
Arendi S.A.R.L.-Ex. 2002 
Page 1 of 6

From Documents to Obiects
An Overview of LiveDoc

James R. Miller and Thomas Bonuro

One ofthe changes that the World Wide Web has brought to the
computing industry is a new way of thinking about documents.

Traditionally, documents have been seen as simple streams of
characters, like those in a document editor. Applications that

manage these documents may do more or less interesting things
to the Characters, but they rarely attempt to interpret any of the

meaning of the document. There’s obviously meaning there, but

it only becomes apparent when read or otherwise manipulated
by a human. In contrast, the Web has brought with it the con—

cept of a document that has been authored in such a way that

important bits of information are explicitly identified within the

document, This identification exposes some of the meaning of
the document, albeit at a fairly low level, so that various kinds of

actions — primarily “show me this related document” — are
ofifered to users and made easy for them to carry out.

The gap that separates these two notions ofdocumrnris the need
for the human authoring of the Web document. More to the

point, it’s the need for a human to identify the meaningful com-
ponents of the document and the actions that make sense for

those components. There is a real opportunity to advance the

computing held here, by bringing these two worlds together: by

enabling an ordinary document, built with any application, to
automatically offer users access to some ofthe meaningful bits of
its content, and by helping users any out appropriate actions on
these objects.

Bridging the Gap through Structure Detection

This premise led to a collection ofprojects within Apple’s
Advanced Technology Group — within the Intelligent Systems
Program, in particular -— on the idea of structure detection. The
work was based on the observation that, while automatically

SIGCHI Bulletin

computing a high—level understanding ofan arbitrary document
is beyond our present ability, many meaningful bits of informa-
tion are computationally quite easy to recognize: recognizing an
e-mail address (“fred@apple.com”) or a URI. (“http:/l

www.apple.com”) takes little more than a contextrfree grammar,

if not merely a regular expression parser. A firsr step to bridging
the document gap described above is then to construct a means

ofpassing text from a user’s document into a parser for matching
against a collection of recognizers, each ofwhich is looking for
some meaningful type of information. These identifications
imply simple interpretations of the bits of information that were
found: URLs are found by the URL grammar, email addresses

are found by the e-mail address grammar, and so on. Then,
actions appropriate to each kind of object can be offered, sup—
porting users in their work on those objects and on the docu—
ment as a whole.

Our overall intent here— to examine document content, identify

likely user actions, and provide simple ways ofsclccting and exc-
cuting those actions — is not unlike that of the authors of other

“intelligent” critic and advisory systems [e.g., 4, 6]. However,
our work on structure detection differs from these systems in a

number ofways:

' Syntactically—regular information structures, and the tasks that
follow from them, can be found in almost any user domain.
Hence, the total number of structures and tasks for which

structure detection assistance would be helpful is too large for

any single person or organization to try to satisfy. Therefore,
we have paid special attention to the importance of allowing

application developers and even en d—users to define and
extend the set ofdetectors and actions. This drove us to design

Volume 30, Number 2 April 1998 53

Arendi S.A.R.L.—Ex. 2002

Page 1 of 6f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Arendi S.A.R.L.-Ex. 2002 
Page 2 of 6

a plug—in architecture for object recognizers and actions, as dis«
cussed in [7]

' We have remained open to large numbers ofapplications — ide—
ally, any application available on the Macintosh platform —
and have provided users with a consistent human interface
across those applications.

0 Viewing this work From an agent perspective, we have worked
to keep the user well in control of the system’s actions. This has
called for a clear and explicit connection between the informa—
tion that was found and the actions taken by users on that
information. We have also kept the grain size ofthe actions rel’
atively small, so that they would be easily understandable and,
if need be, undoable.

I We Wanted to keep our approach practical enough that it could
ship as a commercial product, rather than simply being a
research project.

Our most successful instantiation of the idea of structure

detection (thus far) has been Apple Dam Detectors (ADD):a

system extension for Mac OS 8 thatis now commercially avail—
ablel. This first version ofstructure detection has been applied
to the domain of Internet information management; finding
structures like e-mail addresses, URLs, host names, and news—

group names in user documents and automating actions on
these structures, like creating a new e-mail message addressed
to a discovered e—mail address or opening a web browser on a
discovered URL. This capability has been implemented via
Mac OS 8’s contextual menus: Users select a region of text and
activate the contextual menu by pressing the keyboard’s Conv
trol key and the mouse button. This initiates the grammatical
analysis of the selected text, and presents a hierarchical menu
consisting of the structures found by the grammars and, for
each of those structures, the actions that make sense for it.
Users can examine all the discovered structures and their asso—

ciated actions, and invoke whichever action they choose (Fig—
ure 1). More on the origin oprple Data Detectors, its
implementation, and how it made the transfer From research to
product can be found in [7]. Some other related approaches to
the structure detection question can also be Found in [5] and
[8].

LiveDoc: Beyond Duh: Detectors

Many of the goals we had set for shifting the model of docu—
ments from passive streams of characters to manipulable collec—
tions ofmeaningful objects were met quite nicely by Apple Data
Detectors. Nevertheless, we saw other opportunities for struc-
ture detection, growing out of both limitations ofthis first sys-
tem and opportunities for expanding its breadth and depth.

Consider, first, the user interface to ADD. Users must select a

range of text in a document, and invoke ADD through the con—
textual menu system. At that point, the selected text is sent to
ADD’s parser for analysis, which produces the menu of discov—

. ered structures and corresponding actions. This design has a
number ofimplications on what kinds ofinteraction services can
be ofl’ered to users:

1_._..___._____.________
as a a free lug-in for Mac OS 8; it 15 available via http: Happie—
script. app ecom/datadetectors.

54 April l998 Volume 30, Number 2

  
 

In: rmgosmltxun
'1’“'1 JUN! Sill"! ‘jiflillwlnflhtlm’

sub)“ t: It; now. 1M! votanun punt

 
Figure 'I: The resulls 0F invoking Apple Doro Deleclors on a

text selection.”993’

 

- The basic premise of ADD is that it finds and selects manipu—
lable bits of information for the user. However, in practice, the
user must still find a structure that they would like to do some—
thing with, so that they can select, for analysis by ADD, a‘
region of text containing that structure. it’s true that ADD
allows users to be inexact in selecting the region of text con—
taining the structure of interest, since its grammars will find
the desired structures in a stream ofother, irrelevant characters.

However, the tasks of discovering structures that might be
operated upon and selecting the parts of the document around
those structures are still imposed upon the user by ADD.

- It is not uncommon for usefiil structures to be nested within

other useful structures. The URL “http://wwwapple.com/
defaulthtml” contains within it the host name

“wwapplecom”; a similar situation holds for the host name
embedded in an e—mail address. These multiple structures can
make the contextual menu generated by a typical text selection
quite long, forcing the user to choose between limiting the set
ofactive detectors (which keeps the task offinding the desired
structure in the contextual menu a manageable one) and hav»
ing to search through a large number of detected structures in
the contextual menu (which makes ADD’s services applicable
in the largest number of situations).

0 Listing the detected structures in the contextual menu deesn’t
really make them manipulable, through such direct manipula—
tion techniques as drag and drop.

We encountered still other limitations resulting from our desire
to increase the flexibility and power ofADD analyses. For
instance, there really isn’t any semantic interpretation of the
discovered structures in ADD: Actions are associated with

structures through a lookup table, not through any rich seman—
tic representation of, for instance, what a URL is, what it might
be used for, and what constraints exist on its use. As a result,
the set ofactions that can be ofl‘ered to a user is fixed: it can nei»
thet include nor omit actions based on the semantics of the

immediate interaction context. Further, since ADD’S process—
ing is tied to and activated by the contextual menu system, it

SIGCHI Bulletin

Arendi S.A.R.L.-Ex. 2002

Page 2 of 6f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Arendi S.A.R.L.-Ex. 2002 
Page 3 of 6

must complete its analysis in the very short period of time in
which users are willing to wait For a pop—up menu to appear2 —
about halfa second. This is typically enough time For ADD to
run a set of ptecompiled grammars and build a menu from a
lookup table. However, it's easy to imagine more complex anal—
yses of documents that could not be completed in this short
amount of time.

Finally, we saw other opportunities for alternate analysis tech—
niques, which could augment and extend the analysis model of
ADD. ADD was built around a single parser, roughly equivalent
to a context-free grammar (CFG); all structures found by ADD
must be describable by a CFC. This is fine For simple structures
such as phone numbers and e-mail addresses, but other more
complex structures, such as a meeting announcement, are com—
monly found in a form not describable by a CFG, and so cannot
be recognized byADD. Some of these structures might be found
by a more expressive grammar formalism, and others by rec0g~
nizers that find structures by powerful but ad hoc analysis tech—
niques instead of grammars. In addition, this textual grammar
system cannot be easily extended to handle non—textual struc—
tures, such as images, drawings, circuit diagrams, or other kinds
of visual information. All of these extensions indicate the need

for a richer analysis model than was provided in ADD.

As a result, we began a follow-on project to ADD, known as
LiveDoc, which would carry the ideas of structure detection for-
ward to another level. In LiveDoc, the structure detection proc-
ass is run in the background on the visible document’s text,
whenever that document is presented or updated. The results of
LiveDoc’s analysis are then presented by visually highlighting the
discovered structures with a patch ofcolor around the structure.
Holding down a function key places the document in “LiveDoc
mode” and presents the highlighted structures; releasing the
function key returns the document to normal. Pointing at a
highlight and pressing the mouse button then displays the menu
of actions that can be applied to the structure, as shown in Fig 2.

Experientially, the design of LiveDoc draws on the Web in obvi—
ous ways: certain meaningful parts of a document are high-
lighted, and clicking on them causes certain actions to occur.
LiveDoc differs from the Web, of course, in that we have substi—
tuted the automatic analysis of the document For the hand-
authored links of web documents, so that any document in a
LiveDoc—enabled application (more on this later) gains these
characteristics. We are also able to assign more than one action
to an object, something that lies outside the standard Web para-
digm.

LiveDoc’s use of background processing and automatic high—
lighting of discovered structures offers other advantages. Struc—
tures relevant to the user are automatically presented to the user
while a document is in LiveDoc mode; interesting structures
need not be searched for and highlighted manually. The prob-

2. In fact, the contextual menu system enforces a timeout after this
amount of time: contextual menu plug—ins, like ADD, that have
not completed their analysis when this time expires are halted by
the contextual menu manager. When this happens, a “More
actions...” option is added to the contextual menu; selecting this
runs all the plug—ins to completion, and brings up a dialog box
containing the results of their analyses.

SlGCHI Bulletin

 

 

 
 

 
  
  

  

 
 

cgvvtuiotiomfl m 5-: . Raw! as. mm uallm. Inc mml , more «73 final Sna- u in mm winwg oncemy». what-tans on: raw“ ‘9“, u: mm W nomean. some new I“, {ha umbs-cl Lei-ooh In Dru-sen
05th with rum-W Widow to their elm: has 1mWm m «4 75a.
 
 

 
Tm van to all shown: wmrwwlmlm thatprov-m mart mum, martin and um some. this ”notWM. Wuhan-mum! mum to menimmnor
919mm Haiku.
Gar-aim Iv.

We France?”
lac

Smith to with;

  

  

- cum 9‘96
. . “W.“W

Figure 2: A sample interaction with LiveDoc. Note the
highlighting oi the discovered structures, the menu oi ociions

available or the selected structure, and lhe nested highlighting oi
nested structures.

' . .. aria 

lem of overly-long contextual menus is avoided, since a menu
shows only the actions relevant to the structure it is associated
With. Similarly, nested structures can be handled by nesting the
mouse—sensitive regions around the structure: clicking on the
host name part of a URL can present a menu ofactions relevant
to host names, while clicking outside the host name region
presents actions relevant to URLs. This is shown in Figure 2: the
host name of the e—mail address and URL (“sciorg”) is shown
with a darker highlight than those of the e—mail address and
URL themselves. Finally, note that the visual representation of
these structures means that, given appropriate software support,
they can be treated as directly accessible components of the interr
Face: they can take part in drag and drop interactions, and in
other forms of direct manipulation.

What is described above is, of course, only a general design for
LiveDoc. To understand how this design can be implemented,
it’s necessary to look more closely at the systems architecture,
and at its instantiation in several different working systems.

The LiveDoc architecture: A General Description

Architecturally, LiveDoc is built around the LiveDoc Manager
(Figure 3). This component acts as an intermediary between the
application making use of LiveDoc and the various internals of
LiveDoc itself. In particular, the Analyzer System is made up of
a set of detectors that analyze the content of the document
passed to LiveDoc, a set ofactions (typically, but not necessarily,
implemented as AppleScripts) that carry out the various opera—
tions on the discovered structures, a table that specifies the map,
ping between detectors and actions, and an Analyzer Server that
coordinates all these Functions.

To make use of LiveDoc, applications must implement a small
number ofcalls to the LiveDoc Manager, and a small number of

Volume 30, Number ’2 April l998 ' 55

Arendi S.A.R.L.-Ex. 2002

Page 3 of 6f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Arendi S.A.R.L.-Ex. 2002 
Page 4 of 6

Application
Supports LiveDoc throughralbacks

LiveDoc Mange:
Responsible for GULcommumrauon Mth
Analyzer System

Analyzer lam
Combines gramm—
hased detectors, hard-
roded detectors, and
proxy detectors talllngexternal functions 

callback handlers to respond to calls from the LiveDoc Manager.
The most important ofthese handlers inform the LiveDoc Man-
ager ofchanges to the content ofthe document window, perhaps
by the user’s adding or deleting content, or by the scrolling or
resizing ofrhe window. The receipt ofthese calls by the LiveDrrc
Manager signals the Analyzer Server to analyze the text provided
by the calling application; this will typically be the text currently
visible in the applications’ front—most window. Once the analysis
is completed and the structures in the text have been identified,
the LiveDoc Manager constructs the various highlights for the
discovered structures and their corresponding menus of actions.
LiveDoc knows where these structures appear in the text passed
to it —— an e—mail address might appear in characters 150 through
162 of the window’s contents — but it has no idea where in the

window thOse characters physically appear, and, thus, where the
highlights should appear. this is information held by the appli-
cation, not by LiveDoc. Hence, LiveDoc must ask the applica—
tion for the information about the structures it has found via a

callback. Once this information is available, the highlights and
their associated mouse—sensitive regions can be constructed.

The LiveDoc Manager also controls the events that occur when
the user presscs'the function key to enter LiveDoc mode, and
when the mouse button is pressed while over a Lichoc item.
The LiveDoc Manager updates the display to present the high-
light information ovet the discovered structures when the func-
tion key is pressed, and to remove the highlights when the
function key is released. The LiveDoc Manager also receives the
notification that the mouse button has been pressed over a high-
lighted item; it then gets the list of actions appropriate to the
selected item and presents a menu of them to the riser. If one of
these items is selected, the action corresponding to the selection
is run, producing the desired action.

56 April lQQS Volume 30, Number 2

Implementation 1: LiveSimpleTex'r

Our initial explorations of LiveDoc were implemented in Lisp.
primarily to gain a rapid understanding of some ofthe imple—
mentation issues we would ultimately face and to explore various
human interface ideas. However, we soon needed to turn our

attention to a system-level API for LiveDoc that would be both
efficient and nOt terribly burdensome to developers who would
have to modify their applications to take advantage of LiveDoc.

To test our first implementation ofthe LiveDoc API, we decided
to modify a simple text editor application, SimpleText, to be a
LiveDoc client. Although the API was designed as a Macintosh
toolbox manager, so that it could be incorporated into existing
applications without requiring developers to compile and link our
code with theirs, this initial implementation did require linking
portions ofLiveDoc code with that ofSimpleText. (This would be
changed in later work where the LiveDoc manager was built as a
shared library, allowing the LiveDoc Manager to be called by mul—
tiple LiveDoc clients.) We also needed a set ofanalyzers that could
provide the document analysis services to the Analyzer Server. \We
decided to use the Apple Data Detectors context—free grammar
engine, and to additionally implement a fast string search algo-
rithm, as described by M10 and Corasick [1]; this analyzer rapidly
finds all instances ofstrings in a document by comparing the text
ofthc document to a set ofdictionary entries. In doing so, we were
able to test the multiple—analyzer part of the Analyzer Server and
confirm its utility. As part ofthis test, we gave each analer its own
interface affordance by varying the colors of the highlights: green
for items found using a context free grammar (the Apple Data
Detectors analysis engine) and pink for those items found using
the string search.

The background processing of LiveDoc raises the issue of the
proper way in which to update the display when changes are
made to the document. Whenever the text in the window is

changed, by either the system or the user, LiveDoc must re-ana—
lyze the text, since recognizable structures may have appeared or
disappeared. But when should this analysis be done? It makes lit-
tle sense to analyze a document while the user is working, since
each change will require a re—evaluation of the text. Our current
implementation works with a timeout, which starts a revanalysis
when the keyboard has been inactive for a short period of time
(about one second) after a change to the display. In this way,
LiveDoc does not analyze the document while the user is typing,
but resumes when there is a pause in the user’s actions. We have
considered various algorithms that might minimize the cost of
this analysis — perhaps only analyzing the part of the window
that had been scrolled, for instance — but our current implemen—
tation reanalyzcs the entire content region of a window when a
change is detected.

Overall, we believe there are some very compelling aspects ofthe
LiveDoc interface as compared to Apple Data Detectors. As
shown in Figure 2, LiveDoc displays its discovered structures in
place, in the context in which they occur. It associates a menu of
options with the object found where, in Apple Data Detectors,
a single menu appears for all of the items found in the selection.
Finally, LiveDoc works quietly in the background and displays
the results of its analysis on demand, rather than performing the
analysis on demand. Having said that, there are some user inter—

SIGCHI Bulletin

Arendi S.A.R.L.-Ex. 2002

Page 4 of 6f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Arendi S.A.R.L.-Ex. 2002 
Page 5 of 6

face issues that we have not explicitly evaluated as part of this
work, and that would benefit from further study. The use of
highlighting is one of these: adding the notion of a sometimes-
visible layer to the front of the display is a considerable change to
the graphical interface, and, while others have pursued similar
uses of translucency (e.g., [2]), its overall utility and understand-
ability is worthy of study.

Similarly, the use of increasing degrees ofsaturation of the high—
lights should be examined: are these differences clear enough to
be discernible, and do they require a precision in mouse control
that users both possess and are willing to apply? Note also that
this issue of manual and visual dexterity is complicated by the
fact that using a function key as the means ofentering and leav-
ing LiveDoc mode means that we have made the interface a two—
handed one: one for the function key and one for the mouse,
This3 raises disability and accessibility issues, and more general
ease—of-use issues as well. Finally, we should note the current
invisibility of the background document processing, and the
need for the status of this processing to be visible to the user:
How does a user know when the analysis is completed, and all
the structures that can be discovered have been discovered? Some

equivalent to a progress indicator bar, which reports how far
along the analysis is, might be a useful addition. This may not‘be
a problem when and if processors become fast enough to do
these analyses very quickly, but we are hesitant to rely on sheer
processor speed as the solution to what is really an interface
design problem (especially since faster processors will most likely
encourage developers to design more sophisticated, and proba-
bly more time-expensive, analyses).

Dealing will: Slatic—ness: APIs and Plug-Ins

A second aspect of this project addressed some deeper questions
about the LiveDoc architecture: the need for an API to the Live-

Doc Manager (and whether it can be eliminated), the inflexibil—
ity of the analysis architecture, and the opportunities raised by a
greater degree of semantic representation about the discoveredstructures.

LiveSirnpleText worked well as a prototype, but we were still
concerned about requiring developers to change their applica—
tions to gain access to LiveDoc’s capabilities. We know from
experience that developers are justifiably reluctant to change
their applications just to implement a new feature provided by
the toolbox, so we experimented with some alternatives that we
hoped would ease this restriction.

Our first approach was to modify erEdit, a set of Macintosh
toolbox routines that provide an application with minimal text
editing and display capabilities. Although TextEdit has a limit of
32,000 characters, too small for the needs ofmost modern word

processing applications, most application dialog boxes that have
editable fields use TextEdit, and some applications also use Text—
Edit for their editors or text display fields. Ifwe could “trap” the
calls from an application to Teerdit and pass them through
Lichoc, we could provide LiveDoc capabilities to any applica»
tion that uses TextEdit, without requiring any modification to
the application. Hence, we built a Macintosh system component

Like the contextual menu system, it should be noted...

SIGCHI Bulletin

that trapped and patched all the TextEdit calls, and then tested
this with a variety ofapplications. In doing this, we discovered
that most applications that use TextEdit take some program—
ming shortcuts that kept our patches from working properly We
did however, find that the e-mail client Eudora used TextEdir

appropriately, and we were able to provide LiveDoc functional-
ity to an unmodified version of Eudora through this approach.
Unfortunately, before we could deploy what we called “Eudora—
Live", Eudora underwent an architectural change in moving
from Eudora 2.0 to Eudora 3.0, and no longer used TextEdit.

A second promising approach was to use the framework of
OperiDoc‘i as a vehicle for LiveDoc. At the time we undertook
this work, OpenDoc parts and part editors were just beginning
to appear, and it appeared that we could leverage some ofOpen—
Doc’s extensibility to implement Lichoc as a plug-in to the
OpenDoc architecture, so that Opanoc text parts could
acquire LiveDoc behavior without any source code modifia—
tion. This was promising, but we ultimately discovered that it
still was not possible to get information about the way in which
text was rendered without the LiveDoc Manager consulting the
application.

These attempts to build an API—less LiveDoc ultimately failed (as
did other attempts not discussed here, which worked with other
parts of the Macintosh architecture. Nevertheless, we are still
optimistic about the possibility of such approaches to system
extension, for LiveDoc as well as other kinds of extensions. In

retrospect, it seems that what we were trying to do was to graft
an object-oriented software model onto a platform that was not
object—oriented. OpenDoc had the right sense of object-orienta—
tion, but its design happened to not: expose certain aspects of the
system that LiveDoc required. As operating systems continue to
evolve in an object-oriented direction, we may find that the
kinds ofextensions we sought become the norm, rather than the
exception.

Futures: Extensibility and Semantics

We tried to design Live-Doc’s architecture to be as open as possi—
ble. In doing so, when faced with a tradeoff between perform-
ance and extensibility, we generally leaned towards extensibility.
As implemented in the systems described here, there are two
aspecrs to exrensibility in Lichoc: the analyzers and the kinds
ofstructures they can discover, and the actions that can be taken
on those strucrures. \While the analyzers we built operated on
lexical data, much could be done by applying the LiveDoc
model to graphical information or multi-media content. We can
easily envision analyzers that recogniw features in drawings and
pictures, or analyzers that “listen” for relevant structures in
streaming audio or video. While We tried to be agnostic about
these data types in the design of the LiveDoc architecture, it is
inevitable that some pieces of the API would have to be
rethought ifsuch detectors became available.

The behaviors associated with actions should also be flexible and

extensible, and work more closely with the document structure
than they do at present. Our initial implementation of LiveDoc
as LiveSimpleText assumed that actions would be handled by
WWW

' Cf. http://www.crlabs.com.

Volume 30, Number 2 April “998 57

Arendi S.A.R.L.-Ex. 2002

Page 5 of 6f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


