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338 Ehapter 8 Finite State Machine Design

 
Figure 8.8 State and output changes associated with the FSM fragments of Figure 8.7.

Now that Y is 1, FSM1 goes to state B on the next rising edge. In this
state, it will output a 0, but this is too late to affect FSMZ’S state change.
It remains in state D.

3.2: Essie fiestas Apsraach

The counter design procedure presented in the last chapter-forms the
core of a more general procedure for arbitrary finite state machines. You
will discover that the procedure must be significantly extended for the
general case.

8.2.1 Finite State Machine Design Procedure

Step 1: Understand the problem. A finite state machine is often
described in terms of an English-language specification of its behav-
ior. It is important that you interpret this description in an unambig-
uous manner. For counters, it is sufficient simply to enumerate the
sequence. For finite state machines, try some input sequences to be
sure you understand the conditions under which the various outputs
are generated.

Step 2: Obtain an abstract representation of the FSM. Once you
understand the problem, you must place it in a form that is easy to
manipulate by the procedures for implementing the finite state
machine. A state diagram is one possibility. Other representations, to
be introduced in the next section, include algorithmic state machines
and specifications in hardware description languages.

Step 3: Perform state minimization. Step 2, deriving the abstract
representation, often results in a description that has too many
states. Certain paths through the state machine can be eliminated
because their input/output behavior is duplicated by other function-
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Coin G m

Sensor uRelease
Mechanism

Figure 8.9 Vending machine block diagram.

the customer? Sometimes we have to make reasonable assumptions. For
the first question, we assume that the coin sensor returns any coins it
does not recognize, leaving N and D unasserted. For the latter, we
assume that external logic resets the machine after the gum is delivered.

Abstract Representations Once you understand the behavior reasonably
well, it is time to map the specification into a more suitable abstract
representation. A good way to begin is by enumerating the possible
unique sequences of inputs or configurations of the system. These will
help define the states of the finite state machine.

For this problem, it is not too difficult to enumerate all the possible
input sequences that lead to releasing the gum:

Three nickels in sequence: N, N, N ‘

Two nickels followed by a dime: N, N, D

A nickel followed by a dime: N, D

A dime followed by a nickel: D, N

Two dimes in sequence: D, D

This can be represented as a state diagram, as shown in Figure 8.10.
For example, the machine will pass through the states 80, S}, 83, S7 if
the input sequence is three nickels.

To keep the state diagram simple and readable,
tions that explicitly cause a state change. For example, in st
input N or D is asserted, we assume the machine remains in state 5’D (the
specification allows us to assume that N and D are never asserted at the
same time). Also, we include the output Open only in states in which it is
asserted. Open is implicitly unasserted in any other state.

we include only transi—

ate SD, if neither

State Minimization This nine—state description isn’t the "best” possible.
For one thing, since states 84, 55, Sfi, S7, and SB have identical behavior,
they can be combined into a single state.

To reduce the number of states even

state as representing the amount of money receive

further, we can think of each
(1 so far. For example,
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Figure l.1tl Vending machine state diagram.

it shouldn’t matter whether the state representing 10 cents was reached
through two nickels or one dime.

A state diagram derived in this way is shown in Figure 8.11. We cap-
ture the behavior in only four states, compared with nine in Figure 8.10.
Also, as another illustration of a useful shorthand, notice the transition

from state 10¢ to 15¢. We interpret the notation “N, D” associated with
this transition as “go to state 15¢ if N is asserted OR Dis asserted."

In the next chapter, we wili examine formal methods for finding a state

diagram with the minimum number of states. The process of minimizing
the states in a finite state machine description is called state minimization.

State Encoding At this point, we have a finite state machine with a

minimum number of states, but it is still symbolic. See Figure 8.12. for

the symbolic state transition table. The next step is state encoding.
The way you encode the state can have a major effect on the amount of

hardware you need to implement the machine. A natural state assignment
would encode the states in 2 bits: state Be as 00, state 5?? as 01, state 10¢ as

10, and state 15¢ as 11. A less obvious assignment could lead to reduced

hardware. The encoded state transition table is shown in Figure 8.13.
In Chapter 9 we present a variety of methods and computer-based

tools for finding an effective state encoding.

Implementation The next step is to implement the state transition table

after choosing storage elements. We will look at implementations based
on D and I—K flip—flops.
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Present Inputs

State D N

Out. 0 00 1
1 0
1 1

""fifié"""""5”?)"""""""""""U 1
1 0
1 1

_____TD'tfg”’”_fi"’i)o 1
1 0
1 1

"”7#T5':iw"_‘Xi‘X‘w "#1513””””” I

Figure 8.12 Minimized vending machine symbolic state transition table.

Next State Output

 D1 D0 Open
0 0 0
0 ‘1 0
1 D 0
X X X

’A'_D’A T"__*"(‘I’”' ' ‘ 
Figure 8.13 Encoded vending machine state ttansition table.

The K—maps for the D flip-flop implementation are shown in
Figure 8.14. We filled these in directly from the encoded state transition
table. The minimized equations for the flip—flop inputs and the output
become

 
D1 = Q1+D+QouN

D0 = N'QU+Q0'N+Q1'N+Q1.D

OPEN = Q1 ' Q0

The logic implementation is shown in Figure 8.15. It uses eight gates
and two flip-flops.
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              _L!1i'__  
 

K-map for Do K-map for Open

Figure 8.14 K-maps for Dflip-fiop implementation of vending machine.  
 

Figure 8.15 Vending machine FSM implementation based on D flip-flops.

To implement the state machine using I—K flip-flops, we must remap
the next-state functions as in Chapter 7. The remapped state transition
table for I—K flip—flop implementation is shown in Figure 8.16. We give
the K-maps derived from this table in Figure 8.17. The minimized equa-
tions for the flip-flop inputs become

 
IEMD+Q0.N K1 6

IoflQo‘N‘tQ1’D K0 QI'N  
Figure 8.18 shows the logic implementation. Using ]—K flip—flops moder-
ately reduced the hardware: seven gates and two flip-flops.

Discussion We briefly described the complete finite state machine design
process and illustrated it by designing a simple vending machine con-
troller. Starting with an English-language statement of the task, we first
described the machine in a more formal representation. In this case, we
used state diagrams. 
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3* 5
Present State

Q1 Q0

xowo NNNN
t I ii>4>aw

iiii INHHD DDDMRNN

.1620 |’JC;1'-—Vi00 01 1’1 10
 

    

Q0 rJ—n
no 01 11 10

 
K—map for In Kamap for K0

y Figure 8.17 K—maps tor J-Kflip-flop implementation of vending machine.

Since more than one state diagram can lead to the same input/output
behavior, it is important to find a description with as few states as possible.
This usually reduces the implementation complexity of the finite state ma-
chine. For example, the state diagram of Figure 8.10 contains nine states
and requires four flip-flops for its implementation. The minimized state 
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Q1
  

 
 
     

\reset

Figure 8.18 J»Ktlip-flop implementation for the vending machine example.

diagram of Figure 8.11 has four states and can be implemented with only
two flip—flops.

Once we have obtained a minimum finite state description, the next
step is to choose a good encoding of the states. The right choice can fur—
ther reduce the logic for the next~state and output functions. In the
example, we used only the most obvious state assignment.

The final step is to choose a flip—flop type for the state registers. In the
example, the implementation based on D flip-flops was more straightfor-
ward. We did not need to remap the flip—flop inputs, but we used more
gates than the I—K flip—flop implementation. This is usually the case.

Now we are ready to examine some alternatives to the state diagram
for describing finite state machine behavior.

8.3 Alternative State Machine Representations

You have already seen how to describe finite state machines in terms of

state diagrams and tables. However, it can be difficult to describe complex
finite state machines in this way. Recently, hardware designers have shifted
toward using alternative representations of FSM behavior tl’iat look more

like software descriptions. In this section, we introduce algorithmic state
machine (ASM) notation and hardware description languages (HDLs).
ASMs are similar to program flowcharts, but they have a more rigorous
concept of timing. l-lDLs look much like modern programming languages,
but they explicitly support computations that can occur in parallel.

You may wonder what is wrong with state diagrams. The problem is ‘
that they do not adequately capture the notion of an algorithm—a well—
defined sequence of steps that produce a desired sequence of actions
based on input data. State diagrams are weak at capturing the structure
behind complex sequencing. The representations discussed next do a

better job of making this sequencing structure explicit.
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\reset

Figure 8.18 J—Ktlip-tiep implementation for the vending machine example.

diagram of Figure 8.11 has four states and can be implemented with only
two flip—flops.

Once we have obtained a minimum finite state description, the next
step is to choose a good encoding of the states. The right choice can fur—
ther reduce the logic for the next-state and output functions. In the
example, we used only the most obvious state assignment.

The final step is to choose a flip-flop type for the state registers. In the
example, the implementation based on D flip-flops was more straightfor-
ward. We did not need to remap the flip-flop inputs, but we used more
gates than the PK flip—flop implementation. This is usually the case.

Now we are ready to examine some alternatives to the state diagram
for describing finite state machine behavior.

3.3 Alternative State Machine Representations

You have already seen how to describe finite state machines in terms of

state diagrams and tables. However, it can be difficult to describe complex
finite state machines in this way. Recently, hardware designers have shifted
toward using alternative representations of FSM behavior that look more

like software descriptions. In this section, we introduce algorithmic state
machine (ASM) notation and hardware description languages (HDLs).
ASMs are similar to program flowcharts, but they have a more rigorous
concept of timing. I-IDLs look much like modern programming languages,
but they explicitly support computations that can occur in parailel.

You may wonder What is wrong with state diagrams. The problem is
that they do not adequately capture the notion of an algorithm—a well-
defined sequence of steps that produce a desired sequence of actions
based on input data. State diagrams are week at capturing the structure
behind complex sequencing. The representations discussed next do a
better job of making this sequencing structure explicit.
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396 Chapter 8 Finite State Machine Design

8.3.1 Algorithmic State Machine Notation

The ASM notation consists of three primitive elements: the state box,
the decision box, and the output box, as shown in Figure 8.19. Each

major unit, called an ASM block, consists of a state box and, optionally,
a network of condition and output boxes. A state machine is in exactly
one state or ASM block during the stable portion of the state time.

Slate Boxes There is one state box per ASM block, reached from other
ASM blocks through a single state entry path. in addition, for each com-
bination of inputs there is a single unambiguous exit path from the ASM
block. The state box is identified by a symbolic state name—in a circle——

and a binary-encoded state code, and it contains an output signal list.
The output list describes the signals that are asserted whenever the

state is entered. Because signals may be expressed in either positive or
negative logic, it is customary to place an “L.” or “H.” prefix before the
signal name, indicating Whether it is asserted low or high. You can also
specify Whether the signal is asserted immediately (I) or is delayed (no
special prefix) until the next clocking event. A signal not mentioned in
the output list is left unasserted.

 

Condition Boxes The condition box tests an input to determine an exit

path from the current ASM block to the block to be entered next. The
order in Which condition boxes are cascaded has no effect on the deter-
mination of the next ASM block. Figure 8.20(a) and (b) show function-

ally equivalent ASM blocks: state B is to be entered next if IO and 11 are
both 1; otherwise state C is next.

State

EntryPati\   State Code"!

State Box

  State ,
Output List - Block

TwF

Condition
Box _

Conditional
Output List

    
Other ASM Blocks

Figure 8.19 Elements of the ASM notation.
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[a] State exit [b] Alternative

Figure 8.20 Functionally equivalent ASM blocks.

Output Boxes Any output boxes on the path from the state box to an
exit contain signals that should be asserted along with the signals men-
tioned in the state box. The state machine advances from one state to
the next in discrete rather than continuous steps. In this sense, ASM
charts have different timing semantics than program flowcharts.

Example The Parity Checker As an example, we give the parity
checker’s ASM chart in Figure 8.21. It consists of two states, Even and
Odd, encoded as 0 and 1, respectively. The input is the single bit X; the
output is the single bit Z, asserted high when the finite state machine is
in the Odd State.

We can derive the state transition table from the ASM chart. We sim-
ply list all the possible transition paths from one state to another and
the input combinations that cause the transition to take place. For exam-
ple, in state Even, when the input is 1, we go to state Odd. Otherwise
we stay in state Even. For state Odd, if the input is 1, we advance to
Even. Otherwise we remain in state Odd. The output Z is asserted only
in state Odd. The transition table becomes:

 
   

Figure 8.21 Parity checkerASM chart. Input X Present State Next State Output Z 
F Even Even Not asserted

T Even Odd Not asserted

F Odd Odd Asserted

T Odd Even Asserted
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Figure 8.22 Vending machine ASM chart.

Example Vending Machine Contreiier We show the ASM chart for the
vending machine in Figure 8.22. To extract the state transition table, we
simply examine all exit paths from each state. For example, in the state
0e, we advance to state 10¢ when input D is asserted. If N is asserted,
we go to state 5a. Otherwise, we stay in state On. The rest of the table
can be determined by looking at the remaining states in turn.

8.3.2 Hardware Description Languages: VHDL
ages provide another way to specify finite

state machine behavior. Such descriptions bear some resemblance to a
program written in a modern structured programming language. But
again, the concept of timing is radically different from that in a program
written in a sequential programming language. Unlike state diagrams or
ASM charts, specifications in a hardware description language can actu~
ally be simulated. They are executable descriptions that can be used to
verify that the digital system they describe behaves as expected.

VHDL (VHSIC hardware description language) is an industry standard.
Although its basic concepts are relatively straightforward, its detailed

Hardware description langu
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syntax is beyond the scope of this text. However, we can illustrate its capa-
bilities for describing finite state machines by examining a description of
the parity checker written in VI-IDL:

ENTITY parity_checker IS
PORT (

x, ch: IN BIT;
2: OUT BIT);

END parity_checker;

 
ARCHITECTURE behavioral OF parity_checker IS

BEGIN

main: BLOCK (ch = '1' and not ch'STABLE)

TYPE state IS (Even, Odd);
SIGNAL state_register= state := Even I

BEGIN state_even:

BLOCK ((state_register = Even) AND GUARD)
BEGIN

state_register <= Odd WHEN x = '1‘
ELSE Even

END BLOCK state_even;

BEGIN state_odd:
BLOCK ((state_register r Odd) AND GUARD)

BEGIN

state_register <= Even WHEN x = '1‘
ELSE Odd;

END BLOCK statemodd;

2 <= '0' WHEN state_register Even ELSE
'1' WHEN state_register Odd;

END BLOCK main;
END behavioral;

Every VHDL description has two components: an interface descrip-
tion and an architectural body. The former defines the input and output

connections or “ports” to the hardware entity being designed; the latter
describes the entity’s behavior.

The architecture block defines the behavior of the finite state

machine. The vaIues the state register can take on are defined by the
type state, consisting of the symbols Even and Odd. We write VHDL

statements that assign new values to the state register and the output Z,
depending on the current value of input X, whenever we detect a rising
clock edge‘
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400 Chapter 8 Finite State Machine Design

Checking for events like a clock transition is handled through the
VHDL concept of the guard, an expression that enables certain state-
ments in the description when it evaluates to true. For example. the
expression

ctk = '1' and not ctk‘stabte

true whenever the clock signal has recentlyis a guard that evaluates to is enabled for evaluation
undergone a U-to-l transition. The main block
when this particular guard becomes true.

The description contains two subblocks. state_even and state_odd,
that are enabled whenever the main guard is true and the machine is in
the indicated state. Within each subblock, die state register receives a
new assignment depending on the value of the input. Outside the sub-
blocks, the output becomes 0 when the machine enters state Even and 1
when it enters state Odd.

8,3,3 ABEL Hardware Description Language

ABEL is a hardware description language closely tied to the specifica-
tion of programmable logic components. It is also an industry standard
and enjoys widespread use. The language is suitable for describing
either combinational or sequential logic and supports hardware
specification in terms of Boolean equations, truth tables, or state dia—
gram descriptions. Although the detailed syntax and semantics of the
language are beyond our scope, we can highlight its features with the
parity checker finite state machine.

Let’s look at the ABEL description of the parity checker:

 

 

  
module parity

title 'odd parity checker state machine
Joe Engineer, Itty Bity Machines, Inc.‘

U1 device 'pZZv'iG';
  
 
  "Input Fins

ctk, X, RESET pin 1, 2, 3; 
  
  

"Output Pins

Q, Z pin 21, 22;
R, Z istype 'pos,reg'; 

  "State registers
SREG = EQ, Z];

EVEN = [0, DJ; " even number of 0's
ODD = [1, 1]; " odd number of 0's

  
  

 
   

Petitioner Cypress Semiconductor Corp. - EX. CSC 1014, p. 15



Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 16

8.3 Alternative State Machine Representations 40‘!

equations

[Q.ar, Z.ar] = RESET;”Reset to state 50

statemdiagram SREE
state EVEN:

if X then ODD

else EVEN;
state ODD:

if X then EVEN

else ODD;

te5t_vectors ([clk, RESET, X] —> [SREG])

[U,1,.X.] [EVEN];
E.C.,D,1] [ODD];

[.c.,0,1] [EVEN];
[.C.,0,1] [ODD];
[.C.,D,D] [ODD];

[.C.,0,1] [EVEN];
[.C.,0,1] [ODD];
[.C.,0,U] [ODD];
[.C.,0,D] [ODD];

[.C.,0,D] [ODD];
and parity;

An ABEL description consists of several sections: module, title, descrip-
tions, equations, truth tables, state diagrams, and test vectors, some of
which are optional. Every ABEL description begins with a module state-

ment and an optional title statement. These name the module and
provide some basic documentation about its function.

These are followed by the description section. The elements of
this section are the kind of device being programmed, the specification

of inputs and outputs, and the declaration of which signals constitute
the state of the finite state machine.

We must first describe the device selected for the implementation. It
is a P22V10 PAL, with 12 inputs, 1%) outputs, and embedded flip~flops

associated with the outputs. For identification within the schematic, we
call the device 111.

Next come the pin descriptions. The finite state machine’s inputs are
the clock 01k, data X, and the RESET signal. The outputs are the state Q

and the output Z. These are assigned to specific pins on the PAL. For
example, pin 1 is connected to the clock inputs of the internal flip-flops.

Many of the attributes of a PAL are selectable, so the description

may need to make explicit choices. The next line of the description tells
ABEL that Q and Z are POSitive logic outputs of the PAL’s internal flip—

flops (REG) associated with particular output pins. The P22V10 PAL
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also supports negative logic outputs as well as outputs that bypass the
internal flip—flops.

The state of the finite state machine is represented by the outputs Q
and Z. EVEN is defined as the state where Q and Z are 0. ODD is
defined as the state where Q and Z are 1.

The equa t 1' on section defines outputs in terms of Boolean equations
of the inputs. In this case, the asynchronous reset (. ar) inputs of the Q
and Z flip—flops are driven high when the RESET signal is asserted.

The state__di agram section describes the transitions among states
using a programming language—like syntax. If we are in EVEN and the
input X is asserted, we change to ODD. Otherwise we stay in EVEN.
Similarly, if we are in ODD and X is asserted, we return to EVEN.
Otherwise we stay in state ODD. ABEL supports a variety of control
constructs, including such things as case statements.

The final section in this example is for test__vectors. This is a.
tabular listing of the expected input/output behavior of the finite state
machine. The first entry describes what happens when RESET is
asserted: independent of the current value of X, the machine is forced to
EVEN. The rest of the entries describe the state sequence for the input
string 111011000. The ABEL system simulates the description to ensure
that the behavior matches the specified behavior of the test vectors.

The major weakness of an ABEL description is that it forces the
designer to understand many low-level details about the target PAL.
Nevertheless, the state diagram description is an intuitively simple way
to describe the behavior of a state machine.

  

8.4 Moore and Mealy Machine Design Procedure

There are two basic ways to organize a clocked sequential network:
I Moore machine: The outputs depend only on the present state. See

the block diagram in Figure 8.23. A combinational logic block maps
the inputs and the current state into the necessary flip-flop inputs to
store the appropriate next state. The outputs are computed by a com-
binational logic block whose only inputs are the flip—flops' state out—
puts. The outputs change synchronously with the state transition and
the clock edge. The finite state machines you have seen so far are all
Moore machines.

Mealy machine: The outputs depend on the present state and the
present value of the inputs. See Figure 8.24. The outputs can change
immediately after a change at the inputs, independent of the clock. A

K Mealy machine constructed in this fashion has asynchronous outputs.
lb

Moore outputs are synchronous with the clock, only changing with
state transitions. Mealy outputs are asynchronous and can change in
response to any changes in the inputs. independent of the clock. This
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Figure 8.23 Monre machine block diagram.
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Figure 8.24 Mealy machine trJack diagram.

gives Moore machines an advantage in terms of disciplined timing
methodology. However, there is a synchronous variation of the Mealy
machine, which we describe later.

8.“ State Diagram and ASE/E Chart Representatians

An ASM chart intended for Moore implementation would have no con-

ditional output boxes. The necessary outputs are simply listed in the
state box. Conditional output boxes in the ASM chart usually imply a
Mealy implementation.

Figure 8.25 shows the notations for Mealy and Moore state diagrams,
using the vending machine example. For Moore machines, the outputs
are associated with the state in which they are asserted. Arcs are labeled
with the input conditions that cause the transition from the state at the

tail of the arc to the state at its head. Combinational logic functions are
perfectly acceptable as arc labels.

In Mealy machines, the outputs are associated with the transition

arcs rather than the state bubble. A slash separates the inputs from the
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pm -E   

(3] Moore machine (in) Mealy machine

Figure 8.25 Moore and Meaiv machine state diagrams for the vending machine FSM.

if we are in state 10¢ and either N or D is
outputs. For example,

(:1. Any glitch on N or D could cause theasserted, Open will he asserts

gum to be delivered by mistake. . .The state diagrams in this figure are labeled more completely than _.l._-_. L
le, we make explicit the transitions '-

that cause the machine to stay in the same state. We usually eliminate
such transitions to simplify the state diagram. We also associate explicit
output values with each transition in the Mealy state diagram and each

agram. A common simplification places thestate in the Moore state di

output on the transition or in the state only when it is asserted. You
should clarify your assumptions whenever you draw state diagrams.

 
8.4.2 Comparison of the Two Machine Types

one, a Meaty machine can
Because it can associate outputs with transiti

fewer states than a Moore
often generate the same output sequence in
machine.

Consider a finite state machine that asserts its single output when-
ever its input string has at least two 1’s in sequence. The minimum
Moore and Mealy state diagrams are shown in Figure 8.26. The equiva-
lent ASM charts are in Figure 8.27.

To represent the 1’s sequence, the Moore machine requires two states to
distinguish between the first and subsequent 1’s. The first state has output
0, while the second has output 1. The Mealy machine accomplishes this
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8.4 Moore and MeaEy Machine Design Procedure 405

with a single state reached by two different transitions. For the first 1, the
transition has output 0. For the second and subsequent 1’s, the transition

has output 1. Despite the Mealy machine’s timing complexities, designers
like its reduced state count.

0/0 1/0

 
(3) Moore machine [b] Meely machine ' ‘

Figure 8.26 Two state diagrams with the same IIO behavior but different number of states.

 
 

     
[3) Moore machine (b) Mealy machine

Figure I.Z7 ASM equivalents of Figure 8.26.
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Figure 8.28
state machine,

 

 
Mystery Moore finite

 

8.11.3 Exampies anoore and MeaivMachines

Example Moore Maehine Description To better understand the timing
behavior of Moore and Mealy machines, let’s begin by reverse engineer-

ing some finite state machines. We will work backward from a circuit-
level implementation of the finite state machine to derive an ASM chart

or state diagram that describes the machine’s behavior.
Figure 8.28 shows schematically a finite state machine with single

data input X and output Z. The FSM is a Moore machine because the

output is a combinational logic function (in this case a trivial one) of
the state alone. The state register is implemented by two master/slave I-
K flip-flops, named A and B, respectively. The machine can be in any

one of up to four valid states. The output Z and the state bit B are thesame.

Signal Trace Method There are two systematic approaches to determin-

ing the state transitions: exhaustive signal tracing and extraction of the
next state/output functions. We examine the former here and the latter
in the next subsection.

Signal tracing uses a collection of input sequences to exercise the
various state transitions of the machine. To see how it works, let’s start

by generating a sample input sequence.
It is reasonable to assume that the FSM is initially reset and that it

has been placed in state A:0, B=D. Figure 8.29 contains the timing

waveform you would see after presenting the input sequence 1 D 1 0 1 U
to the machine. Because the FSM is implemented with master/slave flip-

flops, the state time begins with the falling edge of the clock. Input X
must be stable throughout the high time of the clock to guard against
ones catching problems.

The sequence of events in Figure 8.29 is as follows. The asserted
reset signal places the FSM in state 00. After the falling edge, input X
goes high just after time step 2.0. At the next rising edge, the input is
sampled and the next state is determined, but this is not presented to

 

X   

     

A i I iI I I a I

Z i ' 'W
\Reset ‘ I|—_‘T—]_m"”"TT“__Tl—l—I—lI I II I I I I I

Reset X=1 X:O X:1 X:D X=1\
AB=00 AB=OD\AB—11\AB:1}AB:13‘AB=10AB:01AB=00

 

Figure 8.29 A timing trace of the mystery Moore machine
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Figure 8.30 Partial state transition

table derived from the signal trace.

  
Figure 8.31 Nextstate K—maps. 
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8.4 Moore and Mealy Machine Design Procedure 407

the outputs until the falling edge at time step 40. After a short propaga-
tion delay, the state becomes 11. We express the transition as “a 1 input
in state 00 leads to state 11.”

During the next state time, X is 0, and the FSM stays in state 11 as
seen at time step 60. X now changes to 1, and at the next falling edge
the state changes to 10.

The input next changes to 0, causing the state machine to remain in
state 10 at time step 100. A transition to 1 causes it to change to state ()1
after time step 120. The final transition to 0 leaves the machine in state 00.

Figure 8.30 contains the partial transition table we deduce from this

input sequence. We would have to generate additional input sequences
to fill in the missing transitions. For example, an input sequence from
the reset state starting with a 0 would fill in the missing transition from
state 00. The sequence 1 1 1 1, tracing from state 00 to 11 to 10 to 01,
would catch the remaining transition.

Next Slate/Gutput Function Anaiysis Signal tracing is acceptable for a
small FSM, but it becomes intractable for more complex finite state
machines. With a single input and 2 bits of state, the example FSM has
eight different transitions, two from each of four states. And the number

of combinations doubles for each additional input bit and doubles again
for each state bit.

Our alternative method derives the next—state functions directly from
the combinational logic equations at the flip-flop inputs and the output
function from the flip-flop outputs. For the mystery machine, these are

Ia=X -Ka=X-B Z=B

Ib=X Kb=XeZ

We can now express the flip-flop outputs, AJr and Bi", in terms of the

excitation equations for the 1-K flip-flop. We simply substitute the logic
functions at the inputs into the excitation equations:

A+=jaofi+t€aeA=XoE+(X+B)o/i

B+=IboE+KboB =X-E+(X-Z+‘XoA)aB

The next-state functions, 21+ and B+, are now expressed in terms of the
current state, A and B, and the input X. We show the K-maps that corre—
spond to these functions in Figure 8.31.

The missing state transitions are now obvious. In state 00 with input
0, the next state is [1+ = (l and 3+: 0. hi state 01 with input 1, the next
state is A+: 1, 3+: 1. With its behavior no longer a mystery, we show
the ASM chart for this finite state machine in Figure 8.32. [n the figure,
we assume the following symbolic state assignment: 80:60, 81:01,
SE = 10, S3 :- 11.
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408 Chapter 8 Finite State Machine Design

 
Figure 8.32 ASM chartfor the mystery Moore machine.

Exempie Meaty Machine Description Continuing with our reverse engi-
neering exercise, consider the circuit of Figure 8.33. Once again, the FSM
has one input, X, and one output, Z. This time the output is a function of
the current state, denoted by A and B, and the input X. The state register
is implemented by one D flip-flop and one master]slave I—K flip—flop.

Before examining a signal trace, we must understand the conditions
under which the Mealy machine’s inputs are sampled and the outputs
are valid. The next state is computed from the current state and the
inputs, so exactly when are the inputs sampled? The answer depends
on the kinds of flip-flops used to implement the state register. In the
example, our use of a master/slave flip-flop dictates that the inputs must

 
 

 
\X

  
Figure 8.33 Circuit schematic of the mystery Mealy machine.
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be stable during the high time of the clock (to avoid ones catching) and
must be valid a setup time before the falling edge.

Technically, the outputs are valid only at the end of the state time,
determined by the falling edge of the clock. In other words, the output
for the current state is valid just as the machine enters its next state! If

we are using a master/slave flip—flop and if the inputs do not change
during the high time of the clock, then the outputs may also be vflid
during the clock high time.

Negative edge-triggered systems require that the inputs be stable
before the falling edge that delineates the state times. This means that
the outputs cannot be determined until just before the falling edge. The >
output remains valid only as long as it takes to compute a new output
in the new state. i

Similarly, for positive edge—triggered systems the outputs are valid at
the rising edge. Again, the output is considered valid just before the 1
clock edge that causes the machine to enter its new state. :

Figure 8.34 gives the timing waveform that corresponds to the input
sequence 10101, after a reset to state 00. In state 00, reading a 1 keeps 3,
the machine in state 00 (time step 40). !

Reading a 0 then advances the machine to state 01 (time step 60).

The waveform for output Z has a glitch. The valid output is determined 3
only at the end of the state time. in this case, the output is 0. ‘5

A 1 in state 01 leads to state 11 (time step 80). Again, the output in i
this state is the value of Z at the failing edge and thus is 1.

Reading a O in state 11 moves us to state 10 (time step 100), with the
output continuing to he asserted despite the momentary glitch.

A 1 in state 10 leads us to state 01 (time step 120). The output goes

low and will stay that way as long as the input X stays high.

 

 

   
  
 

A ._.__ i ir—P—i—
B : i : ' ' :r

1 i : t i i '
Z S I i i i i i Tm
\Reset i u : : "—i— \i XMl \i X_1Reset X=1 \ X=0 \ X=1 \ X=D

AB=DO AB=00 AB=00 AB=01 AB=11 A3210 [13:01
Z=D Z=0 Z=0 Z=0 Z21 Z=1 Z=0

Figure 8.34 Signal trace of the mystery Mealy machine.
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419 Chapter 8 Finite State Machine Design

We show the partial state transition table in Figure 8.35. The input
sequence produced only five of the eight state transitions. To complete
the state diagram, we would have to generate additional sequences to
traverse the missing transitions.

Alternatively, we can discover the comp
iyzing the next—state and output functions dire
Moore machine:

lete set of transitions by ana-

ctly, inst as we did in the  
Figure 8.35 Partial state transition At = B (A + X) = A o B + B . X
table derived from the signal trace. + n , _ m

B sfb-B+Kb-B=(A€B}C)-B+XOB

=(7t.§Z+AaX)E+X-B

=A0E-X+H-§0X+BOX

 

Z =A0X+BOX

 
Since A is a D flip—flop, the Jfunction for A+ is exactly the combinationai
logic function at its input. B is a I—K flip—flop, so we determine the func-
tion for BJr by substituting the logic functions at the I and K inputs into
the I-K excitation function.

We give the next-state and output K-maps in Figure 8.36. The miss—
ing transitions are from state 01 to 00 on input 0, 10 to 00 on input 0,
and 11 to 11 on input 1. The respective outputs are 1, D, and 1. Assum—
ing that SO, 81, 32» and S3 correspond to encoded states 00, 01, 10, 11,
we show the ASM chart for the mystery machine in Figure 8.37.

and Butputs in Mealv and Moore Machines Suppose
ine has M inputs and N outputs and is being
flops. You might ask a number of questions to

bound the compiexity of this state machine. For example, what are the
minimum and maximum numbers of states that such a machine might
have? With L flip—flops, the implementation has the power to represent
2L states. But for a specific FSM as few as 1 and as many as 2" of these
might be valid states.

What are the minimum and maximum numbers of state transitions
that can begin in a given state? Since there must be an exit transition for
each possible input combination, the minimum and the maximum are
the same: 2M transitions.

A similar question involves the minimum and maximum numbers ofan have
state transitions that can end in a given state. Because we 0
start—up states reachable only on reset, the minimum number of input
transitions is 0. Since a single state could conceivably be the target of
all the transitions of the finite state machine, the maximum number 0f
input transitions is 2M * 21', the number of possible input combinations
multiplied by the number of states.

States, Transitions,

that a given state mach
implemented using L flip

 
Figure 8.36 Nextwstate and output
K-maps.   
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A final question is the minimum and maximum numbers of patterns
that can be observed on the machine’s outputs. The minimum number

of unique output patterns is 1, of course. Every state and every transi-
tion can be associated with the same pattern.

The maximum number depends on the kind of machine. For a Mealy
machine, the maximum number of output patterns is the smaller of the

number of transitions, 2M * 21', or the number of possible output pat~
terns, 2”. If the number of transitions exceeds the number of possible
output patterns, then some must be repeated. In the Moore machine, the
maximum is the smaller of the number of states, 2L, and the number of

possible output patterns, 2N. If the number of states exceeds the number

of output patterns, then some patterns will also need to be repeated.

As an example, consider a Moore machine with two inputs, one flip
flop, and three outputs. The state, transition, and output bounds are:

Minimum number of states: 1

Maximum number of states: 2

Minimum number of output transitions (per state): 4

Maximum number of output transitions (per state): 4

Minimum number of input transitions (per state): 0

Maximum number of input transitions (per state): 3

Minimum number of observed output patterns: 1

Maximum number of observed output patterns: 2

In this case, the output patterns are limited by the number of states.

  
  

 
Figure 8.37 ASM chart for the mystery Mealy machine.
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1312 Chapter 8 Finite State Machine Design

nes The glitches in the output in Figure 8.34
are inherent in the asynchronous nature of the Mealy machine. As you
have already seen, glitches are undesirable in real hardware controllers.
But because Mealy machines encode control in fewer states, saving on
state register flip-flops, it is still desirable to use them.

This leads to alternative synchronous design styles for Mealy machines.
t a synchronous Mealy machine is toSimply stated, the way to construe

break the direct connection between inputs and outputs by introducing
storage elements.

One way to do this is to synchronize the Mealy machine outputs
with output flip-flops. See Figure 8.38. The flip-flops are clocked with
the same edge as the state register. This has the effect of converting the
Mealy machine into 3 Moore machine, by making the outputs part of the
state encoding! However, this machine does not have exactly the same
input]output behavior as the original Mealy machine (can you figure out
why?) We will have more to say about synchronous Mealy machines in
Chapter 10.

Synchronous Mealy Machi

Discussion In general, fully synchronous finite state machines are
much easier to implement and debug than asynchronous machines. If
you were using discrete TTL components, you would usually prefer the
Moore machine organization, even though it may require more states. ‘
You should use edge—triggered flip-flops for the state registers. " ‘

Synchronous Mealy machines can be constructed in TTL logic, but
the designer must be careful. The approach leads to more complex
designs that may affect the input/output timing of the FSM. You should
use asynchronous Mealy machines only after very careful analysis of the
input!output timing behavior of the finite state machine.

Clock  
  

 

ZrXi —-—¥
Outputs

Inputs 4—4. Combinations]
Logic for

Outputs and

-——>

Next State

State Register Clock Feiilaidzck

Figure 8.38 Synchronous Mealy machine block diagram.
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We are now ready to complete the finite state machine design process
introduced in Chapter 8. The steps of Chapter 8 yield an abstract 2
description of the state machine. This may be a state diagram, an ASM 1
Chart, or a hardware description language specification. Deriving a sym— 1
bolic state transition table from one of these is straightforward. In this
chapter, we concentrate on state minimization, state assignment, and
choice of flip-flops.

We show why finite state machine “optimization” (improvement
might be a better word) is still important, even in today’s era of very
large scale integrated circuits. We present pencil-and-paper methods, as
well as more formal techniques suitable for computer implementation,
for reducing the number of states and for choosing a state encoding.

Then we examine the approaches for choosing the machine’s flip-
flops and how the choice affects the next-state and output combinational
functions. The right choice of flip-flop leads to a smaller gate count and
thus fewer components to implement the machine.

Finally, we develop techniques for partitioning complex finite state
machines into simpler, smaller, communicating machines. You may be
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forced to partition your state machine because it cannot fit into a given
programmable logic component. This could arise, for example, because of
limited logic resources, such as input/outputs, product terms, or flip-flops.

In this chapter, we emphasize the following techniques and concepts:

l Procedures for optimizing a finite state machine. You will learn the
methods for state minimization and state assignment.

a Application of modern computer-aided design tools for state assign-
ment. CAD tools make it possible for you to evaluate the implemen-

tation complexity of alternative state assignments very rapidly.

I Partitioning methods. You will learn the techniques for breaking
finite state machines into smaller, communicating state machines

that are well suited for implementation with programmable logic.

Bit Motivation for Serialization

To review, the finite state machine design process consists of (1) under-

standing the problem, (2) obtaining a formal description (ultimately, a
symbolic state transition table), (3) minimizing the number of states, (4)
encoding the states, (5) choosing the flip-flops to implement the state
registers, and finally (6) implementing the finite state machine’s next
state and output functions. This chapter starts at step 3 and carries us
through to the final implementation at step 6, using methods based on
discrete logic gates. We discuss the use of programmable logic for finite
state machine implementation in the next chapter.

9.1.1 Two State Diagrams, Same E/D Behavior

In the age of very large scale integrated circuits, why should we bother -
to minimize a finite state machine implementation? After all, as long as.

the input/output behavior of the machine is correct, it really doesn’t
matter how it is implemented. Or does it? '

Figure 9.1 shows two different state diagrams for the odd parity checker.
of Section 8.2.. They have identical output behavior for all input strin H
You should try some inputs to convince yourself. We define equivalence
finite state machines as follows. Two machines are equivalent if their in-

put/output behavior is identical for all possible input strings.
For a particular finite state machine, there are many equivalent

forms. Rather than reusing states while deriving the state diagram, you
could simply introduce a new state whenever you need one (to keep the
number of states finite, you will need to reuse some of them, of course

The two implementations of the state diagrams of Figure 9.1 are C -
tainly not the same. The machine with more states requires more fl
flops and more complex next-state logic.
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Figure 9,! Two equivalent state diagrams torthe add parity checker.

9.1.2 Advantages of Minimum States

In general, you will find it is wort
machine in as few states as

 
hwhile to implement the finite state

possible. This usually reduces the number 7
of logic gates and flip—flops you need for the machine’s implementation. I

Similarly, judicious mapping between symbolic and encoded states can
reduce the implementation logic. For the parity checker, our implementa-
tion in Chapter 8 required no gates because we made a g
ment that naturally matched the control input to the to

" A state diagram with It states mu

(W flip—flops, where 21“] < n S 21‘. By reducing the number of states to 2k‘1
or less, you can save a fiip~flop. For example, suppose you are given a
finite state machine with five state flip—flops. This machine can represent
up to 32 states. If you can reduce the number of states to 16 or less, you
save a flip-flop.

Even when reducing the number of states is
not enough to eliminate _, la flip-flop, it still has advantages. With fewer states, you introduce more

don’t-care conditions into the next-state and output functions, making
their implementation simpler. Less logic usually means shorter critical
timing paths and a higher clock rate for the system.

More important, today’s programmable logic provides limited gate
and flip-flop counts on a single programmable logic chip. A typical pro—
grammable logic part might have “2000 gate equivalents” (rarely
approached in practice) yet provide only 64 flip~flopsl An important
goal of state reduction is to make the implementation “fit” in as few
components as possible. The fewer components you use, the shorter the
design time and the lower the manufacturing cost.

ood state assign-
ggle flip-flop.

st be implemented with at least k
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452 Chapter 9 Finite State Machine Optimization

State reduction techniques also allow you to be sloppy in obtaining
the initial finite state machine description. If you have introduced a few
redundant states, you will find and eliminate them by using the state
reduction techniques introduced next.

9.2 State Minimization/Reduction

State reduction identifies and combines states that have equivalent
"‘behavior.” Two states have equivalent behavior if, for all input combi-

‘GQ nations, their outputs are the same and they change to the same orequivalent next states.
For example, in Figure 9.1(b), states S0 and 82 are equivalent. Both

states output a 0; both change to 51 on a 1 and self-loop on a 0. Com-
bining these into a single state leads to Figure 9.1(a). On all input
strings, the output sequence of either state diagram is exactly the same.

‘ Algorithms for state reduction begin with the symbolic state transition
table. First, we group together states that have the same state outputs
(Moore machine) or transition outputs (Mealy machine). These are poten-
tially equivalent, since states cannot be equivalent if their outputs differ.

Next, we examine the transitions to see if they go to the same next state
for every input combination. If they do, the states are equivalent and We
can combine them into a renamed new state. We then change all transitions
into the newly combined states. We repeat the process until no additional

ates can be combined.

In the following two subsections, we examine alternative algorithms for
state reduction: row matching and implication charts. The former is a good
pencil-and—paper method, but does not always obtain the best reduced state
table. Implication charts are more complex to use by hand, but they are
easy to implement via computer and do find the best solution.

We can always combine the two approaches. Row matching quickly
reduces the number of states. The more complicated implication chart
method, now working with fewer states, finds the equivalent states
missed by row matching more rapidly.

9.2.“! Row-Matching Method

Let’s begin our investigation of the row—matching method with a detailed
example. We will see how to transform an initial state diagram for a
simple sequence detector into a minimized, equivalent state diagram.

Four-Bit Sequence Detector: Specification and initial State Diagram Let’s
consider a sequence-detecting finite state machine with the following
specification. The machine has a single input X and output Z. The out-
put is asserted after each 4—bit input sequence if it consists of one of the
binary strings -Ql.10,91_"_101_0- The machine returns to the reset state after
each 4-bit sequence.
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9.2 State Minimization/Reduction 453

We will assume a Mealy implementation. Some sample behavior of
the finite state machine is

X : 0010 0110 1100 1010 0011

Z : 0000 0001 0000 0001 0000

The output is asserted only after the previous four serial inputs match
one of the specified strings. Also, the input patterns do not overlap: the
machine makes a decision to assert its output after each group of 4 bits.

Because this finite state machine recognizes finite length strings, we
can place an upper bound on the number of states needed to recognize
any particular binary string of length four. Figure 9.2 shows the state
diagram. There are 16 unique paths through the state diagram, one for
each possible 4—bit pattern. This adds up to 15 states and 30 transitions.

We highlight the paths leading to recognition of the strings 0110 and
1010 in the figure. Only two of the transitions have a 1 output, repre—
senting the accepted strings.

Four-Bit Sequence Detector: State Table and Row-Matching Method We
can combine many of the states in Figure 9.2 without changing the
input/output behavior of the finite state machine. But how do we find

these equivalent states in a systematic fashion?

First, we look at the state transition table, as shown in Figure 9.3.
This table is in a slightly different format than we have seen so far. It

contains one row per state, with multiple next—state and output columns
based on the input combinations. It gives exactly the same information
as a table with separate rows for each state and input combination.

The input sequence column is a documentation aid, describing the
partial string as seen so far. When read from left to right, it describes the
sequence of input bits that lead to the given state.

are 0/ {V1 0! 1/0
0”“ 1/” 1m 1m 1/ c/
 
 

Figure 9.2 Original state diagram for 4-bit string recognizer.
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Next State
X=U X=1
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So So So

ow-SAJL “Sunnis”,
,4 “£11.“, _ Sonja,

512 _, :S_o So
313 So So
514 so So

Figure 9.3 Initial state transition table torthe 0110 or 1010 sequence detector.

ows of the state transition table to find any
(1 output values (hence the term “row match-

an combine S10 and 312. Let’s
all transitions to Sm or 312.

Next we examine the r

with identical next—state an

ing”). For this finite state machine, we c
call the new state 510' and use it to rename
The revised state table is shown in Figure 9.4.

w-Matching iteration We continue match-
In Figure 9.4, $7, 53, 89,

d outputs. We combine
renamed transitions, is

Four-Bit Sequence Detector: Bo
ing rows until we can no longer combine any.
S“, 513, and 314 all have the same next states an
them into a renamed state 87’. The table, with
shown in Figure 9.5.

Dg:,.+"UE;
Next State

ence Present State‘ X=0 X:1 X=D X=1 

 
 

 

 

     

 

 

Input Sequ
) Reset $1 32 a 0 00 $3 84 {3 0

1 55 SE 0 0
d 00 S7 53 0 0

0'1 39 5'13 [3 0
10 Sn 5'10 0 0
11 S13 S14 0 0

W < # "—51? Wfisoq ”U” "U"1001 SQ Sn 0 0 1
'010 So So 0 0 1

011 01' 0—,: Sn 07 1 T)
PTO—(T 311 J3T o 7

i110 513 So SD111 S14 So SD 

Figure 9.4 Revised state transition tabie after 310 and S12 combined.
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Next State Output

input SequencelPresent State X=D X=1 X=0 X=1
 
 

 
 

     
Reset So S; 32 0 0

— _ 0 731 . "33 $4 - 0 0
1 SE, 55 Se, 0 U

“"— 7 l 09" 33 3‘7 577 0 N _ Oi

I 01 ’ 4 S? 5'10 " 0 7” OT10 5'5 35: 3'10 0 o

‘ fl" Se 5'? 3'7 0 0:
not (all or 1011 8‘7 .53 ' Sn 0 o

01.1 or 101 5'10 35 So '1 0

figure 9.5 Revised state transition table after 37, SB, 59, S11, S13, SM combined.

Next State Output

Input Sequence Present State X=D X21 X=0 X=1 

  
 

 

 

# Reset_ Sn 7 S1 52 __ 0 0
e 51 35 8.; ' 0 0
1 52 SJ; S‘a u a

on or 11 3'3 3'7 3'7 0 0
0'1 or 10 SJ; 7 8'7 3'19 0 0

not (011 or 101)" 8‘7 i So so ’ u o
011 or 101 3'10 39 So 1 0

Figure 9.6 Final reduced state transition table after S3, SB and S4. 85 combined,

Now states 83 and 86 can be combined, as can 8,; and 85. We call the
combined states 83’ and 54’, respectively. The final reduced state transition
table is shown in Figure 9.6. In the process, we have reduced 15 states to
just 7 states. This allows us encode the state in 3 bits rather than 4. The re-
duced state diagram is given in Figure 9.7.

Limitations of the Row-Matching Method Unfortunately, row matching

does not always yield the most reduced state table. We can prove this
with a simple counterexample. Figure 9.8 shows the state table for the
three-state odd parity checker of Figure 9.1. Although states So and 32
have the same output, they do not have the same next state. Thus, they

F' 97 R d d t t d' 1‘ cannot be combined by simple row matching. The problem is the self-
Igure ' e we we Iagram or loop transitions on input 0. If we combined these two states, the self-

4-bltstnng recognizer. loop would be maintained, but this is not found by row matching. We
need another, more rigorous method for state reduction.

  
 

 Next State
Present State

  
Figure 9.8 State table for three-state odd parity checker.
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9.2.2 impiication Chart Method

The implication chart method is a more systematic approach to finding
the states that can be combined into a single reduced state. As you
might suspect, the method is more complex and is better suited for
machine implementation than hand use.

Three-Bit Sequence Detector: Specification and initial State Table We illus-
trate its use with another example. Your goal is to design a binary
sequence detector that will output a ’1 whenever the machine has
observed the serial sequence 010 or 110 at the inputs. We call this
machine a 3—bit sequence detector. Figure 9.9 shows its initial state table.

Data Structure: The Implication Chart The method operates on a data
structure that enumerates all possible combinations of states taken two
at a time, called an implication chart. Figure 9.10(a) shows the chart
with an entry for every pair of states. This form of the chart is more
complicated than it needs to be. For example, the diagonal entries are
not needed: it does not reduce states to combine a state with itselfi And

Next State Output

Input Sequence Present State X=0 X=1 +X=0 X=1  
  

Reset Su S1 33 0 U
U "31 .33 S4 0 0
1 32 $5 83 D 0

DD b3 36 T50 0—" 0
01 34 So So 1 O
10 35 59 Su 0 0
11 Se 30 So 1 0

Figure 9.9 initial state transition table for the 3-bit sequence detentor.

  

Sr} S1 32 83 54 SE
[13)
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3.2 State Minimization/Reduction 457

the upper and lower triangles of entries are symmetric. The chart entry
for SI and 5‘] contains the same information as that for S]- and Si. Thus,
we work with the reduced structure of Figure 9.100)).

We fill in the implication chart as follows. Let X17 be the entry whose
row is labeled by state SI- and whose column is labeled by state Sf. If we
were able to combine states Si and Sj, it would imply that their next—
state transitions for each input combination must also be equivalent.
The chart entry contains the next—state combinations that must be equiv—
alent for the row and column states to be equivalent. If 31- and 5'] have
different outputs or next—state behavior, an X is placed in the entry. This
indicates that the two states can never be equivalent.

Three-Bit Sequence Detector: initial Implication Chart The implication ’
chart for the example state table is shown in Figure 9.11. SD, 81. 82. S3,
and 85 have the same outputs and are candidates for being combined.
Similarly, states 84 and Se might also be combined. Any combination of
states across the two groups, such as 81 and S4, is labeled by an X in
the chart. Since their outputs are different, they can never be equivalent.

To fill in the chart entry for (row) 31 and (column) SO, we look at the
next-state transitions. 80 goes to 81 on D and 82 on 1, while 5'1 goes to
33 and S4, respectively. We fill the chart in with [ST—5'3, the transitions
on G, and 82—84, the transitions on 1. We call these groupings implied
state pairs. The entry means that 80 and 3: cannot be equivalent unless
81 is equivalent to $3 and $2 is equivalent to S4. The rest of the entries
are filled in similarly.

At this point, the chart already contains enough information to elim-
inate many impossible equivalent pairs. For example, we already know
that 52 and S4 cannot be equivalent: they have different output behavior.
Thus there is no way that SO can be equivalent to 31.

Finding these cases is straightforward. We visit the entries in
sequence. For example, start with the top square in the first column and

advance from top to bottom and left to right. If square 5'th contains the
implied state pair Sm-Sn and square SWSR contains an X, then mark Sj,Sjwith an X as well.

Sequence Detector Example: First Marking Pass Figure 9.12 contains the
results of this first marking pass. Entry 52,80 is marked with an X
because the chart entry for the implied state pair 52—85 is already
marked with an X. Entry 33,80 is also marked, because entry 81,30 (as
well as 32,80) has just been marked. The same is true for 85,50. By the
end of the pass, the only entries not marked are 82,31; 85,83; and 35,84.

Sequence Detector £xample: Second Marking Pass We now make a sec-
ond pass through the chart to see if we can add any new markings.
Entry 52,31 remains unmarked. Nothing in the chart refutes that 33 and
35 are equivalent. The same is true of 84 and SB.
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A.

KAI;

nurse
S1 4 5

Figure 9.11 Initial implication chartfor Figure 9.12 Results of first marking pass.
the 3—bit sequerce detector.

  
Continuing, 83,85 and 84,86 are now obviously equivalent. They have

identical outputs and transfer to the same next state (SO) for all input
combinations.

Since no new markings have been added, the algorithm stops. The
unmarked entries represent equivalences between the row and column
indices: 81 is equivalent to 82, 83 to 55, and S4 to SS. The final reduced
state table is shown in Figure 9.13.

Mum-Input Example: State Diagram and Transition Table We can general-
ize the procedure for finite state machines with more than one input.
The only difference is that there are more implied state pairs: one for
each input combination.

Let’s consider the state diagram for a two-input Moore machine
shown in Figure 9.14. Each state has four next—state transitions, one for
each possible input condition. The derived state transition table is given
in Figure 9.15.

Multi-lnput Example: Implication Chart Processing Figure 9.16 shows the
implication chart derived from the state transition table. Let’s see how
some of the entries are filled in. Since 81 and So have different state
outputs, we place X in entry 81,30. For the 82.50 entry, we list the
implied state pairs under the input conditions 00, 01, 10, 11. Because So

Next State Output

Input SequencelPresent State] X=0 X=1 X=0 X=1
Reset 89 5'1 3'1 0 fl
0 or 1 Si 5'3 ' 0 0

00 or 10 8%; Sn 0 0
01 01' 11 S}; 50 1 U

 

Figure 9.13 Final reduced state transition table for the 3—bit sequence detector. 
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Figure 9.14 Multiple-input state diagram,

Present Next State Output 

Figure 9.15 Multiple-input state transition table.

stays in 80 on input 00, while 82 goes to 81 on 00, we add the implied
state pair 30-81 to the entry. On input 01, SO goes to Si, 82 goes to 83,
and we add 81—33 to the entry. Similarly, we add the pairs 82-82 on 10
and 83-84 on 11 to the entry and fill in the rest of the entries.

Now we begin the marking pass. Working down the columns, we
cross out entry SZ-So because 89,51 is already crossed out. The same

thing happens to the entries 83,31; 35,31; and 84,82. This leaves 3%,50
and 85,53 unmarked (these are highlighted in the figure). Their being
unmarked implies that S4 is equivalent to So (renamed 30’) and S3 is
equivalent to 85 (83'). The reduced state table is given in Figure 9.17.

 
Present Next State Output

State 00 0 1 11
I Si) 31 ‘ 3'3

St, Si 5'3
S1 3'3 3'0
S1 56 35

Figure 9.17 Multiple-input reduced state table.
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Figure 9.18 Implication chartior
three-state odd parity checker.

Petitioner Cypress Semiconductor Corp. - EX. CSC 1014, p. 39

Example State Reduction of Parity Checker Finite State Machine The
row—matching method could not combine states 80 and S2 in the three—state
parity checker of Figure 9.1. Can the implication chart method do the job?

The implication chart for the state transition table of Figure 9.8 is given
in Figure 9.18. 51,80 and 32,31 are marked immediately because their out-
puts difier. The remainlng square is left unmarked, implying that So and 32
are equivalent. This is the correct reduced state transition table.

Implication Chart Summary The algorithm for state reduction using the
implication chart method consists of the following steps:
1. Construct the implication chart, consisting of one square for each possi-

ble combination of states taken two at a time.

2. For each square labeled by states 8,- and S .’ if the outputs of the states dif-
fer, mark the square with an X; these states are not equivalent. Other-
wise, they may be equivalent. Within the square, write implied pairs of
next states for all input combinations.

3. Systematically advance through the squares of the implication chart. If
the square labeled by states 8,381, contains an implied pair Sm-Sn and
square S,,,,Sn is marked with an X, then mark Si,Sj with an X. Since .S'm
and SH are not equivalent, neither are Si and Si.

4. Continue executing step 3 until no new squares are marked with an X.
5. For each remaining unmarked square 8,33]; you can conclude that states

S,- and 51- are equivalent.

Q3 State Assignment

The number of gates needed to implement a sequential logic network
depends strongly on how we assign encoded Boolean values to symbolic
states. Unfortunately, the only way to obtain the best possible assignment
is to try every choice for the encoding, an extremely large number for
real state machines. For example, a four—state finite state machine, such
as the traffic light controller of the last chapter, has 4! (4 factorial):
4 * 3 * 2 * 1 = 2.4 different encodings (see Figure 9.19).

9.3.1 Traffic Light Controller

To illustrate the impact of state encoding on the next-state and output
logic, let’s use the symbolic state transition table for the traflic light con-_
troller, shown in Figure 9.20. The input combinations that cause the state
transitions are shown at the left of the table. The symbolic state names
HG, HY, FG, FY represent the states highway green/farmroad red,
highway yellow/farmroad red, highway red/farmroad green, and highway ' r
red/farmroad yellow. We have already encoded the traffic light output3 .
00 = Green, 01 = Yellow, and 10 2 Red.

  



Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 40

 
 
 
 

 
 
 
 

 
 

 
 

 
 

 

 
 

 
 
 

  

 

9.3 State Assignment 461

 HG HY FG FY HG HY FG FY
00 01 10 11 10 00 01 11
00 01 11 10 10 00 11 01
00 10 01 11 10 01 00 1.1
00 10 11 01 10 01 11 00
00 11 01 10 10 11 00 01
00 11 10 01 10 11 01 00
01 00 10 11 1‘1 00 01 10
01 00 11 10 11 00 1D 01
01 10 00 11 11 01 DD 10
01 10 11 00 11 01 10 00
01 11 00 10 11 '10 00 01
01 11 10 00 11 10 01 00

Figure 9.19 Alternative state encadings of the traffic light controtler.

 
Next State

Hfl%
Outputs

ST Hikm F1Fb
  

  
  
  
  
  
  

  
  

0 X X HG 0 00 10
X {l X HG D 00 10
1 1 X HY 1 00 10
X X 0 HY 0 01 10
X X 1 FG 1 D1 10
1 0 X FG B 10 DD
0 X X FY 1 10 00
X 1 X FY 1 10 00
X X 0 FY D 10 01
X X E HG 1 10 01 

Figure 9.2!] Traffic light controller symbofic state transition table.

We can use espresso to examine the alternative state assignments
rapidly. Figure 9.21 shows the generic truth table description that is
input to espresso. We simply replace the symbolic state names HG, HY,

FG, and FY with a particular encoding. Before we do a state assignment

:itb c tits q1q0
.ob p1 p0 st h1 h0 f1'f0

 
0-- H6 HG 00010
—0- HE HG 00010
11- HG HY 10010
--0 HY HY 00110
——1 HY FG 10110
10* F6 F6 01000
U—W FG FY 11000
“1- FG FY 11000
~~0 FY FY 01001
——1 FY HG 11001

 
Figure 9.21 Espresso input for the traffic light controller.
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9 Finite State Machine Optimization462 Chapter

hine requires 10 unique
and two—level minimization, the finite state mac
product terms (one for each row of Figure 9.21).Figure 9.22 and Figure 9.23 show the results of espresso runs withis HG = 00, HY = 01, PG 2 11, FY = ‘10 and HG: 00,
the state assignmen
HY = 10, FG = 01, FY = 11 respectively.

fewer product termsecond encoding uses
literals, 21 versus 26.

Comparison of the Tw
the two implementati
native encodings are t

First encoding:

{ ; .1 50 .o 7i .ilb 6 ti ts q1q0;@ ' .ob p1 p0 st h1“ .p 100—# 00 00 00010
-0# 00 00 00010
11— 00 01 10010
-—0 01 01 00110
-—1 01 11 10110
10— 11 11 01000
0-- 11 10 11000
-1- 11 10 11000
--0 10 10 01001
--1 10 00 11001.e

(a) Espresso input

.1 5

.o 7
.iLb 6 ti ts q1 q0
.ob p1 p0 st h1
.p 9
11#00 0110000
10—11 1101000
——101 1010000
“—010 1001001
-——01 0100100
—#110 0011001
—#—0- 0000010
0fl—11 1011000
_1_11 1011000

‘e

(b) Espresso output

Figure 9.22 First encoding.

A cursory glans.

s, eight versus nine, and fewer

o Encodings Let’s look at the relative complexity of
0115. The logic equations imp
he following.

h0 f1 10

h0 f1 10

e shows that the  

 
 
 

 
 
 

 
 
  
 

 

          
  

  

lied by the two alter-

.i 5

.o 7

.ilb c tl ts q1 q0

.ob p1 p0 st h1 h0 f1 10

.p 10
0—— 00 00 00010
—0— 00 00 00010
11— 00 10 10010
—~0-10 10 00110
—#1 10 01 10110
10— 01 01 01000
0—# 01 11 11000
-1# 01 11 11000
——0 11 11 01001
-—1 11 00 11001
.e

(a) Espresso input

 

    
                         
 

 

 

.iLb c tl ts q1 q0h1 h0 f1 10

.p 8
11—0- 1010000
—#010 1000100
0fl—01 1010000
—w110 0110100
——111 0011001
——#—0 0000010
——#01 0101000
——011 1101001
.e

(b) Espresso output

Figure 9.23 Second encnding.
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9.3 State Assignment 463

P1 : C°fi'Q1°Q0+TS“Q1“Qo‘tfi'Q1‘QU+C'Q1'Q0+TL°Q1'Q0

Pom C.TL'Ql'QG+C°fi°Q1’QO+Q1°QO

ST = C’TL'QI.QD+TS'Q1°QO+TS°Q1°Qfi+E°Q1°QO+TL'Q1°QD

H1 = C°fi'Q1‘Q0+T—S'Q1“QU+TS°Q1'GD+C'Q1'Q0+TL'Q1°QU

Ho = Qi'Qo

F1=Q1

F0 = fi°Q1°Qo+T3°QN§e

With conventional gate logic, the encoding requires 3 five-input gates, 2
four—input gates, 6 three—input gates, and 2 two—input gates, a total of 13
gates. We assume that variables and their complements are available to
the network.

Second encoding:

P1 = C-TL-§1+T§-Q1-(§o+5°§1°(20+fi'QI’QO

P0 = TS-Q1-Qo+§1°Qe+fi'Qi'Qe

ST: C-TL-Q,+Eo§1-Q0+TS-Q1-C§o+T5'Q1°Qo

Ts-Ql-QonQwTSwl-Qn

Ho = fi‘Ql'QJJFTS'Qi'éo

F1=§0

FD: T5oQ1-Qo+fi-Q1-Qn

 
E

!I

This encoding requires 2 four—input gates, 8 three-input gates, and 3
two-input gates, for a total of 13 gates. This implementation uses the
same number of gates, but it makes more extensive use of gates with
smaller fan-ins. This reduces overall wiring and is one reason why it is
often more useful to count literals than gates in comparing circuit

complexity. , 3
In the next two subsections, we present methods for finding good 3

state encodings. These are suitable for pencil and paper, as well as com—
puter-aided design tools.

9.3.2 Pencil-an<i~Paper Methods

Without computer—aided design tools, there is little you can do to gener—
ate a good encoding. Hand enumeration using trial and error becomes
tedious even for a relatively small number of states. An n-state finite
state machine has 11! different encodings. And this is only the lower
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bound. If the state is not densely encoded in the fewest number of bits,
even more encodings are possible.

To make the problem more tractable when you must use hand methods,
designers have developed a collection of heuristic “guidelines.” These try
to reduce the distance in Boolean n—spaoe between related states. For exam-
ple, if state Y is reached by a transition from state X, then the encodings
should differ by as few bits as possible. The next—state logic will be mini-
mized if you follow such guidelines. We examine them in this section.

State Maps State maps, similar in concept to K-maps, provide a means
of observing adjacencies in state assignments. The squares of the state
map are indexed by the binary values of state hits; the state given that
encoding is placed in the map square. Obviously the technique is limited
to situations in which a K-map can be used, that is, up to six variables.

Figure 9.24 presents an ASM chart for a five—state finite state
machine. Figure 9.2.5 gives two alternative state assignments and their
representations in state maps.

 
 

Minimum-Bit-Change Heuristic One heuristic strategy assigns states so
that the number of bit changes for all state transitions is minimized. For
example. the assignment of Figure 9.25(a) is not as good as the one in

Figure 9.23 Five-Sta e ASM chart. Figure 9.25(b) under this criterion:
 

First Assignment Second Assignment
Transition Bit Changes Bit Changes

So to 51:

So to 82:

82 i0 33:

S3 to S4:

2 1

3 1

81 to S3: 3 1
2 1

1 1

84 to S}: 2 Z 
  The ”rat assignment leads to 13 different bit changes in the next-state

function, the second only 7 bit changes.
We derived the first assignment completely at random and the sec—

ond assignment with minimum transition distance in mind. Here is how
we did it. We made the assignment for so first. Because of the way reset
logic works, it usually makes sense to assign all zeros to the starting
state. We make assignments for 81 and 52 next, placing them next to So
because they are targets of transitions out of the starting state.

Note how we used the edge adjacency of the state map. This is so
we can place 53 between the assignments for 51 and 52, since it is the
target of transitions from both of these states.

Finally, we place S4 adjacent to 53, since it is the destination of 83's
only transition. it would be perfect if 8.; could also be placed distance 1
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Assignment
State Name Q2 Q1 Q0 

Assignment

QiQo
DD 01 11 10

  

 
State Map

(a) First state
assignment and map

   
 

  

  
  

Assignment
State Name Q2 Q1 Q0

 

Assignment

Q1 Q0

Q2 00 0'1 11 10
 

D So S1 53 82

1 S4   
State Map

(in) Second state
assignment and map
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Figure 9.25 Five-state finite state machine.

from SO, but it is not possible to do this and satisfy the other desired
adjacencies.

The resulting assignment exhibits only seven bit transitions. There
may be many other assignments with the same number of bit transi-

tions, and perhaps an assignment that needs even fewer.
The minimum-bit—change heuristic, although simple, is not likely to

achieve the best assignment. For a finite state machine like the trawc

light controller, cycling through its regular sequence of states, the mini-
mum transition distance is obtained by a Gray code assignment:
HG: 00, HY : 01, FG: 11, FY = 10. This was the first state assignment
we tried in the previous subsection, and it was not as good as the sec-
ond assignment, even though the latter did not involve a minimum
number of bit changes.

  
 

 
    

Guidelines Based on Next State and lnputhutputs Although the criterion
of minimum transition distance is simple, it suffers by not considering
the input and output values in determining the next state. A second set

of heuristic guidelines makes an effort to consider this in the assign-
ment of states:

 
Highest priority: States with the same next state for a given input
transition should be given adjacent assignments in the state map.

Medium priority: Next states of the same state should be given adja—
cent assignments in the state map.

 
Lowest priority: States with the same output for a given input
should be given adjacent assignments in the state map.
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9 a The guidelines, illustrated in Figure 9.26 for the candidate states or andB, are ranked from highest to lowest priority. The first two rules attempt
171' 17k to group together ones in the nextustate maps, while the third rule per-

. forms a similar grouping function for the output maps. We do a state
Highest Priority assignment by listing all state adjacencies implied by the guidelines, sat-

isfying as many of these as possible.

Examnie Applying the Guidelines Consider the state transition table
- of Figure 9.13 for the 3—bit sequence detector. The corresponding state

9 9 diagram is shown in Figure 9.27. Let’s apply the state assignment guide-
Medium Priority lines to this state diagram.

The highest-priority constraint for adjacent assignment applies to
states that share a common next state on the same input. In this case,

171' ill states 83' and 84’ both have So as their next state. No other states share a
common next state.

The medium—priority assignment is for states that have a common an—

Lowest Priority cestor state. Again, 83' and 54' are the only states that fit this description.
Figure 925 Adjacent The lowest-priority assignments are made for states that have the

same output behavior for a given input. SD, 31', and 83’ all output 0
when the input is I). Similarly, SD, 31’, 53', and 84’ output 0 when the
input is 1.

The constraints on the assignments can be summarized as follows:

assignment priorities.

Reset Highest priority: (33', 84');

g Medium priority: (83’, S4“);
Lowest priority: 0/0: (SD, 31', 33');

1/0: (30, 81', 83’, 84');

0.1/0 @ 21% Since the finite state machine has four states, we can make the assign~ .'
ment onto two state bits. In general, it is a good idea to assign the reset
state to state map square 0. Figure 9.28 shows two possible assignments.

@ @ Both assign SO to 0!) and place 83' and 84’ adjacent to each other.

Figure9.27 Reducedstatediagramfm Example Applying the Guidelines in a More Complicated Case As-.
3-bit sequence detector. another example, let’s consider the more complicated state diagram of '_

 
[a] First state assignment [bl Second state assignment

Figure 9.28 Two possible state assignments.
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9.3 State Assignment 467

the 4—bit string recognizer of Figure 9.7. Applying the guidelines yields
the following set of assignment constraints:

Highest priority: (33', 343,671 510');

Medium priority: (31, 52): Z X (53'. 34'): (57': 510');

Lowest priority: 0/0: (SD, 51, 82, 83', 34', 87’);
1/0: (80, Si, 82, 83', 54‘, 87’, 510’);

  
Figure 9.29 shows two alternative assignments that meet most of

these constraints. We start with Figure 9.29(a) and first assign the reset

state to the encoding for 0. Since (83', 84') is both a high—priority and
medium—priority adjacency, we make their assignments next. 83' is

assigned 011 and ‘S4'is assigned 111.
We assign (S72 810') next because this pair also appears in the high— and

medium—priority lists. We assign them the encodings 010 and 11D, respec-
tively. Besides giving them adjacent assignments, this places 87 near 5“, 33',
and 54', which satisfies some of the lower-priority adjacencies.

The final adjacency is (51, 32). We give them the assignments 001 and
101. This satisfies a medium-priority placement as well as the lowest-
priority placements.

Q1 Q0
Q2 00_ 01 

  

11  

 

  
 

i3

1

Q1 Q0 Q1 Q0.
Q2 11 Q2 on 01 11 10 

 
 

  

 
 

    
 

  
    
      
Figure 9.29 State assignment example.
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The second assignment is shown in Figure 9.290)). We arrived at it
by a similar line of reasoning, except that we assigned S7’ and 810’ the
states 100 and 110. The second assignment does about as good a job as
the first, satisfying all of the high- and medium—priority guidelines, as
well as most of the lowest—priority ones.

Applying the Guidelines: Why They Work The state assignment guidelines
attempt to maximize the adjacent groupings of 1’s in the next—state and
output functions. Let P2, P1, and PD be the next-state functions, expressed
in terms of the current state Q2, Q1, Q0 and the input X. To see how effec-
tive the guidelines were, let’s compare the assignment of Figure Q.29{a}
with a more naive assignment: 502000, 31:001, 82:010, 83': 011,
84’: 100, 57': 101, 510' z 110.

Figure 9.30 compares the encoded next-state tables and K-maps for
the two encodings. The 1’s are nicely clustered in the next state K-maps
for the assignment derived from the guidelines. We can implement P2
with three product terms and P1 and P2 With one each.

In the second assignment, the 1’s are spread throughout the K-maps,
since we made the assignment with no attempt to cluster the 1’s usefully.
In this implementation, the next-state functions P2, P1, and PO each require
three product terms, with a considerably larger number of literals overall.

9.3.3 One Hot Encodings

So far, our goal has been dense encodings: state encodings in as few hits
as possible. An alternative approach introduces additional flip-flops, in
the hope of reducing the next—state and output logic.

One form of this method is called one hot encoding. A machine with
It states is encoded using exactly 11 flip-flops. Each state is represented
by an 11-bit binary code in which exactly 1 bit is asserted. This is the
origin of the term “one hot.”

Let’s consider the traffic light finite state machine described earlier
in this section. The following would be a possible one hot encoding of i
the machine’s state:

HG: 0001

HY: 0010

FG = 0100

FY = 1000

The state is encoded in four flip
asserted in each of the states.

Figure 9.31 shows the espresso inputs an
It yields eight product terms, as good as the re
ever, the logic is considerably more complex:
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—flops rather than two, and only 1 bit is '
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[Sol
[51] ‘
(32] ‘
[Si )1
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(5'7)
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Current
State

{31) 001
[32) 101
(3'3) 011
[80111
[5'7 010

(Ska 110WU

Current
State

(50] 000
[81} 001
[82) 010
(5‘3) 011
[811100
{5'7} 101

[5'1UJ110

  

 

Next State
X: 0 X: 1
001 101
011 111
111 011
010 010
010 110
000 000
000 000

Next State
31:!) If: 1
001 010
011 100
100 011
101 101
101 110
000 000
000 000

Figure 9.30 State assignment example.
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Q2 Q1

Q0 X [)0 01 '11 1000  

01   11        
 

  

      
    

  
 
 

E'Qa'Qz'Q1'Qu‘FTL’Q3'Q2'(31"(30

+fi’éa’fiz'Q1'Qo

JP
H

 

P2mC‘TL'Qs’Qz'Q1'Q0+TS'Q3°Q2'Q1'QD

P1=C'TL'Qs'Qz'Q1°Qo+TS'Qa'Qé'Q1'Qa

 

 

P0 = TL°Q3‘Q2'Q1'QD+C'Q3'QZ'Ql'QO

+TS'63°Q2'Q1‘Q0

ST=CaTL053°52'Q1‘Q04—E'63'Q2'@1'50

+TL°63°Q2’§1'60+T5“Qa'az'Qflao

H1 : C'TL°Q3°Q2'Q1'Q0+C°Q3°Q2'Q1'Qo

+TL°Q3'Q2'Q1'Q0+T5°Q3'Q2‘Q1‘Qo

+T3°Qa°Q2'Q1'Qo

H0 : fi'aa'Ejz'Qi'an'tTS'Qa‘Qz’Qi'Qn

F1 = C'TL‘Qa'Qz'Q1°Q0+TL‘Q3'Q2'Q1'QU

+C'Q3'Q2'Q1'Q0+TS'Qa'Qz'QNée

+TS.63.G2°Q1.QD

F0 = T§063°G2'Q1'Q0+T5°Q3'Q2°Q1'Qo
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.i 7

.o 9

.iLb c tL ts q3 q2 q1 q0

.ob p3 p2 p1 p0 5t h1 h0 f1 f0

.p 10
0-~ 0001 0001 00010
—0— 0001 0001 00010
11“ 0001 0010 10010
--0 0010 0010 00110
—-1 0010 0100 10110
10— 0100 0100 01000
0-— 0100 1000 11000
-1— 0100 1000 11000
--0 0010 1000 01001
--1 0010 0001 11001
.e

{a} Espresso input

.1 7

.o 9

.‘ilb c tt ts q3 q2 q1q0

.ob p3 p2 p1 p0 st h1 h0 f1 t0

.p 8
10-0100 010001000
11—0001 001010010
-0-0001 000100010
0-—0001 000100010
0--0100 100011000
#1-0100 100011000
—-00010 101001111
H-10010 010111111
.e

(h) Espresso output

Figure 9.31 Espresso input/output for the one hot encoding of the traffic light state machine.

The product terms are all five and six variables, with two to five terms
per output. This is rather complex for discrete logic but would not
cause problems for a FLA—based design.

9.3.4 Computer Tools: Neva, Mustang, Jedi*

The previous subsections described various heuristic approaches for
obtaining a good state encoding. None are guaranteed to obtain the best
result. In this section, we examine three programs for computer-generated
state assignments.

 

*This subsection requires access to software developed at the University of California, BelL
keley. If you do not have access to it, you may want to skim this section, or skip it alto’
gather.
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HG HG 00010
HG HG 00010
HG HY 10010
HY HY 00110
HY FG 10110

910- FG FG 01000
0—" FG FY 11000
-1~ FG FY 11000
—w0 FY FY 01001

1 FY HG 11001

3 Figure 9.32 Nova inputs for the
traffic light controller
 

 .startflcodes
.code HG 00
code HY 11
code F6 01
code FY 10

.endficodes

 

 
    #

#

BLIF Representation.i 5

 

 

 .p 9
'10-01 0101000
11—001110000
~—01— 1000000

0010000

 

 
9.3 State Assignment 471

The state assignment guidelines of Section 9.3.2 place related states to-
gether in the state map, thereby clustering the 1’s in those functions. How—
ever, we cannot evaluate an assignment fully without actually minimizing
the functions. When it comes to hand techniques, this means the K—map
method. If we have to use K-Inaps to minimize the functions for each pos-
sible assignment, We are not likely to examine very many of them!

above. Unlike hand methods, they are not limited to six state bits
generate many alternative assignments rapidly,
derived assignments by invoking minimization
automatically. Three tools that provide this func

logic implementations, and mustang and jedi, for multilevel logic. [edi is
somewhat more general; it can be used for general-purpose symbolic en-
codings, such as outputs, as well as next states. We examine each of these
programs in the following subsections.

, they can
and they can evaluate the

tools like espresso or 1111'in
tion are nova, for two—level

Nova: State Assignment for Two~Level Implementation The inputs to nova
are similar to the truth table format already described for espresso. The
input file consists of the truth table entries for the finite state machine
description. The latter are of the form:

inputs ourrentfistate nesttote outputs

Figure 9.32 shows the format for our example traffic light controller. The
states are symbolic; the inputs and outputs are binary encoded. It is
important to separate each section with a space. We interpret the first
line as “if input 1 (car sensor) is unasserted and the state is HG (hig -
way green), then the next state is HG (highway green) and the outputs
are 00010 (ST: 0, H1:H0 : 00 “green,” FpFO : 10 “red”).

Figure 9.33 gives the abbreviated nova output associated with the
state machine of Figure 9.32, assuming you have requested a "greedy”
state assignment. The “codes” section shows the state assignment:
HGzOD, HY=11, FG=01, and FY=10. The espresso truth table is
included in the output, indicating that it takes nine product terms to
implement the state machine.

Intuitively, the state assignment algorithms used by nova are much
like the assignment guidelines of Section 9.3.2. States that are mapped
by some input into the same next state and that assert the same output
are partitioned into groups. In the terminology of state assignment, these
are called input constraints. Nova attempts to assign adjacent encodings
within the smallest Boolean cube to states in the same group. A related
concept is output constraints. States that are next states of a common
predecessor state are given adjacent assignments. 
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Nova implements a wide range of state-encoding strategies, any of
which you can select when you invoke the program:

Greedy: makes its state assignment based on satisfying as many of
the input constraints as it can. When using a greedy approach, 110ch
looks only at new assignments that strictly improve on those it has
already examined.

Hybrid: also makes its state assignment based on satisfying the input
constraints. However, nova will examine some assignments that start

off looking worse, but may eventually yield a better assignment. This
yields better assignments than the greedy strategy.

I/O Hybrid: similar to hybrid, except it tries to satisfy input and out-
put constraints. Its results are usually better than hybrid’s.

Exact: obtains the best encoding that satisfies the input constraints.

Since the output constraints are not considered, this is still not the
best possible encoding.

Input Annealing: similar to hybrid, except it uses a more sophisti-
cated method for improving the state assignment.

One-Hot: uses a one-hot encoding. This rarely yields a minimum

product term assignment, but it may dramatically reduce the com-
plexity of the product terms (in other words, the literal count may be
greatly reduced).

Random: uses a randomly generated encoding. Nova wiil generate
the specified number of random assignments. It will report on the
best assignment it has found (the one requiring the smallest number'-
of product terms).

For the traffic light controller, the various encoding algorithms yield-
the following assignments: '. -

Number of PLA _

HG HY FG FY product terms Area-I __

Greedy: 00 11 01 10 9 153 _ -'

Hybrid: 11 10 01 9 153
Exact: 11 10 01 00 10 17a '

IO Hybrid: 01 11 10 153'

IAnneoling: 10 11 10 153 "
Random: 00 01 10 153 .

None of the assignments found by nova match the eight—product—term
encoding we found in Figure 9.23. But we shouldn’t despair just because=
the tool did not find the best possible assignment. The advantage of th 
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60
S1
81
33
$4
$4A0ifi0l

Figure 9.34 Nova inputs forthe 3—bit

51
S3
S4
SO
SO
SO 0—‘0000

string recognizer.

50
$0
$1
$1
$2
$2
33
$4
34
37—\OIdoId0d0£0

S1
32
33
Sir
SA
S3
S?
S?
S10 0
SD 0

00000000
510 501
S10 50 D

Figure 9.35 Nova inputs for
the 4—bit string recognizer.

Greedy:

Hybrid:
Exact:

IO Hybrid:

[Annealing 100 101 001 111 1.10 000 010
Randam :

 

 
Figure 9.36 State map for the best
Nova assignment of the finite state
machine of Figure 9.7.
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computer-based tool is that it finds reasonable solutions rapidly. Thus you
can examine a variety of encodings and choose the one that best reduces
your implementation taslc.

As another example, let’s consider the 3-bit sequence recognizer of
Figure 9.2.7. Its nova input file is shown in Figure 9.34. The state assign-

ments found by nova are the following:

Number of PLA
30 31' 33' 34’ product terms Area

Greedy: 00 01 11 10 4 36

Hybrid." 00 01 10 11 4 30
Exact: 00 01 10 11 4 36

IO Hybrid: 00 10 01 11 4 36

IAnnealing: 00 01 11 1t) 4 36
Random: 00 11 10 01 4 36

Several of the assignments correspond to the ones found in Figure 928(3)
and (b).

The last example is the 4—bit recognizer of Figure 9.7. The nova input
fiie is given in Figure 9.35. Nova produced the following assignments:

Number of

S0 SI 82 33' 84' 87' 310' . product terms
100 110 010 011 111 000 001 7

101 119 111 001 011 000 010 ' 7

101 110 111 001 011 000 010 7

110 011 001 100 101 000 010 7

e

011 100 101 110 111 000 001 7

None of these assignments match those derived in Figure 9.29, since S0 _
has not been assigned 900. Figure 9.36 shows that the adjacencies that

' were highly desirable based on the guidelines—that is, 83’ adjacent to 54',

87’ adiaceut to 810’, and 81 adjacent to Szmare satisfied by the input
annealing assignment.

Mustang The minimum number of product terms is a good criterion if

you are going to implement the logic in a two-level form, such as a
FLA. This is What nova uses. Literal count is better if you plan to

implement the logic in multiple levels. Mustang takes this approach. Its
optimization criterion is to minimize the number of literals in the multi—
level factored form of the next-state and output functions.
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1 3 Mustang has an input format similar to that of nova. The only difference
. ; - O 5 is that the number of inputs, outputs, and state bits must be explicitly de-
_. E}:_2 H G H G 00010 clared with . i, . .G’ and . s directives. For example, the traffic light input

{3 -0- HG HG 90910 file 15 shown in Figure 9.37.

= 1 1 — HG HY T 001 U Mustang implements several alternative strategies for state assign-
:1) iii, 2; $31,113 ment, specified by the user on the command line. These include:
39: :3 :3 g: 333 I Random: chooses a random state encoding.
:16 :3 :1 3:33? I Sequential: assigns the states binary codes in a sequential order.
--1 F Y HG 1100'! ll One—Hot: makes a one—hot state assignment.

Figure 9-37 MUSTENQMDUWB for I Fan—in: works on the input and fan-in of each state. Next states thattraffic light controller.

 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

 
 
 
 

are produced by the same inputs from similar sets of present states
are given adjacent state assignments. The assignment is chosen to
maximize the common subexpressions in the next—state function. This
is much like the high—priority assignment guideline of Section 9.3.2.

I Fan-out: works on the output and fan-out of each state, without

regard to inputs. Present states with the same outputs that produce :
similar sets of next states are given adjacent state assignments. .
Again, this maximizes the common subexpressions in the output and
next—state functions. This approach works well for finite state -
machines with many outputs but few inputs. It is much like the
medium- and low-priority assignment guidelines from Section 9.3.2.

Mustang derives the following assignments for the traffic light stat _
 

machine:

Number of

HG HY FG FY product terms

Random: 01 10 11 00 9

Sequential: 01 10 11 00 9

Fan-in: 00 01 10 11 8

Fan—out: 10 11 00 01 8

The eight term encodings are actually better than any of those found by
nova. To determine the multilevel implementation, you must invoke misH;
on the espresso file created by mustang. '

For example, the misII output for the fan-in encoding of the traffic
light controller is the following:

P1 = HD.TS+FU.T§+FD.Q1

P0 = PloEoQ1+CoTL0QO+TTSOQO

.3T Po'éoi'fio'Qo 
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H1 =F0+Q1°Qa

He = Q—a'Qe

F1=Qi

Fozfio'Qo

For comparison with nova, mustang obtains the following encodings
for the 3—bit string recognizer:

Number of

SD 31 33' 84' product terms

Random: 01 10 1 1 00 5

Sequential: 01 10 11 00 5

thin: 10 11 00 01 4

Fan—out: 10 11 00 01 4

The number of product terms to implement an encoding is comparable
to the number needed for the nova encodings. However, don’t forget that

the goal of mustang is to reduce literal count rather than product terms.
As a final example, let’s look at the mustang encodings for the 4—bit

recognizer:

, Number of

So 81 82 83" 84' 87' 810' product terms
101 010 011 110 111 001 000 8

Sequential: 001 010 011 100 101 110 111 8
Fan-in:

Fan-out:

Petitioner Cypress Semiconductor Corp. - EX. CSC 1014, p. 54

100 010 011 000 001 101 110 8

110 010 011 100 101 000 001 6

It is interesting that in all three cases, mustang obtained an encoding
that is as good as any of the best encodings found by nova.

Jedi The final encoding program we shall examine is jedi. It is similar
to mustang in that its goal is to obtain a good encoding for a multilevel
implementation. It is more powerful than mustang because it can solve
general encoding problems: jedi' can find good encodings for the outputs
as well as the states.

Like the other programs, jedi' implements several alternative encod-
ing strategies that can be selected on the command line. Besides ran-
dom, one hot, and straightforward, the program supports input
dominant, output dominant, modified output dominant, and input/out—
put combination algorithms.
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The jedi' input format is similar to, but slightly different from, the
mustang input format. We can illustrate this best with an example.
Figure 9.38 shows the jedi input file for the traffic light controller. The
present state and next states each count as a single input, even though
they may be encoded by several bits. The . enum S tates line tells jedi
that there are four states and that they should be encoded in 2 bits and
then gives the state names. The . enum Co t ors line tells jedi that there
are three output colors and that these should also be encoded in 2 hits.
You should think of these as enumerated types. The . i type and
.otype lines define the types of the inputs and outputs, respectively.

The encodings obtained from jedi for the traffic light controller are:

       
 
 
 

  
 

 
 
 
 
 
 
 
 
 

 

 
 
 

 
 

Number of

HG HY FG FY Grn Yel Red product terms

Input: 00 10 11 01 11 01 00 9
Output: 00 01 11 10 10 11 01 9
Combination: 00 10 11 01 10 00 01 9

'1 Output': 01 00 10 11 10 oo 01 10
For the 3-bit string recognizer, the state assignments are:

Number of

SD 81 83' 84' product terms

:3 Input: 01 00 11 10 4
Output: 11 01 00 10 4
Combination: 1t} 00 11 01 4

Output': 11 01 00 10 4

Finally, for the 4—bit string recognizer, they are:

       

  
 

  
  
    

 

Number of

S0 81 $2 53' 84' 37' 510' product terms
111 101 100 010 110 011 001 7Input:

Output: 101 110 100 010 000 111 011 '7
Combination: 100 011 111 110 010 000 101 7
Output". 001 100 101 010 011 000 111 6

Let’s look at one head-to—head comparison between mustang and
jedi. We will use the mustang encoding in which HG=00, HY=0L
FG : 10, FY: 11, Green = 00, Yellow = 01, and Red = 10 and the jedl'
encoding in which HG = 00, HY : 01, FG : 11, FY = 10, Green : 10,
Yellow : 11, and Red: 01. The first encoding used eight product terms
in a two—level implementation; the second used nine.
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3.4 Choice of FIip»F|Dps 477

.i 4

.o 4

.enum States 4 2 HG HY FG FY

.enum Colors 3 2 GREEN RED YELLOW

.itype Boolean Boolean Boolean States

.otype States Boolean Colors Colors
0 - - HG HG 0 GREEN RED
— D - HG HG 0 GREEN RED
1 1 - HG HY 1 GREEN RED
- — D HY HY D YELLOW RED
F - 1 HY F6 1 YELLOW RED
1 D - F6 F6 D RED GREEN
0 E - FG FY 1 RED GREEN
— 1 - FG FY 1 RED GREEN
— u 0 FY FY 0 RED YELLOW
— — 1 FY HG 1 RED YELLOW

Figure 9.38 Jedi Input file.

The multilevel implementation for the mustang assignment was

already shown in the mustang section. It requires 26 literals. The jedI'
multilevel implementation is

P1 = H,oCoTL+H0+F,eC-TL

P0 = HB-TS+F,+F0-fi

ST = PloH1+T3,-F,+H,-F0-Ts

H1 = 331-69

Ha = Qi'C—Qo

F1 - Hro‘Qi

F0 — H1°Ql

it has 27 literals. In terms of straight literal count, the mustang encoding
is better. If we examine the wiring complexity, the mustang encoding is

also slightly better.

fit Choice of FEip—Fiops

After state reduction and state assignment, the next step in the design

process is to choose flip—flop types for the state registers. The issues are
identical to those in the counter case studies of Chapter 7.

Usually, we have to decide whether to use I—K flip—flops or D flip
flops. I—K devices tend to reduce the gate count but increase the number
of connections. D flip-flops simplify the implementation process and are
well suited for VLSI implementations, where connections are at more of
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478 Chapter 9 Finite State Machine Optimization

3 premium than gates. Because the CAD tools mentioned in the previous
section were developed to assist in VLSI implementations, it is not sur-
prising that they implicitly assume D flip—flops as the targets of the
assignment. Their best assignment may not lead to the minimum logic
for a j—K flip-flop implementation.

The following procedure completes the finite state machine imple-
mentation, given a particular choice of flip-flops:

1. Given the state assignments, derive the next—state maps from the state
transition table.

2. Remap the next-state maps given the excitation tables for the flip-flops
chosen to implement the state bits.

3. Minimize the remapped next-state function.

9.4.1 Flip-Finn Choice torthe Four—Bit Sequence Betector
Let’s illustrate the procedure with the 4—bit sequence detector, using the
state assignment of Figure 9.39, the encoded state transition table. Each
state has been replaced by its binary encoding given by the state assign~
ment. Figure 9.40 is the encoded next-state map, organized according to
the standard binary sequence and showing the don’t cares.

D Implementation To obtain the direct form for determining the state
machine implementation with D flip—flops, represent the encoded next-
state functions as K—maps. Figure 9.41 contains the four-variable K—maps
for the next—state functions (22+, Q1+. Q0+, given the current state Q2, Q1,
Q0 and the input I. The reduced equations that describe the inputs to
the D flip—flops are

DQZ+ : (22’ Q1+Q0

DQ1+ = Q1'Qo'1+§2°§o'f+§2'Q—1
DQ0+ 3 §2°Q1+Q2°f

Next State

    

 
 

 

  
Next State Output Present State I20 1:1

Present State 1:0 1:1 1 :0 :1 000 011 010
con [55] 011 [51] 010 [32) 0 0 001 XXX XXX
011 (Si) 101 [5‘3] 111 (St) ' ' o o 010 111 101
010 [52) 111 [St] 101 (8'3) _ o o 011 101 111
101 (Si) 100 100 (5'7) 0 o 100 one 000
111 (St) _ [3'7] 110 0 o 101 100 100
100 {5‘7} 100 [81b] ii i o 110 000 000

110 (31b) (St) 000 1 0 111 100 110
Figure 9.39 Encoded state transition table for 4-bit sequence detector. Figure 9.40 Encoded next-stats map.
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Next-state K-maps.
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There are six unique product terms and 15 literals. In terms of discrete
gates, the implementation requires 3 three—input gates, 5 two-input -
gates, and 4 inverters, a total of 12 gates.

J-K Implementation For the j-K implementation, we begin by remapping
the inputs based on the [~K excitation tables. Figure 9.42 gives the
remapped next~state table, and Figure 9.43 shows the K—maps. The I—K
logic equations become

IQ2+ = Q1 KQ2+ : as

IQ1+=Q2 KQ1+ =Qo'I+Qo'F+Q2'Qo

IQo-t- = Q2 ° Q1 +32 °T KQ0+ : Q2

This implementation requires nine unique terms and 14 literals. The
gate count is 1 three—input gate, 6 two—input gates, and 3 inverters, a
total of 10 gates. This is slightly fewer than the D flip-flop implementa-

tion. However, when you use structured logic such as a PLA to imple-
ment the functions, the option with fewer product terms is better. in .
this case, it would be the D implementation.

3.5 Finite State Machine Partitioning

In the preceding sections, we described the design process for a single
monolithic finite state machine. The approach is reasonable for many strat-
egies for implementing a finite state machine, such as using discrete gates.

However, when using some forms of programmable logic, we may

need to partition the machine. In some cases we cannot implement a
complex finite state machine with a single programmable logic compo—

nent. The machine might require too many inputs or outputs, or the
nun‘iber of terms to describe the nextmstate or output functions might be
too large, even after state reduction and Boolean minimization.

Remapped Next State

Next State I K I KPresent State I:U Ix'i I:D I:O I:1 1:1 

000 011 010 011 XXX 010 XXX
001 XXX XXX XXX XXX XXX XXX
010 111 101 1X1 XOX 1X1 X1X
011 101 111 1XX X10 IXX X00
100 000 000 X00 1XX X00 1XX
101 100 100 XOX 0X1 XUX 0X1
110 000 000 XXO 11X XXO 11X
111 100 110 XXX 011 XXX 001
     

Figure 9.42 Remapped next—state table for J—Kflip—ilops.
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Figure 9.43 Remapped K-maps.

sling To illustrate the value of state machine
partitioning, suppose We have a finite state machine with 20 inputs and

state outputs). But We only have programma—
10 outputs (including next-th 15 inputs and 5 outputs. We cannot imple—
ble logic components wi
ment this finite state machine with a single component.

Suppose We can arrange the outputs in two sets of five, each of
which can be computed fiom different 15—elernent subsets of the original
20 inputs. Then we could partition the output functions among two pro-
grammable logic components, as shown in Figure 9.44. Of course, it isfl’t

Example“! Ffii‘s’i Partitio
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Figure 9.44 Finite state machine partitioning on inputs and outputs,

 

always possible to find such a fortuitous partitioning. For example,
every output might be a function of 16 inputs.

If we cannot reduce the complexity of the finite state machine by simple

input/output partitioning, another way to "make it fit” is to partition the
single finite state machine into smailer, less complex, communicating finite
state machines. We examine this approach in the next subsection.

 
9.5.1 Finite State Machine Partitioning

by introducing idle States

Partitioning the finite state machine makes sense if the next-state logic

is too complex to implement with the programmable logic components
at hand. The problem is that PALS provide a fixed number of product
terms per output function. We can make a trade-off between the number

of flip—flops needed to encode the state and the complexity of these
next—state functions. Our idea is to introduce additional “idle” states

into the finite state machine in the hope of reducing the number of
terms in the next-state functions.

Example 2 FSiifl Partitioning For example, Figure 9.45 shows a subset
of a state diagram. We have chosen to partition the state diagram into

two separate machines, containing states Si, 52- 83 and S4, 85, 3.3,
respectively. The symbols C} associated with the transitions represent
the Boolean conditions under which the transition takes place.

What happens if we partition the state diagram, but a transition must

take place between the two pieces? We need to introduce idle states to
synchronize the activity between the two finite state machines. In
essence, the machine at the left hands control off to the machine at the
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Figure 9.46 State diagram fragment after partitioning.
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Figure 9.45 State diagram fragment before partitioning.

right when a transition from 81 to SE takes place. The left machine must
idle in some. new state until it regains control, such as when there is a
transition from 86 back to 51. In this event, the machine on the right
must remain idle until it regains control.

The revised state diagrams are shown in Figure 9.46. We have intro-
duced two new states, SA and SE, to synchronize the transitions across the
partition boundary. Here is how it works for the state sequence 31 to 56 and
back to Si. Initialiy, the machines are in states 31 and SB. If condition 01 is
true, then the left-hand state machine exits S1 and enters its idle state, SA.
At the same time, the right—hand machine exits SB and enters SB.

Suppose that the right-hand machine sequences through some states,
eventually returning to SS. Throughout this time, the left—hand machine
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 9.5 Finite State Machine Partitioning 483

remains in its idle state. If the right—hand machine is in SS and CZ is
true, it next enters its idle state, SB. At the same instant, the left-hand
machine exits SA, returning to S}. While the left—hand machine
sequences through states, the right—hand machine idles in SE.

 

Rules for Partitioning We are ready to describe the rules for introducing
idle states into a partitioned finite state machine. We illustrate each rule
with an example from the partitioned state machine of the previous sub-
section. All the rules involve transitions that cross the partition boundary.

The first rule applies for a state that is the source of a transition that
crosses the boundary. The case is shown in Figure Q.47(a). The cross-
boundary transition is replaced by a transition to the idle state, labeled by

CrCt

(a) Source state transformation

CZ 02‘55

(331
|

'

Cr} C5

[bl Destination state transformation

|
i
|
i

  
(c) Multiple transitions with same source or destination 

Cz'Se

    
 
[d] Hold condition for idle state

 
Figure 9.47 Rules for partitioning.
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the same exit condition as the original transition. For example, the 51with the same condition to SA.
transition is replaced by a transition

The second rule applies to the destination of a transition that crosses
the partition boundary. This is shown in Figure 9.470)). The transition isdie state, labeled with the
replaced with an exit transition from the idition ANDed with the source state. For example, the transi—

to S1 is replaced with a transition from SA. We exit the idle
state when both Ca is true and the right-hand state machine is in SE.
Hence, the transition is labeled with the condition C2 - 85.

The third rule applies when multiple transitions share the same
destination. This case is illustrated in Figure 9.47(c). If a state

transitions across the partition boundary, all of
a single transition to the idle state. The exit

er to label the new transition. For example,
and 54. These are replaced with a single

tion from SE

source or

is the source of multiple
these are collapsed into
conditions are ORed togeth
S2 has transitions to states 85
transition to SA, labeled C3 + C5.If a state is the target of multiple transitions across the boundary, ahis state. The transition
single transition is added from the idle state to t the individual
is labeled with the OR of the conditions associated with1 state machine. This case is illustrated by the
transitions in the originstransitions from S2 and S3 to 55. These are replaced by a single transi-
tion from SE to 55, labeled C3 - 32 + C4 0 S3. e final rule describes the

When all these rules have been applied, thon for the idle states. Simply form the OR of
self—loop (“hold”) conditiall of the exit conditions and invert it. This is shown in Figure 9.47M).
Consider the idle state SA. Its only exit condition is C2 0 55. So its hold
condition is the inverse of this, namely C2 079;.

 

Ni Partitioning Consider the six»state finite state machine of
Example 3 FSFigure 9.48(a). The machine implements a simple up/down counter. When3 up. When D is asserted, it
the input U is assert ,’ ' stays in its current state.

The goal is to partition the machine into two comis because the underlying
finite state machines. We might need to do 111
logic primitives provide support for two flip—flops within the logic block, as
in the Xilinx CLB to be introduced in the next chapter.the result of the partitioning. States 50. Si, and

Figure 9.48(b) shows52 form the core of one machine and S3, S4, and SE form the other. We
also introduce the two idle states, SA and SE.The mach'ne at the left enters its idle state SA when it is in S0 and D is
asserted or when it is in S2 and U is asserted. It exits the idle state when
the mac 'ne at the right is in 55 with D asserted.with U asserted or in SS

Otherwise it stays in its idle state. The machine at the right works similarly.
To see how the ma —countlet’s consider an up

to 55 and back to SD.

 
chines communicate,

On reset, the machine on the left
sequence from So
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{b} After partitioning

figure 9.48 Partitioning example

enters So while the machine on the right enters 83. With U asserted, the
left machine advances from S{) to 5'1 to 82 to SA. It Will idle in this state
until the right machine is ready to exit S5.

Meanwhile, the right machine holds in SE until the left machine
enters 82. At the same time that the left machine changes to SA, the
right one exits SE to 33. On subsequent clock transitions, it advances
from 83 to 541 to 85 to SB, where it holds. When the right machine
changes from S5 to SE, the left machine exits SA to SD, and the process
repeats itself. Down-count sequences work in an analogous way.
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  Chapter 9 finite State Machine Optimization

fihaptar Review

This chapter has concentrated on the optimization of finite state
machines. We have emphasized the methods for state reduction, state

assignment, choice of flip-flops, and state machine partitioning. For state
reduction, we introduced the row matching and implication chart meth-
ods. These can be used to identify and eliminate redundant states, thus

reducing the number of flip—flops needed to implement a particular
finite state machine.

We then examined heuristic methods for state assignment, aimed at

reducing the number of product terms or literals needed to implement
the next-state and output functions. Since paper-and-pencil methods are
not particularly effective, we introduced computer-aided design tools for
state assignment that do a much better job in a fraction of the time:
nova, mustang, and jedi'.

The latter part of the chapter focused on choosing flip-flops for imple~
menting the state registers of the finite state machine. I—K flip-flops tend to
be most effective in reducing the logic, but they require logical remapping
of the next—state functions and more wires than the simpler D flip-flops.

Finally, we discussed state machine partitioning methods, in particular
partitioning based on inputs and outputs and partitioning by introducing
idle states. These techniques are needed when we cannot implement a
finite state machine with a single programmable logic component.

in the next chapter, we will examine implementation strategies in
more detail. In particular, we will look at the methods for implementing
finite state machines based on structured logic methods,_ such as ROM,

programmable logic, and approaches based on MSI components.

Further Reading

The traffic light controller example used extensively in this chapter is
borrowed from the famous text by C. Mead and L. Conway, Introduction

to VLSI Systems, Addison—Wesley, Reading, MA, 1979. C. Roth’s book,
Fundamentals of Logic Design, West Publishing, St. Paul, MN, 1985, has
an extensive discussion of state assignment guidelines that formed the”
basis of our Section 9.3.2. Modern Logic Design by D. Green, Addison'—'

Wesley, 1986, has a highly readable, short, direct description of state.
assignment (pp. 40—43).

Novo’s approach to state assignment is described in T. Villa and A. San-T 5'
giovanni—Vincentelli’s paper “NOVA: State Assignment of Finite State Ma'-."_ .
chines for Optimal Two—Level Logic Implementations,” given at the 26th .-
Design Automation Conference, Miami, FL (June 1989). A revised and ex?
panded version of the paper appeared in IEEE Transactions on Computer 2_
Aided Design in September 1990 (vol. 9, no. 9, pp. 1326—1334). Mustang’5; - I
method is described in “MUSTANG: State Assignment of Finite State Mai:

chines Targeting Multi-level Logic Implementations," by S. Devadas, B. M5,"
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Computer-Aided Design, vol. 7, no. 12 (December 1988). Iedi’s method for l

symbolic assignment is described by Lin and Newton in “Synthesis of Mul- ‘
tiple Level Logic from Symbolic High-Level Description Languages,” which

appeared in the Proceedings of the VLSI’BQ Conference, Munich, West Ger— . ‘
many, in August 1939. 1; ‘

These tools (along with espresso and misll) are available for a very mod— "
est charge from the Industrial Liaison Program Office of the Electrical Engi-
nearing and Computer Science Department, University of California,
Berkeley. Detailed descriptions of how to invoke the tools, as well as exam-
ples of their use, can be found in the most current OCTTOOLS Manual dis-

tributed by that office.

Finite state machine partitioning is a topic that waxes and wanes in im-
portance. The original work was done in the late 19503, became less inter—

esting during the era of VLSI, and is becoming more important again with ’
pervasive use of programmable logic in digital designs. The topic is not
well covered by most of today’s textbooks. One exception is M. Bolton’s
book, Digital System Design with Programmable Logic, Addison-Wesley, 'i 2
Wokingham, England, 1990, which offers a section on the topic. The parti-
tioning rules introduced in Section 9.5.1 were obtained from an applica-
tions note in the Altera Applications Handbook, Altera Corporation, Santa
Clara, CA, 1988.

R. Newton, and A. Sangiovanni—Vincentelli, in IEEE Transactions on i i
l

 

Exercises

8 Reduction) Use the implication chart method to reduce

-bit string recognizer state diagram of Figure 9.2.

9.2 (State Reduction) Given the state diagram in Figure Ex9.2,

obtain an equivalent reduced state diagram containing a mini-
mum number of states. You may use row matching or implication
charts. Put your final answer in the form of a state diagram
rather than a state table. Make it clear which states have been _ 1

combined. i l

 
    
9.3 (State Reduction) Given the state diagram in Figure Ex9.3, deter-

mine which states should be combined to determine the reduced

state diagram. You may use row matching or implication charts.

9.4 (State Reduction) Given the state diagram in Figure EXQA, draw

the fully reduced state diagram. State succinctly what strings
cause the recognizer to output a 1.  

9.5 (State Reduction) Starting with the state diagram of
Figure Ex9.5, use the implication chart method to find the mini—

mum state diagram. Which of the original states are combined?
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