
SAMSUNG EX. 1003

Drop Zones
An Extension to liveDoc

Thomos Bonuro and James R. Miller

Introduction

LiveDoc [6] is an extension to the Macintosh user experience
that allows documents to reveal structured information in such

a way that it can be readily identified and used to achieve spe—
cific actions. Various kinds of recognizers, including context-
free grammars, are used to describe the Structures to be found;

these structures can be made up of either a single lexical term
(either a variable structure like a phone number, or a collection

of static strings, like company names) or multiple terms (for
instance, a meeting can be defined as a combination of date,

time, and venue structures). Small pieces of code can then be

associated with each structure to instruct applications to carry
out specific user actions on the discovered structures — perhaps
to tell a telephony application to “Dial this phone number.”
These actions can then be offered to users by visually highlight—
ing the discovered structures and attaching pop—up menus to
the highlights. (See also [7] for an alternate interface formal ism

implementing the same notion of structure detection.)

This system can be very effective when working with structures
that are simple and easy to recognize. However, some limita-
tions to the approach have become clear in the time since our
initial implementation of LiveDoc:

' Limited inter}: retatiomzlpower: When a structure is difficult to
characterize because ofa high degree of variability in its form
(such as the many different ways in which the information
describing a meeting can be presented), the brittleness of
LiveDoc's grammar-based analysis limits its effectiveness:
LiveDoc may find some or all of the individual constituents

of the meeting, but be unable to identify the composite
structure because of where and how those constituents are

SlGCHI Bulletin

located in the document. Unfortunately, this sort of struc-
tural complexity typifies much of the information for which
people need computational assistance.

' The many choices. There is a design tension implicit in Live-
Doc: between encouraging developers to implement large
numbers ofactions for a given structure (so that LiveDoc can

support as many user tasks as possible) and keeping the
menus ofactions small (so that the task of finding and select—
ing the desired action is kept simple). Ideally, these menus of
actions should be kept small but relevant; the problem is that

‘relevance’ is really determined by the meaning of the context
in which the user is currently working. For example, the
name “Apple Computer. Inc. " could be associated with such

actions as, “Find the corporate headquarters on a map", “Get
Apple’s corporate phone number”, “Get the current trading
price ofApple stock", “Get the people in my address book
associated with Apple” and so forth. All of these actions
might be useful in one situation or another, but a user work-

ing on a financial task is far more likely to be concerned with
the current price of Apple stock than the location of its cor-

porate headquarters. Hence, the effective management of
LiveDoc’s action menus will come only with access to, and

some understanding of, the contexts in which a user might
be working.

Ultimately, both of these problems have their foundation in

LiveDoc’s lack of any sense of semantics of the objects on
which it operates. The meaning of an object identified by Live-
Doc is encapsulated within the grammar that recognizes it and
the static list of actions that can be carried out on the structure:

LiveDoc contains no explicit representation of this meaning.
This makes it unwieldy, if not impossible, to define the mean-

Volume 30, Number 2 April lQQS 59

SAMSUNG EX. 1003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SAMSUNG EX. 1003

ing ofarbitrary sets of items or to describe anything about these
structures that is not procedural. For instance, there is no way
to capture abstract relations among structures, like the fact that
people possess both telephone numbers and e-mail addresses.

Correcting these limitations required a different approach, one
that would not only address the human interface concerns
mentioned above but, more significantly, would position Live—
Doc as an enabling technology for communicating with com—
putational agents. This effort, called Drop Zones, is more than
a new interface to LiveDoc. Rather, it is a framework centered

on representing the meaning of LiveDoc objects, composing
those objects might into other higher-level objects, and ena—
bling users to take action on those compositions.

Drop Zones

A Drop Zone provides users with an interface for managing
LiveDoc objects in the context of a set of typical user tasks.
Most importantly, the underlying framework for Drop Zones
allows for the explicit definition of semantics about the objects,
separated from the grammars that define the objects as textual
strings. Once this has been done, a user interface to these
objects and their semantic interpretations can be provided.

An interaction with the Drop Zone interface is shown in Fig—
ures 1 and 2. The window named ‘test’ in Figure 1 belongs to
a LiveDoc—enabled word processor, LiveSz'mpleth (see [6]),
and shows a number ofstructures within the document in view

having been recognized by the analyzers. The window labeled
Activities is a Drop Zone interface to a set ofinterpreters or
‘assistants’. Each of these assistants, E—mail, play/yon}; Finance
and Appointment, implements a knowledge base that can oper-
ate on appropriate sets of LiveDoc structures. These assistants
make their capabilities visible when the user selects various
structures identified by LiveDoc and drags them to the assist—ants.

The important aspect ofthe Drop Zone interface is that it
allows the user to work with the objects of interest in specific,
understandable contexts. Simply working with the semantics
of a set of individually meaningful objects, such as a personal
name, a time and a telephone number, is too open—ended to
permit much useful assistance to the user: there are too many
ways in which these objects might be combined. However,
thinking about the name ofa person and a phone number from
the perspective of making a telephone call easily leads to the
interpretation, ‘Call this person at this number”. Similarly,
thinking about this information from the perspective of an
address book easily leads to the interpretation , ‘Add this person
to my address book’.

Drop Zones offer a way to make these contexts a tangible part
of the user interface. A Drop Zone assistant can be thought of
as an interpreter that takes features identified by LiveDoc,
interprets their meaning with respect to its context, and recom—
mends appropriate actions. Consider Figure 2, in which the
user has selected the structure Tom Bonura, which LiveDoc has

identified with its personalName recognizer. When an object is
selected, it is sent to the Drop Zone control system. Each ofthe
assistants determines if it is able to accept and act upon the set

60 April 1998 Volume 30, Number 2

Hague someone in 9 Jam miter or £331??? Battier: C: woum be Interested“

Q5 tonpunyAswan

L13 E“mm

fi mom-m

E”Mi-on!m
Figure 1 : Drop zone is shown in the window labeled

’Activities’. The window at the top called ’Tesl' is o LiveDoc
window showing proper names, e-moil addresses phone

number, URL, date and stock market ticker codes

of currently selected objects. Any assistant that can do some—
thing meaningful with the objects will, when asked, highlight
itself in a manner consistent with the Macintosh Drag Man-
ager (typically, by drawing an enhanced border around itself
when the mouse is above it). In this case, only the E—mail
Assistant can accept the name of a person (that is, an object of
type personalName), and so it indicates its availability to the user
by drawing a highlight rectangle around itself when the object
being dragged is over it.

. ti! Maw

E’s-1 "H‘ p .m: H

P‘EBIB ‘l‘lEC' an GEEK)“:

0" :Q’
lam.» ah pm» m- W as!imy no when an! arm: in. M:m
5m 1- the. mum: au- 0:: urns
33:»: um:

Figure 2: A user interaction with Drop Zones

SIGCHI Bulletin

SAMSUNG EX. 1003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SAMSUNG EX. 1003

After the user drops the name on the E-mail Assistant, a set of
actions that make sense for people are presented in the Assistant
window, and the user can choose among them. In this case,
there are four possible actions, the first two of which operate
on people’s names and the last two ofwhich operate on people’s
e—mail addresses. What is interesting in this example is that the
e—mail actions are available, even though the object being
offered to the assistant is a personalName. The Email Assistant’s

ability to do this is based on its access to a body of semantic
information about the various types of objects present in the
system, and its own design to provide e-mail—oriented assist-
ance to the user.

Other interfaces to these assistant capabilities are, of course,
possible. In particular, it is easy to imagine modifying the Live—
Doc menus so that these inferred actions are presented along
with those directly associated with the object clicked upon.
The risk here — and the reason that we chose the alternative

shown in Figure 2 — is that, as the number of selected objects
and the size of the system’s knowledge base increases, there may
be an explosion of inferred actions expanding the size of the
object’s action menu beyond manageability. It’s worth noting
that Dey, Abowd, and Wood [3] have taken a more expansive
approach to this problem, and include any action that can be
inferred from any object. It will be interesting to see how well
their design choice works under the circumstances described
here.

Semantics and Representation

As mentioned above, objects identified by LiveDoc have no
explicit semantic value, other than their intrinsic meaning to
the user of their names. It is easy to imagine the kinds of assist—
ance that could be offered by a system that knew things like ‘an
important meeting is one that is called by anyone in your man—
agement chain' and ‘you should always accept invitations to
important meetings.’ However, knowledge like this can’t be
stated in the simple kinds oflexical grammars used by Live—
Doc. A major part of the design of Drop Zones is then to rep—
resent semantic information like this 7 of, about, and related to

the structures being recognized by LiveDoc — in a knowledge
base. The current implementation uses a hybrid knowledge
representation language built around a frame-based object sys—
tem, augmented by relational axioms to express facts about
these objects. In this way, we keep object semantics separate
from syntax (i.e., the grammars used for structure recognition
in LiveDoc), and maintain the flexibility to assert facts unre-
lated to the actual objects found in the user’s document (like
the ‘important meeting’ example above).

When objects are selected, they are inspected by the assistants
in the Drop Zone. These assistants are built around a collec—

tion of facts and axioms that determine whether and how they
can operate in some meaningful way on various kinds of
objects. These facts and axioms, and the inferences they per-
mit, allow Drop Zone assistants to make much richer interpre—
tations ofstructures and offer much more relevant actions than

does LiveDoc’s rigid model of structure grammars and static
lists of actions.

SlGCHI Bulletin

Consider the situation in which a user drags a telephone
number to the E—mail Assistant, presumably so that the user
can send an e—mail message to the person who possesses that
phone number. A literal examination of the object reveals
nothing of use to the assistant: sending e-mail messages
requires an e-mail address, not a phone number. However, as
part of its design as an assistant for e—mail tasks, the E-mail
Assistant includes an axiom that can derive e—mail addresses

from phone numbers, by finding a person with the given
phone number, and then obtaining the e—mail address of that
person. That is, it needs to use the phone number passed to it
to unify the expression:

(and
(PHONE-NUMBER

?Person ?ThePhoneNumber)
(e-mail-ADDRESS

?Person ?TheAddress))

and to produce the binding of the appropriate e—mail address
to the variable 7TheAddress.

The problem now becomes: Where does the E—mail Assistant
find the set of people whose phone numbers and e—mail
addresses can be examined? The Drop Zones representational
system provides two ways through which an assistant can gain
access to this information. Mappings can be built between the
objects inside the Drop Zones representational system (e.g.,
there is an object called PERSON, which has such attributes as
PhoneNumber and EmailAddress) and databases or other applica—
tions. Such a mapping, in combination with a scripting lan—
guage or some other programmatic way of manipulating
applications, enables the E—mail Assistant to look inside an

address book application for a person with the stated phone
number. Another call to the address book application, guided
by another mapping rule, will return the email address for the
identified person. Alternatively, these facts can be held directly
within the Drop Zones representational system, as relations of
terms, such as:

(PHONE—NUMBER ‘Tom Bonura’ 974-4538)

These terms can be provided by developers or, through an
appropriate human interface, end—users. As a result, these bits

of information can be provided to the system as they are
needed, and, by preserving the assistants knowledge bases
across invocations, made available to future uses of the assist—
ants.

Needless to say, this part of the Drop Zones work runs directly
into the historical problems ofknowledge representation and
knowledge acquisition. The difficulty of this problem should
not be underestimated, especially given its importance to Drop
Zones. However, the complexity of this problem as it relates to
Drop Zones is limited by the narrow scope of the assistants.
The bodies of knowledge relevant to a typical assistant are
small, and relatively self»contained. The representational task is
then much more like that of a well-constrained expert system
[e.g., 4] than a large and open—ended knowledge system [5],
where the problems of representational consistency and inter—

Volume 30, Number 2 April l998 bl

SAMSUNG EX. 1003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SAMSUNG EX. 1003

connectedness of different knowledge units are both critical to
the system’s success and extremely difficult to resolve.

Composing Terms

A representation of semantics can be useful in other ways.
Consider the problem of trying to invoke an action on a col—
lection of differing terms in a document. For instance, the
sender ofthe e—maii message in Figure 5, based on a human’s
reading of the message, is clearly interested in getting together
for lunch. LiveDoc has identified a number ofstructures in the

e—mail message, which, as usual, are shown with colored high—
lights. However, the bits of information that make up the
details of this proposed meeting are spread throughout the
message, and, as a result, they fail to match the rigid syntactic
‘Meeting’ grammar built into LiveDoc.

Drop Zones goes beyond LiveDoc in allowing the user to select
some subset of those terms and drag them as a group to the
meeting assistant for interpretation. Because the Meeting
Assistant contains an axiom specifying that a meeting is indi-
cated by a date, a time, a venue, and a person’s name, this col—
lection of objects is recognized as a meeting by the Meeting
Assistant. This assistant will then highlight itself when the
objects are dragged over it, and an action like ‘Add this meeting
to your calendar’ can be offered to the user via the Assistant
window.

Communicating with Agents

The concept ofan ‘intelligent agent’ has been an active research
topic in recent years, although problems still hamper the devel—
opment and deployment of agent-based systems. One of the
most serious problems faced by these systems is how to enable
users to communicate with them. Task delegation to an agent
is by its very nature an ambiguous undertaking; if it were not,
we could hardly call it delegation. Users must describe their
intended task to the agent, which must then devise a means of
addressing it (or determine that addressing it is beyond its abil—
ities), and communicate back to the user what it has done.

Throughout this process, of course, the user needs to be aware
ofwhat the agent is about to do, what it is currently doing, and
what it has just done. The user should also be able to interrupt
the agent at any stage of its action, and either prevent it from
taking some action or undo an action that has been taken.

To this end, many researchers have explored systems that are
activated by recognizing patterns in user behavior and offering
to complete the user’s intended actions [e.g., 1]. Such
approaches avoid direct communication with the agent, in the
hope that the agent will be able to recognize an action worth
taking, without explicit direction by the user. The risk here, of
course, is that an agent will misrecognize or fail to recognize a
pattern in the user’s behavior. Other approaches use some lim-
ited form of natural language understanding as an agent com—
munication language (e.g., [2]). The viability of this approach
is limited by the complexity of the natural language under-
standing problem and the difficulty of extending it to all the
possible problems that a user might wish to address. Users are
additionally challenged by, in most cases, having a limited
understanding of what kinds of actions the agent can take on

62 April lQQB Volume 30, Number 2

Daimifldm199512140m-0800

To: ”tom bonfire“ samuraQéppte can»
Stains: R0

Hi Tom,

Sorry it took so M to get buck to you. In between
spacing o" and {r ins; be gather information, i found
out the address t our web page (pretty easy to
remember), and ked around about messaging
between tasks to upport agent technology.

:l!ww.tsligenl.wnf

Our web page is

Lets try to go! to {Mr maybe during 1M week of
Jamaru 23. G 3119 a good time for me lo me“ is
after 2 :00. Max; we should get heather at the if?

Humes

o
‘Ed I: Assistant

(is. ”“7
Email Wan!

g some“ Assam,

lg ’Mpeintnsnl Assist-n

Figure 3: Selecting multiple items from Cl LiveDoc window for
interpretation

their behalf, and of what kinds of language terms and con—
structs they can use in communicating with the agent.

We have designed the Drop Zone interface as a way of commu—
nicating intent to an agent by specifying the kinds of objects
that need to be manipulated and the context in which they
should be interpreted. The system provides feedback on this
object selection, indicating whether it can operate on the
selected items; it also provides feedback indicating what serv-
ices it can provide. The ambiguity and open—endedness of a
natural language interface is avoided, and a clear picture is
given to the user of what services the agent can provide to the
user, before those actions have been taken. Direct manipula—
tion interfaces have often been characterized as in some way
antithetical to agents (see [8]); Drop Zones shows how the
interactional strengths of direct manipulation can serve as a
gateway to the delegational ability ofintelligent systems.

Conclusion

The Drop Zone architecture is a powerful extension of Live—
Doc’s capabilities. It provides a direct manipulation interface
for specifying actions to be taken on terms identified by Live—

SIGCHI Bullelin

SAMSUNG EX. 1003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SAMSUNG EX. 1003

Doc, and for selecting and confirming the actions desired by
the user. Drop Zones use knowledge representation and lim-
ited inference to determine what actions users might profitably
apply to various types of objects under different interaction
contexts. They provide users with clear feedback indicating
when an assistant can operate on the selection and what actions
can be applied to the selection. What is especially significant
about this approach is that, since knowledge can be added to
the system dynamically, as either new Facts or complex axioms,
the behavior of the system is highly flexible and adaptable. We
have spoken here and elsewhere [6] of the need to move to a
more sophisticated model ofdocuments, one that views docu—
ments as collections of meaningful objects rather than simple
streams of characters. The combination of LiveDoc and Drop
Zones offers a significant step in that direction.

References

1. Benyon, D., and Murray, D. (1993). Developing adaptive
systems to fit individual aptitudes. Proceedings oft/7e 1993
International Wirkrbop on Intelligent User Interflzcer. Orlando,
Florida.

2. Cohen, R, Cheyer, A., Wang, M. and Baeg, S. (1994). An
open agent architecture. 0. Etzioni (Ed.), Proceeding: aft/9e
AAA] Spring Symposium Series on Software Agents, (Stanford,
California, March 1994). American Association for Artificial

Intelligence, p. 1—8.
3. Dey, A. K., Abowd, G. D., 86 Wood, A. (1998). CyberDesk:

A Framework for Providing Self—Integrating Context—Aware
Services. Proceedings ofIntelligent User [nterfizces ’98. New
York: ACM Press.

4. Hayes-Roth, E (1983) Building Expert Systems MI. I). New
York: Addison-Wesley.

5. Lenat, D. 13., 8C Guha, R. V. (1990). Building Large Knowi—
edge—Bizsed Systems: Repretentation and Inference in the Cyr
Project. New York: AddisonAWesley.

SIGCHI Bulletin

6. Miller, J. R., 86 Bonura, T. (1998). From documents to
objects: An overview of LiveDoc. SIGCHI Bulletin, this vol—ume.

7. Nardi, B. A., Miller, J. R, 8c Wright, D. J. (1998). Collab—
orative, programmable intelligent agents. Communications of
t/JEACM Vol. 41, No. 3 March,1998_

8. Shneiderman, 3., 8C Maes, P. (1997). Direct manipulation
vs. interface agents. interactions. 4(6), pp. 42—61.

About the Authors

Thomas Bonura is a Senior Scientist at Apple Computer, Inc.
currently working on applications of speech technologies to
the Macintosh user experience. His research interests are in
user interface design and implementation and knowledge
based systems.

Jim Miller, until recently, was the program manager for Intel-
ligent Systems in Apple’s Advanced Technology Group. He is
currently exploring consumer applications of Internet technol—
ogy as part of Mimmontes Computing.

Aulhors’ Addresses

Thomas Bonura

Apple Computer, Inc.
1 Infinite Loop, MS 301-3KM
Cupertino CA 95014
bonura@apple.com or bonura@acm.org

Jim Miller
Miramontes Computing
828 Sladky Avenue
Mountain View CA 94040

email: jmiller@millerclan.com
Tel: +1—650—967—2 102

Volume 30, Number 2 April 1998 ()3

SAMSUNG EX. 1003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

