Network Working Group Request for Comments: 2663 Category: Informational P. Srisuresh M. Holdrege Lucent Technologies August 1999

IP Network Address Translator (NAT) Terminology and Considerations

Status of this Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Preface

The motivation behind this document is to provide clarity to the terms used in conjunction with Network Address Translators. The term "Network Address Translator" means different things in different contexts. The intent of this document is to define the various flavors of NAT and standardize the meaning of terms used.

The authors listed are editors for this document and owe the content to contributions from members of the working group. Large chunks of the document titled, "IP Network Address Translator (NAT)" were extracted almost as is, to form the initial basis for this document. The editors would like to thank the authors Pyda Srisuresh and Kjeld Egevang for the same. The editors would like to thank Praveen Akkiraju for his contributions in describing NAT deployment scenarios. The editors would also like to thank the IESG members Scott Bradner, Vern Paxson and Thomas Narten for their detailed review of the document and adding clarity to the text.

Abstract

Network Address Translation is a method by which IP addresses are mapped from one realm to another, in an attempt to provide transparent routing to hosts. Traditionally, NAT devices are used to connect an isolated address realm with private unregistered addresses to an external realm with globally unique registered addresses. This document attempts to describe the operation of NAT devices and the associated considerations in general, and to define the terminology used to identify various flavors of NAT.

Srisuresh & Holdrege

Informational

[Page 1]

RFC 2663

NAT Terminology and Considerations

August 1999

1. Introduction and Overview

The need for IP Address translation arises when a network's internal IP addresses cannot be used outside the network either because they are invalid for use outside, or because the internal addressing must be kept private from the external network.

Address translation allows (in many cases, except as noted in sections 8 and 9) hosts in a private network to transparently communicate with destinations on an external network and vice versa. There are a variety of flavors of NAT and terms to match them. This document attempts to define the terminology used and to identify various flavors of NAT. The document also attempts to describe other considerations applicable to NAT devices in general.

Note, however, this document is not intended to describe the operations of individual NAT variations or the applicability of NAT devices.

hosts trying to communicate from disparate address realms. This is achieved by modifying end node addresses en-route and maintaining state for these updates so that datagrams pertaining to a session are routed to the right end-node in either realm. This solution only works when the applications do not use the IP addresses as part of the protocol itself. For example, identifying endpoints using DNS names rather than addresses makes applications less dependent of the actual addresses that NAT chooses and avoids the need to also translate payload contents when NAT changes an IP address.

The NAT function cannot by itself support all applications transparently and often must co-exist with application level gateways (ALGs) for this reason. People looking to deploy NAT based solutions need to determine their application requirements first and assess the NAT extensions (i.e., ALGs) necessary to provide application transparency for their environment.

IPsec techniques which are intended to preserve the Endpoint addresses of an IP packet will not work with NAT enroute for most applications in practice. Techniques such as AH and ESP protect the contents of the IP headers (including the source and destination addresses) from modification. Yet, NAT's fundamental role is to alter the addresses in the IP header of a packet.

2. Terminology and concepts used

Terms most frequently used in the context of NAT are defined here for reference.

Srisuresh & Holdrege

Informational

[Page 2]

RFC 2663

NAT Terminology and Considerations

August 1999

2.1. Address realm or realm

An address realm is a network domain in which the network addresses are uniquely assigned to entities such that datagrams can be routed to them. Routing protocols used within the network domain are responsible for finding routes to entities given their network addresses. Note that this document is limited to describing NAT in IPv4 environment and does not address the use of NAT in other types of environment. (e.g. IPv6 environments)

2.2. Transparent routing

The term "transparent routing" is used throughout the document to identify the routing functionality that a NAT device provides. This is different from the routing functionality provided by a traditional router device in that a traditional router routes packets within a single address realm.

Transparent routing refers to routing a datagram between disparate address realms, by modifying address contents in the IP header to be valid in the address realm into which the datagram is routed. Section 3.2 has a detailed description of transparent routing.

2.3. Session flow vs. Packet flow

Connection or session flows are different from packet flows. A session flow indicates the direction in which the session was initiated with reference to a network interface. Packet flow is the direction in which the packet has traveled with reference to a network interface. Take for example, an outbound telnet session. The telnet session consists of packet flows in both inbound and outbound directions. Outbound telnet packets carry terminal keystrokes and inbound telnet packets carry screen displays from the telnet server.

For purposes of discussion in this document, a session is defined as the set of traffic that is managed as a unit for translation. TCP/UDP sessions are uniquely identified by the tuple of (source IP address, source TCP/UDP port, target IP address, target TCP/UDP port). ICMP query sessions are identified by the tuple of (source IP address, ICMP query ID, target IP address). All other sessions are characterized by the tuple of (source IP address, target IP address, IP protocol).

to that session. Session direction is identified by the direction of the first packet of that session (see sec 2.5).

Srisuresh & Holdrege

Informational

[Page 3]

RFC 2663

NAT Terminology and Considerations

August 1999

Note, there is no guarantee that the idea of a session, determined as above by NAT, will coincide with the application's idea of a session. An application might view a bundle of sessions (as viewed by NAT) as a single session and might not even view its communication with its peers as a session. Not all applications are guaranteed to work across realms, even with an ALG (defined below in section 2.9) enroute.

2.4. TU ports, Server ports, Client ports

For the reminder of this document, we will refer TCP/UDP ports associated with an IP address simply as "TU ports".

For most TCP/IP hosts, TU port range 0-1023 is used by servers listening for incoming connections. Clients trying to initiate a connection typically select a source TU port in the range of 1024-65535. However, this convention is not universal and not always followed. Some client stations initiate connections using a source TU port number in the range of 0-1023, and there are servers listening on TU port numbers in the range of 1024-65535.

A list of assigned TU port services may be found in RFC 1700 [Ref 2].

2.5. Start of session for TCP, UDP and others

The first packet of every TCP session tries to establish a session and contains connection startup information. The first packet of a TCP session may be recognized by the presence of SYN bit and absence of ACK bit in the TCP flags. All TCP packets, with the exception of the first packet, must have the ACK bit set.

However, there is no deterministic way of recognizing the start of a UDP based session or any non-TCP session. A heuristic approach would be to assume the first packet with hitherto non-existent session parameters (as defined in section 2.3) as constituting the start of new session.

2.6. End of session for TCP, UDP and others

The end of a TCP session is detected when FIN is acknowledged by both halves of the session or when either half receives a segment with the RST bit in TCP flags field. However, because it is impossible for a NAT device to know whether the packets it sees will actually be delivered to the destination (they may be dropped between the NAT device and the destination), the NAT device cannot safely assume that the segments containing FINs or SYNs will be the last packets of the session (i.e., there could be retransmissions). Consequently, a session can be assumed to have been terminated only after a period of

Srisuresh & Holdrege

Informational

[Page 4]

RFC 2663

NAT Terminology and Considerations

August 1999

4 minutes subsequent to this detection. The need for this extended wait period is described in RFC 793 [Ref 7], which suggests a TIME-WAIT duration of 2 * MSL (Maximum Segment Lifetime) or 4 minutes.

Note that it is also possible for a TCP connection to terminate without the NAT device becoming aware of the event (e.g., in the case where one or both peers reboot). Consequently, garbage collection is necessary on NAT devices to clean up unused state about TCP sessions that no longer exist. However, it is not possible in the general case to distinguish between connections that have been idle for an extended period of time from those that no longer exist. In the case of UDP-based sessions, there is no single way to determine when a

Many heuristic approaches are used to terminate sessions. You can make the assumption that TCP sessions that have not been used for say, 24 hours, and non-TCP sessions that have not been used for a couple of minutes, are terminated. Often this assumption works, but sometimes it doesn't. These idle period session timeouts vary a great deal both from application to application and for different sessions of the same application. Consequently, session timeouts must be configurable. Even so, there is no guarantee that a satisfactory value can be found. Further, as stated in section 2.3, there is no guarantee that NAT's view of session termination will coincide with that of the application.

Another way to handle session terminations is to timestamp entries and keep them as long as possible and retire the longest idle session when it becomes necessary.

2.7. Public/Global/External network

A Global or Public Network is an address realm with unique network addresses assigned by Internet Assigned Numbers Authority (IANA) or an equivalent address registry. This network is also referred as External network during NAT discussions.

2.8. Private/Local network

A private network is an address realm independent of external network addresses. Private network may also be referred alternately as Local Network. Transparent routing between hosts in private realm and external realm is facilitated by a NAT router.

RFC 1918 [Ref 1] has recommendations on address space allocation for private networks. Internet Assigned Numbers Authority (IANA) has three blocks of IP address space, namely 10/8, 172.16/12, and 192.168/16 set aside for private internets. In pre-CIDR notation, the

Srisuresh & Holdrege

Informational

[Page 5]

RFC 2663

NAT Terminology and Considerations

August 1999

first block is nothing but a single class A network number, while the second block is a set of 16 contiguous class B networks, and the third block is a set of 256 contiguous class C networks.

An organization that decides to use IP addresses in the address space defined above can do so without coordination with IANA or any other Internet registry such as APNIC, RIPE and ARIN. The address space can thus be used privately by many independent organizations at the same time. However, if those independent organizations later decide they wish to communicate with each other or the public Internet, they will either have to renumber their networks or enable NAT on their border routers.

2.9. Application Level gateway (ALG)

Not all applications lend themselves easily to translation by NAT devices; especially those that include IP addresses and TCP/UDP ports in the payload. Application Level Gateways (ALGs) are application specific translation agents that allow an application on a host in one address realm to connect to its counterpart running on a host in different realm transparently. An ALG may interact with NAT to set up state, use NAT state information, modify application specific payload and perform whatever else is necessary to get the application running across disparate address realms.

ALGs may not always utilize NAT state information. They may glean application payload and simply notify NAT to add additional state information in some cases. ALGs are similar to Proxies, in that, both ALGs and proxies facilitate Application specific communication between clients and servers. Proxies use a special protocol to communicate with proxy clients and relay client data to servers and vice versa. Unlike Proxies, ALGs do not use a special protocol to communicate with application clients and do not require changes to application clients.

3. What is NAT?

routing to end hosts. There are many variations of address translation that lend themselves to different applications. However, all flavors of NAT devices should share the following characteristics.

Srisuresh & Holdrege

Informational

[Page 6]

RFC 2663

NAT Terminology and Considerations

August 1999

- a) Transparent Address assignment.
- b) Transparent routing through address translation. (routing here refers to forwarding packets, and not exchanging routing information)
 c) ICMP error packet payload translation.

Below is a diagram illustrating a scenario in which NAT is enabled on a stub domain border router, connected to the Internet through a regional router made available by a service provider.

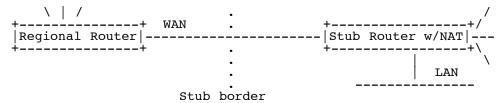


Figure 1: A typical NAT operation scenario

3.1. Transparent Address Assignment

NAT binds addresses in private network with addresses in global network and vice versa to provide transparent routing for the datagrams traversing between address realms. The binding in some cases may extend to transport level identifiers (such as TCP/UDP ports). Address binding is done at the start of a session. The following sub-sections describe two types of address assignments.

3.1.1. Static Address assignment

In the case of static address assignment, there is one-to-one address mapping for hosts between a private network address and an external network address for the lifetime of NAT operation. Static address assignment ensures that NAT does not have to administer address management with session flows.

3.1.2. Dynamic Address assignment

In this case, external addresses are assigned to private network hosts or vice versa, dynamically based on usage requirements and session flow determined heuristically by NAT. When the last session using an address binding is terminated, NAT would free the binding so that the global address could be recycled for later use. The exact nature of address assignment is specific to individual NAT implementations.

Srisuresh & Holdrege

Informational

[Page 7]

RFC 2663

NAT Terminology and Considerations August 1999

3.2. Transparent routing

A NAT router sits at the border between two address realms and translates addresses in IP headers so that when the packet leaves one realm and enters another, it can be routed properly. Because NAT devices have connections to multiple address realms, they must be

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

