Petitioner’s Exhibit CSC 1014

Petitioner Cypres Semiconductor Corp. - Ex. CSC 1014, p. 1

&

)

W

S

L ,,.w mﬂ.m i

Executive Editor: Dan Joraanstad

Sponsoring Editor; Jennifer Young

Developmental Editor: Jamie Spencer

Editorial Assistant: Laura Cheu

Marketing Manager: Mary Tudor

Produsction Editors: Megan Rundel, Brian Jones
Text and Cover Design: Rab Hugel, XXX Design
Copyeditor: Mary Prescott

Proofreader: Elizabeth Wiltsee

Tlustrations: Relin Graphics Inc.

Indexer: Tra Kleinberg

Compoesition: Rad Proctor, Proctor-Willenbacher
Film: The Courier Connection

Cover Printer; New England Book Components, Inc.
Text Printer and Binder: Courier/Westford

Senior Manufacturing Coordinator: Merry Free Osborn

The cover illustration is a reproduction of “Décalcomanie” by the twentieth-century
Belgian surrealist painter René Magritto. We chose this particular painting by the
author’s favorite painter to reflect the duality of computer design. “Décalcomanie”
® 1992 C. Herscovici/ARS, New York.

Copyright © 1994 by The Benjamin/Cummings Publishing Company, Tnc.

All rights reserved. No part of this publication may be reproduced, stored in a
database or retrieval system, distributed, or trapsmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

Library of Congress Cataloging-in-Publication Data

Katz, Randy H., 1955—
Contemporary logic design / Randy H. Katz.
. cm.
Includes bibliographical references and index.
ISBN 0-8053-2703-7
1. Electronic digital computers—Circuits—Design. 2. Integrated circaits—
Very large scale integration—Tesign—Data processing. 3. Logic design—Data
processing. 4. Computer-aided design. I Title.
TK7888.4. K36 1994
621.39'5—dc20 93-9013

crp
ISBN 0-8053-2703-7

3456 7 8 9 10-CRW-999897969594

The Benjamin/Cummings Publishing Company, Inc.
360 Bridge Parkway
Redwood City, California 94065

Petitioner Cypres Semiconductor Corp. - Ex. CSC 1014, p. 2

388 Chapter 8 Finite State Machine Design

X

FSMy | ¢ tp 1D
3\ i ; i
y 1 I
1 i I

Figure 8.8 State and output changes associatad with the FSM fragments of Figure B.7.

Now that Y is 1, FSM, goes to state B on the nexl rising edge. In this
state, it will output a 0, but this is too late to affect FSMy's state change.

Tt remains in state D.

8.2 Basic Design Approach

The counter design procedure presented in the last chapter forms the
core of a more general procedure for arbitrary finite state machines. You
will discover that the procedure must be significantly extended for the

general case.

§.2.1 Finite State Machine Design Procedure

Step 1: Understand the problem. A finite state machine is often
described in terms of an English-langnage specification of its behav-
jor. Tt is impertant that you interpret this description in an unambig-
uous manner. For counters, it is sufficient simply to enumerate the
sequence. For finite state machines, try some input sequences to be
sure you understand the conditions under which the various outputs
are generated.)

Step 2: Obtain an abstract representation of the FSM. Once you
understand the problem, you must place it in a form that is easy to
manipulate by the procedures for implementing the finite state
machine. A state diagram is one possibility. Other representations, to
be introduced in the next section, include algorithmic state machines
and specifications in hardware description languages.

Step 3: Perform state minimization. Step 2, deriving the abstract
representation, often results in a description that has too many
states. Certain paths through the state machine can be eliminated
because their input/output behavior is duplicated by other function-

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 3

390 Chapter 8 Finite State Machine Design

N
Coin
Vendin, Gum
S 5
ensor | D Machine Rolease
FSM Mechanism
Reset
e

Clk

Figure 89 Vending machina block diagram.

the customer? Sometimes we have to make reasonable assumptions. For
the first question, we assume that the coin sensor returns any coins it
does not recognize, leaving N and D unasserted, For the latter, we
assume that external logic resets the machine after the gum is delivered.

Ahstract Representations Once you understand the behavior reasenably
well, it is time to map the specification into a more suitable abstract
representation. A good way to begin is by enumerating the possible
unique sequences of inputs or configurations of the system. These will
help define the states of the finite state machine.

For this problem, it is not too difficult to enumerate all the possible

input sequences that lead to releasing the gum:

Three nickels in sequence: N, N, N '
Twa nickels followed by a dime: N, N, D

A nickel followed by a dime: N, D

A dime followed by a nickel: D, N

Two dimes in sequence: D, D

in Figure 8.10.

This can be represented as a state diagram, as shown
if

For example, the machine will pass through the states Sp, Sy, S3. S7
the input sequence is three nickels.

To keep the state diagram simple and readable,
tions that explicitly cause a state change. ¥or example, in st
input N or D is asserted, we assume the machine remains in state S (the
specification allows us to assume that N and D are never asserted af the
same time). Also, we include the output Open only in states in which it is
asserted. Open is implicitly unasserted in any other state.

we include only transi-
ate Sg, if neither

State Minimization This ninestate description isn’t the “best” possible.
For one thing, since states Sy, S5, Se, S,, and Sg have identical behavior,

they can be combined into a single state.
To teduce the number of states sven further, we can think of each

state as representing the amount of money received so far. For example,

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 4

Gure 811 Minimized vending
ine state diagram.

8.2 Basic Design Approach m

Figure 8.30 Vending machine state diagram.

it shouldn’t matter whether the state representing 10 cents was reached
through two nickels or one dime.

A state diagram derived in this way is shown in Figure 8.11. We cap-
ture the behavior in only four states, compared with nine in Figure 8.10.
Also, as another illustration of a useful shorthand, notice the transition
from state 10¢ to 15¢. We interpret the notation “N, D” associated with
this transition as “go to state 15¢ if N is asserted OR D is asserted.”

In the next chapter, we will examine formal methods for finding a state
diagram with the minimum number of states. The process of minimizing
the states in a finite state machine description is called state minimization.

State Encoding At this point, we have a finite state machine with a
minimum number of states, but it is still symbolic. See Figure 8.12 for
the symbolic state transition table. The next step is state encoding,

The way you encode the state can have a major effect on the amount of
hardware you need to implement the machine. A natural state assignment
would encode the states in 2 bits: state O¢ as @0, state 5¢ as 01, state 10¢ as
10, and state 15¢ as 11. A less obvious assignment could lead to reduced
hardware. The encoded state transition table is shown in Figure 8.13.

In Chapter 9 we present a variety of methods and computer-based
tools for finding an effective state enceding.

Implementation The next step is to implement the state transition table
after choosing storage elements. We will look at implementations based
on D and J-K flip-flops.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 5

392 Chapter 8 Finite State Machine Design

Present Inputs Next Output
State D N State Open
O¢ o O 413 o
o 1 5¢
1 0 104 0
11 X X
R TR oo sd T 6
0 1 10¢ 0
1 0 15¢ 0
11 X X
_____ 10¢ oo TR T 0T
0o 1 16¢ 0
1 0 15¢ 0
1 1 X X
B T R $ ‘X“”'P_*ISL? ______ T

figure 8.12 Minimized vending machine symbolic state transition table,

Present State Inputs Next State Output
Ql Qo D N D1 Dn Open
0 0 o o 0o 0 0
o 1 o 1 0
1 0 1 0 g
11 X X X
S | Zey S| R | M TV I T ‘
" ' 0o 1 1 0 0 i ‘
1 0 i 1 0
1 1 X X X
'*T___’Ugﬁf‘"ﬂ_mfﬂ 7777777 B o
. 0o 1 1 1]
1 0 i 1 0
101 X X X
B A SRR (VI R I ;R U 1T
o 1 1 1 1
1 0 101 1
101 X X X

Figure 8.13 Encoded vending machine state transition table.

The K-maps for the D flip-flop implementation are shown in
Figure 8.14. We filled these in directly from the encoded state transition
table. The minimized equations for the flip-flop inputs and the outpui
become

Dy = Q+D+QyeN
Dy=NeQu+Qoo N+ Qe N+Qy oD
OPEN = Q;° Qo

The logic implementation is shown in Figure 8.15. It uses eight gates
and two flip-flops.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 6

Basic Design Approach 393
h 23] & P
i (o L 1y =l @it i
Dl\%on 01 711 10 pANO0 01711 10 DANO0 01711 10 !
00 o olfT ([T oolo it 1] 0o o]0
010(111—‘ o1l 1] o [(TfT] o1/ 0o [hlle]]
- ; N - N N
p 1 XXX | pla x| x[[x[[x] DPlXXXX
‘L10L1111 Lwou T 1) ol o | o[[1f[0 :
— —r S |
Qo Qo)] :
K-map for Iy K-map for Dy K-map for Open

Figure 8,14 K-maps for Dflip-flop implementation of vending machine,

Ch
DA Dy D Q Ql
Q&_ CLK RQ \Ql
| \vosot
N_|

o -) OPEN
Qo —| i

AN~ Do [Q Ca
& — \
N CLK R Q o)

o _. \reset
n

Figure 8.15 Vending machine FSM implementation basad an O fiip-flops.

To implement the state machine using J-K flip-flops, we must remap
the next-state functions as in Chapter 7. The remapped state transition b
table for J-K flip-flop implementation is shown in Figure 8.16. We give RIS
the K-maps derived from this table in Figure 8.17. The minimized equa- :
tions for the flip-flop inputs become

Ji=D+Qpe N K =0
IDWTQOQN‘*‘Q]..D K[):a',l.N

Figure 8.18 shows the logic implementation. Using J-K flip-flops moder-
ately reduced the hardware: seven gates and two flip-flops.

Discussion We briefly described the complete finite state machine design s
process and illustrated it by designing a simple vending machine con- R
troller. Starting with an English-language statement of the task, we first o
described the machine in a more formal representation. In this case, we b

used state diagrams.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 7

384 Chapter8 Finite State Machine Design

NextState 1 K1 Jo Ko

Present State Inputs

G o D N Dy Do
0 g X 0 X
1 0 1 0 X 1 X
0 i 0 1 X 0 X
R T X X X X X X
R U TR 1571 770 X X o
1 1 0 1 X X 1
0 1 1 1 X X 0
i 0 0 0 1 0 X 0o 0 X
o 1 1 1 X 90 1 X
1 € 1 1 X o 1 X
1 1 X X X X X X
R S S VI I 5 B T G TR G
o 1 1 1 X o X o0
1 0 101 X o X o0
1 1 X X Xx X X X

Figure 8.16 Remapped next-state functions for the vending machine axample.

@ Qo G & (023

50 01 '11 10 DN

M 11 10

N

~
,

K-map for J5

K-map for K1

h
1 o =
5o 01 1 10

%23 01 rqu 0’
1 DN

K-map for fo K-map for Ko

7 Figure 817 K-maps for J-K flip-flop implementation of vending machine.

Since more than one state diagram can lead to the same input/output

bohavior, it is important to find a description with as few states as possible.
This usually reduces the implementation complexity of the finite state ma-
chine. For example, the state diagram of Figure 8.10 contains nine states
and requires four fiip-flops for its implementation. The minimized state

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 8

N
o | 7 qQ [0
b —
AY
\ | G gt
= =T
OPEN
o e
D] o

I Q
—CLK
\ Ql = KB Q \QCI

\reset
Figure 8.18 J-Kflip-flop implementation: for the vending machine example.

diagram of Figure 8.11 has four states and can be implemented with only
two flip-flops.

Once we have obtained a minimum finite state description, the next
step is to choose a good encoding of the states. The right choice can fur-

ther reduce the logic for the next-state and output functions. In the

example, we used only the most obvious state assignment.

The final step is to choose a flip-flop type for the state registers. In the
example, the implementation based on D flip-flops was more straightfor-
ward, We did not need to remap the flip-flop inputs, but we used more
gates than the J-K flip-flop implementation. This is usually the case.

Now we are ready to examine some alternatives to the state diagram
for describing finite state machine behavior,

8.3 Alternative State Machine Representations

You have already seen how to describe finite state machines in terms of
state diagrams and tables, However, it can be difficult to describe complex
finite state machines in this way. Recently, hardware designers have shifted
toward using alternative representations of FSM behavior that look more
like software descriptions. In this section, we introduce algorithmic state
machine (ASM) notation and hardware description languages (HDLs),
ASMs are similar to program flowcharts, but they have a more rigorous
concept of timing. HDLs look much like modern programming languages,
but they explicitly support computations that can occur in parallel.

You may wonder what is wrong with state diagrams. The problem is -

that they do not adequately capture the notion of an algorithm—a well-
defined sequence of steps that produce a desired sequence of actions
based on input data. State diagrams are weak at capturing the structure
behind complex sequencing. The representations discussed next do a
better job of making this sequencing structure explicit.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 9

8.3 Alternative State Machine Representations 395

i
I
!

83 Altemative State Machine Representations 395

e
o
o —ax | @ a
N—}ﬂjﬁfcﬂ@a—‘

\reset

Figure 8.18 J-K1lip-fop implementation for the vending machine example.

diagram of Figure 8.11 has four states and can be implemented with only
two flip-flops.

Once we have obtained a minimum finite state description, the next
step is to choose a good encoding of the states. The right choice can fur-
ther reduce the logic for the next-state and output functions. In the
example, we used only the most obvious state assignment.

The final step is to choose a flip-flop type for the state registers. In the
example, the implementation based on D fiip-flops was more straightfor-
ward, We did not need to remap the flip-flop inputs, but we used more
gates than the K flip-flop implementation. This is usually the case.

Now we are ready tc examine some alternatives to the state diagram
for describing finite state machine behavior.

8.3 Alternative State Machine Representations

You have already seen how to describe finite state machines in terms of
state diagrams and tables. However, it can be difficalt to describe complex
finite state machines in this way. Recently, hardware designers have shifted
toward using alternative representations of FSM behavior that look more
like software descriptions. In this section, we introduce algorithmic state
machine (ASM) notation and hardware description languages (HDLs).
ASMs are similar to program flowcharts, but they have a more rigorous
concept of timing. HDLs look much like modern programming languages,
but they explicitly support computations that can occur in parailel,

You may wonder what is wrong with state diagrams. The problem is
that they do not adequately capture the notion of an algorithm—a well-
defined sequence of steps that produce a desired sequence of actions
based on input data. State diagrams are weak at capturing the structure
behind complex sequencing. The representations discussed next do a
better job of making this sequencing structure explicit,

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 10

396 Chapter8 Finite State Machine Design

8.3.1 Algorithmic State Machine Notation

The ASM notation consists of three primitive elements: the state box,
the decision hox, and the ontput box, as shown in Figure 8.19. Bach
major unit, called an ASM block, consists of a state box and, optionaily,
a network of condition and output boxes. A state machine is in exactly
one state or ASM block during the stable portion of the state time.

State Boxes There is one state box per ASM block, reached from other
ASM blocks through a single state entry path. In addition, for each com-
bination of inputs there is a single unamhbiguous exit path from the ASM
block. The state box is identified by a symbolic state name—in a circle—
and a binary-encoded state code, and it contains an output signal list.

The output list describes the signals that are asserted whenever the
state is entered. Because signals may be expressed in either positive or
negative logic, it is customary to place an “L.* or “H.” prefix before the
signal name, indicating whether it is asserted low or high. You can also
specify whether the signal is asserted immediately () or is delayed (no
special prefix) until the next clocking event. A signal not mentioned in
the output list is left unasserted.

Condition Boxes The condition box tests an input to determine an exit
path from the current ASM block to the block to be entered next. The
order in which condition boxes are cascaded has no effect on the deter-
mination of the next ASM block. Figure 8.20(a) and (b) show function-
ally equivalent ASM blocks: state B is to be entered next if I and I, are
both 1; otherwise state C is next.

State
Entry Path

State Code

State State Box

Name
State

Quiput List

T

Condition

A
Condition

Box)
Conditional

v Output List

Exits to
Qther ASM Blocks

Figure 819 Elements of the ASM notation.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 11

B3 Altemative State Machine Representations 397

] |

@ 010 @ 010

T TJ
® @ ® ©

(a) State exit (b) Alternative

Figure 8.20 Functionally equivalent ASM blocks.

Output Boxes Any output boxes on the path from the state box to an
exit contain signals that should be asserted along with the signals men-
tioned in the state box. The state machine advances from one state to
the next in discrete rather than continuous steps. In this sense, ASM
charts have different timing semantics than program flowcharts,

Example The Parity Checker As an example, we give the parity
Even 0 checker’s ASM chart in F igure 8,21, It consists of two states, Even and
Odd, encoded as 0 and 1, respectively. The input is the single bit X; the
ocutput is the single bit Z, asserted high when the finite state machine is
in the Odd state.

We can derive the state transition table from the ASM chart. We sim-
ply list all the possible transition paths from one state to another and
the input combinations that cause the transition to take place. For exam-
ple, in state Even, when the input is 1, we go to state Odd. Otherwise
we stay in state Even. For state Odd, if the input is 1, we advance to
Even. Otherwise we remain in state Odd. The output Z is asserted only
in state Odd. The transition {able becomes:

Figure 8.21 Parity checker ASM chart. Input X Present State Next State Output Z

F Even Even Not asserted

T Even 0dd Not asserted
¥ 0Odd Odd Asserted
T Odd Even Asserted

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 12

398 Chapter8 Finite State Machine Design

Figure 822 Vending machine ASM chart.

Vending Machine Controller We show the ASM chart for the
To extract the state transition table, we
h state. For example, in the state

Example
vending machine in Figure 8.22.
simply examine all exit paths from eac
0¢, we advance to state 10¢ when input D is asserted. If N is asserted,
we go to state 5¢. Otherwise, we stay in state 0¢. The rest of the table

can be determined by looking at the remaining states in turn.

832 Hardware Description Languages: VHDL

Hardware description languages provide -another way to specify finite
state machine behavior. Such descriptions bear some resemblance fo a
program written in a modern structured programming language. But
again, the concept of timing is radically different from that in a program
written in a sequential programming language. Unlike state diagrams or
ASM charts, specifications in a hardware description language can actu-
ally be simulated. They are executable descriptions that can be used to
verify that the digital system they describe behaves as expected.

VHDI, (VHSIC hardware description language) is an industry standard.

Although its basic concepts are relatively straightforward, its detailed

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 13

8.3 Alternative State Machine Representaticns 399

syniax is beyond the scope of this text. However, we can illustrate its capa-
bilities for describing finite state machines by examining a description of
the parity checker written in VHDL:

ENTITY parity_checker IS
PORT (
x, clk: IN BIT;
z: OUT BIT);
END parity_checker;

ARCHITECTURE behavioral OF parity_checker IS
BEGIN
main: BLOCK {clk = '1' and not clk'STABLE)

TYPE state IS (Even, 0dd);
SIGNAL state_register: state

BEGIN state_even:
BLOCK ({(state_register = Even) AND GUARD)
BEGIN
state_register <= 0dd WHEN x = "1°
ELSE Even
END BLOCK state_even;

BEGIN state_odd:
BLOCK ({(state_register = 0dd) AND GUARD)
BEGIN
state_register <= Even WHEN x = "1"
ELSE 0dd;
END BLOCK state_odd;

z <= '0"' WHEN state_register Even ELSE
't{' WHEN state_register odd;
END BLOCK main;
END behavioral;

Every VHDL description has two components: an interface descrip-
tion and an architectural body. The former defines the input and cutput
connections or “ports” to the hardware entity being designed; the latter
describes the entity’s behavior.

The architecture block defines the behavior of the finite state
machine. The values the state register can take on are defined by the
type state, consisting of the symbols Even and Odd. We write VHDL
statements that assign new values to the state register and the output Z,
depending on the current value of input X, whenever we detect a rising
clock edge.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 14

400 Chapter8 Finite State Machine Design

Checking for events like a clock transition is handled through the
VHDL concept of the guard, an expression that enables ceriain state-
ments in the description when it evaluates to true. For example, the

expression

clk = "1' and not cik'stable

is a guard that evaluates to true whenever the clock signal has recently
undergone a 0-to-1 transition. The main block is enabled for evaluation
when this particalar guard becomes true.

The description contains two subblocks, state_even and state_odd,
that are enabled whenever the main guard is true and the machine is in
the indicated state. Within each subblock, the state register receives a
new assignment depending on the value of the input. Outside the sub-
blocks, the cutput becomes 0 when the machine enters state Even and 1

when it enters state Odd.

8.3.3 ABEL Hardware Description Language

ABEL is a hardware description language clogely tied to the specifica-
tion of programmable logic components. It is also an industry standard
and enjoys widespread use. The language is suitable for describing
either combinational or sequential logic and supports hardware
i specification in terms of Boolean equations, truth tables, or state dia-
gram descriptions, Although the detailed syntax and semantics of the
language are beyond our scope, we can highlight its features with the
parity checker finite state machine.
Let’s look at the ABEL description of the parity checker:

module parity
title 'odd parity checker state machine

Joe Engineer, Itty Bity Machines, Inc.'
ul device 'p22viQ';

“Input Pins
clk, X, RESET pin 1, 2, 3;

"Qutput Pins
Q, I pin 21, 22;
Q, Z istype 'pos,reg';

"State registers
SREG = C[&, Z1;
EVEN = [0, 01; " even number of O's
oDD = [1, 11; " odd number of 0's

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 15

8.3 Alternative State Machine Representations 401

equations
E@.ar, Z.arl = RESET;"Reset to state SO

state_diagram SREG
state EVEN:
if X then 0ODD
else EVEN;
state ODD:
if X then EVEN
else ODD;

test_wvectors (LCclk, RESET, X1 -> LSREGI)
£0,1,.X%X.1 CEVEND;
£.c¢.,0,11 Lodpl;
L.c.,0,11 EEVEN];
[.Cc.,0,11] EODDI;
[.c.,0,01] LoDDI;
L.c.,0,11 LEVENT;
[.C.,0,11] LOobDI;
[.c.,0,01] Lobpl;
[.c.,0,01 Loppl;
[.c.,0,01] Copdl;

end parity;

An ABEL description consists of several sections: module, title, descrip-
tions, equations, truth tables, state diugrams, and test vectors, some of

which are optional. Every ABEL description begins with a module state-
ment and an optional title statement. These name the module and
provide some basic documentation about its function,

These are followed by the description section. The elements of
this section are the kind of device being programmed, the speciication
of inputs and outputs, and the declaration of which signals constitute
the state of the finite state machine.

We must first describe the device selected for the implementation. It
is a P22V10 PAL, with 12 inputs, 10 cutputs, and embedded flip-flops
associated with the outputs, For identification within the schematic, we
call the device u1.

Next come the pin descriptions. The finite state machine’s inputs are
the clock clk, data X, and the RESET signal. The outputs are the state (Q
and the output Z. These are assigned to specific pins on the PAL. For
example, pin 1 is connected to the clock inputs of the internal flip-flops.

Many of the attributes of a PAL are selectable, so the description
may need to make explicit choices. The next line of the description tells
ABEL that Q and Z are POSitive logic outputs of the PAL's internal flip-
ftops (REG) associated with particular output pins. The P22V10 PAL

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 16

402 Chapter8 Finite State Machine Design

also supports negative logic outputs as well as outpuis that bypass the
internal flip-flops.

The state of the finite state machine is Tepresented by the outputs Q
and Z. EVEN is defined as the state where Q and Z are 0. QDD is
defined as the state where and Z are 1.

The equation section defines outputs s terms of Boolean equations
of the inputs. In this case, the asynchronous reset (.ar) inputs of the Q
and Z flip-flops are driven high when the RESET signal is asserted.

The state_diagram section describes the {ransitions among states
using a programming language-like syntax. I we are in EVEN and the
input X is asserted, we change to ODD. Otherwise we stay in EVEN.
Similarly, if we are in ODD and X is asseried, we return to EVEN,
Otherwise we stay in state ODD. ABEL supports a variety of control
constructs, including such things as case statements.

The final section in this example is for test_vectors. This is a
tabular listing of the expected input/output behavior of the finite state
machine. The first entry describes what happens when RESET is
asserted: independent of the current value of X, the machine is forced to
EVEN. The rest of the entries describe the state sequence for the input
string 111011000, The ABEL system simulates the description to ensure
that the hehavior matches the specified behavior of the test vectors.

The major weakness of an ABEL description is that it forces the
designer to understand many low-level details about the target PAL.
Nevertheless, the state diagram description is an intuitively simple way
to describe the behavior of a state machine.

8.4 Moore and Mealy Machine Design Procedure

There are two basic ways to organize a clocked sequential network:

@ Moore machine: The outputs depend only on the present state. See
the block diagram in Figure 8.23. A combinational logic block maps
the inputs and the current state into the necessary flip-flop inputs fo
store the appropriate next state. The outpuis are computed by a com-
hinational logic block whose only inputs are the flip-flops’ state out-
puts. The outputs change synchronously with the state iransition and
the clock edge. The finite state machines you have seen so far are all
Moore machines.

Mealy machine: The outputs depend on the present state and the
present value of the inputs. See Figure 8.24. The outputs can change
immediately after a change at the inputs, independent of the clock. A
Mealy machine constructed in this fashion has asynchronous outputs.

Moore outputs are synchronous with the clock, only changing with
state {ransitions. Mealy outpuis are asynchronous and can change in
response to any changes in the inputs, independent of the clock. This

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 17

8.4 Moore and Mealy Machine Dasign Procedure 403
State
Register
Comb
i ——»Combinational Logi f» —
Inputs—— Logic for C()] BiC 108 |
™ Next State » Ouiputs |,
(Flip-Flop —— Zk
- Inputs) JM Outputs
Clock
State :
Feedback |
Figure 8.23 Moore machine block diagram.
[
Xi — L F—————— Zr i
Inputs-—»Gombinational L, Cutputs g
— 1 Logicfor |f—onr— —— » :
» Outputs and <l ‘
» Next State
> State (I
State Register" rigck Feedback % :

Figure 8.24 Mealy machine block diagram.

gives Moore machines an advantage in terms of disciplined timing

methodology. However, there is a synchronous variation of the Mealy
machine, which we describe later.

8.4.1 State Diagram and ASM Chart Representations

An ASM chart intended for Moore implementation would have no con-
ditional output boxes. The necessary outputs are simply listed in the
state box. Conditional output boxes in the ASM chart usually imply a
Mealy implementation.

Figure 8.25 shows the notations for Mealy and Moore state diagrams,
using the vending machine example. For Moore machines, the cutputs
are associated with the state in which they are asserted. Arcs are labeled : 4
with the input conditions that cause the transition from the state at the :
tail of the arc to the state at its head. Combinational logic functions are
perfectly acceptable as arc labels.

In Mealy machines, the outputs are associated with the transition
arcs rather than the state bubble. A slash separates the inputs from the

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 18

404 Chapter 8 Finite State Machine Design

(a) Moore machine (b) Mealy machine

Figure 8.25 Moore and Mealy maching state diagrams for the vending machine FSM.

if we are in state 10¢ and either N or D is

outputs. For example,
d. Any glitch on N or D could cause the

asserted, Open will be asserte
gum to be delivered by mistake,

The state diagrams in this figure are labeled more completely than
ple, we make explicit the transitions

that cause the machine to stay in the same state. We usually eliminate
such transitions to simplify the state diagram. We also associate explicit
t values with each transition in the Mealy state diagram and each

outpu
state in the Moore state diagram. A common simplification places the

output on the transition or in the state only when it is asserted. You
should clarify your assumptions whenever you draw state diagrams.

our previous examples. For exam

8.4.2 Comparison of the Two Machine Types

ons, a Mealy machine can

Because it can associate outputs with transiti
fewer states than a Moore

often generate the same outpul sequence in

machine.
Consider a finite state machine that asserts its single outpuf when-

gver its input string has at least two 1’s in sequence. The minimum
Moare and Mealy state diagrams are shown in Figure 8.26. The equiva-

lent ASM charts are in Figure 8.27.

To represeni the 1's sequence, the Moore machine requires two states to
distinguish between the first and subsequent 1’s. The first state has output
0, while the second has output 1. The Mealy machine accomplishes this

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 19

8.4 Moore and Mealy Machine Design Procedure 405
with a single state reached by two different transitions. For the first 1, the
fransition has output 0. For the second and subsequent 1’s, the transition

has output 1. Despite the Msaly machine’s timing complexities, designers
like its reduced state count.

0/0

0/0 1/0

1/1 :

(a) Moore machine {b} Mealy machine ' ¢

Figure 8.26 Two state diagrams with the same |/C behavior but different number of states.

i3
i

Z
e

T |, T
Sz 10
ot GouD
F T
(a) Moore machine (b) Mealy machine
Figure 8.27 ASM equivalents of Figure 8.26.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 20

406 Chapter 8 Finite State Machine Design

o —
KpQ b——A
:aT\Reset
J QF—2
x C
\A KpQpe— B
F

FhT\Reset

Figure 8.28 Mystery Moore finite
state machine.

8.4.3 Exampies of Mocre and Mealy Machines

Example Moore Machine Description To betier understand the timing
behavior of Moore and Mealy machines, let’s begin by reverse engineer-
ing some finite state machines. We will work backward from a circuit-
level implementation of the finite state machine to derive an ASM chart
or state diagram that describes the machine’s behavior.

Figure 8.28 shows schematically a finite state machine with single
data input X and output Z. The FSM is a Moocre machine because the
cutput is a combinational logic function (in this case a trivial one) of
the state alone, The state register is implemented by two master/slave J-
K flip-flops, named A and B, respectively. The machine can be in any
one of up to four valid states. The output Z and the state bit B are the
same.

Signal Trace Method There are two systematic approaches to determin-
ing the state transitions: exhaustive sigral tracing and exiraction of the
next state/output functions. We examine the former here and the latter
in the next subsection.

Signal tracing uses a collection of input sequences to exercise the
various state {ransitions of the machine. To see how it works, let’s start
by generating a sample input sequence,

It is reasonable to assume that the FSM is initially reset and that it
has been placed in state A=0, B=0. Figure 8.29 contains the timing
waveform you would see after presenting the input sequence 101010
to the machine. Because the FSM is implemented with master/slave flip-
flops, the state time beging with the falling edge of the clock. Input X
must be stable throughout the high time of the clock to puard against
ones catching problems.

The sequence of evenis in Figure 8.29 is as follows. The asserted
reset signal places the FSM in state 00. After the falling edge, input X
goes high just after time step 20. At the next rising edge, the input is
sampled and the next state is determined, but this is not presented to

X

A
VA
\Reset

Reset X=1\ X=0 X=1y X=ly X=1y =0y X=0
AB=00AB=0()AB=11\AB=1}AB=18‘AB=1OAB=01AB=00

Figure 8.29 A timing trace of the mystery Moore machine.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 21

+

Py

AB X
80 0
1
o1 0
1
T 0 0
i
i1 0
1

MF-‘DMw)O)—‘-\)b:‘

OO S R |

AR

XN 00 01 11 10
olo| o} 1|1
1| 1] 1] 0
AB

XN 00 01 11 10
olo| 0| 1] o0
i1 1] 0] 1

PR OoOOoR RO ON

Figure 8.30 Partial state transition
table derived from the signal trace.

A+

Bt

Figure 831 Next-state K-maps.

8.4 Moore and Mealy Machine Design Procedure 407

the outputs until the falling edge at time step 40. After a short propaga-
tion delay, the state becomes 11. We express the transition as “a 1 input
in state 00 leads to state 11.”

During the next state time, X is 0, and the FSM stays in state 11 as
seen at time step 60. X now changes to 1, and at the next falling edge
the state changes to 10.

The input next changes to 0, causing the state machine to remain in
state 110 at time step 100. A transition to 1 causes it to change to state 01
after time step 120. The final transition to 0 leaves the machine in state 00.

Figure 8.30 contains the partial transition table we deduce from this
input sequence. We would have to generate additional input sequences
to fill in the missing transitions. For example, an input sequence from
the resel state starting with a 0 would fill in the missing transition from
state 00. The sequence 1 1 1 1, tracing from state 00 to 11 to 10 to 01,
would catch the remaining transition.

Next State/Qutput Function Analysis Signal tracing is acceptable for a
small FSM, but it becomes intractable for more compiex finite state
machines, With a single input and 2 bits of state, the example FSM has
eight different transitions, two from each of four states. And the number
of combinations doubles for each additional input bit and doubles again
for each state hit.

Our alternative method derives the next-state functions directly from
the combinational logic equations at the fiip-flop inputs and the output
function from the flip-flop outputs. For the mystery machine, these are

Jo=X K,=XeB Z=B
h=X K,=Xa&4d

We can now express the flip-flop outputs, A* and B, in terms of the
excitation equations for the J-K flip-flop. We simply substitute the logic
functions at the inputs into the excitation equations:

At=J, e A+ KyeA=Xo A+ (X+B)s A
B*=J,eB+K,oB=XeB+(XoA+XoA)aB

The next-state functions, A* and BY, are now expressed in terms of the
current state, A and B, and the input X, We show the K-maps that corre-
spond to these functions in Figure 8.31.

The missing state transitions are now obvious. In state 00 with input
0, the next state is A" =0 and B* = 0. In state 01 with input 1, the next
state is At=1, B"=1. With its behavior no longer a mystery, we show
the ASM chart for this finite state machine in Figure 8.32. In the figure,
we assume the following symbolic state assignment: S, =00, 5,=01,
5,=10, §;=11.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 22

i
;
\

408 Chapier8 Finite State Machine Design

So 00 S3 11
0z
0 1 o
X :
e —
Sz 10
1 0 !

Figure 832 ASM chart for the mystery Moore machine.

Example Mealy Machine Description Continuing with our reverse engi-
neering exercise, consider the circait of Figure 8.33. Once again, the FSM
has one input, X, and one oufput, Z. This time the output is & function of
the current state, denoted by A and B, and the input X. The state register
is implemented by one D flip-flop and one master/slave J-K flip-flop.
Before examining a signal trace, we must understand the conditions
under which the Mealy machine’s inputs are sampled and the outputs
are valid. The next state is computed from the current state and the
inputs, so exactly when are the inputs sampled? The answer depends
on the kinds of flip-flops used to implement the state register. In the
example, our use of a master/slave flip-flop dictates that the inputs must

Clk

[
DoQ

DA
|4 4 \B
e P

\Reset

\Reset

X

Fiqure 833 Circuit schematic of the mystery Mealy machine.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 23

409

8.4 Moore and Mealy Machine Design Procedure

be stable during the high time of the clock (to avoid ones catching) and
must be valid a setup time before the falling edge.

Technically, the outputs are valid only at the end of the state time,
determined by the falling edge of the clock. In other words, the output
for the current state is valid just as the machine enters its next state! If
we are using a master/slave flip-flop and if the inputs do not change
during the high time of the clock, then the outputs may also be valid
during the clock high time.

Negative edge-triggered systems require that the inputs be stable
before the falling edge that delineates the state times. This means that
the outputs canmot be determined until just before the falling edge. The -
output remains valid only as long as it takes to compute a new output
in the new state. |

Similarly, for positive edge-triggered systems the outputs are valid at L
the rising edge. Agein, the output is considered valid just before the |
clock edge that causes the machine to enfer its new state. :

Figure 8.34 gives the timing waveform that corresponds to the input
sequence 10101, after a reset to state 00. In state 00, reading a 1 keeps :
the machine in state 00 (time step 40). -

Reading a 0 then advances the machine to state 01 (lime step 60).
The waveform for ontput Z has a glitch. The valid output is determined !
only at the end of the state time. In this case, the output is 0. i

A 1 in state 01 leads to state 11 (time step 80). Again, the output in i
this state is the value of Z at the falling edge and thus is 1.

Reading a O in state 11 moves us to state 10 (time step 100), with the
output continuing to he asserted despite the momentary glitch.

A 1 in state 10 leads us to state 01 (time step 120}. The output goes
low and will stay that way as long as the input X stays high.

100
: | ; |

X | e e
Clk f I I f I I
A I
B J IR |
Z Il u L.
\Reset

Reset X=1 % X=0 W X=1 W X=0 % X=1 W X=1

AB=00 AB=00 AB=00 AB=01 AB=11 AB=10 AB=01

Z=0 Z=0 Z=0 Z=0 Z=1 Z=1 Z=0
Figure 8.34 Signal trace of the mystery Mealy machine.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 24

B OO R OR D
PO — - R =R =1}

S D s DD

B e = N

Figure 835 Pariial state transition
table derived from the signal trace.

Figure 836 Next-steie and output
K-maps.

Chapter 8 Finite State Machine Design

We show the partial state transition table in Figure 8.35. The Input
sequence produced only five of the eight state fransitions. To complete
the state diagram, we would have to generate additional sequences to
traverse the missing transiticns.

Alternatively, we can discover the complete set of transitions by ana-
lyzing the next-state and output functions directly, just as we did in the

Moore machine:

A'=B(A+X)=AeB+B=X
B+:]b-E+Kb-B:(E @X)»B+XeD
=(AeX+AeX)B+XeB
—AesBeXt+AeBeX+BeX
Z=AeX+BeX

Since A is a D flip-flop, the function for A* is exactly the combinational
logic function at its input. B is a JK flip-flop, so we determine the func-
tion for B* by substituting the logic functions at the J and K inputs into
the J-K excitation functien.

We give the next-state and output K-maps in Figure 8.36. The miss-
ing transitions are from state 01 to 00 on input 0, 10 to 00 on input 0,
and 11 to 11 on input 1. The respective outputs are 1, 0, and 1. Assum-
ing that S, S, Sz, and Sy correspond to encoded states 00, 01, 10, 11,
we show the ASM chart for the mystery machine in Figure 8.37.

States, Transitions, and Outputs in Mealy and Moore Machines Suppose
that a given state machine has M inputs and N outputs and is being
implemented using L flip-flops. You might ask a number of questions to
bound the complexity of this state machine. For example, what are the
minimum and maximum numbers of states that such a machine might
have? With L flip-flops, the implementation has the power to represent
oL gtates. But for a specific FSM as few as 1 and as many as 20 of these
might be valid states.

What are the minimum and maximuam numbers of state transitions
that can begin in a given state? Since there must be an exit transition for
each possible input combination, the minimum and the maximum are
the same: 2M transitions.

A similar question involves the minimum and maximum numbers of
state transitions that can end in a given state. Because we can have
start-up states reachable only on reset, the minimum number of input
transitions is 0. Since a single state could conceivably be the target of
all the transitions of the finite state machins, the maximum number of
input transitions is gM % 2L the number of possible input combinations
multiplied by the number of states.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 25

8.4 Moore and Mealy Machine Design Procedure 411 Do

A final question is the minimum and maximum numbers of patterns
that can be observed on the machine’s outputs. The minimum number
of unique output patterns is 1, of course. Every state and every transi-
tion can be associated with the same pattern.

The maximum number depends on the kind of machine. For a Mealy
machine, the maximum number of output patterns is the smaller of the
number of transitions, 2 * 2%, or the number of possible output pat-
terns, 2N, If the number of transitions exceeds the number of possible
output patterns, then some must be repeated. In the Moore machine, the
maximum is the smaller of the number of states, 2%, and the number of
possible output patterns, 2V, If the number of states exceeds the number
of output patterns, then some patterns will also need to be repeated.

As an example, consider a Moore machine with two inputs, one flip-
flop, and three outputs. The state, transition, and output bounds are:

Minimum number of states: 1

Maximum number of states: 2

Minimum number of output transitions (per state): 4 !
Maximum number of output transitions (per state); 4 .
Minimum number of input transitions (per state): 0

Maximum number of input transitions (per state): 8

Minimum number of observed output patterns: 1

Maximum number of observed output patterns: 2

In this case, the output patterns are limited by the number of states.

So

@.Z 51 ¥ 01 Sa 11
[HZ

Figure 8.37 ASM chart for the mystery Mealy machine.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 26

412 Chapter8 Finite State Machine Design

s The glitches in the output in Figure 8.34
are inherent in the asynchronous nature of the Mealy machins. As you
have already seen, glitches are undesitable in real hardware controllers.
But because Mealy machines encode control in fewer states, saving on
state Tegister flip-flops, it is gtill desirable to use them.

T'his leads to alternative synchronous design styles for Mealy machines.
¢ a synchronous Mealy machine is t©

Simply stated, the way to construc
break the direct connection between inputs and outputs by introducing
storage elements.

One way to do this is fo synchronize the Mealy machine outpuls
with output flip-flops. See Figure 8.38. The flip-flops are clocked with
the same edge as the state register. This has the effect of converting the
Mealy machine into a Moore machine, by making the outputs part of the

state encoding! However, this machine does not have exactly the same
input/output behavior as the original Mealy machine (can you figure out
why?). We will have more fo say about synchronous Mealy machines in

Chapter 10.

Synchronous Mealy Machine

synchronous finite state machines are
much easier to implement and debug than asynchronous machines. i
you were using discrete TTL componenis, you would usually prefer the
Moore machine organization, even though it may require more states. ‘
You should use edge-triggered flip-fiops for the state Togisters. T

Synchronous Mealy ‘machines can be constructed in TTL logic, buat
the designer must be careful. The approach leads to more complex
designs that may affect the input/output timing of the FSM. You should
use asynchronous Mealy machines only after very careful analysis of the
input/output timing behavior of the finite state machine.

Discussion In general, fully

X — 7
Tnputs | Combinational Outputs
Logic for
Outputs and
Next State
State

State Register
Feedhack

Figure 838 Synchronous Mealy machine block diagram.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 27

Introduction

We are now ready to complete the finite state machine design process
introduced in Chapter 8. The steps of Chapter8 yield an abstract ’
description of the state machine. This may be a state diagram, an ASM }
chart, or a hardware description language specification. Deriving a sym- 1
bolic state transition table from one of these is straightforward. In this
chapter, we concenfrate on state minimization, state asgignment, and
choice of flip-flops.

We show why finite state machine “optimization” (improvement
might be a better word) is still important, even in today’s era of very
large scale integrated circuits, We present pencil-and-paper methods, as
well as more formal techniques suitable for computer implementation,
for reducing the number of states and for choosing a state encoding.

Then we examine the approaches for cheosing the machine’s flip-
flops and how the choice affects the next-state and output combinational
functions. The right choice of flip-flop leads to a smaller gate count and
thus fewer components to implement the machine.

Finally, we develop techniques for partitioning complex finite state
machines into simpler, smaller, communicating machines. You may be

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 28

450

Chapter @ Finite State Machine Optimization

forced to partition your state machine because it cannot fit into a given

programmable logic component. This could arise, for example, because of

limited logic resources, such as input/outputs, product terms, or flip-flops.
In this chapter, we emphasize the following techniques and concepts:

® Procedures for optimizing a finite state machine. You will learn the
methods for state minimization and state assignment.

m Application of modern computer-aided design tools for state assign-
ment. CAD tools make it possible for you to evaluate the implemen-
tation complexity of alternative state assignments very rapidly.

® Partitioning methods. You will learn the techniques for breaking
finite state machines into smaller, communicating state machines
that are well suited for implementation with programmable logic.

9.1 Motivation for Optimization

To review, the finite state machine design process consists of (1) under-
standing the problem, (2) obtaining a formal description (ultimately, a
symbolic state transition table), (3) minimizing the number of states, (4)
encoding the states, (5) choosing the flip-flops to implement the state
registers, and finally (6) implementing the finite state machine’s next-
state and output functions. This chapter starts at step 3 and carries us
through to the final implementation at step 6, using methods based on
discrete logic gates. We discuss the use of programmable logic for finite
state machine implementation in the next chapter.

9.1.1 Two State Diagrams, Same /0 Behavior

In the age of very large scale integrated circuits, why should we bother
to minimize a finite state machine implementation? After all, as long as-
the input/output behavicr of the machine is correct, it really doesn’t
matter how it is implemented. Or does it? ;
Figure 9.1 shows two different state diagrams for the odd parity checker:
of Section 8.2. They have identical output behavior for all input strings. :
You should try some inputs to convince yourself. We define equivalence
finite state machines as follows. Two machines are equivalent if their i
put/output behavior is identical for all possible input strings.
For a particular finite state machine, there are many equivalent
forms. Rather than reusing states while deriving the state diagram, you
could simply introduce a new state whenever you need one (to keep the
number of staies finite, you will need to reuse some of them, of course
The two implementations of the state diagrams of Figure 9.1 are cel-
tainly not the same. The machine with more states requires more fl
fiops and more complex next-state logic.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 29

9.1

Motivation for Optimization 451
ven;
o of

ops.

its:

the

ign-
1en-

<ing
ines

der-
Yy, a
» (4)

state

Figure 8.1 Two equivalent state diagrams for the odd parity checker.

8.1.2 Advantages of Minimum States

In general, you will find it is wort

hwhile to implement the finite state
machine in as fow states as

possible. This usually reduces the number i
of logic gates and flip-flops you need for the machine’s implementation. ;
Similarly, judicious mapping between symbolic and encoded states can

reduce the implementation logic. For the parity checker, our implementa-

tion in Chapter 8 required no gates because we made g g

ment that naturally matched the control input to the to

A state diagram with n states mu,

<" flip-flops, where 281 < p < 2k By reducing the number of states to 21
or less, you can save a flip-flop. For example, suppose you are given a
finite state machine with five state flip-flops. This machine can represent

up to 32 states. Tf you can reduce the number of states to 16 or less, you

save a flip-flop. L
Even when reducing the number of states is not enough to eliminate -

a flip-flop, it still has advantages. With fewer st G

lon’

ood state assign-
ggle flip-flop,
st be implemented with af least k

ates, you introduce more
don’t-care conditions into the next-state and ouiput functions, making

their implementation simpler. Less logic usually means shorter critical
timing paths and a higher clock rate for the system,

More importamnt, today’s programmable logic provides limited gate
and flip-flop counts on a single programmable logic chip. A typical pro-
grammable logic part might have “200p gate equivalents” (rately
approached in practice) yet provide only 64 flip-flops! An important
goal of state reduction is fo make the implementation “fit” in as fow
companents as possible. The fewer components you use, the shorter the
design time and the lower the manufacturing cost,

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 30

452 Chapter® Finite State Machine Optimization

State reduction techniques also allow you to be sloppy in obtaining
the initial finite state machine description. If you have introduced a few
redundant states, you will find and eliminate them by using the state
reduction techniques introduced next.

82 State Minimization/Reduction

State reduction identifies and combines states that have equivalent
 “hehavior.” Two states have equivalent behavior if, for all input combi-
nations, their outputs are the same and they change to the same or

\GQ equivalent next states.

\ For example, in Figure 9.1(b), states Sp and S, are equivalent. Both
states output a 0; both change to S; on a 1 and self-loop on a 0. Com-
bining these into a single state leads to Figure 9.1¢(a). On all input
strings, the output sequence of either state diagram is exactly the same,

: Algorithms for state reduction begin with the symbolic state transition
table. First, we group together states that have the same state outputs
(Moore machine) or transition oufputs (Mealy machine). These are poten-
tially equivalent, since states cannot be equivalent if their outputs differ.

Next, we examine the transitions to see if they go to the same next state
for every input combination. If they do, the states are equivalent and we
can combine them into a renamed new state. We then change all transitions
into the newly combined states. We repeat the process until no additional

ates can be combined.

In the following two subsections, we examine alternative algorithms for
state reduction: row matching and implication charts. The former is a good
pencil-and-paper method, but does not always obtain the best reduced state
table. TmpHcation charts are more complex to use by hand, but they are
easy to implement via computer and do find the best solution.

We can always combine the two approaches. Row matching quickly
reduces the number of states. The more complicated implication chart
method, now working with fewer states, finds the equivalent states
missed by row matching more rapidly.

9.21 Row-Matching Method

Let’s begin our investigation of the row-matching method with a detailed
example. We will see how to transform an initial state diagram for a
simple sequence detector into a minimized, equivalent state diagram.

Four-Bit Sequence Detector: Specification and Initial State Diagram Lefs
consider a sequence-detecting finite state machine with the following
specification. The machine has a single input X and output Z. The out-
put is asserted after each 4-bit input sequence if it consists of one of the
binary strings 0110 or 1010. The machine returns to the reset state after
each 4-bit sequence.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 31

9.2 State Minimization/Reduction 453

We will assume a Mealy implementation, Some sample behavior of -
the finite state machine is P

X =0010 0110 1100 1010 0011 ...
Z = 0000 0001 0000 0061 0000 ...

The ocutput is asserted only after the previous four serial inputs match
one of the specified strings, Also, the input patterns do not overlap: the
machine makes a decision to assert its output after each group of 4 hits.

Because this finite state machine recognizes finite length strings, we
can place an upper bound on the number of states needed to recognize
any particular binary string of length four. Figure 9.2 shows the state
diagram. There are 16 unique paths through the state diagram, one for
each possible 4-bit pattern. This adds up to 15 states and 30 transitions.
We highlight the paths leading to recognition of the strings 0110 and
1010 in the figure. Only two of the transitions have a 1 output, repre-
senting the accepted strings,

Feur-Bit Sequence Detector: State Table and Row-Matching Method We
can combine many of the states in Figure 9.2 without changing the
input/output behavior of the finite state machine. But how do we find :
these equivalent states in a systematic fashion? i
First, we Jook at the state transition table, as shown in Figure 9.3. :
This table is in a slightly different format than we have seen so far. It
contains one row per stale, with multiple next-state and output columns
based on the input combinations. Tt gives exactly the same information
as a table with separate rows for each state and input combination.
The input sequence column is a documentation aid, describing the
partial string as seen so far, When read from left to right, it describes the
sequence of input bits that lead to the given state.

Reset

0/o

1/4

/0 0/0 54 1/0 070

/0% af a/TF O/R3/0
R Y (RT BY

Figure 9.2 Original state diagram for 4-bit string recognizer.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 32

g54 Chapterd Finite State Machine Optimization

Next State Output
X=0 X=1

111 S1a So So 0 0

Figure 9.3 Initial state transition table for the 0110 or 1010 sequence detector.

Next we examine the rows of the state transition table to find any
with identical next-state and output values (hence the term “row match-
ing”). For this fipite state machine, we can combine Sip and Sy Let’s
call the new state Sig and use it to rename all transitions 1o 539 OF 543

The revised state table is shown in Figure 9.4.

Matching lteration We continue match-

ing rows until we can no longer combine any. In Figure 9.4, S7, Ss Sa,
Sy1. Spg. and Syg all have the same next states and outputs, We combine
them into a renamed state S;. The table, with renamed iransitions, is

shown in Figure 9.5.

Four-Bit Sequence Detector Row-

Next State | Output
o | Present State | X=0 X=1

Input Sequenc

Figure 3.4 Revised state (ransition table after Syg and Si7 combined.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 33

Figure 9.7 Reduced state diagram for
4-bii string recognizer.

9.2 State Minimizaticn/Reduction 455

Next State Output

Input Sequence|Prosent State| X=0 X=1|X=0 X=1
Reset So 51 Sa 0 0
0 51 Sa Sa 0 0
1 Sy S5 Se [¢] 0
00 Sa T 1
01 Ss 5 &, 0 O
10 S5 5% S| 0 1]
it Ss 57 S| 0 1]
Tiot (017 or 101] Sy S5 Ss |0 0
011 or 101 S0 Sa So 1 0

Figure 9.5 Rovised state transition table after S7, Sg, Sy, 814, Si3 S14 combined.

Next State Output

Input Sequence | Present State | X=0 X=1 | X=0 X=1
Reset So 51 So 0 Q)
8 S 55 5 1] 0
1 Sz 5 S5 0 0
00 or 11 S5 5, 5% [} [}
01 or 10 S 84 Sip 0 0
not {011 or 101) 5 5 So 0 [i]
011 or 101 S0 Sg S 1 0

Figure 96 Final reduced state transition table after Sy, S and Sy, Sg combined,

Now states S; and S, can be combined, as can 5, and Ss. We call the
combined states S5’ and Sy, respectively. The final reduced state transition
table is shown in Figure 9.6. In the process, we have reduced 15 states to
just 7 states. This allows us encode the state in 3 bits rather than 4. The re-
duced state diagram is given in Figure 9.7.

Limitations of the Row-Matching Method Unfortunately, row matching
does not always yield the most reduced state table. We can prove this
with a simple counterexample. Figure 9.8 shows the state table for the
three-state odd parity checker of Figure 9.1. Although states Sy and S,
have the same output, they do not have the same next state. Thus, they
cannot be combined by simple row matching. The problem is the self-
loop transitions on input 0. If we combined these two states, the self-
loop would be maintained, but this is not found by row matching. We
need another, more rigorous method for state reduction,

Next State |
Present State 1 X=0 X=1 | QOutput '
Sg Sg ER 0 !

51 51 52 1

Sa, S & 0

Figure 9.8 State table for three-state odd parity checker.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 34

456

Chapter 9

Finite State Machine Optimization

9.2.2 Implication Chart Method

The implication chart method is a more systematic approach to finding
the states that can be combined into a single teduced state. As you
might suspect, the method is more complex and is better suited for
machine implementation than hand use.

Three-Bit Sequence Detector: Specification and Initial State Table We illus-
trate its use with another example. Your goal is to design a binary
sequence detector that will output a 1 whenever the machine has
ohserved the serial sequence 010 or 110 at the inputs. We call this
machine a 3-bit sequence detector. Figure 9.9 shows its initial state table.

Data Structure: The !mplication Chart The method operates on a data
structure that enumerates all possible combinations of states taken two
at a time, called an implication chart. Figure 9.10(a) shows the chart
with an entry for every pair of states. This form of the chart is more
complicated than it needs to be. For example, the diagonal entries are
not needed: it does not reduce states to combine a state with itself! And

Next State Output

Tnput Sequence Present State | X=0 X=1 | X=0 X=1
Reset 51 0 0

1 1] 0

0 0

o 0

1 0

0 0

1 3]

Figure 8.9 Initial state transition table for the 3-bit sequence detecior.

S]
S1 S

Sa] 52 ‘—1

53J] Ssﬂ ’T
84 F—* | Sy
55(35
s 11 [1] | |
So S1 S2 S Sa S5 S Sy S1 82 S5 S S5
(a) (b

Figure 8.10 Matrix for state combinations and the corresponding imptication ehart.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 35

i = e

—_— W e W R

92 State Minimization/Reduction a57

the upper and lower triangles of entries are symmetric. The chart entry
for S; and S; contains the same information as that for S; and 5; Thus,
we work with the reduced structure of Figure 9.10(b).

We fill in the implication chart as follows. Let X;; be the entry whose
row is labeled by state S; and whose column is labeled by state 5. If we
were able to combine states S; and 8, it would imply that their next-
state transitions for each input combination must also be equivalent,
The chart entry contains the next-state combinations that must be equiv-
alent for the row and column states to be equivalent. If S; and S; have
different outputs or next-state behavior, an X is placed in the entry, This
indicates that the two states can never be equivalent.

Three-Bit Sequence Detector: Initial lmplication Chart The implication
chart for the example state table is shown in Figure 9.11. Sy, §;, S5, S,
and Sy have the same outputs and are candidates for being combined.
Similarly, states S, and S, might also be combined. Any combination of
states across the two groups, such as 8, and Sy, is labeled by an X in
the chart. Since their outputs are different, they can never be equivalent.

To £ill in the chart entry for (row) S, and (column) 55, we look at the
next-state transitions, S, goes to S, on 0 and S, on 1, while §; goes to
8; and 5,, respectively. We fill the chart in with 5:~83, the transitions
on 0, and S,-5,, the transitions on 1. We call these groupings implied
state pairs. The entry means that S, and §; cannot be equivalent unless
Sy is equivalent to S; and S, is equivalent to S,. The rest of the entries
are filled in similarly.

At this point, the chart already contains enough information to elim-
Inate many impossible equivalent pairs. For example, we already know
that S, and S, cannot be equivalent: they have different output behavior.
Thus there is no way that S, can be equivalent tc §,,

Finding these cases is straightforward. We visit the entries in
sequence. For example, start with the top square in the first column and
advance from top to bottom and left to right. If square 5,,5; contains the

implied state pair S-S, and square 5.5, contains an X, then mark 51.5;
with an X as well.

Sequence Detector Example: First Marking Pass Figure 9.12 contains the
results of this first marking pass. Entry S,,8, is marked with an X
because the chart entry for the implied state pair §,-S; is already
marked with an X. Entry S,,5, is also marked, because entry S,,3, (as
well as S;,5) has just been marked. The same is true for S;5,8,. By the
end of the pass, the only entries not marked are 53.51; 85,83; and S,8,.

Sequence Detector Example: Second Marking Pass We now make a sec-
ond pass through the chart to see if we can add any new markings.
Entry 85,5, remains unmarked. Nothing in the chart refutes that S, and
S5 are equivalent. The same is true of 5, and Sy,

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 36

458 Chapter @ Finite State Machine Optimization

5153
51 52-54)
(9155|595
S2-Sg|Sa-S6l
51-S0[Sa-So s@
S2-SojS4-So|Se-S)

S

Sy

b7
Ss 51-So[Sa-So|S5-So|So-So ; - Zl
S2-80|S4-So|Se-S0jS0-So ! S5,
Ss SorSo K< ss D’<l
S-S ¥ 4% ¥
Ss 51 S2 S3 S2 55 So S S Sz S 5

Figure 811 Initial implication chart for Figore 9.12 Results of first masking pass.
the 3-hit sequence detector.

Continuing, S,.55 and 54,5 are now obviously equivalent. They have
identical outputs and transfer to the same next state (Sp) for all input
combinations.

Since no new markings have been added, the algorithm stops. The
unmarked entries represent equivalences between the row and columm
indices: S, is equivalent to S;, S; to 5s, and S, to Sg. The final reduced
state table is shown in Figure 9.13.

Multi-Input Example: State Diagram and Transition Table We can general-
ize the procedure for finite state machines with more than one input.
The only difference is that there are more implied state pairs: one for

each input combination.

Let’s consider the state diagram for a two-input Moore machine
shown in Figure 9.14. Each state has four next-state transitions, one for
each possible input condition. The derived state transition table is given
in Figure 9.15.

Multi-lnput Example: implication Chart Processing Figure 9.16 shows the
implication chart derived from the state transition table. Let’s see how
some of the entries are filled in. Since 5; and S, have different state
outputs, we place X in enfry §,,Sq. For the 5;,5, entry, we list the
implied state pairs under the input conditions 00, 01, 18, 11. Because Sp

Next State Output

Input Sequence| Present State | X=0 X=1| X=0 X=1
Reset So 81 51 0 1]
Qorl 51 Sh Si 3} 0
00 or 10 S5 So So 1] 0
01orll Sy So So 1 0

Figure 9.13 Final recuced state wansition table for the 3-bit sequence detector.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 37

Figure 9.4 Muitiple-input state diagram.

Present Next State JOutput
State 00 01 10 11
Sa S 51 85 S 1
S S S3 5 Sp 0
Sy 81 83 83 85 1
Sy 51 Sa S Ss 0
Sy S0 81 82 S 1
S5 S1 8 S 5 0

Figure 945 Multiple-input state transition table.

9.2 State Minimization/Reduction

459

stays in Sy on input 00, while S, goes to S; on 00, we add the implied
slale pair $5-5; to the entry. On input 01, S, goes to S, S, goes to S,
and we add 5,-S, to the entry. Similarly, we add the pairs S3-S; on 10
and S;3-S, on 11 to the entry and fill in the rest of the entries.

Now we begin the marking pass. Working down the columns, we
Cross out entry 5,-5p because S,,5; is already crossed out. The same
thing happens to the entries S;,5;; S5,5,; and S,,S,. This leaves 54,5
and S5,5; unmarked (these are highlighted in the figure). Their being
unmarked implies that S, is equivalent to S, (renamed 5g) and S; is

equivalent to S; (S5'). The reduced state table is given in Figure 9.17,

implication chart.

. oS
Sz | ois?
-S4
o3
{13
5:55,
i~ 3y
Gredd
5 Pregent Next State Qutput
— State 00 01 1011
Z‘?,\ S S 81 & 8 i
5-Ss S Sy Sy 85 8 Q
S() Sl Sz 54 S?, S1 S;'a SZ Sl‘} 1 .
Figure 16 Multiple-input S S5 S ;o0

Figure 9.17 Multple-input reduced state table.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 38

460 Chapter9 Finite State Machine Optimization

Example State Reduction of Parity Thecker Finite State Machine The
row-matching method could not combine states So and S; in the three-state
parity checker of Figure 9.1. Can the implication chart method do the job?

The implication chart for the state {ransition table of Figure 9.8 is given
So 5 in Figure 9.18. S,,5 and 5,,5; are marked immediately because their out-
puts differ. The remaining square is left unmarked, implying that S and S,
are equivalent. This is the correct reduced state transition table.

figure 818 Implication chart for
three-state odd parity checker.

implication Chart Summary The algorithm for state reduction using the
implication chart method consists of the following steps:

1. Construct the implication chart, consisting of one square for each possi-
ble combination of states taken two at a time,

2. For each square labeled by states S; and S,, if the outputs of the states dif-
fer, mark the square with an X; these states are not equivalent, Other-
wise, they may be equivalent. Within the square, write implied pairs of
next states for all input combinations.

3. Systematically advance through the squares of the implication chart, If
the square labeled by states 5;5; contains an implied pair S;-S, and
square Sy, Sy is marked with an X, then mark 5;,S; with an X. Since S,
and S, are not equivalent, neither are S; and 8;.

4. Continue executing step 3 until no new squares are marked with an X.

5. For each remaining unmarked square 5;,5;, you can conclude that states
S;and S; are equivalent.

8.3 State Assignment

The number of gates needed to implement a sequential logic network
depends strongly on how we assign encoded Boolean values to symbolic
states. Unfortunately, the only way to obtain the best possible assignment
is to try every choice for the encoding, an exiremely large number for
real state machines. For example, a four-state finite state machine, such
as the traffic light controller of the last chapter, has 4! (4 factarial) =
4 *3*2*1 =24 different encodings (see Figure 9.19}.

831 Traffic Light Controlier

To illustrate the impact of state encoding on the next-state and output
logic, let’s use the symbolic state transition table for the traffic light con-
troller, shown in Figure 9.20. The input combinations that cause the state
transitions are shown at the left of the table. The symbolic state names
HG, HY, FG, FY represent the states highway green/farmroad red;

highway yellow/farmroad red, highway red/farmroad green, and highway
red/farmroad yellow. We have already encoded the traffic light outputs: .
00 = Green, 01 = Yellow, and 10 =Red. -

Petitioner Cypres Semiconductor Corp. - Ex. CSC 1014, p. 39

9.3 State Assignment 461

HG HY FG FY HG HY FG FY
00 01 10 1 13 00 01 11
00 01 1 10 10 0O 11 01
o110} 10 01 1 10 01 o0 11
o0 10 1 o1 10 01 11 00
a0 11 01 10 10 11 00 01
00 11 0 01 10 11 01 00
01 00 10 i1 1 00 01 10
01 00 11 10 11 6o 10 01
01 10 00 11 11 01 00 10
01 10 1 00 11 01 0 00
01 11 00 10 11 10 00 01
01 11 10 00 11 10 o1 00

Figure 919 Alternative state encadings of the traffic light controdler,

Inputs Present State | Next State Outputs
C TL TS h Qo Py Py ST Hi Hy F1 Fy
0 X X HG HG 0 00 10
X 0o X HG HG o 00 10
1 1 X HG HY 1 00 10
X X o HY HY [y o1 10
X X 1 HY FG 1 01 10
1 0 X FG FG [H 10 00 ‘
0 X X FG FY 1 10 00 :
X 1 X FG FY 1 10 oo
X X o FY FY 0 10 01 i
X X 1 FY HG 1 10 01 ;

Figure 9.20 Traffic light contraller symbolic state transition table.

We can use espresso {o examine the alternative state assignments .
rapidly. Figure 9.21 shows the generic truth table description that is -
input to espresso, We simply replace the symbolic state names HG, HY, .
FG, and FY with a particular encoding. Before we do a state assignment

.i 5

.0 7

.ilb ¢ tlL ts g1 q0

.ob p1 p0 st h1 h0 f1 0
.p 10

0-- HG He 00010

~0- HG& HG6 00010 -
11- H& HY 10010

--0 HY HY CQ110 :
--1 HY FG 10110

10- FG FG 01000

0-- FG FY 11000

~1- FG FY 11000

-—0 FY FY 01001

--1 FY H& 11001

.e

Figure 9.21

Espresso input for the traffic light controller

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 40

462 Chapterd Tinite State Machine Optimization

mization, the finiie gtate machine requires 10 unique

and two-level mini
product terms (one for each row of Figure 9.21}.

Figure 9.22 and Figure 9.23 show the results of espresso Yuns with
the state assignments HG =00, HY =01, BG =11, FY=10 and HG =100,
HY =10, FG=01, FY =11 respectively. A Cursory glance shoews that the
second encoding uses fewer product terms, eight versus nine, and fewer

literals, 21 versus 26.

Let’s look at the relative complexity of

Comparisen of the Two Encodings
jed by the two alter-

the two implementations. The logic equations impl
pative encodings are the following.
First encoding:

_ ; i 3 .i 5
fi .0 07
ﬁ _ “itb ¢ tb ts al abd "ilb ¢ tL ts a1 a0
F '0b181 p0 st h1 hD *1 t0 "ob p1 p0 st n1 hO £1 10
1 -P -.p 10
i -~ 00 00 00010 0-- 00 00 00010
;l\ -p~ 00 00 00010 -g- 00 00 00010
. 41- 00 01 10010 19— 00 10 10010
» --0 01 D1 00110 -~0-10 10 00110
= —-1 01 11 10110 --1 10 01 10110 \
10- 11 11 01000 10~ 01 01 01000
g-- 11 10 11000 g-~- 01 11 11000
—1- 11 10 11000 ~4— 04 11 11000
--0 10 10 01001 --p 11 11 01001
-—1 14 00 11001

—-1 10 00 11001

-8 .e

(a) Espresso nput (a) Espresso input

o 3 i5

"Sib ¢ tL ts a1 ab -2LE L ts at ad
"ob p1 pD st h1 RO 1 f0 .

.: 9p PO st b ¥ .ob p1 p0 st h1 hD f1 {0
11~00 0110000 .p 8

10-11 1101000 11-0- 1010000
-—-101 1010000 --010 1000100
-—-D40 1001001 0--81 1010000
--—01 0100100 -—~110 0110100
--140 0011001 --111 0011001
——~0- 0000010 -——~-D 0000010
g--11 1011000 —--D1 0101000
-4~-11 1011000 -—011 1101001

8 -]

(b) Espresso output {b) Espresso output

Figure 9.22 First encoding. Figure 9.23 Second encoding.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 41
: : , -

93 State Assignment 463

Py=CoTLeQoQu+TSe Qo Qp+TSe Q2 Qp+Co Qe Qo+TLeQ*

Py= CoeTLeQyoQp+CoeTLe Qe Qo+ Qe Qo

ST = CoTLeQy o Qg+ TS o Qe Qo+ TSe Qo Qp+CeQuoQo+TLe Qo
o, = CoTLeQyeQp+TSe Qe Qu+TSeQueQp+CeQieQ+TLeQyelly
Hp= Q2

b

Fo=TSeQeQp+TSe Qo)

With conventional gate logic, the encoding requires 3 five-input gates, 2
four-input gates, 6 three-input gates, and 2 two-input gates, a total of 13
gates. We assume that variables and their complements are available to
the network.

Second encoding:

Py =CoTLoQy+T50QeQp+CoQeQ+TS*Q1°Q
Py=TSeQeQptQ1¢Qu+TSeQ*Qp
ST = CoTLo (1 +CoQyeQp+TSeQeQp+TSe Qe
Hy=TSoQeQu+Q1oQp+TSeQ1eQp

Hy=TSeQeQp+TSe Qe
F1=Qp
Fo=TS8eQeQu+TS Qe

This encoding requires 2 four-input gates, 8 three-input gates, and 3
two-input gates, for a total of 13 gates. This implementation uses the
same number of gates, but it makes more extensive use of gates with
smaller fan-ins, This reduces overall wiring and is one reason why it is
often more useful to count literals than gates in comparing circuit
complexity.

In the next two subsections, we present methods for finding good
state encodings. These are suitable for pencil and paper, as well as com-
puter-aided design tools.

9.3.2 Pencil-and-Paper Methods

Without computer-aided design tools, there is little you can do to gener-
ate a good encoding. Hand enumeration using trial and error becomes
tedious even for a relatively small number of states, An n-state finite
state machine has n! different encodings. And this is only the lower

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 42

464 Chapter9 Finite State Machine Optimization

hound. If the state is not densely encoded in the fewest number of bits,
even more encodings are possible.

To make the problem more tractable when you must use hand methods,
designers have developed a collection of heuristic “guidelines.” These try
to reduce the distance in Boolean n-space between related states. For exam-
ple, if state ¥ is reached by a transition from state X, then the encedings
should differ by as few bits as possible. The next-state logic will be mini-
mized if you follow such guidelines. We examine them in this section.

State Maps State maps, similar in concept to K-maps, provide a means
of ohserving adjacencies in stafe assignments. The squares of the state
map are indexed by the bipary values of state bits; the state given that
0 1 encoding is placed in the map square. Obviously the technique is limited

S to situations in which a K-map can be nsed, that is, up to six variables.
Figure 9.24 presents an ASM chart for a five-state finite state
machine, Figure 9.25 gives two alternative state assignments and their

Sa representations in state maps.

So

Minimum-Bit-Change Heuristic One heuristic strategy assigns states so
that the number of bit changes for all state transitions is minimized. For
example, the assignment of Figure 9.25(2) is not as good as the one in

Figure 9.24 Five-state ASM chart. Figure 9.25(b) under this criterion:

Sa

First Assignment Second Assignment
Transition Bit Changes Bit Changes

Soto Sy 2 1
S, to 5y 3 1
S, to S3 3 1
S, to Syt 2 1
S, to Sy 1 1
S, to S5¢ 2 2
The first assignment leads to 13 different bit changes in the next-state

function, the second only 7 bit changes.

We derived the first assignment completely at random and the sec-
ond assignment with minfimum transition distance in mind. Here is how
we did it. We made the assignment for So first. Because of the way reset
logic works, it usually makes sense to assign all zeros to the starting
state. We make assignments for S, and 5 next, placing them next to Sp
because they are targets of transitions out of the starting state.

Note how we used the edge adjacency of the state map. This is so
we can place Sy between the assignments for S; and 5, since it is the
target of transitions from both of these states.

Finally, we place S, adjacent to 8., since it is the destination of S3's
only transition. It would be perfect if S, could also be placed distance 1

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 43

93 State Assignment 465 \
Assignment Assignment ;
State Name | Q2 O State Name | Q2 01 o
So 0 ¢ 0 So 0 0 O
S1 1 0 1 51 6 0 1
5z 1 1 1 82 0 1 0
S3 0 1 o0 Sa 0 1 1
Se 0 1 1 54 111
Assignment Assignment
& o 1 Qo
Qz 00 01 11 10 (o)) 00 01 11 10
0] Sg S1 |8 0} 80| S1| 53| Sz
: AR A
1 S: !5 1 - Sy
State Map State Map
(a) First state (b) Second state
assignment and map assignment and map

Figure 9.25 Five-state finite state machine.

from S;, but it is not possible to do this and satisfy the other desired
adjacencies. ;

The resulting assignment exhibits only seven bit transitions. There ' ;
may be many other assignments with the same number of bit transi- o
tions, and perhaps an assignment that needs even fewer. Db

The minimum-bit-change heuristic, although simple, is not likely to :
achieve the best assignment. For a finite state machine like the ftraffic :
light controller, cycling through its regular sequence of states, the mini- R
mum transition distance is obtained by a Gray code assignment: Sl e
HG =00, HY =01, FG=11, FY = 10. This was the first state assignment : -
we tried in the previous subsection, and it was not as good as the sec-
ond assignment, even though the latter did not involve a minimum
number of bit changes.

Guidelines Based on Next State and Input/Quiputs Although the criterion
of minimum transition distance is simple, it suffers by not considering
the input and output values in determining the next state. A second set
of heuristic gunidelines makes an effort to consider this in the assign-
ment of states:

Highest priority: States with the same next state for a given input
transition should be given adjacent assignments in the state map.

Medium priority: Next states of the same state should be given adja-
cent assignments in the state map.

Lowest priority: States with the same output for a given input
should be given adjacent assignments in the state map.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 44

466 Chapterd Finite State Machine Optimization

@ ®
ifj ilk

Highest Priority

()
@ ®

Medium Priority
ii ij

Lowest Priority

Figure 9.26 Adjacent
assignment priorities.

G,1/0

0f1,
1/0

Figure 9.27 Reduced state diagram for

3-hit sequence detector.

The guidelines, illustrated in Figure 9.26 for the candidate states o and
B, are ranked from highest to lowest priority. The first two Tules attempt
to group together ones in the next-state maps, while the third rule per-
forms a similar grouping function for the output maps. We do a state
assignment by listing all state adjacencies implied by the guidelines, sat-
isfying as many of these as possible.

Example Applying the Guidelines Consider the state transition table
of Figure 9.13 for the 3-bit sequence detector. The corresponding state
diagram is shown in Figure 9.27. Let’s apply the state assignment goide-
lines to this state diagram.

The highest-priority constraint for adjacent assignment applies to
states that share a common next state on the same input. In this case,
states Sy’ and S, both have S; as their next state. No other states share a
common next state.

The medium-priority assignment is for states that have a common an-
cestor state. Again, Sg” and Sy’ are the only states that fit this description.

The lowest-priority assignments are made for states that have the
same output behavior for a given input. So. S1’s and Sy all output 0
when the input is 0, Similarly, S, 51, S3, and S output 0 when the
input is 1.

The constraints on the assignments can be summarized as follows:

Highest priority: (S3', 84')%
Medium priority: (83, 54')%

0/0: (Sy, S S3');
1/0: (Sp, S, 83, Sa'):

Lowest priority:

Since the finite state machine has four states, we can make the assign- .
ment onto two state bits. In general, it is a good idea to assign the reset
state to state map square 0. Figure 9.28 shows two possible assignments.
Both assign S, to 00 and place 55" and S, adjacent to each other.

Example Applying the Guidelines in a More Complicated Case Ag'
another example, let’s consider the more complicated state diagram of -

o o
971 0 1 & 0 1
0| Se 53 0 | Se 51
1 51 Si 1 S3 Si

(a) First state assignment () Second state assignment

Figure 9.28 Two possible state assignments.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 45

9.3 State Assignment 467

the 4-bit string recognizer of Figure 9.7. Applying the guidelines yields
the following set of assignment constraints:

Highest priority: (S35, Sy, (S5, S10)
Medium priority: (Sy, 5,), 2 X (S35, 847, (S5, S1p:

Lowest priority: 0/0: (Sy, 51, Ss, S3% S4) S
1/0: (Sm S1: Sz, 53', 34', 37: 510')§

Figure 9.29 shows two alternative assignments that meet most of
these constraints, We start with Figure 9.29(a) and first assign the reset
state to the encoding for 0. Since (53, S4) is both a high-priority and
medium-priority adjacency, we make their assipnments next. Sy is
assigned 011 and S is assigned 111.

We assign (Sy, Syg) next because this pair also appears in the high- and
medium-priority lists. We assign them the encodings 010 and 110, respec-
tively. Besides giving them adjacent assignments, this places S, near 5, Sg'
and S;, which satisfies some of the lower-priority adjacencies.

The final adjacency is (S, S;). We give them the assignments 001 and
101, This satisfies a medium-priority placement as well as the lowest-
priority placements.

01 11 10 01 1t 10
1
(h (o Qo .
00 Q2
0} Se 0
1 1
1 Qo 1 (o
8. 00 97)
0| So 1]
1 1
{1 Qo
G~ 00 01 11 10 10
0 S
1 S}b Sli}
(a)
Figure 9.29 State assignment example.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 46

468

Chapter 9 Finite State Machine Optirnization

The second assignment is shown in Figure 9.29(b). We arrived at it
by a similar line of reasoning, except that we assigned Sy and Sig the
states 100 and 110. The second assignment does about as good a job as
the first, satisfying all of the high- and medium-priority guidelines, as
well as most of the lowest-priority ones.

Applying the Guidelines: Why They Work The state assignment guidelines
attempt to maximize the adjacent groupings of 1’s in the next-state and
output functions. Let Py, Py, and Py be the next-state functions, expressed
in terms of the current state (%, Q. Qo and the input X. To see how effec-
tive the guidelines were, let’s compare the assignment of Figure 9.28{a)
with a more naive assignment: Sg= 000, 8, =001, S,=010, S5'=011,
S,'=100, S;'=101, 5y’ =110

Figure 9.30 compares the encoded next-state tables and K-maps for
the two encodings. The 1's are nicely clustered in the next state K-maps
for the assignmeni derived from the guidelines. We can implement P,
with three product terms and Py and P, with one each.

In the second assignment, the 1’s are spread throughout the K-maps,
since we made the assignment with no atternpt to cluster the 1’s ussfully.
In this implementation, the next-state functions P,, P, and P, each require
three product terms, with a considerably larger number of literals overall.

933 One Hot Encodings

So far, our goal has been dense encodings: state encodings in as few bits
as possible. An alternative approach introduces additional flip-flops, in
the hope of reducing the next-state and output logic.

One form of this method is called one hot encoding, A machine with
n states is encoded using exactly flip-flops. Each state is represented
by an n-bit binary code in which exactly 1 bit is asserted. This is the
origin of the term “one hot.”

Let's consider the traffic light finite state machine described earlier

in this section. The following would be a possible one hot encoding of

the machine’s stafe:

HG= 0001
HY = 0010
FG =0100
FY =1000

The state is encoded in four flip-flops rather than two, and only 1 bit is

asserted in each of the states.

Figure 9.31 shows the espresso inputs and outputs for this encoding
It yields eight product terms, as good as the tesult of Figure 9.23. How
ever, the logic is considerably more complex:

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 47

(S1);
(S2).
(S3)
(54,
(57}
(8o

Figur

9.3 State Assignment 469
{2 ¢ QG ‘ QO

Cmrant e 5;“_91 QXN 00 01 11 4o QXN 00 01 11 10 Oy XN 00 0 11 10
{So) 000 | 001 101 oo| 0| 0|0 @1 opj 010 1o | X ool 1]l oo |[X
5 111
}53 gg; 213 011 oo o lx oif o | o [0 | X o1} 1ol o |ix

; |
[(Ssaa)) | o0 110 ulll o |m|o n|ag i ra 1l ool
(S¢) 010 | 000 00O (o0 |0 ['i“i g [1111 ol o ll1
(Sw}110 | 000 00O P L1

PZ Py)
2 (h o (h Rerge)
Clslgfent i)l(\lf)gt S}t?t_el QX e 01 11 10 B X 00 01 11 10 QX o0 01 11 10
= = ; .-

(S0) 00O | 001 010 po| O [11)] O |T| o0 0|0 joO | 0O 00 ?g oo ([
(&3 001 | 011 100 s _ | =t -
($2) 010 | 100 oM HERENERE oi|[ITT e |1 o1y o |JT]j 0o |0
S5) 011 | 101 101 —— JL I N T O R B L

([8321]] 100 | 101 110 i 1} X | 1l ojo0 X |0 1lollill x| o

S§¢}101 | 000 000 - —
[[5'1701 110 | 000 000 ojo Afjx]eo Wihjjo|x]o0 [x| o

Py Py Py

Figure 9.30 State assignment example.

CeQyoQueQueQu+TLeQze Qe Qe
+TS e Qy0ye Qg Qp
Py=CeTLeQye Qe Qe Q+TSe Qoo Qe
=GCeTLeQye Qe Qe Qu+TSeQ3eQy° Qe
TLo Qe QreQeQptCeQyeQeie
+TSe Q30 Qe Qe Qp
ST =CeTLeQy0 Qe QeQu+CeQ50Q°0°Q
+TLoQqe Qe Q1o Qp+TSe Qe Qe Qe
Hy=CoTLe(Qye Qoo Q+CezeQreyo
+TL°C_z:a‘Qz’é1‘éu+ﬁ°és‘éz’(21°§0
+TSe Q50 0°0Q°Q
Hy=TSeQy00;0Q1°Qu+TS*Q30Q*Q*Qp
Fp=CoTLeQyeQeQueQu+TLeQqe Qe Qo
+CeQyeQuoQeQu+TSeye QpeyoQy
+TSeQye Qe Qy
TSeQy0 Qe Qe Qo+ TS Qe Qe Qe

o=
i

o
1! 1

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 48

470

Petitioner Cypres Semiconductor Corp. - Ex. CSC 1014, p. 49

Chiapter @ Finite State Machine Optimization

AT

.0 9

Lilb ¢ tL ts g3 a2 g1 q0
.ob p3 p2 p1 p0 st h1 hO f1 f0
.p 10

p-~- 0001 0001 00010

-0~ 0001 006C1 00010

11—~ 0001 0010 10010

--0 0010 0o01C 00110

--1 0070 0100 10110

10- 0100 0100 01000

0-- 0100 1000 11000

-1- 0100 1000 11000

-=0 001C 1000 01001

--1 0010 Q001 11001

.e

{a) Espresso input

LT

.09

ilh ¢ ti ts g3 g2 a1 qf
.ob p3 p2 p1 pl st h1 hO 1 10O
.p 8

10-0100 010001000
11-0001 001010010
-0-0001 000100010
0--0001 000100010
0--0100 100011000
-1-0100 100011000
—--0p010 101001111
--10010 010111111

.e

(b} Espresso output
Figure 9.31 Espresso input/output for tha one hot encoding of the traffic light state machine.

The product terms are all five and six variables, with two to five terms
per output. This is rather complex for discrete logic but would not
cause problems for a PLA-based design.

9.3.4 Computer Tools: Nova, Mustang, Jedi*

The previous subsections described various heuristic approaches for
obtaining a good state encoding. None are guaranteed to obtain the best
result, In this section, we examine three programs for computer-generated
state assignments.

“This subsection requires access to software developed at the University of Galifornia, Ber-
keley. T you do not have eccess to if, you may want to skim this section, or skip it alto-
gether.

HG HG (0010
HG HG 00010
HG HY 10010
HY HY GG110
HY FG 10110
FG FG 01000
0~- FG FY 11000
-1- FG FY 11000

FY FY 01001
1 FY HG 11001

:Figure 9.32 Nova inputs for the
“raffic light controller,

-start_codes
.code HG 00
code HY 11
code FG 01
code FY 10
-end_codes

#

#

BLIF Representation
(Y

.1
.0 7

10-01 0101000
11-00 1110000
~=01- 1000000
0010000
0000010
0001001
1011000
1011000
=11 0100110

:: Figure 9.33 Abbreviatad Novg
- outpts.

9.3 State Assignment an

The state assigninent guidelines of Section 9.3.2 place related states to-
gether in the state map, thereby clustering the 1’s in those functions, How-
Sver, we cannot evaluate an assignment fully without actually minimizing
the functions. When it comes to hand techniques, this means the K-map
method. If we have to use K-maps to minimize the functions for each pos-
sible assignment, we are not likely to examine very many of them!

Tools are available that follow the basic kinds of heuristics deseribed
above, Unlike hand methods, they are not limited to six state bits, they can
generate many alternative assignments rapidly, and they can evaluate the
derived assignments by invoking minimization tocls like espresso or misll
automatically. Three tools that provide this function are novag, for two-level
logic implementations, and mustang and jedi, for multilevel logic. Jedi is
somewhat more general; it can be used for general-purpose symbolic en-
codings, such as outputs, as well as next statas, We examine each of these
programs in the following subsections.

Nova: State Assignment for Two-Level Implementation The inputs to nova
are similar to the truth table format already described for espresso. The
input file consists of the truth table entries for the finite state machine
description. The latter are of the form:

inputs current state next_state outputs

Figure 9.32 shows the format for our example traffic light controller. The
states are symbolic; the inputs and ouipufs are hinary encoded. It ig
Important to separate each section with a space. We interpret the first
line as “if input 1 (car sensor) is unasserted and the state is HG (high-
way green), then the next state is HG thighway green) and the outputs
are 00010 (ST= 0, H;:H, =00 “green,” Fi:Fg =10 “red”).

Figure 9.33 gives the abbreviated novq output associated with the
state machine of Figure 9.32, assuming you have requested a “greedy™
state assignment. The “codes” section shows the state assignment:
HG =00, HY =11, FG=01, and FY =10. The espresso truth table is
included in the output, indicating that it takes nine product terms tc
implement the state machine,

Intuitively, the state assignment algorithms used by nova are much
like the assignment guidelines of Section 9.3.2, States that are mapped
by some input into the same next state and that assert the same oufput
are partitioned into groups. In the terminology of state assignment, these
are called input constraints, Nova attempts {o assign adjacent encodings
within the smallest Boolean cube to states in the same group, A related
concept is output construints. States that are next states of a comman
predecessor state are given adjacent assignments.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p.

472 Chapterd Finite State Machine Optimization

Nova implements a wide range of state-encoding strategies, any of
which you can select when you invoke the program:

@ Greedy: makes its state assignment based on satisfying as many of
the input constraints as it can. When using a greedy approach, nova
looks only at new assignments that strictly improve on those it has
already examined.

@ Hybrid: also makes its stale assignment based on satisfying the input
constraints, However, nova will examine some assignments that start
off looking worse, but may eventually yield a better assignment. This
yields better assignments than the greedy strategy.

@ /O Hybrid: similar to hybrid, except it tries to satisfy input and out-
put constraints. Its results are usually better than hybrid’s.

@ FExact: obtains the best encoding that satisfies the input constraints.
Since the output constrainis are not considered, this is still not the
best possible encoding,

B Input Annealing: similar to hybrid, except it uses a more sophisti-
cated method for improving the stale assignment,

~ @ One-Hot: uses a one-hot encoding. This rarely yields a minimum
product term assignment, but it may dramatically reduce the com-
plexity of the product terms (in other words, the literal count may be
greatly reduced).

m Random: uses a randomly generated encoding. Nova will generate
the specified number of random assignments. It will report on the
best assignment it has found (the one requiring the smallest number
of product terms),

For the traffic light controller, the various encoding algorithms yield.
the following assignments: T

Number of PLA
HG HY FG FY productterms Area.:

Greedy: 00 11 01 10 9 153 - -
Hybrid: 00 11 10 01] 153
Exact: 11 10 01 ©¢0 10 170
IO Hybrid: 00 01 11 10 g 153
IAnnealingg 01 10 11 10 9 153"
Random: 1 00 01 10 9 153

None of the assignments found by nova match the eight-product-term:
encoding we found in Figure 9.23. But we shouldn’t despair just because:
the tool did not find the best possible assignment. The advantage of th

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 51

93 State Assignment 413
s1 0 computer-based tool is that it finds reasonable solutions rapidly. Thus you
gz g can examine a variety of encodings and choose the one that best reduces
s0 0 your implementation task.
50 1 As another example, let’s consider the 3-bit sequence recognizer of
0 0 Figure 9.27. Its nova input file is shown in Figure 9.34. The state assign-
figure 938 Nova inputs for the 3-bit ments found by nove are the following:
string recognizer. Number of PLA
8 8, 8¢ 8 productterms Area
Greedy: o0 01 11 10 4 36
0 s0 510 ;
1 86 s2 0 Hybrid: o0 01 10 11 4 36
0 s1 83 0 .
181 S4 O Exact: 00 01 10 11 4 36
0 82 s4 0 : 7.
1 s2 s3 0 IO Hybrid: 00 16 01 11 4 36
- 83 87 0 IAnnealing: 00 01 11 10 4 36
0 s4 s7 0
1 84 s10 0 Random: 00 11 10 01 4 36
- 57 S0 0 . o
0 s10 so 1 Several of the assignments correspond to the ones found in Figure 9.28(a)
$10 s0 O and ().
Figure .35 Nova inputs for The last example is the 4-bit recognizer of Figure 9.7. The nova input
the 4-bit string recagnizer. file is given in Figure 9.35. Nova produced the following assignments:
Number of
S 54 5, Sy 54 S S;o . product terms
Greedy: 100 110 010 011 111 000 001 7
Hybrid: 101 110 111 001 011 000 010 7
Exact: 101 116 111 001 011 000 010 7
1O Hybrid: 110 011 001 100 101 000 010 7
I Annealing: 100 101 001 111 110 000 010 6 E
Random: 011 100 101 110 111 000 001 7 i
None of these assignments match those derived in Figure 9.29, since S, 3 : .} l g
has not been assigned 000. Figure 9.36 shows that the adjacencies that i
- were highly desirable based on the guidelines—that is, S3"adjacent to Sy ‘L
& Qo Sy adjacent to S,g, and S; adjacent to Sy—are satisfied by the input i
Q) 09 Oi 2 10 annealing assignment. | |L
0 Sﬂ rSz | Sib Y
B ‘ : Mustang The minimum number of product terms is a good criterion if o
1] So || Sufl Sy Sa you are going to implement the logic in a two-level form, such as a ‘ :
PLA. This is what nova uses. Literal count is better if you plan to : |
Figure 9,36 State map for the best implement the logic in multiple levels. Mustang takes this approach. Its H
Nova assignment of the finite state optimization criterion is to minimize the number of literals in the multi-
machine of Figure 9.7. level factored form of the next-state and cutput functions.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 52

474 Chapter 9 Finite State Machine Optimization

i3 Mustang has an input format similar to that of nova. The only difference
+ .0 5 is that the number of inputs, outputs, and state bits must be explicitly de-
. E‘}f_z HG HE 00010 c,:lar(:;d with . '1', -0, and . s directives. For example, the traffic light input
i -0- HG HG 00010 file is shown in Figure 9.37.

L 11— HG HY 10010 Mustang implements several alternative strategies for state assign-

::{1) m' Eg ?g:‘l ,1!8 ment, specified by the user on the command line. These include:

39: Eg ;5 ?:: ggg #@ Random: chooses a random state encoding,

:15 ie H 3;88? ~ ® Sequential: assigns the states binary codes in a sequential order.

-=1 FY HG 11001 ® One-Hoi: makes a one-hot state assignment.

Figure 937 Mustang input file for ® Fon-in: works on the input and fan-in of each state, Next states that

traffic light controller,

are produced by the same inputs from similar sets of present states
are given adjacent state assignments. The assignment is chosen to
maximize the common subexpressions in the nexi-state function, This
is much like the high-priority assignment guideline of Section 9.3.2.

B Fan-oui; works on the output and fan-out of each state, without
regard to inputs. Present states with the same outputs that produce *
similar sets of next states are given adjacent state assignments, .
Again, this maximizes the common subexpressions in the output and
next-state functions. This approach works well for finite state
machines with many outputs but few Inputs. It is much like the
medium- and low-priority assignment guidelines from Section 9.3.2.

Mustang derives the following assignments for the traffic light state

machine;
Number of
HG HY FG FY product terms
Random: 01 10 11 00 9
Sequential; 01 10 11 00 9
Fan-in: 00 01 10 11 3
Fan-out: 10 11 00 o1 8

The eight term encodings are actually better than any of those found by
nova. To determine the multilevel implementation, you must invoke misll
on the espresso file created by mustang. '
For example, the misll output for the fan-in encoding of the traffic
light controller is the following;

P1 = Hﬂ‘ TS+FU’T§+FD.Q1
Py=PyeCoQi+CoTLo(Qy+ TS e (Q
ST =Pye(Qu+Fye (g

Petitioner Cypres Semiconductor Corp. - Ex. CSC 1014, p. 53

Random:

93 State Assignment 475

Hy = Fo+Qi0 U

Hy = Qq°Qp
Fy= 0y
Fozﬁo'Qo

For comparison with nova, mustang obtains the following encodings
for the 3-bit string recognizer:

Number of
Sy S Sy 8, product terms
Random: 01 10 11 00 5
Sequential: 01 10 11 00 5
Fan-in: 10 11 00 01 4
Fan-out: 10 11 00 01 4

The number of product terms to implement an encoding is comparable
to the number needed for the nova encodings. However, don’t forget that
the goal of mustang is to reduce literal count rather than product ferms.

As a final example, let’s look at the mustang encodings for the 4-bit
recognizer:

: Number of
Sy S1 Sa Y 8y S7 8190 product terms
101 810 011 110 111 001 000 8

Sequential: 001 01¢ o011 100 101 110 111 8

Fan-in:

Fan-out:

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 54

100 010 011 000 001 101 110 8
110 010 011 100 101 800 001 6

It is interesting that in all three cases, mustang obtained an encoding
that is as good as any of the best encodings found by nova.

Jedi The final encoding program we shall examine is jedi. It is similar
to mustang in that its goal is to obtain a good encoding for a multilevel
implementation. It is more powerful than mustang because it can solve
general encoding problems: jedi can find good encodings for the outputs
as well as the states.

Like the other programs, jedi implements several alternative encod-
ing strategies that can be selected on the command line. Besides ran-
dom, one hot, and straightforward, the program supports input
dominant, output dominant, modified output dominant, and input/out-
put combination algorithms.

476 Chapter9 Finite State Machine Optimization

The jedi input format is similar to, but slightly differcnt from, the
mustang input format. We can {llustrate this best with an example.
Figure 9.38 shows the jedi input file for the traffic light controller. The
present state and pext states each count as a single input, even though
they may be encoded by several bits. The .enum S tates line tells jedi
that there are four states and that they should be encoded in 2 bits and
then gives the state names. The .enum Colors line tells jedi that there
are three output colors and that these should also be encoded in 2 bits.
You should think of these as enumerated types. The .itype and
.otype lines define the types of the inpuis and outputs, respectively.

The encodings obtained from jedi for the traffic light controller are:

Number of
HG HYy FG FY Gm Yel Red product terms
Input: a0 iy 11 01 11 01 00 9
Output: 00 01 11 10 10 11 01 9
Gombination: 00 10 11 01 10 a0 01 9
| Output : 01 o0 10 1 1w 0o 01 10
For the 3-hit string recognizer, the state assignments are:
Number of
i Sp 5 Sy 5S4 product terms
. Input: o1 00 11 10 4
Output: 11 01 00 10 4
Combination: 10 00 11 01 4
Output': 11 01 00 10 4
Finally, for the 4-bit siring recognizer, they are:
Number of
Sa 5, Sy Sy S5, 57/ S,y product terms
Input: 111 101 100 010 110 011 001 7
Ouiput: 101 110 100 010 000 111 011 7
Combination: 100 011 111 110 010 000 101 7
Cutput” 001 100 101 010 011 000 111 6
Let's look at one head-to-head comparison between mustang and
jedi. We will use the mustang encoding in which HG=00, HY =0%
FG =10, FY =11, Green=00, Yallow =01, and Red =10 and the jedi
encoding in which HG =00, HY =01, FG=11, FY =10, Green= 10,

Yellow = 11, and Red =01. The first encoding used eight product terms
in a two-level implementation; the second used nine.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 55

94 Choice of Flip-Flops 477

.3 b

.0 4

.enum States 4 2 HG HY FG FY

.enum Colers 3 2 GREEN RED YELLOW
.itype Boolean Boolean Boolean States
.otype States Boolean Colors Colers
- HG6 HG 0 GREEN RED

H&6 HG O GREEN RED

HG HY GREEN RED

HY HY YELLOW RED

HY FG YELLOW RED

FG FG RED GREEN

FG FY RED GREEN

- FG FY RED GREEN

0 FY FY RED YELLOW

FY HG RED YELLOW

Figure 938 Jediinput file.

1 =210
=0
1 =0l

| © -1
FE=10
P N o I O o Y

I
iy

The multilevel implementation for the mustang assignment was
already shown in the mustang section. It requires 26 literals. The jedi
multilevel implementation is

Py = HyeCoTL+Hy+F;»CoTL

Py = Hye TS +F,; +Fye TS

ST = PyeH + P e F,+HjeFys TS

Hy =Q1¢Q
Hy= Qi+ Qp
Fy = Hye Qq
Fy=Hy e

It has 27 literals. In terms of straight literal count, the mustang encoding
is better. If we examine the wiring complexity, the mustang encoding is
also slightly better.

54 Choice of Flip-Flops

After state reduction and state assignment, the next step in the design
process is to choose flip-flop types for the state registers. The issues are
identical to those in the counter case studies of Chapter 7.

Usually, we have to decide whether to use J-K flip-flops or D flip-
flops. J-K devices tend to reduce the gate count but increase the number
of connections. D flip-flops simplify the implementation process and are
well suited for VLSI implementations, where connections are at more of

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 56

178

Chapter 9 Finite State Machine Qptimization

a premium than gates. Because the CAD tools mentioned in the previous
section were developed to assist in VLSI implementations, it is not sur-
prising that they implicitly assume D flip-flops as the targeis of the
assignment. Their best assignment may not lead to the minimum logic
for a J-K flip-flop fmplementation.

The following procedure completes the finite state machine imple-
mentation, given a particular choice of flip-flops:

1. Given the state assignments, derive the next-state maps from the state
fransition table.

2. Remap the next-stafe maps given the excitation tables for the flip-flops
chosen to implement the state bifs.

3. Minimize the remapped next-state function.

9.4.1 Flip-Flop Choice for the Four-Rit Sequence Detector

Let’s illustrate the procedure with the 4-hit sequence detector, using the
state assignment of Figure 9.39, the encoded state transition table. Each
state has been replaced by its binary encoding given by the state assign-
ment. Figure 9.40 is the encoded next-state map, organized according to
the standard binary sequence and showing the don’t cares.

D Implementation To obiain the direct form for determining the state
machine implementation with D flip-flops, represent the encoded next-
state functions as K-maps. Figure 9.41 contains the four-variable K-maps
for the next-state functions Q. Gty Qo given the current state Qz, Q1
(), and the input L The reduced equations that describe the inputs fo
the D flip-flops are

DQ2+ = ‘Qz' Q1+ Qg
D = Q1'Qo‘1+az°éo'f+§z'é1
Dogs = az°Q1+Qz'f

Next State

Next State Output Present State =0 =1

Present State =1 000 011 010
000 (So 5 001 XXX XXX

011 (54 B T 0 010 111 101

010 (S2) F 011 101 111
101 (S 100 y 100 oo 000

101 100 100

100 {58 L o 110 000 000
110 (S10) 0 111 100 110

Figure 9.39 Encoded state transition table for 4-hit sequence detector. Figure 9.40 Encoded next-state map-

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 57

85 Finite State Machine Partiticning 479

Q1 There are six unique product terms and 15 literals. In terms of discrete
o) 00 01 11 10 gates, the implementation requires 3 three-input gates, 5 two-input -

ao| © 0 X | X gates, and 4 inverters, a total of 12 gates.

01 | 1 1 1] 1] J-K Implementation For the J-K implementation, we begin by remapping

the inputs based on the J-K excitation tables. Figure 9.42 gives the

Moo 1l1 remapped next-state table, and Figure 9.43 shows the K-maps. The JK
10| 0| o 1|1 logic equations become
Q2" Joze = @u Kgos = Qo
Q1 Jore = Q2 Ko = Qoel+Quel+ Qs
Qe 20 01 11 10 Taos = QueQy+Qgel Kaoe = Q2

pofla}l} 1| x | x|
— This implementation requires nine unique terms and 14 literals. The
oL Y| 01 0 gate count is 1 threeinput gate, 6 two-input gates, and 3 inverters, a
nl o o 1 0 total of 10 gates. This is slightly fewer than the D flip-flop implementa-
= tion. However, when you use structured logic such as a PLA to imple-
1wl o | 0o}o0 0 ment the functions, the option with fewer product terms is hetter. Tn . :
this case, it would be the D implementation. i

QT 95 Finite State Machine Partitioning
Q@ N\00_ 01 11 10

B — — 1 In the preceding sections, we described the design process for a single
oo J11| o | X | X monolithic finite state machine. The approach is reasonable for many strat-
o1 I T 1 egies for implementing a finite state machine, such as using discrete gates.

: However, when using some forms of programmable logic, we may
mlotololoa need to partition the machine. In some cases we cannot implement a
complex finite state machine with a single programmable logic compo-

0|0 [0 |0 0 nent. The machine might require too many inputs or outputs, or the
ot number of terms to describe the next-state or output functions might be

. too large, even after state reduction and Boolean minimization.
Figure 941 Next-state K-maps. o

Remapped Next State

Present State | =0 f=1 | J=0 =0 =1 I=1 l
000 011 010 | 011 XXX | 010 XXX il
001 XXX XXX | XXX XXX | XXX XXX : i
010 111 101 | 1X1 X0X | 1X1 X1X L
011 101 111 | 1XX X10 | 1XX Xo00
100 000 000 | X00 1XX | X00 1XX |
101 100 100 | X0X 0X1 | X0X 0X1
110 008 000 | XX0 11X | XX0 11X
11 100 110 | XXX 011 | XXX 001

Figure 9.42 Hemapped next-state table for JK flip-flops.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 58

480 Chapterd Finite State Machine Optimization

Figure 9.43 Remapped K-maps.

Example 1 FSM pariitioning To illustrate the value of state machine
_partitioning, suppose we have a finite state machine with 20 inputs and
10 outpuis (including next-state outputs). But we only bave programma-
ble logic components with 15 inputs and 5 outputs, We canmot imple-
ment this finite state machine with a single component.

Suppose we Can arrange the outputs in two sets of five, each of
which can be computed from different 15-element gubsets of the ariginal
20 inputs. Then we could partition the putput functions among two pro-
grammable logic components, as shown in Figure 9.44. Of course, it isn’t

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 59

95 Finite State Machine Partitioning 481

First Partition |

Next-State and
Output Functions

20 inputs

10 outputs 20 10

Second
Partition

@ R
T R~

Figure 9.44 Finite state machine partitioning on inputs and outputs.

always possible to find such a fortuitous partitioning. For example,
every output might be a function of 16 inputs.

If we cannot reduce the complexity of the finite state machine by simple
input/output partitioning, another way to “make it fit” is to partition the
single finite state machine into smaller, less complex, communicating finite
state machines. We examine this approach in the next subsection.

9.5.1 Finite State Machine Partitioning
by Intraducing ldle States

Partitioning the finite state machine makes sense if the nexi-state logic
is too complex to implement with the programmable logic components
at hand. The problem is that PALs provide a fixed number of product
terms per output function. We can make a trade-off between the number
of flip-flops needed to encode the state and the complexity of these
next-state functions. Qur idea is to introduce additional “idle” states :
into the finite state machine in the hope of reducing the number of i
terms in the next-state functions.

Example 2 FSW Paritioning For example, Figure 9.45 shows a subset
of a state diagram. We have chosen to partition the state diagram into
two separate machines, containing states S;, S, S3 and 5,, S; Sg |
respectively. The symbcls C; asscciated with the fransitions represent
the Boolean conditions under which the transition takes place.

What happens if we partition the state diagram, but a transition must
take place between the two pieces? We need to introduce idle states to
synchronize the activity between the two finite state machines. In
essence, the machine at the left hands control off to the machine at the

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 60

a82

Figure 9.46 State diagram fragment after partitioning.

Chapter 9 Finite State Machine Optimization

Figure 9.45 State diagram fragment before pattitioning.

right when a transition from S, to Sg takes place. The left machine must
idle in some new state until it regains comntrol, such as when there is a
transition from Sy back to Sp. In this event, the machine on the right
must remain idle until it regains control.

The tevised state diagrams are shown in Figure 9.46. We have intre-
duced two new states, S, and S, to synchronize the transitions across the
partition boundary. Here is how it works for the state sequence S, to Sgand
back to S,. Initially, the machines are in states S; and Sp. 1f condition G, is
true, then the left-hand state machine exits S, and enters its idle state, Sa.
At the same time, the right-hand machine exits Sg and enters Se.

Suppose that the right-hand machine sequences through some states,
eventually returning to Se. Throughout this time, the Jeft-hand machine

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 61

95 Finite State Machine Partitioning 483

remains in its idle state. If the right-hand machine is in 5S¢ and G, is
true, it next enters its idle state, Sp, At the same instant, the left-hand
machine exits S, returning to S,. While the Ieft-hand machine
sequences through states, the right-hand machine idles in Sg.

Rules for Partitioning We are ready to describe the rules for introducing
idle states into a partitioned finite state machine. We illustrate each rule
with an example from the partitioned state machine of the previous sub-
section. All the rules involve transitions that cross the partition boundary.

The first rule applies for a state that is the source of a transition that
crosses the boundary. The case is shown in Figure 9.47(a). The cross-
boundary transition is replaced by a transition to the idle state, labeled by

Cy &1
S 1 Sy 6 —

(a) Source state transformation

8 G205
Se -+ 5 > | 84 51

(b} Destination state transformation

Gyl
|

v

Ca s

Ca

[
!
| (;‘5"5‘2
!

(c} Multiple transitions with same source or destination

Gz Ss

(d) Hold condition for idle state

Figure 947 Rules for partitioning.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 62

481 Chapterd Finite State Machine Optimization
the same exit condition as the original transition. For example, the Sy-to-Sg
with the same condition 0 Sa

transition is replaced by @ transition

The second rule applies 0 the destination of a transition that crosses
the partition boundary. This is shown in Figure 9.47(b). The transition is
ith an exit transition from the idle state, labeled with the
original condition ANDed with the source state. For example, the transi-
tion from Sg to 54 18 replaced with a transition from S,. We oxit the idle
state when both G is true and the right-hand state machine is in Ss
Hence, the transition is labeled with the condition Gz ® Sp-

The third rule applies when multiple transitions share the same

gource or destination. This cass is illustrated in Figure 9.47(c). 1f a state
s the partition houndary, all of

is the source of multiple transitions acro
on to the idle state. The exit

these are collapsed into @ single transiti
conditions are ORed together to label the new {ransition. For example,
S, has transitions 1o states Sy and Sa These are replaced with a single

transition 10 Sa, labeled Gy + Cs
If a state is the target of multiple transitions across the boundary, a
d from the idle state to this state. The transition

single transition is adde
jated with the individual

is labeled with the OR of the conditions assocl
1 state machine. This case is illnstrated by the

transitions in the origina
{ransitions from S, and 53 10 S. These are replaced by 2 single transi-
tion from Sg to S5, 1abeled Gy @ Sp+ Ca® Sy

When all these rules bave been applied, the final rule describes the
gelf-loop (“hold”) condition for the idle states. Simply form the OR of
all of the exit conditions and invert it. This is shown in Figure 9.47(d}).

Consider the idle state Sy Its only exit condition is Gz ® Se- So its hold

condition is the inverse 0 S,

replaced W

¢ this, namely G, ¢ S¢-

81 Partitioning Consider the six-state finite state machine of
The machine implements a simple up/down counter. When
s up. When D is asserted, it

the input U is asserted, the machine count
counts down. Otherwise the machine stays in its current state.

The goal is to partition the machine into two communicating four-state
finite state machines. We might need to do this because the underlying
logic primitives provide sapport for two flip-flops within the logic block, a8
in the Xilinx CLB to be introduced in the next chapter.

Figure 9.48(D) shows the result of the partitioning. States Sy, Sy, and
§, form the coré of one machine and Ss. S,, and Sg form the other. We
also introduce the two idle states, Sa and Sg.

The machine at the left enters its idle state S when it is in Sy and D8
asserted or when it is in S, and U is asserted. It exits the idle state when
the machine at the right 18 in §; with tJ asserted or in Sy with I asserted.
Otherwise it stays in its idle state. The machine at the right works similarly.

To see how the machines communicate, let’s consider an up-count
to Sz and back to S, On reset, the machine on the left

Example 3 FE
Figure 9.48(a)-

sequence from Sy

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 63

95 Finite State Machine Partitioning 485

(b} After partitioning
Figure .48 Partitioning axample.

enters S, while the machine on the right enters Sp. With I7 asserted, the
left machine advances from S, to S5y to S, to S,. It will idle in this state
until the right machine is ready to exit Ss.

Meanwhile, the right machine helds in Sg until the left machine
enters S,. At the same time that the left machine changes to S,, the
right one exits Sy to S,. On subsequent clock transitions, it advances
from S5 to 5, to S5 to Sy, where it holds. When the right machine
changes from S5 to Sg, the left machine exits 5a to Sp, and the process
repeats itself. Down-count sequences work in an analogous way.

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 64

486

Chapter9 Finite State Machine Optimization

Chapter Review

This chapter has concentrated on the optimization of finite state
machines. We have emphasized the methods for state reduction, state
assignment, choice of flip-flops, and state machine partitioning. For state
reduction, we introduced the row matching and implication chart meth-
ods. These can be used to identify and eliminate redundant states, thus
reducing the number of flip-flops needed to implement a particular
finite state machine.

We then examined heuristic methods for state assignment, aimed at
reducing the number of product terms or literals needed to implement
the next-state and output functions. Since paper-and-pencil methods are
not particularly effective, we introduced computer-aided design tools for
state assignment that do a much better job in a fraction of the time:
nova, mustang, and jedi.

The latter part of the chapter focused on choosing flip-flops for imple-
menting the state registers of the finite state machine. J-K flip-flops tend to
be most effective in reducing the logic, but they require logical remapping
of the next-state functions and more wires than the simpler D flip-flops.

Finally, we discussed state machine partitioning methods, in particular
partitioning based on inputs and outputs and partitioning by introducing
idle states. These techniques are needed when we cannot implement a
finite state machine with a single programmable logic compenent.

In the pext chapter, we will examine implementation sirategies in
more detail. In particular, we will look at the methods for implementing
finite state machines based on structured logic methods, such as ROM,
programmable logic, and approaches based on MSI components.

Further Reading

The traffic light controller example used extensively in this chapter is
borrowed from the famous text by C. Mead and L. Conway, Introduction
to VLSI Systems, Addison-Wesley, Reading, MA, 1979. C. Roth’s book,
Fundamentals of Logic Design, West Publishing, St. Paul, MN, 1985, has
an extensive discussion of state assignment guidelines that formed the’
basis of our Section 9.3.2. Modern Logic Design by D. Green, Addison-’
Wesley, 1986, has a highly readable, short, direct description of state.
assignment (pp. 40-43). S

Nova’s approach to state assignment is described in T, Villa and A. San- ¢
giovanni-Vincentelli’s paper “NOVA: State Assignment of Finite State Ma-:,,
chines for Optimal Two-Level Logic Implementations,” given at the 26th;
Design Automation Conference, Miami, FL (June 1989). A revised and ox
panded version of the paper appeared in IEEE Transactions on Computer-
Aided Design in September 1990 (vol. 9, no. 9, pp. 1326-1334). Mustang’s: -
method is described in “MUSTANG: State Assignment of Finite State Ma-
chines Targeting Multi-level Logic Implementations,” by S. Devadas, B. Ma;::

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 65

Exercises 487

R. Newton, and A. Sangiovanni-Vincentelli, in IEEE Transactions on
Computer-Aided Design, vol. 7, no. 12 {December 1988). Jedi’s method for
symbolic assignment is described by Lin and Newton in “Synthesis of Mul-
tiple Level Logic from Symbolic High-Level Description Languages,” which
appeared in the Proceedings of the VLSI'89 Conference, Munich, West Ger-
many, in August 1989.

These tools (along with espresso and misll) are available for a very mod-
est charge from the Industrial Liaison Program Office of the Electrical Engi-
neering and Computer Scvience Department, University of California,
Berkeley. Detailed descriptions of how to invoke the tools, as well as exam-
ples of their use, can be found in the most current OCTTOOLS Manual dis-
tributed by that office.

Finite state machine partitioning is a topic that waxes and wanes in im-
portance. The original work was done in {ke Iate 1950s, became less inter-
esting during the era of VLSI, and is becoming more important again with
pervasive use of programmable logic in digital designs. The topic is not
well covered by most of today’s textbooks. One exception is M. Bolton’s
book, Digital System Design with Programmable Logic, Addison-Wesley,
Wokingham, England, 1990, which offers a section on the topic. The parti-
tioning rules introduced in Section 9.5.1 were obtained from an applica-
tions note in the Altera Applications Handbook, Altera Cozporation, Santa
Clara, CA, 1988.

Exercises

e Reduction) Use the implication chart method to reduce
-bit string recognizer state diagram of Figure 9.2.

(State Reduction) Given the state diagram in Figure £x9.2,
obtain an equivalent reduced state diagram containing a mini-
mum number of states. You may use row matching or implication
charts. Put your final answer in the form of a state diagram
rather than a state table. Make it clear which states have been
combined.

9.3 (State Reduction} Given the state diagram in Figure Ex9.3, deter-
mine which states should be combined to determine the reduced
state diagram. You may use row matching or implication charts.

9.4 (Siate Reduction) Given the state diagram in Figure Ex9.4, draw
the fully reduced state diagram. State succinctly what strings
cause the recognizer to output a 1.

9.5 (State Reduction) Starting with the state diagram of
Figure Ex9.5, use the implication chart method to find the mini-
mum state diagram. Which of the original states are combined?

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 66

