
SONY EXHIBIT 1017- Page 7

Table 1: Connection Setup Primitives for the VOD Server

check_no_connections()

indicate_connection_setup_fai|ure()

retrieve_video_chars(videoJia me)

increment_no_users()

start_QOS_negotiation(video_name, c|ient_name) | Begin QOS negotiation.

indicate_QOS_needs(max_rate, min_rate,...) | Indicate QOS Requirements.

setup_connection(video.name, c|ient_name)

Check to see if a new connection

can be supported.
Indicate status of connection

setup. ' '

Retrieve video characteristics

for QOS negotiation.

I Reserve resources.
Spawn a child to setup
dedicated UDP connections.

Table 2: Connection Setup Primitives for the VOD Client

examine_video_statistics(video_para ms)

acknowledge_conn_acceptance()
c|ose.connection()
setup43layout.and.wait_for_connection()

adjustment of volume are dealt with locally via the

playout mechanism at the client. The connection man-
agement flow is illustrated in Fig. 4. Some of the
functions that are required for connection manage
ment and maintenance are summarized in Table 3.

LDP hlnrfnco

SdnnMiIll'I Com.

Figure 4: Connection Management for VOD

query.video_database(dalabase_name, video-name)

15

Query the VDB for the
specified video.
Check to see if the connection
can be sustained.
Start the connection.
Close the connection.

‘ Initialize the playout hardware

and wait for the connection call
from the remote server.

4 Application of the Services: The
VVB

In this section, we describe a prototype multime-

dia application developed using the aforementioned
framework. The Virtual Video Browser (VVB) is

an interactive VOD prototype designed to allow the

browsing of a database of movies and the subsequent
playout of individual movies It incorporates a sim-
ple query interface which lets users specify their prefer-
ences to the system to retrieve the appropriate video.
The VVB is designed to work in a distributed environ-
ment in which movies are stored in different databases

interconnected via a network. It is therefore an ideal

testbed for running distributed multimedia applica-
tions.

4.1 The VVB Interface Functionality

The basic VVB interface consists of four screens or

menus: the Category Screen, the Video Shelf Screen,

the Query Shelf Screen and the Text-Output Screen.
In addition, the VVB allows a movie to be played-out
in a video window.

When a VVB session is started, a Category Screen

SONY |~'.XH H '1 lOl /- Page /
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SONY EXHIBIT 1017- Page 8

Table 3: Connection Management Primitives for the VVB

p|ayout_video()

forward_video()

change_vo|ume() |

Indicate to both the client and the server to

Indication to the server to playout every

IAnalogous to forward_video().
Pause video stream. Directed toward the playout
mechanism and the server.

Change volume at the client.

appears, which allows the user to choose from a set of

predefined categories (western, action, comedy, etc.).
A user’s selection results in a Video Shelf Screen to

be displayed. The Video Shelf Screen represents “vir-

tual” shelves that one might find in a video rental
store. These shelves display the movie titles result-
ing from a query to the movie database. The user

can browse the shelf and playout a selected movie.

The user has the additional option of querying the
database for some specific attributes. When the user

decides to formulate a query, the Query Shelf Screen

is invoked. The user can customize a query by spec-
ifying movie—specific attributes of the desired movie

(producer, director, actor, scene, etc.).
After applying the query, all movies that conform

to the requirements are displayed on a Text-Output
Screen and an updated Video Shelf Screen. The Text-
Output Screen provides an additional level of detail

with respect to the query. This screen allows the iden-

tifying and browsing individual scenes of the movies.

4.2 Software Architecture

The VVB software architecture is designed in a
layered fashion using object-oriented techniques with

three application programming interfaces (APIS) as
shown in Fig. 5. These APIs provide the function-

alities required for database management, the video
display, decompression, and user interface. The main

program of the VVB integrates the API functional-

ities. The advantage of this approach is the abil-

ity to rapidly create additional applications based on

the same core software components. The VVB soft-
ware modules consist of both commercial, off the shelf

(COTS) software and software developed in the Mul-
timedia Communications Lab.

4.3 The VVB Mechanics

The system model for the VVB is consistent with

the proposed distributed systems services of Section

16

 iii f%§iS8¥€¥¥B

postgres DBMS Motii/X11 video library

WB soflware

E] cors sonwara

Figure 5: Software Architecture for the VVB

3. It consists of many movie-terminals, or clients, and
video—databases, or servers, interconnected via a com-

puter network (Fig. 3). No particular assumptions

are made about the underlying network in its design.
A single central database (QDB) contains the infor-
mation about the availability of movies and their loca-

tions within the VOD system. It acts as a name-server

for the mapping of movies to the video databases. In
the current VVB implementation, we do not distin-

guish between the resource and metadata servers. The

VDBS contain the video data (movies) necessary for
playout. The clients are provided with the necessary

hardware/software to support the VVB user-interface

and movie playout. For the VVB implementation it

is assumed that while the QDB is located at a single
site known to all network stations, the VDB is dis-

tributed across many sites in the network. The client

queries the QDB to identify the VDB containing the
required movie, and uses this information to set up a.
video communication channel between the client and

the server (details of the metadata models used for
the VVB database are described extensively elsewhere

[5])-

The mechanics of the VVB operation can be de-

scribed by three phases corresponding to a user query,

connection establishment, and connection manage-

ment (Fig. 6).

SONY |~'.XH H '1

101/— Page 8

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

