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(δr)max = F(ωn)

(Aeq)r = = F(ωn)

(23.54)

This result is clearly evident for the Fourier spectrum and undamped shock response
spectrum of the acceleration impulse. The Fourier spectrum is the horizontal line
(independent of frequency) shown in Fig. 23.3A and the shock response spectrum is
the inclined straight line (increasing linearly with frequency) shown in Fig. 23.7A.
Since the impulse exists only at t = 0, the entire response is residual. The undamped
shock spectra in the impulsive region of the half-sine pulse and the decaying sinu-
soidal acceleration, Fig. 23.7C and D, respectively, also are related to the Fourier spec-
tra of these shocks, Fig. 23.3C and D, in a similar manner. This results from the fact
that the maximum response occurs in the residual motion for systems with small nat-
ural frequencies. Another example is the entire negative shock response spectrum
with no damping for the half-sine pulse in Fig. 23.7C, whose values are ωn/g times the
values of the Fourier spectrum in Fig. 23.3C.

METHODS OF DATA REDUCTION

Even though preceding sections of this chapter include several analytic functions as
examples of typical shocks, data reduction in general is applied to measurements of
shock that are not definable by analytic functions. The following sections outline
data reduction methods that are adapted for use with any general type of function,
obtained in digital form in practice. Standard forms for presenting the analysis
results are given in Ref. 8.

FOURIER SPECTRUM

The Fourier spectrum is computed using the discrete Fourier transform (DFT)
defined in Eq. (14.6). The DFT is commonly computed using a fast Fourier trans-
form (FFT) algorithm, as discussed in Chap. 14 (see Ref. 9 for details on FFT com-
putations). Fourier spectra can be computed as a function of either radial frequency
ω in radians/sec or cyclical frequency f in Hz, that is,

F1(f) = �∞

−∞
x(t)e−j2πftdt or F2(ω) = �∞

−∞
x(t)e−jωtdt (23.55)

where the two functions are related by F2(ω) = 2πF1(f).

SHOCK RESPONSE SPECTRUM

The shock response spectrum can be computed by the following techniques: (a)
direct numerical or recursive integration of the Duhamel integral in Eq. (23.33), or
(b) convolution or recursive filtering procedures. One of the most widely used pro-
grams for computing the shock response spectrum is the “ramp invariant method”
detailed in Ref. 10.Any of these computational procedures can be modified to count

ωn�
g

ωn
2(δr)max��

g

1
�
ωn

CONCEPTS IN SHOCK DATA ANALYSIS 23.25
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FINITE FOURIER TRANSFORMS

Since frequency domain descriptions of vibrations are generally of the greatest engi-
neering value, the Fourier transform plays a major role in both the theoretical defi-
nitions of properties and the analysis algorithms for vibration data. The finite
Fourier transform of a sample record x(t) is defined as

X(f,T) = �T

0
x(t)e−j2πftdt = �T

0
x(t) cos (2πft)dt − j�T

0
x(t) sin (2πft)dt (22.3)

where j = �−1�. Three properties of the definition in Eq. (22.3) should be noted, as
follows:

1. The finite Fourier transform is generally a complex number that is defined for
both positive and negative frequencies, that is, X(f,T); −∞ < f < ∞. However,
X(−f,T) = X*(f,T), where the asterisk denotes the complex conjugate, meaning
that values at mathematically negative frequencies are redundant and provide no
information beyond that provided by the values at positive frequencies. Since
engineers typically think of frequency as a positive value, it is common to present
finite Fourier transforms as 2X(f,T); 0 < f < ∞.

2. Fourier transforms are often defined as a function of radial frequency ω in radi-
ans/sec, as opposed to cyclical frequency f in Hz, particularly for analytical appli-
cations. However, data analysis is usually accomplished in terms of cyclical
frequency f, as defined in Eq. (22.3). The two definitions are interrelated by
X(f,T) = 2π X(ω,T).

3. The finite Fourier transform X(f,T) is equivalent to the Fourier series of x(t)
assumed to have a period T.

STATIONARY DETERMINISTIC VIBRATIONS

Stationary deterministic vibration environments generally fall into one of two cate-
gories, namely, periodic vibrations or almost-periodic vibrations.

Periodic Vibrations. Periodic vibrations are those with time-histories that exactly
repeat themselves after a time interval TP, that is, x(t) = x(t + iTP); i = 1, 2, 3, . . . ,
where TP is called the period of the vibration. All periodic vibrations can be decom-
posed into a Fourier series, which consists of a collection of commensurately related
sine waves,1,2 that is,

x(t) = a0 + �
k

ak sin (2πkf1t + θk) k = 1, 2, 3, . . . (22.4)

where a0 is the mean value, kf1 is the kth frequency component (harmonic), and ak

and θk are the amplitude and phase angle associated with the kth frequency compo-
nent of the periodic vibration. The k = 1 component is called the fundamental fre-
quency of the periodic vibration, and is given by f1 = 1/TP. The magnitude of the
frequency components in Eq. (22.4) are given by

Lx(f) = 0 < f (22.5)
2|X(f,TP)|
��

TP

22.4 CHAPTER TWENTY-TWO
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If f1 = 0, the first zero crossing of the autocorrelation function occurs at a delay τ = 1/f2.
The average relation between two variables x(t) and y(t) is represented by the

cross-correlation Rxy (τ,t1) defined by

Rxy(τ,t1) = x�(�t�1�)�y�(�t�1��+��τ�)� (11.18)

For variables of a stationary process, the cross-correlation is a function only of the
delay τ. However, the maximum value does not necessarily occur at τ = 0. The cross-
correlation function can be approximated by the time average:

Rxy(τ) � �T

0
x(t)y(t + τ) dt (11.19)

POWER SPECTRAL DENSITY

The frequency content of a random variable x(t) is represented by the power spec-
tral density Wx(f), defined as the mean-square response of an ideal narrow-band fil-
ter to x(t), divided by the bandwidth ∆f of the filter in the limit as ∆f → 0 at frequency
f (Hz):

Wx( f ) = lim
∆f→0

(11.20)

This is illustrated in Fig. 22.5. By this definition the sum of the power spectral com-
ponents over the entire frequency range must equal the total mean-square value
of x:

x�2� = �∞

0
Wx( f ) df (11.21)

The term power is used because the dynamical power in a vibrating system is pro-
portional to the square of the vibration amplitude.

An alternate approach to the power spectral density of stationary variables uses
the Fourier series representation of x(t) over a finite time period 0 ≤ t ≤ T, defined in
Eq. (22.4) as

x(t) = x� + �
∞

n = 1
An cos(2πfnt) + �

∞

n = 1
Bn sin(2πfnt) (11.22)

where fn = n/T. The coefficients of the Fourier series are found by

An = �T

0
x(t)cos(2πfnt) dt

Bn = �T

0
x(t)sin(2πfnt) dt

(11.23)

Comparing this to Eq. (11.19), it follows that the coefficients of the Fourier series are
a measure of the correlation of x(t) with the cosine and sine waves at a particular 
frequency.

2
�
T

2
�
T

x� 2���f�
�∆f

1
�
T

11.8 CHAPTER ELEVEN
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