

SKYHAWKE EX. 1016, page 2

SKYHAWKE EX. 1016, page 3

COMPUTER SCIENCE TEXTS

Man—Computer Interfaces

R. B. COATS

and

I. VLAEMINKE

Both Principal Lecturers
in Computing

Leicester Polytechnic

BLACKWELL SCIENTIFIC PUBLICATIONS

OXFORD LONDON EDINBURGH

BOSTON PALO ALTO MELBOURNE

0 1987 by
Blackwell Scientific Publications
Editorial offices:
Osney Mead, Oxford OX2 OEL

(Orders: Tel. 0865 240201)
8 John Street, London WCIN H35
23 Ainslie Place, Edinburgh EH3 6A1
52 Beacon Street, Boston

Massachusetts 02108, USA
667 Lytton Avenue, Palo Alto

California 9430I, USA
107 Barry Street, Carlton

Victoria 3053, Australia

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted, in
any form, or by any means, electronic,
mechanical, photocopying, recording
or otherwise without the prior
permission of the copyright owner.

First published 1987

Set by V & M Graphics Ltd,
Aylabury, Bucks

Printed and bound in Great Britain by
Mackays of Chatham, Kent

DISTRIBUTORS

USA and Canada
Blackwell Scientific Publications Inc
PO Box 50009, Palo Alto
California 94303

(Orders: Tel. (415) 965-4081)
Australia

Blackwell Scientific Publications
(Australia) Pty Ltd
107 Barry Street
Carlton, Victoria 3053
(Orders: Tel. (03) 347 0300)

British Library
Cataloguing in Publication Data
Coats, R. B.

Man-computer interfaces: an
introduction to software design
and implementation.
1. Computer interfaces
1. Title II. Vlaeminke, I,
004.6 TK7887.5

ISBN 0—632—0l542—X

Library of Congress
Coats, Robert B.

Man—computer interfaces: an
introduction to software design and
implementation/R. B. Coats & I.
Vlaeminke.
Includes index.
ISBN 0-632—OI542—X
1. Computer software-
Development. 2. Electronic
data processing-—Psychological
aspects. 3. System design.
I. Vlaeminke, I.
II. Title

QA76.76.D47C63 1987
005—dcI9 87-16110

Chapter 3

Input/output processes

3.1 Introduction

In Chapter 2, the messages exchanged between a user and the system were

classified in terms of the functions they performed within the dialogue. In this

chapter, we concentrate on how the nature of the information exchanged

impinges on software design. For this purpose we classify the basic input/

output processes which support these message functions into the categories of
Fig. 3.1.

Output of a text masage

at the current postition on the device
at a particular position on the device

with particular format attributes

Input of a text message

using standard high level input routines

character-by-character

where ‘special characters’ are involved
Input of a Point and Pick message

relative pointing to scroll round a list

absolute pointing anywhere on the device

Output of a graphical message

Input of a graphical message
Fig. 3.1. A classification of common input and output processes.

A text message is defined as a string of characters; these characters may be

upper or lower case alphabetics, numerals, or even the basic graphics
characters (such as playing card suit symbols) available as alternate character

sets on many microcomputers. A graphical message is defined as a message

which cannot be represented as a string of characters; typically it must be
described at the ‘bit’ rather than at the ‘character’ level. Point and pick is a

special case of an input message for selecting from a set of possible options;
as we shall see, it has characteristics which deserve individual treatment.

The simple dialogue examples in Chapter 2 utilise the standard PASCAL

input and output procedures for the input/output processes. In this chapter

37

38 Chapter 3

we consider other features which are available to enhance these processes.
These features have typically been considered in terms of the processing
required to effect them on a particular device. However, we also saw in
Chapter 2 that the dialogue process deals with logical entities and should be
separated from the precise mechanics of a particular device. Therefore, whilst
considering how the features can be effected, we will attempt to develop
generalised ‘abstractions’ for the processes which the dialogue process canassume.

3.2 Output of a Text Message

3.2.1 Output of Text at the Current Position of the Device

My Message Displayed Here

An output text message, like that illustrated in Fig. 3.2, can be specified bydefining:

Fig. 3.2.

what is to be output, i.e. a string of characters identifying the content of themessage;

where it is to be output, i.e. the position on the output device;
how it is to be output, i.e. a list of attributes, such as colour, which define
how the content is to be formatted; we will assume that the attributes are
constant for a given message.

We define an output message as an entity which is represented by a data
structure of type:

OutputMessageType = record

content : string; {what}
slot : SlotType; {where}
attributes : AttributesType; {how}
end;

Content is of type ‘string’ by virtue of our definition of a text message.

Input/output processes 39

However, the definitions of SlotType and AttributesType require further
consideration.

The most common input/output device in the early days of interactive

computing was the teletype, which resembles a golfball typewriter. A teletype

only provides the facility to output the message content at the current position
of the device; the current position can be advanced to a new line by the output
of suitable control characters. Most programming languages contain proce-

dures for teletype operation.
The WRITE and WRITELN statements of PASCAL operate in this way;

thus,

write (‘write this without advancing to a new line’)

displays the specified character string and leaves the output device positioned
at the next character position and

writeln (‘write this and skip to a new line’)

displays the character string and positions the output device at the first
character position on the next line.

The teletype has largely been superseded by the Visual Display Terminal

(VDT) consisting of a monochrome or colour display and keyboard. Early

VDTs operated merely as ‘glass teletypes’ with the same line scrolling mode.

Nowadays, the vast majority provide page mode operation, in which the

output can be considered a screen at a time rather than a line at a time; a
message can be written at any position on the screen.

We will concentrate on output to a screen since it is the most common

device; similar considerations apply for a printer. The basic approach is also

appropriate for other output devices, such as a speech synthesiser, although
the features will obviously differ.

3.2.2 Output of Text at a Particular Position on the Device

The text of an output message is displayed in a slot — a rectangular area on

the device w character positions wide and h character positions high. There

are three possible cases, as shown in Fig. 3.3. Thus, the Slot can be defined by
a data structure of type

character

position
w=h=l

[:::l D

byte = 0..255;

SlotType record

row,co1 : byte; {startingposition}

width,height : byte; {size}
end;

The current (that is, the next available) output position on the screen is
indicated by a cursor symbol — frequently a flashing block or underline

character. The commonest way of causing a message to be output in a
particular slot is to

' move the current position to the starting (row,col) of the slot;

0 use the ‘teletype’ functions provided by the programming language to
output the content, suitably justified, at the new position.

Some programming languages, such as the various BASIC dialects,
provide facilities within the language itselffor repositioning; others, including
PASCAL, do not. However, most microcomputers, dumb VDTs and printers
will reposition the cursor in response to the output of a specific string of
characters.

The sequence may be a single ASCII character. Most devices will respond
to the statement

write (chr(l2))

by ‘form feeding’, i.e. skipping to a new page on a printer, or clearing the
screen and positioning the cursor in the top left corner on a screen. Linefeed

(ASCII character 10) and Carriage Return (ASCII character 13) are other
examples of such special characters. Normally, a sequence of characters is

needed to control positioning; since the first character is usually Esmpe
(ASCII character 27), they are commonly called Escape sequences.

The precise sequence for a particular operation varies with the device. A

Input/output processes 41

standard has been produced - the ANSI terminal specification — to which

many devices conform. It defines sequences for particular operations,

including cursor positioning and clearing areas of the screen; a subset is
illustrated in Fig. 3.4. (<ESC> is the ASCII character Escape and the

notation <j> means that <j> should be replaced by the relevant value

expressed as a character sequence. For example, <ESC> followed by the
characters [ISA will move the cursor up 15 lines.)

<ESC> [<n> A move cursor up n lines

<ESC> [<n> B move cursor down n lines

<ESC> [<n> C move cursor right n columns
<ESC> [<n> D move cursor left n columns

<ESC> [<m> ; <n> H move cursor to column n of line In

<ESC> [1 K erase from current position to end of line
<ESC> [2 K erase all of current line

Fig. 3.4. Typical ANSI terminal Escape sequences.

Thus cursor positioning on a device which conforms to the ANSI standard
can be accomplished by a procedure of the form:

procedure CursorTo(row,co1:byte);
begin
write(chr(27),'[',row:1,';',co1:1,'H');end:

There is nothing magical about the Escape character. The operating system

contains procedures which effect the repositioning and which are invoked in

response to these strings. These procedures may also be invoked directly from

the application software by suitable low level system calls. Most operating
systems will provide the facilities of Fig. 3.5.

procedure CursorTq(row,col:byte)
positions cursor to (row,col)

procedure CursorAt(var row,col:byte)
returns the current cursor position (row,col)

procedure SwitchCursor(switch:OffOn)
causes the cursor symbol to be hidden/displayed

function TestCursor:OffOn

test whether the cursor symbol hidden/displayed

Fig. 3.5. Cursor control procedures.

Chapter 3

3.2.3 Output of Text with Particular Format Attributes

Most VDTs provide more display facilities than just the ability to output at

any point on the screen. In particular, they often provide a range of
highlighting features which can be used to enhance the text of a message.
Common highlighting features include:

Colour. The text characters (or foreground) can be displayed in a different

colour from the background. On some monochrome screens, a similar effect
is produced with different shades of the screen’s base colour. Inverse video is

a special case of this feature where the background and foreground colours or
shades are swapped.

Blinking. An area of the screen may be made to flash by displaying it
alternately in normal and in inverse video. This is commonly used to highlight
the cursor position.

Bold Intensity. The ability to support different contrast levels and make an

area of foreground appear brighter than surrounding areas.

Highlighting facilities vary from device to device. Some provide only
inverse video; others provide a wide range ofcolour tones and intensity levels.
Several provide a number of different fonts (type size and face) for the text

characters. In fact, the same device may provide a different range of features
depending on the mode to which it has been initialised; for example, an IBM-
PC may be set to display 40 or 80 columns, colour or monochrome and in

various resolutions. In Chapter 6, we discuss guidelines on where and when

highlighting features should be used. For the present, we will concentrate on
how they are implemented.

In the general case, we may represent the video attributes associated with

an output text message by a data structure of type

AttributesType = record

foreground : colours;
background : colours;

blink : OffOn;
bold : OffOn;

font : TextStyles;
end;

where

colours = (black, blue, green);
Off0n = (off,on);

TextStyles = (roman,);

Input/output processes 43

Highlighting facilities may often be invoked by means of escape sequences
similar to those for positioning. The range of facilities, and the sequences

which invoke them, should be included in the documentation for your

particular device. For example, an IBM-PC Escape sequence may be used to
switch inverse video on or off with a procedure of the form:

procedure inverse (switch: Offon) ;
begin
if switch=on then write(chr(27),'[7m')

else wr1te(chr(27),'[Om');end:

Once a feature has been ‘switched on, it remains on until it is ‘switched off’.

Thus, to output a particular message in inverse at row 10, column 16 requires
a sequence of statements of the form:

CursorTo(10,16);
inverse(on):
write('this message in inverse at (1o,l6)'):
inverse(off);

How does the device know what highlighting features are in force when a

particular character is to be displayed? In most microcomputers the screen is

memory—mappea'. For each position on the screen there is a corresponding

area of memory which specifies what is to be displayed at that position and

in what format; we will refer to this area as the video map. In a character-
mapped display, the smallest addressable position on the screen is a complete

character. On an IBM-PC, highlighting features are accommodated by

reserving two bytes for each character position on the screen — the first,

called the attribute byte, specifies how it is to be displayed and the second,

called the content byte, specifies the character itself — as in Figure 3.6.

attr m char m attr m+l char m+l

i-~bit7 blink (1 =on,0=off)
bits 6 5 4 background colour (choice of 8 shades)
bit3 bold (1 =on,0=ofl)

bits 2 I 0 foreground colour (choice of 8 shades)
Fig. 3.6. Character video map.

44 Chapter 3

There are 3 bits for both background and foreground colour to correspond to
the 3 phosphors (red, green, blue) from which the colours are produced.

‘Black’ is generated with all 3 bits set to off and ‘white’ with all 3 bits set to on.

In the example of Figure 3.6, a memory area of 2 X 80 X 25 bytes

(approximately 4K) is required for the video map of a standard 80 column by

25 line display. The organisation of the memory map may not correspond

directly with the layout of the screen in the way that Fig. 3.6 suggests. Column
1 of row n+1 may not immediately follow column 80 of row n in the map.

With a smaller video map, less features can be accommodated; with a much

larger map, the system may maintain copies of several physical screens

simultaneously or provide a large ‘virtual’ screen only part of which appears
on the physical screen at any one time. We shall see in Chapter 10 that this

feature of modern microcomputers can be used to provide an interface
technique called windowing.

The interpretation of the Escape sequences which set attribute values is

supported by routines in a microcomputer’s operating systems which write

directly into the video map (and hence to the screen). Often system calls are

provided which can be invoked directly from the application software; these

may provide the programmer with access to more highlighting features than

are available with the Escape sequences. For example,

PutChar(content,attributezbyte)

might be an assembler routine which causes the operating system to write the

character specified by content into the video map at the current cursor

position, set the attribute bits to correspond with the value specified by

attributes, and finally advance to the next position. Most operating systems

will support an equivalent to PutChar and a corresponding procedure,

GetChar, which returns the content of the current position on the device, and
the value of its attributes.

Defining the attributes in terms of actual bit patterns in the video map is

both unwieldy and inflexible; it is preferable to specify them in terms of the
attribute data structure which we defined earlier. The low level routines can

be incorporated into procedures which convert the enumerated types of this

data structure into the relevant bit patterns for a particular device. Suitable
procedures would take the form

procedure WriteVideoMap(eh:char;attributes:AttributesType)

procedure ReadVideoMap(var ch:char;var attributes:AttributesType)

Input/output processes 45

A string can be displayed with particular attributes by repeated calls to

WriteVideoMap, as illustrated by the Displaystring procedure of Fig. 3.7.

procedure Displaystring(content:str1ng7
attributes:Attr1butesType);

var size,k : byte;
begin
size:-1ength(contcnt);
for k:- 1 to size do WtitevidaoMap(content[k],attributes)7
and:

Fig. 3.7. Displaying a message with given attributes.

3.2.4 A Generalised Output Process for Text Messages

We are now in a position to generalise the output of a text message to a

device such as a screen. An output message is represented by a variable,field

(oftype FieldType), whose structure is defined by the type declarations of Fig.
3.8.

byte o..255:
colours (b1ack,b1ua,green,cyan,red,magenta,ye11ow,white)7
Offon (off,on);
Lettcentrekight (1eft,centre,right):

S1otType record
row byte:
col - byte:
width byte:
end;

Attributesrype record
foreground . colours:
background ' colours;
blink . orconz
bold Orton:
justification : Lettcentrenight;end:

Fic1dTypo record
content . string;
slot ' s1otType;
attributes AttributesType;
end:

Fig. 3.8. Type declarations for the output message process.

For simplicity, we restrict our discussion in this chapter and the following

chapters to the display of a field, i.e. a message which starts at a specified
(row,col) character position and extends for a specified number of character

positions. In other words, we have omitted ‘height’ from the SlotType
declaration.

45 Chapter 3

Also, for simplicity and because it is a feature which is not available on a

number of devices, we have omitted text fonts. It is not difficult to incorporate

this facility, although different font sizes may make it tricky to operate in fixed
integral character positions.

We have introduced a new attribute — justzfication. The reason for this

attribute is merely to make the display offield. content more convenient. The

number of ‘significant’ characters in the content string may be less than

fieId.s1ot. width; for example, we may wish to display a short string of black
text characters centred within a longer band of blue background. We could

assign a string, suitably padded with leading and trailing spaces, to content.
Introducing a justification attribute merely saves the designer the trouble of

calculating the number of padding spaces required. The string will be

displayed automatically with the appropriate number of padding spaces.
We require a mechanism for assigning values to an output field. This is

done by the CreateFie1d procedure, which takes the form:

procedure CreateField (var field:FieldType;
message:string;

row,col,width:byte;

AttributeString:string);extemal;

The field represented by Fig. 3.9 can be initialised by the statement:

CreateField (Figure 3.9, ‘My Message Displayed Here’,6,l0,3l,
‘fore=b1ack,back=blue,just=centre’);

My Message Displayed Her:

Let us examine CreateField more closely. Assigning values to content and
slot raises no queries but the assignment ofattributes deserves some attention.

We have already seen that it is desirable to specify the attributes at a

conceptual level rather than in terms of how they are implemented. It is
tedious to specify a value for each attribute every time we define a field; we will

Input/output processes 47

frequently want the same set of values. More significantly, we will ‘bake’ this
set of attributes into our application software since, if we add a new attribute,

we will have to amend all existing software to include the additional value.

Therefore we specify the desired attributes as a string of characters. This

string consists of a series of settings separated by commas, and with each
setting having the form

keyword = value

where keyword identifies a particular attribute (fore, back, blink or bold) and
value the enumerated type value which the attribute is to take. Any attributes
which are not specified explicitly take a default value. In our example, the
blink and bold attributes take their default values of ‘off ’ because they are not

specified explicitly. The default values for background and foreground are
‘black’ and ‘white’ respectively, and the default value for justification is ‘left’.

In order to manipulate the field data structures we assume a library of

procedures of the form detailed in Fig. 3.10. These procedures utilise the low
level routines for positioning and attribute setting described in the preceding

sections. Appendix G contains a library of suitable PASCAL procedures.

Note that these procedures are not restricted to any particular screen device

—— device dependence is localised within the low level routines.

The field in Fig. 3.9 can be output to the screen by a statement of the form

DisplayField(Fi,<,mre3_9);

The content of the field in Fig. 3.9 can be ‘cleared’ by a statement of the form

ClearField(Figure3_9);

procedure change!-‘:Le1dcon,tent (var field: FieldType ;
NewContent:string)iexternal;

procedure changeFie1ds1ot(var £ie1d:Fie1dType:
row,co1,width:byte):externa1:

procedure ChangeFie1dAttributes(var £ie1d:F1e1dType:
NewAttrihutes:string)rexternali

procedure c1earF1e1d(£ie1d:Fieldrype);externa1;
procedure createFie1d(var t1a1d:F1e1dType;

message:strinq;
row,co1,width:byte:
Attributestring:string);axterna1;

procedure Disp1ayFie1d(fie1d:Fie1d'l‘ype) :ext:erna1;
‘procedure Hiderield (field: 1'-‘1e1d'rype) ;externa1:

Fig. 3.10. Field manipulation procedures.

48 Chapter 3

This temporarily sets the foreground to the same colour as the background of
the field and redisplays it. If the background colour of the field is different

from that of the rest of the screen, the area occupied by the field will still be
visible but the content will be invisible. This can be used to indicate the

location of a messag but without displaying the message content.
There are occasiéreis when the dialogue process wishes to draw a user’s

attention to a message which has already been displayed i.e. to repeat the
message with greater emphasis. Rather than creating a new message, this can

be done by changing the specification of an existing message and redisplaying
it. For example, the statements

ChangeFieldAttributes(Figure3_9,‘fore5white’);
DisplayField(Figure3_9);

will redisplay the field in the same position but with white text on a blue

background. There are corresponding procedures to change the content or
the slot.

Finally, we may wish to hide the area of the screen occupied by the display
of a field. This is accomplished by a statement of the form:

HideField(Figure3_9);

Figure 3.11 illustrates the use of these procedures to display the range of
shades available on an IBM-PC colour screen. The program ShowColours

outputs a pyramid with shades lightening from black at the top to white at the

bottom; each row of the pyramid contains the shade caption in the same
colour as the background but in bold intensity.

3.3 Input of a Text Message

3.3.1 Standard Input from the Keyboard

The keyboard is the archetypal input mechanism of interactive computing. It

can be used for the entry of any text-based input and is appropriate for low

to moderate volumes, depending on the proficiency of the user. Where large
volumes of input from fairly standard source documents are involved, an

automatic data capture device such as an optical character reader should be

considered; these devices are widely used by public utilities for processing
customer account payments and by banks for processing cheques.

Input/output processes

program Showcoloursi
type
(include field Type definitions of Figure 3.8)
var

outfield : Fie1dType;
rov,col,width : byte;
k : byte;
shade : array[1..8] of string:

(include tield Procedure declarations 01 Figure 3.10)
procedure c1earscreen:externa1:

begin
shade[l]:-‘black’ ; shade[2]:-'hlue' shade[3]:-'green':
shade[4]:-'cyan' ; snade[5]:-'red' shade[6]:-‘magenta’;
shade[7]:-'ye1loH'; ahade[8]:-'vhite',Clearscrnenl
Create1ield(OutPield,‘Colours Availab1e',2,l,BO,

'back-white,fore-b1ack,just-centre‘);
Dieplayr1eld(0utPield)r
row:-3; col:-351 width:-10;
for k:-1 to 8 do

begin
changeFie1dContent(outfield,shade[k])i
change!ie1dAttributee(outfield,

concat('bo1d-on,back-',shade[k],‘fore-',shade[k]))7
row:-row+11 col:-col-2; width:-width+4:
changerieldslot(outrield,rou,co1,width):
Disp1ayrie1d(oucF1e1d):
end;

end. (showcolouri)

Fig. 3.1]. A colour pyramid.

Other equipment which can be used to substitute or supplement keying
includes badge readers (into which you insert your bank service card at the

automatic till) and barcode scanners (used to identify products at retail
checkout desks). In both cases, their use eliminates the need for the user to

enter a long and meaningless string of digits to identify the customer or

product code.

EEQIQIEE
Fig. 3.12. Olivetti M24 keyboard.

50 Chapter 3

In certain systems a full keyboard is unnecessary or undesirable and a

customised keyboard may be used, e.g. the numeric keyblock on an automatic

bank till. However, unless they are to be produced in large numbers,
customised keyboards are expensive. Many improvements on the traditional

QWERTY layout, illustrated in Fig. 3.12, have been proposed and shown to
reduce the physical strain on the user; thus far it has withstood all
competitors.

The basic mechanism by which input is received by a program is the same

for all keyboards. Most high level languages provide a procedure to read

input delimited by an end of line marker such as Carriage Return. Thus in
PASCAL, the statement

read (x)

reads a value from the keyboard and assigns it to variable x.

The use of a standard input facility, like READ, has a number of implications

for the interface. The processing which occurs to effect the input is as follows:

repeat

— wait for input to become available;

— interpret any control sequences for editing (such as Backspace or
Delete) or screen positioning;

— echo the edited/interpreted input to an attached screen;

until end of input is indicated by the user pressing the Carriage Return key.

In a language such as PASCAL, the input will then be checked for type
consistency with the input Variable and converted as appropriate, or will causean error.

For many text-based applications, the processing described above may be
exactly what is required. However, it does have limitations. The application
may not want the dialogue to wait for input, but rather to examine the

keyboard to see whether or not a key has been pressed. This is necessary

where the system repeatedly carries out a process until the user presses a key
to terminate it. A common example occurs when a source file is listed on the

screen. Lines from the file scroll up the screen until the user causes a pause,
typically by pressing control—S.

It may be undesirable to echo what the user types onto the screen.

Obviously password protection would be of little use if the password were to
be displayed whenever it was entered.

The application may interpret editing keys in a non-standard manner.

Input/output processes 51

During execution of a PASCAL read instruction, the Backspace key is

interpreted as a destructive backspace, i.e. the previous character is overwrit-
ten. With a form displayed on the screen, the dialogue may want to interpret

the Backspace key as ‘position the cursor at the preceding field’.

If the dialogue is expecting a single character reply, the user should not be

required to press the return key; the input should terminate when one
character has been entered.

3.3.2 Character—by-Character Input

To support these variations, many languages allow character-by-character

input. Even if the language (as with PASCAL) does not include it, many
operating systems provide the facility via a low level routine which can be
linked with the language’s procedures. The essentials of such input are that:

The application software can interrogate the keyboard to see if a key has

been pressed. If it has, the character code corresponding to the key will be
returned; otherwise an indicator such as ASCII NUL (ascii 0) will be
returned.

The majority of input codes will not be interpreted to see if they represent
control sequences (it may not be possible to trap some Resets). In

particular, a Backspace will appear as the ASCII character BS (ascii 8).

The input will not be echoed automatically onto the screen.

This facility gives the designer the ability to control the way in which input

is received from the keyboard. A program can wait for input by repeatedly

scanning the keyboard until a non-null character is obtained. Input can be

echoed by displaying characters as they are received; in fact, numeric input
can be echoed right-justified, and alphabetic input can be echoed left-justified.

Since control sequences are not interpreted by the operating system, the

dialogue process can interpret any character, or sequence of characters, in any
way. The corollary of this freedom is that it must undertake any editing

functions required.

A final point to note is that this mechanism only supports input of type
Char. Although this may seem a disadvantage, a little thought should suggest

that all text input (including that of numbers) should be as characters which

are then converted explicitly by the application software. No system should
crash because a keying error caused a type mismatch in a PASCAL program!

Handling character—by—character input requires the existence of an external

procedure of the form

52 Chapter 3

function GetKeyChar(WaitSwitclI:WaitType;EchoSwitch:EchoType):byte;

where WaitType = (Wait,NoWait) and EchoType = (Echo,NoEcho) and the
byte value returned contains the ASCII code of the character corresponding
to the key.

3.3.3 Handling ‘Special’ Keys

Most keyboards contain a number of ‘special’ keys in addition to the

alphabetics and the numeric digits. These ‘special’ keys include editing keys
such as Backspace, cursor control keys and function keys. If GetKeyChar
returns the corresponding ASCII code when an alphabetic or numeric is
pressed, what does it return if a special key such as the cursor for function
key F l is pressed?

Keys such as Backspace and CarriageReturn also return a single ASCII
code. On some devices, all the keys operate in this manner; that is you can test
for function key Fl by a statement of the form

if key = n for some 0 < n < 256

Unfortunately, not all devices are so helpful. Many terminals and microcom-
puters (such as the IBM-PC) return a sequence of several characters for the

depression of a single function or cursor control key. Often this sequence
starts with the ASCII NUL character which is also used to indicate that no

key has been pressed; a function like GetKeyChar will not handle special keys
on these devices.

There is a solution to this problem. Each key on the keyboard (even
ShiftLock) has a unique numeric code, a scan code associated with it. The scan

codes for the keyboard illustrated in Fig. 3.12 are shown in Fig. 3.13. When
a key is depressed, the corresponding scan code is generated. Some keys
(Shift, Control, CapsLock, etc.) do not produce an input ‘character’. They

Fig. 3.13. Olivetti M24 scan codes.

Input/output processes 53

have no meaning except when combined with a ‘character’ key and merely set
a KeyBoard State flag. If the ‘c’ key is depressed, the keyboard handler
translates it as ‘C’ or ‘c’ or ‘control-C’ and generates the corresponding ASCII
code by interpreting the scan code in light of the Keyboard State flags. A
sequence ofASCII codes for a function key or cursor control key is generated
in a similar manner.

Many operating systems provide entry points which enable low level
routines to access the scan codes rather than just the translated ASCII codes.
Consider an external procedure of the form

procedure GetKeyScan(WaitSwitch:WaitType;EchoSwitch:EchoType;
var scan,ascii:byte); external;

This operates in a similar way to GetKeyChar except that it returns values for
both the scan code and an ASCII interpretation of this code. The scan code

will be non—zero if and only if a key has been pressed. For a normal key, the
scan code will be interpretable as an ASCII value which will be returned in the

variable ASCII; for special keys, no such interpretation will be possible and
so the value of ASCII will be zero.

By associating with a single key an action which might otherwise require
several keystrokes, the amount of keying required from the user can be

minimised. The existence of a procedure like GetKeyScan enables the
dialogue to interpret function and cursor keys in any way it wants. Since the

normal ‘character’ keys produce ASCII codes in the range 0..l27, one simple
way of doing this is to assign special keys a number in the range 128.255, and

to translate their scan codes on input as in the general keyboard input
procedure, GetAnyKey, illustrated in Fig. 3.14. Appendix F contains a list of

the keycodes used in this book to represent special keys.

There is a further refinement which we can incorporate into the process.
Suppose that the dialogue requests the user to enter a customer code which is

all numeric. If the user keys a character other than a digit from O to 9, it is
obvious that a typing error has occurred. The input process could accept the
field with this error and let the dialogue process validate it, reject it, output an

function GetAnyKey(waitswitch:waitType;Echoswitch:EchoType):byte;var scan,asci1 : byte:
begin

Getxeyscan(Waitswitch,Echoswitcn,scan,ascii);
if (scan<>O) and (asciiao) then ascii:=scan+128;GetAnyKey:=ascii:
end; (GetAnyKey)

Fig. 3.14. Character—bv-character input of anv kev.

54 Chapter 3

error message and request re—input. This is a long-winded approach to such

a trivial mistake; it would be easier if the input process simply ignored the
miskeyed character.

This facility can be incorporated by specifying afilter which defines the set

of keys to which the input process is sensitive. Any characters entered which

are not in this filter are ignored; a suitable procedure, GetFilterKey, is
illustrated in Fig. 3.15.

type
Wa1tType - (wait,NoWait);
EchoType - (echo,NoEcho);
setorayte = set of byte;

function GetFi1terKey(waitSwitch:WaitType;
EchoSwitch:EchoType;
filter :SetOfByte):byte;

var scan,ascii : byte;
begin
ascii:=O:
repeat

Getkeyscan(Waitswitch,EchoSwitch,scan,ascii):
if (scan<>O) and (ascii=O) then ascii:=scan+12E;
if not (ascii in filter) then ascii:=0:

until (ascii<>0) or (waitsuitchuflowait):
Getrilterxey:-ascii;
end: (GetFilterKey)

Fig. 3.15. Character-by—character input via a filter.

3.3.4 A General Input Process for Text Messages

In the previous sections, we were concerned with input only at the level of

individual characters. In practice, a general input text message will consist of
a string of characters up to a given length. This introduces further
requirements.

First, the process requires a variable in which to return the content of the

input message; by definition, this will be of type string. If the input is to be
echoed to the screen, there must be a definition of the slot on the screen where

this content will be echoed and a definition of the format (attributes) in which
it is to be echoed. This appears a remarkably similar requirement to that for

an output text message, and indeed an input field has the same type
declaration:

var InputField : Fie1dType

Input/output processes

where

FieldType = record
content : string;

slot 2 SlotType;
attributes 1 AttributesType;
end;

Note that the slot defines not only where the input is echoed. By specifying a
width, it also defines a maximum length for the input.

The user may make a keying mistake; a rubout character must be defined

to permit editing of the input. If a user can abort the system at any point, a

RequestAborz character must also be defined. An EchoSwitch is required to
specify whether the input is to be echoed. A RequestHeIp character is needed

to permit the user to request help.

The input process must be able to determine when to terminate. As we

discussed earlier this can be signalled either by the input of a special

terminator character or by the input of a fixed number of characters. An
AcceptFz'eld character can be defined to cater for the first case; the process will

continue until this character is input, regardless of the number of characters
which have been entered. If more characters are entered than the slot can

contain, any excess will be ignored. In the second case, there is no explicit

terminator character and so AcceptField will be defined as null; the process
will continue until exactly slot.width characters have been entered.

The number of such ‘switches’ which are required to control the input

process would result in a very unwieldy parameter list if they were all passed
as individual parameters. We will collect them all into a single data structure

which we will refer to as a Dialogue Information Block (DIB). Because this
structure contains settings which control the input process we will call it a
control DIB.

The complete structure of the control DIB is illustrated in Fig. 3.16. It
contains a number of other elements in addition to those which we have

already described. The purpose of these additional elements will be described

as they are required.

Combining all these requirements results in a procedure of the form:

procedure ReadField (var field:FieldType;
DataSet:SetOfByte;
var ControlDlB:ControlDIBtype)

where DataSet is a filter defining the"keys’ to which the process is sensitive.

Chapter 3

Controlblatype - record
Controlaurter 2 byte:
(input or text message)
rubout : byte;
Echoswitch . often:
Aeceptrield : byte;
(standard controls)
Requestnbort
Request!-Ielp . byte:
(picking I pointing controls)
reservedl : byte;
raservsdz byte;
reserved: byte;
(form positioning controls)
raservedd byte;
rsserveds byte;
reserved6 byte:
reserved7 Setofnyte;

Fig. 3.16. The Control DIB data structure.

To accept the input of a numeric field of up to 6 digits terminated with a
CarriageReturn and to echo right~justified in inverse video starting at (20,l0)
requires a program fragment of the form:

var contro1DIB controlulfltype;
InFie1d PieldType:
Dataset setotsyte:

with Contro1DIB do
begin
rubout:=Bs: (keycode 8}Echoswitch:=on:
AcceptFie1d:=CR; (keycode 13)
RequestAbort:=ESc; (keycode 27)end;

{display blank slot for answer in inverse video) .
createFie1d(InField,",20,10,6,'fore=black,back=white,just=right');Disp1ayFie1d(InFie1d):

Dataset:=[ord('0')..ord('9')]: (filter only allows digits O-9)ReadField(InField,Data5et,ControlDIB):

To accept an input of exactly 6 alphabetic characters without echo behind
a mask of asterisks starting at (20,I0) requires a program fragment of theform:

with contro1DIB do
begin

rubout:=BS; (keycode 8)EchoSwitch:=off:

AcceptField.=nu11; (keycode 0, no explicit terminator)
RequastAbort:=ESC; (keycode 27)end;

InpuI/output processes

(display slot for answer filled with asterisks)
CreateFie1d(InFie1d, ' ****** ' , 20, 10, 6,") 7
Disp1ayField(InFie1d) :
Dat-.aset:=[ord('a'). .ord('z') ,ord('A') . .ord('Z')];
ReadFie1d(InFie1d, Dataset, Contro1DIB) :

In both cases, the user’s input will be returned in InField.content. Although
in the second case the input characters are not echoed, the cursor will still

track the input position along the asterisks. Ofcourse, the user may decide not

to enter a text message but may choose instead to press the RequestAbort key.
ReadField will terminate immediately but this is unlikely to be a sufficient
response by the system; the dialogue needs to know that the user has aborted

the process. The ControlBuffer in ControlDIB provides the means for this;

when ReadField returns, ControlBuffer will contain the keycode of Request-
Abort. We shall see later that there are other occasions when this

ControlBuffer is used for communicating ‘control’ inputs to the dialogue.
A suitable ReadField procedure is detailed in Appendix G. It makes use of

the low level routines which were discussed in the previous section.

3.4 Positioning, Pointing and Picking

3.4.1 Targets

In Chapter 2, we saw that an Input Control message typically involves

selection from a limited set of options; an Input Data message may also

involve such a selection. It can be accomplished by keying a text message

which identifies the option desired. It can also be accomplished if the list is
reasonably small, by the system displaying the choices available and the user

‘pointing’ at the one required.

The alternatives are represented by a list of targets. These targets may be

individual characters; in editing a piece of text, the selections possible are the
character positions on the screen. They may be a set of character strings; such
as a list of task processes which can be executed, or a list of file names which

may be opened. In the more general case, they may be a series of targets
represented pictorially on the screen, as in Fig. 3.17.

50 Chapter 3

indicate that he has reached the target he wants by entering the character

specified as AcceptTarget. A means of aborting the mechanism without
making a selection is also desirable.

Where are these characters to be defined? In Section 3.3.4, we introduced

the concept of a Dialogue Information Block (the ControlDIB) which

contained the various controls for the input process for a text string.
PointNextTarget, PointPriorTarget and AcceptTarget are corresponding
controls for the Relative Pointing process; these are also stored in the

controlDIB data structure as shown in Fig. 3.18.

The procedure in Fig. 3.19 illustrates the use of this mechanism; it returns

in Curren!Target the ordinal number of the target picked. The target at which
the user is currently pointing is highlighted with the attributes specified in the
corresponding input parameter. SwitchCursor is an external routine which

switches the normal screen cursor on or off. Why is this necessary? (The
reader may note that the reassignments of CurrentTarget in response to the
input of PointNextTarget or PointPriorTarget could be coded more ele-

gantly, if less transparently, using the MOD function to cycle CurrentTarget
through the values 1..NumberOtTargets.)

3.4.3 Absolute Pointing

Cursor control keys can be used to move, one character at a time, to any
position on the screen. However a series of crablike vertical and horizontal

Controlblstype = record
Cuntrolauffer : byte;
(input of text message)
rubout : byte;
Echoswitch otfon;
Aeeaptrield byte;
(standard controls)
Requastnbort : byte:
Requastflelp : byte:
(picking a pointing controls)
PointNextTarget : byte;
PointPriorTarget : byte:
AcceptTarget : byte;
(fern positioning controls)
reserved4 : byte;
reserveds : byte;
reserveds : byte;
reserved? : setofnyte;

Fig. 3.18. The Control DIB data structure with Pointing Controls.

Input/output processes

procedure Re1ativePick(TargetList:TargetL1stType;Number0fTargets:byte;
high1ight:AttributesType;
var Contro1DIB:contro1DIEtype;
var CurrentTarget:byte);

var
complete : boolean;
filter : SetO£Byte?

begin
with Contro1DIB do

begin
filter:=[RequestAbort,Requestfielp,

PointNextTarget,PointPriorTarget,AcceptTarget];
SwitchCursor(off):
if (CurrentTarget<1) or (CurrentTarqet>Numbez0fTargets) thenCurrentTarget:=l:
High1ightField(TargetList[CurrantTarqet],high1ight);
complete:=fa1se;
repoat

Controlautfer:=GetFi1terKey(wait,NoEcho,filter);
(ControlButter cannot ba zero)
12 Contro1Bu£fer-RequestAbort then

complete:-trueelse
it (Controlfiuffer-PointNextTarget)
or (Controlfiuffor-PointPriorTarget) then

begin
Disp1ayFie1d(TargetList[CurrentTarget]); (turn off old highlight)it ControlBuffer=PointNextTarget then

if CurrentTarqet=NumberOfTargets then CurrentTarget:=l
else CurrentTarget:=CurrentTarget+1

else
if CurrentTarget=1 then currentTarget:=NumberOfTargets

else CurrentTarget:-CurrentTarget—1;
HighlightFie1d(TargetList[CurrentTarget],high1ight);
Contro1Buffer:=0; (because it has been actioned)
if AcceptTarget-O than complete:-true;end

else
it Controlautfer-AcceptTarget then

begin
comp1ete:=true;
Controlfiutter:-0; (because it has been actioned)end

else
{terminated by a higher level control input)
complete:-true:

until complete;
SwitchCursor(on);
end;

end: (Re1ativePick)

Fig. 3.19. Scrolling round a set of targets.

motions is hardly natural or speedy. Free pointing anywhere on the screen

really requires a specialist pointing device. The operating system will contain
low level routines to support the operation of the device; a PASCAL program

62 Chapter 3

will typically access these routines via calls to external procedures. The format
in which these routines report device activity varies from device to device.

However, it should be possible to produce a generalised procedure of theform:

procedure ReadPointer(var row,col:byte;var actionzbyte)

action specifies what activity, if any, has occurred; for example, we need to be
able to tell if the user has picked a target, requested an abort and so forth. The

position of the device is specified by (row,col); most pointing devices report
position in terms ofpixel co-ordinates but these can easily be converted to row
and column values for use in text—based applications.

In order to determine which target, ifany, is being pointed at, these row and

column co-ordinates must be matched against the co-ordinates of the target
areas. A target is pointed at if the character position (row,col) lies with the
target slot. The point and pick procedure must try all targets in the list, as
illustrated in Fig. 3.20, until a match is found; if the list is exhausted before a

match is found, then the user is not pointing at any target.

The mouse (Fig. 3.21) is the pointing device in vogue. Although developed
more than a decade ago, recent dramatic reductions in cost have resulted in

its incorporation in most modern workstations. It consists of a box about the

size of a cigarette packet attached to the keyboard or processor; set into the

top are a number (1 to 4) of buttons which operate rather like function keys.
As the mouse is moved in the palm of the hand over a convenient surface (a
desktop or a tablet), its position is tracked relative to some preset origin using

function MatchPosit1on(row,co1:byte;
TargetList:TargetListType;
NumberO£Targets:byte):byte

var k,match : byte;
begin
match:-O;
k:=l;

while (k<sNumberofTargets) and (match=0) do
if (row=TargatL1st[k].s1ot.row)
and (co1>-TargetList[k].s1ot.co1)
and (co1< TargetList[k].s1ot.co1+TargetList[k].s1ot.width) thenmatch:=k
else

k:=k+1;
HatchPosition:=match;
end; (MatchPo31tion)

Fig. 3.20. Matching a target area.

Input/output processes

Fig. 3.21. An Olivetti mouse.

one oftwo methods. The cheaper and more common mechanical mouse rolls

on a ball bearing; the motion of the ball bearing is transferred to two rollers
which are perpendicular to each other and which track motion in the x and y

planes. The optical mouse which is common in graphical applications uses an

optical crosshair over a special tablet upon which a very precise grid has been
etched.

It was mentioned in Section 3.2.3 that the output features provided on

some screens depend on the mode to which they have been initialised.
Similarly, many mice exhibit different operating characteristics depending on

the mode to which they have been configured. This configuration involves
supplying values for a variety of parameters which control the mouse

operation; for example, one parameter will specify the sensitivity of the mouse

i.e. the scale of physical movement necessary to effect one unit of movement
on the screen.

A common facility used with text-based dialogues is keyboard emulation.
Movements of the mouse and presses and releases of the buttons are

converted to associated key character strings. Typically, a mouse movement

64 Chapter 3

to the left is converted to the character generated by the cursor left key, a press

of Button 1 is converted to a CarriageReturn character, and so forth. The key

strings which are ‘emulated’ for each mouse action can be set by the
configuration routines.

The dialogue has no need to know of the existence of a mouse operating in
keyboard-emulation mode. Use of the mouse imposes no special software

requirements since its inputs will be processed correctly by any of the
keyboard routines which we have discussed previously. Therefore we will
concentrate on the case where the mouse operates as a independent device,
often called real mouse mode.

There are no intrinsic procedures in most high level languages for

processing real mouse input i.e. there is nothing that corresponds to the Read
and Readln procedures for the keyboard. All input/output from auxiliary
devices like the mouse must be handled via low level routines called drivers;

in fact, the routines like WtiteVideoMap and GetKeyScan which we
discussed in Sections 3.2 and 3.3 are examples of Screen and Keyboard

drivers. The precise implementation of the Mouse driver depends on the

particular mouse. We will consider the types of facility provided by the driver
of a typical mechanical mouse. These are listed in Fig. 3.22.

Movement ofthe mouse is tracked on the screen by a mouse cursor symbol.

A number of different cursor symbols may be supported —- a block, a

character attribute setting or a symbol such as an arrowhead or sightmark.

The cursor symbol can be set by a statement of the form:

SetMouseCursor(inverse);

It may be desirable to turn the cursor off; for example, when a particular

target is highlighted, a flashing cursor is an unnecessary distraction. This
requires a statement of the form:

procedure setmousecursor(cursor:CursorType):externa1:
procedure SwitchMouseCursor(switchzoffon);externa1:
procedure SetMouseLimits(limitszrectanglel;external;
procedure MouseTo(row,col:byte);externa1;
procedure MouseAt(var row,co1:byte);externa1;
procedure ReadPress(button:ButtonType;

var report:ReportType);external;
procedure ReadRe1ease(button:ButtonType;

var report:ReportType);external;

Fig. 3.22. Typical real mouse facilities.

Input/output processes

SwitchMouseCursor(off);

The area of the screen over which the mouse can travel can be restricted, for

example, to constrain the user to positioning within a given rectangular area
such as a list of options. This requires a statement of the form:

SetMouseLimits(TargetListArea);

Just as the normal screen cursor can be initialised to a given position, the

mouse cursor can be set to any given position by a statement of the form:

MouseTo(10,25);

On many systems, the designer must take care to avoid conflicts between
the mouse cursor and the normal text cursor. The system may well treat these

as different entities. In particular, the fact that the mouse cursor is displayed

at a particular position on the screen does not necessarily imply that an output
to the screen will occur at this position; output will take place at the position

pointed at by the text cursor.
Various mouse actions can be reported. The application software can

determine the current mouse position and whether the buttons are currently

up or down. As well as these absolute reports, the mouse can provide relative
reports of activity since it was last interrogated, such as the relative movement
or the number of times a button has been pressed or released and the absolute

position at which this last occurred. The second of these is useful for checking
whether the user has ‘clicked’ (i.e. pressed and released a button) in a

particular target area.

A report on the current mouse position (row,col) can be read with a
statement of the form:

MouseAt(row,col);

Reading ‘clicks’ from the mouse requires statements of the form:

ReadPress(LeftButton,report);

ReadRe1ease(RightButton,report);

where report is a variable of type

Reporffype = record

count : byte; {count of presses or releases}
row : byte; {row of last press or release}

col : byte; {col of last press or release}
end;

66 Chapter 3

and returns the number of presses (releases) of the specified button and the
position at which the last one occurred. Button is an enumerated value from

ButtonType = (LeftButton,RightButton)

The way in which a button is pressed can also be coded. A common

convention is that a single ‘click’ selects/deselects a target, holding the button
down drags a target across the screen, and a ‘double click’ (i.e. two clicks in

quick succession) indicates some operation on the target, such as opening a
file.

Alternatives, which operate in a similar manner to the mouse, include the

tracker ball and thejoystick. The touchscreen and the lightpen both differ from

the mouse in that a user can point and pick in a single operation. The dialogue
process should not be concerned with which of these particular devices is

being used; therefore we need to define an abstraction for absolute pointing

which generalises to all of these. We will illustrate this by considering the
process for a mouse with two buttons which are ‘single clicked’.

The ReadPointer abstraction must provide sufficient information to decide

which target, if any, is currently pointed at; this can be accomplished if its
implementation returns the (row,col) position. It must also indicate whether

a target has been picked or an abort has been requested. For relative pointing,
we defined a particular keycode for each of these in ControlDIB; the mouse

input routine, which knows about buttons, implements this by converting

clicks (releases ofa button) to keycodes which the dialogue knows about. Fig.
3.23 illustrates the mechanism.

Similar generalisations are required for the cursor control procedures of

Fig. 3.22. The dialogue requires an abstraction for any pointing device with
the same parameter format; for example:

MouseTo(row,co1:byte) :> PointerTo(row,col:byte)

These can be incorporated into a generalised procedure for absolute picking
as illustrated in Fig. 3.24. The boolean function equal(a,b:byte):boolean
returns the value ‘true’ if and only if (a=b) and (a<>0). It is required to
prevent a zero result in the ControlBuffer matching an undefined (and hence
zero value) control variable (for example RequestAbort) in ControlDIB.

Point and pick devices can be used very sucessfully provided the user is not

continually having to alternate between the device and a keyboard. The

mouse and the touchscreen in particular have both proved very acceptable to
and easily used by a wide range of users. The touchscreen has the

disadvantage at present of being very expensive relative to the other

Irzput/output processes

procedure ReadPointer(var row,co1:byte;var action:byte); (mouse)
type ReportType = record

count : byte:
row : byte;
col : byte;
end;

var report : ReportType;
(include Mouse procedure declarations of Figure 3.22)

begin
Readnelease(RightButton,report):
if report.count>0 then (right button release = abort}

begin
row:=report.row;
col:=report.co1;
action:=ESC; (keycode 27)end

else
begin
ReadRe1ease(LeftButton,report);
if report.count>o then (left button release = pick)

begin
row:=report.tow;
co1:=report.co1;
action.=CR: (keycode 13)end

else
begin
MouseAt(row,co1); (no clicks but check position)
action:=O; (keycode 0)end:

end:
end: (ReadPointer for a Mouse)

Fig. 3.23. Checking for pointing device activity.

mechanisms, but with the advantage of not impeding keyboard use in any
way.

3.5 Input and Output of Graphical Messages

We defined a graphical message as one in which the information exchanged
must be described at the ‘bit’ level rather than at the ‘character’ level. It is not

our intention to discuss graphics in this book but we will mention a few of the

factors which are similar to text input and output.
A screen memory map need not store the screen contents as characters; it

may hold them instead as pixel (short for picture element) information. A

68 Chapter 3

procedure Abso1utePick(TargetList:TargetListType;
Numher0fTargets:byte;
highlight:AterihutesType:
var Contro1DIB:contro1DIBtype:
var CurrentTarget:byte);var

complete : boolean:
PriorTarget : byte:
row, col : byte;

begin
with Contro1DIB do

begin
SvitchCursor(off)7 SwitchPointerCursor(on):
if (CurrentTarget>=1) and (CurrentTarget<=Number0fTarget5) then

begin
PointerTo(TargetList[CurrentTarget].s1ot.row,

TarqetList[CurrentTarget].s1ot.co1);
HighlightFie1d(TargetList[CurrentTarget],highlight):end: '

complete:-false;
repeat

PriorTarget:=CurrentTarget:
ReadPointer(rcw,col,Contro1Buffer):
if equal(controlfiuffer,RequestAbort) then

complete:=trueelse
begin
(controlauffer may be zero)
Currentrarget:=MatchPosit1on(row,co1,TargetList,NumberofTargets);
if (CurrentTarget<>O) and (AcceptTarget=0) then '

complete:=trueelse
if CurrentTarget<>Pr1orTarget then

begin
if PriorTarget<>O then Disp1ayFie1d(TargetL1st[PriorTarget]);
it CurrentTarget<>0 then High1ightField(TargetList[CurrentTarget

,high1ight);end
else
if (ControlBuffer<>0)
and (controlsuffer in [AcceptTarget,Requestflelp]) then

comp1ete:=true;
end:

until complete;
SwitchPointerCursor(oft): SwitchCursor(on):end:

end; (Ahso1utePick)

Fig. 3.24. Absolute pointing at a set of targets.

pixel is the smallest addressable element of the screen. Pixels might be
considered as the dots which are combined to create the normal character set.

On a monochrome screen, one bit is required to specify each pixel (it is either

on or off) and thus such displays are often referred to as bit mapped displays;

Input/output processes 69

on a colour screen, a number of bits representing the basic phosphor colours

are required for each pixel.

Analogous to the WriteVideoMap and ReadVideoMap procedures for
characters discussed in Section 3.2.3, the operating system may include

WriteDot and ReadDot procedures which write or read a pixel Value at the

current position. Frequently, these basic facilities are incorporated into

procedures which support the drawing of basic shapes such as a straight line
betweeen two points, a circle or a rectangle. Graphic input may be obtained
via a mouse. Another common input device is the tablet which consists of a

flat slab used in conjuction with a pen-like stylus. The position of the stylus
can be detected by a variety of techniques; a common mechanism utilises the

pressure of the stylus to vary the electrical properties of a membrane coating
on the tablet. A pressure sensitive tablet can be used both for freehand

drawing and for tracing.
The tablet can also be used for point and pick operation. Rather than

display the targets on the screen, they are printed onto ' a transparent overlay
which rests on the pad. Both because of the smaller‘ typography which is
possible and because of the greater precision of the stylus, targets can be
smaller and more cluttered than with other devices.

3.6 Summary

The dialogue process treats input and output messages at a logical level, i.e.
in terms of the functions they fulfill.

The input/output processes deal with the raw material of the messages.

They are not concerned with their function only with their format which, for
text-based dialogues, can be classified into

the output of a text message

the input of a text message

point and pick input

The intrinsic procedures of most high level languages only support

‘teletype’ operation. Low level routines provide many facilities which can

enhance the quality of the dialogue but introduce device-dependence. To

facilitate portability of the system, it is important to localise this dependence.
The input/output processes are split into two levels. The Dialogue Process

70 Chapter 3

calls the higher level which represents abstractions concerned with what is to
be effected rather than how it is implemented.

This higher level calls lower level physical device drivers which implement

the abstractions on a particular device. Implementation for a different device

involves the ‘linking’ of a different library of driver routines.

An input process must be able to distinguish inputs which represent data

from those which control the input process itself; an example of a control

input is the rubout key. A data structure, which we have called ControlDIB,

parameterises the control inputs of the abstractions; any given dialogue can
assign its own particular keycodes to these parameters.

This layering of the processes into different libraries of routines is described

further in Appendix D. The library of input/output handling abstractions

developed in the chapter are described in more detail in Appendix G and the

driver routines for the screen, keyboard and mouse are listed in Appendix F.

Discussion Exercises

D1. An application which was developed for use on a device with a colour

screen is to be ‘ported’ to a device with a monochrome screen which only
supports inverse video. The dialogue abstractions assume that colour and
blink are available. How should the driver for the monochrome screen

interpret different colour settings and blink? (Consider examples such as a

white foreground on a blue background and a black foreground on a green
background.)

D2. Some applications use sound as a highlighting feature; when a field is

displayed the associated sound is produced, for example to indicate that the

dialogue expects input. Most devices provide a mechanism to ‘ring the bell’
and several support tone generators which can produce quite elaborate tunes.

What extensions to the abstractions described in the chapter would be
necessary to incorporate this facility?

D3. In question D2 of Chapter 2 you were asked to investigate different
types of software package in terms of their basic dialogue structure and

grammar. Re-examine these packages in terms of the input/output processes

they support; for example, what devices are supported, whether they utilise
pointing, what video attributes are used.

What benefits or disadvantages do these features bring to interface in each

example? Why? Most packages must be installed for the particular devices

Input/output processes 71

which are used. Determine what type of information about the devices must

be specified during installation of these packages.

Programming Exercises

Pl. Determine how the cursor control and attribute settings discussed in

Section 3.2 can be implemented on the device you are using. In many cases
(such as IBM compatibles), this can be done by writing suitable control
sequences. Implement the library of screen driver routines listed in

Appendix F.
P2. Implement the library of keyboard driver routines discussed in Section

3.3 and listed in Appendix F. On many devices, the keycodes which are

produced by a given key (such as the function keys) can be set via particular
Escape sequences. This can be considered as setting the mode for the keyboard
in the same way that the operating mode of a screen or a mouse must be
initialised.

P3. What field definitions are required to produce the following ‘boxed’ list
of options? The text is white on a blue background. The character set of most
microcomputers includes line segment symbols which can be used to ‘draw
the box’ in text mode.

(8,2l)

happy
dozy

lazy

sleepy
gnnnpy

(1432)

Use the procedures described in the chapter to display the box on the screen
and to scroll around it.

P4. Repeat the previous question but instead of scrolling around the screen
use the ReadField procedure to request the user to type one of the letters

h,d,l,s or g. This input will not be echoed but the corresponding adjective in
the list will be highlighted by ‘inversing’ it.

PS. Develop a

procedure SaveSlot(sl0t:Sl0tType:var buiI'er:BufferType);

Chapter 3

where BufferType = array[l..80] of BufferEntry
and Buiferlintry record

ch : char;

attributes : AttributesType;
end;

which copies the contents of the video map corresponding to slot into the
variable bufler.

P6. Although absolute pointing using cursor keys is cumbersome, it is

perfectly possible to point absolutely with a mouse which is operating in
keyboard emulation mode. To the system, this is equivalent to pressing the

cursor keys. Figure 3.23 illustrated the implementation of ReadPointer for a
mouse in real-mouse mode. Implement a corresponding driver for cursor key

input.

P7. Display a keyboard layout on the screen as illustrated below. Each key

will be represented as an individual field and initially the key captions will be

blank. Implement a procedure which will scan the keyboard for an input

keystroke and will display a suitable caption on the relevant key. Thus for an
input of

= c will appear on the C key

C will appear on the C key and RS/LS on the shift keys

— “C will appear on the C key and Ctl on the control key

Further Reading

Biggerstaffe T. (1986) System Software Tools (chapter 3), Prentice Hall.
Cakir A. et al. (1980) The VDT Manual, Wiley.
Carroll A.B. (1984) ‘Three Types of Touch Technology Simplify

Man-Machine Interface’, Computer Tech Rev., Winter.

Input/output processes 73

Lopiccola P. (1983) ‘Meet the Mouse’, Popular Comp., 2, 5.
Montgomery E.B. (1982) ‘Bringing Manual Input into the 20th Century’,

IEEE Computer, 15, 3.

Pfaff G. et al. (1982) ‘Constructing User Interfaces Based on Logical Input
Devices’, IEEE Computer, 15 11.

Microsoft Corp. (1984) MS—DOS Programmer’s Reference.
Olivetti (1984) M24: Hardware Architecture and Function.

Chapter 5

Dialogue structures - forms, commands and
hybrids

5.1 Introduction

In Chapter 4 we examined the characteristics of the Question and Answer and
of the menu structures. Both request a single answer to a single question and
we saw that the same abstraction can be used to define the input process in

either structure. In this chapter, we consider two structures which request a
series of answers and will see that this same abstraction applies to the

processing of each individual answer in the series.
The four structures represent a broad classification of a single step in a

dialogue. Each is suited to a particular class of user or type of input message.

However, the dialogues for most applications must handle a variety of input

message types and different levels of familiarity; no one dialogue structure is
suitable for the whole of the dialogue. We examine how these basic structures

may be combined to cater for differing requirements in different areas of the

system. We will refer to these combinations as hybrid structures.

5.2 The Form Filling Structure

5.2.1 Features

‘ Foreground [] Background [}

Bold (y/n) [] Blink(y/n) []

F1=tForrrI - ‘ F2=hel

Fig. 5.1. A form dialogue.

Chapter 5

One way of obtaining information from other people is to ask them questions

and listen to their replies, an approach reflected in the Question and Answer

structure. Another approach is to have them fill in the information on a form,
such as the one shown in Fig. 5.1.

Forms are widely used for ordering goods, making reservations or

payments, completing insurance proposals, as questionnaires and so forth.
The clerical procedures in most companies are based on standard forms such

as invoices, sales orders and purchase orders; in fact forms are generally used

where the recording of an activity (transaction) requires the entry of a fairly
standard set of data items.

The form dialogue structure is based on an analogy with this way of

collecting information. Unlike the Q&A structure which presents questions

one at a time, the user is presented with a set of questions. This set is relatively
standard in the sense that answers to previous questions in the set do not

normally influence whether a particular question is asked.

A clerical form is usually filled in by working from left to right and top to

bottom. The person completing the form can make alterations whilst entering

an answer, skip over questions temporarily, go back and change the answer

to a previous question, or even tear up the form and start again. He maintains

control up to the point when the form is handed over to the recipient.
Form dialogues typically provide the same facilities. A user may edit an

individual answer as it is being entered. He may also move around the form,

skipping questions or going back to answer a previous question. The user

retains this ability until he indicates that he is satisfied with the input, either
by pressing a particular key to accept the form or by answering a final
question equivalent to

OK to process (y/n)

If the recipient of the form is present whilst the form is being completed, he

can point out errors as they occur. This approach may distract the person
completing the form and may lead to an increase in the number of errors; the
alternative is to wait until the form has been completed before checking it. He

will then indicate all the items which are wrong and ask for them to be
corrected.

If the computer system is present, it can validate each answer immediately

it is input, or it can wait and report errors only when the form has been
completed. With some hardware configurations, the user’s input is only

available to the system when he presses an ‘enter’ key, typically at the end of
the form. Whether to validate immediately or to defer is not a trivial decision;

