Petitioner’s Exhibit CSC 1014

Randy H. Katz

Contemporary Logic Design

Executive Editor: Dan Joraanstad Sponsoring Editor: Jennifer Young Developmental Editor: Jamie Spencer Editorial Assistant: Laura Cheu Marketing Manager: Mary Tudor Production Editors: Megan Rundel, Brian Jones Text and Cover Design: Rob Hugel, XXX Design Copyeditor: Mary Prescott
Proofreader: Elizabeth Wiltsee
Illustrations: Rolin Graphics Inc.
Indexer: Ira Kleinberg
Composition: Rad Proctor, Proctor-Willenbacher
Film: The Courier Connection
Cover Printer: New England Book Components, Inc.
Text Printer and Binder: Courier/Westford
Senior Manufacturing Coordinator: Merry Free Osborn
The cover illustration is a reproduction of "Décalcomanie" by the twentieth-century Belgian surrealist painter René Magritte. We chose this particular painting by the author's favorite painter to reflect the duality of computer design. "Décalcomanie" © 1992 C. Herscovici/ARS, New York.

Copyright © 1994 by The Benjamin/Cummings Publishing Company, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a database or retrieval system, distributed, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Library of Congress Cataloging-in-Publication Data

Katz, Randy H., 1955-
Contemporary logic design / Randy H. Katz. p. cm .

Includes bibliographical references and index.
ISBN 0-8053-2703-7

1. Electronic digital computers-Circuits-Design. 2. Integrated circuits-

Very large scale integration-Design-Data processing. 3. Logic design-Data processing. 4. Computer-aided design. I. Title.
TK7888.4.K36 1994
621.39'5-dc20 93-9013

CIP
ISBN 0-8053-2703-7
34556789810 -CRW-999897969594

The Benjamin/Gummings Publishing Company, Inc. 390 Bridge Parkway
Redwood City, California 94065

Figure 8.8 State and output changes associated with the FSM fragments of Figure 8.7.

Now that Y is 1, FSM_{1} goes to state B on the next rising edge. In this state, it will output a 0 , but this is too late to affect FSM_{2} 's state change. It remains in state D.

8.2 Basic Design Approach

The counter design procedure presented in the last chapter forms the core of a more general procedure for arbitrary finite state machines. You will discover that the procedure must be significantly extended for the general case.

8.2.1 Finite State Machine Design Procedure

Step 1: Understand the problem. A finite state machine is often described in terms of an English-language specification of its behavior. It is important that you interpret this description in an unambiguous manner. For counters, it is sufficient simply to enumerate the sequence. For finite state machines, try some input sequences to be sure you understand the conditions under which the various outputs are generated.
Step 2: Obtain an abstract representation of the FSM. Once you understand the problem, you must place it in a form that is easy to manipulate by the procedures for implementing the finite state machine. A state diagram is one possibility. Other representations, to be introduced in the next section, include algorithmic state machines and specifications in hardware description languages.
Step 3: Perform state minimization. Step 2, deriving the abstract representation, often results in a description that has too many states. Certain paths through the state machine can be eliminated because their input/output behavior is duplicated by other function-

Figure 8.9 Vending machine block diagram.
the customer? Sometimes we have to make reasonable assumptions. For the first question, we assume that the coin sensor returns any coins it does not recognize, leaving N and D unasserted. For the latter, we assume that external logic resets the machine after the gum is delivered.

Abstract Representations Once you understand the behavior reasonably well, it is time to map the specification into a more suitable abstract representation. A good way to begin is by enumerating the possible unique sequences of inputs or configurations of the system. These will help define the states of the finite state machine.

For this problem, it is not too difficult to enumerate all the possible input sequences that lead to releasing the gum:

Three nickels in sequence: N, N, N
Two nickels followed by a dime: N, N, D
A nickel followed by a dime: N, D
A dime followed by a nickel: D, N
Two dimes in sequence: D, D
This can be represented as a state diagram, as shown in Figure 8.10 For example, the machine will pass through the states $S_{0}, S_{1}, S_{3}, S_{7}$ if the input sequence is three nickels.

To keep the state diagram simple and readable, we include only transitions that explicitly cause a state change. For example, in state S_{0}, if neither input N or D is asserted, we assume the machine remains in state S_{0} (the specification allows us to assume that N and D are never asserted at the same time). Also, we include the output Open only in states in which it is asserted. Open is implicitly unasserted in any other state.

State Minimization This nine-state description isn't the "best" possible. For one thing, since states $S_{4}, S_{5}, S_{6}, S_{7}$, and S_{8} have identical behavior, they can be combined into a single state.

To reduce the number of states even further, we can think of each state as representing the amount of money received so far. For example,

Figure 8.30 Vending machine state diagram.
it shouldn't matter whether the state representing 10 cents was reached through two nickels or one dime.

A state diagram derived in this way is shown in Figure 8.11. We capture the behavior in only four states, compared with nine in Figure 8.10. Also, as another illustration of a useful shorthand, notice the transition from state 10ϕ to 15ϕ. We interpret the notation " N, D " associated with this transition as "go to state 15ϕ if N is asserted OR D is asserted."

In the next chapter, we will examine formal methods for finding a state diagram with the minimum number of states. The process of minimizing the states in a finite state machine description is called state minimization.

State Encoding At this point, we have a finite state machine with a minimum number of states, but it is still symbolic. See Figure 8.12 for the symbolic state transition table. The next step is state encoding.

The way you encode the state can have a major effect on the amount of hardware you need to implement the machine. A natural state assignment would encode the states in 2 bits: state 0ϕ as 00 , state 5ϕ as 01 , state 10ϕ as 10 , and state 15φ as 11 . A less obvious assignment could lead to reduced hardware. The encoded state transition table is shown in Figure 8.13.

In Chapter 9 we present a variety of methods and computer-based tools for finding an effective state encoding.

Implementation The next step is to implement the state transition table after choosing storage elements. We will look at implementations based on D and $J-K$ flip-flops.

Present State	Inputs		Next State	Output Open
	D	N		
$0 ¢$	0	0	$0 ¢$	0
	0	1	54	0
	1	0	10¢	0
	1	1	X	X
$5 \overline{4}$	0	0	56	0
	0	1	10%	0
	1	0	$15 ¢$	0
	1	1	X	X
10%	$\overline{0}$	0	10\%	0
	0	1	154	0
	1	0	15¢	0
	1	1	X	X
15¢	X	X	156	1

Figure 8.12 Minimized vending machine symbolic state transition table

$\begin{gathered} \text { Present State } \\ Q_{1} Q_{0} \end{gathered}$	Inputs		$\begin{gathered} \text { Next State } \\ D_{1} \quad D_{0} \end{gathered}$	Output Open
	D	N		
0 0	0	0	0 0	0
	0	1	01	0
	1	0	10	0
	1	1	X X	X
0^{--1}	0	0	$0^{--1}{ }^{-1}$	0
	0	1	10	0
	1	0	11	0
	1	1	X X	X
1	0	0	1, 0	0
	0	1	11.	0
	1	0	11.	0
	1	1	X X	X
$\overline{1}^{-1}$	0	0	1	1
	0	1	11	1
	1	0	$1 \quad 1$	1
	1	1	X X	X

Figure 8.13 Encoded vending machine state transition table.

The K-maps for the D flip-flop implementation are shown in Figure 8.14. We filled these in directly from the encoded state transition table. The minimized equations for the flip-flop inputs and the output become

$$
\begin{aligned}
& D_{1}=Q_{1}+D+Q_{0} \bullet N \\
& D_{0}=N \cdot \bar{Q}_{0}+Q_{0} \bullet \bar{N}+Q_{1} \cdot N+Q_{1} \bullet D \\
& \text { OPEN }=Q_{1} \bullet Q_{0}
\end{aligned}
$$

The logic implementation is shown in Figure 8.15. It uses eight gates and two flip-flops.

Figure 8.14 K-maps for D flip-flop implementation of vending machine.

Figure 8.15 Vending machine FSM implementation based on D flip-flops.

To implement the state machine using $J-K$ flip-flops, we must remap the next-state functions as in Chapter 7. The remapped state transition table for $J-K$ flip-flop implementation is shown in Figure 8.16. We give the K-maps derived from this table in Figure 8.17. The minimized equations for the flip-flop inputs become

$$
\begin{array}{ll}
J_{1}=D+Q_{0} \bullet N & K_{1}=0 \\
J_{0}=\bar{Q}_{0} \bullet N+Q_{1} \bullet D & K_{0}=\bar{Q}_{1} \bullet N
\end{array}
$$

Figure 8.18 shows the logic implementation. Using J-K flip-flops moderately reduced the hardware: seven gates and two flip-flops.

Discussion We briefly described the complete finite state machine design process and illustrated it by designing a simple vending machine controller. Starting with an English-language statement of the task, we first described the machine in a more formal representation. In this case, we used state diagrams.

Figure 8.16 Remapped next-state functions for the vending machine example.

K-map for J_{1}

K-map for J_{0}

K-map for K_{0}

Figure 8.17 K-maps for J - K flip-flop implementation of vending machine.

Since more than one state diagram can lead to the same input/output behavior, it is important to find a description with as few states as possible. This usually reduces the implementation complexity of the finite state machine. For example, the state diagram of Figure 8.10 contains nine states and requires four flip-flops for its implementation. The minimized state

Figure 8.18 J-K flip-flop implementation for the vending machine example.
diagram of Figure 8.11 has four states and can be implemented with only two flip-flops.

Once we have obtained a minimum finite state description, the next step is to choose a good encoding of the states. The right choice can further reduce the logic for the next-state and output functions. In the example, we used only the most obvious state assignment.

The final step is to choose a flip-flop type for the state registers. In the example, the implementation based on D flip-flops was more straightforward. We did not need to remap the flip-flop inputs, but we used more gates than the J-K flip-flop implementation. This is usually the case.

Now we are ready to examine some alternatives to the state diagram for describing finite state machine behavior.

8.3 Alternative State Machine Representations

You have already seen how to describe finite state machines in terms of state diagrams and tables. However, it can be difficult to describe complex finite state machines in this way. Recently, hardware designers have shifted toward using alternative representations of FSM behavior that look more like software descriptions. In this section, we introduce algorithmic state machine (ASM) notation and hardware description languages (HDLs). ASMs are similar to program flowcharts, but they have a more rigorous concept of timing. HDLs look much like modern programming languages, but they explicitly support computations that can occur in parallel.

You may wonder what is wrong with state diagrams. The problem is that they do not adequately capture the notion of an algorithm-a welldefined sequence of steps that produce a desired sequence of actions based on input data. State diagrams are weak at capturing the structure behind complex sequencing. The representations discussed next do a better job of making this sequencing structure explicit.

Figure $8.18 \quad J-K$ flip-flop implementation for the vending machine example.
diagram of Figure 8.11 has four states and can be implemented with only two flip-flops.

Once we have obtained a minimum finite state description, the next step is to choose a good encoding of the states. The right choice can further reduce the logic for the next-state and output functions. In the example, we used only the most obvious state assignment.

The final step is to choose a flip-flop type for the state registers. In the example, the implementation based on D flip-flops was more straightforward. We did not need to remap the flip-flop inputs, but we used more gates than the J-K flip-flop implementation. This is usually the case.

Now we are ready to examine some alternatives to the state diagram for describing finite state machine behavior.

8.3 Alternative State Machine Representations

You have already seen how to describe finite state machines in terms of state diagrams and tables. However, it can be difficult to describe complex finite state machines in this way. Recently, hardware designers have shifted toward using alternative representations of FSM behavior that look more like software descriptions. In this section, we introduce algorithmic state machine (ASM) notation and hardware description languages (HDLs). ASMs are similar to program flowcharts, but they have a more rigorous concept of timing. HDLs look much like modern programming languages, but they explicitly support computations that can occur in parallel.

You may wonder what is wrong with state diagrams. The problem is that they do not adequately capture the notion of an algorithm-a welldefined sequence of steps that produce a desired sequence of actions based on input data. State diagrams are weak at capturing the structure behind complex sequencing. The representations discussed next do a better job of making this sequencing structure explicit.

8.3.1 Algorithmic State Machine Notation

The ASM notation consists of three primitive elements: the state box, the decision box, and the output box, as shown in Figure 8.19. Each major unit, called an ASM block, consists of a state box and, optionally, a network of condition and output boxes. A state machine is in exactly one state or ASM block during the stable portion of the state time.

State Boxes There is one state box per ASM block, reached from other ASM blocks through a single state entry path. In addition, for each combination of inputs there is a single unambiguous exit path from the ASM block. The state box is identified by a symbolic state name-in a circleand a binary-encoded state code, and it contains an output signal list.

The output list describes the signals that are asserted whenever the state is entered. Because signals may be expressed in either positive or negative logic, it is customary to place an "L." or "H." prefix before the signal name, indicating whether it is asserted low or high. You can also specify whether the signal is asserted immediately (I) or is delayed (no special prefix) until the next clocking event. A signal not mentioned in the output list is left unasserted.

Condition Boxes The condition box tests an input to determine an exit path from the current ASM block to the block to be entered next. The order in which condition boxes are cascaded has no effect on the determination of the next ASM block. Figure 8.20(a) and (b) show functionally equivalent ASM blocks: state B is to be entered next if I_{0} and I_{1} are both 1 ; otherwise state C is next.

Figure 8.19 Elements of the ASM notation.

Figure 8.20 Functionally equivalent ASM blocks.

Figure 8.21 Parity checker ASM chart.

Output Boxes Any output boxes on the path from the state box to an exit contain signals that should be asserted along with the signals mentioned in the state box. The state machine advances from one state to the next in discrete rather than continuous steps. In this sense, ASM charts have different timing semantics than program flowcharts.

Example The Parity Checker As an example, we give the parity checker's ASM chart in Figure 8.21. It consists of two states, Even and Odd, encoded as 0 and 1, respectively. The input is the single bit X; the output is the single bit Z, asserted high when the finite state machine is in the Odd state.

We can derive the state transition table from the ASM chart. We simply list all the possible transition paths from one state to another and the input combinations that cause the transition to take place. For example, in state Even, when the input is 1, we go to state Odd. Otherwise we stay in state Even. For state Odd, if the input is 1, we advance to Even. Otherwise we remain in state Odd. The output Z is asserted only in state Odd. The transition table becomes:

Input \boldsymbol{X}	Present State	Next State	Output \boldsymbol{Z}
F	Even	Even	Not asserted
T	Even	Odd	Not asserted
F	Odd	Odd	Asserted
T	Odd	Even	Asserted

Figure 8.22 Vending machine ASM chart.

Example Vending Machine Controller We show the ASM chart for the vending machine in Figure 8.22. To extract the state transition table, we simply examine all exit paths from each state. For example, in the state $0 ¢$, we advance to state $10 ¢$ when input D is asserted. If N is asserted, we go to state $5 ¢$. Otherwise, we stay in state $0 ¢$. The rest of the table can be determined by looking at the remaining states in turn.

8.3.2 Hardware Description Languages: VHDL

Hardware description languages provide another way to specify finite state machine behavior. Such descriptions bear some resemblance to a program written in a modern structured programming language. But again, the concept of timing is radically different from that in a program written in a sequential programming language. Unlike state diagrams or ASM charts, specifications in a hardware description language can actually be simulated. They are executable descriptions that can be used to verify that the digital system they describe behaves as expected.

VHDL (VHSIC hardware description language) is an industry standard. Although its basic concepts are relatively straightforward, its detailed
syntax is beyond the scope of this text. However, we can illustrate its capabilities for describing finite state machines by examining a description of the parity checker written in VHDL:

```
ENTITY parity_checker IS
    PORT (
        x, clk: IN BIT;
        z: OUT BIT);
END parity_checker;
ARCHITECTURE behavioral OF parity_checker IS
    BEGIN
        main: BLOCK (clk = '1' and not clk'STABLE)
        TYPE state IS (Even, Odd);
        SIGNAL state_register: state := Even;
        BEGIN state_even:
            BLOCK ((state_register = Even) AND GUARD)
                BEGIN
                state_register <= Odd WHEN x = '1'
                ELSE Even
            END BLOCK state_even;
        BEGIN state_odd:
            BLOCK ((state_register = Odd) AND GUARD)
                BEGIN
                state_register <= Even WHEN x = '1'
                ELSE Odd;
            END BLOCK state_odd;
        z<= 'O' WHEN state_register = Even ELSE
                '1'WHEN state_register = Odd;
    END BLOCK main;
END behavioral;
```

Every VHDL description has two components: an interface description and an architectural body. The former defines the input and output connections or "ports" to the hardware entity being designed; the latter describes the entity's behavior.

The architecture block defines the behavior of the finite state machine. The values the state register can take on are defined by the type state, consisting of the symbols Even and Odd. We write VHDL statements that assign new values to the state register and the output Z, depending on the current value of input X, whenever we detect a rising clock edge.

Checking for events like a clock transition is handled through the VHDL concept of the guard, an expression that enables certain statements in the description when it evaluates to true. For example, the expression

```
clk ='1' and not clk'stable
```

is a guard that evaluates to true whenever the clock signal has recently undergone a 0 -to- 1 transition. The main block is enabled for evaluation when this particular guard becomes true.

The description contains two subblocks, state_even and state_odd, that are enabled whenever the main guard is true and the machine is in the indicated state. Within each subblock, the state register receives a new assignment depending on the value of the input. Outside the subblocks, the output becomes 0 when the machine enters state Even and 1 when it enters state Odd.

8.3.3 ABEL Hardware Description Language

ABEL is a hardware description language closely tied to the specification of programmable logic components. It is also an industry standard and enjoys widespread use. The language is suitable for describing either combinational or sequential logic and supports hardware specification in terms of Boolean equations, truth tables, or state diagram descriptions. Although the detailed syntax and semantics of the language are beyond our scope, we can highlight its features with the parity checker finite state machine.

Let's look at the ABEL description of the parity checker:

```
module parity
title 'odd parity checker state machine
    Joe Engineer, Itty Bity Machines, Inc.'
u1 device 'p22v10';
"Input Pins
    clk, X, RESET pin 1, 2, 3;
"Output Pins
    Q, z pin 21, 22;
    Q, Z istype 'pos,reg';
"State registers
SREG = [Q, Z];
EVEN = [0, O]; " even number of 0's
ODD = [1, 1]; " odd number of 0's
```

```
equations
    [Q.ar, Z.ar] = RESET;"Reset to state so
state_diagram SREG
state EVEN:
    if x then ODD
    else EVEN;
state ODD:
    if X then EVEN
    else ODD;
test_vectors ([clk, RESET, X] -> [SREG])
    [0,1,.x.] -> [EvEN];
    [.C.,0,1] -> [ODD];
    [.C.,0,1] -> [EvEN];
    [.C.,0,1] -> [ODD];
    [.C.,0,0] -> [ODD];
    [.c.,0,1] -> [EVEN];
    [.C.,0,1] -> [ODD];
    [.C.,0,0] -> [ODD];
    [.C.,0,O] -> [ODD];
    [.C.,0,0] -> [ODD];
end parity;
```

An ABEL description consists of several sections: module, title, descriptions, equations, truth tables, state diagrams, and test vectors, some of which are optional. Every ABEL description begins with a module statement and an optional title statement. These name the module and provide some basic documentation about its function.

These are followed by the description section. The elements of this section are the kind of device being programmed, the specification of inputs and outputs, and the declaration of which signals constitute the state of the finite state machine.

We must first describe the device selected for the implementation. It is a P22V10 PAL, with 12 inputs, 10 outputs, and embedded flip-flops associated with the outputs. For identification within the schematic, we call the device $u 1$.

Next come the pin descriptions. The finite state machine's inputs are the clock $c l k$, data X, and the RESET signal. The outputs are the state Q and the output Z. These are assigned to specific pins on the PAL. For example, pin 1 is connected to the clock inputs of the internal flip-flops.

Many of the attributes of a PAL are selectable, so the description may need to make explicit choices. The next line of the description tells ABEL that Q and Z are POSitive logic outputs of the PAL's internal flipflops (REG) associated with particular output pins. The P22V10 PAL
also supports negative logic outputs as well as outputs that bypass the internal flip-flops.

The state of the finite state machine is represented by the outputs Q and Z. EVEN is defined as the state where Q and Z are 0 . ODD is defined as the state where Q and Z are 1.

The equation section defines outputs in terms of Boolean equations of the inputs. In this case, the asynchronous reset (. ar) inputs of the Q and Z flip-flops are driven high when the RESET signal is asserted.

The state_diagram section describes the transitions among states using a programming language-like syntax. If we are in EVEN and the input X is asserted, we change to ODD. Otherwise we stay in EVEN. Similarly, if we are in ODD and X is asserted, we return to EVEN. Otherwise we stay in state ODD. ABEL supports a variety of control constructs, including such things as case statements.

The final section in this example is for test_vectors. This is a tabular listing of the expected input/output behavior of the finite state machine. The first entry describes what happens when RESET is asserted: independent of the current value of X, the machine is forced to EVEN. The rest of the entries describe the state sequence for the input string 111011000. The ABEL system simulates the description to ensure that the behavior matches the specified behavior of the test vectors.

The major weakness of an ABEL description is that it forces the designer to understand many low-level details about the target PAL. Nevertheless, the state diagram description is an intuitively simple way to describe the behavior of a state machine.

8.4 Moore and Mealy Machine Design Procedure

There are two basic ways to organize a clocked sequential network:

- Moore machine: The outputs depend only on the present state. See the block diagram in Figure 8.23. A combinational logic block maps the inputs and the current state into the necessary flip-flop inputs to store the appropriate next state. The outputs are computed by a combinational logic block whose only inputs are the flip-flops' state outputs. The outputs change synchronously with the state transition and the clock edge. The finite state machines you have seen so far are all Moore machines.
(Mealy machine: The outputs depend on the present state and the present value of the inputs. See Figure 8.24. The outputs can change immediately after a change at the inputs, independent of the clock. A Mealy machine constructed in this fashion has asynchronous outputs.
Moore outputs are synchronous with the clock, only changing with state transitions. Mealy outputs are asynchronous and can change in response to any changes in the inputs, independent of the clock. This

Figure 8.23 Moore machine block diagram.

Figure 8.24 Mealy machine block diagram.
gives Moore machines an advantage in terms of disciplined timing methodology. However, there is a synchronous variation of the Mealy machine, which we describe later.

8.4.1 State Diagram and ASM Chart Representations

An ASM chart intended for Moore implementation would have no conditional output boxes. The necessary outputs are simply listed in the state box. Conditional output boxes in the ASM chart usually imply a Mealy implementation.

Figure 8.25 shows the notations for Mealy and Moore state diagrams, using the vending machine example. For Moore machines, the outputs are associated with the state in which they are asserted. Arcs are labeled with the input conditions that cause the transition from the state at the tail of the arc to the state at its head. Combinational logic functions are perfectly acceptable as arc labels.

In Mealy machines, the outputs are associated with the transition arcs rather than the state bubble. A slash separates the inputs from the

Figure 8.25 Moore and Mealy machine state diagrams for the vending machine FSM.
outputs. For example, if we are in state $10 \notin$ and either N or D is asserted, Open will be asserted. Any glitch on N or D could cause the gum to be delivered by mistake.

The state diagrams in this figure are labeled more completely than our previous examples. For example, we make explicit the transitions that cause the machine to stay in the same state. We usually eliminate such transitions to simplify the state diagram. We also associate explicit output values with each transition in the Mealy state diagram and each state in the Moore state diagram. A common simplification places the output on the transition or in the state only when it is asserted. You should clarify your assumptions whenever you draw state diagrams.

8.4.2 Comparison of the Two Machine Types

Because it can associate outputs with transitions, a Mealy machine can often generate the same output sequence in fewer states than a Moore machine.

Consider a finite state machine that asserts its single output whenever its input string has at least two 1's in sequence. The minimum Moore and Mealy state diagrams are shown in Figure 8.26. The equivalent ASM charts are in Figure 8.27.

To represent the 1's sequence, the Moore machine requires two states to distinguish between the first and subsequent 1's. The first state has output 0 , while the second has output 1 . The Mealy machine accomplishes this
with a single state reached by two different transitions. For the first 1 , the transition has output 0 . For the second and subsequent 1's, the transition has output 1. Despite the Mealy machine's timing complexities, designers like its reduced state count.

(a) Moore machine
(b) Mealy machine

Figure 8.26 Two state diagrams with the same l / O behavior but different number of states.

Figure 8.27 ASM equivalents of Figure 8.26.

Figure 8.28 Mystery Moore finite state machine.

8.4.3 Examples of Moore and Mealy Machines

Example Moore Machine Description To better understand the timing behavior of Moore and Mealy machines, let's begin by reverse engineering some finite state machines. We will work backward from a circuitlevel implementation of the finite state machine to derive an ASM chart or state diagram that describes the machine's behavior.

Figure 8.28 shows schematically a finite state machine with single data input X and output Z. The FSM is a Moore machine because the output is a combinational logic function (in this case a trivial one) of the state alone. The state register is implemented by two master/slave J K flip-flops, named A and B, respectively. The machine can be in any one of up to four valid states. The output Z and the state bit B are the same.

Signal Trace Method There are two systematic approaches to determining the state transitions: exhaustive signal tracing and extraction of the next state/output functions. We examine the former here and the latter in the next subsection.

Signal tracing uses a collection of input sequences to exercise the various state transitions of the machine. To see how it works, let's start by generating a sample input sequence.

It is reasonable to assume that the FSM is initially reset and that it has been placed in state $A=0, B=0$. Figure 8.29 contains the timing waveform you would see after presenting the input sequence 101010 to the machine. Because the FSM is implemented with master/slave flipflops, the state time begins with the falling edge of the clock. Input X must be stable throughout the high time of the clock to guard against ones catching problems.

The sequence of events in Figure 8.29 is as follows. The asserted reset signal places the FSM in state 00 . After the falling edge, input X goes high just after time step 20. At the next rising edge, the input is sampled and the next state is determined, but this is not presented to

Figure 8.29 A timing trace of the mystery Moore machine.

A	B	X	A^{+}	B^{+}	Z
0	0	0	$?$	$?$	0
		1	1	1	0
0	1	0	0	0	1
		1	$?$	$?$	1
1	0	0	1	0	0
		1	0	1	0
1	1	0	1	1	1
		1	1	0	1

Figure 8.30 Partial state transition table derived from the signal trace.

Figure 8.31 Next-state K-maps.
the outputs until the falling edge at time step 40. After a short propagation delay, the state becomes 11. We express the transition as "a 1 input in state 00 leads to state 11."

During the next state time, X is 0 , and the FSM stays in state 11 as seen at time step 60. X now changes to 1 , and at the next falling edge the state changes to 10 .

The input next changes to 0 , causing the state machine to remain in state 10 at time step 100. A transition to 1 causes it to change to state 01 after time step 120. The final transition to 0 leaves the machine in state 00.

Figure 8.30 contains the partial transition table we deduce from this input sequence. We would have to generate additional input sequences to fill in the missing transitions. For example, an input sequence from the reset state starting with a 0 would fill in the missing transition from state 00 . The sequence 1111 , tracing from state 00 to 11 to 10 to 01 , would catch the remaining transition.

Next State/Output Function Analysis Signal tracing is acceptable for a small FSM, but it becomes intractable for more complex finite state machines. With a single input and 2 bits of state, the example FSM has eight different transitions, two from each of four states. And the number of combinations doubles for each additional input bit and doubles again for each state bit.

Our alternative method derives the next-state functions directly from the combinational logic equations at the flip-flop inputs and the output function from the flip-flop outputs. For the mystery machine, these are

$$
\begin{array}{lll}
J_{a}=X & K_{a}=X \cdot \bar{B} & Z=B \\
J_{b}=X & K_{b}=X \oplus \bar{A} &
\end{array}
$$

We can now express the flip-flop outputs, A^{+}and B^{+}, in terms of the excitation equations for the J-K flip-flop. We simply substitute the logic functions at the inputs into the excitation equations:

$$
\begin{aligned}
& A^{+}=J_{a} \bullet \bar{A}+\bar{K}_{a} \bullet A=X \bullet \bar{A}+(\bar{X}+B) \bullet A \\
& B^{+}=J_{b} \bullet \bar{B}+\bar{K}_{b} \bullet B=X \bullet \bar{B}+(X \bullet \bar{A}+\bar{X} \bullet A) \bullet B
\end{aligned}
$$

The next-state functions, A^{+}and B^{+}, are now expressed in terms of the current state, A and B, and the input X. We show the K-maps that correspond to these functions in Figure 8.31.

The missing state transitions are now obvious. In state 00 with input 0 , the next state is $A^{+}=0$ and $B^{+}=0$. In state 01 with input 1 , the next state is $A^{+}=1, B^{+}=1$. With its behavior no longer a mystery, we show the ASM chart for this finite state machine in Figure 8.32. In the figure, we assume the following symbolic state assignment: $S_{0}=00, S_{1}=01$, $S_{2}=10, S_{3}=11$.

Figure 8.32 ASM chart for the mystery Moore machine.

Example Mealy Machine Description Continuing with our reverse engineering exercise, consider the circuit of Figure 8.33. Once again, the FSM has one input, X, and one output, Z. This time the output is a function of the current state, denoted by A and B, and the input X. The state register is implemented by one D flip-flop and one master/slave J-K flip-flop.

Before examining a signal trace, we must understand the conditions under which the Mealy machine's inputs are sampled and the outputs are valid. The next state is computed from the current state and the inputs, so exactly when are the inputs sampled? The answer depends on the kinds of flip-flops used to implement the state register. In the example, our use of a master/slave flip-flop dictates that the inputs must

Figure 8.33 Circuit schematic of the mystery Mealy machine.
be stable during the high time of the clock (to avoid ones catching) and must be valid a setup time before the falling edge.

Technically, the outputs are valid only at the end of the state time, determined by the falling edge of the clock. In other words, the output for the current state is valid just as the machine enters its next state! If we are using a master/slave flip-flop and if the inputs do not change during the high time of the clock, then the outputs may also be valid during the clock high time.

Negative edge-triggered systems require that the inputs be stable before the falling edge that delineates the state times. This means that the outputs cannot be determined until just before the falling edge. The output remains valid only as long as it takes to compute a new output in the new state.

Similarly, for positive edge-triggered systems the outputs are valid at the rising edge. Again, the output is considered valid just before the clock edge that causes the machine to enter its new state.

Figure 8.34 gives the timing waveform that corresponds to the input sequence 10101, after a reset to state 00 . In state 00 , reading a 1 keeps the machine in state 00 (time step 40).

Reading a 0 then advances the machine to state 01 (time step 60). The waveform for output Z has a glitch. The valid output is determined only at the end of the state time. In this case, the output is 0 .

A 1 in state 01 leads to state 11 (time step 80). Again, the output in this state is the value of Z at the falling edge and thus is 1 .

Reading a 0 in state 11 moves us to state 10 (time step 100), with the output continuing to be asserted despite the momentary glitch.

A 1 in state 10 leads us to state 01 (time step 120). The output goes low and will stay that way as long as the input X stays high.

Figure 8.34 Signal trace of the mystery Mealy machine.

A	B	X	A^{+}	B^{+}	Z
0	0	0	0	1	0
		1	0	0	0
0	1	0	$?$	$?$	$?$
		1	1	1	0
1	0	0	$?$	$?$	$?$
		1	0	1	1
1	1	0	1	0	1
		1	$?$	$?$	$?$

Figure 8.35 Partial state transition table derived from the signal trace.

Figure 8.36 Next-state and output K-maps.

We show the partial state transition table in Figure 8.35. The input sequence produced only five of the eight state transitions. To complete the state diagram, we would have to generate additional sequences to traverse the missing transitions.

Alternatively, we can discover the complete set of transitions by analyzing the next-state and output functions directly, just as we did in the Moore machine:

$$
\begin{aligned}
A^{+} & =B(A+X)=A \bullet B+B \bullet X \\
B^{+} & =J_{b} \bullet \bar{B}+\bar{K}_{b} \bullet B=(\bar{A} \oplus X) \bullet \bar{B}+X \bullet B \\
& =(\bar{A} \bullet \bar{X}+A \bullet X) \bar{B}+X \bullet B \\
& =A \bullet \bar{B} \bullet X+\bar{A} \bullet \bar{B} \bullet \bar{X}+B \bullet X \\
Z & =A \bullet X+B \bullet \bar{X}
\end{aligned}
$$

Since A is a D flip-flop, the function for A^{+}is exactly the combinational logic function at its input. B is a J - K flip-flop, so we determine the function for B^{+}by substituting the logic functions at the J and K inputs into the $J-K$ excitation function.

We give the next-state and output K-maps in Figure 8.36. The missing transitions are from state 01 to 00 on input 0,10 to 00 on input 0 , and 11 to 11 on input 1 . The respective outputs are 1,0 , and 1 . Assuming that S_{0}, S_{1}, S_{2}, and S_{3} correspond to encoded states $00,01,10,11$, we show the ASM chart for the mystery machine in Figure 8.37.

States, Transitions, and Outputs in Mealy and Moore Machines Suppose that a given state machine has M inputs and N outputs and is being implemented using L flip-flops. You might ask a number of questions to bound the complexity of this state machine. For example, what are the minimum and maximum numbers of states that such a machine might have? With L flip-flops, the implementation has the power to represent 2^{L} states. But for a specific FSM as few as 1 and as many as 2^{L} of these might be valid states.

What are the minimum and maximum numbers of state transitions that can begin in a given state? Since there must be an exit transition for each possible input combination, the minimum and the maximum are the same: 2^{M} transitions.

A similar question involves the minimum and maximum numbers of state transitions that can end in a given state. Because we can have start-up states reachable only on reset, the minimum number of input transitions is 0 . Since a single state could conceivably be the target of all the transitions of the finite state machine, the maximum number of input transitions is $2^{M *} 2^{L}$, the number of possible input combinations multiplied by the number of states.

A final question is the minimum and maximum numbers of patterns that can be observed on the machine's outputs. The minimum number of unique output patterns is 1, of course. Every state and every transition can be associated with the same pattern.

The maximum number depends on the kind of machine. For a Mealy machine, the maximum number of output patterns is the smaller of the number of transitions, $2^{M *} 2^{L}$, or the number of possible output patterns, 2^{N}. If the number of transitions exceeds the number of possible output patterns, then some must be repeated. In the Moore machine, the maximum is the smaller of the number of states, 2^{L}, and the number of possible output patterns, 2^{N}. If the number of states exceeds the number of output patterns, then some patterns will also need to be repeated.

As an example, consider a Moore machine with two inputs, one flipflop, and three outputs. The state, transition, and output bounds are:

Minimum number of states: 1
Maximum number of states: 2
Minimum number of output transitions (per state): 4
Maximum number of output transitions (per state): 4
Minimum number of input transitions (per state): 0
Maximum number of input transitions (per state): 8
Minimum number of observed output patterns: 1
Maximum number of observed output patterns: 2
In this case, the output patterns are limited by the number of states.

Figure 8.37 ASM chart for the mystery Mealy machine.

Synchronous Mealy Machines The glitches in the output in Figure 8.34 are inherent in the asynchronous nature of the Mealy machine. As you have already seen, glitches are undesirable in real hardware controllers. But because Mealy machines encode control in fewer states, saving on state register flip-flops, it is still desirable to use them.

This leads to alternative synchronous design styles for Mealy machines. Simply stated, the way to construct a synchronous Mealy machine is to break the direct connection between inputs and outputs by introducing storage elements.

One way to do this is to synchronize the Mealy machine outputs with output flip-flops. See Figure 8.38. The flip-flops are clocked with the same edge as the state register. This has the effect of converting the Mealy machine into a Moore machine, by making the outputs part of the state encoding! However, this machine does not have exactly the same input/output behavior as the original Mealy machine (can you figure out why?). We will have more to say about synchronous Mealy machines in Chapter 10.

Discussion In general, fully synchronous finite state machines are much easier to implement and debug than asynchronous machines. If you were using discrete TTL components, you would usually prefer the Moore machine organization, even though it may require more states. You should use edge-triggered flip-flops for the state registers.

Synchronous Mealy machines can be constructed in TTL logic, but the designer must be careful. The approach leads to more complex designs that may affect the input/output timing of the FSM. You should use asynchronous Mealy machines only after very careful analysis of the input/output timing behavior of the finite state machine.

Figure 8.38 Synchronous Mealy machine block diagram.

Introduction

We are now ready to complete the finite state machine design process introduced in Chapter 8. The steps of Chapter 8 yield an abstract description of the state machine. This may be a state diagram, an ASM chart, or a hardware description language specification. Deriving a symbolic state transition table from one of these is straightforward. In this chapter, we concentrate on state minimization, state assignment, and choice of flip-flops.

We show why finite state machine "optimization" (improvement might be a better word) is still important, even in today's era of very large scale integrated circuits. We present pencil-and-paper methods, as well as more formal techniques suitable for computer implementation, for reducing the number of states and for choosing a state encoding.

Then we examine the approaches for choosing the machine's flipflops and how the choice affects the next-state and output combinational functions. The right choice of flip-flop leads to a smaller gate count and thus fewer components to implement the machine.

Finally, we develop techniques for partitioning complex finite state machines into simpler, smaller, communicating machines. You may be
forced to partition your state machine because it cannot fit into a given programmable logic component. This could arise, for example, because of limited logic resources, such as input/outputs, product terms, or flip-flops. In this chapter, we emphasize the following techniques and concepts:

- Procedures for optimizing a finite state machine. You will learn the methods for state minimization and state assignment.
(Application of modern computer-aided design tools for state assignment. CAD tools make it possible for you to evaluate the implementation complexity of alternative state assignments very rapidly.
- Partitioning methods. You will learn the techniques for breaking finite state machines into smaller, communicating state machines that are well suited for implementation with programmable logic.

9.1 Motivation for Optimization

To review, the finite state machine design process consists of (1) understanding the problem, (2) obtaining a formal description (ultimately, a symbolic state transition table), (3) minimizing the number of states, (4) encoding the states, (5) choosing the flip-flops to implement the state registers, and finally (6) implementing the finite state machine's nextstate and output functions. This chapter starts at step 3 and carries us through to the final implementation at step 6, using methods based on discrete logic gates. We discuss the use of programmable logic for finite state machine implementation in the next chapter.

9.1.1 Two State Diagrams, Same l/0 Behavior

In the age of very large scale integrated circuits, why should we bother to minimize a finite state machine implementation? After all, as long as the input/output behavior of the machine is correct, it really doesn't matter how it is implemented. Or does it?

Figure 9.1 shows two different state diagrams for the odd parity checker of Section 8.2. They have identical output behavior for all input strings. You should try some inputs to convince yourself. We define equivalence of finite state machines as follows. Two machines are equivalent if their input/output behavior is identical for all possible input strings.

For a particular finite state machine, there are many equivalent forms. Rather than reusing states while deriving the state diagram, you could simply introduce a new state whenever you need one (to keep the number of states finite, you will need to reuse some of them, of course).

The two implementations of the state diagrams of Figure 9.1 are certainly not the same. The machine with more states requires more flipflops and more complex next-state logic.

State reduction techniques also allow you to be sloppy in obtaining the initial finite state machine description. If you have introduced a few redundant states, you will find and eliminate them by using the state reduction techniques introduced next.

9.2 State Minimization/Reduction

State reduction identifies and combines states that have equivalent "behavior." Two states have equivalent behavior if, for all input combinations, their outputs are the same and they change to the same or equivalent next states.

For example, in Figure 9.1(b), states S_{0} and S_{2} are equivalent. Both states output a 0 ; both change to S_{1} on a 1 and self-loop on a 0 . Combining these into a single state leads to Figure 9.1(a). On all input strings, the output sequence of either state diagram is exactly the same.

Algorithms for state reduction begin with the symbolic state transition table. First, we group together states that have the same state outputs (Moore machine) or transition outputs (Mealy machine). These are potentially equivalent, since states cannot be equivalent if their outputs differ.

Next, we examine the transitions to see if they go to the same next state for every input combination. If they do, the states are equivalent and we can combine them into a renamed new state. We then change all transitions into the newly combined states. We repeat the process until no additional states can be combined.

In the following two subsections, we examine alternative algorithms for state reduction: row matching and implication charts. The former is a good pencil-and-paper method, but does not always obtain the best reduced state table. Implication charts are more complex to use by hand, but they are easy to implement via computer and do find the best solution.

We can always combine the two approaches. Row matching quickly reduces the number of states. The more complicated implication chart method, now working with fewer states, finds the equivalent states missed by row matching more rapidly.

9.2.1 Row-Matching Method

Let's begin our investigation of the row-matching method with a detailed example. We will see how to transform an initial state diagram for a simple sequence detector into a minimized, equivalent state diagram.

Four-Bit Sequence Detector: Specification and Initial State Diagram Let's consider a sequence-detecting finite state machine with the following specification. The machine has a single input X and output Z. The output is asserted after each 4 -bit input sequence if it consists of one of the binary strings $\mathbf{0 1 1 0}$ or 1010. The machine returns to the reset state after each 4-bit sequence.

Figure 9,3 Initial state transition table for the 0110 or 1010 sequence detector.

Next we examine the rows of the state transition table to find any with identical next-state and output values (hence the term "row matching"). For this finite state machine, we can combine S_{10} and S_{12}. Let's call the new state S_{10}^{\prime} and use it to rename all transitions to S_{10} or S_{12}. The revised state table is shown in Figure 9.4.

Four-Bit Sequence Detector: Row-Matching Iteration We continue matching rows until we can no longer combine any. In Figure 9.4, S_{7}, S_{8}, S_{9}, S_{11}, S_{13}, and S_{14} all have the same next states and outputs. We combine them into a renamed state $S_{7}{ }^{\prime}$. The table, with renamed transitions, is shown in Figure 9.5.

	Next State		Output		
Input Sequence	Present State	$X=0$	$X=1$	$X=0 \quad X=1$	
Reset	S_{0}	S_{1}	S_{2}	0	0
0	S_{1}	S_{3}	S_{4}	0	0
1	S_{2}	S_{5}	S_{6}	0	0
00	S_{3}	S_{7}	S_{8}	0	0
01	S_{4}	S_{9}	S_{10}	0	0
10	S_{5}	S_{11}	S_{10}	0	0
11	S_{6}	S_{13}	S_{14}	0	0
000	S_{7}	S_{0}	S_{0}	0	0
001	S_{8}	S_{0}	S_{0}	0	0
011	S_{9}	S_{0}	S_{0}	0	0
10	S_{10}	S_{0}	S_{0}	1	0
101	S_{11}	S_{0}	S_{0}	0	0
100	S_{1}	S_{0}	S_{0}	0	0
110	S_{13}	S_{0}	S_{0}	0	0
111	S_{14}	S_{0}			

Figure 9.4 Revised state transition table after S_{10} and S_{12} combined.

Figure 9.7 Reduced state diagram for 4-bit string recognizer.

Input Sequence		Next State		Output	
	Present State	$X=0$	$X=1$	X=0	$X=1$
Reset	S_{0}	S_{1}	S_{2}	0	0
0	S_{1}	S_{3}	S_{4}	0	0
1	S_{2}	S_{5}	S_{6}	0	0
00	5_{3}	S_{7}^{7}	S_{7}^{1}	0	0
01	S_{4}	S_{7}^{7}	S_{10}	0	0
10	S_{5}	S_{7}^{1}	S_{10}	0	0
11	S_{6}	S_{7}^{7}	S_{7}^{17}	0	0
not (011 or 101)	S_{7}^{7}	S_{0}	S_{0}	0	0
011 or 101	S_{10}	S_{0}	S_{0}	1	0

Figure 9.5 Revised state transition table after $S_{7}, S_{8}, S_{9}, S_{11}, S_{13}, S_{14}$ combined.

		Next State			Output		
Input Sequence	Present State	$X=0$		$X=1$	$X=0$		$X=1$
Reset	S_{0}	S_{1}	S_{2}	0	0		
0	S_{1}	S_{3}^{\prime}	S_{4}^{\prime}	0	0		
1	S_{2}	S_{4}^{\prime}	S_{3}^{\prime}	0	0		
00 or 11	S_{3}^{\prime}	S_{7}^{\prime}	S_{7}^{\prime}	0	0		
01 or 10	S_{4}^{\prime}	S_{7}^{\prime}	S_{10}^{\prime}	0	0		
not $(011$ or 101$)$	S_{7}^{\prime}	S_{0}	S_{0}	0	0		
011 or 101	S_{10}^{\prime}	S_{0}	S_{0}	1	0		

Figure 9.6 Final reduced state transition table after S_{3}, S_{6} and S_{4}, S_{5} combined.

Now states S_{3} and S_{6} can be combined, as can S_{4} and S_{5}. We call the combined states $S_{3}{ }^{\prime}$ and $S_{4}{ }^{\prime}$, respectively. The final reduced state transition table is shown in Figure 9.6. In the process, we have reduced 15 states to just 7 states. This allows us encode the state in 3 bits rather than 4 . The reduced state diagram is given in Figure 9.7.

Limitations of the Row-Matching Method Unfortunately, row matching does not always yield the most reduced state table. We can prove this with a simple counterexample. Figure 9.8 shows the state table for the three-state odd parity checker of Figure 9.1. Although states S_{0} and S_{2} have the same output, they do not have the same next state. Thus, they cannot be combined by simple row matching. The problem is the selfloop transitions on input 0 . If we combined these two states, the selfloop would be maintained, but this is not found by row matching. We need another, more rigorous method for state reduction.

	Next State		
Present State	$X=0$	$X=1$	Output
S_{0}	S_{0}	S_{1}	0
S_{1}	S_{1}	S_{2}	1
S_{2}	S_{2}	S_{1}	0

Figure 9.8 State table for three-state odd parity checker.

9.2 .2

Implication Chart Method

The implication chart method is a more systematic approach to finding the states that can be combined into a single reduced state. As you might suspect, the method is more complex and is better suited for machine implementation than hand use.

Three-Bit Sequence Detector: Specification and Initial State Table We illustrate its use with another example. Your goal is to design a binary sequence detector that will output a 1 whenever the machine has observed the serial sequence 010 or 110 at the inputs. We call this machine a 3 -bit sequence detector. Figure 9.9 shows its initial state table.

Data Structure: The Implication Chart The method operates on a data structure that enumerates all possible combinations of states taken two at a time, called an implication chart. Figure 9.10(a) shows the chart with an entry for every pair of states. This form of the chart is more complicated than it needs to be. For example, the diagonal entries are not needed: it does not reduce states to combine a state with itself! And

				Next State	
	Output				
Input Sequence	Present State	$X=0$	$X=1$	$X=0$	
Reset	S_{0}	S_{1}	S_{2}	0	0
0	S_{1}	S_{3}	S_{4}	0	0
1	S_{2}	S_{5}	S_{6}	0	0
00	S_{3}	S_{0}	S_{0}	0	0
01	S_{4}	S_{0}	S_{0}	1	0
10	S_{5}	S_{0}	S_{0}	0	0
11	S_{6}	S_{0}	S_{0}	1	0

Figure 9.9 Initial state transition table for the 3-bit sequence detector.

Figure 9.10 Matrix for state combinations and the corresponding implication chart.
the upper and lower triangles of entries are symmetric. The chart entry for S_{i} and S_{j} contains the same information as that for S_{j} and S_{i}. Thus, we work with the reduced structure of Figure 9.10(b).

We fill in the implication chart as follows. Let $X_{i j}$ be the entry whose row is labeled by state S_{i} and whose column is labeled by state S_{j}. If we were able to combine states S_{i} and S_{j}, it would imply that their nextstate transitions for each input combination must also be equivalent. The chart entry contains the next-state combinations that must be equivalent for the row and column states to be equivalent. If S_{i} and S_{j} have different outputs or next-state behavior, an X is placed in the entry. This indicates that the two states can never be equivalent.

Three-Bit Sequence Detector: Initial Implication Chart The implication chart for the example state table is shown in Figure 9.11. $S_{0}, S_{1}, S_{2}, S_{3}$, and S_{5} have the same outputs and are candidates for being combined. Similarly, states S_{4} and S_{6} might also be combined. Any combination of states across the two groups, such as S_{1} and S_{4}, is labeled by an X in the chart. Since their outputs are different, they can never be equivalent.

To fill in the chart entry for (row) S_{1} and (column) S_{0}, we look at the next-state transitions. S_{0} goes to S_{1} on 0 and S_{2} on 1, while S_{1} goes to S_{3} and S_{4}, respectively. We fill the chart in with $S_{1}-S_{3}$, the transitions on 0 , and $S_{2}-S_{4}$, the transitions on 1 . We call these groupings implied state pairs. The entry means that S_{0} and S_{1} cannot be equivalent unless S_{1} is equivalent to S_{3} and S_{2} is equivalent to S_{4}. The rest of the entries are filled in similarly.

At this point, the chart already contains enough information to eliminate many impossible equivalent pairs. For example, we already know that S_{2} and S_{4} cannot be equivalent: they have different output behavior. Thus there is no way that S_{0} can be equivalent to S_{1}.

Finding these cases is straightforward. We visit the entries in sequence. For example, start with the top square in the first column and advance from top to bottom and left to right. If square S_{i}, S_{j} contains the implied state pair $S_{m}-S_{n}$ and square S_{m}, S_{n} contains an X, then mark S_{i}, S_{j} with an X as well.

Sequence Detector Example: First Marking Pass Figure 9.12 contains the results of this first marking pass. Entry S_{2}, S_{0} is marked with an X because the chart entry for the implied state pair $S_{2}-S_{6}$ is already marked with an X. Entry S_{3}, S_{0} is also marked, because entry S_{1}, S_{0} (as well as S_{2}, S_{0}) has just been marked. The same is true for S_{5}, S_{0}. By the end of the pass, the only entries not marked are $S_{2}, S_{1} ; S_{5}, S_{3}$; and S_{6}, S_{4}.

Sequence Detector Example: Second Marking Pass We now make a second pass through the chart to see if we can add any new markings. Entry S_{2}, S_{1} remains unmarked. Nothing in the chart refutes that S_{3} and S_{5} are equivalent. The same is true of S_{4} and S_{6}.

Figure 9.11 Initial implication chart for the 3-bit sequence detector.

Figure 9.12 Results of first marking pass.

Continuing, S_{3}, S_{5} and S_{4}, S_{6} are now obviously equivalent. They have identical outputs and transfer to the same next state $\left(S_{0}\right)$ for all input combinations.

Since no new markings have been added, the algorithm stops. The unmarked entries represent equivalences between the row and column indices: S_{1} is equivalent to S_{2}, S_{3} to S_{5}, and S_{4} to S_{6}. The final reduced state table is shown in Figure 9.13.

Multi-Input Example: State Diagram and Transition Table We can generalize the procedure for finite state machines with more than one input. The only difference is that there are more implied state pairs: one for each input combination.

Let's consider the state diagram for a two-input Moore machine shown in Figure 9.14. Each state has four next-state transitions, one for each possible input condition. The derived state transition table is given in Figure 9.15.

Multi-Input Example: Implication Chart Processing Figure 9.16 shows the implication chart derived from the state transition table. Let's see how some of the entries are filled in. Since S_{1} and S_{0} have different state outputs, we place X in entry S_{1}, S_{0}. For the S_{2}, S_{0} entry, we list the implied state pairs under the input conditions $00,01,10,11$. Because S_{0}

		Next State		Output	
Input Sequence	Present State	$X=0$	$X=1$	$X=0$	$X=1$
Reset	S_{0}	S_{1}^{1}	S_{1}^{\prime}	0	0
0 or 1	S_{1}^{\prime}	S_{3}^{\prime}	S_{4}^{\prime}	0	0
00 or 10	S_{3}^{\prime}	S_{0}	S_{0}	0	0
01 or 11	S_{4}^{\prime}	S_{0}	S_{0}	1	0

Figure 9.13 Final reduced state transition table for the 3-bit sequence detector.

Figure 9.14 Multiple-input state diagram.

Present	Next State				Output
State	00	01	10	11	
S_{0}	S_{0}	S_{1}	S_{2}	S_{3}	1
S_{1}	S_{0}	S_{3}	S_{1}	S_{5}	0
S_{2}	S_{1}	S_{3}	S_{2}	S_{4}	1
S_{3}	S_{1}	S_{0}	S_{4}	S_{5}	0
S_{4}	S_{0}	S_{1}	S_{2}	S_{5}	1
S_{5}	S_{1}	S_{4}	S_{0}	S_{5}	0

Figure 9.15 Multiple-input state transition table.

Figure 9.16 Multiple-input
implication chart.
stays in S_{0} on input 00 , while S_{2} goes to S_{1} on 00 , we add the implied state pair $S_{0}-S_{1}$ to the entry. On input 01, S_{0} goes to S_{1}, S_{2} goes to S_{3}, and we add $S_{1}-S_{3}$ to the entry. Similarly, we add the pairs $S_{2}-S_{2}$ on 10 and $S_{3}-S_{4}$ on 11 to the entry and fill in the rest of the entries.

Now we begin the marking pass. Working down the columns, we cross out entry $S_{2}-S_{0}$ because S_{0}, S_{1} is already crossed out. The same thing happens to the entries $S_{3}, S_{1} ; S_{5}, S_{1}$; and S_{4}, S_{2}. This leaves S_{4}, S_{0} and S_{5}, S_{3} unmarked (these are highlighted in the figure). Their being unmarked implies that S_{4} is equivalent to S_{0} (renamed $S_{0}{ }^{\prime}$) and S_{3} is equivalent to $S_{5}\left(S_{3}{ }^{\prime}\right)$. The reduced state table is given in Figure 9.17.

Present	Next State				Output
State	00	01	10	11	
S_{0}^{\prime}	S_{0}^{\prime}	S_{1}	S_{2}	S_{3}^{\prime}	1
S_{1}	S_{0}^{\prime}	S_{3}^{\prime}	S_{1}	S_{3}^{\prime}	0
S_{2}	S_{1}	S_{3}^{\prime}	S_{2}	S_{0}^{\prime}	1
S_{3}^{\prime}	S_{1}	S_{0}^{\prime}	S_{0}^{\prime}	S_{3}^{\prime}	0

Figure 9.17 Multiple-input reduced state table.

Figure 9.18 implication chart for three-state odd parity checker.

Example State Reduction of Parity Checker Finte State Machine The row-matching method could not combine states S_{0} and S_{2} in the three-state parity checker of Figure 9.1. Can the implication chart method do the job?

The implication chart for the state transition table of Figure 9.8 is given in Figure 9.18. S_{1}, S_{0} and S_{2}, S_{1} are marked immediately because their outputs differ. The remaining square is left unmarked, implying that S_{0} and S_{2} are equivalent. This is the correct reduced state transition table.

Implication Chart Summary The algorithm for state reduction using the implication chart method consists of the following steps:

1. Construct the implication chart, consisting of one square for each possible combination of states taken two at a time.
2. For each square labeled by states S_{i} and S_{j}, if the outputs of the states differ, mark the square with an X ; these states are not equivalent. Otherwise, they may be equivalent. Within the square, write implied pairs of next states for all input combinations.
3. Systematically advance through the squares of the implication chart. If the square labeled by states S_{i}, S_{j} contains an implied pair $S_{m}-S_{n}$ and square S_{m}, S_{n} is marked with an X, then mark S_{i}, S_{j} with an X. Since S_{m} and S_{n} are not equivalent, neither are S_{i} and S_{j}.
4. Continue executing step 3 until no new squares are marked with an X.
5. For each remaining unmarked square S_{i}, S_{j}, you can conclude that states S_{i} and S_{j} are equivalent.

9.3 State Assignment

The number of gates needed to implement a sequential logic network depends strongly on how we assign encoded Boolean values to symbolic states. Unfortunately, the only way to obtain the best possible assignment is to try every choice for the encoding, an extremely large number for real state machines. For example, a four-state finite state machine, such as the traffic light controller of the last chapter, has 4! (4 factorial) $=$ $4 * 3 * 2 * 1=24$ different encodings (see Figure 9.19).

9.3.1 Traffic Light Contraller

To illustrate the impact of state encoding on the next-state and output logic, let's use the symbolic state transition table for the traffic light controller, shown in Figure 9.20. The input combinations that cause the state transitions are shown at the left of the table. The symbolic state names HG, HY, FG, FY represent the states highway green/farmroad red, highway yellow/farmroad red, highway red/farmroad green, and highway red/farmroad yellow. We have already encoded the traffic light outputs: $00=$ Green, $01=$ Yellow, and $10=$ Red.

Figure 9.19 Alternative state encodings of the traffic light controller.

Inputs			$\begin{gathered} \text { Present State } \\ Q_{1} Q_{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { Next State } \\ P_{1} P_{0} \end{gathered}$	Outputs		
C	TL	TS			ST	$H_{1} H_{0}$	$F_{1} F_{0}$
0	X	X	HG	HG	0	00	10
X	0	X	HG	HG	0	00	10
1	1	X	HG	HY	1	00	10
X	X	0	HY	HY	0	01	10
X	X	1	HY	FG	1	01	10
1	0	X	FG	FG	0	10	00
0	X	X	FG	FY	1	10	00
X	1	X	FG	FY	1	10	00
X	X	0	FY	FY	0	10	01
X	X	1	FY	HG	1	10	01

Figure 9.20 Traffic light controller symbolic state transition table.

We can use espresso to examine the alternative state assignments rapidly. Figure 9.21 shows the generic truth table description that is input to espresso. We simply replace the symbolic state names HG, HY, FG, and FY with a particular encoding. Before we do a state assignment
i
.0
-0
. ilb c tl ts q1 q0
.ob p1 p0 st h1 h0 f1 f0
.p 10
0-- HG HG 00010
-0- HG HG 00010
11- HG HY 10010
--0 HY HY 00110
--1 HY FG 10110
10- FG FG 01000
0-- FG FY 11000
-1- FG FY 11000
--0 FY FY 01001
--1 FY HG 11001
.e
Figure 9.21 Espresso input for the traffic light controller.
and two-level minimization, the finite state machine requires 10 unique product terms (one for each row of Figure 9.21).

Figure 9.22 and Figure 9.23 show the results of espresso runs with the state assignments $\mathrm{HG}=00, \mathrm{HY}=01, \mathrm{FG}=11, \mathrm{FY}=10$ and $\mathrm{HG}=00$, $\mathrm{HY}=10, \mathrm{FG}=01, \mathrm{FY}=11$ respectively. A cursory glance shows that the second encoding uses fewer product terms, eight versus nine, and fewer literals, 21 versus 26.
Comparison of the Two Encodings Let's look at the relative complexity of the two implementations. The logic equations implied by the two alternative encodings are the following.

First encoding:

```
.i }
.07
ilb c tl ts a1 q0
ob p1 p0 st h1 h0 f1 f0
-p 10
0-- 00 00 00010
-0- 00 00 00010
11-00 01 10010
--0 01 01 00110
--1 01 11 }1011
10-11 11 01000
10- 11 10 11000
-1-1110 11000
--0 10 10 01001
--1 10 00 11001
.e
```

(a) Espresso input

```
.i 
.o 7
Ob p1 p0 st h1 h0 f1 f0
.p }
11-00 0110000
10-11 1101000
--101 1010000
--010 1001001
---01 0100100
--110 0011001
---0- 0000010
0--11 1011000
-1-11 1011000
e
```

(b) Espresso output

```
i 5
-07 c tl ts q1 q0
.ilb c tl ts q1 q0 f1 f0
.ob p1 p0 st h1 h0 f
.p 10
-p 10}0000001
-0- 00 00 00010
11- 00 10 10010
11-0 10 10 00110
--1 10 01 10110
10-0101 01000
0-- 01 11 11000
-1- 01 11 11000
--0 11 1101001
--1 11 00 11001
.e
```

(a) Espresso input
.15
.07
ilb c tl ts q1 q0
.ob p1 p0 st h1 h0 f1 f0
.p 8
11-0-1010000
--010 1000100
0--01 1010000
--110 0110100
--111 0011001
----0 0000010
---01 0101000
--011 1101001
-e
(b) Espresso output

Figure 9.23 Second encoding.
$P_{1}=C \bullet \overline{T L} \bullet Q_{1} \bullet Q_{0}+T S \bullet \bar{Q}_{1} \bullet Q_{0}+\overline{T S} \bullet Q_{1} \bullet \bar{Q}_{0}+\bar{C} \bullet Q_{1} \bullet Q_{0}+T L \bullet Q_{1} \bullet Q_{0}$ $P_{0}=C \bullet T L \bullet \bar{Q}_{1} \bullet \bar{Q}_{0}+C \bullet \overline{T L} \bullet Q_{1} \bullet Q_{0}+\bar{Q}_{1} \bullet Q_{0}$
$S T=C \bullet T L \bullet \bar{Q}_{1} \bullet \bar{Q}_{0}+T S \bullet \bar{Q}_{1} \bullet Q_{0}+T S \bullet Q_{1} \bullet \bar{Q}_{0}+\bar{C} \bullet Q_{1} \bullet Q_{0}+T L \bullet Q_{1} \bullet Q_{0}$
$H_{1}=C \bullet \overline{T L} \bullet Q_{1} \bullet Q_{0}+\overline{T S} \bullet Q_{1} \bullet \bar{Q}_{0}+T S \bullet Q_{1} \bullet \overline{Q_{0}}+\bar{C} \bullet Q_{1} \bullet Q_{0}+T L \bullet Q_{1} \bullet Q_{0}$
$H_{0}=\bar{Q}_{1} \cdot Q_{0}$
$F_{1}=\bar{Q}_{1}$
$F_{0}=\overline{T S} \bullet Q_{1} \bullet \bar{Q}_{0}+T S \bullet Q_{1} \bullet \bar{Q}_{0}$
With conventional gate logic, the encoding requires 3 five-input gates, 2 four-input gates, 6 three-input gates, and 2 two-input gates, a total of 13 gates. We assume that variables and their complements are available to the network.

Second encoding:
$P_{1}=C \bullet T L \bullet \bar{Q}_{1}+\overline{T S} \bullet Q_{1} \cdot \bar{Q}_{0}+\bar{C} \bullet \bar{Q}_{1} \bullet Q_{0}+\overline{T S} \bullet Q_{1} \bullet Q_{0}$
$P_{0}=T S \bullet Q_{1} \cdot \bar{Q}_{0}+\bar{Q}_{1} \bullet Q_{0}+\overline{T S} \cdot Q_{1} \bullet Q_{0}$
$S T=C \bullet T L \bullet \overline{Q_{1}}+\bar{C} \bullet \overline{Q_{1}} \bullet Q_{0}+T S \bullet Q_{1} \bullet \bar{Q}_{0}+T S \bullet Q_{1} \bullet Q_{0}$
$H_{1}=T S \bullet Q_{1} \bullet Q_{0}+\bar{Q}_{1} \bullet Q_{0}+\overline{T S} \bullet Q_{1} \bullet Q_{0}$
$H_{0}=\overline{T S} \cdot Q_{1} \cdot \overline{Q_{0}}+T S \cdot Q_{1} \bullet \bar{Q}_{0}$
$F_{1}=\bar{Q}_{0}$
$F_{0}=T S \bullet Q_{1} \bullet Q_{0}+\overline{T S} \bullet Q_{1} \bullet Q_{0}$
This encoding requires 2 four-input gates, 8 three-input gates, and 3 two-input gates, for a total of 13 gates. This implementation uses the same number of gates, but it makes more extensive use of gates with smaller fan-ins. This reduces overall wiring and is one reason why it is often more useful to count literals than gates in comparing circuit complexity.

In the next two subsections, we present methods for finding good state encodings. These are suitable for pencil and paper, as well as com-puter-aided design tools.

9.3.2 Pencil-and-Paper Methods

Without computer-aided design tools, there is little you can do to generate a good encoding. Hand enumeration using trial and error becomes tedious even for a relatively small number of states. An n-state finite state machine has $n!$ different encodings. And this is only the lower

Figure 9.24 Five-state ASM chart.
bound. If the state is not densely encoded in the fewest number of bits, even more encodings are possible.

To make the problem more tractable when you must use hand methods, designers have developed a collection of heuristic "guidelines." These try to reduce the distance in Boolean n-space between related states. For example, if state Y is reached by a transition from state X, then the encodings should differ by as few bits as possible. The next-state logic will be minimized if you follow such guidelines. We examine them in this section.

State Maps State maps, similar in concept to K-maps, provide a means of observing adjacencies in state assignments. The squares of the state map are indexed by the binary values of state bits; the state given that encoding is placed in the map square. Obviously the technique is limited to situations in which a K-map can be used, that is, up to six variables.

Figure 9.24 presents an ASM chart for a five-state finite state machine. Figure 9.25 gives two alternative state assignments and their representations in state maps.
Minimum-Bit-Change Heuristic One heuristic strategy assigns states so that the number of bit changes for all state transitions is minimized. For example, the assignment of Figure 9.25(a) is not as good as the one in Figure 9.25(b) under this criterion:

	First Assignment Tit Changes	Second Assignment Bit Changes
Transition	1	
$\mathrm{~S}_{0}$ to $S_{1}:$	2	1
$\mathrm{~S}_{0}$ to $S_{2}:$	3	1
$\mathrm{~S}_{1}$ to $S_{3}:$	3	1
$\mathrm{~S}_{2}$ to $S_{3}:$	2	1
$\mathrm{~S}_{3}$ to $S_{4}:$	1	2
$\mathrm{~S}_{4}$ to $\mathrm{S}_{1}:$	2	

The first assignment leads to 13 different bit changes in the next-state function, the second only 7 bit changes.

We derived the first assignment completely at random and the second assignment with minimum transition distance in mind. Here is how we did it. We made the assignment for S_{0} first. Because of the way reset logic works, it usually makes sense to assign all zeros to the starting state. We make assignments for S_{1} and S_{2} next, placing them next to S_{0} because they are targets of transitions out of the starting state.

Note how we used the edge adjacency of the state map. This is so we can place S_{3} between the assignments for S_{1} and S_{2}, since it is the target of transitions from both of these states.

Finally, we place S_{4} adjacent to S_{3}, since it is the destination of S_{3} 's only transition. It would be perfect if S_{4} could also be placed distance 1

Petitioner Cypress Semiconductor Corp. - Ex. CSC 1014, p. 43

	Assignment		
State Name	Q_{2}	Q_{1}	Q_{0}
S_{0}	0	0	0
S_{1}	1	0	1
S_{2}	1	1	1
S_{3}	0	1	0
S_{4}	0	1	1
Assignment			

State Map
(a) First state assignment and map

State Map
(b) Second state assignment and map

Figure 9.25 Five-state finite state machine.
from S_{0}, but it is not possible to do this and satisfy the other desired adjacencies.

The resulting assignment exhibits only seven bit transitions. There may be many other assignments with the same number of bit transitions, and perhaps an assignment that needs even fewer.

The minimum-bit-change heuristic, although simple, is not likely to achieve the best assignment. For a finite state machine like the traffic light controller, cycling through its regular sequence of states, the minimum transition distance is obtained by a Gray code assignment: $\mathrm{HG}=00, \mathrm{HY}=01, \mathrm{FG}=11, \mathrm{FY}=10$. This was the first state assignment we tried in the previous subsection, and it was not as good as the second assignment, even though the latter did not involve a minimum number of bit changes.

Guidelines Based on Next State and Input/Outputs Although the criterion of minimum transition distance is simple, it suffers by not considering the input and output values in determining the next state. A second set of heuristic guidelines makes an effort to consider this in the assignment of states:

Highest priority: States with the same next state for a given input transition should be given adjacent assignments in the state map.
Medium priority: Next states of the same state should be given adjacent assignments in the state map.
Lowest priority: States with the same output for a given input should be given adjacent assignments in the state map.

Highest Priority

Medium Priority

Lowest Priority
Figure 9.26 Adjacent assignment priorities.

Figure 9.27 Reduced state diagram for 3 -bit sequence detector.

The guidelines, illustrated in Figure 9.26 for the candidate states α and β, are ranked from highest to lowest priority. The first two rules attempt to group together ones in the next-state maps, while the third rule performs a similar grouping function for the output maps. We do a state assignment by listing all state adjacencies implied by the guidelines, satisfying as many of these as possible.

Example Applying the Guidelines Consider the state transition table of Figure 9.13 for the 3-bit sequence detector. The corresponding state diagram is shown in Figure 9.27. Let's apply the state assignment guidelines to this state diagram.

The highest-priority constraint for adjacent assignment applies to states that share a common next state on the same input. In this case, states $S_{3}{ }^{\prime}$ and $S_{4}{ }^{\prime}$ both have S_{0} as their next state. No other states share a common next state.

The medium-priority assignment is for states that have a common ancestor state. Again, $S_{3}{ }^{\prime}$ and $S_{4}{ }^{\prime}$ are the only states that fit this description.

The lowest-priority assignments are made for states that have the same output behavior for a given input. $S_{0}, S_{1}{ }^{\prime}$, and $S_{3}{ }^{\prime}$ all output 0 when the input is 0 . Similarly, $S_{0}, S_{1}{ }^{\prime}, S_{3}{ }^{\prime}$, and $S_{4}{ }^{\prime}$ output 0 when the input is 1 .

The constraints on the assignments can be summarized as follows:
Highest priority: $\quad\left(S_{3}{ }^{\prime}, S_{4}{ }^{\prime}\right)$;
Medium priority: $\left(S_{3}{ }^{\prime}, S_{4}{ }^{\prime}\right)$;
Lowest priority: $\quad 0 / 0:\left(S_{0}, S_{1}{ }^{\prime}, S_{3}{ }^{\prime}\right)$;
1/0: $\left(S_{0}, S_{1}{ }^{\prime}, S_{3}{ }^{\prime}, S_{4}{ }^{\prime}\right) ;$
$0 / 1$, Since the finite state machine has four states, we can make the assignment onto two state bits. In general, it is a good idea to assign the reset state to state map square 0 . Figure 9.28 shows two possible assignments. Both assign S_{0} to 00 and place $S_{3}{ }^{\prime}$ and $S_{4}{ }^{\prime}$ adjacent to each other.

Example Applying the Guidelines in a More Complicated Case As another example, let's consider the more complicated state diagram of

(a) First state assignment

(b) Second state assignment

Figure 9.28 Two possible state assignments.
the 4-bit string recognizer of Figure 9.7. Applying the guidelines yields the following set of assignment constraints:

$$
\begin{array}{ll}
\text { Highest priority: } & \left(S_{3}^{\prime}, S_{4}^{\prime}\right),\left(S_{7}^{\prime}, S_{10}\right) ; \\
\text { Medium priority: } & \left(S_{1}, S_{2}\right), 2 \times\left(S_{3}, S_{4}^{\prime}\right),\left(S_{7}^{\prime}, S_{10}\right) ; \\
\text { Lowest priority: } & 0 / 0:\left(S_{0}, S_{1}, S_{2}, S_{3}^{\prime}, S_{4}^{\prime}, S_{7}^{\prime}\right) ; \\
& 1 / 0:\left(S_{0}, S_{1}, S_{2}, S_{3}^{\prime}, S_{4}^{\prime}, S_{7}^{\prime}, S_{10}\right) ;
\end{array}
$$

Figure 9.29 shows two alternative assignments that meet most of these constraints. We start with Figure 9.29(a) and first assign the reset state to the encoding for 0 . Since $\left(S_{3}^{\prime}, S_{4}\right)$ is both a high-priority and medium-priority adjacency, we make their assignments next. $S_{3}{ }^{\prime}$ is assigned 011 and $S_{4}{ }^{\prime}$ is assigned 111.

We assign (S_{7}^{\prime}, S_{10}) next because this pair also appears in the high- and medium-priority lists. We assign them the encodings 010 and 110 , respectively. Besides giving them adjacent assignments, this places S_{7} near S_{0}, S_{3}, and S_{4} ', which satisfies some of the lower-priority adjacencies.

The final adjacency is (S_{1}, S_{2}). We give them the assignments 001 and 101. This satisfies a medium-priority placement as well as the lowestpriority placements.

Figure 9.29 State assignment example.

The second assignment is shown in Figure 9.29(b). We arrived at it by a similar line of reasoning, except that we assigned $S_{7}{ }^{\prime}$ and S_{10} ' the states 100 and 110 . The second assignment does about as good a job as the first, satisfying all of the high- and medium-priority guidelines, as well as most of the lowest-priority ones.

Applying the Guidelines: Why They Work The state assignment guidelines attempt to maximize the adjacent groupings of 1's in the next-state and output functions. Let P_{2}, P_{1}, and P_{0} be the next-state functions, expressed in terms of the current state Q_{2}, Q_{1}, Q_{0} and the input X. To see how effective the guidelines were, let's compare the assignment of Figure 9.29(a) with a more naive assignment: $S_{0}=000, S_{1}=001, S_{2}=010, S_{3}{ }^{\prime}=011$, $S_{4}^{\prime}=100, S_{7}^{\prime}=101, S_{10}{ }^{\prime}=110$.

Figure 9.30 compares the encoded next-state tables and K-maps for the two encodings. The 1's are nicely clustered in the next state K-maps for the assignment derived from the guidelines. We can implement P_{2} with three product terms and P_{1} and P_{2} with one each.

In the second assignment, the 1's are spread throughout the K-maps, since we made the assignment with no attempt to cluster the 1's usefully. In this implementation, the next-state functions P_{2}, P_{1}, and P_{0} each require three product terms, with a considerably larger number of literals overall.

9.3.3 One Hot Encodings

So far, our goal has been dense encodings: state encodings in as few bits as possible. An alternative approach introduces additional flip-flops, in the hope of reducing the next-state and output logic.

One form of this method is called one hot encoding. A machine with n states is encoded using exactly n flip-flops. Each state is represented by an n-bit binary code in which exactly 1 bit is asserted. This is the origin of the term "one hot."

Let's consider the traffic light finite state machine described earlier in this section. The following would be a possible one hot encoding of the machine's state:

$$
\begin{aligned}
& H G=0001 \\
& H Y=0010 \\
& F G=0100 \\
& F Y=1000
\end{aligned}
$$

The state is encoded in four flip-flops rather than two, and only 1 bit is asserted in each of the states.

Figure 9.31 shows the espresso inputs and outputs for this encoding. It yields eight product terms, as good as the result of Figure 9.23. However, the logic is considerably more complex:

Gurrent	Next State	
State	$X=0$	$X=1$
$\left(S_{0}\right) 000$	001	101
$\left(S_{1}\right) 001$	011	111
$\left(S_{2}\right) 101$	111	011
$\left(S_{3}^{\prime}\right) 011$	010	010
$\left(S_{4}^{\prime}\right) 111$	010	110
$\left(S_{7}^{\prime}\right) 010$	000	000
$\left(S_{10}^{\prime}\right) 110$	000	000

P_{2}

P_{1}

P_{0}
P_{0}

Figure 9.30 State assignment example.

$$
\begin{aligned}
P_{3}= & \bar{C} \bullet \bar{Q}_{3} \bullet Q_{2} \bullet \bar{Q}_{1} \bullet \bar{Q}_{0}+T L \bullet \bar{Q}_{3} \bullet Q_{2} \bullet \bar{Q}_{1} \bullet \bar{Q}_{0} \\
& +\overline{T S} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
P_{2}= & C \bullet \overline{T L} \bullet \bar{Q}_{3} \bullet Q_{2} \bullet \bar{Q}_{1} \bullet \bar{Q}_{0}+T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
P_{1}= & C \bullet T L \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet \bar{Q}_{1} \bullet Q_{0}+\overline{T S} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
P_{0}= & \overline{T L} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet \bar{Q}_{1} \bullet Q_{0}+\bar{C} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet \bar{Q}_{1} \bullet Q_{0} \\
& +T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
S T= & C \bullet T L \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet \bar{Q}_{1} \bullet Q_{0}+\bar{C} \bullet \bar{Q}_{3} \bullet Q_{2} \bullet \bar{Q}_{1} \bullet \bar{Q}_{0} \\
& +T L \bullet \bar{Q}_{3} \bullet Q_{2} \bullet \bar{Q}_{1} \bullet \bar{Q}_{0}+T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
H_{1}= & C \bullet T L \bullet Q_{3} \bullet Q_{2} \bullet Q_{1} \bullet Q_{0}+C \bullet Q_{3} \bullet Q_{2} \bullet Q_{1} \bullet Q_{0} \\
& +T L \bullet \bar{Q}_{3} \bullet Q_{2} \bullet \bar{Q}_{1} \bullet \bar{Q}_{0}+\overline{T S} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
& +T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
H_{0}= & T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0}+T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
F_{1}= & C \bullet T L \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet \bar{Q}_{1} \bullet Q_{0}+\overline{T L} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet \bar{Q}_{1} \bullet Q_{0} \\
& +\bar{C} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet \bar{Q}_{1} \bullet Q_{0}+\overline{T S} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
& +T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0} \\
F_{0}= & \overline{T S} \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0}+T S \bullet \bar{Q}_{3} \bullet \bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0}
\end{aligned}
$$

```
i 7
.09
ob p3 p2 p1 p0 st h1 h0 f1 f0
.p 10
0-- 0001 0001 00010
-0-0001 0001 00010
11-0001 0010 10010
--0 0010 0010 00110
--1 0010 0100 10110
10-0100 0100 01000
0-- 0100 1000 11000
-1- 0100 1000 11000
--0 0010 1000 01001
--1 0010 0001 11001
- e
```

(a) Espresso input
.i 7
.09
.$i l b$ ct ts q3 q2 q1 q0
.ob p3 p2 p1 p0 st h1 ho f1 fo
.p 8
10-0100 010001000
11-0001 001010010
-0-0001 000100010
0--0001 000100010
0--0100 100011000
$-1-0100100011000$
--00010 101001111
--10010 010111111

- e
(b) Espresso output

Figure 9.31 Espresso input/output for the one hot encoding of the traffic light state machine.

The product terms are all five and six variables, with two to five terms per output. This is rather complex for discrete logic but would not cause problems for a PLA-based design.

9.3.4 Computer Tools: Nova, Mustang, Jedi*

The previous subsections described various heuristic approaches for obtaining a good state encoding. None are guaranteed to obtain the best result. In this section, we examine three programs for computer-generated state assignments.

[^0]The state assignment guidelines of Section 9.3.2 place related states together in the state map, thereby clustering the 1 's in those functions. However, we cannot evaluate an assignment fully without actually minimizing the functions. When it comes to hand techniques, this means the K-map method. If we have to use K-maps to minimize the functions for each possible assignment, we are not likely to examine very many of them!

Tools are available that follow the basic kinds of heuristics described above. Unlike hand methods, they are not limited to six state bits, they can generate many alternative assignments rapidly, and they can evaluate the derived assignments by invoking minimization tools like espresso or misII automatically. Three tools that provide this function are nova, for two-level logic implementations, and mustang and jedi, for multilevel logic. Jedi is somewhat more general; it can be used for general-purpose symbolic encodings, such as outputs, as well as next states. We examine each of these programs in the following subsections.

Nova: State Assignment for Two-Level Implementation The inputs to nova

 are similar to the truth table format already described for espresso. The input file consists of the truth table entries for the finite state machine description. The latter are of the form:
inputs current_state next_state outputs

Figure 9.32 shows the format for our example traffic light controller. The states are symbolic; the inputs and outputs are binary encoded. It is important to separate each section with a space. We interpret the first line as "if input 1 (car sensor) is unasserted and the state is HG (highway green), then the next state is HG (highway green) and the outputs are 00010 ($S T=0, \mathrm{H}_{1}: \mathrm{H}_{0}=00$ "green," $\mathrm{F}_{1}: \mathrm{F}_{0}=10$ "red").

Figure 9.33 gives the abbreviated nova output associated with the state machine of Figure 9.32, assuming you have requested a "greedy" state assignment. The "codes" section shows the state assignment: $\mathrm{HG}=00, \mathrm{HY}=11, \mathrm{FG}=01$, and $\mathrm{FY}=10$. The espresso truth table is included in the output, indicating that it takes nine product terms to implement the state machine

Intuitively, the state assignment algorithms used by nova are much like the assignment guidelines of Section 9.3.2. States that are mapped by some input into the same next state and that assert the same output are partitioned into groups. In the terminology of state assignment, these are called input constraints. Nova attempts to assign adjacent encodings within the smallest Boolean cube to states in the same group. A related concept is output constraints. States that are next states of a common predecessor state are given adjacent assignments.

Nova implements a wide range of state-encoding strategies, any of which you can select when you invoke the program:

- Greedy: makes its state assignment based on satisfying as many of the input constraints as it can. When using a greedy approach, nova looks only at new assignments that strictly improve on those it has already examined.
- Hybrid: also makes its state assignment based on satisfying the input constraints. However, nova will examine some assignments that start off looking worse, but may eventually yield a better assignment. This yields better assignments than the greedy strategy.
(I/O Hybrid: similar to hybrid, except it tries to satisfy input and output constraints. Its results are usually better than hybrid's.
 Since the output constraints are not considered, this is still not the best possible encoding.
[Input Annealing: similar to hybrid, except it uses a more sophisticated method for improving the state assignment.
【 One-Hot: uses a one-hot encoding. This rarely yields a minimum product term assignment, but it may dramatically reduce the complexity of the product terms (in other words, the literal count may be greatly reduced).
- Random: uses a randomly generated encoding. Nova will generate the specified number of random assignments. It will report on the best assignment it has found (the one requiring the smallest number of product terms).
For the traffic light controller, the various encoding algorithms yield the following assignments:

					Number of product terms	PLA Area
Greedy:	00	11	01	10	9	153
Hybrid:	00	11	10	01	9	153
Exact:	11	10	01	00	10	170
IO Hybrid:	00	01	11	10	9	153
IAnnealing:	01	10	11	10	9	153
Random:	11	00	01	10	9	153

None of the assignments found by nova match the eight-product-term encoding we found in Figure 9.23. But we shouldn't despair just because the tool did not find the best possible assignment. The advantage of the

- so s1 0

0 S1 S3 0
1 S1 S4 0

- s3 s0 0
$\begin{array}{llll}0 & 54 & S 0 & 1\end{array}$
1 S4 SO 0
Figure 9.34 Nova inputs for the 3-bit string recognizer.

0	$S 0$	$S 1$	0
1	$S 0$	$S 2$	0
0	$S 1$	$S 3$	0
1	$S 1$	$S 4$	0
0	$S 2$	$S 4$	0
1	$S 2$	$S 3$	0
-	$S 3$	$S 7$	0
0	$S 4$	$S 7$	0
1	$S 4$	$S 10$	0
-	$S 7$	$S 0$	0
0	$S 10$	$S 0$	1
1	$S 10$	$S 0$	0

Figure 9.35 Nova inputs for the 4-bit string recognizer.
computer-based tool is that it finds reasonable solutions rapidly. Thus you can examine a variety of encodings and choose the one that best reduces your implementation task.

As another example, let's consider the 3-bit sequence recognizer of Figure 9.27. Its nova input file is shown in Figure 9.34. The state assignments found by nova are the following:

	$\mathbf{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}{ }^{\prime}$	S^{3}	$S_{4}{ }^{\prime}$	Number of product terms	PLA Area
Greedy:	00	01	11	10	4	36
Hybrid:	00	01	10	11	4	36
Exact:	00	01	10	11	4	36
IO Hybrid:	00	10	01	11	4	36
IAnnealing:	00	01	11	10	4	36
Random:	00	11	10	01	4	36

Several of the assignments correspond to the ones found in Figure 9.28(a) and (b).

The last example is the 4-bit recognizer of Figure 9.7. The nova input file is given in Figure 9.35. Nova produced the following assignments:

						Number of product terms		
Greedy:	$\mathbf{S}_{\mathbf{0}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}{ }^{\boldsymbol{\prime}}$	$\boldsymbol{S}_{\mathbf{4}}{ }^{\boldsymbol{\prime}}$	$\boldsymbol{S}_{\mathbf{7}}{ }^{\boldsymbol{\prime}}$	$\boldsymbol{S}_{\mathbf{1 0}}{ }^{\prime}$	
Hybrid:	100	110	010	011	111	000	001	7
Exact:	101	110	111	001	011	000	010	7
IO Hybrid:	101	110	111	001	011	000	010	7
I Annealing:	110	011	001	100	101	000	010	7
Random:	1011	100	101	110	111	000	001	7

None of these assignments match those derived in Figure 9.29, since S_{0} has not been assigned 000. Figure 9.36 shows that the adjacencies that were highly desirable based on the guidelines-that is, $S_{3}{ }^{\prime}$ adjacent to S_{4}, $S_{7}{ }^{\prime}$ adjacent to $S_{10}{ }^{\prime}$, and S_{1} adjacent to S_{2}-are satisfied by the input annealing assignment.

Mustang The minimum number of product terms is a good criterion if you are going to implement the logic in a two-level form, such as a PLA. This is what nova uses. Literal count is better if you plan to implement the logic in multiple levels. Mustang takes this approach. Its optimization criterion is to minimize the number of literals in the multilevel factored form of the next-state and output functions.
.13
.05
.s 2
O-- HG HG 00010
-0- HG HG 00010
11- HG HY 10010
--0 HY HY 00110
--1 HY FG 10110
10- FG FG 01000
0-- FG FY 11000
-1- FG FY 11000
--0 FY FY 01001
--1 FY HG 11001
Figure 9.37 Mustang input file for traffic light controller.

Mustang has an input format similar to that of nova. The only difference is that the number of inputs, outputs, and state bits must be explicitly declared with .i, .o, and .s directives. For example, the traffic light input file is shown in Figure 9.37.

Mustang implements several alternative strategies for state assignment, specified by the user on the command line. These include:
(Random: chooses a random state encoding.
Sequential: assigns the states binary codes in a sequential order.
One-Hot: makes a one-hot state assignment.
Fan-in: works on the input and fan-in of each state. Next states that are produced by the same inputs from similar sets of present states are given adjacent state assignments. The assignment is chosen to maximize the common subexpressions in the next-state function. This is much like the high-priority assignment guideline of Section 9.3.2.

- Fan-out: works on the output and fan-out of each state, without regard to inputs. Present states with the same outputs that produce similar sets of next states are given adjacent state assignments. Again, this maximizes the common subexpressions in the output and next-state functions. This approach works well for finite state machines with many outputs but few inputs. It is much like the medium- and low-priority assignment guidelines from Section 9.3.2.
Mustang derives the following assignments for the traffic light state machine:

	HG	HY	FG	FY	Number of product terms
Random:	01	10	11	00	9
Sequential:	01	10	11	00	9
Fan-in:	00	01	10	11	8
Fan-out:	10	11	00	01	8

The eight term encodings are actually better than any of those found by nova. To determine the multilevel implementation, you must invoke misII on the espresso file created by mustang.

For example, the misII output for the fan-in encoding of the traffic light controller is the following:

$$
\begin{aligned}
P_{1} & =H_{0} \bullet T S+F_{0} \bullet \overline{T S}+F_{0} \bullet Q_{1} \\
P_{0} & =P_{1} \bullet \bar{C} \bullet Q_{1}+C \bullet T L \bullet \bar{Q}_{0}+\overline{T S} \bullet Q_{0} \\
S T & =P_{0} \bullet \bar{Q}_{0}+\bar{P}_{0} \bullet Q_{0}
\end{aligned}
$$

$$
\begin{aligned}
H_{1} & =F_{0}+Q_{1} \bullet \bar{Q}_{0} \\
H_{0} & =\bar{Q}_{1} \bullet Q_{0} \\
F_{1} & =\bar{Q}_{1} \\
F_{0} & =\bar{H}_{0} \bullet Q_{0}
\end{aligned}
$$

For comparison with nova, mustang obtains the following encodings for the 3-bit string recognizer:

				Number of product terms	
Random:	$\mathbf{S}_{\mathbf{0}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{3}}{ }^{\prime}$	$\boldsymbol{S}_{\mathbf{4}}{ }^{\prime}$	prod
Sequential:	01	10	11	00	5
Fan-in:	10	11	00	01	4
Fan-out:	10	11	00	01	4

The number of product terms to implement an encoding is comparable to the number needed for the nova encodings. However, don't forget that the goal of mustang is to reduce literal count rather than product terms.

As a final example, let's look at the mustang encodings for the 4-bit recognizer:

						Number of product terms		
	$\mathbf{S}_{\mathbf{0}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}{ }^{\prime}$	$\boldsymbol{S}_{\mathbf{4}}{ }^{\prime}$	$\boldsymbol{S}_{\mathbf{7}^{\prime}}$	$\boldsymbol{S}_{\mathbf{1 0}}{ }^{\prime}$	prond
Random:	101	010	011	110	111	001	000	8
Sequential:	001	010	011	100	101	110	111	8
Fan-in:	100	010	011	000	001	101	110	8
Fan-out:	110	010	011	100	101	000	001	6

It is interesting that in all three cases, mustang obtained an encoding that is as good as any of the best encodings found by nova.

Jedi The final encoding program we shall examine is jedi. It is similar to mustang in that its goal is to obtain a good encoding for a multilevel implementation. It is more powerful than mustang because it can solve general encoding problems: jedi can find good encodings for the outputs as well as the states.

Like the other programs, jedi implements several alternative encoding strategies that can be selected on the command line. Besides random, one hot, and straightforward, the program supports input dominant, output dominant, modified output dominant, and input/output combination algorithms.

The jedi input format is similar to, but slightly different from, the mustang input format. We can illustrate this best with an example. Figure 9.38 shows the jedi input file for the traffic light controller. The present state and next states each count as a single input, even though they may be encoded by several bits. The .enum states line tells jedi that there are four states and that they should be encoded in 2 bits and then gives the state names. The . enum colors line tells jedi that there are three output colors and that these should also be encoded in 2 bits. You should think of these as enumerated types. The .itype and . otype lines define the types of the inputs and outputs, respectively.

The encodings obtained from jedi for the traffic light controller are:
Number of

For the 3 -bit string recognizer, the state assignments are:

			Number of		
	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{3}}{ }^{\prime}$	$\mathbf{S}_{\mathbf{4}}{ }^{\prime}$	product terms
Input:	01	00	11	10	4
Output:	11	01	00	10	4
Combination:	10	00	11	01	4
Output':	11	01	00	10	4

Finally, for the 4 -bit string recognizer, they are:

Finally, for the 4-bit string recognizer, they are:								
						Number of product terms		
Input:	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}{ }^{\prime}$	$\mathbf{S}_{\mathbf{4}}{ }^{\prime}$	$\boldsymbol{S}_{\mathbf{7}}{ }^{\prime}$	$\mathbf{S}_{\mathbf{1 0}}{ }^{\prime}$	
Output:	111	101	100	010	110	011	001	7
Combination:	101	110	100	010	000	111	011	7
Output':	001	011	111	110	010	000	101	7
	100	101	010	011	000	111	6	

Let's look at one head-to-head comparison between mustang and jedi. We will use the mustang encoding in which $\mathrm{HG}=00, \mathrm{HY}=01$, $\mathrm{FG}=10, \mathrm{FY}=11$, Green $=00$, Yellow $=01$, and $\mathrm{Red}=10$ and the jedi encoding in which $\mathrm{HG}=00, \mathrm{HY}=01, \mathrm{FG}=11, \mathrm{FY}=10$, Green $=10$, Yellow $=11$, and $\operatorname{Red}=01$. The first encoding used eight product terms in a two-level implementation; the second used nine.

```
.i 4
.04
. enum States 4 2 HG HY FG FY
. enum Colors 3 2 GREEN RED YELLOW
.itype Boolean Boolean Boolean States
-otype States Boolean Colors Colors
O - - HG HG O GREEN RED
- 0 - HG HG O GREEN RED
1 1 - HG HY 1 GREEN RED
- - 0 HY HY 0 YELLOW RED
- - 1 HY FG 1 YELLOW RED
10 - FG FG O RED GREEN
0- - FG FY 1 RED GREEN
- 1 - FG FY 1 RED GREEN
- - O FY FY O RED YELLOW
- - 1 FY HG 1 RED YELLOW
Figure 9.38 Jedi input file.
```

The multilevel implementation for the mustang assignment was already shown in the mustang section. It requires 26 literals. The jedi multilevel implementation is

$$
\begin{aligned}
& P_{1}=H_{1} \bullet C \bullet T L+H_{0}+F_{1} \bullet C \bullet T L \\
& P_{0}=H_{0} \bullet T S+F_{1}+F_{0} \bullet T S \\
& S T=P_{1} \bullet H_{1}+\bar{P}_{1} \bullet F_{1}+\bar{H}_{1} \bullet \bar{F}_{0} \bullet T S \\
& H_{1}=\bar{Q}_{1} \bullet \bar{Q}_{0} \\
& H_{0}=Q_{1} \bullet \bar{Q}_{0} \\
& F_{1}=\bar{H}_{0} \bullet Q_{1} \\
& F_{0}=\bar{H}_{1} \bullet \bar{Q}_{1}
\end{aligned}
$$

It has 27 literals. In terms of straight literal count, the mustang encoding is better. If we examine the wiring complexity, the mustang encoding is also slightly better.

9.4 Choice of Flip-Flops

After state reduction and state assignment, the next step in the design process is to choose flip-flop types for the state registers. The issues are identical to those in the counter case studies of Chapter 7.

Usually, we have to decide whether to use J-K flip-flops or D flipflops. $J-K$ devices tend to reduce the gate count but increase the number of connections. D flip-flops simplify the implementation process and are well suited for VLSI implementations, where connections are at more of
a premium than gates. Because the CAD tools mentioned in the previous section were developed to assist in VLSI implementations, it is not surprising that they implicitly assume D flip-flops as the targets of the assignment. Their best assignment may not lead to the minimum logic for a J-K flip-flop implementation.

The following procedure completes the finite state machine implementation, given a particular choice of flip-flops:

1. Given the state assignments, derive the next-state maps from the state transition table.
2. Remap the next-state maps given the excitation tables for the flip-flops chosen to implement the state bits.
3. Minimize the remapped next-state function.

9.4.1 Flip-Flop Choice for the Four-Bit Sequence Detector

Let's illustrate the procedure with the 4 -bit sequence detector, using the state assignment of Figure 9.39, the encoded state transition table. Each state has been replaced by its binary encoding given by the state assignment. Figure 9.40 is the encoded next-state map, organized according to the standard binary sequence and showing the don't cares.

D Implementation To obtain the direct form for determining the state machine implementation with D flip-flops, represent the encoded nextstate functions as K-maps. Figure 9.41 contains the four-variable K -maps for the next-state functions $Q_{2}{ }^{+}, Q_{1}{ }^{+}, Q_{0}{ }^{+}$, given the current state Q_{2}, Q_{1}, Q_{0} and the input I. The reduced equations that describe the inputs to the D flip-flops are

$$
\begin{aligned}
& D_{\mathrm{Q} 2+}=\bar{Q}_{2} \cdot Q_{1}+Q_{0} \\
& D_{\mathrm{Q} 1+}=Q_{1} \cdot Q_{0} \cdot I+\bar{Q}_{2} \cdot \bar{Q}_{0} \cdot \bar{I}+\bar{Q}_{2} \cdot \bar{Q}_{1} \\
& D_{\mathrm{Q} 0+}=\bar{Q}_{2} \cdot Q_{1}+\bar{Q}_{2} \cdot \bar{I}
\end{aligned}
$$

	Next State		Output	
Present State	$I=0$	$I=1$	$I=0$	$I=1$
$000\left(S_{0}\right)$	$011\left(S_{1}\right)$	$010\left(S_{2}\right)$	0	0
$011\left(S_{1}\right)$	$101\left(S_{3}^{\prime}\right)$	$111\left(S_{4}^{\prime}\right)$	0	0
$010\left(S_{2}\right)$	$111\left(S_{4}^{\prime}\right)$	$101\left(S_{3}^{\prime}\right)$	0	0
$101\left(S_{3}^{\prime}\right)$	100	$100\left(S_{7}^{\prime}\right)$	0	0
$111\left(S_{4}^{\prime}\right)$	$\left(S_{7}^{1}\right)$	110	0	0
$100\left(S_{7}^{\prime}\right)$	100	$\left(S_{0}^{\prime}\right)$	0	0
$110\left(S_{10}^{\prime}\right)$	$\left(S_{7}^{\prime}\right)$	000	1	0

Figure 9.39 Encoded state transition table for 4-bit sequence detector.

	Next State	
Present State	$I=0$	$I=1$
000	011	010
001	XXX	XXX
010	111	101
011	101	111
100	000	000
101	100	100
110	000	000
111	100	110

Figure 9.40 Encoded next-state map.

Figure 9.41 Next-state K-maps.

There are six unique product terms and 15 literals. In terms of discrete gates, the implementation requires 3 three-input gates, 5 two-input gates, and 4 inverters, a total of 12 gates.
$J-K$ Implementation For the $J-K$ implementation, we begin by remapping the inputs based on the $J-K$ excitation tables. Figure 9.42 gives the remapped next-state table, and Figure 9.43 shows the K -maps. The J - K logic equations become

$$
\begin{array}{ll}
J_{\mathrm{Q} 2+}=Q_{1} & K_{\mathrm{Q} 2+}=\bar{Q}_{0} \\
J_{\mathrm{Q} 1+}=\bar{Q}_{2} & K_{\mathrm{Q} 1+}=\bar{Q}_{0} \bullet I+Q_{0} \cdot \bar{I}+Q_{2} \bullet \bar{Q}_{0} \\
J_{\mathrm{Q} 0+}=\bar{Q}_{2} \bullet Q_{1}+\bar{Q}_{2} \bullet \bar{I} & K_{\mathrm{Q} 0+}=Q_{2}
\end{array}
$$

This implementation requires nine unique terms and 14 literals. The gate count is 1 three-input gate, 6 two-input gates, and 3 inverters, a total of 10 gates. This is slightly fewer than the D flip-flop implementation. However, when you use structured logic such as a PLA to implement the functions, the option with fewer product terms is better. In this case, it would be the D implementation.

9.5 Finite State Machine Partitioning

In the preceding sections, we described the design process for a single monolithic finite state machine. The approach is reasonable for many strategies for implementing a finite state machine, such as using discrete gates.

However, when using some forms of programmable logic, we may need to partition the machine. In some cases we cannot implement a complex finite state machine with a single programmable logic component. The machine might require too many inputs or outputs, or the number of terms to describe the next-state or output functions might be too large, even after state reduction and Boolean minimization.

Present State	Remapped Next State					
	Next $r=0$	State	${ }_{f=0}^{J}$	$\underset{I=0}{K}$	${ }_{i=1}$	$\underset{I}{K}$
000	011	010	011	XXX	010	XXX
001	XXX	XXX	XXX	XXX	XXX	XXX
010	111	101	1X1	X0X	1X1	X1X
011	101	111	1XX	X10	1XX	X00
100	000	000	X00	1XX	X00	1XX
101	100	100	X0X	0X1	X0X	0X1
110	000	000	XX0	11X	XX0	11X
111	100	110	XXX	011	XXX	001

Figure 9.42 Remapped next-state table for $J K K$ flip-flops.

Figure 9.43 Remapped K-maps.

Example 1 FSM Partitioning To illustrate the value of state machine partitioning, suppose we have a finite state machine with 20 inputs and 10 outputs (including next-state outputs). But we only have programmable logic components with 15 inputs and 5 outputs. We cannot implement this finite state machine with a single component.

Suppose we can arrange the outputs in two sets of five, each of which can be computed from different 15 -element subsets of the original 20 inputs. Then we could partition the output functions among two programmable logic components, as shown in Figure 9.44. Of course, it isn't

Figure 9.44 Finite state machine partitioning on inputs and outputs.
always possible to find such a fortuitous partitioning. For example, every output might be a function of 16 inputs.

If we cannot reduce the complexity of the finite state machine by simple input/output partitioning, another way to "make it fit" is to partition the single finite state machine into smaller, less complex, communicating finite state machines. We examine this approach in the next subsection.

9.5.1 Finite State Machine Partitioning by Introducing Idle States

Partitioning the finite state machine makes sense if the next-state logic is too complex to implement with the programmable logic components at hand. The problem is that PALs provide a fixed number of product terms per output function. We can make a trade-off between the number of flip-flops needed to encode the state and the complexity of these next-state functions. Our idea is to introduce additional "idle" states into the finite state machine in the hope of reducing the number of terms in the next-state functions.

Example 2 FSNV Partitioning For example, Figure 9.45 shows a subset of a state diagram. We have chosen to partition the state diagram into two separate machines, containing states S_{1}, S_{2}, S_{3} and S_{4}, S_{5}, S_{6}, respectively. The symbols C_{i} associated with the transitions represent the Boolean conditions under which the transition takes place.

What happens if we partition the state diagram, but a transition must take place between the two pieces? We need to introduce idle states to synchronize the activity between the two finite state machines. In essence, the machine at the left hands control off to the machine at the

Figure 9.45 State diagram fragment before partitioning.
right when a transition from S_{1} to S_{6} takes place. The left machine must idle in some new state until it regains control, such as when there is a transition from S_{6} back to S_{1}. In this event, the machine on the right must remain idle until it regains control.

The revised state diagrams are shown in Figure 9.46. We have introduced two new states, S_{A} and S_{B}, to synchronize the transitions across the partition boundary. Here is how it works for the state sequence S_{1} to S_{6} and back to S_{1}. Initially, the machines are in states S_{1} and S_{B}. If condition C_{1} is true, then the left-hand state machine exits S_{1} and enters its idle state, S_{A}. At the same time, the right-hand machine exits S_{B} and enters S_{6}.

Suppose that the right-hand machine sequences through some states, eventually returning to S_{6}. Throughout this time, the left-hand machine

Figure 9.46 State diagram fragment after partitioning.
remains in its idle state. If the right-hand machine is in S_{6} and C_{2} is true, it next enters its idle state, S_{B}. At the same instant, the left-hand machine exits S_{A}, returning to S_{1}. While the left-hand machine sequences through states, the right-hand machine idles in S_{B}.

Rules for Partitioning We are ready to describe the rules for introducing idle states into a partitioned finite state machine. We illustrate each rule with an example from the partitioned state machine of the previous subsection. All the rules involve transitions that cross the partition boundary.

The first rule applies for a state that is the source of a transition that crosses the boundary. The case is shown in Figure 9.47(a). The crossboundary transition is replaced by a transition to the idle state, labeled by

Figure 9.47 Rules for partitioning.
the same exit condition as the original transition. For example, the S_{1}-to- S_{6} transition is replaced by a transition with the same condition to S_{A}.

The second rule applies to the destination of a transition that crosses the partition boundary. This is shown in Figure 9.47(b). The transition is replaced with an exit transition from the idle state, labeled with the original condition ANDed with the source state. For example, the transition from S_{6} to S_{1} is replaced with a transition from S_{A}. We exit the idle state when both C_{2} is true and the right-hand state machine is in S_{6}. Hence, the transition is labeled with the condition $C_{2} \cdot S_{6}$.

The third rule applies when multiple transitions share the same source or destination. This case is illustrated in Figure 9.47(c). If a state is the source of multiple transitions across the partition boundary, all of these are collapsed into a single transition to the idle state. The exit conditions are ORed together to label the new transition. For example, S_{2} has transitions to states S_{5} and S_{4}. These are replaced with a single transition to S_{A}, labeled $C_{3}+C_{5}$.

If a state is the target of multiple transitions across the boundary, a single transition is added from the idle state to this state. The transition is labeled with the OR of the conditions associated with the individual transitions in the original state machine. This case is illustrated by the transitions from S_{2} and S_{3} to S_{5}. These are replaced by a single transition from S_{B} to S_{5}, labeled $C_{3} \bullet S_{2}+C_{4} \cdot S_{3}$.

When all these rules have been applied, the final rule describes the self-loop ("hold") condition for the idle states. Simply form the OR of all of the exit conditions and invert it. This is shown in Figure 9.47(d). Consider the idle state S_{A}. Its only exit condition is $C_{2} \cdot S_{6}$. So its hold condition is the inverse of this, namely $\overline{C_{2}} \bullet \bar{S}{ }_{6}$.

Example 3 FSM Partitioning Consider the six-state finite state machine of Figure 9.48(a). The machine implements a simple up/down counter. When the input U is asserted, the machine counts up. When D is asserted, it counts down. Otherwise the machine stays in its current state.

The goal is to partition the machine into two communicating four-state finite state machines. We might need to do this because the underlying logic primitives provide support for two flip-flops within the logic block, as in the Xilinx CLB to be introduced in the next chapter.

Figure 9.48 (b) shows the result of the partitioning. States S_{0}, S_{1}, and S_{2} form the core of one machine and S_{3}, S_{4}, and S_{6} form the other. We also introduce the two idle states, S_{A} and S_{B}.

The machine at the left enters its idle state S_{A} when it is in S_{0} and D is asserted or when it is in S_{2} and U is asserted. It exits the idle state when the machine at the right is in S_{5} with U asserted or in S_{3} with D asserted. Otherwise it stays in its idle state. The machine at the right works similarly.

To see how the machines communicate, let's consider an up-count sequence from S_{0} to S_{5} and back to S_{0}. On reset, the machine on the left

(a) Before partitioning

(b) After partitioning

Figure 9.48 Partitioning example.
enters S_{0} while the machine on the right enters S_{B}. With U asserted, the left machine advances from S_{0} to S_{1} to S_{2} to S_{A}. It will idle in this state until the right machine is ready to exit S_{5}.

Meanwhile, the right machine holds in S_{B} until the left machine enters S_{2}. At the same time that the left machine changes to S_{A}, the right one exits S_{B} to S_{3}. On subsequent clock transitions, it advances from S_{3} to S_{4} to S_{5} to S_{B}, where it holds. When the right machine changes from S_{5} to S_{B}, the left machine exits S_{A} to S_{0}, and the process repeats itself. Down-count sequences work in an analogous way.

Chapter Review

This chapter has concentrated on the optimization of finite state machines. We have emphasized the methods for state reduction, state assignment, choice of flip-flops, and state machine partitioning. For state reduction, we introduced the row matching and implication chart methods. These can be used to identify and eliminate redundant states, thus reducing the number of flip-flops needed to implement a particular finite state machine.

We then examined heuristic methods for state assignment, aimed at reducing the number of product terms or literals needed to implement the next-state and output functions. Since paper-and-pencil methods are not particularly effective, we introduced computer-aided design tools for state assignment that do a much better job in a fraction of the time: nova, mustang, and jedi.

The latter part of the chapter focused on choosing flip-flops for implementing the state registers of the finite state machine. $J-K$ flip-flops tend to be most effective in reducing the logic, but they require logical remapping of the next-state functions and more wires than the simpler D flip-flops.

Finally, we discussed state machine partitioning methods, in particular partitioning based on inputs and outputs and partitioning by introducing idle states. These techniques are needed when we cannot implement a finite state machine with a single programmable logic component.

In the next chapter, we will examine implementation strategies in more detail. In particular, we will look at the methods for implementing finite state machines based on structured logic methods, such as ROM, programmable logic, and approaches based on MSI components.

Further Reading

The traffic light controller example used extensively in this chapter is borrowed from the famous text by C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1979. C. Roth's book, Fundamentals of Logic Design, West Publishing, St. Paul, MN, 1985, has an extensive discussion of state assignment guidelines that formed the basis of our Section 9.3.2. Modern Logic Design by D. Green, AddisonWesley, 1986, has a highly readable, short, direct description of state assignment (pp. 40-43).

Nova's approach to state assignment is described in T. Villa and A. San-giovanni-Vincentelli's paper "NOVA: State Assignment of Finite State Machines for Optimal Two-Level Logic Implementations," given at the 26th Design Automation Conference, Miami, FL (June 1989). A revised and expanded version of the paper appeared in IEEE Transactions on Computer Aided Design in September 1990 (vol. 9, no. 9, pp. 1326-1334). Mustang's method is described in "MUSTANG: State Assignment of Finite State Machines Targeting Multi-level Logic Implementations," by S. Devadas, B. Ma,
R. Newton, and A. Sangiovanni-Vincentelli, in IEEE Transactions on Computer-Aided Design, vol. 7, no. 12 (December 1988). Jedi's method for symbolic assignment is described by Lin and Newton in "Synthesis of Multiple Level Logic from Symbolic High-Level Description Languages," which appeared in the Proceedings of the VLSI'89 Conference, Munich, West Germany, in August 1989.

These tools (along with espresso and misII) are available for a very modest charge from the Industrial Liaison Program Office of the Electrical Engineering and Computer Science Department, University of California, Berkeley. Detailed descriptions of how to invoke the tools, as well as examples of their use, can be found in the most current OCTTOOLS Manual distributed by that office.

Finite state machine partitioning is a topic that waxes and wanes in importance. The original work was done in the late 1950s, became less interesting during the era of VLSI, and is becoming more important again with pervasive use of programmable logic in digital designs. The topic is not well covered by most of today's textbooks. One exception is M. Bolton's book, Digital System Design with Programmable Logic, Addison-Wesley, Wokingham, England, 1990, which offers a section on the topic. The partitioning rules introduced in Section 9.5.1 were obtained from an applications note in the Altera Applications Handbook, Altera Corporation, Santa Clara, CA, 1988.

Exercises

9.1. (State Reduction) Use the implication chart method to reduce the 4-bit string recognizer state diagram of Figure 9.2.
9.2 (State Reduction) Given the state diagram in Figure Ex9.2, obtain an equivalent reduced state diagram containing a minimum number of states. You may use row matching or implication charts. Put your final answer in the form of a state diagram rather than a state table. Make it clear which states have been combined.
9.3 (State Reduction) Given the state diagram in Figure Ex9.3, determine which states should be combined to determine the reduced state diagram. You may use row matching or implication charts.
9.4 (State Reduction) Given the state diagram in Figure Ex9.4, draw the fully reduced state diagram. State succinctly what strings cause the recognizer to output a 1.
9.5 (State Reduction) Starting with the state diagram of Figure Ex9.5, use the implication chart method to find the minimum state diagram. Which of the original states are combined?

[^0]: *This subsection requires access to software developed at the University of California, Ber keley. If you do not have access to it, you may want to skim this section, or skip it altogether.

