
## RF COMMUNICATIONS PRODUCTS

## DATA SHEET



SA630 Single pole double throw (SPDT) switch

Product Specification Replaces data of October 10, 1991 IC17 Data Handbook

1997 Nov 07

## **Philips Semiconductors**



**PHILIPS** 



## Single pole double throw (SPDT) switch

**SA630** 

#### DESCRIPTION

The SA630 is a wideband RF switch fabricated in BiCMOS technology and incorporating on-chip CMOS/TTL compatible drivers. Its primary function is to switch signals in the frequency range DC - 1GHz from one  $50\Omega$  channel to another. The switch is activated by a CMOS/TTL compatible signal applied to the enable channel 1 pin (ENCH1).

The extremely low current consumption makes the SA630 ideal for portable applications. The excellent isolation and low loss makes this a suitable replacement for PIN diodes.

The SA630 is available in an 8-pin dual in-line plastic package and an 8-pin SO (surface mounted miniature) package.

#### **FEATURES**

- •Wideband (DC 1GHz)
- •Low through loss (1dB typical at 200MHz)
- •Unused input is terminated internally in  $50\Omega$
- Excellent overload capability (1dB gain compression point +18dBm at 300MHz)
- Low DC power (170∞A from 5V supply)
- Fast switching (20ns typical)
- •Good isolation (off channel isolation 60dB at 100MHz)

#### PIN CONFIGURATION




Figure 1. Pin Configuration

- ●Low distortion (IP3 intercept +33dBm)
- •Good 50Ω match (return loss 18dB at 400MHz)
- •Full ESD protection
- Bidirectional operation

### **APPLICATIONS**

- Digital transceiver front-end switch
- Antenna switch
- Filter selection
- Video switch
- FSK transmitter

## ORDERING INFORMATION

| DESCRIPTION                                              | TEMPERATURE RANGE | ORDER CODE | DWG #   |
|----------------------------------------------------------|-------------------|------------|---------|
| 8-Pin Plastic Dual In-Line Package (DIP)                 | -40 to +85°C      | SA630N     | SOT97-1 |
| 8-Pin Plastic Small Outline (SO) package (Surface-mount) | -40 to +85°C      | SA630D     | SOT96-1 |

### **BLOCK DIAGRAM**

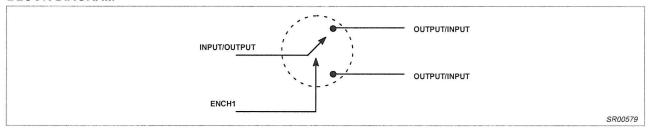



Figure 2. Block Diagram

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL          | PARAMETER                                        | RATING      | UNITS |
|-----------------|--------------------------------------------------|-------------|-------|
| V <sub>DD</sub> | Supply voltage                                   | 3.0 to 5.5V | V     |
| T <sub>A</sub>  | Operating ambient temperature range<br>SA Grade  | -40 to +85  | °C    |
| TJ              | Operating junction temperature range<br>SA Grade | -40 to +105 | °C    |



## Single pole double throw (SPDT) switch

SA630

## **EQUIVALENT CIRCUIT**

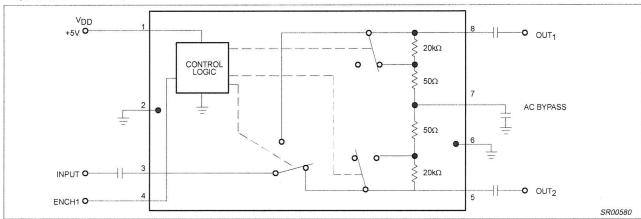



Figure 3. Equivalent Circuit

#### **ABSOLUTE MAXIMUM RATINGS**

| SYMBOL            | PARAMETER                                                                                            | RATING       | UNITS    |  |
|-------------------|------------------------------------------------------------------------------------------------------|--------------|----------|--|
| $V_{DD}$          | Supply voltage                                                                                       | -0.5 to +5.5 | V        |  |
| P <sub>D</sub>    | Power dissipation, T <sub>A</sub> = 25°C (still air) <sup>1</sup> 8-Pin Plastic DIP 8-Pin Plastic SO | 1160<br>780  | mW<br>mW |  |
| T <sub>JMAX</sub> | Maximum operating junction temperature                                                               | 150          | °C       |  |
| P <sub>MAX</sub>  | Maximum power input/output                                                                           | +20          | dBm      |  |
| T <sub>STG</sub>  | Storage temperature range                                                                            | -65 to +150  | °C       |  |

#### NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance,  $\theta_{JA}$ : 8-Pin DIP:  $\theta_{JA}$  = 108°C/W 8-Pin SO:  $\theta_{JA}$  = 158°C/W

## DC ELECTRICAL CHARACTERISTICS

 $V_{DD}$  = +5V,  $T_A$  = 25°C; unless otherwise stated.

|                 |                                               |                  | LIMITS |      |                 |    |
|-----------------|-----------------------------------------------|------------------|--------|------|-----------------|----|
| SYMBOL          | PARAMETER                                     | TEST CONDITIONS  | SA630  |      | UNITS           |    |
|                 |                                               |                  | MIN    | TYP  | MAX             | 1  |
| I <sub>DD</sub> | Supply current                                |                  | 40     | 170  | 300             | σA |
| V <sub>T</sub>  | TTL/CMOS logic threshold voltage <sup>1</sup> |                  | 1.1    | 1.25 | 1.4             | V  |
| V <sub>IH</sub> | Logic 1 level                                 | Enable channel 1 | 2.0    |      | V <sub>DD</sub> | V  |
| V <sub>IL</sub> | Logic 0 level                                 | Enable channel 2 | -0.3   |      | 0.8             | V  |
| I <sub>IL</sub> | ENCH1 input current                           | ENCH1 = 0.4V     | -1     | 0    | 1               | σA |
| I <sub>IH</sub> | ENCH1 input current                           | ENCH1 = 2.4V     | -1     | 0    | 1               | ∞A |

## NOTE:

1. The ENCH1 input must be connected to a valid Logic Level for proper operation of the SA630.



## Single pole double throw (SPDT) switch

SA630

## AC ELECTRICAL CHARACTERISTICS1 - D PACKAGE

 $V_{DD} = +5V$ ,  $T_A = 25$ °C; unless otherwise stated.

|                                   | PARAMETER                                | TEST CONDITIONS                     |          | LIMITS<br>SA630      |     |                   |
|-----------------------------------|------------------------------------------|-------------------------------------|----------|----------------------|-----|-------------------|
| SYMBOL                            |                                          |                                     |          |                      |     |                   |
|                                   |                                          |                                     | MIN      | TYP                  | MAX | 1                 |
| S <sub>21</sub> , S <sub>12</sub> | Insertion loss (ON channel)              | DC - 100MHz<br>500MHz<br>900MHz     |          | 1<br>1.4<br>2        | 2.8 | dB                |
| S <sub>21</sub> , S <sub>12</sub> | Isolation (OFF channel) <sup>2</sup>     | 10MHz<br>100MHz<br>500MHz<br>900MHz | 70<br>24 | 80<br>60<br>50<br>30 |     | dB                |
| S <sub>11</sub> , S <sub>22</sub> | Return loss (ON channel)                 | DC - 400MHz<br>900MHz               |          | 20<br>12             |     | dB                |
| S <sub>11</sub> , S <sub>22</sub> | Return loss (OFF channel)                | DC - 400MHz<br>900MHz               |          | 17<br>13             |     | dB                |
| t <sub>D</sub>                    | Switching speed (on-off delay)           | 50% TTL to 90/10% RF                |          | 20                   |     | ns                |
| t <sub>r</sub> , t <sub>f</sub>   | Switching speeds (on-off rise/fall time) | 90%/10% to 10%/90% RF               |          | 5                    |     | ns                |
|                                   | Switching transients                     |                                     |          | 165                  |     | mV <sub>P-P</sub> |
| P <sub>-1dB</sub>                 | 1dB gain compression                     | DC - 1GHz                           |          | +18                  |     | dBm               |
| IP <sub>3</sub>                   | Third-order intermodulation intercept    | 100MHz                              |          | +33                  |     | dBm               |
| IP <sub>2</sub>                   | Second-order intermodulation intercept   | 100MHz                              |          | +52                  |     | dBm               |
| NF                                | Noise figure ( $Z_{O} = 50\Omega$ )      | 100MHz<br>900MHz                    |          | 1.0<br>2.0           |     | dB                |

#### NOTE:

- 1. All measurements include the effects of the D package SA630 Evaluation Board (see Figure 4B). Measurement system impedance is 50Ω.
- 2. The placement of the AC bypass capacitor is critical to achieve these specifications. See the applications section for more details.

#### AC ELECTRICAL CHARACTERISTICS1 - N PACKAGE

 $V_{DD}$  = +5V,  $T_A$  = 25°C; all other characteristics similar to the D-Package, unless otherwise stated.

|                                   |                                   |                                     | LIMITS |                      |     |       |
|-----------------------------------|-----------------------------------|-------------------------------------|--------|----------------------|-----|-------|
| SYMBOL                            | PARAMETER                         | TEST CONDITIONS                     |        | SA630                |     | UNITS |
|                                   |                                   |                                     | MIN    | TYP                  | MAX |       |
| S <sub>21</sub> , S <sub>12</sub> | Insertion loss (ON channel)       | DC - 100MHz<br>500MHz<br>900MHz     |        | 1<br>1.4<br>2.5      |     | dB    |
| S <sub>21</sub> , S <sub>12</sub> | Isolation (OFF channel)           | 10MHz<br>100MHz<br>500MHz<br>900MHz | 58     | 68<br>50<br>37<br>15 |     | dB    |
| NF                                | Noise figure ( $Z_O = 50\Omega$ ) | 100MHz<br>900MHz                    |        | 1.0<br>2.5           |     | dB    |

#### NOTE:

1. All measurements include the effects of the N package SA630 Evaluation Board (see Figure 4C). Measurement system impedance is 50Ω.

### **APPLICATIONS**

The typical applications schematic and printed circuit board layout of the SA630 evaluation board is shown in Figure 4. The layout of the board is simple, but a few cautions need to be observed. The input and output traces should be  $50\Omega$ . The placement of the AC bypass capacitor is *extremely critical* if a symmetric isolation between the two channels is desired. The trace from Pin 7 should be drawn back towards the package and then be routed downwards. The capacitor

should be placed straight down as close to the device as practical. For better isolation between the two channels at higher frequencies, it is also advisable to run the two output/input traces at an angle. This also minimizes any inductive coupling between the two traces. The power supply bypass capacitor should be placed close to the device. Figure 10 shows the frequency response of the SA630. The loss matching between the two channels is excellent to 1.2GHz as shown in Figure 13.



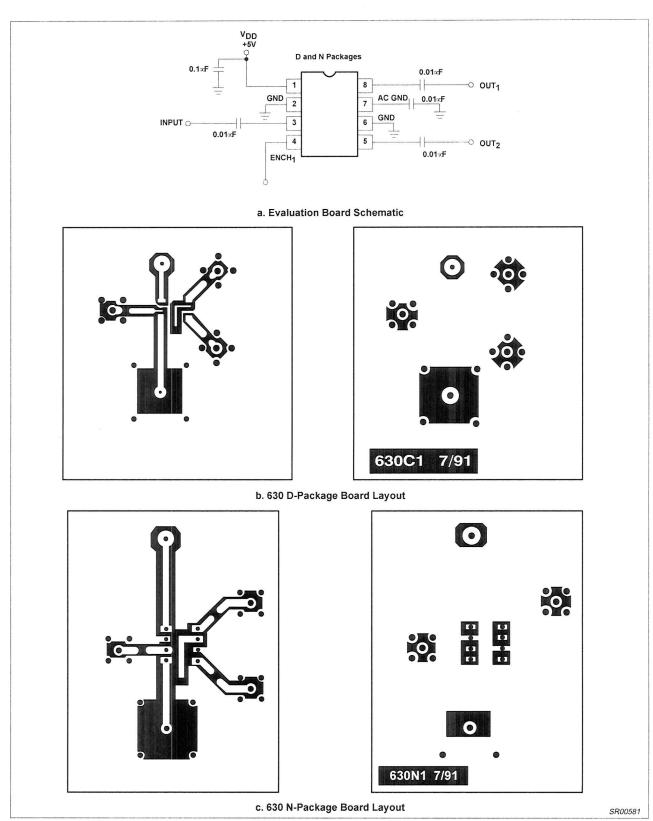



Figure 4. Board and Package Graphics



# DOCKET

## Explore Litigation Insights



Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

## **Real-Time Litigation Alerts**



Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

## **Advanced Docket Research**



With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

## **Analytics At Your Fingertips**



Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

## API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

## **LAW FIRMS**

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

## **FINANCIAL INSTITUTIONS**

Litigation and bankruptcy checks for companies and debtors.

## **E-DISCOVERY AND LEGAL VENDORS**

Sync your system to PACER to automate legal marketing.

