

Exhibit 1014 – Part 5 Exhibit 1014 — Part 5

134 Chapter 3 Menu Selection and Form Fillin

describe the necessary action (Type the address or simply ad-
dress :) and avoid pronouns (You should type the address) or

references to theuser (The user of the form should type the

address). Another useful rule is to use the word type for entering
information and press for special keys such as the TAB, ENTER,

cursor movement, or programmed function (PFK, PF, or F) keys. Since
”ENTER” often refers to the special key, avoid using it in the instruc-
tions (for example, do not use Enter the address, instead stick to

Type the address.) Once a grammatical style for instructions is
developed, be careful to apply that style consistently.

Logical grouping and sequencing of fields: Related fields should be adja-
cent, and should be aligned with blank space for separation between

groups. The sequencing should reflect common patterns—for example,
city followed by state followed by zip code

Visually appealing layout of the form: Using a uniform distribution of

fields is preferable to crowding one part of the screen and leaving other
parts blank. Alignment creates a feeling of order and comprehensibil-
ity. For example, the field labels Name, Address, and City were right
justified so that the data-entry fields would be vertically aligned. This
layout allows the frequent user to concentrate on the entry fields and to
ignore the labels. If users are working from hard copy, the screen
should match the paper form.

Familiar field labels: Common terms should be used. If Address were

replaced by Domicile, many users would be uncertain or anxious
about what to do.

Consistent terminology and abbreviations: Prepare a list of terms and

acceptable abbreviations and use the list diligently, making additions
only after careful consideration. Instead of varying such terms as
Address, Employee Address, ADDR . , and Addr ., stick to one term,
such as Address.

Visible space and boundaries for data-entry fields: Underscores or other
markers indicate the number of characters available, so users will know

when abbreviations or other trimming strategies are needed.

Convenient cursor movement: A simple and visible mechanism is needed

for moving the cursor, such as a TAB key or cursor—movement arrows.

Error correction for individual characters and entire fields: A backspace key
and overtyping should be allowed to enable easy repairs or changes toentire fields.

Error messages for unacceptable values: If users enter an unacceptable
value, the error message should appear on completion of the field. The

message should indicate permissible values of the field; for example, if

3.10 Form Fillin 135

the zip code is entered as 28K2 1 or 2380, the message might indicate
that Zip codes should have 5 digits.

Optional fields clearly marked: The word Optional or other indicators
should be visible. Optional fields should follow required fields, when-

ever possible.

Explanatory messages for fields: If possible, explanatory information
about a field or its values should appear in a standard position, such as
in a window on the bottom, whenever the cursor is in the field.

Completion signal: It should be clear to the users what they must do
when they are finished filling in the fields. Generally, designers should
avoid automatic completion when the last field is filled, because users

may wish to review or alter field entries.

These considerations may seem obvious, but often forms designers omit
the title, or include unnecessary computer file names, strange codes, unintel-

ligible instructions, unintuitive groupings of fields, cluttered layouts, ob~
scure field labels, inconsistent abbreviations or field formats, awkward

cursor movement, confusing error-correction procedures, hostile error mes-

sages, and no obvious way to signal completion.
Detailed design rules should reflect local terminology and abbreviations.

They should specify field sequences familiar to the users; the width and
height of the display device; highlighting features such as reverse video,
underscoring, intensity levels, color, and fonts; the cursor movement keys;
and coding of fields.

3.10.2 Coded fields

Columns of information require special treatment for data entry and for

display. Alphabetic fields are customarily left justified on entry and on
display. Numeric fields may be left justified on entry, but then become right
justified on display. When possible, avoid entry and display of leftmost
zeros in numeric fields. Numeric fields with decimal points should line up

on the decimal points.

Special attention should be paid to such common fields as these:

- Telephone numbers: Offer a form to indicate the subfields:
Telephone: ()

Be alert to such special cases, such as addition of extensions or the need
for nonstandard formats for foreign numbers.

- Social—security numbers: The pattern for Social-security numbers should
appear on the screen as
Social—security number: -

136 Chapter 3 Menu Selection and Form Fillin

VVhen the user has typed the first three digits, the cursor should jump to
the leftmost position of the two-digit field.

Times: Even though the 24 hour clock is convenient, many people find it
confusing and prefer AM. or P.M. designations. The form might appear as

(9:45 AM or PM)

Seconds may or may not be included, adding to the variety of necessary
formats.

Dates: How to specify dates is one of the nastiest problems; no good
solution exists. Different formats for dates are appropriate for different

tasks, and European rules differ from American rules. It may take years
before an acceptable standard emerges.

When the display presents coded fields, the instructions might
show an example of correct entry; for example,
Date: / / (O4/22/93 indicates April 22, 1993)

For many people, examples are more comprehensible than is an
abstract description, such as MM/DD/ YY.

Dollar amounts (or other currency): The dollar sign should appear on the
screen, so users then type only the amount. If a large number of whole-
dollar amounts is to be entered, users might be presented with a field
such as

Deposit amount: $

with the cursor to the left of the decimal point. As the user types
numbers, they shift left. To enter an occasional cents amount, the user

must type the decimal point to reach the 00 field for overtyping.

Other considerations in form-fillin design include multiscreen forms,

mixed menus and forms, use of graphics, relationship to paper forms, use of

pointing devices, use of color, handling of special cases, and integration of a
word processor to allow remarks.

3.11 Practitioner's Summary

Begin by understanding the semantic structure of your application within
the vast range of menu-selection situations. Concentrate on organizing the
sequence of menus to match the users’ tasks, ensure that each menu is a

meaningful semantic unit, and create items that are distinctive and compre-
hensible. If some users make frequent use of the system, then typeahead,
shortcut, or macro strategies should be allowed. Permit simple traversals to
the previously displayed menu and to the main menu. Finally, be sure to
conduct human—factors tests and to involve human-factors specialists in the

References 137

design process (Savage et al., 1982). When the system is implemented, collect
usage data, error statistics, and subjective reactions to guide refinement.

Whenever possible, use a menu-builder or menu-driver system to pro-
duce and display the menus. Commercial menu-creation systems are avail-
able and should be used to reduce implementation time, to ensure consistent

layout and instructions, and to simplify maintenance.

3.12 Researcher’s Agenda

Experimental research could help us to refine the design guidelines concern-
ing semantic organization and sequencing in single and linear sequences of
menus. How can differing communities of users be satisfied with a common

semantic organization when their information needs are very different?
Should users be allowed to tailor the structure of the menus, or is there

greater advantage in compelling everyone to use the same structure and
terminology? Should a tree structure be preserved even if some redundancy
is introduced? How can networks be made safe?

Research opportunities abound. Depth versus breadth tradeoffs under
differing conditions need to be studied to provide guidance for designers.
Layout strategies, wording of instructions, phrasing of menu items, use of
color, response time, and display rate are all excellent candidates for
experimentation. Exciting possibilities are becoming available with larger
screens, graphic user interfaces, and novel selection devices.

Implementers would benefit from the development of software tools to
support menu-system creation, management, usage-statistics gathering, and
evolutionary refinement. Portability of menuware could be enhanced to
facilitate transfer across systems.

References

Billingsley, P. A., Navigation through hierarchical menu structures: Does it help to
have a map? Proc. Human Factors Society, Twenty-Sixth Annual Meeting (1982), 103-
107.

Brown, C. Marlin, Human-Computer Interface Design Guidelines, Ablex, Norwood, N]
(1988).

Brown, James W., Controlling the complexity of menu networks, Communications of
the ACM 25, 7 (July 1982), 412-418

Callahan, D., Hopkins, M., Weiser, M., and Shneiderrnan, B., An empirical compari-
son of pie versus linear menus, Proc. CHI '88 Human Factors in Computer Systems,
ACM, New York (1988), 95-100.

Card, Stuart K., User perceptual mechanisms in the search of computer command
menus, Proc. Human Factors in Computer Systems (March 1982), 190-196.

Chapter 3 Menu Selection and Form Fillin

Clauer, Calvin Kingsley, An experimental evaluation of hierarchical decision—mal(ing
for information retrieval, IBM Research Report R] 1093, San Jose, CA (September
15, 1972).

Galitz, W. 0., Human Factors in Office Automation, Life Office Managment Assn.,
Atlanta, GA (1980).

Greenberg, Saul and Witten, Ian H., Adaptive personalized interfaces: A question of
viability, Behaviour and Information Technology 4, 1 (1985), 31-45.

Herot, Christopher F., Graphical user interfaces. In Vassiliou, Y. (Editor), Human
Factors and Interactive Computer Systems, Ablex, Norwood, N] (1984), 83-103.

Kiger, John I., The depth/breadth trade-off in the design of menu—driven user
interfaces, International Journal of Man-Machine Studies 20 (1984), 201-213.

Koved, Lawrence, and Shneiderman, Ben, Embedded menus: Menu selection in
context, Communications of the ACM 29 (1986), 312-318.

Lanclauer, T. K., and Nachbar, D. W., Selection from alphabetic and numeric menu
trees using a touch screen: Breadth, depth, and width, Proc. Human Factors in
Computing Systems, ACM SIGCHI, New York (April 1985), 73-78.

Laverson, Alan, Norman, Kent, and Shneiderman, Ben, An evaluation of jump-ahead
techniques for frequent menu users, Behaviour and Information Technology 6 (1987),97-108.

Lee, E., and Latremouille, S., Evaluation of tree structured organization of informa-
tion on Telidon, Telidon Behavioral Research I, Department of Communications,
Ottawa, Canada (1980).

Liebelt, Linda S., McDonald, James E., Stone, Jim D., and Karat, John, The effect of

organization on learning menu access, Proc. Human Factors Society, Twenty-Sixth
Annual Meeting (1982), 546-550.

McDonald, James E., Stone, Jim D., and Liebelt, Linda 5., Searching for items in
menus: The effects of organization and type of target, Proc. Human Factors Society,
Twenty-Seventh Annual Meeting (1983), 834-837.

McEwen, S. A., An investigation of user search performance on a Telidon informa-
tion retrieval system, Telidon Behavioral Research 2, Ottawa, Canada (May 1981).

Mantei, Marilyn, Disorientation behavior in person—computer interaction, Ph. D.
Dissertation, Department of Communications, University of Southern California,
Pasadena, CA (August 1982).

Martin, James, Viewdata and the Information Society, Prentice-Hall, Englewood Cliffs,
NJ (1982).

Mitchell, Jeffrey and Shneiderman, Ben, Dynamic versus static menus: An experi-
mental comparison, ACM SIGCHI Bulletin 20, 4 (1989), 33-36.

Murray, Robert P., and Abrahamson, David S., The effect of system response delay
and delay variability on inexperienced videotext users, Behavior and Information
Technology 2, 3 (1983), 237-251.

Norman, Kent, The Psychology of Menu Selection: Designing Cognitive Control at the
Human/Computer Interface, Ablex, Norwood, NJ (1991).

References 139

Norman, Kent L. and Chin, John P., The effect of tree structure on search in a
hierarchical menu selection system, Behaviour and Information Technology 7 (1988),
51-65.

Ogden, William C. and Boyle, James M., Evaluating human—computer dialog styles:
Command versus form/fill-in for report modification, Proc. Human Factors Society,
Twenty—Sixth Annual Meeting, Human Factors Society, Santa Monica, CA (1982),
542-545.

Pakin, Sherwin E. and Wray, Paul, Designing screens for people to use easily, Data
Management (July 1982), 36-41.

Parton, Diana, Huffman, Keith, Pridgen, Patty, Norman, Kent, and Shneiderman,
Ben, Learning a menu selection tree: Training methods compared, Behaviour and
Information Technology, (1985), 81-91.

Perlman, Gary, Making the right choices with menus, INTERACT '84, First IFIP
International Conference on Human—Computer Interaction, North-Holland,
Amsterdam, The Netherlands (1984), 291-295.

Phillips, Chris H. E., & Apperley, Mark D., Direct Manipulation Interaction Tasks: A
Macintosh—based Analysis, Interacting with Computers 3, 1 (1991), 9-26.

Robertson, G., McCracl<en, D., and Newell, A., The ZOG approach to man—machine
communication, International Journal of Man—Machine Studies 14 (1981), 461-488.

Savage, Ricky E., Habinek, James K., and Barnhart, Thomas W., The design,
simulation, and evaluation of a menu driven user interface, Proc. Human Factors in
Computer Systems (1982), 36-40.

Seabrook, R., and Shneiderman, B., The user interface in a hypertext, multi-window
browser, Interacting with Computers 1 (1989), 299-337.

Shneiderman, Ben, Direct manipulation: A step beyond programming languages,
IEEE Computer 16, 8 (1983), 57-69.

Somberg, Benjamin, and Picardi, Maria C., Locus of information familiarity effect in
the search of computer menus, Proc. Human Factors Society, Twenty—Seoenth Annual
Meeting (1983), 826-830.

Teitelbaum, Richard C., and Granda, Richard, The effects of positional constancy on
searching menus for information, Proc. CHI '83, Human Factors in Computing
Systems, Available from ACM, Baltimore, MD (1983), 150-153.

Wallace, Daniel F., Anderson, Nancy S., and Shneiderman, Ben, Time stress effects on
two menu selection systems, Proc. Human Factors Society, Thirty—First Annual
Meeting (1987), 727-731.

Young, R. M., and Hull, A., Cognitive aspects of the selection of Viewdata options by
casual users, Pathways to the Information Society, Proc. Sixth International Conference
on Computer Communication, London, UK. (September 1982), 571-576.

c:> I don't know how to
this thing!

ile name

communicate with
Bad command or f

0:} This interface needs
GBEDIENCE SCHOOL.’ .’
Bad command or file name

CHAPTER 4

Command Languages

I soon felt that the forms of ordinary language were far

too diffuse I was not long in deciding that the most

favorable path to pursue was to have recourse to the

language of signs. It then became necessary to contrive a

notation which ought, if possible, to be at once simple and

expressive, easily understood at the commencement, and

capable of being readily retained in the memory.

Charles Babbage, ”On a method of expressing by signs the

action of machinery,” 1826

Chapter 4

4.1 Introduction

4.2 Functionality To Support Users’ Tasks
4.3 Command-Organization Strategies \
4.4 The Benefits of Structure '

4.5 Naming and Abbreviations
4.6 Command Menus

4.7 Natural Language in Computing
4.8 Practitioner's Summary
4.9 Researchers Agenda

4.1 Introduction

The history of written language is rich and varied. Early tally marks and
pictographs on cave walls existed for millennia before precise notations for
numbers or other concepts appeared. The Egyptian hieroglyphs of 5000
years ago were a tremendous advance because standard notations facilitated

communication across space and time. Eventually, languages with a small
alphabet and rules of word and sentence formation dominated because of

the relative ease of learning, writing, and reading. In addition to these

natural languages, special languages for mathematics, music, and chemistry
emerged because they facilitated communication and problem solving. In
the twentieth century, novel notations were created for such diverse do-

mains as dance, knitting, higher forms of mathematics, logic, and DNA
molecules.

4.1 Introduction

The basic goals of language design are
0 Precision

- Compactness

- Ease in writing and reading

- Speed in learning

- Simplicity to reduce errors
0 Ease of retention over time

Higher—level goals include

- Close correspondence between reality and the notation

- Convenience in carrying out manipulations relevant to users’ tasks

- Compatibility with existing notations

0 Flexibility to accommodate novice and expert users

0 Expressiveness to encourage creativity

0 Visual appeal

Constraints on a language include

- The capacity for human beings to record the notation

0 The match between the recording and the display media (for example,

clay tablets, paper, printing presses)

- The convenience in speaking (vocalizing)

Successful languages evolve to serve the goals within the constraints.

The printing press was a remarkable stimulus to language development
because it made widespread dissemination of written work possible. The

computer is another remarkable stimulus to language development, not only
because widespread dissemination through networks is possible, but also
because computers are a tool to manipulate languages and because lan-
guages are a tool for manipulating computers.

The computer has had only a modest influence on spoken natural

languages, compared to its enormous impact as a stimulus to the develop-
ment of numerous new formal written languages. Early computers were

built to perform mathematical computations, so the first programming
languages had a strong mathematical flavor. But computers were quickly
found to be effective manipulators of logical expressions, business data,

graphics, sound, and text. Increasingly, computers are used to operate on the
real world: directing robots, issuing dollar bills at bank machines, control-

ling manufacturing, and guiding spacecraft. These newer applications en-

courage language designers to find convenient notations to direct the
computer while preserving the needs of people to use the language for
communication and problem solving.

144 Chapter 4 Command Languages

Therefore, effective computer languages must not only represent the
users’ tasks and satisfy the human needs for communication, but also be in
harmony with mechanisms for recording, manipulating, and displaying
these languages in a computer.

Computer programming languages that were developed in the 19605 and
early 1970s, such as FORTRAN, COBOL, ALGOL, PL/I, and Pascal, were
designed for use in a noninteractive computer environment. Programmers
would compose hundreds or thousands of lines of code, carefully check
them over, and then compile or interpret by computer to produce a desired
result. Incremental programming was one of the design considerations in
BASIC and in advanced languages such as LISP, APL, and PROLOG.

Programmers in these languages were expected to build smaller pieces
online and interactively to execute and test the pieces. Still, the common goal
was to create a large program that was preserved, studied, extended, and
modified. The attraction of rapid compilation and execution led to the

widespread success of the compact, but sometimes obscure, notation used in
C. The pressures for team programming, organizational standards for
sharing, and the increased demands for reusability promoted encapsulation
and the development of object-oriented programming concepts in languages
such as ADA and C++.

Scripting languages emphasizing screen presentation and mouse control
became popular in the late 1980s, with the appearance of I-IyperCard,
SuperCard, ToolBook, etc. These languages included novel operators, such
as ON MOUSE DOWN, BLINK, or II? FIRST CHARACTER OF THE MESSAGE
BOX IS ‘A’ (see Section 14.3.3).

Database query languages developed in the middle to late 1970s, such as
SQL and QUEL, emphasized shorter segments of code (three to 20 lines) that
could be written at a terminal and executed immediately. The goal of the
user was more to create a result than a program.

Command languages, which originated with operating-systems com-
mands, are distinguished by their immediacy and by their impact on devices
or information. Users issue a command and watch what happens. If the

result is correct, the next command is issued; if not, some other strategy is

adopted. The commands are brief and their existence is transitory. Of course,
command histories are sometimes kept and macros are created in some

command languages, but the essence of command languages is that they
have an ephemeral nature and that they produce an immediate result on
some object of interest.

Command languages are distinguished from menu—selection systems in
that their users must recall notation and initiate action. Menu selection users

receive instructions and must recognize and choose among only a limited set
of visible alternatives; they respond more than initiate. Command—language
users are often called on to accomplish remarkable feats of memorization

and typing. For example, this UNIX command, used to delete blank lines

:

4.2 Functionality to Support Users’ Tasks 145

from a file, is not obvious:

GREP —v “s FILEA > FILEB

Similarly, to get printout on unlined paper with the IBM 3800 laser printer, a
user at one installation was instructed to type

CP TAG DEV E VTSO LOCAL 2 OPTCD=J F=387l X=GBl2

The puzzled user was greeted with a shrug of the shoulders and the
equally cryptic comment that ”Sometimes, logic doesn't come into play; it's

just getting the job done.” This style of work may have been acceptable in the
past, but user communities and their expectations are changing. The empiri-
cal studies described in this chapter are beginning to clarify guidelines for
many command-language design issues.

Command languages may consist of single commands or have complex
syntax (Section 4.2). The language may have only a few operations, or may
have thousands. Commands may have a hierarchical structure or permit
concatenation to form variations (Section 4.3). A typical form is a verb

followed by a noun object with qualifiers or arguments for the verb or noun.
Abbreviations may be permitted (Section 4.5). Feedback may be generated
for acceptable commands, and error messages (Section 8.2) may result from

unacceptable forms or typos. Command-language systems may offer the
user brief prompts, or may be close to menu-selection systems (Section 4.6).

Finally, natural-language interaction can be considered as a complex form of
command language (Section 4.7).

Functionality to Support Users’ Tasks

People use computers and command-language systems to accomplish a
wide range of tasks, such as text editing, operating-system control, biblio-
graphic retrieval, database manipulation, electronic mail, financial manage-
ment, airline or hotel reservations, inventory, manufacturing process
control, and adventure games. .

The critical determinant of success is the functionality of the system.
People will use a computer system if it gives them powers not otherwise
available. If the power is attractive enough, people will use a system despite

a poor user interface. Therefore, the first step for the designer is to determine
the functionality of the system by assessing the users’ task domain.

A common design error is excess functionality. In a misguided effort to
add features, options, and commands, the designer can overwhelm the user.

146 Chapter 4 Command Languages

Excess functionality means more code to maintain, potentially more bugs,
possibly slower execution, and more help screens, error messages, and user
manuals (see Chapters 8 and 12). For the user, excess functionality slows
learning, increases the chance of error, and adds the confusion of longer
manuals, more help screens, and less specific error messages. On the other
hand, insufficient functionality leaves the user frustrated because an appar-
ent function is not supported. For instance, the system might require the user
to copy the contents of the screen by hand because there is no simple print
command, or to reorder the output because there is no sort command.

Evidence of excessive functionality comes from a study of 17 secretaries at
a scientific research center who used IBM's XEDIT editor for a median of 18

months for 50 to 360 minutes per day (Rosson, 1983). Their usage of XEDIT
commands was monitored for 5 days. The average number of commands

used was 26 per user, with a maximum of 34; the number of commands was
correlated with experience (r = 0.49). XEDIT has 141 commands, so even the
most experienced user dealt with less than a quarter of the commands. Users
did not appear to employ idiosyncratic subsets of the language, but instead
added commands to their repertoire in an orderly and similar pattern.

Careful task analysis might result in a table of user communities and tasks
with each entry indicating expected frequency of use. The high-volume tasks
should be made easy to carry out, and then the designer must decide which
communities of users are the prime audience for the system. Users may

differ in their position in an organization, their knowledge of computers, or
their frequency of system usage. One difficulty in carrying out such a task
analysis is predicting who the users might be and what tasks they might
need to accomplish.

Inventing and supplying new functions are the major goals of many
designers. They know that marketplace acceptance is often determined by
the availability of functions that the competition does not provide. Word-
processor designers continue to add such functions as boldface, footnotes,
dual windows, mail merge, table editing, graphics, or spelling checks to
entice customers. A feature-analysis list (Figure 4.1) can be helpful in

comparing designs and in discovering novel functions (Roberts, 1980).
At an early stage, the destructive operations—such as deleting objects or

changing formats—should be evaluated carefully to ensure that they are
reversible, or at least are protected from accidental invocation. Designers
should also identify error conditions and prepare error messages. A transi-
tion diagram showing how each command takes the user to another state is
a highly beneficial aid to design, as well as to eventual training of users
(Figure 4.2). If the diagram grows too complicated, it may signal the need for
system redesign.

Major considerations for expert users are the possibilities of tailoring the
language to suit personal work styles, and of creating named macros to

4.2 Functionality to Support Users’ Tasks 147

Text Editor Feature List

Estimated time to install (15 minutes to 2 hours)

Number of diskettes provided (1 to 7)
Right to make copies

On-screen tutorial
Textbook tutorial

Textbook reference guide
Online help
Meaningful error messages

Spelling checker built in to word processor
Thesaurus built in to word processor
Mail merge
Automatic table of contents generation
Automatic index generation

Menu, command, or function—key driven
Save block

Block defined by highlight or markets

Maximum size for block operation
Document size limit

Capacity to edit more than one file
Rename disk files

Copy disk files
Show disk directory

What you see is what you get
Preview print format
Editing allowed during printing
Print part of file
Chain documents for printing
Queue documents for printing
Automatic page numbering
Print multiple copies
Automatic file save

Save file without exiting
Automatic backup file
Create file without embedded codes

Subscript/ superscriptItalics

Underscoring
Boldface

Multiple fonts

Figure 4.1

Multiple font sizes
Left and right justification
Centering
Tabbing
Proportional spacing
Multiple column output
Footnotes
Endnotes

Line-spacing options
Number of printers supported

Characters per line range (78-455)
Lines per screen
Change screen colors
Redefine key functions
Specify macros
Automatic hyphenization
Switch from insert to overwrite modes
Automatic indentation

Multiple indents/outdents
Change case command
Display ruler line to show tabs
Display column, line, and page number
Headers and footers
Math functions
Sort functions

Move cursor by character, word, sentence,
paragraph

Move cursor by screen
Move cursor to left or right end of line
Move cursor to top or bottom of screen
Move cursor to top or bottom of document

Delete by character, word, line, sentence, or
paragraph

Delete to end of document
Undelete

Search forward and backward

Search by patterns
Ignore case in searching
Leave and locate markers

Copy/move
Copy /move by columns

A feature—analysis list can be helpful in comparing designs and in discovering novel
functions. This list was distilled from Roberts (1980) and Wiswell, Phil, Word processing:
The latest word, PC Magazine (August 20, 1985), 110-134.

148 Chapter 4 Command Languages

Figure 4.2

This transition diagram indicates user inputs with an and computer outputs
with an "0". This is a relatively simple diagram showing only a portion of the
system. Complete transition diagrams may be many pages long. (Courtesy of
Robert I. K. Jacob, Naval Research Laboratory, Washington, DC.)

permit several operations to be carried out with a single command. Macro
facilities allow extensions that the designers could not foresee or that are
beneficial to only a small fragment of the user community. A macro facility
can be a full programming language that might include specification of
arguments, conditionals, iteration, integers, strings, and screen-manipula-
tion primitives, plus library and editing tools. Well-developed macro facili-
ties are one of the strong attractions of command languages.

4.3 Command-Organization Strategies

Several strategies for command organization have emerged, but guidelines
for choosing among these are only beginning to be discussed. A unifying con-
cept, model, or metaphor is an aid to learning, problem solving, and retention

‘[5

(Carroll and Thomas, 1982). Electronic-mail enthusiasts conduct lively dis-

cussions about the metaphoric merits of such task-related objects as file
drawers, folders, documents, memos, notes, letters, or messages. They debate

the appropriate task domain actions (CREATE, EDIT, COP Y, MOVE, DELETE)
and the choice of an action pair LOAD/ SAVE (too much in the computer do-

main), READ /WRI TE (acceptable for letters, but awkward for file drawers), or
OPEN/ CLOSE (acceptable for folders, but awkward for notes).

Similarly, debate continues over whether the commands should manipu-
late lines, as in program editors and older line-oriented editors, or words,
sentences, and paragraphs, as in new word processors. Choosing one
strategy over another is helpful. Designers who fail to choose, and instead

attempt to support every possibility, risk overwhelming the users while
missing the opportunity to optimize for one strategy. Designers often err by
choosing a metaphor closer to the computer domain than to the user's task

domain. Of course, metaphors can mislead the user, but careful design can

reap the benefits while reducing the detriments.
Having adopted a concept, model, or metaphor for operations, the

designer must now choose a strategy for the command structure. Mixed
strategies are possible, but learning, problem solving, and retention may be
aided by limitation of complexity.

4.3 Command-Organization Strategies 149

4.3.1 Simple command list

Each command is chosen to carry out a single task, and the number of
commands matches the number of tasks. With a small number of tasks, this

approach can produce a system that is simple to learn and use. With a large
number of commands, there is danger of confusion. The vi editor on UNIX

systems offers many commands while attempting to keep the number of
keystrokes low. The result is complex strategies employing single letters,
shifted single letters, and CTRL key plus single letters (Figure 4.3). Further-
more, some commands stand alone, whereas others must be combined, often

in irregular patterns.

4.3.2 Command plus arguments

Each command (COPY, DELETE, PRINT) is followed by one or more argu-
ments (FILEA, FILEB, FILEC) that indicate objects to be manipulated:

COPY FILEA,l-“ILEB
DELETE FILEA

PRINT FILEA, FILEB, FILEC

Commands may be separated from the arguments by a blank or other
delimiter, and the arguments may have blanks or delimiters between them

5 I

150 Chapter 4 Command Languages

vi Commands to Move the Cursor

Moving within a window

H home position (upper left)
L last line
M middle line

(CR) next line (carriage return)
+ next line

— previous line
CTRL-P previous line in same column
CTRLvN next line in same column
(LF) next line in same column (line feed)

Moving within a line
0 start of line
55 end of line

(space) right one space
CRTL—I-I left one space

left one space
forward one word
backward one word

end (rightmost) character of a word
forward one sentence
backward one sentence

forward one paragraph
backward one paragraph
blank out a delimited word
backwards blank out a delimited word

go to the end of a delimited word

mu:g—--Ava::75:r
Finding a character

fx find the character x going forward
Fx find the character x going backward
tx go up to x going forward
Tx go up to x going backward

Scrolling the window
CTRL-F forward one screen
CTRL-B backward one screen
CTRL-D forward one half screen
CTRL-U backward one half screen

G go to line
/pat go to line with pattern forward
pat go to line with pattern backward

Figure 4.3

Commands to move the cursor. The profusion of commands in vi may enable
expert users to get tasks done with just a few actions, but the number of
commands can be overwhelming to novice and intermittent users.

4.3 Command-Organization Strategies 151

(Schneider et al., 1984). Keyword labels for arguments may be helpful to
some users; for example,

COPY FROM=FILEA TO=FILEB

The labels require extra typing and increase chances of a typo, but readabil-
ity is improved and order dependence is eliminated.

4.3.3 Command plus options and arguments

Commands may have options (3, HQ, and so on) to indicate special cases. For
example,

PRINT/3,HQ FILEA
PRINT (3,I-IQ) FILEA
PRINT FILEA -3,1-IQ

may produce three copies of FILEA at the printer in the headquarters
building. As the number of options grows, the complexity can become
overwhelming and the error messages less specific. The arguments may also
have options, such as version numbers, privacy keys, or disk addresses.

The number of arguments, of options, and of permissible syntactic forms

can grow rapidly. One airline-reservations system uses the following com-
mand to check the seat availability on a flight on August 21, from

Washington's National Airport (DCA) to New York's La Guardia Airport
(LGA) at about 3:00 P.M.:

A082 lDCALGA0300P

Even with substantial training, error rates can be high with this approach,

but frequent users seem to manage and even appreciate the compact form of
this type of command.

The UNIX command~language system is widely used, in spite of the

complexity of its command formats (Figure 4.4), which have been criticized
severely (Norman, 1981). Here again, users will master complexity to benefit
from the rich functionality in a system. Observed error rates with actual use
of UNIX commands have ranged from 3 to 53 percent (Kraut et al., 1983;
Hanson et al., 1984). Even common commands have generated high syntac-

tic error rates: mv (18 percent), cp (30 percent), and awk (34 percent). Still, the

complexity has a certain attraction for a portion of the potential user

community. Users gain satisfaction in overcoming the difficulties and
becoming one of the inner circle ("gurus” and ”wizards”) who are knowl-
edgeable about system features—command-language macho.

152 Chapter 4 Command Languages

at 2A Friday timehog
at 2:00 am. Friday‘ run program

awk ‘(print $1 + $2)’ fi|e1
print sum of first two fields at each linecat ~ n ftIe1
print specilied lile to terminal, number output lines

cat tilei >> ti|e2
append tllol to end at tile‘:

cc iiie.<:
compile C program, executable in men!

cd lusillib
change working directory to specilied one

chrnod g +rw file1 file2
change mode at tiles, adding group read and write access

chmod 600 file
change made ol Iiie, allow only read and write by owner

cp fiiet fite2
make a copy of tllul named illnz

op — r dir limp
recursively copy dlr and its subdirectories to llmpdill —ldir1dir2
summarize differences between lites in dirt and tilt?

f77 fiIe.t
compile Fortran program, executable in n.oIIl

f7? — o tile fi|e.t fi‘ie.o
compile Fortran program, link with llIa.o, Executable in tl|n

find SHOME —name ‘ti-' -exec rm {) \;
remove liles with names beginning with a pound sign

finger name
look up information on user's logln or real name

grep ‘[Pp]hone' tile
print all lines in lite containing Phone or phone

grep — I main -
print names of tiles in current directory containing mnlnhead —-6 file
print lirst six lines 0! lile

kill — 9 0
send 8 i<lLL signal to processes started since logln

In — s iilet f|Ie2 Itmp
make symbolic links to files in spocilled directory

lpq job user
report print spooler status or user’: tab

lpr — p tile
pagiriate lite and spool it to the line printer

Figure 4.4

Is
print a list at the files in tire current directoryIs — R Ibin
list tiles in specilied directory and its subdirectories

mail molly tracey < tile
send a tile to specified users as mail

man spell
print Unix user's manual page for a command

mkdir /tmplmyjunk
make a new directory

more + 50 file
view liie by screenlul, starting at line 50

mv file! iile2 /Imp
move lites to specilied directory

nrott tile { more
preview lormattect tile on terminal

pt: tile.p
compile Pascal program, executable in n.out

pr tile 1 ipr

paginate a tile with deieult header. spool output05
print long listing oi current processes. PlD’s and status

pwd
print current working directory

rlogin pulerz
Iogin on remote computerrm tile
remove (delete) in tile

rm — i junk[O-— 9)
remove lites lunka junkl, confirming firstsort +3 -4 tile
print tile sorted only on lcurtir lield

slty everything
print all stty option setting:

stty raw; piog; stty —raw
set terminal to my mode, run ii program, and restore mode

style — p tile
print sentences in file containing it passive verbvi tile
edit file using lull screen editorw
list who's logged in. and what thay‘ro doing

Examples of common UNIX commands with brief explanations. (Courtesy of
Specialized Systems Consultants, lnc., Seattle WA.)

4.3.4 Hierarchical command structure

The full set of commands is organized into a tree structure, like a menu tree.
The first level might be the command action, the second might be an object
argument, and the third might be a destination argument:

Action Object
CREATE File

DISPLAY Process

REMOVE Directory

COPY

MOVE

File

Destination

Local printer

Screen

Laser printer

4.3 Command-Organization Strategies 153

If a hierarchical structure can be found for a set of tasks, it offers a

meaningful structure to a large number of commands. In this case, 5 X 3 X 4 =
60 tasks can be carried out with only five command names and one rule of
formation. Another advantage is that a command-menu approach can be
developed to aid the novice or intermittent user, as was done in VisiCa1c and
later Lotus 1-2-3 and Excel.

Several help systems allow a hierarchical command to retrieve text about
subsystems and the letter’s commands. For example, to get help on the
editor command for deleting lines in a document, the user might type

HELP EDIT DELETE LINES

Of course, the difficulty comes in knowing what keywords are available.
Users can type the first few elements of the command, and then receive a
menu of items.

Many word processors, spreadsheets, and operating systems use a hierar-
chical command structure for the numerous commands that they support.

For example, Figure 4.5 shows the command structure for MS—DOS 5.0.

Open Confirmation. . . Single File List
Run... File Display Options Dual File Lists
Print Select Across Directories All Files
Associate Show Information. . . Program/File Lists
Search... Enable Task Swapper Program List
View File Contents Display. . .

Colors . . . Repaint Screen
Move. . . Refresh
Copy. . .
Delete . . .
Rename. . .

Change Attributes 11 fl§_lp_
Expand One Level Index

Create Directory. . . Expand Branch Keyboard
Expand All Shell Basics

Select All Collapse Branch Commands
Deselect All Procedures

Using Help
Exit

About Shell

Figure 4.5

The tree structure of menus in Microsoft MS-DOS 5.0. (Screen shot ©1981-1991

Microsoft Corporation. Reprinted with permission from Microsoft Corporation,
Redmond, WA.)

154
Chapter 4 Command Languages

4.4 The Benefits of Structure

Human learning, problem solving, and memory are greatly facilitated by
meaningful structure. If command languages are well designed, users can
recognize the structure and can easily encode it in their semantic knowl-

edge storage. For example, if users can uniformly edit such objects as
characters, words, sentences, paragraphs, chapters, and documents, this
meaningful pattern is easy to learn, apply, and recall. On the other hand,
if they must overtype a character, change a word, revise a sentence,
replace a paragraph, substitute a chapter, and alter a document, then the

challenge grows substantially, no matter how elegant the syntax (Scapin,
1982).

Meaningful structure is beneficial for task concepts, computer concepts,
and syntactic details of command languages. Yet, many systems fail to
provide a meaningful structure. One widely used operating system displays
various information as a result of forms of the LIST, QUERY, HELP, and

TYPE commands, and moves objects as a result of the PRINT, TYPE, SPOOL,
PUNCH, SEND, COPY, or MOVE commands. Defaults are inconsistent for

different features, four different abbreviations for PRINT and LINECOUNT

are required, binary choices vary between YES / NO and ON/ OFF, and

function—key usage is inconsistent. These flaws emerge from multiple
uncoordinated design groups and insufficient attention by the managers,
especially as features are added over time.

An explicit list of design conventions in a Guidelines Document can be an

aid to designers and managers. Exceptions may be permitted, but only after
thoughtful discussions. Users can learn systems with inconsistencies, but
they do so more slowly and with greater chance of making mistakes. One
difficulty is that there may be conflicting design conventions.

4.4.1 Consistent argument ordering

Choices among conventions can sometimes be resolved by experimentation
with alternatives. A command language with six functions, each requiring
two arguments, was developed for decoding messages (Barnard et al., 1981).
One argument was always a message-identification number, and the other
argument was a file number, code number, digit, and so on. In normal
English usage, the message identification sometimes would be the direct
object of an explanatory sentence, such as SAVE the MESSAGE ID with this
REFERENCE NUMBER. So, one rule of consistent command formation was to

follow English usage. The second consistency rule was to have the message
identification always as the first or always as the second argument. The rules

4.4 The Benefits of Structure 155

resulted in four possible command groups:

Direct object, argument first Direct object, argument second

SEARCH file no,message id SEARCH message id,file no

TRIM message id,segment size TRIM segment size,message id

REPLACE message id,code no REPLACE code no,message id

INVERT group size,message id INVERT message id,group size

DELETE digit,message id DELETE message id,digit

SAVE message id,reference no SAVE reference no,message id

Consistent, argument first Consistent, argument second

SEARCH message id,file no SEARCH file no,message id

TRIM message id,segment size TRIM segment size,message id

REPLACE message id,code no REPLACE code no,message id

INVERT message id,group size INVERT group size,message id

DELETE message id,digit DELETE digit,message id

SAVE message id,reference no SAVE reference no,message id

Forty—eight female subjects used one of these systems for 1 hour to decode
messages. (Actually, one-half of the subjects had variant command names,
such as SELECT instead of SEARCH, but this manipulation was a minor

effect.) Time to perform tasks decreased during the 10 1-hour trials, but the

speedup was consistent across command styles. The results strongly favored
using consistent argument positions rather than the consistent direct-object
positions, suggesting that English language rules of formation were not as
effective as is the simpler positional rule. The shortest task times, fewest help
requests, and fewest errors occurred with the consistent argument first.
These results lead to the conjecture that command languages should allow

users to express the simple, familiar, or well-understood features first, and
then to consider the more varying aspects.

Follow—up studies by the same group (Barnard et al., 1981; Barnard et al.,
1982) replicated the results about positional consistency and pursued several
related issues. One frequent design consideration is whether the command
verb or the object of interest should come first. Command-first form would
be DISPLAY FILE or INSERT LIST; the object first form would be FILE
DISPLAY or LIST INSERT. The evidence supports the command-first

strategy used in most languages and the principle that there is a fixed order.
Allowing users the freedom to put the command and object in either order

generated more requests for help than did fixing the order. Subjects pressed
function keys to initiate commands and to select objects, so a further

