

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Apple Inc., Google Inc., and Motorola Mobility LLC

Petitioners,

v.

Arendi S.A.R.L.

Patent Owner.

Case No. IPR2014-00208

Patent No. 7,917,843

PATENT OWNER ARENDI S.A.R.L.’S PRELIMINARY RESPONSE
UNDER 35 U.S.C. § 313 and 37 C.F.R. § 42.107

i

TABLE OF CONTENTS

EXHIBIT LIST ... iii
TABLE OF AUTHORITIES ... iv
I. OVERVIEW OF THE ‘843 PATENT .. 1
II. CLAIM CONSTRUCTION ... 5

A. “an input device, configured by the first computer program” 6
III. OVERVIEW OF THE PRIOR ART ... 8

A. Overview of LiveDoc .. 8
B. Overview of Drop Zones .. 11
C. Overview of Miller ... 13
D. Overview of Luciw ... 14
E. Overview of Pandit ... 17

IV. SINCE THE PRIOR ART DOES NOT ANTICIPATE OR RENDER
ANY CLAIM OBVIOUS, NO INTER PARTES REVIEW SHOULD BE
INITIATED .. 18

A. Overview of Reasons for Denying Inter Parties Review 18
B. Because LiveDoc and Drop Zones describe a text editor that displays a

document and a LiveDoc Manager that configures highlighting,
LiveDoc and Drop Zones fail to disclose or suggest that the same “first
computer program” performs both “displaying the document
electronically” and “providing an input device, configured by the first
computer program”, and therefore Ground 1 fails to establish a prima
facie case of obviousness. ... 20

C. Because the LiveDoc Manager, and not the text editor, receives the
user’s selection of highlighting, LiveDoc and Drop Zones fail to disclose
or suggest the claim limitation of “receipt by the first computer
program of the user command from the input device”, and therefore for
this additional reason Ground 1 fails to establish a prima facie case of
obviousness. .. 28

D. Because Miller fails to disclose how the “Detect Structures” button is
configured, Miller fails to disclose or suggest “providing an input
device, configured by the first computer program”, and therefore
Ground 2 fails to establish a prima facie case of obviousness. 33

ii

E. Because Miller’s Program 165, and not the Application 167, receives the
user’s selection of the “detect structures” button, Miller fails to disclose
or suggest the claim limitation of “receipt by the first computer
program of the user command from the input device”, and therefore
Ground 2 fails to establish a prima facie case of obviousness. 40

F. Because Miller searches within the document for strings or grammars,
Miller fails to disclose or suggest “performing a search using at least
part of the first information as a search term … in an information
source external to the document”, and therefore Ground 2 fails to
establish a prima facie case of obviousness. ... 43

G. Because the user informs the Luciw apparatus of the input’s type of
information, Luciw fails to disclose “analyzing, in a computer process,
first information from the document to determine if the first
information is at least one of a plurality of types of information”, and
therefore Ground 3 fails to establish a prima facie case of obviousness. 48

H. Because Pandit’s nouns and verbs are not the “types of information”
contemplated by the claims, and, at best, the type of second information
is decided by the user, and not dependent at least in part on the type or
types of first information, Pandit fails to disclose or suggest
“performing a search … wherein the specific type or types of second
information [found] is dependent at least in part on the type or types of
the first information [used as the search term]”, therefore Ground 4
fails to establish a prima facie case of obviousness. 53

I. Because Pandit’s does not disclose searching in the address book ,
Pandit fails to disclose or suggest “performing a search using at least
part of the first information as a search term in order to find the second
information” and “causing a search for the search term”, and therefore
Ground 4 fails to establish a prima facie case of obviousness. 57

CERTIFICATE OF SERVICE ... 61

iii

EXHIBIT LIST

Arendi Exhibit Number Description

2001 American Heritage College dictionary 3rd edition 1997
definition of the term “configure”.

iv

TABLE OF AUTHORITIES

Cases

Ferguson Beauregard/Logic Controls v. Mega Systems, 350 F.3d 1327, 1338 (Fed.
Cir. 2003) ... 6

In re Wilson, 424 F.2d 1382, 1385 (CCPA 1970) ... 7

Phillips v. AWH Corp., 415 F.3d 1303, 1316 (Fed. Cir. 2005) (en banc) 5

Statutes

35 C.F.R. § 42.100(b) ... 11

35 U.S.C. § 314 .. 5

1

INTRODUCTION

Patent Owner Arendi S.A.R.L. (“Arendi” or “Patent Owner”) respectfully

requests that the Board decline to initiate inter partes review of claims 1-44 of U.S.

Patent No. 7,917,843 (the “’843 Patent”) because Petitioners Apple Inc., Google

Inc., and Motorola Mobility LLC (“Petitioners”) have failed to show that they have

a reasonable likelihood of prevailing with respect to any of the challenged claims.

35 U.S.C. § 314.

Petitioners have submitted proposed grounds for challenge based on

anticipation or obviousness. However, for each proposed ground, at least one

claim element is missing from the relied-upon reference or combination of

references. Thus, Petitioners have failed to meet its initial burden to show that

each element was known in the prior art.

I. OVERVIEW OF THE ‘843 PATENT

The ‘843 Patent is directed, among other things, to computer-implemented

processes for automating a user’s interaction between a first application, such as a

word processing application or spreadsheet application, on the one hand, and a

second application, such as contact management application having a database, on

the other hand. In the ‘843 Patent, Exhibit 1001, Figs. 1 and 2 are flow charts

showing for these interactions a number of scenarios, which are described from

col. 4, line 25-col. 5, line 53. Further details of the interactions are provided in

2

discussion thereafter of the other figures of the ‘843 Patent, and the discussion

includes references back to relevant portions of the flow charts in Figs. 1 and 2.

Fig. 1 is reproduced below.

The user interface of the first application includes a One Button 42 that the

user can select to initiate the Patent’s functions. See ‘843 Patent, Exhibit 1001,

Fig. 1, step 2; Fig. 3. In various scenarios, after the user has clicked on the One

Button 42, text in a document in the first application is analyzed (in step 2 of Fig.

1) to identify information, such as names, persons, companies, and addresses. Id.,

col. 4, lines 32-39. The second application receives this information as a search

term, which it uses to look up and retrieve related information from its database.

3

Id., Fig. 3, steps 12 and 14. The type of the latter information depends on the type

of the former. For example, if the search term is a name, the second application

may retrieve an address, related to the name, from the database. Id., col. 5, line 61-

col. 6, line 3. Likewise, if the search term is a name of a mailing list, the second

application may retrieve

mailing or e-mail

addresses for members of

the group. Id., col. 4, lines

16-18.

Once the related

information has been

obtained from the

database, a number of

different scenarios can

follow. In particular, the

word processing application

can either insert the related

information into the

document, or display the

related information. Which

4

action the application performs depends on the type of information (e.g., name,

name and address) identified in the document.

For example, if the identified information includes only a name, a search is

initiated in the database associated with the second application for the name. Id.,

Fig. 1, steps 6 and 12. If only a single entry is found in the database for the name

and the entry includes a single address, then the address is inserted into the

document. Id., Fig. 1, steps 6, 12, 18, and 22; Fig. 4; col. 3, lines 63-67; col. 4,

lines 43-54; col. 5, line 61-col. 6, line 5. Figs. 3 and 4 are reproduced above. Fig.

3 shows a document displayed in Microsoft Word when the document includes

solely a name, “Atle Hedloy” 40. Fig. 4 shows the document after the address has

been inserted.

In another example, if the identified information includes a name and an

address, a search is initiated in the database associated with the second application

for the name. Id., Fig. 1, steps 6 and 14. If an entry matching the name and

address is found, both may be displayed for the user to edit. Id., Fig. 1, step 32;

col. 4, lines 57-64. If the name happens to be in the contact database but the

address in the contact database for that name differs from the address typed by the

user into the document (per Fig. 1, step 26), then the user is prompted to make a

choice (per Fig. 1, step 30). The user is presented with a screen shown in Fig. 9,

which is reproduced below.

5

Fig. 9 represents a screen

presented to the user in which the

user is given a series of choices

that can be made in this specific

context. Id., col. 6, line 66-col. 7,

line 14. The screen reproduces the

name that is both in the document

and in the contact database, and it

also displays the address that is in the contact database for that name. Thus, the

screen displays the name and address retrieved from the database that is related to

the name and address from the document.

II. CLAIM CONSTRUCTION

In an inter partes review, the Patent Trial and Appeal Board gives patent

claims their “broadest reasonable interpretation in light of the specification of the

patent”. 35 C.F.R. § 42.100(b); Phillips v. AWH Corp., 415 F.3d 1303, 1316 (Fed.

Cir. 2005) (en banc). The prosecution history is also relevant to identify the

correct construction of claim terms. Phillips v. AWH Corp., 415 F.3d at 1317.

Extrinsic evidence may also be relevant to establish the meaning of terms, but such

6

evidence is only relevant to the extent it is consistent with the specification and file

history. Id. at 1319.

Patent Owner Arendi proposes construction of certain claim terms below

pursuant to the broadest reasonable interpretation consistent with the specification

standard. The proposed claim constructions are offered for the sole purpose of this

proceeding and thus do not necessarily reflect appropriate claim constructions to be

used in litigation and other proceedings wherein a different claim construction

standard applies.

A. “an input device, configured by the first computer program”

Independent claims 1, 20, 23, and 42 all recite the limitation “providing an

input device, configured by the first computer program”. Therefore, according to

this limitation, a first computer program must “configure” the input device. Words

of a claim must be given their plain meaning, which refers to the ordinary and

customary meaning given to the words by one of ordinary skill in the art. Phillips

v. AWH Corp., 415 F.3d 1303, 1313 (Fed. Cir. 2005) (en banc). Dictionary

definitions may be used to determine the ordinary and customary meaning of

words. Ferguson Beauregard/Logic Controls v. Mega Systems, 350 F.3d 1327,

1338 (Fed. Cir. 2003) (Dictionary definitions were used to determine the ordinary

7

and customary meaning of the words “normal” and “predetermine” to those skilled

in the art.)

In this situation, we turn to the American Heritage College Dictionary 3rd

edition 1997 for a definition of “configure”. This dictionary defines “configure” as

“to design, arrange, set up, or shape with a view to specific applications or uses”.

See Exhibit 2001. When this definition is applied to the claim limitations, the

claims consequently require that the first computer program set up the input device

so that it can be used. Therefore, “an input device, configured by the first

computer program” should be construed as “an input device, set up by the first

computer program for use”.

Petitioners seek to interpret the limitation differently by ignoring a word in

the claim. The independent claims of the subject patent require “providing an

input device, configured by the first computer program” (emphasis added). The

claim requires both “providing” and “configuring” and both words must be

considered in evaluating the claim for obviousness. “All words in a claim must be

considered in judging the patentability of that claim against the prior art”. In re

Wilson, 424 F.2d 1382, 1385 (CCPA 1970).

In violation of this principle, Petitioners seek to construe “providing an input

device, configured by the first computer program” as “providing an interface to

receive the user command”. See Petition, page 7. In their proposed claim

8

construction, Petitioners have ignored the word “configuring” altogether by

collapsing the separate requirements of “providing” and “configuring” into the

single requirement of “providing”. As a result, the Petitioners’ proposed claim

construction fails to account for each and every limitation of the claims in violation

of the requirement that “[a]ll words in a claim must be considered in judging the

patentability of that claim against the prior art”. In re Wilson, id.

Therefore, the Patent Trial and Appeal Board should reject Petitioners’

proposal and adopt Patent Owner’s construction of “an input device, configured by

the first computer program” as “an input device, set up by the first computer

program for use”.

III. OVERVIEW OF THE PRIOR ART

A. Overview of LiveDoc

LiveDoc concerns structure detection within a document where a “structure”

represents meaningful bits of syntactically - regular information. LiveDoc allows a

user to perform a function based upon an identified structure. To accomplish this

goal LiveDoc constructs “a means of passing text from a user’s document for

matching against a collection of recognizers”. Exhibit 1006, page 53. Thus,

LiveDoc operates outside of any application program and outside of the document

under the control of the application program.

9

The LiveDoc architecture is shown in Fig. 3 at page 56. As can be seen

from the labels in the right-hand column in Fig. 3, the Applications (such as word

processing) are shown separately from the LiveDoc Manager and from the

Analyzer server. Further, the LiveDoc manager communicates with an external

application (i.e. a text editor) using API callbacks. Id. at 57.

The LiveDoc application

receives only the text from

the text editor (application in

Fig. 3) and analyzes the text

independently of the actual

document in the text editor

using a set of detectors under

the control of an analyzer

server.

If one is viewing a document in a word processing program on a computer

that is running LiveDoc, the structures identified by LiveDoc are not visible in the

word processing program itself. In order for the discovered structures to be visible

to a user, the user must enter “LiveDoc mode” by pressing and holding the

function key, causing the LiveDoc Manager to update “the display to present the

highlight information over the discovered structures”. Id. at 56. The user can then

10

use the mouse to move over a highlighted item and press the mouse button that

causes the LiveDoc Manager to present a menu of functions associated with the

highlighted item.

LiveDoc knows where these structures appear in the text passed to it-

an e-mail address might appear in characters 150 through 162 of the

window's contents - but it has no idea where in the window those

characters physically appear, and, thus, where the highlights should

appear: this is information held by the application, not by LiveDoc.

Hence, LiveDoc must ask the application for the information about

the structures it has found via a callback. Once this information is

available, the highlights and their associated mouse-sensitive regions

can be constructed.

Id. The overlaid highlights are independent and separate from the text editor

and the document. Fig. 2 shown below show some of the actions that

LiveDoc allows for a recognized structure.

Each of the functions shown involves using the recognized text with an

external application.

11

 “Our initial implementation of LiveDoc as LiveSimpleText assumed

that actions would be handled by external applications, such as a Web

browser presenting the page pointed to by a URL[:]” Id. at 57.

B. Overview of Drop Zones

Drop Zones extends on LiveDoc where a user that has entered LiveDoc

mode may be presented with an interface that interprets the meaning of the

identified and selected structure and presents recommended appropriate actions.

Operation of the Drop Zones system uses Live Doc windows, as shown in Figures

1 and 2 of Drop Zones. The caption for Figure 1 states that “Drop zone is shown in

12

the window labeled ‘Activities’. The window at the top called ‘Test’ is a LiveDoc

window showing proper names, e-mail addresses, phone number, URL, date and

stock market ticker codes”. Id. at 60. These identified “structures” are shown in the

LiveDoc window as highlighted. Id. Similarly in Figure 2 (reproduced below),

which illustrates “A user interaction with Drop Zones”, the same LiveDoc window

is displayed. Id. To use Drop Zones, the user must first enter “LiveDoc mode” by

pressing and holding a function key in order to cause highlighting to be displayed

over the document. Then, as discussed in connection with Figure 2, the user must

select a structure in a LiveDoc window. Id.

13

In the LiveDoc window (identified as the window “test” in Figure 2), the

user uses the mouse to select an item of information that has been highlighted (here

the name Tom Bonura) and (while still holding down the mouse button), then

drags the selected item to the window labeled “Activities” over a desired category

(here “Email Assistant”) and then drops the selected name on the category (by

releasing the mouse button). Dropping the item causes a menu of actions to appear

in the Assistant window (shown to the left of the Activities window in Figure 2),

and from that menu, the mouse is used to select a desired action. Id. at 60-61.

C. Overview of Miller

Miller discloses systems and methods for “detecting structures in data and

performing actions on detected structures” (claim 1). To achieve this function,

Miller uses a computer program 165 that works outside of a document, such as a

word processor document 210. Exhibit 1007, Fig. 2. The program 165 is initiated

in response to user selection of a detect structures button 520: “Window 510

includes a [detect structures] button 520 for initiating program 165, although

alternative mechanisms such as depressing the "option" key may be used. Upon

initiation of program 165, system 100 transmits the contents of document 210 to

analyzer server 220 [of the program 165]”. Id., col. 5, lines 22-28.

This analyzer server 220 “receives data having recognizable patterns from a

document 210”. Id., Abstract, col. 3, lines 57-58. Then, Miller uses “pattern

14

analysis units, such as a parser and grammars or a fast string search function and

dictionaries” to parse the data “for recognizable structures”. Id., col. 3, lines 57-

64. Therefore, Miller assesses the text of the document to determine if it contains

any grammars or strings from the libraries: “[A]ssuming program 165 initiates with

the receipt of any text, the received content or portion is scanned 820 for

identifiable structures using the patterns in analyzer server 220”. Id., col. 5, lines

56-59. Then, “[U]pon detection of a structure, analyzer server 220 links actions

associated with the responsible pattern to the detected structure, using conventional

pointers”. Id.

After the structures are detected, an application program interface 230 within

the program 165 subsequently “communicates with application 167 to obtain

information on the identified structures so that user interface 240 can successfully

present and enable selection of the actions”. Id., col. 4, lines 2-5. Miller’s user

interface (240) “highlights the detected structures”. Id., col. 4, line 10; col. 5, lines

35-37.

D. Overview of Luciw

Luciw describes logical processes, usable by a pen-based computer system

that functions as a personal organizer, to provide “implicit or explicit assistance”

for “user supportive information functions”. Exhibit 1008, col. 4, lines 14-18 (pen-

based computer system); col. 2, lines 16-19 (implicit or explicit assistance).

15

The pen-based computer system has a database that can be queried. Id., col.

8, lines 31-34. Luciw describes “implicit” assistance, wherein a user has used a

smart field to enter a word used for look up in the database or has otherwise

similarly triggered a database lookup, and “explicit” assistance, wherein the user

explicitly invokes assistance from the device as by using pen 38 of Fig. 2. Id., col.

8, lines 11-62.

The logical processes used by the Luciw device for providing implicit and

explicit assistance are shown in Fig. 3 of Luciw. Id., col. 8, lines 2-6. A review of

Fig. 3 shows that the database is queried in step 106 if it is determined in step 104

that there is an implicit assist. On the other hand, if in step 104 it is determined that

there is not an implicit assist, and if further it is determined that there is an explicit

assist, there is no database query, because the only database query indicated is in

step 106, exclusively where there is an implicit assist.

As an example of implicit assist, Luciw provides Figs. 4b, 4c, 5, 6a and 6b,

which describe use of a “smart field”. Id., col. 10, line 23 et seq. (beginning

discussion of smart fields in connection with Fig. 4b). According to Luciw, “[a]

smart field is considered to be a predefined region on screen 52 of computer

system 10 shown in FIG. 2, or a predefined region within a window which appears

on screen 52”. Id., col. 8, lines 16-19. Fig. 4b is reproduced below.

16

According to Luciw, Fig. 4b “shows

a phone slip window 170 with a

smart name field 175 which has for

example been evoked by either

highlighting the verb ‘call’ or by

simply writing the word on the

display surface either before or after establishment of window 170”. Id., col. 10,

lines 24-28. Operation of the phone slip window is explained in the lines thereafter

in Luciw:

Once the particular window 170 is presented to the user, the

name ISAAC can be handwritten into the particular smart field 175.

The assistance process recognizes the handwritten name “Isaac”, and

either continues operation as suggested at step 106 in FIG. 3 directly,

or concurrently displays the recognized name in formal font form, as

suggested in FIG. 4c, in the same position of the smart field, where

formerly the handwritten name “Isaac” had been established. As will

readily be recognized, window 170 in FIG. 4b may contain several

smart fields, in this case for example definable for either the “name”

field 175 or a “phone” field shown at step 177.

Id., col. 10, lines 27-39.

Because the user of the Luciw device uses the smart field to specify the field

for which a database search is desired—a name in the name field 175 or a phone

number in the phone field 177—the Luciw device uses the entered item to search

17

for in the database for an item that has the same value for a corresponding

attribute. Id., col. 10, line 51- col. 12, line 11.

E. Overview of Pandit

Pandit describes a program that enables users to identify text of interest and

select an operation applicable to the text. Pandit identifies classes of text in a

document and enables a user to select programs, based on the identified classes,

applicable to the text. When a document is open in the program, the program

provides a menu bar 13 that displays classes of text, such as “Date”, “EMail”, and

“Phone #”. Exhibit 1009, Figs. 1a-1f. The user selects text in the document by

shading, underlining, or pointing and clicking on the text. Id., col. 2, lines 4-8.

The program identifies the class of the selected text and highlights that class in the

menu bar 13 using boldface type. Id., col. 2, lines 8-16, 51-53, 64-66 and Figs. 1a,

1c, and 1e. The boldface type indicates that the programs for that class of text

have been enabled. Id., col. 2, lines 11-12.

 When the user selects the bolded class, the program displays the programs

for the class. Id., col. 2, lines 15-18, 20-21, 33-35. For example, if a user selects

the highlighted option “Date” from the menu bar 13, the program displays potential

programs that display a calendar or create an appointment based on the selected

date in the document. Id., Fig. 1b. If a user selects the highlighted option “Email”

18

from the menu bar 13, the program displays potential programs that create an email

message addressed to the selected email address or add the address to an address

book. Id., Fig. 1d. If a user selects the highlighted option “Phone #” from the

menu bar 13, the program displays potential programs of dialing the selected phone

number, adding the phone number to an address book, or preparing a fax to be sent

to the phone number. Id., Fig. 1f. The user selects a program to be performed by

clicking on the operation or executing one or more keyboard strokes. Id., col. 2,

lines 41-46.

IV. SINCE THE PRIOR ART DOES NOT ANTICIPATE OR RENDER
ANY CLAIM OBVIOUS, NO INTER PARTES REVIEW SHOULD
BE INITIATED

A. Overview of Reasons for Denying Inter Parties Review

Petitioners have failed to show any prior art alone or in combination to

address all of the limitations of any of the independent claims. Because LiveDoc

and Drop Zones describe a text editor that displays a document and a LiveDoc

Manager that configures highlighting, LiveDoc and Drop Zones fail to disclose or

suggest that the same “first computer program” performs both “displaying the

document electronically” and “providing an input device, configured by the first

computer program”, and therefore Ground 1 fails to establish a prima facie case of

obviousness.

19

Because, the LiveDoc Manager, and not the text editor, receives the user’s

selection of highlighting, LiveDoc and Drop Zones fail to disclose or suggest the

claim limitation of “receipt by the first computer program of the user command

from the input device” – another defect of Ground 1.

Because Miller fails to disclose how the “Detect Structures” button is

configured, Miller fails to disclose or suggest “providing an input device,

configured by the first computer program” – a defect in Ground 2.

Because Miller’s Program 165, and not the Application 167, receives the

user’s selection of the “detect structures” button, Miller fails to disclose or suggest

the claim limitation of “receipt by the first computer program of the user command

from the input device” – another defect in Ground 2.

Because Miller searches within the document for strings or grammars, Miller

fails to disclose or suggest “performing a search using at least part of the first

information as a search term … in an information source external to the document”

– another defect in Ground 2.

Because the user informs the Luciw apparatus of the input’s type of

information, Luciw fails to disclose “analyzing, in a computer process, first

information from the document to determine if the first information is at least one

of a plurality of types of information” – a defect in Ground 3.

20

Because Pandit’s nouns and verbs are not the “types of information”

contemplated by the claims, and, at best, the type of second information is decided

by the user, and not dependent at least in part on the type or types of first

information, Pandit fails to disclose or suggest “performing a search … wherein

the specific type or types of second information [found] is dependent at least in

part on the type or types of the first information [used as the search term]”—a

defect in Ground 4.

Because Pandit’s does not disclose searching in the address book, Pandit

fails to disclose or suggest “performing a search using at least part of the first

information as a search term in order to find the second information” and “causing

a search for the search term” – another defect in Ground 4.

B. Because LiveDoc and Drop Zones describe a text editor that

displays a document and a LiveDoc Manager that configures
highlighting, LiveDoc and Drop Zones fail to disclose or suggest
that the same “first computer program” performs both
“displaying the document electronically” and “providing an input
device, configured by the first computer program”, and therefore
Ground 1 fails to establish a prima facie case of obviousness.

Independent claim 1 requires the “first computer program” to perform at

least two tasks. First, the “first computer program” must display a document

electronically: “displaying the document electronically using the first computer

program” (first subparagraph of claim 1). Second, the “first computer program”

must configure an input device: “providing an input device, configured by the first

21

computer program” (fourth subparagraph of claim 1). Therefore, the same

computer program must perform both of these tasks. However, in LiveDoc and

Drop Zones, different computer programs perform these two tasks. In particular,

the text editor displays a document electronically and the LiveDoc Manager

configures the input device. Therefore, LiveDoc and Drop Zones fail to disclose or

suggest a “first computer program” that performs “displaying the document

electronically” and “providing an input device, configured by the first computer

program, that allows a user to enter a user command to initiate an operation”, as

required by independent claim 1. Indeed, this limitation is found in all the

independent claims and hence is required by all of the claims challenged in Ground

1.

Turning now to Petitioners’ arguments, Patent Owner first agrees that the

text editor displays the document electronically. Then, with respect to the “input

device” limitation, Petitioners have equated the highlighting positioned over

detected structures with this limitation: “Configured by the first computer program

- LiveDoc/Drop Zones knows where to place the selectable highlights because the

first application [the text entry application program] tells it where the structures are

located in the document (i.e., the input device is configured by the first computer

program)”. See Petition, page 13.

22

Claim 1 requires that the input device, namely the highlighting, be

“configured by the first computer program”. As discussed in Section II(A), for the

text editor to “configure” the highlighting, the text editor must set up the

highlighting for use. We will demonstrate herein that setting up the highlighting

for use is the exclusive domain of the LiveDoc Manager. The LiveDoc Manager

alone analyzes the text in a document, identifies the characters in the text that

corresponds to structures,

obtains the physical

locations within a display

for those particular

characters, and applies

highlighting to those

locations.

For some of these

steps, the LiveDoc

Manager does send calls to the text editor to obtain needed information. However,

as described in Fig. 3, the LiveDoc Manager and applications (e.g., text editor) are

separate programs that are being executed independently:

23

As an independently executing program, the LiveDoc Manager unilaterally

determines the information needed to set up the highlighting and requests this

information from the text editor. The text editor merely responds by giving the

LiveDoc Manager the screen positions of the structures to be highlighted. Since

the text editor, has only a passive role in the LiveDoc Manager’s preparation of

the highlighting, and in fact is provided with no data whatsoever relating to the

highlighting, the LiveDoc Manager implements the highlighting to “configure” the

input device.

In more detail, when the user views the document, the user is in the text

editor. To invoke LiveDoc, the user must exit the text editor and access the

LiveDoc Manager. To do so, the user presses and holds down a function key:

“Holding down a function key places the document in `LiveDoc mode’ and

presents the highlighted structures; releasing the function key returns the document

to normal”. Exhibit 1006, page 55.

“The LiveDoc Manager also controls the events that occur when the user

presses the function key to enter LiveDoc mode, and when the mouse button is

pressed while over a LiveDoc item. The LiveDoc Manager updates the display to

present the highlight information over the discovered structures when the function

key is pressed, and to remove the highlights when the function key is released. The

LiveDoc Manager also receives the notification that the mouse button has been

24

pressed over a highlighted item; it then gets the list of actions appropriate to the

selected item and presents a menu of them to the user”. Id. at 56. There can be no

mistake: the Petitioners’ statement that the text editor configures the highlights

(input device), and receives the user command simply has no basis in fact.

To begin, the LiveDoc Manager asks the text editor for a copy of the text

currently visible in its window, the text editor sends the text to the LiveDoc

Manager, and the LiveDoc Manager analyzes this text: “The receipt of these calls

by the LiveDoc Manager signals the Analyzer Server to analyze the text provided

by the calling application; this will typically be the text currently visible in the

applications’ front-most window”. Id. Based on this analysis, the LiveDoc

Manager identifies structures such as e-mail addresses. Id.

At this point, the LiveDoc Manager only knows which characters in the

string of characters from the text editor correspond to structures: “LiveDoc knows

where these structures appear in the text passed to it – an e-mail address might

appear in characters 150 through 162 of the window’s contents – but it has no idea

where in the window those characters physically appear[.]” Id. Thus, the LiveDoc

Manager does not know where the characters of interest physically appear in the

window, and by extension, where the LiveDoc Manager should apply highlighting.

To obtain this information, the LiveDoc Manager sends a call to the text editor

requesting the physical locations of characters of interest: “LiveDoc must ask the

25

application for the information about the structures it has found via a callback”. Id.

Of course, there would be no need for the LiveDoc Manager to ask for this

information if the text editor were to set up the highlight and receive the user

command. Upon attaining this information, the LiveDoc Manager can apply the

highlighting in the applicable locations: “Once this information is available, the

highlights and their associated mouse-sensitive regions can be constructed”. Id.

This is done by “adding the notion of a sometimes-visible layer to the front of the

display”. Id. at 58. As demonstrated by these excerpts, the LiveDoc Manager sets

up the highlighting for display and subsequent use and not the text editor.

Petitioners concede that the LiveDoc Manager asks the text editor for this

information, and the text editor supplies the same using a callback: “See, e.g.,

LiveDoc at 56 (“LiveDoc knows where these structures appear in the text passed to

it...but it has no idea where in the window those characters physically appear, and,

thus, where the highlights should appear: this is information held by the [text

editor] application, not by LiveDoc. Hence, LiveDoc must ask the application for

the information about the structures it has found via callback”. See Petition, pages

13-14.

In this situation, the LiveDoc Manager has not informed the text editor that

the characters correspond to a structure, nor has the LiveDoc Manager indicated

that the displayed characters shall be highlighted to be identified as a structure to a

26

user. Thus, the text editor does not know the significance of the identified

characters or the intended use of the physical locations that it sends to the LiveDoc

Manager. In fact, the text editor does not even know that highlighting exists or

will exist, and the LiveDoc and Drop Zones references do not give any evidence

that the text editor even knows that it exists when it exists, and indeed, the text

editor has no need for this information in the LiveDoc or Drop Zones systems. The

text editor just processes a request for information, which the LiveDoc Manager

unilaterally uses to prepare highlighting for display.

Therefore, as just demonstrated, it is the LiveDoc Manager that sets up the

highlighting to be used, whereas the text editor electronically displays the

document. In this manner, LiveDoc describes a different program performing each

of these two activities. Therefore, LiveDoc fails to disclose or suggest a “first

computer program” used to configure the input device, as required by claim 1.

Further, even if Petitioners’ proposed construction for the “input device,

configured by the first computer program” were adopted, LiveDoc would still fail

to disclose this limitation. Under Petitioners’ proposal, configuring the input

device would be construed as “providing an interface to receive the user

command”. See Petition, page 7. Since Petitioners have equated the text editor

with the first computer program, when Petitioners’ proposed construction is

27

applied to LiveDoc, the text editor must provide the highlighting to receive the

user command.

However, as we have already demonstrated, the LiveDoc Manager and not

the text editor provides the highlighting: “LiveDoc Manager constructs the various

highlights for the discovered structures and their corresponding menu of actions”.

Exhibit 1006, page 56. Further, even Petitioners admit the LiveDoc Manager

performs this step: “LiveDoc/Drop Zones highlights detected information”. See

Petition, page 13.1 Regardless of the manner in which “an input device, configured

by the first computer program” is construed, the LiveDoc Manager performs the

configuring, not the text editor. Therefore, LiveDoc and Drop Zones fail to

disclose or suggest a “first computer program” used to display the document

1 Citing their expert, Menascé, Petitioners argue that “it would have been obvious

for LiveDoc to contact the word processor via callback and inform it of the

position of the detected structures within text, such that the word processor would

then construct the highlights (input device) by mapping positions in text to

positions in the visible window. See Petition, page 14. This hindsight-driven

argument is inconsistent with placement, in the LiveDoc Manager, of the

functionality of identifying structures and offering actions associated with the

identified structures. Moreover, shifting the highlighting function does not change

the fact that LiveDoc performs the configuring, not the text editor.

28

electronically and to configure the input device, and Ground 1 fails to make a

prima facie case that claims 1-44 would have been obvious.

C. Because the LiveDoc Manager, and not the text editor, receives
the user’s selection of highlighting, LiveDoc and Drop Zones fail
to disclose or suggest the claim limitation of “receipt by the first
computer program of the user command from the input device”,
and therefore for this additional reason Ground 1 fails to establish
a prima facie case of obviousness.

Independent claim 1 requires “receipt by the first computer program of the

user command from the input device”. This limitation of the claim explicitly

requires the first computer program to receive the user command from the input

device. We will demonstrate that in contrast to the claim, in LiveDoc and Drop

Zones, the LiveDoc Manager and not the text editor receives the user command.

Since the incorrect entity receives the user command, LiveDoc and Drop Zones fail

to disclose or suggest “receipt by the first computer program of the user command

from the input device”, as required by claim 1. Indeed, this limitation is found in

all the independent claims and hence is required by all of the claims challenged in

Ground 1.

As discussed above in Section IV(B), Petitioners and Patent Owner agree

that the text editor is the “first computer program”, and Petitioners have further

equated the displayed highlighting with the “input device”. Further, in Petitioners’

29

discussion of section 1e of claim 1, which includes the limitation of the “user

command”, Petitioners equate this limitation with the user selection of the

highlighting: “When the user selects a highlighted structure (an input device) the

system determines the related actions that can be performed (initiates an

operation). See, e.g., Drop Zones at 60 ("When an object is selected, it is sent to

the Drop Zone control system…)”. See Petition, page 13. The Petitioners do the

same regarding section 1h, which includes the claim limitations of interest: “As

discussed in claim le, when a user selects a highlighted structure the system

determines the related actions that can be performed”. See Petition, page 15.

Petitioners fail to point to anything in LiveDoc and Drop Zones disclosing or

suggesting that the purported first computer program, the text editor, receives the

user selection of highlighting. When the Petitioners apply LiveDoc and Drop

Zones to section 1h, their analysis fails to address how the user selection is

received. Id. Further, nowhere do the Petitioners even mention the text editor. Id.

Petitioners’ analysis of section 1h ignores the first clause, “in consequence of

receipt of the first computer program of the user command from the input device”,

and focuses exclusively on the second clause, “causing a search: “As discussed in

claim le, when a user selects a highlighted structure the system determines the

related actions that can be performed. This determination is made by performing

the search discussed in claim lf - e.g., searching an address book (information

30

source) using an address book application (second computer program) to find the

email address associated with an identified name. See, e.g., Drop Zones at 61

(`When objects are selected, they are inspected by the assistants in the Drop Zone.

These assistants are built around a collection of facts and axioms that determine

whether and how they can operate in some meaningful way on various kinds of

objects.’). See also claims le and 1f”. See Petition, page 15.

In fact, the LiveDoc Manager, not the text editor, receives the user selection

of highlighting. LiveDoc explicitly states that the LiveDoc Manager receives the

selection of a highlighted item: “The LiveDoc Manager also controls the events

that occur…when the mouse button is pressed while over a LiveDoc item. The

LiveDoc Manager also receives the notification that the mouse button has been

pressed over a highlighted item”. Exhibit 1006, page 56.

Additionally, in LiveDoc, the section titled “LiveDoc: Beyond Data

Detectors” describes how the LiveDoc Manager functions; the last paragraph of

this section states “What is described above is, of course, only a general design for

LiveDoc”. Id. at 55. In this section, LiveDoc describes how “[p]ointing at a

highlight and pressing a mouse button then displays the menu of actions that can

be applied to the structure, as shown in Fig. 2”. Id. LiveDoc thus teaches that

displaying menus of action in response to user selection of a highlighted item is

part of the LiveDoc Manager’s design and consequently, they must be features

31

within the LiveDoc Manager itself. Since the LiveDoc Manager performs an

action (i.e., displays a menu) in response to a user action (i.e., selecting a

highlighted item), the LiveDoc Manager necessarily receives the user action itself.

Likewise, with respect to Drop Zones, Drop Zones teaches that the LiveDoc

system and not the text editor receives the user selection of highlighting. The

Petitioners selectively quote Drop Zones: “See, e.g., Drop Zones at 61 (‘When

objects are selected, they are inspected by the assistants in the Drop Zone. These

assistants are built around a collection of facts and axioms that determine whether

and how they can operate in some meaningful way on various kinds of objects’)”,

seemingly implying that the Drop Zones assistants receive the user selection of the

highlighted structure. However, a further inspection of the Drop Zones reference

reveals that “An interaction with the Drop Zone interface is shown in Figures 1 and

2. The window named ‘test’ in Figure 1 belongs to a LiveDoc-enabled word

processor, LiveSimpleText (see [6]), and shows a number of structures within the

document in view having been recognized by the analyzers”. Exhibit 1006, page

60. “Consider Figure 2, in which the user has selected the structure Tom Bonura,

which LiveDoc has identified with its personalName recognizer. When an object is

selected, it is sent to the Drop Zone control system”. Id. Clearly then, it is the

LiveDoc system functionality that receives the user selection of the highlighted

structure, and only then it sends it to the Drop Zone control system. Therefore, the

32

user command, defined by the Petitioners as the user selection of the highlighted

structure, is not received by the first application, i.e. the text editor, but by the

LiveDoc system.

Furthermore, in Drop Zones, selecting an object (structure), does not initiate

an operation as required by the claim, but simply, as admitted by the Petitioners,

sends the object “to the Drop Zone control system. Each of the assistants

determines if it is able to accept and act upon the set of currently selected objects”.

Id. Only after the user has selected an assistant and an action is the operation

initiated. Id. (“These assistants make their capabilities visible when the user selects

various structures identified by LiveDoc and drags them to the assistants.”). Thus,

the Petitioners’ analysis of the user command for the Drop Zones reference,

furthermore fails because the user command does not initiate an operation as

required by the claim, but simply, as admitted by the Petitioners, sends the object

“to the Drop Zone control system. Each of the assistants determines if it is able to

accept and act upon the set of currently selected objects”. Id.

Nor can it be argued that it is the Drop Zones “assistants” that receive the

user command as required by the claim. Drop Zones states that the “assistants” that

receive the dropped items are all part of Drop Zones: “[t]he window labeled

Activities is a Drop Zone interface to a set of interpreters or `assistants.’ Each of

these assistants, E-mail, Telephony, Finance and Appointment, implements a

33

knowledge base that can operate on appropriate sets of LiveDoc structures”

(emphasis added). Id. Therefore, when the user drops a selected highlighted item

on a Drop Zone “assistant”, Drop Zones receives the command to process the

highlighted item with the “assistant”. Therefore, Drop Zones receives the user

command.

 For at least the forgoing reasons, the LiveDoc Manager in LiveDoc receives

the user command, and the LiveDoc system of Drop Zones in the Drop Zones

reference receives its respective user command. Neither reference describes the

text editor, which Petitioners have equated with the “first computer program”, as

receiving the user command from the input device. As a result, both LiveDoc and

Drop Zones fail to disclose or suggest “receipt by the first computer program of the

user command from the input device”, as required by independent claim 1 and

therefore for this additional reason Ground 1 fails to make a prima facie case of

obviousness.

D. Because Miller fails to disclose how the “Detect Structures”
button is configured, Miller fails to disclose or suggest “providing
an input device, configured by the first computer program”, and
therefore Ground 2 fails to establish a prima facie case of
obviousness.

As discussed above, all of the claims require “providing an input device,

configured by the first computer program”. This claim limitation requires the first

34

computer program to configure the input device. However, Miller is silent

regarding the manner in which the input device is configured. Therefore, Miller

fails to describe the first computer program as configuring the input device.

Petitioners effectively concede this deficiency in Miller, arguing that it would have

been obvious for the first computer program in Miller to configure the input

device. Petitioners rely on their expert’s testimony for this point, but this

testimony regarding the state of the art contradicts Miller’s teachings. Therefore,

the testimony of Petitioners’ expert should be disregarded. As a result, Miller fails

to disclose or suggest “providing an input device, configured by the first computer

program”, as required by the claims.

Turning now to Petitioners’ arguments, Petitioners equate the application

167, a word processor, with the “first computer program” and the detect structures

button 520 with the “input device”. When applying Miller to section 1b of claim 1,

“displaying the document electronically using the first computer program”,

Petitioners note that the application 167 performs the displaying: “Documents are

displayed using a first computer program, such as a word processor (application

167 in Fig. 1)”. See Petition, page 25. When applying Miller to section 1e of

claim 1, “providing an input device, configured by the first computer program”,

Petitioners note that the detect structures button 520 receives user input: “The

`detect structures’ button 520 in Fig. 5 is an input device that allows the user to

35

enter a command to initiate the parsing operation. See, e.g., 5:22-37[.]” See

Petition, page 26. Therefore, under Petitioners’ interpretation of Miller, for Miller

to fulfill the requirements of the claim limitation, the application 167 must

configure the detect structures button 520.

The Petition fails to explain how the word processor in Miller configures the

detect structures button 520. Nowhere does the Petition cite to passages in Miller

that support this position. In fact, in Petitioners’ analysis of “providing an input

device, configured by the first computer program”, Petitioners do not even mention

configuration. Instead, their analysis for section 1e merely identifies the detect

structures button 520 as the “input device:” “The `detect structures’ button 520 in

Fig. 5 is an input device that allows the user to enter a command to initiate the

parsing operation”. See Petition, page 26. Instead of relying on Miller’s

disclosures, Petitioners turn to their expert to discuss how configuration

purportedly occurs. See Petition, pages 26-27. In this manner, Petitioners concede

that Miller does not disclose “providing an input device, configured by the first

computer program”, as required by claim 1.

 Experts may testify on what a reference implicitly describes, namely, what

one of ordinary skill in the art would understand from the teachings of the

reference. However, these “implicit teachings” must be consistent with the

reference’s explicit ones. If the reference explicitly teaches certain features, an

36

expert cannot credibly suggest that one of ordinary skill in the art would

understand the reference to teach or contemplate contradictory features.

Nevertheless, that is precisely what the expert for Petitioners does.

 In his testimony, Petitioners’ expert claims that “[I]t would have been

obvious for the word processor program 167 to provide an interface, such as button

520, to receive a user command”. Menascé Decl. 1, ¶71. “[I]t was well known to

configure word processing programs to add GUI elements, such as additional menu

options or button, to provide desired functionality”. See Petition, pages 26-27.

Here, Petitioners’ expert emphasizes that configuring “word processing programs”

(i.e., the application 167, or “first computer program”) was well known. However,

that is not what the claim limitation requires. The claim recites an “input device,

configured by the first computer program”. By focusing on configuration of the

word processing program and not the detect structures button 520, the expert has

directed his attention to the incorrect configuration process.

 Regardless, the expert’s testimony is still inconsistent with Miller’s teaching.

Although the expert has claimed that adding GUI elements to word processors was

well known, applying this practice to Miller relies on a critical assumption: Miller

must contemplate integrating the program 165 and the application 167. The expert

envisions an embodiment in which the application 167 has been configured to

37

incorporate the program 165 so that it can offer the functionality of program165 as

a feature.

 This assumption is not supported by Miller. Nothing in Miller suggests that

the program 165 is or could be integrated into the word processor 167. In fact,

Miller teaches the opposite. Miller teaches that the program 165 and word

processing application 167 are separate programs that execute simultaneously: “the

program may be executed during the run-time of another program, i.e. the

application which presents the document, such as Microsoft Word” (emphasis

added). Exhibit 1007, col. 2, lines 42-44. Because the programs are separate, the

program 165 and application 167 must communicate through the application

program interface of program 165: “Since the program may be executed during the

run-time of another program, i.e. the application which presents the document,

such as Microsoft Word, an application program interface provides mechanisms

for interprogram communications” (emphasis added). Id., col. 2, lines 42-49.

 Miller provides a few examples of how these separate programs

communicate through the application program interface 230. For example, the

program 165 uses this interface 230 to obtain information from the application 167

about the structures: “[A]fter identifying structures and linking actions, application

program interface 230 [of program 165] communicates with application 167 to

obtain information on the identified structures so that user interface 240 can

38

successfully present and enable selection of the actions”. Id., col. 4, lines 1-5. In

another example, the program 165 obtains a user’s interactions with highlighted

structures from the application 167: “User interface 240 communicates with

application 167 through application program interface 230 to determine if a user

has performed a mouse-down operation in a particular mouse-sensitive

presentation region, thereby selecting the structure presented at those coordinates”.

Id., col. 4, lines 22-27. In this manner, instead of being integrated together, the

program 165 and application 167 interact through a designated interface.

 Additionally, Miller

consistently refers to the

program 165 and application

167 as distinct entities. For

example, in Fig. 1, Miller

depicts the program 165 and

application 167 as stored

separately in random access

memory (RAM) 170. Thus, Fig. 1 presents the program 165 and application 167

as discrete entities residing in different portions of the RAM 170. If the program

165 been integrated into the application 167, the program 165 would have

appeared within the application 170 as a sub-entity.

39

 In summary, Miller describes the program 165 and application 167 as

separately executing entities, capable of communicating with one another via the

program’s 165 application program interface 230. Further, Miller describes the

separate storage in memory of the program 165 and application 167. For at least

the forgoing reasons, Miller’s teachings indicate that the program 165 and

application 167 are separate and distinct, not integrated together. Additionally,

nowhere does Miller suggest that such integration is possible or advantageous.

Rather, the motivation for such integration is provided entirely by the Petitioners’

expert.

 Since Miller presents the program 165 and application 167 as separate

programs and is silent regarding benefits of their integration, Miller opposes the

Petitioners’ expert testimony contending that integrating structure detection into

the word processor as an additional feature would have been obvious. In light of

Miller’s contradictions of the expert testimony’s assumptions, Miller cannot be

interpreted to suggest that the “first computer program”, i.e. the word processor,

configures the “input device”, i.e. the detect structures button 520.

Furthermore, claim element 1e has additional requirements as to the “input

device” required by the claims, not addressed at all by the Petitioners, namely that

“the input device …allows the user to enter a user command to initiate an

operation, the operation comprising (i) performing a search …” However, the

40

“Detect Structures” button, identified by the Petitioners as the “input device”, does

not initiate any search at all, but merely, at best, causes highlighting of the

structures.

For at least the forgoing reasons, Miller fails to teach or suggest “providing

an input device, configured by the first computer program”, as required by the

claims. Therefore, Ground 2 fails make a prima facie case that claims 1-44 would

have been obvious based on Miller.

E. Because Miller’s Program 165, and not the Application 167,
receives the user’s selection of the “detect structures” button,
Miller fails to disclose or suggest the claim limitation of “receipt
by the first computer program of the user command from the
input device”, and therefore Ground 2 fails to establish a prima
facie case of obviousness.

As discussed in Section IV(C), all of the claims require the limitation

“receipt by the first computer program of the user command from the input

device”. This limitation of the claims explicitly requires the first computer

program to receive the user command from the input device. We will demonstrate

that in contrast to the requirements of the claim, in Miller, the program 165 and not

the application 167 receives the user command. Since the incorrect entity receives

the user command, Miller fails to disclose or suggest “receipt by the first computer

program of the user command from the input device”, as required by the claims.

41

As discussed above in Section IV(D), Petitioners have equated application

167, a word processor, with the “first computer program” and the detect structures

button 520 with the “input device”. When Petitioners discuss of section 1h of

claim 1, which includes the limitation of interest, the user selection of the detect

structures button 520 must be the “user command” because it is the sole action

mentioned in the analysis that is taken by the user: “When the user selects the

`detect structures’ button 520, a search is performed”. See Petition, page 27.

The Petition points to nothing in Miller that discloses or suggests that the

text editor receives the user selection of the detect structures 520 button. When the

Petitioners apply Miller to section 1h, the manner in which the button selection is

received is absent from their discussion. Id. Additionally, nowhere do the

Petitioners even mention the text editor. Id. As with Petitioners’ analysis of

LiveDoc and Drop Zones, Petitioners’ analysis of Miller with respect to section 1h

ignores the first clause, “in consequence of receipt of the first computer program of

the user command from the input device”, and focuses exclusively on the second

clause, “causing a search:” “Program 165 is a second program and includes

analyzer server 220 that performs the search discussed in claim 1f”. See Petitioner,

page 27.

 Miller indicates that the program 165, and not the application 167, receives

the selection of the detect structures button 520. Since the program 165 performs

42

the namesake function of the detect structures button 520, the program 165

necessarily receives an instruction from the button 520: “The program 165 of the

present invention is stored in RAM 170 and causes CPU 120 to identify structures

in the data presented by application 167”. Exhibit 1007, col. 3, lines 38-41.

Further, Miller explicitly connects operating the button 520 with initiating the

program 165: “Window 510 includes a [detect structures] button 520 for initiating

program 165, although alternative mechanisms such as depressing the "option" key

may be used. Upon initiation of program 165, system 100 transmits the contents of

document 210 to analyzer server 220, which parses the contents based on

grammars 410 and strings 420 (FIG. 4)”. Id., col. 5, lines 22-28. Because the

detect structures button 520 initiates program 165, which, as pointed out above,

executes independently, program 165 must receive an instruction to begin in

response to a user selecting the detect structures button 520. Consequently,

program 165 likely receives the user command. Nowhere does Miller disclose or

suggest that the application 167 receives the user command and sends the user

command to the program 165, via the application program interface 230, for the

program 165 to begin executing. Therefore, in Miller, the program 165 and not the

application 167 receives the user command.

43

Because Miller fails to disclose or suggest “receipt by the first computer

program of the user command from the input device”, as required by independent

claim 1, Ground 2 fails to establish a prima facie case of obviousness.

F. Because Miller searches within the document for strings or
grammars, Miller fails to disclose or suggest “performing a search
using at least part of the first information as a search term … in
an information source external to the document”, and therefore
Ground 2 fails to establish a prima facie case of obviousness.

Independent claim 1 requires “performing a search using at least part of the

first information as a search term … in an information source external to the

document”. This limitation poses at least two requirements that are not met by

Miller. First, the limitation requires the performance of a search that uses a search

term. Second, the search must be conducted “in an information source external to

the document”. We will show that Miller fails to disclose or suggest either of these

limitations. Further, these limitations are found in all the independent claims and

hence are required by all of the claims challenged in Ground 2.

Regarding the first requirement for performing a search, in Petitioners’

analysis of the limitation in section 1f, Petitioners argue that Fig. 4 shows a phone

number being found using a name. See Petition, page 27: “For example, in the

bottom box with the identified name, the actions are "Write letter" or "Call person

(retrieve #)”. (Fig. 4, 420.) In order to call the person, the name must be searched

44

in an address book to retrieve the associated phone number, as contemplated in

Fig. 4”. Although the Petitioners allege that “the name must be searched in an

address book to retrieve the associated phone number”, there is nothing whatsoever

in Miller that discloses an automated search of the address book. The description

of Fig. 4, in col. 5, lines 6-17, fails to disclose a search. In fact in all of Miller, the

word “search” is mentioned only in connection with searching the document.

Exhibit 1007, col. 3, lines 61-64 (“Analyzer server 220 comprises one or more

pattern analysis units, such as a parser and grammars or a fast string search

function and dictionaries, which uses patterns to parse document 210 for

recognizable structures”), col. 4, lines 58-64 (“fast string search function” in

analyzer server 220), col. 6, lines 34-55 (“fast string search function” for detecting

patterns in document), col. 6, lines 64-66 (“neural net for searching a graphical

document 210” or “a musical library for searching a stored musical piece 210”),

columns 7 and 8 (claims to “fast string search”). Miller discloses nothing about

what happens if the user selects the action that is the subject of speculation by

Petitioners. In fact, the action recites no search, and states, instead, “Call person

(retrieve #)”. The fact that the phrase “retrieve #” is in parentheses and no other

action includes a phrase in parentheses, suggests that the portion of the action

“retrieve #” is in a different category from other actions, possibly because it is

carried out manually.

45

Accordingly, there is nothing in Miller that discloses or suggests searching

outside of the document. Even assuming that Miller were to implement such a

functionality in the “Call person” action in Fig. 4 (though it does not), it would be

the only action involving a search, and therefore this single search would fail to

satisfy the claim requirement that “the specific type or types of second information

is dependent at least in part on the type or types of the first information”. The

simple reason is that there would be only one type of first information (the name)

and only one type of second information (the phone number). Moreover, there

would be also only one action (since there is only one operation, namely “Call

person (retrieve #)”, and since there is only one action, the single action would fail

to meet the claim requirement that “the action is of a type depending at least in part

on the type or types of the first information”.

Although it is not clear, the Petitioners may also attempt to equate structure

detection with the “search”: “Figs. 8-10 and 5:51-6:55 describe recognizing

patterns and performing actions”. See Petition, page 27. The pattern recognition

referenced is finding grammars in the text of a document: “Parser 310 retrieves a

grammar from grammar file 320 and parses text using the retrieved grammar”.

Exhibit 1007, col. 4, lines 62-64. However, the grammar file does not include the

actual text of the structure, i.e. the actual telephone number, e-mail address. If the

grammar repository were searched for the actual text of the structure (which Miller

46

does not do), the search would not yield any results. Therefore, the search for

grammars is not “performing a search using at least part of the first information as

a search term”, as required by claim 1.

Regarding the second requirement for a search “in an information source

external to the document”, in Petitioners’ application of Miller to this limitation,

the sole entities that Petitioners identify as being “external to the document” are the

dictionary (sometimes called “strings”) and grammars of the analyzer server 220:

“Analyzer server 220 includes dictionaries or `grammars’ that are external to the

document”. See Petition, page 27.

In fact, Miller uses the grammars to parse the contents of a document to find

structures, and obtains strings from the string library and searches for them in the

document. Exhibit 1007, col. 3, lines 61-64. We will first discuss Miller’s

treatment of grammars and then his treatment of strings to show that in each case,

they are applied to the document itself and fail to disclose or suggest “performing a

search … in an information source external to the document”, as required by claim

1.

Regarding “grammars”, Miller says: “Parser 310 retrieves a grammar from

grammar file 320 and parses text using the retrieved grammar”. Id., col. 4, lines 62-

64. Regarding the “dictionary” or “string library” (also called “name library”), in

Fig. 10 of Miller, box 1070 recites the step “receive library of strings” and box

47

1080 recites the step “detect identical strings in data” (emphasis added). Miller

elaborates by teaching that “[a]s illustrated in block 1060, a fast string search

function retrieves 1070 the contents of string library 420, [and] detects 1080 the

strings in the data identical to those in the string library 420” (emphasis added).

Id., col. 6, lines 43-47. Miller also teaches that “[a]ssuming program 165 initiates

with the receipt of any text, the received content or portion is scanned 820 for

identifiable structures using the patterns in analyzer server 220”. Id., col. 5, lines

56-59. Miller also refers to a “fast string search” in the sting library. A fast string

search is an algorithm in which one finds a string in a document, i.e., each entry in

the dictionary is used in a search in the document (using the fast string search

algorithm) to see if the string is in the document. In other words, it is the text in the

document that is searched to identify strings in the dictionary/string library, not

vice versa as required by the claim. Furthermore, the claims require first analysis,

and in a second step using the result of the analysis as a search term. The purported

searches regarding grammars and the dictionary/string library, would have been a

part of this first step, analysis, and thus cannot also be used to satisfy the second

step of the claim, namely the search.

Thus, Miller compares patterns (i.e., strings, grammars) against the text of a

document to determine if a pattern can be found therein. In this manner, Miller

searches in the document for a pattern as a part of the analysis for structures. Thus,

48

Miller fails to disclose or suggest “performing a search using at least part of the

first information as a search term … in an information source external to the

document”, as required by claim 1. For this additional reason, Ground 2 fails to

make a prima facie case that claims 1-44 would have been obvious based on

Miller.

G. Because the user informs the Luciw apparatus of the input’s type

of information, Luciw fails to disclose “analyzing, in a computer
process, first information from the document to determine if the
first information is at least one of a plurality of types of
information”, and therefore Ground 3 fails to establish a prima
facie case of obviousness.

Independent claim 1 requires “analyzing, in a computer process, first

information from the document to determine if the first information is at least one

of a plurality of types of information that can be searched for in order to find

second information related to the first information”. Indeed, this limitation is

found in all the independent claims and hence is required by all of the claims

challenged in Ground 3.

In their application of Luciw to this limitation in section 1c, the Petitioners

argue that Luciw analyzes a user entry in a smart field: “While the document is

being displayed, the device in Luciw analyzes a user’s entry (first information from

the document) to determine if implicit assistance is possible and the kind of

implicit assist indicated (determine whether first information can be used to find

49

second information). See, e.g., Figs. 3 and 4a; 10:15-20 (`If the entry in the smart

field has been made by the user, the assistance process takes action to identify or

recognize the kind of implicit assistance indicated at a step 154.’); 8:7-13 (`At step

104, the process recognizes whether or not an implicit assistance function is to be

provided by computer system 10. … If a user does enter information into a `smart

field,’ the computer database will be queried at step 106 to determine whether

assistance is possible given the user input.’)”. See Petition, page 38.

Although the claim limitation requires “analyzing…to determine if the first

information is at least one of a plurality of types of information”, the cited portions

of the Luciw patent fail to disclose any such analyzing whatsoever. In fact, as we

demonstrate in detail below, the cited portions of the Luciw patent show that the

user must tell the computing device of Luciw what type of information – e.g., a

name – is being entered. Therefore, whatever is entered by the user into the

specified field is used without any analysis.

Petitioners apply the “implicit” assistance of Luciw to the “analyzing” of the

subject patent’s claims. During “implicit” assistance, a user uses a smart field to

enter a word that can be looked up in a database, or executes predefined events that

result in a database query. Exhibit 1008, col. 8, lines 14-33. Fig. 6a depicts the

smart fields in question. Regarding this interface, the Luciw patent states that “The

phone slip window 170 in FIG. 6a is shown with a smart name field 175”. Id., col.

50

11, lines 46-47. As explained earlier in Luciw, in order to use a smart field, the

user must select a name or phone field depending on whether the textual item that

the user wants to be searched is a name or a phone number:

Once the particular window 170 is presented to the user, the name

ISAAC can be handwritten into the particular smart field 175.… As will

readily be recognized, window 170 in FIG. 4b may contain several smart

fields, in this case for example definable for either the “name” field 175 or a

“phone” field shown at step 177.

Id., col. 10, lines 28-39.

This passage makes clear that in order to retrieve information from the

database, the user is expected to enter a name into the name field 175 or a phone

number into the phone field 177. Note that in Figs. 6a, 6b, and 6c the name field

and the phone field are given the same item numbers, 175 and 177 respectively, as

in Figs. 4b and 4c discussed above. Thus, by using a smart field, a user tells the

computing device what type of information the user is entering. In fact, no

analysis to identify the type of text is performed or needed: the system simply

assumes a type (e.g., a name) because the user entered text into the corresponding

smart field. Since smart fields are designed for user characterization of the type of

information that is being entered, the user tells the computer system what type of

information is being provided as an input by virtue of the field that receives the

text. Since the user already provides the type of information, Luciw need not and

51

does not perform any “analyzing...to determine if the first information is at least

one of a plurality of types of information” (emphasis added).

Further, since each smart field corresponds to a predefined type, the

computer system knows the type of information the user entered simply by the

identity of the smart field that receives the entered text. The computer system does

not analyze the user input itself. For example, when a user enters the word “Isaac”

into the name field 175, the computer system assumes that it has received a name

simply because the name field 175 received the text. Id., Fig. 6b. Nowhere does

Luciw teach that the computer system has analyzed the word “Isaac” to determine

that it is a name. Because the computer system does not consider the content of the

input at all, the content of the “first information” is irrelevant for determining its

type. Rather, the computer system just assumes that the type of information

matches the type for the smart field. Therefore, Luciw fails to disclose or suggest

“analyzing...first information from the document to determine if the first

information is at least one of a plurality of types of information” (emphasis added).

Luciw indicates that other methods can be used to initiate a search based on

text entered by a user. Luciw indicates that other forms of implicit assists “can be

triggered by the happening of any of a number of predefined allowable events”.

Id., col. 8, lines 30-41. However, the sole example that Luciw describes is writing

a particular word or indication outside of a particular smart field: “Certain kinds of

52

events on screen 52, for example, such as the writing of a particular indication or

word on screen 52 outside of a particular smart field may trigger an implicit

assist”. Id., col. 8, lines 30-41.

The assumption appears to be that whatever “particular indication or word”

is entered will be used by the device for “a query of the database at step 106” of

Fig. 3. Indeed, an inspection of Fig. 3, which “is a flow diagram of a process

according to the invention for providing controlled computer-assisted user

assistance”, fails to uncover any step of analyzing text in a document to determine

whether text “is at least one of a plurality of types of information that can be

searched for in order to find second information”. Id., Fig. 3; col. 2, lines 65-67,

and col. 8, line 1-col. 10, line 5. An inspection of Fig. 3 shows that the only

instance wherein the database is queried is in step 106, and that step is preceded

simply by a determination, in step 104, whether an “implicit assist” has been

invoked, and the database query follows if the determination is that an “implicit

assist” has been invoked. There is no analyzing step.

In summary, Luciw fails to disclose any mechanism for “analyzing, in a

computer process, first information from the document to determine if the first

information is at least one of a plurality of types of information”. Rather, the user

alerts the device as to the type of information that the user is inputting via selection

of the appropriate smart field. Thus, the user informs the Luciw device of the type

53

of information, such as a name or phone number. Since Luciw fails to disclose

each and every limitation of the subject patent’s claims, Ground 3 fails to make a

prima facie case for obviousness of claims 1-44.

H. Because Pandit’s nouns and verbs are not the “types of
information” contemplated by the claims, and, at best, the type of
second information is decided by the user, and not dependent at
least in part on the type or types of first information, Pandit fails
to disclose or suggest “performing a search … wherein the specific
type or types of second information [found] is dependent at least
in part on the type or types of the first information [used as the
search term]”, therefore Ground 4 fails to establish a prima facie
case of obviousness.

Independent claim 1 recites “performing a search … wherein the specific

type or types of second information [found] is dependent at least in part on the type

or types of the first information [used as a search term]”. Indeed, this limitation is

found in all the independent claims and hence is required by all of the claims

challenged in Ground 4.

Petitioners attempt to apply two examples in Pandit to this limitation of the

claim: searching a dictionary for a meaning of a word, and adding an identified

telephone number to an address book. See Petition, pages 50-51. We will first

address how searching a dictionary fails to meet this limitation, and in Section

III(I), we will address how adding a telephone number to an address book also fails

to meet the limitation.

54

The recited “search” of the subject patent’s claims includes a number of

requirements that are not met by obtaining a word’s meaning. First, because the

claim refers to the types of information for the first and second information, the

“first information” and “second information” each must be of a specific type or

types of information. We will show that the types of information used in the

dictionary search as not the “type or types of information” contemplated by the

claims. Second, the latter half of the limitation requires the type of the “second

information” to depend upon the type of the “first information”. We will show that

even if Pandit’s dictionary were to involve the types of information required by

claim 1, which it does not, the type of word input into the dictionary program is

irrelevant to the type of information obtained. Since dictionaries always obtain

meanings of words, the dictionary necessarily retrieves the same type of

information.

The first embodiment of Pandit that the Petitioners use detects nouns or

verbs in a document. See Petition, page 51. To the best of Patent Owner’s

understanding, Petitioners appear to equate the detected noun or verb with the

“first information”. Since Petitioners cite a dictionary function for the “search”,

Petitioners equate the dictionary entry of the noun or verb with the “second

information”. Also, because the Petitioners reference executable programs in

Pandit beyond the dictionary, other potential types of “second information” would

55

include synonyms of the word, the singular or plural version of a noun, or the

conjugation of a verb. See Petition, page 51. However, the subject patent

describes telephone numbers, fax numbers, and e-mail addresses as exemplary

types of information. Exhibit 1001, col. 4, lines 12-14. In light of the

specification, one of ordinary skill in the art would recognize that mere nouns and

verbs are non-analogous to entities such as telephone numbers, fax numbers, and e-

mail addresses. As such, one of ordinary skill in the art would not recognize nouns

and verbs as the “types of information” contemplated by the claims. Therefore, the

first embodiment of Pandit that Petitioners rely upon is inapplicable to the subject

patent’s claims.

Further, even if the entities in this embodiment of Pandit were “types of

information”, Pandit still fails to describe or suggest that the “specific type or types

of second information is dependent at least in part on the type or types of the first

information”. Instead, the type of second information depends on the selection that

a user makes from a pull-down menu of programs: “Where the invention is capable

of recognizing nouns or verbs, pull-down menus can, for example, identify

executable programs which provide the meaning of the highlighted word,

appropriate synonyms and the singular or plural version of the noun or conjugation

of the verb”. Exhibit 1009, col. 3, lines 12-16. We note that Pandit fails to teach

56

how these identified programs operate. Nowhere does Pandit indicate that any of

these programs “performing a search”, as required by claim 1.

Regardless, the particular program that the user selects from the pull-down

menu determines the type of information that Pandit will retrieve. Once the user

selects a program, the system of Pandit obtains the type of information associated

with that program, regardless of the type of information associated with the input.

For example, if a user selects the dictionary program, the dictionary will retrieve

the dictionary entry of a word, regardless of whether that word is a noun or verb.

Likewise, if a user selects the thesaurus program, the thesaurus will retrieve the

synonym entry of a word, regardless of whether that word is a noun or verb. Thus,

the type of information that Pandit retrieves (e.g., the type of the “second

information”) is actually dependent on the user request for a program that obtains

that particular type of information, not on the type of the information that is input

to the program (e.g., the type of the “first information”, such as a noun or verb).

For at least the forgoing reasons, Petitioners have failed to demonstrate that

Pandit discloses or suggests “performing a search … wherein the specific type or

types of second information [found] is dependent at least in part on the type or

types of the first information [used as the search term]”. Therefore, Ground 4 fails

to make a prima facie case that claims 1-44 of the subject patent would have been

obvious.

57

I. Because Pandit’s does not disclose searching in the address book ,
Pandit fails to disclose or suggest “performing a search using at
least part of the first information as a search term in order to find
the second information” and “causing a search for the search
term”, and therefore Ground 4 fails to establish a prima facie case
of obviousness.

We now turn to the second example of Pandit that Petitioners attempt to

apply to the claimed “search:” adding an identified number to an address book.

See Petition, page 51. Petitioners attempt to equate a telephone number with the

“first information” and contact information associated with the telephone number

with the “second information” based on Pandit’s disclosure of “adding an

identified number to an address book”. See Petition, page 51. However, and as

admitted by the Petitioners, Pandit only discloses adding a telephone number to an

address book which does not require a search in the address book, and indeed

Pandit does not disclose any such search. Pandit does not, contrary to the

statements by Menascé, disclose ensuring that there are no multiple entries of the

same address in the address book.

As with Miller, Petitioners cannot rely on text or figures within the four

corners of Pandit to disclose all of the limitations of the subject patent’s claims.

Again, they resort to expert testimony to interpret Pandit in their favor: “[I]t would

have been obvious to a person of ordinary skill in the art that the first step in

adding to an address book is searching the address book to determine if an entry

58

already exists with this information and displaying any associated information

which is located. (Menascé Decl. ¶99.) This would have been a matter of common

sense to one of ordinary skill, in order to avoid multiple entries of the same

address”. See Petition, page 51. Therefore, Petitioners admit that Pandit fails to

disclose “performing a search”, but attempt to argue that this search “would have

been obvious”.

Petitioners cannot point to any teachings in Pandit that might lead one of

ordinary skill in the art to this conclusion. Since Pandit does not describe any

process by which its system adds e-mail addresses or telephone numbers to an

address book, Pandit lacks any teachings from which one of ordinary skill in the art

could deduce its operation. Instead, Petitioners rely on the subjective, and

amorphous, basis of “common sense”. However, in light of Pandit’s silence, one

of ordinary skill could just as readily use “common sense” to conclude that

selecting the “Add to address book” option would cause the computer system to

open the address book itself and create a new entry. Since nothing in Pandit

teaches a search through the address book, Petitioners’ argument is based on their

importation of the subject patent’s limitation into their understanding of the text.

 Even assuming for the sake of argument that Pandit were to contemplate

searching for duplicate entries, which he does not, such a search would still fail to

meet the requirements of the claim. Suppose Pandit received a request to add a

59

telephone number to the address book. To determine if an entry for this telephone

number already existed, Pandit would search its entries for the telephone number.

Further, Pandit would be concerned only with finding the telephone number in its

records, not with any other information. Therefore, a search for duplicate entries

would be a search for “first information”, not a search “in order to find the second

information, of a specific type or types”, as required by claim 1.

For at least the forgoing reasons, Petitioners have failed to demonstrate that

Pandit discloses or suggests “performing a search using at least part of the first

information as a search term in order to find the second information” and “causing

a search for the search term”. Therefore, Ground 4 fails to make a prima facie case

of demonstrating that claims 1-44 of the subject patent would have been obvious.

60

CONCLUSION

For the foregoing reasons, Petitioners have failed to establish a reasonable

likelihood of prevailing as to any claim of the ’843 Patent, and inter partes review

of claims 1-44 of U.S. Patent No. 7,917,843 should be denied.

Dated: March 12, 2014 Respectfully submitted,

/Robert M. Asher, #30,445 /

 Robert M. Asher
Registration No. 30,445
Bruce D. Sunstein
Registration No. 27,234
Dorothy Wu
Registration No. 69,535
Sunstein Kann Murphy & Timbers LLP
125 Summer Street
Boston, MA 02110
Tel: (617) 443-9292
Fax: (617) 443-0004

61

CERTIFICATE OF SERVICE

 It is certified that on March 12, 2014, copies of the Preliminary Response of

the Patent Owner under 35 U.S.C. § 313 and 37 C.F.R. § 42.107 has been served

on Petitioners as provided in 37 C.F.R. § 42.6(e) via electronic mail transmission

addressed to the persons at the following addresses:

LEAD COUNSEL FOR PETITIONER
APPLE

DAVID L. FEHRMAN
dfehrman@mofo.com
Registration No. 28,600
MORRISON & FOERSTER LLP
707 Wilshire Blvd., Suite 6000
Los Angeles, CA 90017-3543
Tel: (213) 892-5200
Fax: (213) 892-5454

BACK-UP COUNSEL FOR
PETITIONER APPLE

MEHRAN ARJOMAND
marjomand@mofo.com
Registration No. 48,231
MORRISON & FOERSTER LLP
707 Wilshire Blvd., Suite 6000
Los Angeles, CA 90017-3543
Tel: (213) 892-5200
Fax: (213) 892-5454

LEAD COUNSEL FOR PETITIONERS
GOOGLE AND MOTOROLA
MOBILITY
MATTHEW A. SMITH
smith@turnerboyd.com
Registration No. 49,003
TURNER BOYD LLP
2570 W. El Camino Real, Suite 380
Mountain View, CA 94040
Tel: (650) 265-6109
Fax: (650) 521-5931

BACK-UP COUNSEL FOR
PETITIONERS GOOGLE AND
MOTOROLA MOBILITY
ZHUANJIA GU
gu@turnerboyd.com
Registration No. 51,758
TURNER BOYD LLP
2570 W. El Camino Real, Suite 380
Mountain View, CA 94040
Tel: (650) 265-6109
Fax: (650) 521-5931
and
kent@turnerboyd.com
docketing@turnerboyd.com

mailto:dfehrman@mofo.com
mailto:marjomand@mofo.com
mailto:smith@turnerboyd.com
mailto:gu@turnerboyd.com
mailto:kent@turnerboyd.com
mailto:docketing@turnerboyd.com

62

Date: March 12, 2014 /Robert M. Asher, #30,445 /

 Robert M. Asher
Registration No. 30,445
Sunstein Kann Murphy & Timbers LLP
125 Summer Street
Boston, MA 02110
Tel: (617) 443-9292
Fax: (617) 443-0004

