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Abstract-The use of the fast Fourier transform in power spec
trwn analysis is described. Principal advantages of this method are a 
reduction in the number of computations and in required core 
storage, and convenient application in nonstationarity tests. The 
method involves sectioning the record and averaging modified 
periodograms of the sections. 

INTRODUCTION 

THIS PAPER outlines a method for the application 
of the fast Fourier transform algorithm to the 
estimation of power spectra, which involves sec

tionmg the record, taking modified periodograms of 
these sections, and averaging these modified periodo
grams. In many instances this method. involves fewer 
computations than other methods. Moreover, it in
volves the transformation of sequences which are 
shorter than the whole record which is an advantage 
when computations are to be performed on a machine 
with limited core storage. Finally, it directly yields a 
potential resolution in the time dimension which is use
ful for testing and measuring nonstationarity. As will be 
pointed out, it is closely related to the method of com
plex demodulation described by Bingham, Godfrey, and 
Tukey. 1 

THE METHOD 

Let X(j), j=O, · · ·, N-1 be a sample from a sta
tionary, second-order stochastic sequence. Assume for 
simplicity that E(X) =0. Let X(j) have spectral density 
P(j), Iii :::;;t. We take segments, possibly overlapping, of 
length L with the starting points of these segments D 
units apart. Let X1(j), j=O, · · · , L-1 be the first such 
segment. Then 

Similarly, 

X 2(j) = X(j + D) 

and finally 

j = 0, · · ·, L - 1. 

j = 0, · · ·, L - 1, 

XK(j)-= X(j+ (K - 1)D) j = 0, · · ·, L - 1. 

We suppose we have K such segments; X 1(j), · · · , 
XK(j), and that they cover the entire record, i.e., that 
(K-1)D+L =N. This segmenting is illustrated in Fig. 1. 

The method of estimation is as follows. For each 
segment of length L we calculate a modified periodo
gram. That is, we select a data window W(j),j=O, · · ·, 
L-1, and form the sequences X1(j) W(j), · · · , 
X K (j) W (j). We then take the finite Fourier transforms 
A1(n), · · · , AK(n) of these sequences. Here 

1 L-1 

Ak(n) = - L Xk(j)W(j)e-2kiin!L 
L i=O 

and i = ( -1) 1' 2• Finally, we obtain the K modified 
periodograms 

where 

and 

n 
fn =

L 

k = 1, 2, · · ·, K, 

n = 0, · · ·, L/2 

1 L-1 

U = - L W 2(j). 
L j=O 

The spectral estimate is the average of these periodo
grams, i.e., 

1 K 

F(Jn) = - L h(f n) • 
K k=l 

Now one can show that 

f 
1/2 

E{ F(fn)} = h(j)P(f - fn)dj 
-1/2 

where 

h(f) = - L W(j)e2rifj 
1 I L-1 

1

2 

LU j=O 

Manuscript received February 28, 1967. and 
The author is with the IBM Research Center, Yorktown Heights, 

N. Y. 
1 C. Bingham, M. D. Godfrey, and J. W. Tukey, "Modern tech

niques of power spectrum estimation," this issue, p. 56--66. f 
1/2 

h(f)df = 1. 
-1/2 

Reprinted from IEEE Trans. Audio and Electroacoust., vol. AU-15, pp. 70-73, June 1967. 
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J _______ X_(_j) ______ J 

0 N-l 
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D D+L+l 

~-------·-------·----------' 

Fig. 1. Illustration of record segmentation. 

Hence, we have a spectral estimator F(j) with a resul
tant spectral window whose area is unity and whose 
width is of the order of 1 / L. 

CHOICE OF DATA WINDOWS 

We suggest two reasonable choices for the data win
dow WU); one of them has the shape 1-t2 : -1~t~1 
and gives a spectral window which, when the two are 
normalized to have the same half-power width, is very 
close in shape to the hanning or cosine arch spectral 
window; the other data window has the shape 1- It I : 
-1 ~ t ~ 1 and gives the Parzen spectral window. The 
actual functions for a particular segment length L are 

and 

L-1 
j---

2 

L+l 
2 

L-1 
j---

2 

L+l 
2 

j = 0, 1, · · · , L - 1. 

The resultant spectral windows corresponding to these 
data windows are given approximately by 

1 { 2 [sin { (L + l)rf} 
h

1(f) "'" LU r 2(L + l)f2 (L + l)rf 

- cos{ (L + l)rf} ]} 
2 

h __ 1 {(L + 1) sin2 
{ (L + l)rf/2}} 2 

2(f) - LU 2 { (L + l)rf/2} 2 

In the preceding approximations Lis a scale parameter. 
In changing L we change the shape of h1(f) and ~(j) only 
in stretching or shrinking the horizontal dimension. For 
h1(j) the half-power width is 

(1.16) 
!:J.if"'"--. 

L+l 

18 

For ~(j) the half-power width is 

(1.28) 
!l2f:::<--• 

L+l 

THE VARIANCES OF THE ESTIMATES 

As developed above our estimator is given by 

A 1 K 

P(fn) = - L h(fn)' 
K k=l 

(n = 0, 1, · · · , L/2). 

Now, if we let 

d(j) = Covariance {!,.(Jn), l1;+J(fn)} 

then it is easily shown that 

1 { K-1 K -j } 
Var {P(fn)} = - d(O) + 2 L --d(j) . 

K ;-1 K 

Further, if 

p(j) = Correlation { Ik(fn), h+J(fn)} 
d(j) 

d(O) 

then, 

d(O) { K-1 K - j } 
Var {P(fn)} = - 1+2 L --p(j) 

K ;-1 K 

=Var{!,.,(!,.)} {l + 2 E K -j p(j)}. 
K ;-1 K 

Assume now that X(j) is a sample from a Gaussian 
process and assume that P(f) is flat over the passband 
of our estimator. Then we can show2 that 

Further, under the above assumptions and assuming 
that h(f-fn) =0 for f <0 and/>! we can show3 that 

[ L-1 ]2 [ L-1 ]2 
p(j) = .E W(k)W(k + jD) .E W 2(k) . 

Hence, we have the following result which enables us to 
estimate the variances of F(f,.) when f,. is not close to 0 
or!. 

Result: If X(j) is a sample from a Gaussian process, 
and P(D is flat over the passband of the estimator, and 
h(f-f,.) =0 for f <0 andf>!, then 

Var {P(fn)} = _n_ 1+2 L --p(j) 
p2(j, ) { K-1 K - j } 

K ;=1 K 

1 P. D. Welch, "A direct digital method of power spectrum estima
tion," IBM J. Res. and Dev., vol. 5, pp. 141-156, April 1961. 

• In Welch2 we obtained the variance spectrum of I ,.(f,.) considered 
as a function of time. The above result is obtained by taking the 
Fourier transform of this spectrum. 
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where 

[ L-1 ]2/ [ L-1 ]2 
p(j) = Eo W(k) W(k + jD) E W2(k) 

For estimating the spectrum of P(j,.) at 0 and ! the 
variance is twice as great, as given by the following 
result: 

Result: If X(j) is a sample from a Gaussian process 
and P(f) is flat over the passband of the estimator, then 

Var I P(o or 1/2)} 

2P2(0 or 1/2) { K-
1 K. - j } 

= 1 + 2 :E -- p(j) 
K -1 K . 

where p(j) is as defined above. 
In the above results note that p(j) ~O and that 

p(j) = 0 if D ~L. Hence, if we average over K segments 
the best we can do is obtain a reduction of the variance 
by a factor 1/K. Further, this 1/K reduction can be 
achieved (under these conditions) if we have nonover
lapping segments. Hence, if the total number of points 
N can be made sufficiently large the computationally 
most efficient procedure for achieving any desired vari
ance is to have nonoverlapping segments, i.e., to let 
D =L. In this case we have 

I 
A } P 2 (f,.) P 2(j,.)L 

Var P(f,.) = -- = · 
K N 

Further, under these conditions E { F(f,.)} = E { h(f,.)} 
=P(j,.) and, hence, 

£21 P(f,.)} 
-----=K 
Var I P(j,.)} 

and the equivalent degrees of freedom of the approxi
mating chi-square distribution is given by 

E.D.F. { P(f,.)} = 2K. 

If the total number of points N cannot be made arbi
trarily large, and we wish to get a near maximum reduc
tion in the variance out of a fixed number of points then 
a reasonable procedure is to overlap the segments by 
one half their length, i.e., to let D=L/2. In this case, if 
we use W1(j) as the data window we get p(l) = 1/9 and 
p(j) =0 for j> 1. Letting F1(f,.) be the estimate, we have 

=----
9K 

The factor 11/9, compared with the factor 1.0 for non
overlapped segments, inflates the variance. However, an 
overall reduction in variance for fixed record length is 
achieved because of the difference in the value of K. For 
nonoverlapped segments we have K = N / L; for the 
overlapping discussed here 

19 

N 2N 2N 
K=--1 =--1 =-· 

L/2 L L 

Therefore, for fixed N and L the overall reduction in 
variance achieved by this overlapping is by a factor of 
11/18. Now again E { F1(j,.)} =P(j,.) and, hence, 

E2{ F1(/n)} 

Var { F1(/,.)} 

9K 18N 
=-:::;,--· 

11 11L 

Finally, 

(1.16) 7 
'11(/) ""' -- ""' - . 

L + 1 6L 

Thus, 

and the equivalent degrees of freedom of the approxi
mating chi-square distribution is 

E.D.F. { F1(j,.)} = 2.8N '1f. 

Similarly, if we use W2(j) as our data window we get 
p(1) = 1/16 and p(j) =0, j> 1. Letting F2(j,.) be the 
estimate in this case we get, by following the above 
steps and using the result tl2f= (1.28)/(L+t), that the 
equivalent degrees of freedom is again approximately 

Thus, both W1(j) and W2(j) yield roughly the same 
variance when adjusted to have windows of equal half 
power width. Finally, we should point out that the 
above variances need to be doubled and the equivalent 
degrees of freedom halved for the points! n = 0 and !. 

DETAILS IN THE APPLICATION OF THE FAST 

FOURIER TRANSFORM ALGORITHM 

Our estimator F(j,.) is given by 

1 K L K 

F(f,.) = K Ei h(f,.) = UK k~ I Ak(n) 12, 

where L is the length of the segments, and K is the 
number of segments into which the record is broken, and 

1 L-1 
U = - L W2(j). 

L j=O 

We will first discuss how the complex algorithm can be 
used to obtain the summation Lk-1KI Ak(n) I 2 two terms 
at a time with K/2[or (K+t)/2, if K is odd] rather 
than K transforms. Suppose K is even and let 

Y1(j) = X 1(j)W(j) + iX2(j)W(j) l 
· j = 0, · · · , L - 1. 

YK12(j) = XK-1(j)W(j) + iXK(j)W(j) 

3f 
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Let Bk(n) be the transform of Yk(j). Then, by the linear
ity property of the finite Fourier transform 

Further, 

~ow, 

Bk(N - n) = A21:-1(1Y - n) + iA2k(N -· n) __.___.., 
= A21·-1(n) + iA2k(n). 

____,,., 
I Bk(n) 12 = (Az1·-1(n) + iA2k(n))(A2k-1(n) - i.421.(n)) ____,, 

I B1:(N - n) 1
2 = (A2k-1(n) - iA2k(n))(A2k-1(n) + iA2k(n)). 

These equations yield, with some algebra, 

I Bk(n) 1
2 + I Bk(N - n) 1

2 

= 2( I A2k-1(n) 12 + I Ak(n) 12
). 

Hence, finally, 

L K/2 

F(fn) = -- L (I Bk(n) 12 + I Bk(N - n) 12). 
2UK k~t 

If K is odd this procedure can be extended in an obvious 
fashion by defining Y<K+1i12U) =XK(j) and summing 
from 1 to (K+1)/2. 

A second observation on the actual application of the 
algorithm concerns the bit-inverting. If the algorithm is 
applied as described here, and one is especially con
cerned with computation time, then the bit-inverting 
could be postponed until after the summation. Thus, 
instead of bit-inverting K/2 times, one would only have 
to bit-invert once. 

COMPUTATION TIME 

The time required to perform a finite Fourier trans
form on a sequence of length L is approximately 
k' L log2 L where k' is a constant which depends upon the 
program and type of computer. Hence, if we overlap 
segments. by an amount L/2 we require an amount of 
computing time (performing two transforms simul
taneously) approximately equal to 

( ~ ) ( L~2 ) k' L log2 L = k' N log2 L, 

plus the amount of time required to premultiply by the 
data window and average. If we only consider the time 
required for the Fourier transformation this compares 
with approximately k' N(log2 N)/2 for the smoothing of 
the periodogram. Hence, if L < (N)1i 2 it requires less 
computing time than the smoothing of the periodogram. 

RELATION OF THIS METHOD TO 

COMPLEX DEMODULATION 

It is appropriate to mention here the process of com
plex demodulation and its relation to this method of 

spectral estimation. Complex demodulation is discussed 
in Tukey,4 Godfrey,5 and Bingham, Godfrey, and 
Tukey. 1 The functions Ak(n)e-2rikDJL considered as 
functions of k are complex demodulates sampled at the 
sampling period D. In this case the demodulating func
tion is e-2rifni. A phase coherency from sample to sample 
is retained in the complex demodulates. This phase is 
lost in estimating the spectrum and, hence, as a method 
of estimating spectra, complex demodulation is identical 
to the method of this section. However, additional in
formation can be obtained from the time variation of the 
phase of the demodulates. 

THE SPACING OF THE SPECTRAL ESTIMATES 

This method yields estimates spaced 1/L units apart. 
If more finely spaced estimates are desired zeros can be 
added to the sequences Xk(j) W(j) before taking the 
transforms. If L' zeros are added giving time sequences 
L+L'=M long and we let Ak'(n) be the finite Fourier 
transforms of these extended sequences, i.e., 

1 L-1 
Ak'(n) = - L Xk(j)W(j)e-2rijn/M 

M ;~o 

then the modified periodogram is given by 

where 

y2 
h(Jn) = - I A/(n) 12 

LU 

n 
fn = M n = 0, 1, · · · , M/2. 

Everything proceeds exactly as earlier except that we 
have estimates spaced at intervals of 1/ M rather than 
1/L. 

20 

ESTIMATION OF CROSS SPECTRA 

Let X(j), j=O, · · · ,N-1, and Y(j), j=O, 
N -1, be samples from two second-order stochastic 
sequences. This method can be extended in a straight
forward manner to the estimation of the cross spectrum, 
P,,u(f). In exactly the same fashion each sample is 
divided in K segments of length L. Call these segments 
X 1(j), · · · , XK(j) and Yi(j), · · · , Y K(j). Modified 
cross periodograms are calculated for each pair of seg
ments Xk(j), Yk(j), and the average of these modified 
cross periodograms constitutes the estimate Fx11 (fn). 
The spectral window is the same as is obtained using 
this method for the estimation of the spectrum. 

'J. W. Tukey, "Discussion, emphasizing the connection between 
analysis of variance and spectrum analysis," Technometrics, vol. 3, 
pp. 191-219, May 1961. 

'M. D. Godfrey, "An exploratory study of the bispectrum of 
economic time series," Applied Statistics, vol. 14, pp. 48-69, January 
1965. 
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