition Techniques for Expert I
Systems, Martlesham Consultancy Services, British Telecom Research
Laboratories, Ipswich.

SKYHAWKE Ex. 1017, page 83

P’ — wr

7 Dialogue delivery
systems: example
* research systems

PETER JONES

’

7.1 Introduction to dialogue delivery
systems

In Chapter 4, part of the discussion was based on the idea of classifying
dialogue styles. The main styles identified were command language, menu
selection, form-filling, natural language and direct manipulation. In
Chapter 6, an abstract model for a dialogue system was developed.
Systems that implement the model are referred to as user interface
management systems (UIMS). This chapter examines several dialogue
delivery systems chosen to illustrate important aspects of these styles,
which in reality may overlap.

In addition to being exemplars of the styles, the systems were also
chosen to demonstrate a variety of approaches to the specification of
the dialogue component of interaction. Command language is covered
only briefly as it is assumed that most readers will be familiar with such
interfaces. However, some recent work on extending command language
interfaces is described. Next the ZOG menu- and frame-based system is
described; then a form-filling metaphor is illustrated with COUSIN. The
use of transition networks to specify a dialogue is shown in Rapid/USE
and CONNECT. Natural language is introduced through some early
work by Weizenbaum on the application of natural language to
man-machine communication. Then its use both in medical interviewing
and the Mycin expert system is described, leading on to the
natural-language help system used in the UNIX Consultant.

The systems, which come mainly from the research environment, have
been chosen to illustrate how actual implementations differ from the
abstract model presented in Chapter 6. In general, the discussion is not
detailed, but instead concentrates on bringing out what is seen as the
important ideas embodied in the implementation. However, further
details can be found in the references. \

SKYHAWKE Ex. 1017, page 84

164 ENGINEERING THE HUMAN-COMPUTER INTERFACE

A>DIR
Prompt Command

Figure 7.1 A CP/M prompt with a command

7.2 Command languages

Command languages are exemplified by the user interface to most
operating systems (Beech, 1986). In the early days of computing,
designers of such systems knew that the users were likely to be highly
motivated experts and therefore concentrated on delivering the
maximum functionality. Many early operating systems operated purely
in batch mode, where the user presented a complete task with
commands and data. Any feedback to the user was provided much later
in the form of a hard-copy listing showing the progress of the
commands, the data used and the output produced. Later operating
systems allowed for more interaction with the user in order to control
and monitor what was going on.

7.2.1 Digital Research CP/M

With the advent of the minicomputer in the mid-1960s and the
microcomputer in the 1970s, more users began using computers
interactively. From the user’s point of view, the CP/M operating
system from Digital Research was of great importance as the first
general-purpose operating system to be widely used on
microcomputers, and hence by the novice user. Its technical success
stemmed from the fact that it was designed to be largely independent
of the particular hardware on which it ran, and thus it established a
large base of users and application software. Nevertheless, it had many
awkward features (in common with many other command language
systems): the prompts were rather cryptic, error messages were barely
intelligible, there was an almost complete lack of help, and a crude
command syntax with position-dependent arguments were used. For
example, the prompt merely shows the currently selected disk drive,
(Figure 7.1), while on switching to a subsystem, for example a text
editor, the prompt changes, but with very little other feedback to the
user (Figure 7.2).

SKYHAWKE Ex. 1017, page 85

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 165

A> ED HCI.TXT

.

/

New prompt

Figure 7.2 Change of prompt in the editor

This style of interface was very poorly suited to the new and
inexperienced computer users who were attracted to microcomputer
systems by their low cost compared with previous generations of mini-
and mainframe computers. Fortunately, the support provided for CP/M
application programmers in the form of system calls and access to the
file system made it possible for applications to provide their own,
completely independent, support for common operating system
functions. Thus successful end-user CP/M applications such as
Wordstar (Figure 7.3) entirely replaced the basic CP/M command
language with menu-based command selection and a form-filling
mechanism for specifying filenames.

7.2.2 Dialogue Development System (DDS)

More recently, other approaches have been taken to increase flexibility
in command language dialogues. At the University of Bradford, UK, a
multilevel adaptable system, Dialogue Development System (DDS), was
proposed for use with Ada (Robinson and Burns, 1985). As well as

pp—
mm:gm
: Uh 3 Progran

Priat a file X EXIT to system

4

£ RERAME 2 #ile
0 COPY a file
Y DELEIE a file

74T BOGK4.TXT BOOKS.TXT

Figure 7.3 Wordstar main menu

SKYHAWKE Ex. 1017, page 86

166 ENGINEERING THE HUMAN-COMPUTER INTERFACE

_.—— Feedback

x ™

Dialogue =y
development Applications
system software

(R RN\

Figure 7.4 Proposed DDS system

emphasizing the adaptiveness required, this provided a separate
high-level specification of the interface in order to relieve the
application programmer’s task of dealing with the interaction. A user
interface specification language (UISL) was proposed to encourage this
separation. Another key objective was to automate aspects of providing
user feedback: for example, the type of an object could automatically
provide for user feedback on erroneous input.

DDS is a range of tools that includes a dialogue manager (DM),
which interprets the UISL, provides feedback, and controls the
adaptation. A terminal database provides a virtual terminal that is
device- and machine-independent. A validator is interposed between the
application software and the DM to check the interface. As can be seen
from Figure 7.4, the user interface system is run as a separate Ada task
communicating with the other tasks forming the application. A screen
formatter is provided to allow the construction of non-textual dialogues
such as menus. Finally, a system monitor is used to provide a constant
analysis of the system’s performance and how this affects users.

Although a command-style interface is used, DDS provides for a
mixed initiative interaction, for example prompting when arguments are
missing. An example would be the issuing of a ‘file copy’ command
when the user is in control (shown by the prompt of *>>"):-

>2 ICGPY

DDS then realizes that the arguments are missing and takes control to
ask for them,

fromfile> FRED
and then,
tofile> JOHN
with the prompt of ‘ >’ to show that control is now with DDS.

file copied.
>

and control is returned to the user.

SKYHAWKE Ex. 1017, page 87

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 167

7.3 Menu selection: ZOG

Menu systems are straightforward to implement. All that is needed is to
list the options available and then to ask the user to choose from among
them. For example, several commercially available communication
packages for connecting personal computers have a scripting language
that can readily be used to generate menu systems without the need for
any expertise in programming. It is more interesting, however, to
investigate systems that provide a generalized notation for the
specification of menu systems.

Z0OG (Robertson et al., 1981) is a rapid-response, large-network,
menu selection system. Work on ZOG began originally in 1972 and
restarted in 1975 at Carnegie-Mellon University, Pittsburgh, USA. The
later work was inspired by the interface style used in the PROMIS
(Walton et al., 1979) medical information system at the University of
Vermont. The name ZOG was chosen as a short arbitrary name and is
not an acronym.

In the period 1975-80 ZOG was developed on Digital Equipment
Corporation’s PDP-10s and Vaxes. Subsequent development moved
ZOG to a personal workstation, a PERQ, with high-resolution graphics
and a pointing device. In the early 1980s the PERQ version was used as
a computer-assisted management system on the aircraft carrier USS
Carl Vinson (Akscyn and McCracken, 1984). Most recently,
development has resulted in a distributed hypermedia system called
knowledge management systems (KMS) (Akscyn et al., 1988b), which is a
commercial version of ZOG available on Sun and Apollo workstations.

Z0OG has been used as an interface for a command language system, a
database retrieval system, a CAI system, a guidance system, an
interrogation system and a question-answering system. It is based on a
hierarchy of subnets. Each subnet is a tree of frames in the form of a
database. The system displays the frames to the user; a self-descriptive
version is shown in Figure 7.5.

The frame has a title and a unique number. Then comes some context
information, which could, for example, indicate how the user came to

il ™
Context information \ Frame title Frame #
Some explanatory text
Menu selections ——» 1 Option 1
2 Option 2
B o e

Global pads ——» Edit Help Back Next Mark
Return Goto . . .

L —d

Figure 7.5 An outline of a ZOG frame

SKYHAWKE Ex. 1017, page 88

168 ENGINEERING THE HUMAN-COMPUTER INTERFACE

this particular frame. Below that can be several lines of descriptive text
followed by columns of menu selections, shown as options in Figure 7.5.
At the bottom is a line of global pads, or menu choices, that appear on
all frames. For example the user could choose goto and proceed directly
to a known frame.

The user traverses these frames by making selections. Additionally, a
selection can evoke an action to accomplish a task. The selection can be
made either by using touch-sensitive pads overlaying the selection or by
entering a single character from the keyboard. The user therefore
navigates through a structured set of subnetworks of interconnected
frames, gathering information on the way. As an aid to navigation the
user can see a list of frames visited, or a list of frames marked (i.e.,
anchor points) and can search for a particular frame.

The frames are built using a frame editor, ZED. This can be used at
any time by the developer, including when using the system. A user
might also use the editor for a limited amount of personalization.

The internal structure of a frame contains not only the visible
information as seen by the user but also additional features. For
example, there is a maintenance field that contains, among other items,
the name of the owner of the frame and access privileges indicating
whether it may be modified or viewed by others. The frame builder has
the responsibility of providing guidance, on-line documentation and
help.

Selections and frames may include action text. This text is sent to the
communications multiplexer, which arranges for it to be sent to the
correct destination. The frames also have an external format. This
supports portability to other ZOG implementations as well as allowing
for external maintenance manipulation.

ZOG is really a hierarchical menu system together with a generalized
mechanism for the display of information and triggering of actions. As
with any menu hierarchy, users can get lost, but are provided with some
significant features that aid navigation. The limited display area places a
heavy load on short-term memory; even so, evaluation revealed
evidence that users failed to read the information in frames. The
researchers also investigated the impact of different response times and
provide some evidence for it to be less than 0.5 seconds. The later KMS
system overcomes many of these problems, for example by always
showing two frames so that the user can see the previous frame too.

7.4 Form-filling: COUSIN

COoperative USer INterface was designed by Phil Hayes at
Carnegie-Mellon University (Hayes and Szekely, 1982). It is aimed at
typical command-level interaction, for example interacting with an
operating system, and not the more fine-grained interactions within, say,

SKYHAWKE Ex. 1017, page 89

__F — T

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 169

| =
Print

Files to print: [:]

Copies: l—:_' Font: l:]

Number of columns 1: D 2 D

Long lines

wrap: D truncate: D

" .

e

Figure 7.6 A COUSIN form

an editor. COUSIN aimed to present a consistent interface for all
applications and to provide the benefit of reduced implementation time.
COUSIN uses a form-filling metaphor. This provides a single
interface to several applications. The form-filling has intelligent support,
mainly from the type information held in each field.
The (simplified) example in Figure 7.6 shows a command (print) and
a set of arguments which must be supplied. Fields for the arguments can
have default values that may be overtyped by the user. Each field has a
data type and an attribute indicating whether the field is optional.
Three modes of operation are supported. A non-interactive mode is
used for batch applications: COUSIN ensures correct command
arguments are supplied before calling the application. In the interactive
mode the application is started and can then prompt the user, when |
| needed, for further information. Finally, in the command loop mode the
| user is in control and can issue commands with arguments and observe
‘ the feedback from the system.
| Several variants of COUSIN were produced, but the main application
reported is an interface to the UNIX operating system. In this
application, the user typed a command, then COUSIN loaded an
appropriate form and assisted the user in filling it in. Once completed,
the command and arguments were parsed with COUSIN helping the
user to remove errors. The user could save the form for later use, for
example, the form could be partly filled in with the user’s particular
‘ default settings.
‘ The form-filling approach makes good use of bit-map displays, allows
arguments to be filled in out of order and permits fields to have defaults.
| However, applications need modifying before they can be used with
| COUSIN. Although providing COUSIN as a front-end interface halved
the speed of UNIX, this did not seem to be a problem with the
experimental users.

SKYHAWKE Ex. 1017, page 90

170 ENGINEERING THE HUMAN-COMPUTER INTERFACE

7.5 Transition networks

7.5.1 Rapid/USE

Rapid/USE (Wasserman et al., 1986) has been developed at the Medical
Information Science Centre at the University of California since 1975. It
is based on graphical specification of the required dialogue using
families of state-transition nets and subnets and can rapidly produce
either a menu or a form-filling dialogue. Diagrams are created using a
graphical Transition Diagram Editor (TDE) on Sun workstations, or
textually by using a special language entered with an ordinary text
editor.

The diagram is a representation of a transition network. Each
diagram is given a name, a start node and an exit node together with a
network of interior nodes and arcs. A node definition is a description of
what to do with the screen, for example screen control, display of text
and contents of variables. An arc definition describes the structure of the
diagram. It is labelled with the transition conditions and can have
actions, including links to a relational database (TROLL).

Input can be a single key or a fixed-length reply, and can include a
default to handle errors. Additionally a time-out can be included. The
actions can be routines written in C, FORTRAN or Pascal or can be
commands to operate on the relational database. A simple method for
calling a single procedure with an integer parameter is also provided.
Figure 7.7 shows a typical transition diagram created using the TDE.

A text file such as that shown can then be compiled from the
transition diagram, or alternatively the text file can be created directly
using a conventional text editor.

<book-loan>

<book-return>

<book-reserve>

Figure 7.7 A Rapid/USE transition diagram

SKYHAWKE Ex. 1017, page 91

r—_ - ha

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS LIa)

diagram library entry Start exit Exit

node Start
cs,rl,c_ 'University Library System’
r+2,c1l0 'Do you need help (y/n)?’
arc Start
on 'n’ to Topmenu
| on 'y’ to Help
arc Topmenu
on ‘1’ to <book-loan>
on 2’ to <book-return>

arc <book-loan> skip to Topmenu

A transition diagram interpreter (TDI) can be used immediately on
this text file in order to demonstrate and evaluate the menu system. As
an aid to evaluation, Rapid/USE can also record two logs of the raw
input and the transitions occuring within the system (time, diagram,
node, action, input).

7.5.2 The CONNECT system

The CONNECT system (Alty, 1984a) was developed at the University
of Strathclyde from 1983 onwards. It is a front-end to the CP/M and
MS-DOS operating systems and is based on transition networks
together with a production rule system. This latter feature enables the
network connectivity to be altered to provide an adaptable interface.

At any time the network is dealing with one node. It then determines
which node to move to in response to input from the user. A node can
be either a connector to communicate with the user, a task to invoke a
task, a subnet for structuring or an assistor to help routing as well as
playing a role in adaptivity.

Transitions along arcs are determined by parsing the user’s input, and
can occur on detection of identical text, text somewhere in input, or
numerically equal. Actions that are possible when the transition is
chosen are null, do a task, show screen, assign to a global, call a subnet,
or prompt the user. Display updates work on parts of the screen in the
form of non-overlapping panes. Global variables are used to provide
communication between the application and the user.

Production rule system

For every network the designer can provide a production rule system as
a set of statements of the form:

if ... then <action-rules>

SKYHAWKE Ex. 1017, page 92

172 ENGINEERING THE HUMAN-COMPUTER INTERFACE

Each time a node is reached the production rule system is invoked.
The if parts of the rules access a database and the actions can then
modify global variables. Exit arcs from nodes that are labelled with
these variables can then have their action modified in the light of the
production rules. This provides a level of adaptability, which allows
different interfaces to be presented according to the different network
paths traversed. The designer or the user (by using function keys) can
adapt the dialogue according to user characteristics.

CONNECT comes with a family of tools to help build the system:

o BUILDNET, an interactive network constructor;
BUILDSCR, to construct screens;

VIEWNET, to examine nets and screens;
EXECNET, to execute the net;

BUILDTSK, to construct tasks;

TESTSCR, to test a single screen;

PERFNET, to examine net statistics.

A support system based on Path Algebras (Alty, 1984b) has also been
developed. This allows the designer to analyze the net for consistency
and to examine the net behaviour. Using this system, it would, for
example, be possible to determine what would be on the screen at any
particular point in the dialogue.

7.6 Grammar-based systems: SYNICS

Grammar-based notations such as Backus—Naur Form (BNF) are also
often referred to as ‘production rule’ systems in that the application of
the rules can be viewed as ‘producing sentences (programs) in the
language’. For use as a notation for a dialogue system the grammar
defines the input language and sometimes the output too (Shneiderman,
1981). The terminals of the grammar correspond to the user’s input
tokens (mouse clicks, keyboard characters) and the non-terminals are
related to the higher-level structure of the dialogue.

The user interface is thus (as far as input is concerned) a parser for
this grammar. In order to act on the user input, actions are attached to
rules of the grammar. These actions may be calls to procedures within
the application or prompts to the user. This is the approach taken in the
design of the yacc compiler—compiler available under UNIX. The main
advantage of using context-free grammars is that a wealth of related
work exists from their use in programming languages. However, they
have proved awkward to use, particularly in controlling when actions
are performed. Additionally, they are only well suited to parsing linear
textual input and not to more graphically based interactions.

An example of the form of the notation is shown below in a
command from a screen-based editor. The designer defines non-terminal

SKYHAWKE Ex. 1017, page 93

: e

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 173

symbols (shown with < and >) as a series of rules defined (shown as

=) in terms of a series of terminal symbols (shown as UPPER-CASE

or as single-quoted characters) and other non-terminal symbols. Choices
| are separated with a vertical bar and repetition indicated with an
asterisk. Terminal symbols must be matched with user input, while
non-terminal symbols are for structuring purposes.

<locate> ::= <get line> <move to line>
<get line> ::= <find command> | <scroll>"
<move to line> ::= <cursor movement>"*
<find command> ::= '/’ <searchstring> CR
<gcrall> ::= "D’ | Y1

14 7

<cursor movement> ::= ‘<=’ | "' | '’ | "}’

SYNICS (Edmonds, 1981) was developed in 1978 at Leicester
Polytechnic and also described by Guest (1982). The name SYNICS is
taken from SYN tax and semantICS. The initial idea was to use BNF to
specify the dialogue. The system produced a table-driven, top-down
recognizer that accepts strings of text from the user.

Subsequently this was augmented with a transition network front end
(dialogue definition language, DDL). In adding the transition net ‘
front-end the BNF is now associated with arc conditions and therefore
combines the expressive power of the string matching of BNF with the
more attractive features of transition networks.

Later work has produced SYNICS2 (Edmonds and Guest, 1984).
This uses dialogue events, which contain GKS output and control, then
take input from the application or user and are followed by any
required application action and setting of variables. For example:

Application action

ENTER EVENT line IF
BUTTON [“Start:”, CURSX, CURSY]
<8X=CURSX, SY=CURSY>

Device condition Set variables

Thus the device condition is tested for whether the button is pressed,
and, if so, the variables are set to the (x, y) coordinates of the pointer
locations and the event is sent to the application, indicating that this is
the start of a line with parameters set from the variables containing the
(x, y) coordinates.

; 7.7 Natural language

Natural-language communication has long been viewed as a Holy Grail
in human interaction with computers (Rich, 1984). Among other

SKYHAWKE Ex. 1017, page 94

174 ENGINEERING THE HUMAN-COMPUTER INTERFACE

objectives, this is one of the aims within the man—machine
communications component of the Japanese Fifth Generation Project
(Simons, 1983). However, the use of natural language has its dangers as
was shown by early work on natural language communication at MIT
(Weizenbaum, 1966). Weizenbaum developed a pseudonatural
language program named ELIZA (after Eliza Doolittle in Shaw’s play
Pygmalion), which used keyword and template matching and would
then trigger off output that was some simple transformation of the
input. A variety of other stratagems such as standard stock phrases
were also used, and in addition ELIZA could refer back to earlier
inputs when there were lulls in the user response. That it was so
successful at creating the illusion of being able to carry on a
conversation, and yet had virtually no understanding, is a warning that
the use of natural language may cause users to imbue the interface or
application with more intelligence than is the case.

In subsequent research into natural language dialogues it has
generally been found that the more successful applications have either
limited its use to output only, or have operated within a narrow
knowledge domain.

At the UK National Physical Laboratory (NPL), Dr Chris Evans
developed a medical interviewing system (Bevan and Pobgee, 1981) that
showed a successful use of natural language for textual output. The
output of Evans’s system consisted of questions for the patient to
answer, and also reassuring phrases. The user input was confined to
selecting one of three possible answers using buttons labelled ‘yes’, ‘no’
and “don’t know’. The system also split the logic of controlling the
dialogue from the interview text itself, thus modularizing the system so
that non-programmers could prepare the interview text. The NPL work
always made it clear that the computer was simply repeating text and
collecting simple replies.

Work on expert systems has shown that the NPL approach can be
successfully extended to provide full language output with a terse input
of a restricted form of natural language. The work on Mycin (Shortliffe,
1976), for example, developed a medical diagnosis expert system for
infections. An abbreviated example from Mycin is shown below:

[5] What is the infection?

** PRIMARY-BATEREMIA

(6] Please give the date and time where...
** MAY 5, 1975

Eventually the Mycin system offers a diagnosis and a suggested therapy.
With less constrained natural language input, a more restricted

domain is generally required. Work at MIT by Dr Terry Winograd on

his SHRDLU (Winograd, 1972) project demonstrated quite impressive

SKYHAWKE Ex. 1017, page 95

- oo

e R T

. ey - 'we

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 175

understanding in the constrained world of model blocks. However, it is
not clear how this could be extended to larger domains.

7.7.1 UNIX Consultant (UC)

UNIX Consultant (Wilensky et al., 1984) was developed at the
University of California, Berkeley in 1984 and acts as an advisor to a
user of the UNIX operating system. It is a natural language interface
that comprises an input analyzer, an output generator, a context and
memory model, a common-sense planner, extensible knowledge bases
for UNIX and English and a goal analysis system for acquiring new
knowledge. Users can query UC on actions to be performed, ask about
command names and formats, receive on-line definitions and get
debugging help. If this fails to help, then the user is at least still
able to proceed, as UC sits to one side of the user interacting with
UNIX.

An example interaction (taken from the Wilensky er al., 1984 paper)
is as follows:

User: How do I delete a file?

UcC: Typing ‘rm filename’ will remove the

file with filename from your current

directory.

User: A directory?

UC: Typing ‘rm -r directoryname’ will

recursively delete the directoryname and all

the files and directories contained in the ‘
directory.

User: How do I print a file on the |
lineprinter?

ucC: To print a file on the lineprinter type _
"1pr filename’ I

some intervening interactions

User: Has the file foo been printed yet?

uc: The file foo is in the lineprinter
queue.

User: How can I cancel it?

U= To remove files from the line printer

queue, type ’lprm username’

Some problems can arise if the form of help, while being correct, results
in the user making an error. For example, the following, imaginary,
conversation would result in the user removing all his or her files!

SKYHAWKE Ex. 1017, page 96

176 ENGINEERING THE HUMAN-COMPUTER INTERFACE

User: How do I get more disk space? l
Naive: Use the command ’‘rm *’ to get more
disk space.

It is reported that in experimental use the response times were very
slow—up to 15 seconds on a VAX 11/780.

In summary, as indicated above, there are problems with users
forming incorrect conclusions from the use of natural language
interfaces. Natural language is also ambiguous (Hill, 1983) and requires
large programs even for narrow domains. Typing complete sentences as
natural language input is far from an ideal interaction style, and even
speech recognition, where natural language input would seem most
appropriate, may not be the answer given the current state of the art.

7.8 Adaptive dialogues

We understand human behaviour much less than we understand
computers. With the interface as a separate module the design can be
modified in the light of user experience. It must therefore be easy to
change. The aim is to minimize the cognitive load and to compensate
for the weaknesses of the human. Hence the first need is to identify the
weaknesses and strengths of particular users. 4

7.8.1 Agents for adaptation

Adaptive interfaces are concerned with ways in which interfaces can be
built so that while in use they can be adapted. Edmonds (1981)
suggested a variety of possible adaptation mechanisms: adaptation by
the system automatically; adaptation by the system in cooperation with
the user; adaptation by exploiting an expert intermediary; and
adaptation by the end-user himself or herself.

User-1 Adapted-1 -
\\'\

R
— —\; Application

~
User-n Adapted-n 7

Figure 7.8 One application with several users’ adapted interfaces

SKYHAWKE Ex. 1017, page 97

e TR e o

-- L Av

e el

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 177

e 5

Figure 7.9 A common tool adapted to different tasks

In traditional linear system development (see Chapter 1), the system
as a whole often fails because system interface needs cannot be
anticipated and met. Of course, users are themselves adaptable, but in
many situations they may not want to adapt to an inflexible system. In
any case, users’ needs are diverse and constantly changing. As shown in
Figure 7.8, the application need have only one user interface if that
could be adapted to the needs of different users and can have differently
adapted parts of the system for an individual user over time.

7.8.2 Forms of adaptation

Some possible forms of adaptation are:

o dialogue style,

e.g., yes/no, menus, forms, command language, natural language;
e current task context,

e.g., contents of a directory or mail box,

macros for frequent commands,

context-sensitive help and error measages;
o the task,

e.g., setting an appropriate environment for this task.

Figure 7.9 illustrates the concept of the tool being adapted to different
tasks yet presenting the same interface to the user. If this approach is
compared with the alternative of having a separate sanding machine,
jigsaw and paint-spray, the interfaces may well be quite different. In
human-computer interaction, the two alternatives are readily illustrated
by comparing the Macintosh ‘universal’ interface style with the wide
range of interfaces presented by different application packages for the
IBM PC. A further consideration is how well the two approaches allow
the user to complete a task, for example in using the saw to create a
hole in wood or metal.

SKYHAWKE Ex. 1017, page 98

‘ |
178 ENGINEERING THE HUMAN-COMPUTER INTERFACE ‘

7.8.3 Timing of adaptation L ;

Choices must also be made of when to adapt. After each interaction?
After a context change? After task completion? Between sessions?
Whatever time quanta are chosen, the system will need feedback, i.e., an]
evaluation of the user’s performance with the current adaptation. This is
problematical, since both the user and the system are adapting
simultaneously.

7.8.4 Adaptive intelligent dialogues (AID)

The phase 1 exemplar of the AID project was an adaptive interface to
the electronic mail system Telecom Gold. Its principal adaptation
dimensions were the level of guidance, the use of context, recognizing
commands from analogous systems, allowing user tailoring, and
informing the user about additional unused functionality. Under
guidance from the user model, the system could vary the level of
prompting, the amount of feedback and the help level.

Though superficially appealing, the design of a complete adaptive
dialogue system proved to be problematical, and the two later phases of
the AID project therefore attempted to break down the issues involved
in adaptation into more tractable components (see Chapter 13).

The most important conclusion from the project was that adaptation
is not a single idea but a family of techniques that can be applied from
the earliest stages in design through to run-time. Although the AID
project did not achieve any specific major breakthrough which delivered
outstanding user benefits, it contributed enormously to the
understanding of the mechanisms of adaptation, both within humans
and machines. In particular, it established constraints which had not !
previously been realized on the circumstances in which adaptation could
be used effectively in interface design.

7.9 Summary

This chapter has discussed a variety of dialogue delivery systems. In
general, a modular system structure is adopted, with the objective of
making the range of dialogues and applications supported as wide as
possible. Each system provides some form of specification language for
the user input, but most are weak on describing the output side of the
interactions.

Different systems provide different levels of support for dialogue
design and development. Some systems are simply foolkits for building
interfaces of a particular type; others also provide support for
subsequent simulation and evaluation. Where post-design support is ‘
provided, it may be either independent of, or integrated with, the

SKYHAWKE Ex. 1017, page 99 |

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 179

application software. However, there are as yet no aids to check
whether the designer is adhering to HCI guidelines. Similar approaches
are taken in the design of direct manipulation dialogue systems: in view
of their importance and widespread exploitation, these are discussed
under the general heading of windowing systems as Chapter 10 of this
book.

References

Akscyn, R. M. and D. L. McCracken (1984) ‘ZOG and the USS Carl-Vinson:
lessons in systems development’, Interact ‘84, Proceedings of 1st IFIP
Conference on Human Computer Interaction, 1, 303-308.

Akscyn, R. M., E. Yoder and D. McCracken (1988a) ‘The data model is the
heart of interface design’, CHI '88, Conference Proceedings on Human
Factors in Computing Systems (Washington, May 15-19), Soloway, Frye
and Sheppard (eds), Addison-Wesley, Wokingham, 115-120.

Akscyn, R. M., D. I. McCracken and E. A. Yoder (1988b) ‘KMS: A distributed
hypermedia system for managing knowledge in organizations’,
Communications of the ACM, 31 (7), 820-835.

Alty, J. L. (1984a) The Conversational Node Executor: CONNECT, University
of Strathclyde MMI Group, Glasgow.

Alty, J. L. (1984b) ‘The application of path algebras to interactive dialogue
design’, Behaviour and Information Technology, 3 (2), 119-132.

Beech, D. (ed.) (1986) Concepts in User Interfaces: A Reference Model for
Command and Response Languages, Springer, Berlin.

Bevan, N. and P. Pobgee (1981) ‘MICKIE—a microcomputer for medical
interviewing’, International Journal of Man—Machine Studies, 14, 39-47.

Edmonds, E. A. (1981) ‘Adaptive man—computer interfaces’, in Computing
Skills and the User Interface, M. J. Coombs and J. L. Alty (eds), Academic
Press, Orlando, Fla., 389-426.

Edmonds, E. A. and S. P. Guest (1984) ‘The SYNICS2 user interface manager’,
Interact ’84, Proceedings, 1st IFIP Conference on Human Computer
Interaction, vol. 1, 53-56.

Guest, S. P. (1982) ‘The use of software tools for dialogue design’, International
Journal of Man—Machine Studies, 16, 263-285.

Hayes, P. J. and P. A. Szekely (1982) ‘Graceful interaction through the
COUSIN command interface’, International Journal of Man—Machine
Studies, 19 (3), 285-305.

Hill, I. D. (1983) ‘Natural language versus computer language’, in Designing for
Human—Computer Communication, M. S. Sime and M. J. Coombs (eds),
Academic Press, Orlando, Fla., 55-72.

Rich, E. (1984) ‘Natural language interfaces’, IEEE Computer, 17 (9), 39-47.

Robertson, G., D. McCracken and A. Newell (1981) The ZOG approach to
man-machine communication, International Journal of Man—Machine
Studies, 14, 461-488.

Robinson, J. and A. Burns (1985) ‘A dialogue development system for the
design and implementation of user interfaces in Ada’, Computer Journal, 28
(1), 22-28.

Shneiderman, B. (1981) ‘Multi-party grammars and related features for defining
interactive systems’, I[EEE Transactions on Systems, Man and Cybernetics,
SMC-12 (2), 148-154.

Shortliffe, E. H. (1976) Computer-based Medical Consultations Mycin
(North-Holland), Elsevier, New York.

SKYHAWKE Ex. 1017, page 100

180 ENGINEERING THE HUMAN-COMPUTER INTERFACE

Simons, G. L. (1983) Towards Fifth-generation Computers, NCC Publications,
Manchester.

Walton, P. L., R. R. Holland and L. I. Wolf (1979) Medical guidance and
PROMIS, IEEE Computer, 12 (11), 19-27.

Wasserman, A. 1., P. A. Pircher, D. T. Shewmake and M. L. Kersten (1986)
‘Developing interactive information systems with the user software
engineering methodology’, IEEE Transactions on Software Engineering,
SE-12 (2), 326-345. Also in Baecker and Buxton (see under ‘General’).

Weizenbaum, J. (1966) ‘Eliza—A computer program for the study of natural
language communications between man and machine’, Communications of
the ACM, 9 (1), 36-45. Reprinted in Communications of the ACM 25th
Anniversary Issue, Jan. 1985, 26 (1), 23-27.

Wilensky, R., Y. Arens and D. Chin (1984) ‘Talking to Unix in English: an
overview of UC’, Communications of the ACM, 27 (6), 574-593.

Winograd, T. (1972) Understanding Natural Language, Academic Press,
Orlando, Fla.

Further reading

General

Baecker, R. M. and W. A. Buxton (eds) (1987) Readings in Human—Computer
Interaction, Morgan Kaufmann, (Afterhurst), Hove, E. Sussex. (The editors
have selected about 60 papers from major researchers in the HCI field.)

Pfaff, G. E. (ed.) (1985) User Interface Management Systems, Springer, Berlin.
(Reports on the 1983 Seeheim workshop.)

Introduction

Alexander, H. (1987) Formally Based Tools and Techniques for
Human—Computer Dialogues Ellis Horwood, Chichester.

Anderson, R. H. and J. J. Gillogly (1976) Rand Intelligent Terminal Agent
(RITA): Design Philosophy, Rand Corporation, Santa Monica, Calif.

Backus, J. W. (ed.) (1960) ‘Report on the algorithmic language Algol60’,
Communications of the ACM, 3, 229-314.

Chomsky, N. (1957) Syntactic Structures, Mouton, The Hague.

Cockton, G. (1986) “Where do we draw the line?—derivation and evaluation of
user interface software separation rules’, in People and Computers,
Proceedings of the Second BCS Conference on HCI, M. J. Harrison and
A. F. Monk (eds), Cambridge University Press, Cambridge, 417-431.

Dance, J. R, T. E. Granor, R. D. Hill, S. E. Hudson, J. Meads, B. A. Myers
and A. Schulert (1987) ‘Report on the run-time structure of
UIMS-supported applications’, Computer Graphics, 21 (2), 97-101.

Green, M. (1986) ‘A survey of three dialogue models’, ACM Transactions on
Graphics, 5 (3), 244-275. Also available in User Interface Management
Systems, G. Pfaff (ed.), Springer, Berlin, 1985.

Guest, S. P. (1982) ‘The use of software tools for dialogue design’, International
Journal of Man—Machine Studies, 16, 263-285.

Newman, W. M. (1968) 4 System for Interactive Graphical Programming,
AFIPS SJCC, 32, 47-54.

Rosson, M. B., M. Susanne and W. A. Kellog (1988) ‘The designer as user:
building requirements for design tools from design practice’,
Communications of the ACM, 31 (11), 1288-1298.

SKYHAWKE Ex. 1017, page 101

T e e,

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 181

Totterdell, P. A. and P. Cooper (1986) ‘Design and evaluation of the AID
adaptive front end to Telecom Gold’, in Proceedings of the BCS Conference
on HCI, M. J. Harrison and A. F. Monk (eds), Cambridge University
Press, Cambridge, 281-295.

Wasserman, A. I. (1985) ‘Extending state transition diagrams for the
specification of human—computer interaction’, JEEE Transactions on
Software Engineering, 11 (8), 699-713. Also in Baecker and Buxton (see
under ‘General’).

COUSIN |

Hayes, P. J., P. A. Szekely and R. A. Lerner (1985) ‘Design alternatives for user
interface management systems based on experience with COUSIN’, CHJ ‘
85, Conference Proceedings on Human Factors in Computing Systems,
Addison-Wesley, Wokingham, 169-175.

Transition networks

Cockton, G. (1985) ‘Three transition network dialogue management systems’,
People and Computers, Proceedings of the First BCS Conference on HCI,
Johnson and Cook (eds), Cambridge University Press, Cambridge,
138-147.

Denert, E. (1977) ‘Specification and design of dialogue systems with state
diagrams’, International Computing Symposium, North-Holland,
Amsterdam, 417-424.

Parnas, D. L. (1969) ‘On the use of transition diagrams in the design of a user
interface for an interactive computer system’, Proceedings of the 24th
National ACM Conference, 379-385.

Wasserman, A. 1. (1985) ‘Extending state transition diagrams for the
specification of human—computer interaction’, IEEE Transactions on
Software Engineering, 11 (8), 699-713. Also in Baecker and Buxton (see
under ‘General’).

Woods, W. A. (1970) ‘Transition network grammars for natural language
analysis’; Communications of the ACM, 13 (10), 591-606.

CONNECT

Alty, J. L. and A. Brooks (1985) ‘Microtechnology and user friendly systems,
the CONNECT dialogue executor’, Journal of Microcomputer Applications,
| 8, 333-346.
| Brooks, A. and C. Thorburn (1988) ‘User driven adaptive behaviour, a
comparative evaluation and an inductive analysis’, People and Computers
1V, Proceedings of the Fourth BCS Conference on HCI, D. M. Jones and
R. Winder (eds), Cambridge University Press, Cambridge, 237-255.

Grammar-based systems

Fountain, A. J. and M. A. Norman (1985) ‘Modelling user behaviour with
formal grammar’, People and Computers, Proceedings of the First BCS
Conference on HCI, Johnson and Cook (eds), Cambridge University Press,
Cambridge, 3-12.

Hopcroft, J. E. and J. D. Ullman (1960) Formal Languages and Their
Relationship to Automata, Addison-Wesley, Reading, Mass.

SKYHAWKE Ex. 1017, page 102

182 ENGINEERING THE HUMAN-COMPUTER INTERFACE

Reisner, P. (1981) ‘Formal grammar and human factors design of an interactive
graphics system’, IEEE Transactions on Software Engineering, SE-T (2),
229-240.

Scott, M. L. and S.-K. Yap (1988) ‘A grammar-based approach to the
automatic generation of user-interface dialogues’, CHI ‘88, Conference |
Proceedings on Human Factors in Computing Systems (Washington, May
15-19), Soloway, Frye and Sheppard (eds), Addison-Wesley, Wokingham,
73-78.

Natural language

Weizenbaum, J. (1976) Computer Power and Human Reason: from Judgment to
Calculation, W. H. Freeman, New York.

Adaptive dialogues

Browne, D. P, R. Trevellyan, P. Totterdell and M. Norman (1987) ‘Metrics for
the building, evaluation and comprehension of self-regulating adaptive
systems’, Interact 87, Proceedings of 2nd Conference on HCI, H. J. Bullinger
and B. Shackel (eds), North-Holland, Amsterdam, 1081-1087. {

Cockton, G. (1987) ‘Some critical remarks on abstractions for adaptable 1

|
|

dialogue managers’, People and Computers, Proceedings of the Third BCS
Conference on HCI, D. Diaper and R. Winder (eds), Cambridge University
Press, Cambridge, 325-343.

Fowler, C. J. H., L. A. Macaulay and S. Siripoksup (1987) ‘An evaluation of
the effectiveness of the adaptive interface module (AIM) in matching
dialogues to users’, People and Computers, Proceedings of the Third BCS
Conference on HCI, D. Diaper and R. Winder (eds), Cambridge University |
Press, Cambridge, 345-359.

Gargan, R. A, J. W. Sullivan and S. W. Tyler (1988) “Multimodal response
planning: an adaptive rule based approach’, CHI ‘88, Conference
Proceedings on Human Factors in Computing Systems (Washington, May
15-19), Soloway, Frye and Sheppard (eds), Addison-Wesley, Wokingham,
229-234.

Hoppe, H. U. (1988) ‘Task-oriented parsing—a diagnostic method to be used by
adaptive systems’, CHI ‘88, Conference Proceedings on Human Factors in
Computing Systems (Washington, May 15-19), Soloway, Frye and
Sheppard, Addison-Wesley, Wokingham, 241-247.

Totterdell, P. A. and P. Cooper (1986) ‘Design and evaluation of the AID
adaptive front end to Telecom Gold’, Proceedings of the BCS HCI
Conference on HCI, M. J. Harrison and J. F. Monk (eds), Cambridge
University Press, Cambridge, 281-295.

Totterdell, P. A., M. A. Norman and D. P. Browne (1987) ‘Levels of adaptivity
in interface design’, Interact ‘87, Proceedings of 2nd Conference on HCI,

H. J. Bullinger and B. Shackel (eds), North-Holland, Amsterdam, 715-722.

Tyler, S. W. (1988) ‘SAUCI: a knowledge-based interface architecture’, CHI 88,
Conference Proceedings on Human Factors in Computing Systems
(Washington, May 15-19), Soloway, Frye and Sheppard (eds),
Addison-Wesley, Wokingham, 235-240.

Direct manipulation

Bewley, W. L., T. L. Roberts, D. Schwit and W. L. Verplank (1983) ‘Human
factors testing in the design of Xerox’s 8010 ““Star” office workstation’,

SKYHAWKE Ex. 1017, page 103

AR 1

DIALOGUE DELIVERY SYSTEMS: EXAMPLE RESEARCH SYSTEMS 183

Proceedings of CHI ‘83, Conference on Human Factors in Computing
Systems, ACM, 72-77. Also in Baecker and Buxton (see under ‘General’).

Carroll, J. M. and S. A. Mazur (1986) ‘Lisa learning’, IEEE Computer, 19 (10),
35-49.

Jacob, R. J. K. (1985) ‘A state transition diagram language for visual
programming’, /[EEE Computer, 18 (7), 51-59.

Jacob, R. J. K. (1986) ‘A specification language for direct-manipulation user
interfaces’, ACM Transactions on Office Information Systems, 5 (4),
283-317.

Shneiderman, B. (1983) ‘Direct manipulation: a step beyond programming
languages’, IEEE Computer, 16 (8), 57-69. Also excerpted in Baecker and
Buxton (see under ‘General’).

Smith, D. C., C. Irby, R. Kimball, B. Verplank and E. Harslem (1982) ‘Design
of the Star user interface’, Byte, 7 (4), 242-282. Also in Baecker and Buxton
(see under ‘General’).

SKYHAWKE Ex. 1017, page 104

