
(12)

(54)

(75)

(73)

(*)

(21)

(22)

(63)

(60)

(51)
(52)
(58)

(56)

DE

United States Patent

Munger et al.

AGILE NETWORK PROTOCOL FOR
SECURE COMMUNICATIONS WITH
ASSURED SYSTEM AVAILABILITY

Inventors: Edmund Colby Munger, Crownsville,
MD (US); Douglas Charles Schmidt,
Severna Park, MD (US); Robert
Dunham Short, [11, Leesburg, VA
(US); Victor Larson, Fairfax, VA (US);
Michael Willlamson, South Riding, VA
(US)

Assignee: Science Applications International
Corporation, San Diego, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. N0.: 09/504,783

Filed: Feb. 15, 2000

Related US. Application Data

Continuation-impart of application No. 09/429,643, filed on
Oct. 29, 1999

Provisional application No. 60/106,261, filed on Oct. 30,
1998, and provisional application No. 60/137,704, filed on
Jun. 7, 1999.

Int. Cl.7 .. G06F 15/173
US. Cl. 709/225; 709/229; 709/245
Field of Search 709/249, 223,

709/225, 229, 245; 713/201

References Cited

U.S. PATENT DOCUMENTS

4.933.846 A 6/1990 Humphrey et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0 838 930 12/1999

U8006502135B1

(10) Patent N0.: US 6,502,135 B1

(45) Date of Patent: Dec. 31, 2002

D1: 199 24 575 12/1999
EP 2 317 792 4/1998
151’ 0 858 189 8/1998
GB 0 814 589 12/1997
W0 W0 98/27783 6/1998
W0 W0 98 59470 12/1998
W0 W0 99 38081 7/1999
W0 W0 99 48303 9/1999
W0 W0 00/711458 11/2000
W0 W0 01 50688 7/2001

OTHER PUBLICATIONS

Fasbender, Kesdogan, and Kubitz: "Variable and Scalable
Security: Protection of Location Information in Mobile IP",
IEEE publication, 1996, pp. 963—967.

(List continued on next page.)

Primary Erantiner—Krisna Lim
(74) Attorney, Agent, or Firm—Banner & Witcolf, Ltd.

(57) ABSTRACT

A plurality of computer nodes communicate using seem-
ingly random Internet Protocol source and destination
addresses. Data packets matching criteria defined by a
moving window of valid addresses are accepted for further
processing, while those that do not meet the criteria are
quickly rejected. Improvements to the basic design include
(1) a load balancer that distributes packets across diflerent
transmission paths according to transmission path quality;
(2) a DNS proxy server that transparently creates a virtual
private network in response to a domain name inquiry; (3)
a large-to-small link bandwidth management feature that
prevents denial-of—service attacks at system chokepoints; (4)
a traffic limiter that regulates incoming packets by limiting
the rate at which a transmitter can be synchronized with a
receiver; and (5) a signaling synchronizer that allows a large
number of nodes to communicate with a central node by
partitioning the communication function between two sepa—
rate entities.

17 Claims, 35 Drawing Sheets

110

“ we
”0 1 AL

\\ _ ERMN
VIRNEIX EXHIBII 2029

RPX V. VirnetX

Page 1 of 72 Trial IPR2014-00176

US 6,502,135 B1
Page 2

US. PATENT DOCUMENTS

5,588,060 A 12/1006 Aziz
5,689,566 A 11/1997 Nguyen
5,706,042 A 8/1008 Eshensen
5,805,801 A 9/1998 Holloway et a1.
5,842,040 A 11/1008 Hughes el 31.
5,878,231 A “ 3/1999 Bachr ct a1. 709/243
5,892,003 A 4/1000 Klaus
5,898,830 A * 4/1999 Wesinger et al. 709/225
5,005,850 A 5/1000 Holloway et 31.
6,006,259 A 12/1999 Adelrnan et al.
6,016,318 A * 1/2000 Tomoike 370/338
6,052,788 A 4/2000 Wesinger, Jr. et 211.
6,079,020 A "' 6/2000 Liu 713/201
6,119,171 A 9/2000 Alkhatib
6,178,505 Bl "' 1/2001 Schneider et al. 713/168
6,226,751 Bl * 5/2001 Arrow etal. 370/351
6,243,749 Bl 6/2001 Sitaraman et al.
6,286,047 Bl * 9/2001 Ramanalhan et a1. 345/733
6,330,562 Bl "' 12/2001 Boden etal. 707/10
6,332,158 B1 "' 12/2001 Rislcy ct al. 709/219‘1'
6,353,614 B1 3/2002 Borella et a1. 370/389

0T1 IER PUBLICATIONS

Linux FreeS/WAN Index File, printed from http://liberty-
.freeswanorg/freeswan trees/freeswan—l.3/doc/ on Feb.
21, 2002, 3 pages.
1. Gilmore, “Swan: Securing the Internet against Wiretap-
ping”, printed from http:l/liberty.freeswan.org/freeswan
trees/freesswan—l.3/doc/rationale.html on Feb. 21, 2002, 4
pages.

Glossary for the Linux FreeS/WAN project, printed from
http://liberty.freeswan/org/frecswan_trees/freeswan—1.3/
doc/glossary.html on Feb. 21, 2002, 25 pages.

Page 2 of 72

Alan 0. Frier et al., "The SSL Protocol Version 3.0”, Nov.

18, 1996, printed from http://www.netscape.com/eng/ssl3/
draft302.txt on Feb. 4, 2002, 56 pages.
Reiter, Michael K. and Rubin, Aviel D. (AT&T Labs—
Researeh), “Crowds: Anonymity for Web Transactions”, pp.
1—23.

Dolev, Shlomi and Ostrovsky, Rafail, "Elficient Anonymous
Multicast and Reception” (Extended Abstract), 16 pages.
Rubin, Aviel D., Geer, Daniel, and Ranum, Marcus J. (Wiley
Computer Publishing), “Web Security Sourcebook”, pp.
82—94.

Shree Murthy et al., “Congestion—Oriented Shortest Multi-
path Routing”, Proceedings of IEEE INFOCOM, 1996, pp.
1028—1036.

Jim Jones et al., “Distributed Denial of Service Attacks:

Defenses”, Global Integrity Corporation, 2000, pp. 1—14.
Search Report (dated Jun. 18, 2002), International Applica-
tion No. PCI‘/US()l/13260.

Search Report (dated Jun. 28, 2002), International Applica-
tion No. PCT/USOI/‘l326l.

Donald E. Eastlake, “Domain Name System Security Exten-
sions”, DNS Security Working Group, Apr. 1998, 51 pages.
D. B. Chapman et 31., “Building Internet Firewalls”, Nov.
1995, pp. 278—297 and pp. 351—375.
P. Srisuresh et al., “DNS extensions to Network Address
'l‘ranslators”, Jul. 1998, 27 pages.
Laurie Wells, “Security Icon", Oct. 19, 1998, 1 page.
W. Stallings, “Cryptography And Network Security”, 2""
Edition, (Thapter 13, 11’ Security, Jun. 8, 1998, pp. 399400.
W. Stallings, "New Cryptography and Network Security
Book”, Jun. 8, 1998, 3 pages.

* cited by examiner

US. Patent Dec. 31, 2002 Sheet 1 0f 35 US 6,502,135 B1

100

ORIGINATING

TERMINAL

‘ 40
IP PACKET 22

IP

ROUTER

23

IP IP

ROUTER ROUTER ROUTER 28

29 25 INTERNET 32 .P

ROUTER ROUTER ROUTER

27 26

IP IP
ROUTER ROUTER

h
110

ENCRYPTION KEY DESTINATION
TERMINAL

FIG. 1

Page 3 of 72

US. Patent Dec. 31, 2002 Sheet 2 0f 35 US 6,502,135 B1

TERMINAL

107

l 1
131

145 TARP PACKET
122

LINK KEY ROUTER

$11

LINK KEY 124
LINK KEY

TARP

ROUTER

129

IP

ROUTER

100

40

 TARP

ROUTER

132
IP

ROUTER

128

ROUTER

126

TARP

RgfiR 0m ROUTER
143 LINK KEY

’11

Ora- LINK KEY 110
SESSION KEY TARP PACKET

TARP

TERMINAL

FIG. 2

Page 4 of 72

US. Patent Dec. 31, 2002 Sheet 3 0f 35 US 6,502,135 Bl

207a 207b 2070 207d ° ' °

DATA STREAM 30)

INTERLEAVED

PAYLOAD DATA

@

SESSION-KEY-ENCRYPTED

PAYLOAD DATA§3_Q

TARP PACKET WITH

ENCRYPTED PAYLOADSfl

LINK-KEY-ENCRYPTED

TARP PACKETSfl

. . IP PACKETS WI ENCRYPTED

~ TARP PACKETSAS

PAYLOADfl

TARP TARP

ROUTER 1 ROUTER 2

TARP

ROUTER 7 TARP
ROUTER 3

TARP

ROUTER 4

TARP

ROUTER 5

TARP

ROUTER 6

 TARP

DESTINATION

FIG. 3A

Page 5 of 72

Page 6 of 72

2073 20m 207a 207d - . -

’4‘... DATA STREAM 300
fli_fl_lfl__—- ‘ ‘ '

.:-‘.‘:,_"-,-.::I-:'§E.':'.':'-:I;I'21'.3" 1'53;=fig'3:1;.':‘5:'-:?;§‘:.f-3‘5 ‘33::‘55-33313-13'55". BLOCKENCRYPTEDLSESSDNKEY) DUMMY BLOCKS OR DATA
~ -- -~ ~- - ‘ PAYLOADSEQUENCEggQ MAYBEADDED

waxed'S'fl

U

8

-. :.; r. ENCRYPTED BLOCK DIVIDED 8
'l " 5 INTO PAYLOADS 52_2 ”to

§

U3

ENCRYPTED BLOCK DIVIDED 2'

INTO PAYLOADS lNTERLEAVEDflIB i
G

g

.43; ENCRYPTED BLOCK DIVIDED
INTO PAYLOADS INTERLEAVEDfl3

:1
CI)

TARP PACKETS WITH 9

ENCRYPTED PAYLOADS m g

“E
U!

a:p—t

Page 7 of 72Page 7 of 72

Page 7 of 72

OTHER ALTERNATIVE

TC COMBINE TARP

PROCESSING

WITH D.L. PROCESSOR

(E.G., BURN INTO BOARD
PROM)

 TARP TRANSCEIVER fig§

 NETWORK (IPI LAYER Am

FIG. 4

mama'S'fl
ONE ALTERNATIVE TO

COMBINE U
TARP PROCESSING 8

WITH OIS IP p
PROCESSOR g

S

m

g

3.

Q

‘ c:\ CI)

DATA LINK PROTOCOL 9

WRAPPERtfl g
T—A

8‘.
USp—A

US. Patent Dec. 31, 2002 Sheet 6 0f 35 US 6,502,135 Bl

BACKGROUND LOOP-DECOY

GENERATION so

AUTHENTICATETARP PACKET 32

OUTER LAYER DECRYPTION OF

TARP PACKET USING LINK KEY 33

CHECK FOR DECOY AND

INCREMENT PERISHABLE DECOY S4

COUNTER AS APPROPRIATE

TRANSMIT DECOY?-35
YES

NO DECREMENT

TTL TTL > 0?
ST

YES

86

DUMP DECOY

$9

DETERMINE DESTINATION TARP GENERATE NEXT-HOP TARP

ADDRESS AND STORE LINK KEY ADDRESS AND STORE LINK KEY

AND IPADDRESS AND IF ADDRESS 38

GENERATE NEXT-HOP TARP

ADDRESS AND STORE LINK KEY 810
AND IF ADDRESS

GENERATE IP HEADER

AND TRANSMIT 511

FIG. 5

Page 8 of 72

Page 9 of 72Page 9 of 72

US. Patent Dec. 31, 2002 Sheet 7 0f 35 US 6,502,135 B1

BACKGROUND LOOP-DECOY

GENERATION 320

GROUP RECEIVED IP PACKETS

INTO INTERLEAVE WINDOW $21

DETERMINE DESTINATION TARP

ADDRESS, INITIALIZE TTlL, STORE 822
IN TARP HEADER

RECORD WINDOW SEQ. NOS. AND

INTERLEAVE SEQ. NOS IN TARP 323
HEADERS

MED!

CHOOSE FIRST HOP TARP

ROUTER, LOOK UP IP ADDRESS

AND STORE IN CLEAR IP HEADER,
OUTER LAYER ENCRYPT

INSTALL CLEAR IP HEADER

AND TRANSMIT 825

FIG. 6

824

Page 9 of 72

Page 10 of 72Page 10 of 72

US. Patent Dec. 31, 2002 Sheet 8 0135 US 6,502,135 B1

S40

BACKGROUND LOOP-DECOY

GENERATION

S42

 AUTHENTICATE TARP PACKET

RECEIVED

DIVIDE BLOCK INTO PACKETS

S43 USING WINDOW SEQUENCE DATA,
ADD CLEAR IP HEADERS

GENERATED FROM TARP

DECRYPT OUTER LAYER HEADERS
ENCRYPTION WITH LINK KEY

S44
HAND COMPLETED IP PACKETS

TO IP LAYER PROCESS

INCREMENT PERISHABLE

COUNTER IF DECOY

S45

THROW AWAY DECOY OR KEEP

IN RESPONSE TO ALGORITHM

S46

CACHE TARP PACKETS UNTIL

WINDOW IS ASSEMBLED

S47

DEINTERLEAVE PACKETS

FORMING WINDOW

S48

DECRYPT BLOCK

FIG. 7

Page 10 of 72

1%ch'S'fl

CLIENT TERMINAL 5

8M 3st PACKETm i

SSYN ACK PACKET Q2 ‘g

SSYN ACK ACK PACKET 8_23 TARP
ROUTER

SECURE SESSION INITIATION w w

SECURE SESSION INITIATION ACK Q5 9‘:106was
FIG. 8

18991‘209‘9Sfl
Page 11 of 72

CLIENT 1

9g

TRANSMIT TABLE 9 1

131.218.204.98 , 131.218.204.65

131.218.204.221 , 131.218.204.97

131.218.204.139 , 131.218.204.186

131.218.204.12 131.218.204.55

RECEIVE TABLE E12

131.218.204.161 , 131.218.204.89

131.218.204.66 , 131.218.204.212

131.218.204.201 , 131.218.204.127

131.218.204.119 , 131.218.204.49

Page 12 of 72

FIG. 9

TARP

ROUTER

911

RECEIVE TABLE 92_4

131.218.204.98 , 131.218.204.65

131.218.204.221 . 131.218.204.97

131.218.204.139 , 131.218.204.186

131.218.204.12 , 131.218.204.55

TRANSMIT TABLE 923

131.218.204.161 , 131.218.204.89

131.218.204.66 , 131.218.204.212

131.218.204.201 , 131.218.204.127

131.218.204.119 . 131.218.204.49

3003‘11:090waged'S'f]
9‘5.1001mus

Ifl991‘205‘9Sfl

US 6,502,135 B1

22

Sheet 11 0f 35

«2:

Dec. 31, 2002

:2

US. Patent

$.58mad;0m9

$.53mas.mm9

mmSOmmas.<n_m_

883:58

or.0E

32

‘._.zm_._o

Page 13 of 72

Page 14 of 72Page 14 of 72

S:

1150\1 1160\' y:
F:

ETHERNET FRAME ETHERNET FRAME E.

HEADER 1101A ’ HEADER g
SRC.HWADDRE—S:53 11013 1104A SRC.HWADDR—SS53 “04 "_EST.H—.WADDRESS88 11043 D._ESTHWADDRESS_88

IP PACKET I—PPACKET g
HEADER 1102A HEADER 9;

“31 SOURCE IPADDRESS10 11023 1105A SOURCE IPADDRESS 71 1105 we, «30,—EST—PADDRESS14 11020 11053 DEST_PADDRESS:91 3DISCRIM—FIELD—77 11050 D__SCRIMFIELD: 45
1110 m

PAYLOAD #1 1113 PAYLOAD #3 3;

IP PACKET E:
HEADER 1103A‘— a

1103 SOURCE lP ADDRESS 13 11033
”’2 DES_IPADDRESS: 15 mmD_SCRIM_FIE—Dz13

1112 %

PAYLOAD #2 '3?
c

“N

B
U]

FIG. 11 a,
p—A

Page 14 of 72

Page 15 of 72Page 15 of 72

1201 1202 JHBJBJ'sn

203 12041205 12061207 12151214 1216 1217 c

HW ETHERNET ;
USER l-I'IiJ 15APPLICATION S

1208X 1209x 2110-x 1-211x m
IPHOPALGA IPHOPALGB HWHOPALGC HWHOPALGD E

(TX) (RX) (TX) (RX) 5
s D 03 s 0 DS 2.,

31

w2

C1
CI)

- 9

1208 W 1209 1221 W3 1222 1223 1224 g
7—1
0-)

FIG. 12A u.
550—1

Page 15 of 72

Page 16 of 72Page 16 of 72

MgDE HARDWARE IP ADDRESSES DISCRIMINATOR FIELD
EMBODIMENT ADDRESSES VALUES

1. PROMISCUOUS SAME FORALLNODES CAN BE VARIED CAN BE VARIED
OR COMPLETELY IN SYNC IN SYNC

RANDOM

2. PROMISCUOUS CAN BE VARIED CAN BE VARIED

PER VPN F'XED FOREACH VPN IN SYNC IN SYNC

3. HARDWARE CAN BE VARIED CAN BE VARIED CAN BE VARIED

HOPPING IN SYNC IN SYNC IN SYNC

FIG. 128

Page 16 of 72

JHBJBJ'sn

ZO0Z‘19'93(1

SCJ0171133118

13SSI‘z09‘9sn

Page 17 of 72Page 17 of 72

1305

1306

1301

IP_OURCEADDRESS1P DEST.A—DDRESS
SYNC_VALUE

(PUBLICP_ORTION)
S_YNCVALUE

(PRIVATE PORTION)

LINK-KEY

ENCRYPTED

PAYLOAD

Page 17 of 72

FIG. 13

CLIENT B

1311

DISCARD

PACKET

YES

1304

PROCESS

PACKET

Juamd'S'[1

z00z‘19'99(1

SEJ0SI139118

13sst‘z09‘9sn

Page 18 of 72Page 18 of 72

Page 18 of 72

JHBJBJ'snIP PAIR 1

IP PAIR 2

‘ -> WINDOW E

______ wmmw
“““““» ckpt_o c

é
IP PAIR 1 15
IP PAIR 2 3

WWW 5 CURRENTIP PAIR

lP PAIR W ckpt_o g
ckpt_o a

ckpt_n 3

Si,

RECEIVER TRANSMITTER 3,

SENDER'S ISP RECIPIENT'S ISP

%
KEPT IN SYNC FOR SENDER TO RECIPIENT SYNCHRONIZER <------------------------> 9

KEPT IN SYNC FOR RECIPIENT TO SENDER SYNCHRONIZER <--——-——-——-> §
'5

FIG 14 ”'' Ddp—x

@ II@ WHEN SYNCHRONIZATION SYNC—R50
BEGINS TRANSMIT (RETRANSMIT
PERIODICALLY UNTIL ACKed)
SYNC_REQ USING NEW
TRANSMITTER CHECKPOINT IP

PAIR ckpt_n AND GENERATE
NEW RECEIVER RESPONSE

CHECKPOINT ckpt_r

* WHEN SYNC_REQ ARRIVES
WITH INCOMING HEADER =

RECEIVER'S ckpt_n:

I - UPDATE WINDOW- GENERATE NEW

CHECKPOINT IP PAIR

ckpt_n IN RECEIVER
- GENERATE NEW

CHECKPOINT IP PAIR

ckpt_r IN TRANSMITTER
- TRANSMIT SYNC_ACK
USING NEW CHECKPOINT

IP PAIR ckpt_r

WHEN SYNC_ACK
ARRIVES WITH INCOMING

HEADER = ckpt_r:
GENERATE NEW

CHECKPOINT IP PAIR

ckpt_n IN TRANSMITTER

FIG. 15

Page 19 of 72

waxed'S'fl

ZOOZ‘IC°3°(l

SE10LIwas

189917099Sfl

US 6,502,135 B1Sheet 18 0f 35Dec. 31, 2002US. Patent

9.0E89.o89.o88o88oommoommo55%8&8:9E.25mzmmzm.

Page 20 of 72

US. Patent Dec. 31, 2002 Sheet 19 of 35 US 6,502,135 B1

000

I INACTIVE
% ACTIVE

USED

WINDOW_SIZE

l/I/I/I/I/I/I/I/I/I/I/I/
7/I/I/[l/[l/I/I/I/I/I/IA
///////////////////////
7/l/l/l/I/l/l/I/I/I/l/IA
/////'////////////////%

’I/I/I/I/I/I/I/I/I/I/I/A
WI/I/I/I/I/I/I/I/I/
///////////////////////A
/////////1/////////////

WINDOW_SIZE

FIG. 17

Page 21 of 72

US. Patent Dec. 31, 2002 Sheet 20 0f 35 US 6,502,135 B1

000

—
Vl/I/I/I/I/I/I/I/I/I/I/A

I INACTIVE
ACTIVE

USED

 WINDOW_S|ZE mm

7//////////////'////////
7/I/l/l/I/l/l/I/l/I/I/J

W
WI/I/I/I/I/I/I/I/I/I/I

WINDOW_S|ZE

FIG. 18

Page 22 of 72

US. Patent Dec. 31, 2002 Sheet 21 0f 35 US 6,502,135 B1

VII/IIIIIl/IIIIIIIIIIIIA

OoO VIII/IIIIII/I/IIIIII/III.
///'IIIIIIIIIII/I/II/'I/I
III/III/IIIIIIIIIIII/II

I INACTIVE
 WINDOW_S|ZE

 III/IIIIIIIIIII/III/II
IIII/I/II/IIIII'IIII/I/I
'IIIIIIIIIIIIIIIIIIIIIIIA

WI/IIII/IIIIIIIIIIIIIA
IIIII/IIIIIIIIIIIIIIIII

000

WINDOW_S|ZE

/////////////
///////////////////////

FIG. 19

Page 23 of 72

11mm'90

zoo:‘IC990
COMPUTER EDGE COMPUTER

1 ROUTER # 2

SC.1022”9'13
IHss1‘z09‘9$0

Page 24 of 72

US. Patent

Page 25 of 72

Dec. 31, 2002

LINK DOWN

2100/

Sheet 23 0f 35

AD TABLE

|P1 |P2

1P3 |P4

TABLE

AF TABLE

BD TABLE

BE TABLE

A

CD TABLE

CE TABLE

CF TABLE

FIG. 21

V

2101

2102

2103

2104

2105

2106

2107

2108

2109

US 6,502,135 B1

US. Patent Dec. 31,2002 Sheet 24 0f 35 US 6,502,135 B1

MEASURE

QUALITY OF

TRANSMISSION

PATH X

MORE

THAN ONE

TRANSMITTER

TURNED

ON?

2209

SET WEIGHT

TO MIN. VALUE

PATH X

QUALITY <

THRESHOLD?

PATH X

WEIGHT LESS DECREASE

THAN STEADY WEIGHT FOR

STATE PATH X

VALUE?

INCREASE WEIGHT

FOR PATH X

TOWARD STEADY

STATE VALUE

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

FIG. 22A

Page 26 of 72

US. Patent Dec. 31, 2002 Sheet 25 0f35 US 6,502,135 B1

 (EVENT) TRANSMITTER
FOR PATH x

TURNS OFF

 2210

2211 AT LEAST DROP ALL PACKETS
ONE TRANSMITTER UNTILA TRANSMITTER

TURNED ON? TURNS ON

2212 SET WEIGHT

TO ZERO

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

 2213

 2214

FIG. 223

Page 27 of 72

Page 28 of 72Page 28 of 72

JHBJBJ'S'fl

PATH X2

PACKET g

TRANSMITTER 5 PATH X3 2

RECEIVE TABLE i PATH x4 g
i N

w EEE_ PACKET 2303 1
=== RECEIVER W(X1) =02 g
-""" -wa2)=01 £6.

/‘ wa3) =00 2305 .3
W(X4)=0.1 a,

2309 a
2301

LINKQUALITY WEIGHT
2304 MEASUREMENT ADJUSTMENT 2305

FUNCTION FUNCTION %
9
U]
c

“N

5

FIG. 23 g
0—0

Page 28 of 72

COMPUTER

Page 29 of 72

2403

@—

100 Mb/s MESS T: 32

75 Mb/s MESS T= 24

25Mb—sMESS T: 8

FIG. 24

2404

®

menu'90
2402

COMPUTER

2002‘15'39(1

 SS.10LZ199IIS

IE!991‘309‘9Sfl

Cm<mOEncmm.GE

US 6,502,135 B1

m._._mmm;mmmmmoi
Gems.

Sheet 28 0f 35

0mmmo<n_mmmmmzo

Dec. 31, 2002

0mmmzo

83

US. Patent

mmmgommmm;
Page 30 of 72

DNS

SERVER

2602 mama'S'fl

D

8

2

'2
s

WEB GATE KEEPER 2603
BROWSER

HOPPING RULES g

Q
a,

SECURE TARGET SITE 2604 3,

IPHOPPING 2503

(1
Cl)

ON

UNSECURE 2611 “g
TARGET SITE 3»

a

FIG 26 m
' wp—t

Page 31 of 72

US. Patent Dec. 31, 2002 Sheet 30 0f 35 US 6,502,135 B1

2701 RECEIVE DNS
REQUEST FOR

TARGET SITE
2703

2702 ACCESS TO PASS THRU
SECURE SITE REQUEST To
REQUESTED? DNS SERVER

YES

2705

2704 USER RETURN
AUTHORIZED TO 'HOSTUNKNOWN"

CONNECT? ERROR

YES

2706 ESTABLISH
VPN WITH

TARGET SITE
FIG. 27

Page 32 of 72

2803
2802

EDGE

ROUTER

2mm

HOST

COMPUTER#2

FIG. 28

2801

HOST

COMPUTER#1

mm'90

ZOOZ‘IQ'930
2805

WGHBW

9‘5.1019was

189917099Sfl
Page 33 of 72

5:
.m

HOST COMPUTER #1 2904 w
a

g
EDGE 2909 ..

ROUTER

LOW BW g
a:

“N

2900 2905 2906 2907 2900 HIGH Bw §

HOST COMPUTER #2 @0040" g

g
2902 a:

3’.

2912 2913 cm

a

2903 2,.
HACKER COMPUTER FLOOD IPTX100200 ,8

E
U]

y—

Page 34 of 72

Page 35 of 72Page 35 of 72

mama'S'fl

RECEIVER TRANSMITTER

U

3011 8

a

GENERATE PROCESS 1;
SYNC_REQ CKPT_N c

TX TABLE (SYNQACK) N

W I-- §
EXCEEDS ' W -- i

RATE R? . —R—SECONDS —— g/‘ a
3003

GENERATE

CKPT_N

a
CI)

9
U]

S

3000 FIG. 30 3001 E
U]

a:0—3

Page 35 of 72

3101

3106 11mm'S'fl
3107

CLIENT #2 3104 2002‘15'39(1

3‘02 TX/RX TX/RX TX/RX

Egg
3208 3209 3210

SC.10179”WIS HACKER 3105

FIG. 31
If!S91‘309‘9Sfl

Page 36 of 72

Page 37 of 72Page 37 of 72

US. Patent Dec. 31, 2002

CLIENT

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N

GENERATE NEW CKPT_N

START TIMER, SHUT
TRANSMITTER OFF

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R
KILL TIMER, TURN
TRANSMITTER ON

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N

START TIMER, SHUT
TRANSMITTER OFF

WHEN TIMER EXPIRES

TRANSMIT SYNC_REQ
USING TRANSMITTERS

CKPT_O, START TIMER

|F CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R
KILL TIMER, TURN
TRANSMITTER ON

Page 37 of 72

Sheet 35 0f 35

SYNC_REQ
FIG. 32

US 6,502,135 B1

SERVER

PASS DATA UP STACK

CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

CKPT_O=CKPT_N

GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

Page 38 of 72Page 38 of 72

US 6,502,135 B1

1
AGILE NETWORK PROTOCOL FOR
SECURE COMMUNICATIONS WITH
ASSURED SYSTEM AVAILABILITY

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority from and is a
continuation-in-part of previously filed US. application Ser.
No. 09/429,643, filed on Oct. 29, 1999. The subject matter
of that application, which is bodily incorporated herein,
derives from provisional US. application No. 60/106,261
(filed Oct. 30, 1998) and No. 60/137,704 (filed Jun. 7, 1999).

BACKGROUND OF THE INVENTION

Atremendous variety of methods have been proposed and
implemented to provide security and anonymity for com-
munications over the Internet. The variety stems, in part,
from the different needs of different Internet users. A basic

heuristic framework to aid in discussing these different
security techniques is illustrated in FIG. 1. Two terminals, an
originating terminal 100 and a destination terminal 110 are
in communication over the Internet. It is desired for the

communications to be secure, that is, immune to eavesdrop-
ping. For example, terminal 100 may transmit secret infor-
mation to terminal 110 over the Internet 107. Also, it may be
desired to prevent an eavesdropper from discovering that
terminal 100 is in communication with terminal 110. For

example, if terminal 100 is a user and terminal 110 hosts a
web site, terminal 100’s user may not want anyone in the
intervening networks to know what web sites he is “visit-
ing.” Anonymity would thus be an issue, for example, for
companies that want to keep their market research interests
private and thus would prefer to prevent outsiders from
knowing which web-sites or other Internet resources they
are “visiting.” These two security issues may be called data
security and anonymity, respectively.

Data security is usually tackled using some form of data
encryption. An encryption key 48 is known at both the
originating and terminating terminals 100 and 110. The keys
may be private and public at the originating and destination
terminals 100 and 110, respectively or they may be sym-
metrical keys (the same key is used by both parties to
encrypt and decrypt). Many encryption methods are known
and usable in this context.

To hide traffic from a local administrator or ISP, a user can
employ a local proxy server in communicating over an
encrypted channel with an outside proxy such that the local
administrator or ISP only sees the encrypted traffic. Proxy
servers prevent destination servers from determining the
identities of the originating clients. This system employs an
intermediate server interposed between client and destina-
tion server. The destination server sees only the Internet
Protocol (IP) address of the proxy server and not the
originating client. The target server only sees the address of
the outside proxy. This scheme relies on a trusted outside
proxy server. Also, proxy schemes are vulnerable to traffic
analysis methods of determining identities of transmitters
and receivers. Another important limitation of proxy servers
is that the server knows the identities of both calling and
called parties. In many instances, an originating terminal,
such as terminal A, would prefer to keep its identity con-
cealed from the proxy, for example, if the proxy server is
provided by an Internet service provider (ISP).

To defeat traffic analysis, a scheme called Chaum’s mixes
employs a proxy server that transmits and receives fixed
length messages, including dummy messages. Multiple

Page 38 of 72

10

15

20

25

30

35

40

45

50

55

60

65

2

originating terminals are connected through a mix (a server)
to multiple target servers. It is difficult to tell which of the
originating terminals are communicating to which of the
connected target servers, and the dummy messages confuse
eavesdroppers’ efforts to detect communicating pairs by
analyzing traffic. A drawback is that there is a risk that the
mix server could be compromised. One way to deal with this
risk is to spread the trust among multiple mixes. If one mix
is compromised, the identities of the originating and target
terminals may remain concealed. This strategy requires a
number of alternative mixes so that the intermediate servers

interposed between the originating and target terminals are
not determinable except by compromising more than one
mix. The strategy wraps the message with multiple layers of
encrypted addresses. The first mix in a sequence can decrypt
only the outer layer of the message to reveal the next
destination mix in sequence. The second mix can decrypt the
message to reveal the next mix and so on. The target server
receives the message and, optionally, a multi-layer
encrypted payload containing return information to send
data back in the same fashion. The only way to defeat such
a mix scheme is to collude among mixes. If the packets are
all fixed-length and intermixed with dummy packets, there
is no way to do any kind of traffic analysis.

Still another anonymity technique, called ‘crowds,’ pro-
tects the identity of the originating terminal from the inter-
mediate proxies by providing that originating terminals
belong to groups of proxies called crowds. The crowd
proxies are interposed between originating and target termi-
nals. Each proxy through which the message is sent is
randomly chosen by an upstream proxy. Each intermediate
proxy can send the message either to another randomly
chosen proxy in the “crowd” or to the destination. Thus,
even crowd members cannot determine if a preceding proxy
is the originator of the message or if it was simply passed
from another proxy.

ZKS (Zero-Knowledge Systems) Anonymous IP Protocol
allows users to select up to any of five different pseudonyms,
while desktop software encrypts outgoing traffic and wraps
it in User Datagram Protocol (UDP) packets. The first server
in a 2+-hop system gets the UDP packets, strips off one layer
of encryption to add another, then sends the traffic to the next
server, which strips off yet another layer of encryption and
adds a new one. The user is permitted to control the number
of hops. At the final server, traffic is decrypted with an
untraceable IP address. The technique is called onion-
routing. This method can be defeated using traffic analysis.
For a simple example, bursts of packets from a user during
low-duty periods can reveal the identities of sender and
receiver.

Firewalls attempt to protect LANs from unauthorized
access and hostile exploitation or damage to computers
connected to the LAN. Firewalls provide a server through
which all access to the LAN must pass. Firewalls are
centralized systems that require administrative overhead to
maintain. They can be compromised by virtual-machine
applications (“applets”). They instill a false sense of security
that leads to security breaches for example by users sending
sensitive information to servers outside the firewall or

encouraging use of modems to sidestep the firewall security.
Firewalls are not useful for distributed systems such as
business travelers, extranets, small teams, etc.

SUMMARY OF THE INVENTION

A secure mechanism for communicating over the internet,
including a protocol referred to as the Tunneled Agile

Page 39 of 72Page 39 of 72

US 6,502,135 B1

3

Routing Protocol (TARP), uses a unique two-layer encryp-
tion format and special TARP routers. TARP routers are
similar in function to regular IP routers. Each TARP router
has one or more IP addresses and uses normal IP protocol to
send IP packet messages (“packets” or “datagrams”). The IP
packets exchanged between TARP terminals via TARP rout-
ers are actually encrypted packets whose true destination
address is concealed except to TARP routers and servers.
The normal or “clear” or “outside” IP header attached to

TARP IP packets contains only the address of a next hop
router or destination server. That is, instead of indicating a
final destination in the destination field of the IP header, the
TARP packet’s IP header always points to a next-hop in a
series of TARP router hops, or to the final destination. This
means there is no overt indication from an intercepted TARP
packet of the true destination of the TARP packet since the
destination could always be next-hop TARP router as well as
the final destination.

Each TARP packet’s true destination is concealed behind
a layer of encryption generated using a link key. The link key
is the encryption key used for encrypted communication
between the hops intervening between an originating TARP
terminal and a destination TARP terminal. Each TARP

router can remove the outer layer of encryption to reveal the
destination router for each TARP packet. To identify the link
key needed to decrypt the outer layer of encryption of a
TARP packet, a receiving TARP or routing terminal may
identify the transmitting terminal by the sender/receiver IP
numbers in the cleartext IP header.

Once the outer layer of encryption is removed, the TARP
router determines the final destination. Each TARP packet
140 undergoes a minimum number of hops to help foil traffic
analysis. The hops may be chosen at random or by a fixed
value. As a result, each TARP packet may make random trips
among a number of geographically disparate routers before
reaching its destination. Each trip is highly likely to be
different for each packet composing a given message
because each trip is independently randomly determined.
This feature is called agile routing. The fact that different
packets take different routes provides distinct advantages by
making it difficult for an interloper to obtain all the packets
forming an entire multi-packet message. The associated
advantages have to do with the inner layer of encryption
discussed below. Agile routing is combined with another
feature that furthers this purpose; a feature that ensures that
any message is broken into multiple packets.

The IP address of a TARP router can be changed, a feature
called IP agility. Each TARP router, independently or under
direction from another TARP terminal or router, can change
its IP address. A separate, unchangeable identifier or address
is also defined. This address, called the TARP address, is
known only to TARP routers and terminals and may be
correlated at any time by a TARP router or a TARP terminal
using a Lookup Table (LUT). When a TARP router or
terminal changes its IP address, it updates the other TARP
routers and terminals which in turn update their respective
LUTs.

The message payload is hidden behind an inner layer of
encryption in the TARP packet that can only be unlocked
using a session key. The session key is not available to any
of the intervening TARP routers. The session key is used to
decrypt the payloads of the TARP packets permitting the
data stream to be reconstructed.

Communication may be made private using link and
session keys, which in turn may be shared and used accord-
ing to any desired method. For example, public/private keys
or symmetric keys may be used.

Page 39 of 72

10

15

20

25

30

35

40

45

50

55

60

65

4

To transmit a data stream, a TARP originating terminal
constructs a series of TARP packets from a series of IP
packets generated by a network (IP) layer process. (Note that
the terms “network layer,” “data link layer,” “application
layer,” etc. used in this specification correspond to the Open
Systems Intercomection (OSI) network terminology.) The
payloads of these packets are assembled into a block and
chain-block encrypted using the session key. This assumes,
of course, that all the IP packets are destined for the same
TARP terminal. The block is then interleaved and the

interleaved encrypted block is broken into a series of
payloads, one for each TARP packet to be generated. Special
TARP headers IPT are then added to each payload using the
IP headers from the data stream packets. The TARP headers
can be identical to normal IP headers or customized in some

way. They should contain a formula or data for deinterleav-
ing the data at the destination TARP terminal, a time-to-live
(TTL) parameter to indicate the number of hops still to be
executed, a data type identifier which indicates whether the
payload contains, for example, TCP or UDP data, the
sender’s TARP address, the destination TARP address, and
an indicator as to whether the packet contains real or decoy
data or a formula for filtering out decoy data if decoy data
is spread in some way through the TARP payload data.

Note that although chain-block encryption is discussed
here with reference to the session key, any encryption
method may be used. Preferably, as in chain block
encryption, a method should be used that makes unautho-
rized decryption difficult without an entire result of the
encryption process. Thus, by separating the encrypted block
among multiple packets and making it difficult for an
interloper to obtain access to all of such packets, the contents
of the communications are provided an extra layer of
security.

Decoy or dummy data can be added to a stream to help
foil traffic analysis by reducing the peak-to-average network
load. It may be desirable to provide the TARP process with
an ability to respond to the time of day or other criteria to
generate more decoy data during low traffic periods so that
communication bursts at one point in the Internet cannot be
tied to communication bursts at another point to reveal the
communicating endpoints.

Dummy data also helps to break the data into a larger
number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be
broken into multiple packets is apparent if a chain block
encryption scheme is used to form the first encryption layer
prior to interleaving. A single block encryption may be
applied to portion, or entirety, of a message, and that portion
or entirety then interleaved into a number of separate
packets. Considering the agile IP routing of the packets, and
the attendant difficulty of reconstructing an entire sequence
of packets to form a single block-encrypted message
element, decoy packets can significantly increase the diffi-
culty of reconstructing an entire data stream.

The above scheme may be implemented entirely by
processes operating between the data link layer and the
network layer of each server or terminal participating in the
TARP system. Because the encryption system described
above is insertable between the data link and network layers,
the processes involved in supporting the encrypted commu-
nication may be completely transparent to processes at the IP
(network) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as

Page 40 of 72Page 40 of 72

US 6,502,135 B1

5

well. Thus, no operations at or above the Network layer, or
at or below the data link layer, are affected by the insertion
of the TARP stack. This provides additional security to all
processes at or above the network layer, since the difficulty
of unauthorized penetration of the network layer (by, for
example, a hacker) is increased substantially. Even newly
developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note
that in this architecture, security is distributed. That is,
notebook computers used by executives on the road, for
example, can communicate over the Internet without any
compromise in security.

IP address changes made by TARP terminals and routers
can be done at regular intervals, at random intervals, or upon
detection of “attacks.” The variation of IP addresses hinders

traffic analysis that might reveal which computers are
communicating, and also provides a degree of immunity
from attack. The level of immunity from attack is roughly
proportional to the rate at which the IP address of the host
is changing.

As mentioned, IP addresses may be changed in response
to attacks. An attack may be revealed, for example, by a
regular series of messages indicating that a router is being
probed in some way. Upon detection of an attack, the TARP
layer process may respond to this event by changing its IP
address. In addition, it may create a subprocess that main-
tains the original IP address and continues interacting with
the attacker in some manner.

Decoy packets may be generated by each TARP terminal
on some basis determined by an algorithm. For example, the
algorithm may be a random one which calls for the genera-
tion of a packet on a random basis when the terminal is idle.
Alternatively, the algorithm may be responsive to time of
day or detection of low traffic to generate more decoy
packets during low traffic times. Note that packets are
preferably generated in groups, rather than one by one, the
groups being sized to simulate real messages. In addition, so
that decoy packets may be inserted in normal TARP message
streams, the background loop may have a latch that makes
it more likely to insert decoy packets when a message stream
is being received. Alternatively, if a large number of decoy
packets is received along with regular TARP packets, the
algorithm may increase the rate of dropping of decoy
packets rather than forwarding them. The result of dropping
and generating decoy packets in this way is to make the
apparent incoming message size different from the apparent
outgoing message size to help foil traffic analysis.

In various other embodiments of the invention, a scalable
version of the system may be constructed in which a
plurality of IP addresses are preassigned to each pair of
communicating nodes in the network. Each pair of nodes
agrees upon an algorithm for “hopping” between IP
addresses (both sending and receiving), such that an eaves-
dropper sees apparently continuously random IP address
pairs (source and destination) for packets transmitted
between the pair. Overlapping or “reusable” IP addresses
may be allocated to different users on the same subnet, since
each node merely verifies that a particular packet includes a
valid source/destination pair from the agreed-upon algo-
rithm. Source/destination pairs are preferably not reused
between any two nodes during any given end-to-end session,
though limited IP block sizes or lengthy sessions might
require it.

Further improvements described in this continuation-in-
part application include: (1) a load balancer that distributes
packets across different transmission paths according to

Page 40 of 72

10

15

20

25

30

35

40

45

50

55

60

65

6

transmission path quality; (2) a DNS proxy server that
transparently creates a virtual private network in response to
a domain name inquiry; (3) a large-to-small link bandwidth
management feature that prevents denial-of-service attacks
at system chokepoints; (4) a traffic limiter that regulates
incoming packets by limiting the rate at which a transmitter
can be synchronized with a receiver; and (5) a signaling
synchronizer that allows a large number of nodes to com-
municate with a central node by partitioning the communi-
cation function between two separate entities

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of secure communications over

the Internet according to a prior art embodiment.
FIG. 2 is an illustration of secure communications over

the Internet according to a an embodiment of the invention.

FIG. 3a is an illustration of a process of forming a
tunneled IP packet according to an embodiment of the
invention.

FIG. 3b is an illustration of a process of forming a
tunneled IP packet according to another embodiment of the
invention.

FIG. 4 is an illustration of an OSI layer location of
processes that may be used to implement the invention.

FIG. 5 is a flow chart illustrating a process for routing a
tunneled packet according to an embodiment of the inven-
tion.

FIG. 6 is a flow chart illustrating a process for forming a
tunneled packet according to an embodiment of the inven-
tion.

FIG. 7 is a flow chart illustrating a process for receiving
a tunneled packet according to an embodiment of the
invention.

FIG. 8 shows how a secure session is established and

synchronized between a client and a TARP router.

FIG. 9 shows an IP address hopping scheme between a
client computer and TARP router using transmit and receive
tables in each computer.

FIG. 10 shows physical link redundancy among three
Internet Service Providers (ISPs) and a client computer.

FIG. 11 shows how multiple IP packets can be embedded
into a single “frame” such as an Ethernet frame, and further
shows the use of a discriminator field to camouflage true
packet recipients.

FIG. 12A shows a system that employs hopped hardware
addresses, hopped IP addresses, and hopped discriminator
fields.

FIG. 12B shows several different approaches for hopping
hardware addresses, IP addresses, and discriminator fields in
combination.

FIG. 13 shows a technique for automatically
re-establishing synchronization between sender and receiver
through the use of a partially public sync value.

FIG. 14 shows a “checkpoint” scheme for regaining
synchronization between a sender and recipient.

FIG. 15 shows further details of the checkpoint scheme of
FIG. 14.

FIG. 16 shows how two addresses can be decomposed
into a plurality of segments for comparison with presence
vectors.

FIG. 17 shows a storage array for a receiver’s active
addresses.

FIG. 18 shows the receiver’s storage array after receiving
a sync request.

Page 41 of 72Page 41 of 72

US 6,502,135 B1

7

FIG. 19 shows the receiver’s storage array after new
addresses have been generated.

FIG. 20 shows a system employing distributed transmis-
sion paths.

FIG. 21 shows a plurality of link transmission tables that
can be used to route packets in the system of FIG. 20.

FIG. 22A shows a flowchart for adjusting weight value
distributions associated with a plurality of transmission
links.

FIG. 22B shows a flowchart for setting a weight value to
zero if a transmitter turns off.

FIG. 23 shows a system employing distributed transmis-
sion paths with adjusted weight value distributions for each
path.

FIG. 24 shows an example using the system of FIG. 23.

FIG. 25 shows a conventional domain-name look-up
service.

FIG. 26 shows a system employing a DNS proxy server
with transparent VPN creation.

FIG. 27 shows steps that can be carried out to implement
transparent VPN creation based on a DNS look-up function.

FIG. 28 shows a system including a link guard function
that prevents packet overloading on a low-bandwidth link
LOW BW.

FIG. 29 shows one embodiment of a system employing
the principles of FIG. 28.

FIG. 30 shows a system that regulates packet transmission
rates by throttling the rate at which synchronizations are
performed.

FIG. 31 shows a signaling server 3101 and a transport
server 3102 used to establish a VPN with a client computer.

FIG. 32 shows message flows relating to synchronization
protocols of FIG. 31.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 2, a secure mechanism for communi-
cating over the internet employs a number of special routers
or servers, called TARP routers 122—127 that are similar to
regular IP routers 128—132 in that each has one or more IP
addresses and uses normal IP protocol to send normal-
looking IP packet messages, called TARP packets 140.
TARP packets 140 are identical to normal IP packet mes-
sages that are routed by regular IP routers 128—132 because
each TARP packet 140 contains a destination address as in
a normal IP packet. However, instead of indicating a final
destination in the destination field of the IP header, the TARP
packet’s 140 IP header always points to a next-hop in a
series of TARP router hops, or the final destination, TARP
terminal 110. Because the header of the TARP packet
contains only the next-hop destination, there is no overt
indication from an intercepted TARP packet of the true
destination of the TARP packet 140 since the destination
could always be the next-hop TARP router as well as the
final destination, TARP terminal 110.

Each TARP packet’s true destination is concealed behind
an outer layer of encryption generated using a link key 146.
The link key 146 is the encryption key used for encrypted
communication between the end points (TARP terminals or
TARP routers) of a single link in the chain of hops connect-
ing the originating TARP terminal 100 and the destination
TARP terminal 110. Each TARP router 122—127, using the
link key 146 it uses to communicate with the previous hop
in a chain, can use the link key to reveal the true destination

Page 41 of 72

10

15

20

25

30

35

40

45

50

55

60

65

8

of a TARP packet. To identify the link key needed to decrypt
the outer layer of encryption of a TARP packet, a receiving
TARP or routing terminal may identify the transmitting
terminal (which may indicate the link key used) by the
sender field of the clear IP header. Alternatively, this identity
may be hidden behind another layer of encryption in avail-
able bits in the clear IP header. Each TARP router, upon
receiving a TARP message, determines if the message is a
TARP message by using authentication data in the TARP
packet. This could be recorded in available bytes in the
TARP packet’s IP header. Alternatively, TARP packets could
be authenticated by attempting to decrypt using the link key
146 and determining if the results are as expected. The
former may have computational advantages because it does
not involve a decryption process.

Once the outer layer of decryption is completed by a
TARP router 122—127, the TARP router determines the final
destination. The system is preferably designed to cause each
TARP packet 140 to undergo a minimum number of hops to
help foil traffic analysis. The time to live counter in the IP
header of the TARP message may be used to indicate a
number of TARP router hops yet to be completed. Each
TARP router then would decrement the counter and deter-

mine from that whether it should forward the TARP packet
140 to another TARP router 122—127 or to the destination
TARP terminal 110. If the time to live counter is zero or

below zero after decrementing, for an example of usage, the
TARP router receiving the TARP packet 140 may forward
the TARP packet 140 to the destination TARP terminal 110.
If the time to live counter is above zero after decrementing,
for an example of usage, the TARP router receiving the
TARP packet 140 may forward the TARP packet 140 to a
TARP router 122—127 that the current TARP terminal

chooses at random. As a result, each TARP packet 140 is
routed through some minimum number of hops of TARP
routers 122—127 which are chosen at random.

Thus, each TARP packet, irrespective of the traditional
factors determining traffic in the Internet, makes random
trips among a number of geographically disparate routers
before reaching its destination and each trip is highly likely
to be different for each packet composing a given message
because each trip is independently randomly determined as
described above. This feature is called agile routing. For
reasons that will become clear shortly, the fact that different
packets take different routes provides distinct advantages by
making it difficult for an interloper to obtain all the packets
forming an entire multi-packet message. Agile routing is
combined with another feature that furthers this purpose, a
feature that ensures that any message is broken into multiple
packets.

A TARP router receives a TARP packet when an IP
address used by the TARP router coincides with the IP
address in the TARP packet’s IP header IPC. The IP address
of a TARP router, however, may not remain constant. To
avoid and manage attacks, each TARP router, independently
or under direction from another TARP terminal or router,
may change its IP address. A separate, unchangeable iden-
tifier or address is also defined. This address, called the
TARP address, is known only to TARP routers and terminals
and may be correlated at any time by a TARP router or a
TARP terminal using a Lookup Table (LUT). When a TARP
router or terminal changes its IP address, it updates the other
TARP routers and terminals which in turn update their
respective LUTs. In reality, whenever a TARP router looks
up the address of a destination in the encrypted header, it
must convert a TARP address to a real IP address using its
LUT.

Page 42 of 72Page 42 of 72

US 6,502,135 B1

9

While every TARP router receiving a TARP packet has
the ability to determine the packet’s final destination, the
message payload is embedded behind an inner layer of
encryption in the TARP packet that can only be unlocked
using a session key. The session key is not available to any
of the TARP routers 122—127 intervening between the
originating 100 and destination 110 TARP terminals. The
session key is used to decrypt the payloads of the TARP
packets 140 permitting an entire message to be recon-
structed.

In one embodiment, communication may be made private
using link and session keys, which in turn may be shared and
used according any desired method. For example, a public
key or symmetric keys may be communicated between link
or session endpoints using a public key method. Any of a
variety of other mechanisms for securing data to ensure that
only authorized computers can have access to the private
information in the TARP packets 140 may be used as
desired.

Referring to FIG. 3a, to construct a series of TARP
packets, a data stream 300 of IP packets 207a, 207b, 207C,
etc., such series of packets being formed by a network (IP)
layer process, is broken into a series of small sized segments.
In the present example, equal-sized segments 1—9 are
defined and used to construct a set of interleaved data

packets A, B, and C. Here it is assumed that the number of
interleaved packets A, B, and C formed is three and that the
number of IP packets 207a—207c used to form the three
interleaved packets A, B, and C is exactly three. Of course,
the number of IP packets spread over a group of interleaved
packets may be any convenient number as may be the
number of interleaved packets over which the incoming data
stream is spread. The latter, the number of interleaved
packets over which the data stream is spread, is called the
interleave window.

To create a packet, the transmitting software interleaves
the normal IP packets 207a et. seq. to form a new set of
interleaved payload data 320. This payload data 320 is then
encrypted using a session key to form a set of session-key-
encrypted payload data 330, each of which, A, B, and C, will
form the payload of a TARP packet. Using the IP header
data, from the original packets 207a—207c, new TARP
headers IPT are formed. The TARP headers IPT can be
identical to normal IP headers or customized in some way.
In a preferred embodiment, the TARP headers IPT are IP
headers with added data providing the following information
required for routing and reconstruction of messages, some of
which data is ordinarily, or capable of being, contained in
normal IP headers:

1. A window sequence number—an identifier that indi-
cates where the packet belongs in the original message
sequence.

2. An interleave sequence number—an identifier that
indicates the interleaving sequence used to form the
packet so that the packet can be deinterleaved along
with other packets in the interleave window.

3. A time-to-live (TTL) datum—indicates the number of
TARP-router-hops to be executed before the packet
reaches its destination. Note that the TTL parameter
may provide a datum to be used in a probabilistic
formula for determining whether to route the packet to
the destination or to another hop.

4. Data type identifier—indicates whether the payload
contains, for example, TCP or UDP data.

5. Sender’s address—indicates the sender’s address in the
TARP network.

Page 42 of 72

5

10

15

20

25

30

35

40

45

50

55

60

65

10
6. Destination address—indicates the destination termi-

nal’s address in the TARP network.

7. Decoy/Real—an indicator of whether the packet con-
tains real message data or dummy decoy data or a
combination.

Obviously, the packets going into a single interleave
window must include only packets with a common destina-
tion. Thus, it is assumed in the depicted example that the IP
headers of IP packets 207a—207C all contain the same
destination address or at least will be received by the same
terminal so that they can be deinterleaved. Note that dummy
or decoy data or packets can be added to form a larger
interleave window than would otherwise be required by the
size of a given message. Decoy or dummy data can be added
to a stream to help foil traffic analysis by leveling the load
on the network. Thus, it may be desirable to provide the
TARP process with an ability to respond to the time of day
or other criteria to generate more decoy data during low
traffic periods so that communication bursts at one point in
the Internet cannot be tied to communication bursts at

another point to reveal the communicating endpoints.
Dummy data also helps to break the data into a larger

number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be
broken into multiple packets is apparent if a chain block
encryption scheme is used to form the first encryption layer
prior to interleaving. A single block encryption may be
applied to a portion, or the entirety, of a message, and that
portion or entirety then interleaved into a number of separate
packets.

Referring to FIG. 3b, in an alternative mode of TARP
packet construction, a series of IP packets are accumulated
to make up a predefined interleave window. The payloads of
the packets are used to construct a single block 520 for chain
block encryption using the session key. The payloads used to
form the block are presumed to be destined for the same
terminal. The block size may coincide with the interleave
window as depicted in the example embodiment of FIG. 3b.
After encryption, the encrypted block is broken into separate
payloads and segments which are interleaved as in the
embodiment of FIG. 3a. The resulting interleaved packets A,
B, and C, are then packaged as TARP packets with TARP
headers as in the Example of FIG. 3a. The remaining process
is as shown in, and discussed with reference to, FIG. 3a.

Once the TARP packets 340 are formed, each entire TARP
packet 340, including the TARP header IPT, is encrypted
using the link key for communication with the first-hop-
TARP router. The first hop TARP router is randomly chosen.
Afinal unencrypted IP header IPC is added to each encrypted
TARP packet 340 to form a normal IP packet 360 that can
be transmitted to a TARP router. Note that the process of
constructing the TARP packet 360 does not have to be done
in stages as described. The above description is just a useful
heuristic for describing the final product, namely, the TARP
packet.

Note that, TARP header IPT could be a completely custom
header configuration with no similarity to a normal IP header
except that it contain the information identified above. This
is so since this header is interpreted by only TARP routers.

The above scheme may be implemented entirely by
processes operating between the data link layer and the
network layer of each server or terminal participating in the
TARP system. Referring to FIG. 4, a TARP transceiver 405
can be an originating terminal 100, a destination terminal

Page 43 of 72Page 43 of 72

US 6,502,135 B1

11

110, or a TARP router 122—127. In each TARP Transceiver
405, a transmitting process is generated to receive normal
packets from the Network (IP) layer and generate TARP
packets for communication over the network. A receiving
process is generated to receive normal IP packets containing
TARP packets and generate from these normal IP packets
which are “passed up” to the Network (IP) layer. Note that
where the TARP Transceiver 405 is a router, the received
TARP packets 140 are not processed into a stream of IP
packets 415 because they need only be authenticated as
proper TARP packets and then passed to another TARP
router or a TARP destination terminal 110. The intervening
process, a “TARP Layer” 420, could be combined with
either the data link layer 430 or the Network layer 410. In
either case, it would intervene between the data link layer
430 so that the process would receive regular IP packets
containing embedded TARP packets and “hand up” a series
of reassembled IP packets to the Network layer 410. As an
example of combining the TARP layer 420 with the data link
layer 430, a program may augment the normal processes
running a communications card, for example, an Ethernet
card. Alternatively, the TARP layer processes may form part
of a dynamically loadable module that is loaded and
executed to support communications between the network
and data link layers.

Because the encryption system described above can be
inserted between the data link and network layers, the
processes involved in supporting the encrypted communi-
cation may be completely transparent to processes at the IP
(network) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as
well. Thus, no operations at or above the network layer, or
at or below the data link layer, are affected by the insertion
of the TARP stack. This provides additional security to all
processes at or above the network layer, since the difficulty
of unauthorized penetration of the network layer (by, for
example, a hacker) is increased substantially. Even newly
developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note
that in this architecture, security is distributed. That is,
notebook computers used by executives on the road, for
example, can communicate over the Internet without any
compromise in security.

Note that IP address changes made by TARP terminals
and routers can be done at regular intervals, at random
intervals, or upon detection of “attacks.” The variation of IP
addresses hinders traffic analysis that might reveal which
computers are communicating, and also provides a degree of
immunity from attack. The level of immunity from attack is
roughly proportional to the rate at which the IP address of
the host is changing.

As mentioned, IP addresses may be changed in response
to attacks. An attack may be revealed, for example, by a
regular series of messages indicates that a router is being
probed in some way. Upon detection of an attack, the TARP
layer process may respond to this event by changing its IP
address. To accomplish this, the TARP process will construct
a TARP-formatted message, in the style of Internet Control
Message Protocol (ICMP) datagrams as an example; this
message will contain the machine’s TARP address, its
previous IP address, and its new IP address. The TARP layer
will transmit this packet to at least one known TARP router;
then upon receipt and validation of the message, the TARP
router will update its LUT with the new IP address for the
stated TARP address. The TARP router will then format a

similar message, and broadcast it to the other TARP routers
so that they may update their LUTs. Since the total number

Page 43 of 72

10

15

20

25

30

35

40

45

50

55

60

65

12

of TARP routers on any given subnet is expected to be
relatively small, this process of updating the LUTs should be
relatively fast. It may not, however, work as well when there
is a relatively large number of TARP routers and/or a
relatively large number of clients; this has motivated a
refinement of this architecture to provide scalability; this
refinement has led to a second embodiment, which is dis-
cussed below.

Upon detection of an attack, the TARP process may also
create a subprocess that maintains the original IP address
and continues interacting with the attacker. The latter may
provide an opportunity to trace the attacker or study the
attacker’s methods (called “fishbowling” drawing upon the
analogy of a small fish in a fish bowl that “thinks” it is in the
ocean but is actually under captive observation). Ahistory of
the communication between the attacker and the abandoned

(fishbowled) IP address can be recorded or transmitted for
human analysis or further synthesized for purposes of
responding in some way.

As mentioned above, decoy or dummy data or packets can
be added to outgoing data streams by TARP terminals or
routers. In addition to making it convenient to spread data
over a larger number of separate packets, such decoy packets
can also help to level the load on inactive portions of the
Internet to help foil traffic analysis efforts.

Decoy packets may be generated by each TARP terminal
100, 110 or each router 122—127 on some basis determined
by an algorithm. For example, the algorithm may be a
random one which calls for the generation of a packet on a
random basis when the terminal is idle. Alternatively, the
algorithm may be responsive to time of day or detection of
low traffic to generate more decoy packets during low traffic
times. Note that packets are preferably generated in groups,
rather than one by one, the groups being sized to simulate
real messages. In addition, so that decoy packets may be
inserted in normal TARP message streams, the background
loop may have a latch that makes it more likely to insert
decoy packets when a message stream is being received.
That is, when a series of messages are received, the decoy
packet generation rate may be increased. Alternatively, if a
large number of decoy packets is received along with regular
TARP packets, the algorithm may increase the rate of
dropping of decoy packets rather than forwarding them. The
result of dropping and generating decoy packets in this way
is to make the apparent incoming message size different
from the apparent outgoing message size to help foil traffic
analysis. The rate of reception of packets, decoy or
otherwise, may be indicated to the decoy packet dropping
and generating processes through perishable decoy and
regular packet counters. (A perishable counter is one that
resets or decrements its value in response to time so that it
contains a high value when it is incremented in rapid
succession and a small value when incremented either

slowly or a small number of times in rapid succession.) Note
that destination TARP terminal 110 may generate decoy
packets equal in number and size to those TARP packets
received to make it appear it is merely routing packets and
is therefore not the destination terminal.

Referring to FIG. 5, the following particular steps may be
employed in the above-described method for routing TARP
packets.

SO. A background loop operation is performed which
applies an algorithm which determines the generation
of decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

$2. The TARP packet may be probed in some way to
authenticate the packet before attempting to decrypt it

Page 44 of 72Page 44 of 72

US 6,502,135 B1

13

using the link key. That is, the router may determine
that the packet is an authentic TARP packet by per-
forming a selected operation on some data included
with the clear IP header attached to the encrypted TARP
packet contained in the payload. This makes it possible
to avoid performing decryption on packets that are not
authentic TARP packets.

S3. The TARP packet is decrypted to expose the destina-
tion TARP address and an indication of whether the

packet is a decoy packet or part of a real message.

S4. If the packet is a decoy packet, the perishable decoy
counter is incremented.

SS. Based on the decoy generation/dropping algorithm
and the perishable decoy counter value, if the packet is
a decoy packet, the router may choose to throw it away.
If the received packet is a decoy packet and it is
determined that it should be thrown away (S6), control
returns to step SO.

S7. The TTL parameter of the TARP header is decre-
mented and it is determined if the TTL parameter is
greater than zero.

SS. If the TTL parameter is greater than zero, a TARP
address is randomly chosen from a list of TARP
addresses maintained by the router and the link key and
IP address corresponding to that TARP address memo-
rized for use in creating a new IP packet containing the
TARP packet.

S9. If the TTL parameter is zero or less, the link key and
IP address corresponding to the TARP address of the
destination are memorized for use in creating the new
IP packet containing the TARP packet.

S10. The TARP packet is encrypted using the memorized
link key.

S11. An IP header is added to the packet that contains the
stored IP address, the encrypted TARP packet wrapped
with an IP header, and the completed packet transmitted
to the next hop or destination.

Referring to FIG. 6, the following particular steps may be
employed in the above-described method for generating
TARP packets.

$20. A background loop operation applies an algorithm
that determines the generation of decoy IP packets. The
loop is interrupted when a data stream containing IP
packets is received for transmission.

$21. The received IP packets are grouped into a set
consisting of messages with a constant IP destination
address. The set is further broken down to coincide
with a maximum size of an interleave window The set

is encrypted, and interleaved into a set of payloads
destined to become TARP packets.

$22. The TARP address corresponding to the IP address is
determined from a lookup table and stored to generate
the TARP header. An initial TTL count is generated and
stored in the header. The TTL count may be random
with minimum and maximum values or it may be fixed
or determined by some other parameter.

$23. The window sequence numbers and interleave
sequence numbers are recorded in the TARP headers of
each packet.

824. One TARP router address is randomly chosen for
each TARP packet and the IP address corresponding to
it stored for use in the clear IP header. The link key
corresponding to this router is identified and used to
encrypt TARP packets containing interleaved and
encrypted data and TARP headers.

Page 44 of 72

5

10

15

20

25

30

35

40

45

50

55

60

65

14

$25. A clear IP header with the first hop router’s real IP
address is generated and added to each of the encrypted
TARP packets and the resulting packets.

Referring to FIG. 7, the following particular steps may be
employed in the above-described method for receiving
TARP packets.

S40. A background loop operation is performed which
applies an algorithm which determines the generation
of decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

S42. The TARP packet may be probed to authenticate the
packet before attempting to decrypt it using the link
key.

S43. The TARP packet is decrypted with the appropriate
link key to expose the destination TARP address and an
indication of whether the packet is a decoy packet or
part of a real message.

S44. If the packet is a decoy packet, the perishable decoy
counter is incremented.

S45. Based on the decoy generation/dropping algorithm
and the perishable decoy counter value, if the packet is
a decoy packet, the receiver may choose to throw it
away.

S46. The TARP packets are cached until all packets
forming an interleave window are received.

S47. Once all packets of an interleave window are
received, the packets are deinterleaved.

S48. The packets block of combined packets defining the
interleave window is then decrypted using the session
key.

S49. The decrypted block is then divided using the
window sequence data and the IPT headers are con-
verted into normal IPC headers. The window sequence
numbers are integrated in the IPC headers.

$50. The packets are then handed up to the IP layer
processes.

1. SCALABILITY ENHANCEMENTS

The IP agility feature described above relies on the ability
to transmit IP address changes to all TARP routers. The
embodiments including this feature will be referred to as
“boutique” embodiments due to potential limitations in
scaling these features up for a large network, such as the
Internet. (The “boutique” embodiments would, however, be
robust for use in smaller networks, such as small virtual

private networks, for example). One problem with the
boutique embodiments is that if IP address changes are to
occur frequently, the message traffic required to update all
routers sufficiently quickly creates a serious burden on the
Internet when the TARP router and/or client population gets
large. The bandwidth burden added to the networks, for
example in ICMP packets, that would be used to update all
the TARP routers could overwhelm the Internet for a large
scale implementation that approached the scale of the Inter-
net. In other words, the boutique system’s scalability is
limited.

A system can be constructed which trades some of the
features of the above embodiments to provide the benefits of
IP agility without the additional messaging burden. This is
accomplished by IP address-hopping according to shared
algorithms that govern IP addresses used between links
participating in communications sessions between nodes
such as TARP nodes. (Note that the IP hopping technique is
also applicable to the boutique embodiment.) The IP agility
feature discussed with respect to the boutique system can be

Page 45 of 72Page 45 of 72

US 6,502,135 B1

15
modified so that it becomes decentralized under this scalable

regime and governed by the above-described shared algo-
rithm. Other features of the boutique system may be com-
bined with this new type of IP-agility.

The new embodiment has the advantage of providing IP
agility governed by a local algorithm and set of IP addresses
exchanged by each communicating pair of nodes. This local
governance is session-independent in that it may govern
communications between a pair of nodes, irrespective of the
session or end points being transferred between the directly
communicating pair of nodes.

In the scalable embodiments, blocks of IP addresses are

allocated to each node in the network. (This scalability will
increase in the future, when Internet Protocol addresses are
increased to 128-bit fields, vastly increasing the number of
distinctly addressable nodes). Each node can thus use any of
the IP addresses assigned to that node to communicate with
other nodes in the network. Indeed, each pair of communi-
cating nodes can use a plurality of source IP addresses and
destination IP addresses for communicating with each other.

Each communicating pair of nodes in a chain participating
in any session stores two blocks of IP addresses, called
netblocks, and an algorithm and randomization seed for
selecting, from each netblock, the next pair of source/
destination IP addresses that will be used to transmit the next

message. In other words, the algorithm governs the sequen-
tial selection of IP-address pairs, one sender and one
receiver IP address, from each netblock. The combination of

algorithm, seed, and netblock (IP address block) will be
called a “hopblock.” A router issues separate transmit and
receive hopblocks to its clients. The send address and the
receive address of the IP header of each outgoing packet sent
by the client are filled with the send and receive IP addresses
generated by the algorithm. The algorithm is “clocked”
(indexed) by a counter so that each time a pair is used, the
algorithm turns out a new transmit pair for the next packet
to be sent.

The router’s receive hopblock is identical to the client’s
transmit hopblock. The router uses the receive hopblock to
predict what the send and receive IP address pair for the next
expected packet from that client will be. Since packets can
be received out of order, it is not possible for the router to
predict with certainty what IP address pair will be on the
next sequential packet. To account for this problem, the
router generates a range of predictions encompassing the
number of possible transmitted packet send/receive
addresses, of which the next packet received could leap
ahead. Thus, if there is a vanishingly small probability that
a given packet will arrive at the router ahead of 5 packets
transmitted by the client before the given packet, then the
router can generate a series of 6 send/receive IP address pairs
(or “hop window”) to compare with the next received
packet. When a packet is received, it is marked in the hop
window as such, so that a second packet with the same IP
address pair will be discarded. If an out-of-sequence packet
does not arrive within a predetermined timeout period, it can
be requested for retransmission or simply discarded from the
receive table, depending upon the protocol in use for that
communications session, or possibly by convention.

When the router receives the client’s packet, it compares
the send and receive IP addresses of the packet with the next
N predicted send and receive IP address pairs and rejects the
packet if it is not a member of this set. Received packets that
do not have the predicted source/destination IP addresses
falling with the window are rejected, thus thwarting possible
hackers. (With the number of possible combinations, even a

Page 45 of 72

10

15

20

25

30

35

40

45

50

55

60

65

16

fairly large window would be hard to fall into at random.) If
it is a member of this set, the router accepts the packet and
processes it further. This link-based IP-hopping strategy,
referred to as “IHOP,” is a network element that stands on
its own and is not necessarily accompanied by elements of
the boutique system described above. If the routing agility
feature described in connection with the boutique embodi-
ment is combined with this link-based IP-hopping strategy,
the router’s next step would be to decrypt the TARP header
to determine the destination TARP router for the packet and
determine what should be the next hop for the packet. The
TARP router would then forward the packet to a random
TARP router or the destination TARP router with which the

source TARP router has a link-based IP hopping communi-
cation established.

FIG. 8 shows how a client computer 801 and a TARP
router 811 can establish a secure session. When client 801

seeks to establish an IHOP session with TARP router 811,
the client 801 sends “secure synchronization” request
(“SSYN”) packet 821 to the TARP router 811. This SYN
packet 821 contains the client’s 801 authentication token,
and may be sent to the router 811 in an encrypted format.
The source and destination IP numbers on the packet 821 are
the client’s 801 current fixed IP address, and a “known”

fixed IP address for the router 811. (For security purposes,
it may be desirable to reject any packets from outside of the
local network that are destined for the router’s known fixed

IP address.) Upon receipt and validation of the client’s 801
SSYN packet 821, the router 811 responds by sending an
encrypted “secure synchronization acknowledgment”
(“SSYN ACK”) 822 to the client 801. This SSYN ACK 822
will contain the transmit and receive hopblocks that the
client 801 will use when communicating with the TARP
router 811. The client 801 will acknowledge the TARP
router’s 811 response packet 822 by generating an encrypted
SSYN ACK ACK packet 823 which will be sent from the
client’s 801 fixed IP address and to the TARP router’s 811

known fixed IP address. The client 801 will simultaneously
generate a SSYN ACK ACK packet; this SSYN ACK
packet, referred to as the Secure Session Initiation (SSI)
packet 824, will be sent with the first {sender, receiver} IP
pair in the client’s transmit table 921 (FIG. 9), as specified
in the transmit hopblock provided by the TARP router 811
in the SSYN ACK packet 822. The TARP router 811 will
respond to the SSI packet 824 with an SSI ACK packet 825,
which will be sent with the first {sender, receiver} IP pair in
the TARP router’s transmit table 923. Once these packets
have been successfully exchanged, the secure communica-
tions session is established, and all further secure commu-
nications between the client 801 and the TARP router 811

will be conducted via this secure session, as long as syn-
chronization is maintained. If synchronization is lost, then
the client 801 and TARP router 802 may re-establish the
secure session by the procedure outlined in FIG. 8 and
described above.

While the secure session is active, both the client 901 and

TARP router 911 (FIG. 9) will maintain their respective
transmit tables 921, 923 and receive tables 922, 924, as
provided by the TARP router during session synchronization
822. It is important that the sequence of IP pairs in the
client’s transmit table 921 be identical to those in the TARP

router’s receive table 924; similarly, the sequence of IP pairs
in the client’s receive table 922 must be identical to those in

the router’s transmit table 923. This is required for the
session synchronization to be maintained. The client 901
need maintain only one transmit table 921 and one receive
table 922 during the course of the secure session. Each

Page 46 of 72Page 46 of 72

US 6,502,135 B1

17

sequential packet sent by the client 901 will employ the next
{send, receive} IP address pair in the transmit table, regard-
less of TCP or UDP session. The TARP router 911 will

expect each packet arriving from the client 901 to bear the
next IP address pair shown in its receive table.

Since packets can arrive out of order, however, the router
911 can maintain a “look ahead” buffer in its receive table,
and will mark previously-received IP pairs as invalid for
future packets; any future packet containing an IP pair that
is in the look-ahead buffer but is marked as previously
received will be discarded. Communications from the TARP
router 911 to the client 901 are maintained in an identical

manner; in particular, the router 911 will select the next IP
address pair from its transmit table 923 when constructing a
packet to send to the client 901, and the client 901 will
maintain a look-ahead buffer of expected IP pairs on packets
that it is receiving. Each TARP router will maintain separate
pairs of transmit and receive tables for each client that is
currently engaged in a secure session with or through that
TARP router.

While clients receive their hopblocks from the first server
linking them to the Internet, routers exchange hopblocks.
When a router establishes a link-based IP-hopping commu-
nication regime with another router, each router of the pair
exchanges its transmit hopblock. The transmit hopblock of
each router becomes the receive hopblock of the other
router. The communication between routers is governed as
described by the example of a client sending a packet to the
first router.

While the above strategy works fine in the IP milieu,
many local networks that are connected to the Internet are
Ethernet systems. In Ethernet, the IP addresses of the
destination devices must be translated into hardware

addresses, and vice versa, using known processes (“address
resolution protocol,” and “reverse address resolution
protocol”). However, if the link-based IP-hopping strategy is
employed, the correlation process would become explosive
and burdensome. An alternative to the link-based IP hopping
strategy may be employed within an Ethernet network. The
solution is to provide that the node linking the Internet to the
Ethernet (call it the border node) use the link-based
IP-hopping communication regime to communicate with
nodes outside the Ethernet LAN. Within the Ethernet LAN,
each TARP node would have a single IP address which
would be addressed in the conventional way. Instead of
comparing the {sender, receiver} IP address pairs to authen-
ticate a packet, the intra-LAN TARP node would use one of
the IP header extension fields to do so. Thus, the border node
uses an algorithm shared by the intra-LAN TARP node to
generate a symbol that is stored in the free field in the IP
header, and the intra-LAN TARP node generates a range of
symbols based on its prediction of the next expected packet
to be received from that particular source IP address. The
packet is rejected if it does not fall into the set of predicted
symbols (for example, numerical values) or is accepted if it
does. Communications from the intra-LAN TARP node to

the border node are accomplished in the same manner,
though the algorithm will necessarily be different for secu-
rity reasons. Thus, each of the communicating nodes will
generate transmit and receive tables in a similar manner to
that of FIG. 9; the intra-LAN TARP nodes transmit table will
be identical to the border node’s receive table, and the
intra-LAN TARP node’s receive table will be identical to the
border node’s transmit table.

The algorithm used for IP address-hopping can be any
desired algorithm. For example, the algorithm can be a given
pseudo-random number generator that generates numbers of

Page 46 of 72

10

15

20

25

30

35

40

45

50

55

60

65

18

the range covering the allowed IP addresses with a given
seed. Alternatively, the session participants can assume a
certain type of algorithm and specify simply a parameter for
applying the algorithm. For example the assumed algorithm
could be a particular pseudo-random number generator and
the session participants could simply exchange seed values.

Note that there is no permanent physical distinction
between the originating and destination terminal nodes.
Either device at either end point can initiate a synchroniza-
tion of the pair. Note also that the authentication/
synchronization-request (and acknowledgment) and
hopblock-exchange may all be served by a single message
so that separate message exchanges may not be required.

As another extension to the stated architecture, multiple
physical paths can be used by a client, in order to provide
link redundancy and further thwart attempts at denial of
service and traffic monitoring. As shown in FIG. 10, for
example, client 1001 can establish three simultaneous ses-
sions with each of three TARP routers provided by different
ISPs 1011, 1012, 1013. As an example, the client 1001 can
use three different telephone lines 1021, 1022, 1023 to
connect to the ISPs, or two telephone lines and a cable
modem, etc. In this scheme, transmitted packets will be sent
in a random fashion among the different physical paths. This
architecture provides a high degree of communications
redundancy, with improved immunity from denial-of-
service attacks and traffic monitoring.

2. FURTHER EXTENSIONS

The following describes various extensions to the
techniques, systems, and methods described above. As
described above, the security of communications occurring
between computers in a computer network (such as the
Internet, an Ethernet, or others) can be enhanced by using
seemingly random source and destination Internet Protocol
(IP) addresses for data packets transmitted over the network.
This feature prevents eavesdroppers from determining
which computers in the network are communicating with
each other while permitting the two communicating com-
puters to easily recognize whether a given received data
packet is legitimate or not. In one embodiment of the
above-described systems, an IP header extension field is
used to authenticate incoming packets on an Ethernet.

Various extensions to the previously described techniques
described herein include: (1) use of hopped hardware or
“MAC” addresses in broadcast type network; (2) a self-
synchronization technique that permits a computer to auto-
matically regain synchronization with a sender; (3) synchro-
nization algorithms that allow transmitting and receiving
computers to quickly re-establish synchronization in the
event of lost packets or other events; and (4) a fast-packet
rejection mechanism for rejecting invalid packets. Any or all
of these extensions can be combined with the features

described above in any of various ways.
A. Hardware Address Hopping

Internet protocol-based communications techniques on a
LAN—or across any dedicated physical medium—typically
embed the IP packets within lower-level packets, often
referred to as “frames.” As shown in FIG. 11, for example,
a first Ethernet frame 1150 comprises a frame header 1101
and two embedded IP packets IP1 and IP2, while a second
Ethernet frame 1160 comprises a different frame header
1104 and a single IP packet IP3. Each frame header gener-
ally includes a source hardware address 1101A and a des-
tination hardware address 1101B; other well-known fields in
frame headers are omitted from FIG. 11 for clarity. Two

Page 47 of 72Page 47 of 72

US 6,502,135 B1

19

hardware nodes communicating over a physical communi-
cation channel insert appropriate source and destination
hardware addresses to indicate which nodes on the channel
or network should receive the frame.

It may be possible for a nefarious listener to acquire
information about the contents of a frame and/or its com-

municants by examining frames on a local network rather
than (or in addition to) the IP packets themselves. This is
especially true in broadcast media, such as Ethernet, where
it is necessary to insert into the frame header the hardware
address of the machine that generated the frame and the
hardware address of the machine to which frame is being
sent. All nodes on the network can potentially “see” all
packets transmitted across the network. This can be a
problem for secure communications, especially in cases
where the communicants do not want for any third party to
be able to identify who is engaging in the information
exchange. One way to address this problem is to push the
address-hopping scheme down to the hardware layer. In
accordance with various embodiments of the invention,
hardware addresses are “hopped” in a manner similar to that
used to change IP addresses, such that a listener cannot
determine which hardware node generated a particular mes-
sage nor which node is the intended recipient.

FIG. 12A shows a system in which Media Access Control
(“MAC”) hardware addresses are “hopped” in order to
increase security over a network such as an Ethernet. While
the description refers to the exemplary case of an Ethernet
environment, the inventive principles are equally applicable
to other types of communications media. In the Ethernet
case, the MAC address of the sender and receiver are
inserted into the Ethernet frame and can be observed by
anyone on the LAN who is within the broadcast range for
that frame. For secure communications, it becomes desirable
to generate frames with MAC addresses that are not attrib-
utable to any specific sender or receiver.

As shown in FIG. 12A, two computer nodes 1201 and
1202 communicate over a communication channel such as

an Ethernet. Each node executes one or more application
programs 1203 and 1218 that communicate by transmitting
packets through communication software 1204 and 1217,
respectively. Examples of application programs include
video conferencing, e-mail, word processing programs,
telephony, and the like. Communication software 1204 and
1217 can comprise, for example, an OSI layered architecture
or “stack” that standardizes various services provided at
different levels of functionality.

The lowest levels of communication software 1204 and

1217 communicate with hardware components 1206 and
1214 respectively, each of which can include one or more
registers 1207 and 1215 that allow the hardware to be
reconfigured or controlled in accordance with various com-
munication protocols. The hardware components (an Ether-
net network interface card, for example) communicate with
each other over the communication medium. Each hardware

component is typically pre-assigned a fixed hardware
address or MAC number that identifies the hardware com-

ponent to other nodes on the network. One or more interface
drivers control the operation of each card and can, for
example, be configured to accept or reject packets from
certain hardware addresses. As will be described in more

detail below, various embodiments of the inventive prin-
ciples provide for “hopping” different addresses using one or
more algorithms and one or more moving windows that
track a range of valid addresses to validate received packets.
Packets transmitted according to one or more of the inven-
tive principles will be generally referred to as “secure”

Page 47 of 72

10

15

20

25

30

35

40

45

50

55

60

65

20

packets or “secure communications” to differentiate them
from ordinary data packets that are transmitted in the clear
using ordinary, machine-correlated addresses.

One straightforward method of generating non-
attributable MAC addresses is an extension of the IP hop-
ping scheme. In this scenario, two machines on the same
LAN that desire to communicate in a secure fashion

exchange random-number generators and seeds, and create
sequences of quasi-random MAC addresses for synchro-
nized hopping. The implementation and synchronization
issues are then similar to that of IP hopping.

This approach, however, runs the risk of using MAC
addresses that are currently active on the LAN—which, in
turn, could interrupt communications for those machines.
Since an Ethernet MAC address is at present 48 bits in
length, the chance of randomly misusing an active MAC
address is actually quite small. However, if that figure is
multiplied by a large number of nodes (as would be found
on an extensive LAN), by a large number of frames (as
might be the case with packet voice or streaming video), and
by a large number of concurrent Virtual Private Networks
(VPNs), then the chance that a non-secure machine’s MAC
address could be used in an address-hopped frame can
become non-trivial. In short, any scheme that runs even a
small risk of interrupting communications for other
machines on the LAN is bound to receive resistance from

prospective system administrators. Nevertheless, it is tech-
nically feasible, and can be implemented without risk on a
LAN on which there is a small number of machines, or if all
of the machines on the LAN are engaging in MAC-hopped
communications.

Synchronized MAC address hopping may incur some
overhead in the course of session establishment, especially
if there are multiple sessions or multiple nodes involved in
the communications. A simpler method of randomizing
MAC addresses is to allow each node to receive and process
every incident frame on the network. Typically, each net-
work interface driver will check the destination MAC

address in the header of every incident frame to see if it
matches that machine’s MAC address; if there is no match,
then the frame is discarded. In one embodiment, however,
these checks can be disabled, and every incident packet is
passed to the TARP stack for processing. This will be
referred to as “promiscuous” mode, since every incident
frame is processed. Promiscuous mode allows the sender to
use completely random, unsynchronized MAC addresses,
since the destination machine is guaranteed to process the
frame. The decision as to whether the packet was truly
intended for that machine is handled by the TARP stack,
which checks the source and destination IP addresses for a

match in its IP synchronization tables. If no match is found,
the packet is discarded; if there is a match, the packet is
unwrapped, the inner header is evaluated, and if the inner
header indicates that the packet is destined for that machine
then the packet is forwarded to the IP stack—otherwise it is
discarded.

One disadvantage of purely-random MAC address hop-
ping is its impact on processing overhead; that is, since
every incident frame must be processed, the machine’s CPU
is engaged considerably more often than if the network
interface driver is discriminating and rejecting packets uni-
laterally. A compromise approach is to select either a single
fixed MAC address or a small number of MAC addresses

(e.g., one for each virtual private network on an Ethernet) to
use for MAC-hopped communications, regardless of the
actual recipient for which the message is intended. In this
mode, the network interface driver can check each incident

Page 48 of 72Page 48 of 72

US 6,502,135 B1

21

frame against one (or a few) pre-established MAC
addresses, thereby freeing the CPU from the task of
physical-layer packet discrimination. This scheme does not
betray any useful information to an interloper on the LAN;
in particular, every secure packet can already be identified
by a unique packet type in the outer header. However, since
all machines engaged in secure communications would
either be using the same MAC address, or be selecting from
a small pool of predetermined MAC addresses, the associa-
tion between a specific machine and a specific MAC address
is effectively broken.

In this scheme, the CPU will be engaged more often than
it would be in non-secure communications (or in synchro-
nized MAC address hopping), since the network interface
driver cannot always unilaterally discriminate between
secure packets that are destined for that machine, and secure
packets from other VPNs. However, the non-secure traffic is
easily eliminated at the network interface, thereby reducing
the amount of processing required of the CPU. There are
boundary conditions where these statements would not hold,
of course-e.g., if all of the traffic on the LAN is secure traffic,
then the CPU would be engaged to the same degree as it is
in the purely-random address hopping case; alternatively, if
each VPN on the LAN uses a different MAC address, then
the network interface can perfectly discriminate secure
frames destined for the local machine from those constitut-

ing other VPNs. These are engineering tradeoffs that might
be best handled by providing administrative options for the
users when installing the software and/or establishing VPNs.

Even in this scenario, however, there still remains a slight
risk of selecting MAC addresses that are being used by one
or more nodes on the LAN. One solution to this problem is
to formally assign one address or a range of addresses for
use in MAC-hopped communications. This is typically done
via an assigned numbers registration authority; e.g., in the
case of Ethernet, MAC address ranges are assigned to
vendors by the Institute of Electrical and Electronics Engi-
neers (IEEE). A formally-assigned range of addresses would
ensure that secure frames do not conflict with any properly-
configured and properly-functioning machines on the LAN.

Reference will now be made to FIGS. 12A and 12B in

order to describe the many combinations and features that
follow the inventive principles. As explained above, two
computer nodes 1201 and 1202 are assumed to be commu-
nicating over a network or communication medium such as
an Ethernet. A communication protocol in each node (1204
and 1217, respectively) contains a modified element 1205
and 1216 that performs certain functions that deviate from
the standard communication protocols. In particular, com-
puter node 1201 implements a first “hop” algorithm 1208X
that selects seemingly random source and destination IP
addresses (and, in one embodiment, seemingly random IP
header discriminator fields) in order to transmit each packet
to the other computer node. For example, node 1201 main-
tains a transmit table 1208 containing triplets of source (S),
destination (D), and discriminator fields (DS) that are
inserted into outgoing IP packet headers. The table is gen-
erated through the use of an appropriate algorithm (e.g., a
random number generator that is seeded with an appropriate
seed) that is known to the recipient node 1202. As each new
IP packet is formed, the next sequential entry out of the
sender’s transmit table 1208 is used to populate the IP
source, IP destination, and IP header extension field (e.g.,
discriminator field). It will be appreciated that the transmit
table need not be created in advance but could instead be

created on-the-fly by executing the algorithm when each
packet is formed.

Page 48 of 72

10

15

20

25

30

35

40

45

50

55

60

65

22

At the receiving node 1202, the same IP hop algorithm
1222X is maintained and used to generate a receive table
1222 that lists valid triplets of source IP address, destination
IP address, and discriminator field. This is shown by virtue
of the first five entries of transmit table 1208 matching the
second five entries of receive table 1222. (The tables may be
slightly offset at any particular time due to lost packets,
misordered packets, or transmission delays). Additionally,
node 1202 maintains a receive window W3 that represents
a list of valid IP source, IP destination, and discriminator
fields that will be accepted when received as part of an
incoming IP packet. As packets are received, window W3
slides down the list of valid entries, such that the possible
valid entries change over time. Two packets that arrive out
of order but are nevertheless matched to entries within

window W3 will be accepted; those falling outside of
window W3 will be rejected as invalid. The length of
window W3 can be adjusted as necessary to reflect network
delays or other factors.

Node 1202 maintains a similar transmit table 1221 for

creating IP packets and frames destined for node 1201 using
a potentially different hopping algorithm 1221X, and node
1201 maintains a matching receive table 1209 using the
same algorithm 1209X. As node 1202 transmits packets to
node 1201 using seemingly random IP source, IP
destination, and/or discriminator fields, node 1201 matches
the incoming packet values to those falling within window
WI maintained in its receive table. In effect, transmit table

1208 of node 1201 is synchronized (i.e., entries are selected
in the same order) to receive table 1222 of receiving node
1202. Similarly, transmit table 1221 of node 1202 is syn-
chronized to receive table 1209 of node 1201. It will be

appreciated that although a common algorithm is shown for
the source, destination and discriminator fields in FIG. 12A

(using, e.g., a different seed for each of the three fields), an
entirely different algorithm could in fact be used to establish
values for each of these fields. It will also be appreciated that
one or two of the fields can be “hopped” rather than all three
as illustrated.

In accordance with another aspect of the invention, hard-
ware or “MAC” addresses are hopped instead of or in
addition to IP addresses and/or the discriminator field in

order to improve security in a local area or broadcast-type
network. To that end, node 1201 further maintains a transmit
table 1210 using a transmit algorithm 1210X to generate
source and destination hardware addresses that are inserted

into frame headers (e.g., fields 1101A and 1101B in FIG. 11)
that are synchronized to a corresponding receive table 1224
at node 1202. Similarly, node 1202 maintains a different
transmit table 1223 containing source and destination hard-
ware addresses that is synchronized with a corresponding
receive table 1211 at node 1201. In this manner, outgoing
hardware frames appear to be originating from and going to
completely random nodes on the network, even though each
recipient can determine whether a given packet is intended
for it or not. It will be appreciated that the hardware hopping
feature can be implemented at a different level in the
communications protocol than the IP hopping feature (e.g.,
in a card driver or in a hardware card itself to improve
performance).

FIG. 12B shows three different embodiments or modes

that can be employed using the aforementioned principles.
In a first mode referred to as “promiscuous” mode, a
common hardware address (e.g., a fixed address for source
and another for destination) or else a completely random
hardware address is used by all nodes on the network, such
that a particular packet cannot be attributed to any one node.

Page 49 of 72Page 49 of 72

US 6,502,135 B1

23

Each node must initially accept all packets containing the
common (or random) hardware address and inspect the IP
addresses or discriminator field to determine whether the

packet is intended for that node. In this regard, either the IP
addresses or the discriminator field or both can be varied in

accordance with an algorithm as described above. As
explained previously, this may increase each node’s over-
head since additional processing is involved to determine
whether a given packet has valid source and destination
hardware addresses.

In a second mode referred to as “promiscuous per VPN”
mode, a small set of fixed hardware addresses are used, with
a fixed source/destination hardware address used for all

nodes communicating over a virtual private network. For
example, if there are six nodes on an Ethernet, and the
network is to be split up into two private virtual networks
such that nodes on one VPN can communicate with only the
other two nodes on its own VPN, then two sets of hardware
addresses could be used: one set for the first VPN and a
second set for the second VPN. This would reduce the

amount of overhead involved in checking for valid frames
since only packets arriving from the designated VPN would
need to be checked. IP addresses and one or more discrimi-

nator fields could still be hopped as before for secure
communication within the VPN. Of course, this solution

compromises the anonymity of the VPNs (i.e., an outsider
can easily tell what traffic belongs in which VPN, though he
cannot correlate it to a specific machine/person). It also
requires the use of a discriminator field to mitigate the
vulnerability to certain types of DoS attacks. (For example,
without the discriminator field, an attacker on the LAN
could stream frames containing the MAC addresses being
used by the VPN; rejecting those frames could lead to
excessive processing overhead. The discriminator field
would provide a low-overhead means of rejecting the false
packets.)

In a third mode referred to as “hardware hopping” mode,
hardware addresses are varied as illustrated in FIG. 12A,
such that hardware source and destination addresses are

changed constantly in order to provide non-attributable
addressing. Variations on these embodiments are of course
possible, and the invention is not intended to be limited in
any respect by these illustrative examples.
B. Extending the Address Space

Address hopping provides security and privacy. However,
the level of protection is limited by the number of addresses
in the blocks being hopped. A hopblock denotes a field or
fields modulated on a packet-wise basis for the purpose of
providing a VPN. For instance, if two nodes communicate
with IP address hopping using hopblocks of 4 addresses (2
bits) each, there would be 16 possible address-pair combi-
nations. A window of size 16 would result in most address

pairs being accepted as valid most of the time. This limita-
tion can be overcome by using a discriminator field in
addition to or instead of the hopped address fields. The
discriminator field would be hopped in exactly the same
fashion as the address fields and it would be used to

determine whether a packet should be processed by a
receiver.

Suppose that two clients, each using four-bit hopblocks,
would like the same level of protection afforded to clients
communicating via IP hopping between two A blocks (24
address bits eligible for hopping). Adiscriminator field of 20
bits, used in conjunction with the 4 address bits eligible for
hopping in the IP address field, provides this level of
protection. A 24-bit discriminator field would provide a
similar level of protection if the address fields were not

Page 49 of 72

10

15

20

25

30

35

40

45

50

55

60

65

24

hopped or ignored. Using a discriminator field offers the
following advantages: (1) an arbitrarily high level of pro-
tection can be provided, and (2) address hopping is unnec-
essary to provide protection. This may be important in
environments where address hopping would cause routing
problems.
C. Synchronization Techniques

It is generally assumed that once a sending node and
receiving node have exchanged algorithms and seeds (or
similar information sufficient to generate quasi-random
source and destination tables), subsequent communication
between the two nodes will proceed smoothly. Realistically,
however, two nodes may lose synchronization due to net-
work delays or outages, or other problems. Consequently, it
is desirable to provide means for re-establishing synchroni-
zation between nodes in a network that have lost synchro-
nization.

One possible technique is to require that each node
provide an acknowledgment upon successful receipt of each
packet and, if no acknowledgment is received within a
certain period of time, to re-send the unacknowledged
packet. This approach, however, drives up overhead costs
and may be prohibitive in high-throughput environments
such as streaming video or audio, for example.

A different approach is to employ an automatic synchro-
nizing technique that will be referred to herein as “self-
synchronization.” In this approach, synchronization infor-
mation is embedded into each packet, thereby enabling the
receiver to re-synchronize itself upon receipt of a single
packet if it determines that is has lost synchronization with
the sender. (If communications are already in progress, and
the receiver determines that it is still in sync with the sender,
then there is no need to re-synchronize.) A receiver could
detect that it was out of synchronization by, for example,
employing a “dead-man” timer that expires after a certain
period of time, wherein the timer is reset with each valid
packet. A time stamp could be hashed into the public sync
field (see below) to preclude packet-retry attacks.

In one embodiment, a “sync field” is added to the header
of each packet sent out by the sender. This sync field could
appear in the clear or as part of an encrypted portion of the
packet. Assuming that a sender and receiver have selected a
random-number generator (RNG) and seed value, this com-
bination of RNG and seed can be used to generate a
random-number sequence (RNS). The RNS is then used to
generate a sequence of source/destination IP pairs (and, if
desired, discriminator fields and hardware source and des-

tination addresses), as described above. It is not necessary,
however, to generate the entire sequence (or the first N—1
values) in order to generate the Nth random number in the
sequence; if the sequence index N is known, the random
value corresponding to that index can be directly generated
(see below). Different RNGs (and seeds) with different
fundamental periods could be used to generate the source
and destination IP sequences, but the basic concepts would
still apply. For the sake of simplicity, the following discus-
sion will assume that IP source and destination address pairs
(only) are hopped using a single RNG sequencing mecha-
nism.

In accordance with a “self-synchronization” feature, a
sync field in each packet header provides an index (i.e., a
sequence number) into the RNS that is being used to
generate IP pairs. Plugging this index into the RNG that is
being used to generate the RNS yields a specific random
number value, which in turn yields a specific IP pair. That is,
an IP pair can be generated directly from knowledge of the
RNG, seed, and index number; it is not necessary, in this

Page 50 of 72Page 50 of 72

US 6,502,135 B1

25

scheme, to generate the entire sequence of random numbers
that precede the sequence value associated with the index
number provided.

Since the communicants have presumably previously
exchanged RNGs and seeds, the only new information that
must be provided in order to generate an IP pair is the
sequence number. If this number is provided by the sender
in the packet header, then the receiver need only plug this
number into the RNG in order to generate an IP pair—and
thus verify that the IP pair appearing in the header of the
packet is valid. In this scheme, if the sender and receiver lose
synchronization, the receiver can immediately
re-synchronize upon receipt of a single packet by simply
comparing the IP pair in the packet header to the IP pair
generated from the index number. Thus, synchronized com-
munications can be resumed upon receipt of a single packet,
making this scheme ideal for multicast communications.
Taken to the extreme, it could obviate the need for synchro-
nization tables entirely; that is, the sender and receiver could
simply rely on the index number in the sync field to validate
the IP pair on each packet, and thereby eliminate the tables
entirely.

The aforementioned scheme may have some inherent
security issues associated with it—namely, the placement of
the sync field. If the field is placed in the outer header, then
an interloper could observe the values of the field and their
relationship to the IP stream. This could potentially com-
promise the algorithm that is being used to generate the
IP-address sequence, which would compromise the security
of the communications. If, however, the value is placed in
the inner header, then the sender must decrypt the inner
header before it can extract the sync value and validate the
IP pair; this opens up the receiver to certain types of
denial-of-service (DoS) attacks, such as packet replay. That
is, if the receiver must decrypt a packet before it can validate
the IP pair, then it could potentially be forced to expend a
significant amount of processing on decryption if an attacker
simply retransmits previously valid packets. Other attack
methodologies are possible in this scenario.

A possible compromise between algorithm security and
processing speed is to split up the sync value between an
inner (encrypted) and outer (unencrypted) header. That is, if
the sync value is sufficiently long, it could potentially be
split into a rapidly-changing part that can be viewed in the
clear, and a fixed (or very slowly changing) part that must be
protected. The part that can be viewed in the clear will be
called the “public sync” portion and the part that must be
protected will be called the “private sync” portion.

Both the public sync and private sync portions are needed
to generate the complete sync value. The private portion,
however, can be selected such that it is fixed or will change
only occasionally. Thus, the private sync value can be stored
by the recipient, thereby obviating the need to decrypt the
header in order to retrieve it. If the sender and receiver have

previously agreed upon the frequency with which the private
part of the sync will change, then the receiver can selectively
decrypt a single header in order to extract the new private
sync if the communications gap that has led to lost synchro-
nization has exceeded the lifetime of the previous private
sync. This should not represent a burdensome amount of
decryption, and thus should not open up the receiver to
denial-of-service attack simply based on the need to occa-
sionally decrypt a single header.

One implementation of this is to use a hashing function
with a one-to-one mapping to generate the private and public
sync portions from the sync value. This implementation is
shown in FIG. 13, where (for example) a first ISP 1302 is the

Page 50 of 72

10

15

20

25

30

35

40

45

50

55

60

65

26

sender and a second ISP 1303 is the receiver. (Other alter-
natives are possible from FIG. 13.) A transmitted packet
comprises a public or “outer” header 1305 that is not
encrypted, and a private or “inner” header 1306 that is
encrypted using for example a link key. Outer header 1305
includes a public sync portion while inner header 1306
contains the private sync portion. Areceiving node decrypts
the inner header using a decryption function 1307 in order
to extract the private sync portion. This step is necessary
only if the lifetime of the currently buffered private sync has
expired. (If the currently-buffered private sync is still valid,
then it is simply extracted from memory and “added” (which
could be an inverse hash) to the public sync, as shown in step
1308.) The public and decrypted private sync portions are
combined in function 1308 in order to generate the com-
bined sync 1309. The combined sync (1309) is then fed into
the RNG (1310) and compared to the IP address pair (1311)
to validate or reject the packet.

An important consideration in this architecture is the
concept of “future” and “past” where the public sync values
are concerned. Though the sync values, themselves, should
be random to prevent spoofing attacks, it may be important
that the receiver be able to quickly identify a sync value that
has already been sent—even if the packet containing that
sync value was never actually received by the receiver. One
solution is to hash a time stamp or sequence number into the
public sync portion, which could be quickly extracted,
checked, and discarded, thereby validating the public sync
portion itself.

In one embodiment, packets can be checked by compar-
ing the source/destination IP pair generated by the sync field
with the pair appearing in the packet header. If (1) they
match, (2) the time stamp is valid, and (3) the dead-man
timer has expired, then re-synchronization occurs;
otherwise, the packet is rejected. If enough processing
power is available, the dead-man timer and synchronization
tables can be avoided altogether, and the receiver would
simply resynchronize (e.g., validate) on every packet.

The foregoing scheme may require large-integer (e.g.,
160-bit) math, which may affect its implementation. Without
such large-integer registers, processing throughput would be
affected, thus potentially affecting security from a denial-
of-service standpoint. Nevertheless, as large-integer math
processing features become more prevalent, the costs of
implementing such a feature will be reduced.
D. Other Synchronization Schemes

As explained above, if W or more consecutive packets are
lost between a transmitter and receiver in a VPN (where W
is the window size), the receiver’s window will not have
been updated and the transmitter will be transmitting packets
not in the receiver’s window. The sender and receiver will

not recover synchronization until perhaps the random pairs
in the window are repeated by chance. Therefore, there is a
need to keep a transmitter and receiver in synchronization
whenever possible and to re-establish synchronization
whenever it is lost.

A “checkpoint” scheme can be used to regain synchroni-
zation between a sender and a receiver that have fallen out

of synchronization. In this scheme, a checkpoint message
comprising a random IP address pair is used for communi-
cating synchronization information. In one embodiment,
two messages are used to communicate synchronization
information between a sender and a recipient:

1. SYNCiREQ is a message used by the sender to
indicate that it wants to synchronize; and

2. SYNCiACK is a message used by the receiver to
inform the transmitter that it has been synchronized.

Page 51 of 72Page 51 of 72

US 6,502,135 B1

27

According to one variation of this approach, both the trans-
mitter and receiver maintain three checkpoints (see FIG. 14):

1. In the transmitter, ckptio (“checkpoint old”) is the IP
pair that was used to re-send the last SYNCiREQ
packet to the receiver. In the receiver, ckptio
(“checkpoint old”) is the IP pair that receives repeated
SYNCiREQ packets from the transmitter.

2. In the transmitter, ckptin (“checkpoint new”) is the IP
pair that will be used to send the next SYNCiREQ
packet to the receiver. In the receiver, ckptin
(“checkpoint new”) is the IP pair that receives a new
SYNCiREQ packet from the transmitter and which
causes the receiver’s window to be re-aligned, ckptio
set to ckptin, a new ckptin to be generated and a new
ckptir to be generated.

3. In the transmitter, ckptir is the IP pair that will be used
to send the next SYNCiACK packet to the receiver. In
the receiver, ckptir is the IP pair that receives a new
SYNCiACK packet from the transmitter and which
causes a new ckptin to be generated. Since SYNCi
ACK is transmitted from the receiver ISP to the sender

ISP, the transmitter ckptir refers to the ckptir of the
receiver and the receiver ckptir refers to the ckptir of
the transmitter (see FIG. 14).

When a transmitter initiates synchronization, the IP pair it
will use to transmit the next data packet is set to a prede-
termined value and when a receiver first receives a SYNCi

REQ, the receiver window is updated to be centered on the
transmitter’s next IP pair. This is the primary mechanism for
checkpoint synchronization.

Synchronization can be initiated by a packet counter (e.g.,
after every N packets transmitted, initiate a synchronization)
or by a timer (every S seconds, initiate a synchronization) or
a combination of both. See FIG. 15. From the transmitter’s

perspective, this technique operates as follows: (1) Each
transmitter periodically transmits a “sync request” message
to the receiver to make sure that it is in sync. (2) If the
receiver is still in sync, it sends back a “sync ack” message.
(If this works, no further action is necessary). (3) If no “sync
ack” has been received within a period of time, the trans-
mitter retransmits the sync request again. If the transmitter
reaches the next checkpoint without receiving a “sync ack”
response, then synchronization is broken, and the transmitter
should stop transmitting. The transmitter will continue to
send syncireqs until it receives a synciack, at which point
transmission is reestablished.

From the receiver’s perspective, the scheme operates as
follows: (1) when it receives a “sync request” request from
the transmitter, it advances its window to the next check-

point position (even skipping pairs if necessary), and sends
a “sync ack” message to the transmitter. If sync was never
lost, then the “jump ahead” really just advances to the next
available pair of addresses in the table (i.e., normal
advancement).

If an interloper intercepts the “sync request” messages
and tries to interfere with communication by sending new
ones, it will be ignored if the synchronization has been
established or it it will actually help to re-establish synchro-
nization.

A window is realigned whenever a re-synchronization
occurs. This realignment entails updating the receiver’s
window to straddle the address pairs used by the packet
transmitted immediately after the transmission of the
SYNCiREQ packet. Normally, the transmitter and receiver
are in synchronization with one another. However, when
network events occur, the receiver’s window may have to be
advanced by many steps during resynchronization. In this

Page 51 of 72

10

15

20

25

30

35

40

45

50

55

60

65

28

case, it is desirable to move the window ahead without
having to step through the intervening random numbers
sequentially. (This feature is also desirable for the auto-sync
approach discussed above).
E. Random Number Generator with a Jump-Ahead Capa-
bility

An attractive method for generating randomly hopped
addresses is to use identical random number generators in
the transmitter and receiver and advance them as packets are
transmitted and received. There are many random number
generation algorithms that could be used. Each one has
strengths and weaknesses for address hopping applications.

Linear congruential random number generators (LCRs)
are fast, simple and well characterized random number
generators that can be made to jump ahead n steps efficiently.
An LCR generates random numbers X1, X2, X3 . . . Xk
starting with seed XO using a recurrence

Xi=(aX,-,1+b)mod c, (1)

where a, b and c define a particular LCR. Another expression
for X,

Xi=((ai(XD+b)—b)/(a—1))mod c (2)

enables the jump-ahead capability. The factor ai can grow
very large even for modest i if left unfettered. Therefore
some special properties of the modulo operation can be used
to control the size and processing time required to compute
(2). (2) can be rewritten as:

X.-=(a"(Xo(a—1)+b)—b)/(a—1)mod c. (3)

It can be shown that:

(ai(X0(a—1)+b)—b)/(a—1)mod c=((ai mod((a—1)c)(XD(a—1)+b)—b)/
(a—1))mod c (4)-

(X0(a—1)+b) can be stored as (X0(a—1)+b) mod c, b as b mod
c and compute ai mod((a—1)c) (this requires O(log(i)) steps).

Apractical implementation of this algorithm would jump
a fixed distance, n, between synchronizations; this is tanta-
mount to synchronizing every n packets. The window would
commence n IP pairs from the start of the previous window.

Using ij, the random number at the jth checkpoint, as X0
and n as i, a node can store a” mod((a—1)c) once per LCR
and set

X-+1W=Xng+1)=((a” mod((a-DOGS-“(a-1)+b)-b)/(a-1))m0d c,
J (5)

to generate the random number for the j+1th synchroniza-
tion. Using this construction, a node could jump ahead an
arbitrary (but fixed) distance between synchronizations in a
constant amount of time (independent of n).

Pseudo-random number generators, in general, and LCRs,
in particular, will eventually repeat their cycles. This rep-
etition may present vulnerability in the IP hopping scheme.
An adversary would simply have to wait for a repeat to
predict future sequences. One way of coping with this
vulnerability is to create a random number generator with a
known long cycle. A random sequence can be replaced by a
new random number generator before it repeats. LCRs can
be constructed with known long cycles. This is not currently
true of many random number generators.

Random number generators can be cryptographically
insecure. An adversary can derive the RNG parameters by
examining the output or part of the output. This is true of
LCGs. This vulnerability can be mitigated by incorporating
an encryptor, designed to scramble the output as part of the
random number generator. The random number generator

Page 52 of 72Page 52 of 72

US 6,502,135 B1

29

prevents an adversary from mounting an attack—e.g., a
known plaintext attack—against the encryptor.
F. Random Number Generator Example

Consider a RNG where a=31, b=4 and c=15. For this case

equation (1) becomes:

X,=(31X,.,1+4)mod 15. (6)

If one sets X0=1, equation (6) will produce the sequence
1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 0, 4, 8, 12. This sequence
will repeat indefinitely. For a jump ahead of 3 numbers in
this sequence a”=313=29791, c*(a—1)=15*30=450 and a”
mod((a—1)c)=313 mod(15*30)=29791 mod(450)=91. Equa-
tion (5) becomes:

((91(X,.30+4)—4)/30)mod 15 (7).

Table 1 shows the jump ahead calculations from (7) . The
calculations start at 5 and jump ahead 3.

TABLE 1

91 ((91
I xi (xi30 + 4) (x30 + 4) — 4 (xi30 + 4) — 4)/30 xi+3
1 5 154 14010 467 2
4 2 64 5820 194 14
7 14 424 38580 1286 11

10 11 334 30390 1013 8
13 8 244 22200 740 5

G. Fast Packet Filter

Address hopping VPNs must rapidly determine whether a
packet has a valid header and thus requires further
processing, or has an invalid header (a hostile packet) and
should be immediately rejected. Such rapid determinations
will be referred to as “fast packet filtering.” This capability
protects the VPN from attacks by an adversary who streams
hostile packets at the receiver at a high rate of speed in the
hope of saturating the receiver’s processor (a so-called
“denial of service” attack). Fast packet filtering is an impor-
tant feature for implementing VPNs on shared media such as
Ethernet.

Assuming that all participants in a VPN share an unas-
signed “A” block of addresses, one possibility is to use an
experimental “A” block that will never be assigned to any
machine that is not address hopping on the shared medium.
“A” blocks have a 24 bits of address that can be hopped as
opposed to the 8 bits in “C” blocks. In this case a hopblock
will be the “A” block. The use of the experimental “A” block
is a likely option on an Ethernet because:

1. The addresses have no validity outside of the Ethernet
and will not be routed out to a valid outside destination

by a gateway.

2. There are 224 (~16 million) addresses that can be
hopped within each “A” block. This yields >280 trillion
possible address pairs making it very unlikely that an
adversary would guess a valid address. It also provides
acceptably low probability of collision between sepa-
rate VPNs (all VPNs on a shared medium indepen-
dently generate random address pairs from the same
“A” block).

3. The packets will not be received by someone on the
Ethernet who is not on a VPN (unless the machine is in
promiscuous mode) minimizing impact on non-VPN
computers.

The Ethernet example will be used to describe one
implementation of fast packet filtering. The ideal algorithm
would quickly examine a packet header, determine whether

Page 52 of 72

10

15

20

25

30

35

40

45

50

55

60

65

30

the packet is hostile, and reject any hostile packets or
determine which active IP pair the packet header matches.
The problem is a classical associative memory problem. A
variety of techniques have been developed to solve this
problem (hashing, B-trees etc). Each of these approaches has
its strengths and weaknesses. For instance, hash tables can
be made to operate quite fast in a statistical sense, but can
occasionally degenerate into a much slower algorithm. This
slowness can persist for a period of time. Since there is a
need to discard hostile packets quickly at all times, hashing
would be unacceptable.
H. Presence Vector Algorithm

A presence vector is a bit vector of length 2” that can be
indexed by n-bit numbers (each ranging from 0 to 2”—1).
One can indicate the presence of k n-bit numbers (not
necessarily unique), by setting the bits in the presence vector
indexed by each number to 1. Otherwise, the bits in the
presence vector are 0. An n-bit number, x, is one of the k
numbers if and only if the x‘h bit of the presence vector is 1.
A fast packet filter can be implemented by indexing the
presence vector and looking for a 1, which will be referred
to as the “test.”

For example, suppose one wanted to represent the number
135 using a presence vector. The 135th bit of the vector
would be set. Consequently, one could very quickly deter-
mine whether an address of 135 was valid by checking only
one bit: the 135th bit. The presence vectors could be created
in advance corresponding to the table entries for the IP
addresses. In effect, the incoming addresses can be used as
indices into a long vector, making comparisons very fast. As
each RNG generates a new address, the presence vector is
updated to reflect the information. As the window moves,
the presence vector is updated to zero out addresses that are
no longer valid.

There is a trade-off between efficiency of the test and the
amount of memory required for storing the presence vector
(s). For instance, if one were to use the 48 bits of hopping
addresses as an index, the presence vector would have to be
35 terabytes. Clearly, this is too large for practical purposes.
Instead, the 48 bits can be divided into several smaller fields.
For instance, one could subdivide the 48 bits into four 12-bit

fields (see FIG. 16). This reduces the storage requirement to
2048 bytes at the expense of occasionally having to process
a hostile packet. In effect, instead of one long presence
vector, the decomposed address portions must match all four
shorter presence vectors before further processing is
allowed. (If the first part of the address portion doesn’t
match the first presence vector, there is no need to check the
remaining three presence vectors).

A presence vector will have a 1 in the y‘h bit if and only
if one or more addresses with a corresponding field of y are
active. An address is active only if each presence vector
indexed by the appropriate sub-field of the address is 1.

Consider a window of 32 active addresses and 3 check-

points. A hostile packet will be rejected by the indexing of
one presence vector more than 99% of the time. A hostile
packet will be rejected by the indexing of all 4 presence
vectors more than 99.9999995% of the time. On average,
hostile packets will be rejected in less than 1.02 presence
vector index operations.

The small percentage of hostile packets that pass the fast
packet filter will be rejected when matching pairs are not
found in the active window or are active checkpoints.
Hostile packets that serendipitously match a header will be
rejected when the VPN software attempts to decrypt the
header. However, these cases will be extremely rare. There
are many other ways this method can be configured to
arbitrate the space/speed tradeoffs.

Page 53 of 72Page 53 of 72

US 6,502,135 B1

31

I. Further Synchronization Enhancements
A slightly modified form of the synchronization tech-

niques described above can be employed. The basic prin-
ciples of the previously described checkpoint synchroniza-
tion scheme remain unchanged. The actions resulting from
the reception of the checkpoints are, however, slightly
different. In this variation, the receiver will maintain
between 000 (“Out of Order”) and 2><WINDOWiSIZE+
000 active addresses (1§OoO§WINDOWiSIZE and
WINDOWiSIZEi 1). 000 and WINDOWiSIZE are
engineerable parameters, where 000 is the minimum num-
ber of addresses needed to accommodate lost packets due to
events in the network or out of order arrivals and

WINDOWiSIZE is the number of packets transmitted
before a SYNCiREQ is issued. FIG. 17 depicts a storage
array for a receiver’s active addresses.

The receiver starts with the first 2><WINDOWiSIZE

addresses loaded and active (ready to receive data). As
packets are received, the corresponding entries are marked
as “used” and are no longer eligible to receive packets. The
transmitter maintains a packet counter, initially set to 0,
containing the number of data packets transmitted since the
last initial transmission of a SYNCiREQ for which
SYNCiACK has been received. When the transmitter

packet counter equals WINDOWiSIZE, the transmitter
generates a SYNCiREQ and does its initial transmission.
When the receiver receives a SYNCiREQ corresponding to
its current CKPTiN, it generates the next WINDOWi
SIZE addresses and starts loading them in order starting at
the first location after the last active address wrapping
around to the beginning of the array after the end of the array
has been reached. The receiver’s array might look like FIG.
18 when a SYNCiREQ has been received. In this case a

couple of packets have been either lost or will be received
out of order when the SYNCiREQ is received.

FIG. 19 shows the receiver’s array after the new addresses
have been generated. If the transmitter does not receive a
SYNCiACK, it will re-issue the SYNCiREQ at regular
intervals. When the transmitter receives a SYNCiACK, the
packet counter is decremented by WINDOWiSIZE. If the
packet counter reaches 2xWINDOWiSIZE—OoO then the
transmitter ceases sending data packets until the appropriate
SYNCiACK is finally received. The transmitter then
resumes sending data packets. Future behavior is essentially
a repetition of this initial cycle. The advantages of this
approach are:

1. There is no need for an efficient jump ahead in the
random number generator,

2. No packet is ever transmitted that does not have a
corresponding entry in the receiver side

3. No timer based re-synchronization is necessary. This is
a consequence of 2.

4. The receiver will always have the ability to accept data
messages transmitted within 000 messages of the most
recently transmitted message.

J. Distributed Transmission Path Variant

Another embodiment incorporating various inventive
principles is shown in FIG. 20. In this embodiment, a
message transmission system includes a first computer 2001
in communication with a second computer 2002 through a
network 2011 of intermediary computers. In one variant of
this embodiment, the network includes two edge routers
2003 and 2004 each of which is linked to a plurality of
Internet Service Providers (ISPs) 2005 through 2010. Each
ISP is coupled to a plurality of other ISPs in an arrangement
as shown in FIG. 20, which is a representative configuration
only and is not intended to be limiting. Each connection

Page 53 of 72

10

15

20

25

30

35

40

45

50

55

60

65

32

between ISPs is labeled in FIG. 20 to indicate a specific
physical transmission path (e.g., AD is a physical path that
links ISP A (element 2005) to ISP D (element 2008)).
Packets arriving at each edge router are selectively trans-
mitted to one of the ISPs to which the router is attached on

the basis of a randomly or quasi-randomly selected basis.
As shown in FIG. 21, computer 2001 or edge router 2003

incorporates a plurality of link transmission tables 2100 that
identify, for each potential transmission path through the
network, valid sets of IP addresses that can be used to
transmit the packet. For example, AD table 2101 contains a
plurality of IP source/destination pairs that are randomly or
quasi-randomly generated. When a packet is to be transmit-
ted from first computer 2001 to second computer 2002, one
of the link tables is randomly (or quasi-randomly) selected,
and the next valid source/destination address pair from that
table is used to transmit the packet through the network. If
path AD is randomly selected, for example, the next source/
destination IP address pair (which is pre-determined to
transmit between ISPA (element 2005) and ISP B (element
2008)) is used to transmit the packet. If one of the trans-
mission paths becomes degraded or inoperative, that link
table can be set to a “down” condition as shown in table

2105, thus preventing addresses from being selected from
that table. Other transmission paths would be unaffected by
this broken link.

3. CONTINUATION-IN—PART IMPROVEMENTS

The following describes various improvements and fea-
tures that can be applied to the embodiments described
above. The improvements include: (1) a load balancer that
distributes packets across different transmission paths
according to transmission path quality; (2) a DNS proxy
server that transparently creates a virtual private network in
response to a domain name inquiry; (3) a large-to-small link
bandwidth management feature that prevents denial-of-
service attacks at system chokepoints; (4) a traffic limiter
that regulates incoming packets by limiting the rate at which
a transmitter can be synchronized with a receiver; and (5) a
signaling synchronizer that allows a large number of nodes
to communicate with a central node by partitioning the
communication function between two separate entities. Each
is discussed separately below.
A. Load Balancer

Various embodiments described above include a system in
which a transmitting node and a receiving node are coupled
through a plurality of transmission paths, and wherein
successive packets are distributed quasi-randomly over the
plurality of paths. See, for example, FIGS. 20 and 21 and
accompanying description. The improvement extends this
basic concept to encompass distributing packets across
different paths in such a manner that the loads on the paths
are generally balanced according to transmission link qual-
ity.

In one embodiment, a system includes a transmitting node
and a receiving node that are linked via a plurality of
transmission paths having potentially varying transmission
quality. Successive packets are transmitted over the paths
based on a weight value distribution function for each path.
The rate that packets will be transmitted over a given path
can be different for each path. The relative “health” of each
transmission path is monitored in order to identify paths that
have become degraded. In one embodiment, the health of
each path is monitored in the transmitter by comparing the
number of packets transmitted to the number of packet
acknowledgements received. Each transmission path may
comprise a physically separate path (e.g., via dial-up phone

Page 54 of 72Page 54 of 72

US 6,502,135 B1

33

line, computer network, router, bridge, or the like), or may
comprise logically separate paths contained within a broad-
band communication medium (e.g., separate channels in an
FDM, TDM, CDMA, or other type of modulated or
unmodulated transmission link).

When the transmission quality of a path falls below a
predetermined threshold and there are other paths that can
transmit packets, the transmitter changes the weight value
used for that path, making it less likely that a given packet
will be transmitted over that path. The weight will preferably
be set no lower than a minimum value that keeps nominal
traffic on the path. The weights of the other available paths
are altered to compensate for the change in the affected path.
When the quality of a path degrades to where the transmitter
is turned off by the synchronization function (i.e., no packets
are arriving at the destination), the weight is set to zero. If
all transmitters are turned off, no packets are sent.

Conventional TCP/IP protocols include a “throttling”
feature that reduces the transmission rate of packets when it
is determined that delays or errors are occurring in trans-
mission. In this respect, timers are sometimes used to
determine whether packets have been received. These con-
ventional techniques for limiting transmission of packets,
however, do not involve multiple transmission paths
between two nodes wherein transmission across a particular
path relative to the others is changed based on link quality.

According to certain embodiments, in order to damp
oscillations that might otherwise occur if weight distribu-
tions are changed drastically (e.g., according to a step
function), a linear or an exponential decay formula can be
applied to gradually decrease the weight value over time that
a degrading path will be used. Similarly, if the health of a
degraded path improves, the weight value for that path is
gradually increased.

Transmission link health can be evaluated by comparing
the number of packets that are acknowledged within the
transmission window (see embodiments discussed above) to
the number of packets transmitted within that window and
by the state of the transmitter (i.e., on or off). In other words,
rather than accumulating general transmission statistics over
time for a path, one specific implementation uses the “win-
dowing” concepts described above to evaluate transmission
path health.

The same scheme can be used to shift virtual circuit paths
from an “unhealthy” path to a “healthy” one, and to select
a path for a new virtual circuit.

FIG. 22A shows a flowchart for adjusting weight values
associated with a plurality of transmission links. It is
assumed that software executing in one or more computer
nodes executes the steps shown in FIG. 22A. It is also
assumed that the software can be stored on a computer-
readable medium such as a magnetic or optical disk for
execution by a computer.

Beginning in step 2201, the transmission quality of a
given transmission path is measured. As described above,
this measurement can be based on a comparison between the
number of packets transmitted over a particular link to the
number of packet acknowledgements received over the link
(e.g., per unit time, or in absolute terms). Alternatively, the
quality can be evaluated by comparing the number of
packets that are acknowledged within the transmission win-
dow to the number of packets that were transmitted within
that window. In yet another variation, the number of missed
synchronization messages can be used to indicate link
quality. Many other variations are of course possible.

In step 2202, a check is made to determine whether more
than one transmitter (e.g., transmission path) is turned on. If
not, the process is terminated and resumes at step 2201.

Page 54 of 72

10

15

20

25

30

35

40

45

50

55

60

65

34

In step 2203, the link quality is compared to a given
threshold (e.g., 50%, or any arbitrary number). If the quality
falls below the threshold, then in step 2207 a check is made
to determine whether the weight is above a minimum level
(e.g., 1%). If not, then in step 2209 the weight is set to the
minimum level and processing resumes at step 2201. If the
weight is above the minimum level, then in step 2208 the
weight is gradually decreased for the path, then in step 2206
the weights for the remaining paths are adjusted accordingly
to compensate (e.g., they are increased).

If in step 2203 the quality of the path was greater than or
equal to the threshold, then in step 2204 a check is made to
determine whether the weight is less than a steady-state
value for that path. If so, then in step 2205 the weight is
increased toward the steady-state value, and in step 2206 the
weights for the remaining paths are adjusted accordingly to
compensate (e.g., they are decreased). If in step 2204 the
weight is not less than the steady-state value, then process-
ing resumes at step 2201 without adjusting the weights.

The weights can be adjusted incrementally according to
various functions, preferably by changing the value gradu-
ally. In one embodiment, a linearly decreasing function is
used to adjust the weights; according to another
embodiment, an exponential decay function is used. Gradu-
ally changing the weights helps to damp oscillators that
might otherwise occur if the probabilities were abruptly.

Although not explicitly shown in FIG. 22A the process
can be performed only periodically (e.g., according to a time
schedule), or it can be continuously run, such as in a
background mode of operation. In one embodiment, the
combined weights of all potential paths should add up to
unity (e.g., when the weighting for one path is decreased, the
corresponding weights that the other paths will be selected
will increase).

Adjustments to weight values for other paths can be
prorated. For example, a decrease of 10% in weight value for
one path could result in an evenly distributed increase in the
weights for the remaining paths. Alternatively, weightings
could be adjusted according to a weighted formula as
desired (e.g., favoring healthy paths over less healthy paths).
In yet another variation, the difference in weight value can
be amortized over the remaining links in a manner that is
proportional to their traffic weighting.

FIG. 22B shows steps that can be executed to shut down
transmission links where a transmitter turns off. In step
2210, a transmitter shut-down event occurs. In step 2211, a
test is made to determine whether at least one transmitter is

still turned on. If not, then in step 2215 all packets are
dropped until a transmitter turns on. If in step 2211 at least
one transmitter is turned on, then in step 2212 the weight for
the path is set to zero, and the weights for the remaining
paths are adjusted accordingly.

FIG. 23 shows a computer node 2301 employing various
principles of the above-described embodiments. It is
assumed that two computer nodes of the type shown in FIG.
23 communicate over a plurality of separate physical trans-
mission paths. As shown in FIG. 23, four transmission paths
X1 through X4 are defined for communicating between the
two nodes. Each node includes a packet transmitter 2302
that operates in accordance with a transmit table 2308 as
described above. (The packet transmitter could also operate
without using the IP-hopping features described above, but
the following description assumes that some form of hop-
ping is employed in conjunction with the path selection
mechanism.). The computer node also includes a packet
receiver 2303 that operates in accordance with a receive
table 2309, including a moving window W that moves as

US 6,502,135 B1

35

valid packets are received. Invalid packets having source
and destination addresses that do not fall within window W

are rejected.
As each packet is readied for transmission, source and

destination IP addresses (or other discriminator values) are
selected from transmit table 2308 according to any of the
various algorithms described above, and packets containing
these source/destination address pairs, which correspond to
the node to which the four transmission paths are linked, are
generated to a transmission path switch 2307. Switch 2307,
which can comprise a software function, selects from one of
the available transmission paths according to a weight
distribution table 2306. For example, if the weight for path
X1 is 0.2, then every fifth packet will be transmitted on path
X1. Asimilar regime holds true for the other paths as shown.
Initially, each link’s weight value can be set such that it is
proportional to its bandwidth, which will be referred to as its
"steady-state" value.

Packet receiver 2303 generates an output to a link quality
measurement function 2304 that operates as described above
to determine the quality of each transmission path. (The
input to packet receiver 2303 for receiving incoming packets
is omitted for clarity). Link quality measurement function
2304 compares the link quality to a threshold for each
transmission link and, if necessary, generates an output to
weight adjustment function 2305. If a weight adjustment is
required, then the weights in table 2306 are adjusted
accordingly, preferably according to a gradual (e.g., linearly
or exponentially declining) function. In one embodiment,
the weight values for all available paths are initially set to
the same value, and only when paths degrade in quality are
the weights changed to rellect difl‘erences.

Link quality measurement function 2304 can be made to
operate as part of a synchronizer function as described
above. That is, if resynchronization occurs and the receiver
detects that synchronization has been lost (e.g., resulting in
the synchronization window W being advanced out of
sequence), that fact can be used to drive link quality mea-
surement function 2304. According to one embodiment,
load balancing is performed using information garnered
during the normal synchronization, augmented slightly to
communicate link health from the receiver to the transmitter.

The receiver maintains a count, MESS R(W). of the mes-
sages received in synchronization window W. When it
receives a synchronization request (SYNC_REQ) corre-
sponding to the end of window W, the receiver includes
counter MESS_R in the resulting synchronization acknowl-
edgement (SYNC_ACK) sent back to the transmitter. This
allows the transmitter to compare messages sent to messages
received in order to asses the health of the link.

If synchronization is completely lost, weight adjustment
function 2305 decreases the weight value on the atl'ected
path to zero. When synchronization is regained, the weight
value for the affected path is gradually increased to its
original value. Alternatively, link quality can be measured
by evaluating the length of time required for the receiver to
acknowledge a synchronization request. In one embodiment,
separate transmit and receive tables are used for each
transmission path.

When the transmitter receives a SYNC_ACK, the

MESS R is compared with the number of messages trans-
mitted in a window (MESSiT). When the transmitter
receives a SYNC_ACK, the traffic probabilities will be
examined and adjusted if necessary. MESS_R is compared
with the number of messages transmitted in a window
(MESS_T). There are two possibilities:

1. If MESS R is less than a threshold value, THRESH,

then the link will be deemed to be unhealthy. If the

Page 55 of 72

10

15

45

Ln LII

60

65

36

transmitter was turned oil", the transmitter is turned on

and the weight P for that link will be set to a minimum
value MIN. This will keep a trickle of traflic on the link
for monitoring purposes until it recovers. If the trans-
mitter was turned on, the weight P for that link will be
set to:

P‘-aleN+(1—a)xP (1)

Equation 1 will exponentially damp the traffic weight value
to MIN during sustained periods of degraded service.

2. If MESS R for a link is greater than or equal to
THRESH, the link will be deemed healthy. If the
weight P for that link is greater than or equal to the
steady state value S for that link, then P is left unaltered.
If the weight P for that link is less than TIIRESII then
P will be set to:

P’=|3x$+(1—B)XP 3)

where [i is a parameter such that 0<-B<-l that determines
the damping rate of P.

Equation 2 will increase the traffic weight to S during
sustained periods of acceptable service in a damped expo-
nential fashion.

A detailed example will now be provided with reference
to FIG. 24. As shown in FIG. 24, a first computer 240]
communicates with a second computer 2402 through two
routers 2403 and 2404. Each router is coupled to the other
router through three transmission links. As described above,
these may be physically diverse links or logical links
(including virtual private networks).

Suppose that a first link [.1 can sustain a transmission
bandwidth of 100 Mb/‘s and has a window size of 32; link [2
can sustain 75 Mb/s and has a window size of 24; and link
[.3 can sustain 25 Mb/s and has a window size of 8. The

combined links can thus sustain 200 Mb/s. The steady state
traffic weights are 0.5 for link L1; 0375 for link L2, and
0.125 for link L3. MIN=1 Mb/s, '1'HRl:'.SH=0.8 MESS '1'

for each link, (it-0.75 and [i-O.5. These trafiic weights will
remain stable until a link stops for synchronization or reports
a number of packets received less than its THRESH. Con-
sider the following sequence of events:

1. Link Ll receives a SYNC_ACK containing a
MESS_R of 24, indicating that only 75% of the
MESS T (32) messages transmitted in the last window
were successfully received. Link 1 would be below
THRESH (0.8). Consequently, link Ll’s traflic weight
value would be reduced to 0.12825, while link L2’s
traffic weight value would be increased to 0.65812 and
link [3’s traflic weight value would be increased to
0.217938.

. Link L2 and 1.3 remained healthy and link Ll stopped
to synchronize. Then link Ll’s traffic weight value
would be set to 0, link L2’s trafiic weight value would
be set to 0.75, and link L33’s tralfic weight value would
be set to 0.25.

. Link L1 finally received a SYNCiACK containing a
MESS_R of 0 indicating that none of the MESS_T
(32) messages transmitted in the last window were
successfully received. Link Ll would be below
THRESH. Link Ll’s traffic weight value would be
increased to 0.005, link L2's trafllc weight value would
be decreased to 0.74625, and link L3’s traffic weight
value would be decreased to 0.24875.

4. Link Ll received a SYNC ACK containing a
MESS_R of 32 indicating that 100% of the MESS_T

[Q

U)

Page 56 of 72Page 56 of 72

US 6,502,135 B1

37

(32) messages transmitted in the last window were
successfully received. Link L1 would be above
THRESH. Link Ll’s traffic weight value would be
increased to 0.2525, while link L2’s traffic weight value
would be decreased to 0.560625 and link L3’s traffic

weight value would be decreased to 0.186875.
5. Link L1 received a SYNCiACK containing a

MESSiR of 32 indicating that 100% of the MESSiT
(32) messages transmitted in the last window were
successfully received. Link L1 would be above
THRESH. Link Ll’s traffic weight value would be
increased to 0.37625; link L2’s traffic weight value
would be decreased to 0.4678125, and link L3’s traffic
weight value would be decreased to 0.1559375.

6. Link L1 remains healthy and the traffic probabilities
approach their steady state traffic probabilities.

B. Use of a DNS Proxy to Transparently Create Virtual
Private Networks

Asecond improvement concerns the automatic creation of
a virtual private network (VPN) in response to a domain-
name server look-up function.

Conventional Domain Name Servers (DNSs) provide a
look-up function that returns the IP address of a requested
computer or host. For example, when a computer user types
in the web name “Yahoo.com,” the user’s web browser
transmits a request to a DNS, which converts the name into
a four-part IP address that is returned to the user’s browser
and then used by the browser to contact the destination web
site.

This conventional scheme is shown in FIG. 25. A user’s

computer 2501 includes a client application 2504 (for
example, a web browser) and an IP protocol stack 2505.
When the user enters the name of a destination host, a

request DNS REQ is made (through IP protocol stack 2505)
to a DNS 2502 to look up the IP address associated with the
name. The DNS returns the IP address DNS RESP to client

application 2504, which is then able to use the IP address to
communicate with the host 2503 through separate transac-
tions such as PAGE REQ and PAGE RESP.

In the conventional architecture shown in FIG. 25, nefari-
ous listeners on the Internet could intercept the DNS REQ
and DNS RESP packets and thus learn what IP addresses the
user was contacting. For example, if a user wanted to set up
a secure communication path with a web site having the
name “Target.com,” when the user’s browser contacted a
DNS to find the IP address for that web site, the true IP
address of that web site would be revealed over the Internet

as part of the DNS inquiry. This would hamper anonymous
communications on the Internet.

One conventional scheme that provides secure virtual
private networks over the Internet provides the DNS server
with the public keys of the machines that the DNS server has
the addresses for. This allows hosts to retrieve automatically
the public keys of a host that the host is to communicate with
so that the host can set up a VPN without having the user
enter the public key of the destination host. One implemen-
tation of this standard is presently being developed as part of
the FreeS/WAN project(RFC 2535).

The conventional scheme suffers from certain drawbacks.

For example, any user can perform a DNS request.
Moreover, DNS requests resolve to the same value for allusers.

According to certain aspects of the invention, a special-
ized DNS server traps DNS requests and, if the request is
from a special type of user (e.g., one for which secure
communication services are defined), the server does not
return the true IP address of the target node, but instead

Page 56 of 72

10

15

20

25

30

35

40

45

50

55

60

65

38

automatically sets up a virtual private network between the
target node and the user. The VPN is preferably imple-
mented using the IP address “hopping” features of the basic
invention described above, such that the true identity of the
two nodes cannot be determined even if packets during the
communication are intercepted. For DNS requests that are
determined to not require secure services (e.g., an unregis-
tered user), the DNS server transparently “passes through”
the request to provide a normal look-up function and return
the IP address of the target web server, provided that the
requesting host has permissions to resolve unsecured sites.
Different users who make an identical DNS request could be
provided with different results.

FIG. 26 shows a system employing various principles
summarized above. A user’s computer 2601 includes a
conventional client (e.g., a web browser) 2605 and an IP
protocol stack 2606 that preferably operates in accordance
with an IP hopping function 2607 as outlined above. A
modified DNS server 2602 includes a conventional DNS

server function 2609 and a DNS proxy 2610. A gatekeeper
server 2603 is interposed between the modified DNS server
and a secure target site 2704. An “unsecure” target site 2611
is also accessible via conventional IP protocols.

According to one embodiment, DNS proxy 2610 inter-
cepts all DNS lookup functions from client 2605 and deter-
mines whether access to a secure site has been requested. If
access to a secure site has been requested (as determined, for
example, by a domain name extension, or by reference to an
internal table of such sites), DNS proxy 2610 determines
whether the user has sufficient security privileges to access
the site. If so, DNS proxy 2610 transmits a message to
gatekeeper 2603 requesting that a virtual private network be
created between user computer 2601 and secure target site
2604. In one embodiment, gatekeeper 2603 creates “hop-
blocks” to be used by computer 2601 and secure target site
2604 for secure communication. Then, gatekeeper 2603
communicates these to user computer 2601. Thereafter,
DNS proxy 2610 returns to user computer 2601 the resolved
address passed to it by the gatekeeper (this address could be
different from the actual target computer) 2604, preferably
using a secure administrative VPN. The address that is
returned need not be the actual address of the destination

computer.
Had the user requested lookup of a non-secure web site

such as site 2611, DNS proxy would merely pass through to
conventional DNS server 2609 the look-up request, which
would be handled in a conventional manner, returning the IP
address of non-secure web site 2611. If the user had

requested lookup of a secure web site but lacked credentials
to create such a connection, DNS proxy 2610 would return
a “host unknown” error to the user. In this manner, different
users requesting access to the same DNS name could be
provided with different look-up results.

Gatekeeper 2603 can be implemented on a separate
computer (as shown in FIG. 26) or as a function within
modified DNS server 2602. In general, it is anticipated that
gatekeeper 2703 facilitates the allocation and exchange of
information needed to communicate securely, such as using
“hopped” IP addresses. Secure hosts such as site 2604 are
assumed to be equipped with a secure communication
function such as an IP hopping function 2608.

It will be appreciated that the functions of DNS proxy
2610 and DNS server 2609 can be combined into a single
server for convenience. Moreover, although element 2602 is
shown as combining the functions of two servers, the two
servers can be made to operate independently.

FIG. 27 shows steps that can be executed by DNS proxy
server 2610 to handle requests for DNS look-up for secure

US 6,502,135 B1

39

hosts. In step 2701, a DNS look-up request is received for a
target host. In step 2702, a check is made to determine
whether access to a secure host was requested. If not, then
in step 2703 the DNS request is passed to conventional DNS
server 2609, which looks up the IP address of the target site
and returns it to the user’s application for further processing.

In step 2702, if access to a secure host was requested, then
in step 2704 a further check is made to determine whether
the user is authorized to connect to the secure host. Such a

check can be made with reference to an internally stored list
of authorized IP addresses, or can be made by communi-
cating with gatekeeper 2603 (e.g., over an “administrative"
VI’N that is secure). It will be appreciated that different
levels of security can also be provided for different catego-
ries of hosts. For example, some sites may be designated as
having a certain security level, and the security level of the
user requesting access must match that security level. The
user’s security level can also be determined by transmitting
a request message back to the user’s computer requiring that
it prove that it has sufiicient privileges.

If the user is not authorized to access the secure site, then
a "host unknown” message is returned (step 2705). If the
user has sufficient security privileges, then in step 2706 a
secure VPN is established between the user’s computer and
the secure target site. As described above, this is preferably
done by allocating a hopping regime that will be carried out
between the user’s computer and the secure target site, and
is preferably performed transparently to the user (i.e., the
user need not be involved in creating the secure link). As
described in various embodimean of this application, any of
various fields can be "hopped” (e.g., IP sourcefdestination
addresses; a field in the header; etc.) in order to communi-
cate securely.

Some or all of the security functions can be embedded in
gatekeeper 2603, such that it handles all requests to connect
to secure sites. In this embodiment, DNS proxy 2610
communicates with gatekeeper 2603 to determine
(preferably over a secure administrative VPN) whether the
user has access to a particular web site. Various scenarios for
implementing these features are described by way of
example below:

Scenario #1: Client has permission to access target
computer, and gatekeeper has a rule to make a VPN for the
client. In this scenario, the client’s DNS request would be
received by the DNS proxy server 2610, which would
forward the request to gatekeeper 2603. The gatekeeper
would establish a VPN between the client and the requested
target. The gatekeeper would pmvide the address of the
destination to the DNS proxy, which would then return the
resolved name as a result. The resolved address can be
transmitted back to the client in a secure administrative
VPN.

Scenario #2: Client does not have permission to access
target computer. In this scenario, the client’s DNS request
would be received by the DNS proxy server 2610, which
would forward the request to gatekeeper 2603. The gate—
keeper would reject the request, informing I)NS proxy
server 2610 that it was unable to find the target computer.
The DNS proxy 2610 would then return a “host unknown"
error message to the client.

Scenario #3: Client has permission to connect using a
normal non-VPN link, and the gatekeeper does not have a
rule to set up a VPN for the client to the target site. In this
scenario, the client’s DNS request is received by DNS proxy
server 2610, which would check its rules and determine that

no VPN is needed. Gatekeeper 2603 would then inform the
DNS proxy server to forward the request to conventional

Page 57 of 72

IO

15

4S

Ln LII

60

65

40

DNS server 2609, which would resolve the request and
return the result to the DNS proxy server and then back to
the client.

Scenario #4: Client does not have permission to establish
a normal/'non-VPN link, and the gatekeeper does not have a
rule to make a VPN for the client to the target site. In this
scenario, the DNS proxy server would receive the client’s
DNS request and forward it to gatekeeper 2603. Gatekeeper
2603 would determine that no special VPN was needed, but
that the client is not authorized to communicate with non-

VPN members. The gatekeeper would reject the request,
causing DNS proxy server 2610 to return an error message
to the client.

C. Large Link to Small Link Bandwidth Management
One feature of the basic architecture is the ability to

prevent so-called "denial of service” attacks that can occur
if a computer hacker floods a known Internet node with
packets, thus preventing the node from communicating with
other nodes. Because IP addresses or other fields are

“hopped” and packets arriving with invalid addresses are
quickly discarded, Internet nodes are protected against
flooding targeted at a single IP address.

In a system in which a computer is coupled through a link
having a limited bandwidth (e.g., an edge router) to a node
that can support a much higher-bandwidth link (e.g., an
Internet Service Provider), a potential weakness could be
exploited by a determined hacker. Referring to FIG. 28,
suppose that a first host computer 2801 is communicating
with a second host computer 2804 using the IP address
hopping principles described above. The first host computer
is coupled through an edge router 2802 to an Internet Service
Provider (IS?) 2803 through a low bandwidth link (LOW
BW), and is in turn coupled to second host computer 2804
through parts of the Internet through a high bandwidth link
(IIIGII BW). In this architecture, the ISP is able to support
a high bandwidth to the internet, but a much lower band-
width to the edge router 2802.

Suppose that a computer hacker is able to transmit a large
quantity of dummy packets addressed to first host computer
2801 across high bandwidth link HIGH BW. Normally, host
computer 2801 would be able to quickly reject the packets
since they would not fall within the acceptance window
permitted by the IP address hopping scheme. However,
because the packets must travel across low bandwidth link
LOW BW, the packets overwhelm the lower bandwidth link
before they are received by host computer 2801.
Consequently, the link to host computer 2801 is effectively
flooded before the packets can be discarded.

According to one inventive improvement, a "link guard"
function 2805 is inserted into the high-bandwidth node (e.g.,
ISP 2803) that quickly discards packets destined for a
low-bandwidth target node if they are not valid packets.
Each packet destined for a low-bandwidth node is crypto-
graphically authenticated to determine whether it belongs to
a VPN. If it is not a valid VPN packet, the packet is
discarded at the high—bandwidth node. If the packet is
authenticated as belonging to a VPN, the packet is passed
with high preference. If the packet is a valid non-VPN
packet, it is passed with a lower quality of service (e.g.,
lower priority).

In one embodiment, the ISP distinguishes between VPN
and non-VPN packets using the protocol of the packet. In the
case of IPSEC [rfc 2401], the packets have IP protocols 420
and 421. In the case of the TARP VPN, the packets will have
an IP protocol that is not yet defined. The ISP’s link guard,
2805, maintains a table of valid VPNs which it uses to

validate whether VPN packets are cryptographically valid.

Page 58 of 72Page 58 of 72

US 6,502,135 B1

41

According to one embodiment, packets that do not fall
within any hop windows used by nodes on the low-
bandwidth link are rejected, or are sent with a lower quality
of service. One approach for doing this is to provide a copy
of the IP hopping tables used by the low-bandwidth nodes to
the high-bandwidth node, such that both the high-bandwidth
and low-bandwidth nodes track hopped packets (e.g., the
high-bandwidth node moves its hopping window as valid
packets are received). In such a scenario, the high-
bandwidth node discards packets that do not fall within the
hopping window before they are transmitted over the low-
bandwidth link. Thus, for example, ISP 2903 maintains a
copy 2910 of the receive table used by host computer 2901.
Incoming packets that do not fall within this receive table are
discarded. According to a different embodiment, link guard
2805 validates each VPN packet using a keyed hashed
message authentication code (HMAC) [rfc 2104].

According to another embodiment, separate VPNs (using,
for example, hopblocks) can be established for communi-
cating between the low-bandwidth node and the high-
bandwidth node (i.e., packets arriving at the high-bandwidth
node are converted into different packets before being
transmitted to the low-bandwidth node).

As shown in FIG. 29, for example, suppose that a first host
computer 2900 is communicating with a second host com-
puter 2902 over the Internet, and the path includes a high
bandwidth link HIGH BW to an ISP 2901 and a low

bandwidth link LOW BW through an edge router 2904. In
accordance with the basic architecture described above, first
host computer 2900 and second host computer 2902 would
exchange hopblocks (or a hopblock algorithm) and would be
able to create matching transmit and receive tables 2905,
2906, 2912 and 2913. Then in accordance with the basic
architecture, the two computers would transmit packets
having seemingly random IP source and destination
addresses, and each would move a corresponding hopping
window in its receive table as valid packets were received.

Suppose that a nefarious computer hacker 2903 was able
to deduce that packets having a certain range of IP addresses
(e.g., addresses 100 to 200 for the sake of simplicity) are
being transmitted to ISP 2901, and that these packets are
being forwarded over a low-bandwidth link. Hacker com-
puter 2903 could thus “flood” packets having addresses
falling into the range 100 to 200, expecting that they would
be forwarded along low bandwidth link LOW BW, thus
causing the low bandwidth link to become overwhelmed.
The fast packet reject mechanism in first host computer 3000
would be of little use in rejecting these packets, since the low
bandwidth link was effectively jammed before the packets
could be rejected. In accordance with one aspect of the
improvement, however, VPN link guard 2911 would prevent
the attack from impacting the performance of VPN traffic
because the packets would either be rejected as invalid VPN
packets or given a lower quality of service than VPN traffic
over the lower bandwidth link. A denial-of—service flood

attack could, however, still disrupt non-VPN traffic.
According to one embodiment of the improvement, ISP

2901 maintains a separate VPN with first host computer
2900, and thus translates packets arriving at the ISP into
packets having a different IP header before they are trans-
mitted to host computer 2900. The cryptographic keys used
to authenticate VPN packets at the link guard 2911 and the
cryptographic keys used to encrypt and decrypt the VPN
packets at host 2902 and host 2901 can be different, so that
link guard 2911 does not have access to the private host data;
it only has the capability to authenticate those packets.

According to yet a third embodiment, the low-bandwidth
node can transmit a special message to the high-bandwidth

Page 58 of 72

10

15

20

25

30

35

40

45

50

55

60

65

42

node instructing it to shut down all transmissions on a
particular IP address, such that only hopped packets will
pass through to the low-bandwidth node. This embodiment
would prevent a hacker from flooding packets using a single
IP address. According to yet a fourth embodiment, the
high-bandwidth node can be configured to discard packets
transmitted to the low-bandwidth node if the transmission

rate exceeds a certain predetermined threshold for any given
IP address; this would allow hopped packets to go through.
In this respect, link guard 2911 can be used to detect that the
rate of packets on a given IP address are exceeding a
threshold rate; further packets addressed to that same IP
address would be dropped or transmitted at a lower priority
(e.g., delayed).
D. Traffic Limiter

In a system in which multiple nodes are communicating
using “hopping” technology, a treasonous insider could
internally flood the system with packets. In order to prevent
this possibility, one inventive improvement involves setting
up “contracts” between nodes in the system, such that a
receiver can impose a bandwidth limitation on each packet
sender. One technique for doing this is to delay acceptance
of a checkpoint synchronization request from a sender until
a certain time period (e.g., one minute) has elapsed. Each
receiver can effectively control the rate at which its hopping
window moves by delaying “SYNC ACK” responses to
“SYNCiREQ” messages.

Asimple modification to the checkpoint synchronizer will
serve to protect a receiver from accidental or deliberate
overload from an internally treasonous client. This modifi-
cation is based on the observation that a receiver will not

update its tables until a SYNCiREQ is received on hopped
address CKPTiN. It is a simple matter of deferring the
generation of a new CKPTiN until an appropriate interval
after previous checkpoints.

Suppose a receiver wished to restrict reception from a
transmitter to 100 packets a second, and that checkpoint
synchronization messages were triggered every 50 packets.
A compliant transmitter would not issue new SYNCiREQ
messages more often than every 0.5 seconds. The receiver
could delay a non-compliant transmitter from synchronizing
by delaying the issuance of CKPTiN for 0.5 second after
the last SYNCiREQ was accepted.

In general, if M receivers need to restrict N transmitters
issuing new SYNCiREQ messages after every W messages
to sending R messages a second in aggregate, each receiver
could defer issuing a new CKPTiN until MxNxW/R sec-
onds have elapsed since the last SYNCiREQ has been
received and accepted. If the transmitter exceeds this rate
between a pair of checkpoints, it will issue the new check-
point before the receiver is ready to receive it, and the
SYNCiREQ will be discarded by the receiver. After this,
the transmitter will re-issue the SYNCiREQ every Ti
seconds until it receives a SYNCiACK. The receiver will

eventually update CKPTiN and the SYNCiREQ will be
acknowledged. If the transmission rate greatly exceeds the
allowed rate, the transmitter will stop until it is compliant. If
the transmitter exceeds the allowed rate by a little, it will
eventually stop after several rounds of delayed synchroni-
zation until it is in compliance. Hacking the transmitter’s
code to not shut off only permits the transmitter to lose the
acceptance window. In this case it can recover the window
and proceed only after it is compliant again.

Two practical issues should be considered when imple-
menting the above scheme:

1. The receiver rate should be slightly higher than the
permitted rate in order to allow for statistical fluctua-
tions in traffic arrival times and non-uniform load

balancing.

Page 59 of 72Page 59 of 72

US 6,502,135 B1

43

2. Since a transmitter will rightfully continue to transmit
for a period after a SYNCiREQ is transmitted, the
algorithm above can artificially reduce the transmitter’s
bandwidth. If events prevent a compliant transmitter
from synchronizing for a period (e.g. the network
dropping a SYNCiREQ or a SYNCiACK) a SYNCi
REQ will be accepted later than expected. After this,
the transmitter will transmit fewer than expected mes-
sages before encountering the next checkpoint. The
new checkpoint will not have been activated and the
transmitter will have to retransmit the SYNCiREQ.

This will appear to the receiver as if the transmitter is
not compliant. Therefore, the next checkpoint will be
accepted late from the transmitter’s perspective. This
has the effect of reducing the transmitter’s allowed
packet rate until the transmitter transmits at a packet
rate below the agreed upon rate for a period of time.

To guard against this, the receiver should keep track of the
times that the last C SYNCiREQs were received and

accepted and use the minimum of M><N><W/R seconds after
the last SYNCiREQ has been received and accepted,
2><M><N><W/R seconds after next to the last SYNCiREQ

has been received and accepted, C><M><N><W/R seconds

after (C—1)‘h to the last SYNCiREQ has been received, as
the time to activate CKPTiN. This prevents the receiver
from inappropriately limiting the transmitter’s packet rate if
at least one out of the last C SYNCiREQs was processed
on the first attempt.

FIG. 30 shows a system employing the above-described
principles. In FIG. 30, two computers 3000 and 3001 are
assumed to be communicating over a network N in accor-
dance with the “hopping” principles described above (e.g.,
hopped IP addresses, discriminator values, etc.). For the sake
of simplicity, computer 3000 will be referred to as the
receiving computer and computer 3001 will be referred to as
the transmitting computer, although full duplex operation is
of course contemplated. Moreover, although only a single
transmitter is shown, multiple transmitters can transmit to
receiver 3000.

As described above, receiving computer 3000 maintains a
receive table 3002 including a window W that defines valid
IP address pairs that will be accepted when appearing in
incoming data packets. Transmitting computer 3001 main-
tains a transmit table 3003 from which the next IP address

pairs will be selected when transmitting a packet to receiv-
ing computer 3000. (For the sake of illustration, window W
is also illustrated with reference to transmit table 3003). As
transmitting computer moves through its table, it will even-
tually generate a SYNCiREQ message as illustrated in
function 3010. This is a request to receiver 3000 to syn-
chronize the receive table 3002, from which transmitter

3001 expects a response in the form of a CKPTiN (included
as part of a SYNCiACK message). If transmitting com-
puter 3001 transmits more messages than its allotment, it
will prematurely generate the SYNCiREQ message. (If it
has been altered to remove the SYNCiREQ message gen-
eration altogether, it will fall out of synchronization since
receiver 3000 will quickly reject packets that fall outside of
window W, and the extra packets generated by transmitter
3001 will be discarded).

In accordance with the improvements described above,
receiving computer 3000 performs certain steps when a
SYNCiREQ message is received, as illustrated in FIG. 30.
In step 3004, receiving computer 3000 receives the SYNCi
REQ message. In step 3005, a check is made to determine
whether the request is a duplicate. If so, it is discarded in step
3006. In step 3007, a check is made to determine whether the

Page 59 of 72

10

15

20

25

30

35

40

45

50

55

60

65

44

SYNCiREQ received from transmitter 3001 was received

at a rate that exceeds the allowable rate R (i.e., the period
between the time of the last SYNCiREQ message). The
value R can be a constant, or it can be made to fluctuate as
desired. If the rate exceeds R, then in step 3008 the next
activation of the next CKPTiN hopping table entry is
delayed by W/R seconds after the last SYNCiREQ has
been accepted.

Otherwise, if the rate has not been exceeded, then in step
3109 the next CKPTiN value is calculated and inserted into

the receiver’s hopping table prior to the next SYNCiREQ
from the transmitter 3101. Transmitter 3101 then processes
the SYNCiREQ in the normal manner.

E. Signaling Synchronizer
In a system in which a large number of users communi-

cate with a central node using secure hopping technology, a
large amount of memory must be set aside for hopping tables
and their supporting data structures. For example, if one
million subscribers to a web site occasionally communicate
with the web site, the site must maintain one million hopping
tables, thus using up valuable computer resources, even
though only a small percentage of the users may actually be
using the system at any one time. Adesirable solution would
be a system that permits a certain maximum number of
simultaneous links to be maintained, but which would
“recognize” millions of registered users at any one time. In
other words, out of a population of a million registered users,
a few thousand at a time could simultaneously communicate
with a central server, without requiring that the server
maintain one million hopping tables of appreciable size.

One solution is to partition the central node into two
nodes: a signaling server that performs session initiation for
user log-on and log-off (and requires only minimally sized
tables), and a transport server that contains larger hopping
tables for the users. The signaling server listens for the
millions of known users and performs a fast-packet reject of
other (bogus) packets. When a packet is received from a
known user, the signaling server activates a virtual private
link (VPL) between the user and the transport server, where
hopping tables are allocated and maintained. When the user
logs onto the signaling server, the user’s computer is pro-
vided with hop tables for communicating with the transport
server, thus activating the VPL. The VPLs can be torn down
when they become inactive for a time period, or they can be
torn down upon user log-out. Communication with the
signaling server to allow user log-on and log-off can be
accomplished using a specialized version of the checkpoint
scheme described above.

FIG. 31 shows a system employing certain of the above-
described principles. In FIG. 31, a signaling server 3101 and
a transport server 3102 communicate over a link. Signaling
server 3101 contains a large number of small tables 3106
and 3107 that contain enough information to authenticate a
communication request with one or more clients 3103 and
3104. As described in more detail below, these small tables
may advantageously be constructed as a special case of the
synchronizing checkpoint tables described previously.
Transport server 3102, which is preferably a separate com-
puter in communication with signaling server 3101, contains
a smaller number of larger hopping tables 3108, 3109, and
3110 that can be allocated to create a VPN with one of the

client computers.
According to one embodiment, a client that has previ-

ously registered with the system (e.g., via a system admin-
istration function, a user registration procedure, or some
other method) transmits a request for information from a
computer (e.g., a web site). In one variation, the request is

Page 60 of 72Page 60 of 72

US 6,502,135 B1

45

made using a “hopped” packet, such that signaling server
3101 will quickly reject invalid packets from unauthorized
computers such as hacker computer 3105. An “administra-
tive” VPN can be established between all of the clients and

the signaling server in order to ensure that a hacker cannot
flood signaling server 3101 with bogus packets. Details of
this scheme are provided below.

Signaling server 3101 receives the request 3111 and uses
it to determine that client 3103 is a validly registered user.
Next, signaling server 3101 issues a request to transport
server 3102 to allocate a hopping table (or hopping algo-
rithm or other regime) for the purpose of creating a VPN
with client 3103. The allocated hopping parameters are
returned to signaling server 3101 (path 3113), which then
supplies the hopping parameters to client 3103 via path
3114, preferably in encrypted form.

Thereafter, client 3103 communicates with transport
server 3102 using the normal hopping techniques described
above. It will be appreciated that although signaling server
3101 and transport server 3102 are illustrated as being two
separate computers, they could of course be combined into
a single computer and their functions performed on the
single computer. Alternatively, it is possible to partition the
functions shown in FIG. 31 differently from as shown
without departing from the inventive principles.

One advantage of the above-described architecture is that
signaling server 3101 need only maintain a small amount of
information on a large number of potential users, yet it
retains the capability of quickly rejecting packets from
unauthorized users such as hacker computer 3105. Larger
data tables needed to perform the hopping and synchroni-
zation functions are instead maintained in a transport server
3102, and a smaller number of these tables are needed since
they are only allocated for “active” links. After a VPN has
become inactive for a certain time period (e.g., one hour),
the VPN can be automatically torn down by transport server
3102 or signaling server 3101.

A more detailed description will now be provided regard-
ing how a special case of the checkpoint synchronization
feature can be used to implement the signaling scheme
described above.

The signaling synchronizer may be required to support
many (millions) of standing, low bandwidth connections. It
therefore should minimize per-VPL memory usage while
providing the security offered by hopping technology. In
order to reduce memory usage in the signaling server, the
data hopping tables can be completely eliminated and data
can be carried as part of the SYNCiREQ message. The
table used by the server side (receiver) and client side
(transmitter) is shown schematically as element 3106 in
FIG. 31.

The meaning and behaviors of CKPTiN, CKPTiO and
CKPTiR remain the same from the previous description,
except that CKPTiN can receive a combined data and
SYNCiREQ message or a SYNCiREQ message without
the data.

The protocol is a straightforward extension of the earlier
synchronizer. Assume that a client transmitter is on and the
tables are synchronized. The initial tables can be generated
“out of band.” For example, a client can log into a web
server to establish an account over the Internet. The client

will receive keys etc encrypted over the Internet.
Meanwhile, the server will set up the signaling VPN on the
signaling server.

Assuming that a client application wishes to send a packet
to the server on the client’s standing signaling VPL:

1. The client sends the message marked as a data message
on the inner header using the transmitter’s CKPTiN
address. It turns the transmitter off and starts a timer T1

noting CKPTiO. Messages can be one of three types:

Page 60 of 72

5

10

15

20

25

30

35

40

45

50

55

60

65

46

DATA, SYNCiREQ and SYNCiACK. In the normal
algorithm, some potential problems can be prevented
by identifying each message type as part of the
encrypted inner header field. In this algorithm, it is
important to distinguish a data packet and a SYNCi
REQ in the signaling synchronizer since the data and
the SYNCiREQ come in on the same address.

2. When the server receives a data message on its CKPTi
N, it verifies the message and passes it up the stack. The
message can be verified by checking message type and
and other information (i.e user credentials) contained in
the inner header. It replaces its CKPTiO with
CKPTiN and generates the next CKPTiN. It updates
its transmitter side CKPTiR to correspond to the
client’s receiver side CKPT R and transmits a SYNC

ACK containing CKPTiO in its payload.
3. When the client side receiver receives a SYNCiACK

on its CKPTiR with a payload matching its transmitter
side CKPTiO and the transmitter is off, the transmitter
is turned on and the receiver side CKPTiR is updated.
If the SYNCiACK’s payload does not match the
transmitter side CKPTiO or the transmitter is on, the
SYNCiACK is simply discarded.

4. T1 expires: If the transmitter is off and the client’s
transmitter side CKPTiO matches the CKPTiO asso-

ciated with the timer, it starts timer T1 noting CKPTiO
again, and a SYNCiREQ is sent using the transmit-
ter’s CKPTiO address. Otherwise, no action is taken.

5. When the server receives a SYNCiREQ on its

CKPTiN it replaces its CKPTiO with CKPTiN and
generates the next CKPTiN. It updates its transmitter
side CKPTiR to correspond to the client’s receiver
side CKPTiR and transmits a SYNCiACK contain-

ing CKPTiO in its payload.
6. When the server receives a SYNCiREQ on its

CKPTiO, it updates its transmitter side CKPTiR to
correspond to the client’s receiver side CKPTiR and
transmits a SYNCiACK containing CKPTiO in its
payload.

FIG. 32 shows message flows to highlight the protocol.
Reading from top to bottom, the client sends data to the
server using its transmitter side CKPTiN. The client side
transmitter is turned off and a retry timer is turned off The
transmitter will not transmit messages as long as the trans-
mitter is turned off. The client side transmitter then loads

CKPTiN into CKPTiO and updates CKPT N. This mes-
sage is successfully received and a passed up the stack. It
also synchronizes the receiver i.e, the server loads CKPTiN
into CKPTiO and generates a new CKPTiN, it generates
a new CKPTiR in the server side transmitter and transmits

a SYNCiACK containing the server side receiver’s
CKPTiO the server. The SYNCiACK is successfully
received at the client. The client side receiver’s CKPTiR is

updated, the transmitter is turned on and the retry timer is
killed. The client side transmitter is ready to transmit a new
data message.

Next, the client sends data to the server using its trans-
mitter side CKPTiN. The client side transmitter is turned

off and a retry timer is turned off. The transmitter will not
transmit messages as long as the transmitter is turned off.
The client side transmitter then loads CKPTiN into

CKPTiO and updates CKPTiN. This message is lost. The
client side timer expires and as a result a SYNCiREQ is
transmitted on the client side transmitter’s CKPTiO (this
will keep happening until the SYNCiACK has been
received at the client). The SYNCiREQ is successfully
received at the server. It synchronizes the receiver i.e, the
server loads CKPTiN into CKPTiO and generates a new

Page 61 of 72Page 61 of 72

US 6,502,135 B1

47

CKPTiN. it generates an new CKPTiR in the server side
transmitter and transmits a SYNCiACK containing the
server side receiver’s CKPTiO the server. The SYNCi

ACK is successfully received at the client. The client side
receiver’s CKPTiR is updated, the transmitter is turned off
and the retry timer is killed. The client side transmitter is
ready to transmit a new data message.

There are numerous other scenarios that follow this flow.

For example, the SYNCiACK could be lost. The transmit-
ter would continue to re-send the SYNCiREQ until the

receiver synchronizes and responds.
The above-described procedures allow a client to be

authenticated at signaling server 3201 while maintaining the
ability of signaling server 3201 to quickly reject invalid
packets, such as might be generated by hacker computer
3205. In various embodiments, the signaling synchronizer is
really a derivative of the synchronizer. It provides the same
protection as the hopping protocol, and it does so for a large
number of low bandwidth connections.

What is claimed is:

1. A method of transparently creating a virtual private
network (VPN) between a client computer and a target
computer, comprising the steps of:

(1) generating from the client computer a Domain Name
Service (DNS) request that requests an IP address
corresponding to a domain name associated with the
target computer;

(2) determining whether the DNS request transmitted in
step (1) is requesting access to a secure web site; and

(3) in response to determining that the DNS request in
step (2) is requesting access to a secure target web site,
automatically initiating the VPN between the client
computer and the target computer.

2. The method of claim 1, wherein steps (2) and (3) are
performed at a DNS server separate from the client com-

uter.

P 3. The method of claim 1, further comprising the step of:
(4) in response to determining that the DNS request in

step (2) is not requesting access to a secure target web
site, resolving the IP address for the domain name and
returning the IP address to the client computer.

4. The method of claim 1, wherein step (3) comprises the
step of, prior to automatically initiating the VPN between
the client computer and the target computer, determining
whether the client computer is authorized to establish a VPN
with the target computer and, if not so authorized, returning
an error from the DNS request.

5. The method of claim 1, wherein step (3) comprises the
step of, prior to automatically initiating the VPN between
the client computer and the target computer, determining
whether the client computer is authorized to resolve
addresses of non secure target computers and, if not so
authorized, returning an error from the DNS request.

6. The method of claim 1, wherein step (3) comprises the
step of establishing the VPN by creating an IP address
hopping scheme between the client computer and the target
computer.

7. The method of claim 1, wherein step (3) comprises the
step of using a gatekeeper computer that allocates VPN
resources for communicating between the client computer
and the target computer.

8. The method of claim 1, wherein step (2) is performed
in a DNS proxy server that passes through the request to a
DNS server if it is determined in step (3) that access is not
being requested to a secure target web site.

9. The method of claim 5, wherein step (3) comprises the
step of transmitting a message to the client computer to

Page 61 of 72

5

10

15

20

25

30

35

40

45

50

55

60

48

determine whether the client computer is authorized to
establish the VPN target computer.

10. A system that transparently creates a virtual private
network (VPN) between a client computer and a secure
target computer, comprising:

a DNS proxy server that receives a request from the client
computer to look up an IP address for a domain name,
wherein the DNS proxy server returns the IP address
for the requested domain name if it is determined that
access to a non-secure web site has been requested, and
wherein the DNS proxy server generates a request to
create the VPN between the client computer and the
secure target computer if it is determined that access to
a secure web site has been requested; and

a gatekeeper computer that allocates resources for the
VPN between the client computer and the secure web
computer in response to the request by the DNS proxyserver.

11. The system of claim 10, wherein the gatekeeper
computer creates the VPN by establishing an IP address
hopping regime that is used to pseudorandomly change IP
addresses in packets transmitted between the client com-
puter and the secure target computer.

12. The system of claim 10, wherein the gatekeeper
computer determines whether the client computer has suf-
ficient security privileges to create the VPN and, if the client
computer lacks sufficient security privileges, rejecting the
request to create the VPN.

13. Amethod of establishing communication between one
of a plurality of client computers and a central computer that
maintains a plurality of authentication tables each corre-
sponding to one of the client computers, the method com-
prising the steps of:

(1) in the central computer, receiving from one of the
plurality of client computers a request to establish a
connection;

(2) authenticating, with reference to one of the plurality of
authentication tables, that the request received in step
(1) is from an authorized client;

(3) responsive to a determination that the request is from
an authorized client, allocating resources to establish a
virtual private link between the client and a second
computer; and

(4) communicating between the authorized client and the
second computer using the virtual private link.

14. The method of claim 13, wherein step (4) comprises
the step of communicating according to a scheme by which
at least one field in a series of data packets is periodically
changed according to a known sequence.

15. The method of claim 14, wherein step (4) comprises
the step of comparing an Internet Protocol (IP) address in a
header of each data packet to a table of valid IP addresses
maintained in a table in the second computer.

16. The method of claim 15, wherein step (4) comprises
the step of comparing the IP address in the header of each
data packet to a moving window of valid IP addresses, and
rejecting data packets having IP addresses that do not fall
within the moving window.

17. The method of claim 13, wherein step (2) comprises
the step of using a checkpoint data structure that maintains
synchronization of a periodically changing parameter
known by the central computer and the client computer to
authenticate the client.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,502,135 Bl Page 1 of 1
DATED : December 31, 2002

lNVEN'l‘OR(S) : Edmund Colby Munger et 31.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,

Item [56], References Cited, OTHER PUBLICATIONS, insert the following:

-- Search Report (dated 8/20/02), International Application No. PCT/USOl/O434O

Search Report (dated 8/23/02), International Application No. PCT/USOI/ 13260

James E. Bellaire, “New Statement of Rules — Naming Internet Domains”, Internet

Newsgroup, July 30, 1995, 1 page.

D. Clark, “US Calls for Private Domain-Name System”, Computer, lEEE Computer

Society, August 1, 1998, pages 22-25.

August Bequai, “Balancing Legal Concerns Over Crime and Security in Cyberspace”,

Computer & Security, Vol. 17, No. 4, 1998, pages 293-298.

Rich Winkel, “CAQ: Networking With Spooks: The NET & The Control Of

Information”, Internet Newsgroup, June 21, 1997, 4 pages. --

Column 48

Line 2, “VPN target computer” has been replaced with -- VPN with the target

computer

Signed and Sealed this

Ninth Day of September, 2003

JAMES E. ROGAN

Direuor of the United Smres Parent and Trademark Office

Page 62 of 72

U8006502135C1

(12] INTER PARTES REEXAMINATION CERTIFICATE (O27lst)

United States Patent

Munger et al.

(54) AGILE NETWORK PROTOCOL FOR SECURE
COMMUNICATIONS WITH ASSURED
SYSTEM AVAILABILITY

(75) Inventors: Edmund Colby Munger. (mensville.
MD (US); Douglas Charles Schmidt.
Sevema Park. MD (US): Robert
Dunham Short, III. Leesburg. VA (US);
Victor Larson. Fairfax. VA (US):
Michael Williamson. South Riding. VA
(US)

(73) Assignee; Vimetx, Inc. Sculls Valley Drive. CA
(US)

Reexamination Request:
No. 95/001269. Dec. 8. 2009

Reexamination Certificate for:

Patent No.: 6,502,135
Issued: Dec. 31, 2002
Appl. No.: 09/504,783
Filed: Feb. 15, 2000

(‘ertiticate of (‘om‘ction issued Sep. 9. 2003.

Related U.S. Application Data

(63) Continuation of application No. 09:“429643. filed on Oct,
29. 1999. now Pat. No. 7.010.604.

(60) Provisional application No. 60106261. filed on Oct. 30.
1998. and provisional application No. 60e‘l37.704. filed on
Jun. 7. 1999.

(SI) Int. (7|.
6061’ 15/173 (2006.01)

(52) U.S. (.‘l. 709/225; 709/229: 709/245
(58) Field of Classification Search 709/225

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2.895.502 A 7i"l959 Roper et al.

US 6,502,135 C1

Jun. 7, 2011

(10) Number:

(45) Certificate Issued:

4.933.846 A 6z'l990 Humphrey et al.
4.988.990 A 1.199] Warrior
5.276.735 A lil994 Boehert et al.
5.303.302 A 41994 Burrows

(Continued)

FOREIGN I’A'l‘liN'l‘ DOCUMENTS

DE 199 24 575 12fl999
EP 0814 589 [2.41997
121’ 836306 Al 4»"l998
EP 0 838 930 41998
El’ 0 858 189 851998

(Continued)

Ol‘llliR PUBLK'A'I'IONS

Alan 0. Frier et al.. “The SSL Protocol Version 3.0". Nov.

18. 1996. printed from http://www.netscape.com/eng/ssl3/
drat't302.txt on I’eb. 4. 2002. 56 pages.

(Continued)

Prinian‘ Eraminer~Andrew L Nalven

(57) ABSTRACT

A plurality of computer nodes communicate using seem-
ingly random Internet Protocol source and destination
addresses. Data packets matching criteria defined by a mov-
ing window of valid addresses are accepted for further
processing. while those that do not meet the criteria are
quickly rejected. Improvements to the basic design include
(I) a load balancer that distributes packets across dill‘erent
transmission paths according to transmission path quality;
(2) a DNS proxy server that transparently creates a virtual
private network in response to a domain name inquiry; (3) a
large-to-small link bandwidth management feature that pre-
vents denial-of-service attacks at system cliokepoints'. (4) a
traffic limiter that regulates incoming packets by limiting the
rate at which a transmitter can be synchronized with a
receiver: and (5) a signaling synchronizer that allows a large
number of nodes to communicate with a central node by
partitioning the communication function between two sepa-
rate entities.

Page 63 of 72

Page 64 of 72Page 64 of 72

US 6,502,135 C1
Page 2

5.31 1.593
5.329.521
5.341.426
5.367.643
5. 384 . 848
5.5 1 1 . 1 22
5.5 59.883
5 .561 .669
5.588.060
5.625.626
5.629.984
5.6 54.695
5.682.480
5.689.566
5.740.375
5.764.906
5.771.239 .
5.774.660
5.787.172
5.796.942
5 .805 . 80 l
5.805.803
5.822.434
5.842.040
5.845.091
5.864.666
5.867.650 .-
5.870.6 I 0
5.878.231 .-
5.892.903
5.898.830 .
5.905.859
5.9 1 8.0 19
5.9 50. 1 95
5 .996.0 16
6.006.259
6.006.272
6.016.318 .
6.016.512
6.041.342
6.052.788
6.055.574
6.061.346 .
6.061.736
6.079.020
6.081.900
6.092.200
6.101.182
6.119.171
6.119.234
6.147.976 .
6.157.957
6.158.011
6.168.409
6.173.399
6.175.867
6.178.409
6.178.505
6.179.102
6.199.112
6.202.081
6.222.842
6.223.287
6.226.748
6.226.751
6.233.618
6.243.360
6.243.749
6.243.754
6.246.670

Page 64 of 72

”.8. PAT

A 53" 994
A T1994
A 3-" 994
A 1 1-" 994
A 1’995
A 4." 996
A 9-"1990
A 10-" 1996
A 131996
A 4" 997
A 551997
A 8-" 997
A 10" 997
A l l-" 997
A 4-" 1998
A 6" 998
A 051998
A 6" 998
A 71998
A 3-" 998
A 9-"1998
A 9-" 998
A 10" 998
A 11: 998
A 12-" 1998
A l-" 999
’-\ 2-"1999
A 2-" 999
\ 3-"1999
A 4" 999
A 4-" 999
A .5" 999
A 15-" 999
A 9." 999
A 1 1-"1999
A 12" 999
A 12"1999
A 1 "2000
A ["2000
A 352000
A 4-‘2000
A 4-2000
A 5-‘2000
A 5-"2000
A 0'2000
A 6-"2000
A 7-‘2000
A 8-"2000
A 9-‘2000
A 9320011
A 1 [-2000
A 12-2000
A 122000
B 1 [-2001
131 ["2001
151 ["2001
Bl 1-"200 1
Bl [-2001
B 1 ["2001
131 3-‘2001
Bl 3'200 1
B 1 452001
151 4-"200 1
151 5-"2001
151 :1-"200 1
Bl 552001
1'51 032001
Bl 152001
1'51 6-"2001
131 0'2001

{N‘I‘ DOCUMEN'I‘S

Carmi
Walsh et a1.
Barney c1 31.
Chang ct a].
Kikuchi
Alkinson
Williams
Lenney et a1.
Azix
Umekila
McMz-mis
Olnowich ct a1.

Nakagawa
Nguyen
Dunne cl a1.
lidclslcin {:1 a].

Moroney e1 :11.
Brenllol CI :11.
Arnold
Esbcnscn
Hollow!)f et a1.
Birmll cl 3].
Caxonni el al.
Hughes c131.
Dunne el al.
Shrmicr
Uslennan

Heyda cl a1.Bach: el :11.
Klaus
Wesinger el al.
Hollowayr cl a1.
Valencia
Slockwcll ct :11.
Thalhcimer at al.
mlclman c! a].
Ammmudan el al.
‘I'mnoikc
Huitema
Ynlnaguchi
Wesinger el al.
Smorodinsky el al.No rdman
Ro chbcrgcr cl al.
I_iu
Subramanimn c1 :31.
Muniyappa cl 31.
Sislani'rmlch CI :11.
Alkhaiib
Azi? ct a1.
Sham] et a1.
Hcrlhaud
Chen et al.
Fare
Gilbrcch

'lhghmloss
Weber 0! a1.
Schneider et 31.
Weber 1:! :11.
Wilson
Naudus
Snsyan at :11.
Douglas cl 3!.Bots er a1.
Arrow L‘! 31.
Shannon
Basilico
Sitmaman et a].
Guerin el al.
Karlsson el al.

6.256.671 B1
6.262.987 Bl
6.263.445 Bl
6.286.047 131
6.298.341 B1
6.301.223 Bl
6.308.274 BI
6.311.207 B1
6.314.463 131
6.324.161 B1
6.330.562 Bl
6.332.158 131
6.333.272 1!.1
6.338.082 B1
6.353.614- ISI
6.430.155 B1
6.430.610 BI
6.487.598 B1
6.502.135 Bl
6.505.232 131
6.510.154 BI
6.549.516 131
6.557.037 Bl
6.571.296 131
6.571.338 ISI
6.581.166 B1
6.618.761 Bl
6.671.702 B2
6.687.551 B2
6.687.746 B1
6.701.437 131
6.714.970 131
6.717.949 Bl
6.752.166 B2
6.757.740 Bl
6.760.766 131
6.826.616 132
6.839.759 B2
6.937.597 Bl
7.010.604 Bl
7.039.713 B1
7.072.964 B1
7.133.930 13.2
7.167.904 B1
7.188.175 Bl
7.188.180 132
7.197.563 B2
7.353.841 132
7.461.334 B1
7.490.151 B2
7.493.403 B2

200130049741 Al
2002-"0004898 Al
2004-0199493 AI
200430199520 AI
2004-0199608 AI
2004-0199620 AI
20050055306 Al
2007-0208869 AI
200750214284 A]
2007-0266141 AI
200811235507 AI

7.2001
7.2001
7200]
9-2001

10-2001
10-2001
10-2001
10-2001
11-2001
11-2001
12-2001
[2200!
12-2001

1.2002
3.20112
8-2002
8-2002

11-2002
12-2002

1."2003
1.-'2003
4-2003
452003
552003
53200.3
62003
9.2003

12-2003
2-2004
2-2004
352004
3-2004
4-2004
62004
632004
7.2004

1 132004
1.-'2005
8-2005
332006
5.-"2006
7-‘2006

I 152006
1-2007
3.2007
3-2007
3-2007
4-2008

12-2008
2-2009
2-2009

12-2001
1.-2002

10-2004
10-2004
10-2004
10-2004
3-2005
952007
9.-'2007

I 1.2007
9.2008

Strenlzsch et a1.
Mogul
Blumenau
Rmnanalhan 01 a1.
Mann er a1.
IIraslzlr ct a1.
Swifl
Mighdoll el al.Abholl cl a1.
Kirch
Boiler: or :11.
Rislcyr or al.
McMillin 61:11.
Schneider
Bomlla at al.
Davie el :11.
(‘zlrlcr
Valencia
Manger ct al.
Mighdoll cl al.
Maycs at :11.
Albert or al.
Provinu
Dillon
Shaio c! :11.
Hirst el al.
Mungcr ct a1.
Kruglikov et al.
Slcimll
Shu star et a1.
llukc cl a1.
Fivcash et a1.
limlcn or :11.
1.1111 c1 31.
I’arukh cl al.
Sahlqvisl
Larson CI 711.
Lmson el al.

Rosenberg. el al.
Munger e1 :11.
Van Gunier I21 :11.
Whittle ct nl.

Manger at al.
Devamjrm cl a].
McchIh
Larson cl a1.

Shcymov at :11.K0110 1:1 :11.
Lu et a1.
Hunger or al.
Shull el al.
Skcnc cl a1.
Droge
Ruiz cl al.
Ruiz cl a1.
Rechlcrman ct a1.
Ruiz cl a1.
Milicr cl al.
Adclrmn cl :11.
King el :11.
Norton
lshikawzl cl a1.

FOREIGN PKl'le’l‘ IXXTUMEN'I‘S

GB 2 317 792
GB 2 334 181 A
JP 62-214744
JP 04-363941
.11" 09—018492
JP 10070531
“"0 W0 9827783 A

41998
8-1999
951987

12-"1992
1"1997
3-"1998
6-"1998

Page 65 of 72Page 65 of 72

US 6,502,135 C]
Page 3

W0 WO 98522283 631998
W0 W0 98 55930 1231998
W0 W0 98 59420 1231998
Wt] W0 99 38081 2.1999
W0 WU 99 48303 9 1999
W0 W0 00 12725 3.2000
Wt] W0 00 |' 17225 3-2000
W0 W0 {JO-"70458 1 1.2000
W0 W0 01.016266 3 2001
W0 W0 01 50688 732001

()TIII'LR PUBLICATIONS

August Bequai. "Bellancing legal Concerns Over Crime and
Security in Cyberspace”. Computer & Security. vol. 17. No.
4. 1998. pp. 293 298.
D. 11. Chapman et a].. “Building Internet Firewalls". Nov.
1995. pp. 218—375.
D. Clark. “US Calls for Private Domain Name System”.
Computer. IHEH Computer Society. Aug. 1. 1998. pp.
22- 25.

Davila .I et :11, "Implementation of Virtual Private Networks
at the 'I'ransport layer”. lnfonnalion Security. Second Inter—
national Work—shop. ISW’99. Proceedings (lecture Spring—
er Verlag Berlin. Germany. [Unline] 1999, pp. 85 102.
XP0023992'1'6. ISBN 3—540—666.

Dolev. Shlolni and Ostmvsky. Ralil. “Fliicienl Anonymous
Multieast and Reception” (Extended Abstact). 16 pages.
Donald 1%. liastlake. 3rd. “Domain Name System Security
Extensions”. Internet Draft. Apr. 1998. pp. 1- 51.
1". Ilalsall. "Data Communications. Computer Networks and
Open Systems”. Chapter 4. Protocol Basics. 1996. pp.
193 203.

I-‘asbender. Kesdogan. and Kubitz: “Variable and Scalable
Security" Protection o 1‘ location Information in Mobile 11’.
IEFF. publication. 1996. pp. 963-967.
Glossary for the Linux PreeSlWCAN project. printed from
http:HIiberty.1‘reesvvanorgir frees\van_treestr freeswan 1 .31“
docfglossarylttml on Feb. 21. 2002. 25 pages.
J. Gilmore. “Swan: Securing the Internet against Wiretap-
ping”. printed from l1ttpn’fliberty.I‘reeswa11.orgf|reeswan__
treesffreeswan 1.3!doct’rationalelttml on Feb. 21. 2002. 4
pages.
.Ialnes Ii. Bellaire. “New Statement 01‘ Rules—Naming Inter—
net Domains". Internet Newsgroup. Jul. 30. 1995. 1 page.
Jint Jones et a1.. “Distributed Denial of Service Attacks:

Defenses”. Global Integrity Corporation. 2000. pp. 1—14.
I.aurie Wells (I.ANCASTFRBIBI'EI.MAII. MSN COM);
“Subject: Security Icon” USENE'I' Newsgroup. Oct. 19.
1998. le2200606. 1 page.
Linux I-‘reeSfWAN Index Filc. printed Irom hltp.‘1"1‘1iherty.
freewanorgffreeswan treesa’freeswan 1.3/doc1’ on Feb. 21.
2002. 3 Pages.
P. Srisuresh el al.. “DNS extensions to Network address

Translators (DNS AIS)". Inlemet Drall. Jul. 1993. pp.
1—22.

RFC 2401 (dated Nov. 1998) Security Architecture for the
Internet Protocol (R'I‘P).
RFC 2543—5411“ (dated Mar. 1999): Session Initiation Proto—
col (311’ or :51 PS).
Rich Winke]. “CAQ: Networking With Spooks: The Nlj'l' &
The Control 01‘ infonnation”. Internet Newsgmup. .Iun. 21.
199?. 4 pages.
Rnbin.Avie1 1).. (jeer. Daniel. and Ranunt. Marcus .|. (Wiley
Computer Publishing). “Web Security Souwehook”. pp.
82—94.

Page 65 of 72

Search Report (dated Aug. 20. 2002). International Applica-
tion No. PC‘I‘J’USOUOdS‘lO.

Search Report (dated Aug. 23. 2002). Intenlational Applica—
tion No. I’C'IYUSOUI3260.

Search Report (dated Oct. '1'. 2002). International Applica-
tion No. PC'IYUSOUIHGI.

Search Report. IPL'R (dataed Nov. 13. 2002). International
Application No. PC'WUS011’04340.
Smrclt Report. IPIER (dated Febfi. 2002). International
Application No. PC."1'1'USOIH 3261 .
Search Report. II’ER (dated .Ian. 14. 2003). International
Application No. PC'DUS01H32G0.
Sankar. All. “A verified sliding window protocol with vari-
able Ilow control“. Proceedings ot‘AC M SIGCOMM confer-
ece on Communications architectures & protocols. pp.
84-91. ACM Press. NY. NY [986.
Shree Mnrtlty et £11.. "Congeslion—Orienled Shortest Mulli—
palh Rotating”. Proceedings ol‘ IF.F,F. INl-‘OCOM. 1996. pp_
1028 1036.

W. Stallings. “Cryptography And Network Security”. 2nd.
Iidition. Chapter 13. IP Security. Jun. 8. 1998. pp. 399— 440.
Fashender. A. et al.. Variable and Scalable Security: Protec—
tion of Location Information in Mobile 11’. 11-r'.1:il£ V'I‘S. 46111.

1996. 5 pp.
156. Finding, Your Way Through the VPN Maze (1999)
(“PUP").
Watclttjuard 'I'echnologies. Inc.. Wateht’juard LiveSecurity
for MSS Powerpoint (Feb. 14 2000) (resubmitted).
Walcllfiuard Technologies. Inc.. MSS Version 2.5. Add-011
for Watchtjuard SOIIO Release Notes (1111. 21. 2000).
Yuan Dong Felig. "A novel scheme combining interleaving
technique with cipher in Rayleigh fading channels.” Pro-
ceedings o l‘ the International ("ttlilemlice on Communication
technology. 2:847 02 1 S47 02- 4 (1998).
D.W. Davies and W.L. Price. edited by ‘I'adahiro Uezona.
“Network Security”. Japan. Nikkei McGraw Hill. Dec. 5.
1958. First Fdition. lirsl copy. p. 102—108.
11.8. Appl. No. (101’ 134.542 tiled May 1?. 1999. Victor Sliey-mov.

U.S. Appl. No. 601151.563 filed Aug. 31. 1999. Bryan
Whittles.

11.S.App1.No.091399.753111ed Sep. 22. 19911. Graig Miller
et 211.

Microsoft Corporation‘s Fourth Amended Invalidity Con-
tentions dated .Ian. 5. 2009. Vtrm’rX Inc. and Science Appfr—
(rations International Corp.“ Mt'r‘mmfi Corfmran'mt.
Appendix A ol‘ the Microsoft Corporation‘s 1-‘ourtl1
Amended Invalidity Contentions dated Jan. 5. 2009.
(.‘oncordance 'I'able For the References Cited in 'Iables on

pp. 15 15. "1'1 80 and 116 124 of the Microsoft Corpora-
tion’s Fourth Amended Invalidity Contentions dated Jan. 5.
2009.

I. 1". Mockapetris. “DNS Encoding of Network Names and
Other 'l‘ypes.” Network Working Group. R1-‘C 1101 (Apr.
1989)(RFC1101.|)NS SRV’).

DNS--related corresponding dated Sept. '1'. 1993 to Sep. 20.
1993. (Pre KX. KX Records}.
R. Atkinson. “An lnternetwork Authentication Architecture.”
Naval Research Laboratory. Center for High Assurance
Computing Systems (Aug. 5. 1993). (Atkinson NRI.. KX
Records).

Page 66 of 72Page 66 of 72

US 6,502,135 C]
Page 4

Hemting Schulxrinne. Persona:f Mobitity Htr M’ttt‘timedia
Services in The Internet. Proceedings of the Interactive Dis-
tributed Multimedia Systems and Services European Work-
shop at 143 (1996) (Schulyrinne 96).
Microsoft Corp.. Mirrosofi Virtttttt' Private Networking:
l.-".s't'ng Point to Point iannet'ing ProtocolI for Low Cost.
Secure. Remote Access Across the internet (I 996) (printed
front I993 PDC DVD ROM) (Point to Point. Microsoft
Prior Art VPN Technology).
"Safe Stirling: How to Build a Secure World Wide Web Con—
nection.“ IBM Technical Support Organization. (Mar. 1996).
(Sail: Surfing. Website Art).
Goldschlag. et a].. "I Iiding Routing in Iormation.” workshop
on Information Hiding. Cambridge. UK (May 1996). (Gold-
sehlag II. Onion Routing).
"IPSec Minutes From Montreal". IPSEC Working Gmnp
Meeting Notes. http:ttwww.sandleman.catipsectI996t08t
ntngOtlIShtml (Jun. 1996). (IPSec Minutes. l-‘reeSt WAN).
.I.M. Galvin. “Public Key Distribution with Secure DNS."
Proceedings o I‘ the Sixth USENIX UNIX Security Sympo—
sium. San Jose. California. Jul. 1996. (Galvin. DNSSEC).
.l. ('iilmore. et a1. “Re: Key Management. anyone? (DNS
Keying)? lPSec Working Group Mailing List Archives
(Aug. 1996). (Gilmore DNS. l’reeStWAN).
H. {)rman. et a1.“Re: Re: DNS? was Re: Key Management.
anyone?" lliTF IPSec Working Group Mailing List Archive
(Aug. l996tSep. I996). (Orman DNS. I-‘reeStWAM.
Arnt Gulhrandsen 8:: Paul \«ixie. A DNS RRfiJr spot-{Meg
the location (gt-services (DNS SR V). Ili'l‘F RFC. 2052 (Oct.
1996). (RI’C 2052. DNS SRV’).
l-‘reier. et al. ”The SS]. Protocol Version 3.0." Tmnsport
Layer Security Working Group (Nov. 18. I996). (SSI..
Underlying Security 'l‘echnology).
M. llandley. II. Schulzrinnc. E. Schooler. Internet Engineer—
ing Task Force. Internet Draft. (Dec. 2. 1996). (RFC 2543
Internet Draft 1).
Mfi. Reed. et al. "Proxies for Anonymous Routing.” 12111
Annual Computer Security Applications Conference. San
Diego. CA. Dec. 9 13. 1996. (Reed. Onion Routing).
Kenneth F. Alden £2 Edward P. Wobber. The Aim Vista Tim—

net'.‘ [=3ng the Internet to Lil‘tend Corporate Networks. Digi-
tal Technical Journal (I 99?) (Alden. AltaVista.
Automative Industry Action Group. "ANX Release 1 Docts
ment Publication.“ AIAG (199?). (AlAG. ANX).
Automative Industry Action Group. “ANX Release 1 Draft
Document Publication." AIAG Publications (199?). (AIAG
Release. ANX).
Avenlail Corp. “AutoSOCKS v. 2.1 Datasheet.“ available at
http:ttwwwarchiveorgtwehf1 99?02 I2013409twww.aven-
tai1.comtprodtautosk2ds.htinl (199?). (AutoSOCKS. Avert-
tail).
Avenlail Corp. "Aventail VPN Data Sheet.” available at
hltp:tt'wwwarchive.orgtweht I 99702 1201 3043twwwaven—
tai1.conttpmdtvpndata.htntl (199?). (Data Sheet. .-'\ventail).
Aventail Corp.. “Directed VPN Vs. Tunnel." available at
http:.-"tvveh.archive.orgt’vvehiIr 1 99?062003 03 th’wwwaven—
tai1.conv’educatetdireetvpnhtml (199?). (Directed VI’N.
Aventail).
Avenlail Corp” “Managing Corporate Access to the Inter—
net.” Aventail AutoSCCKS White Paper available at htlpztt
webarchiveorgtwcbt 1 99?06200303 IZt’wwwnventailcomt
educatetwhitepapert'iplnwphtlnl (199?). (Corporate Access.
Aven tail).

Page 66 of 72

Aventail Corp. “Socks Version 5." Aventail Whitepaper.
available at http:ttweb.archive.orgtwebt 1 99706200303121“
wwwaventail.comtcducatetwhitcpapertsockswphtml
(199?). (Socks. Aventail).
Avenlail Corp. “VPN Server V2.0 Administration Guide,”
(1997). (VPN. Aventail).
(ioldschlag. et al. “Primer on the Internet, " Naval Research
Laboratory. Center for lligh Assurance Computer Systems
(199?). (Cioldschlag 1. Onion Routing).
Microsoft Corp. tnstutting Configuring and [tiring PPTIP
"-1"th Mt't-rosofi (.‘tients and Servers (199?). (Using PP'I'P.
Microsoil Prior Art VPN Technology).
Microsoft Corp.. L” Serritritt' for tittierosoft Windows NT
Senor 5.0(199?)(printcd from 1993 Poe DVD ROM). (11’
Security. Microsoft Prior Art VPN 'I'eclmology).
Micmsofl Corp“ Microsoft Windows NT Active Directory:
An Imrodmvion to the New Generation i.)irector_i- Services
(199?) (printed from 1993 PDC DVD ROM). (Directory.
Microsofl Prior Art VPN Technology).
Microsoft Corp. Routing and Retttotc’ Arr-e55 Servicetbr
Windows Ni" Server Neil-'Opportimtries tedtty and Looking
Ahead (I99?) (printed from 1998 PDC DVD-ROM). (Rout—
ing. Microsoft Prior Art VPN Technology).
Microsoft Corp. le'nderstauding Point to Point litmteiing
Pmtomt PP?P (199?) (printed lront I998 PDC
DVD—ROM). (Understanding PP'I‘P. Microsoft Prior Art
VPN Technology).
.I. Mark Smith et al.. Pmteeting a Private Network: The
.4!taVista firewall“. Digital 'I‘echnical Journal (199?). (Smith.
AItaVista).
Naganzmd Doraswzlnty Impletttentntion of Pirate! Private
Networks (Vt’i'ltis) witht tPSeetrri-{tx <drztll- ietf ipscc
vpn 00.tttt> (Mar. 12. 199?).(leIswan1y).
M. llandley. ll. Schulyrinne. F. Schooler. Internet Engineer—
ing Task Force. Internet Draft. (Mar. 2?. 199?). (RFC 2543
Internet I')mft 2).
Avenlail Corp. “Aventail and (.‘ybersaf'e to Provide Secure
Authentication For Internet and Intranet Communication."

Press Release. Apr. 3. 199?. (Secure .t\uthentication. Aven-
tail).
D. Wagner. et a1. “Analysis of the SSI. 3.0 Protocol.” (Apr.
15. 199?). (Analysis. Underlying Security 'I'eclmologies).
Automotive Industry Action Group. "ANXO Certification
Authority Service and Directory Service Definition t‘orANX
Release 1." AIAG ‘I‘elecotmnunications Project Team and
Belicore (May 9. 199?). (AIAG Definition. ANX).
Automotive Industry Action Group. "ANXO Certification
Process and ANX Registration Process Defmition for ANX
Release 1,” AIAG 'lielecommtlnications Project Team and
BelIcorc (May 9. 199?). (AIAG Certification. ANX).
Aventail Corp. “Aventail Announces the First VPN Solution
to Asxure Interoperability Across Emerging Security Proto-
cols." Jun. 2. 199?. (First \r'PN.Aventai|).

Syverson. at a]. “Private Web Browsing.” Naval Research
laboratory. Center for High 8 Assurance Computer Systems
(Jun. 2. 199?). (Syverson. Onion Routing).
Bellcore. “Metrics. Criteria. and Measurement Technique
Requirements for ANX Release 1.“ Ali-\G 'I'elecomntunica-
tions Project 'I‘eam and Bellcore (Jun. 16. 199?). (AIAG
Requirements. ANX).
M. [Iandley. 11. Schulzrimte. I-L. Schooler. Internet Engineer-
ing Task Force. Internet Draft. (.iul. 31. 199?). (RFC 2543
Internet Broil 3).

Page 67 of 72Page 67 of 72

US 6,502,135 C]
Page 5

R. Atkinson. "Key Exchange Delegation Record tor the
DNS.” Network Working Group. RI-‘C 22.30 (Nov. 1997).
(RI-‘C 2230. KX Records).
M. I-Iandley. I-I. Schulzrinne. F“ Schooler. Internet Engineer—
ing Task Force. Internet Draft. (Nov. I 1. 1997). (RFC 2543
Internet Draft 4).
1993 Microsoft Professional Developers Conference DVD
(“1998 PDC DVD ROM“) (including screenshots captured
therefrom and produced as MSFTVX 0001882?
00018832). (Conference. Microsolt Prior Art VPN Technol-
9&9)-
MicrosoIt Corp. Vii-moi Private Networking Ari ()ven'ieu'
(1998) (printed from 1998 PDC DVD ROM) (Overview.
Microsolt Prior Art VI’N Technology).
MicrosoII Corp. I‘Vimiows NT5.0Bera Has Pirbiir‘ Pmriiiere
a! Scottie Mini (Temp Seriiinar attendees getfirsr (oak at the
performance and ('apobiiiiies of Marriott's Nil" 5.0 (1998)
(available at hep iiwwanict-osot‘t.comipresspassileaturesi
1998i 10 19nlS.nispxpllrue). (NT Beta. Microsoft Prior Art
VPN 'I‘eeItnology).
“What ports does 1551. use“ available at stasonergi
'1'ULARCisccurityissl talkift 4 What ports does 551 use.
html (1993). (Pom, DNS savi.
Avenlail Corp._. “Aventail VI’N V2.6 Includes Support for
More 'IItan 'I‘en Authentication Methods Making Lixtranet
VPN Development Secure and Simple.” Press Release. Jan.
19. 1998. (VPN \r’2.t'i. Aventail).
R. G. Moskowitz. “Network Address 'I‘ranslation Issues with

[Psee." Internet Draft. Internet Engineering Task Force. Feb.
(1. 1998. (Moskowitz).
II. Scliulzrinne. et al. "Internet Telephony Gateway foca—
tion.“ Proceedings of] E1515 INfoeom ‘ 98. The Conference on
Computer Communications. vol. 2 (Mar. 29--Apr. 2. 1998}.
(Gateway. Schulzrinne).
C. IItiitenia. 45 al. "Simple Gateway Control Protocol.” Ver-
sion 1.0 (May 5. 1998). (50(1)).
IJISA “Secret Internet Protocol Router Network." SIPRNI-Z'I‘

Program Management {)lliee (D3113) DISN Networks.
DISN 'Ihtitsitiissititl Services (May 3. 1998). (DISA. SII’R-
N131).
M. Ilandley. II. Schulzrinne. Ii. Schooler. Internet Engineer-
ing Task Force. Intenlet Draft. (May 14. 1998). (RFC 2543
Internet Draft 5).
M. Ilandley. II. Schulzrinne. 13. Schooler. Internet Engineer-
ing Task Force. Intentet Dral't. (Jun. 1?. 1998). (RFC 2543
Internet Draft 6).
D. McDonald. et al. “PF KEY Management API. Version
2.” Network Working Group. RFC 236? (Jul. 1998). (RFC
2367)
M. llandley. Il. Schulzrilme. 13. Schooler. Internet Engineer-
ing 'Iask Force. Internet Draft. (.1111. 16. 1998). (RFC 2543
Internet Draft 7").
M. I-‘Iandley. II. Schulzrinne. F“ Schooler. Internet Engineer—
ilig Task Force. Internet Draft. (Aug. 7. 1998). (RFC 2543
Internet Draft 8).
Microsott Corp. Caraway focuses on Qimiiit' and CM-
romer Feedimck (Aug. 13. 1998). (Focus. Microsoft Prior
Art \iPN 'I'ecltnology).
M. IIandley. II. Schulzrinne. E. Scltooler. Internet Engineer-
ing Task Force. Internet Dralt. (Sep 18. 1998). (RFC 2543
Internet Draft 9).
Atkinson. et al. “Security/Architecture for the Internet Proto-
col.” Network Working Group. RFC 2401 (Nov. 1998).
(RFC 2401. Underlying Security Technologies}.

Page 67 of 72

M. I-Iandley. H. Schulyrinne. I~‘.. Schooler. Internet Engineer
ing ‘Iilsk Force. Internet Draft. (Nov. 12. 1998). (RFC 2543
Internet Draft 10) 9.
Donald Iiastlal-(c. Domain Norrie 5:11;!chSecurity intensities.
Il'i'l‘1‘7 DNS Security Working Group (Dec. 1998). (DNS-
Slit‘ 7).
M. [Iandley. II. Schulyrinne. F.. Schooler. Internet Engineer—
ing Task Force. Internet Draft. (Dec. 15. 1998). (RFC 2543
Internet Draft 1 1).
Aventail Corp._. "AvenlaiI Connect 3.1i2.6Administralor's
Guide." (1999). (Aventail Adlltinistrator 3.1. Avenlail).
Aventail Corp. "Aventail (.‘onnect 3.1i2.6 User‘s Guide.“
(I 999). (Aventail Administrator 3.1. Aventail).
Aventail Corp.. “Aventail ExtraWeb Server v3.2 Administra-
tor‘s Guide.“ (1999). (Avenlail lixtraWeh 3.2. Aventail).
Kaufman et al. “Implementing Il’see.“ (Copyright 1999).
(Implementing IPSIiC. V'PN References).
Network Solutions. Inc. “Enabling 85L.” NSI Registry
(I 999). (Enabling SSL. Underlying Security 'I'ecltnologies).
Check Point Seltware ‘l‘ecluiologies Ltd. (19991 (Check
Point. Checkpoint FW).
Aral Gulhrandsen & Paul Vixie. .4 DNS RRfor .cfx’cffi'ing
the location ofrervircr (DNS SRV). <dralt iett‘ dnsind
trc2052bis t]2.t)tt> (.lan. 1999). (Gillbrandsen 99. DNS
savi.
C. Scott. et al. Viriaai Private :N'enmrilzc. O’Reilly and Asso—
ciates. Inc. 2nd ed. (Inn. 1999). (Scott \iPNs).
M. IIandley. II. Schulzrirnie. L-'. Schooler. Internet Engineer-
ing Task Force. Internet Drall. (.Ian. IS. 1999). (RFC 2543
Internet Draft 12).
Goldschlug. et al.. “Onion Routing for Anonymous and Pri-
vate Internet Connections.” Naval Research Laboratory.
Center for High Assurance Computer Systems (Jan. 28.
I999). (Goldschlag 111. Union Renting).
11. Schulzrinne. “Internet 'I'elephony: architecture and proto-
cols an IE'I‘F perspective.“ Computer Networks. yo]. 3].
No. 3 (Feb. 1999). ('I‘elephony. Schulzriluie).
M. Ilandley. et al. “511". Session Initiation Protocol.” Net-
work Working Group. RFC 2543 and Internet Drafts (Dec.
l996—Mar. 1999). ([Iandlcy. RFC 2543).
I-‘reeSiWAN Project. Limo Ii‘reeervtN (.‘omlmtibilin‘ Guide
(Mar. 4. 1999). (l-'reeSiWAN Compatibility Guide. l-‘reeSi
WAN).
Telcordia Technologies. "AN'X Release 1 Document Correc—
tions.“ AIAG (May I I. 1999). (Telcordia. ANX).
Ken Ilornstein 8.: Jeffrey Altman. Distributing Kerbems
NBC and Retain; firfiiriiraiirm with JIJNS {draft-neitl'catu
krb—dns—|ocate--oo.txt> (Jun. 21. I999). (I-Iornstein. DNS
SRV).

Bhaltacltarya et al. “An IDAP Schema for Configuration
andAdministration ol‘IPSec Based Virtual Private Networks

(VPst‘. IIE'I'I“ Internet Draft (Oct. 1999). (Bliatteharya
1.1)AP VPN).
B. Patel. et al. “DIICP Configuration of IPSFC Tunnel
Mode.” IPSL'C Working Group. Internet Draft 02 (Oct. 15.
I999). (Patel).
Goncalves. et a1. Check Point FireWall l Administmtion
Guide. McGraw Hill Companies (2000). (Goncalves.
Checkpoint PW).
“Building a Microsoft VPN: A Comprehensive Collection of
Microsoft Resources." FirstV‘PN. (Jan. 2000). (FirstVPN
Microsoft).

Page 68 of 72Page 68 of 72

US 6,502,135 C]
Page 6

(ittlbrandsen. \r‘ixie & Hsibov. .4 Bil-"S RRfar .spet‘ili‘ing tlte
location of services (DNS SRl'). Ili‘l‘l: RFC 2782 (Pol).
2000). (RFC 2782. DNS SRV).
Mitre Organiaation. “'lechnical Description." Collaborative
Operations in Joint [Expeditionary Force Experiment (.TIEFX)
99 (Feb. 2000). (Mitre. SlPRNl-l'l').
ll. Schulzrinnc. et al. "Application—-l.ayer Mobility Using
SIP." Mobile (‘ompuling and Communications Review. vol.
4. No. 3. pp. 4? 5'." (Jul. 2000). (Application. SIP).
Kindred el al. “Dynamic VPN Communities: Implementa—
tion and Experience." DARPA lnlormalion Survivability
('onference and lixposition 1[(Jun. 2001). (lJARPA. VPN
Systems).
ANX 101: BasicANX Service Outline. (Outline. ANX).
ANX 201 : .-\dvauced ANX Service. (Advanced. ANX).
Appendix A: Certificate Profile for ANX IPsec Certificates.
(Appendix. ANX).
Assured Digital Products. (Assured Digital).
Avenlail Corp" “Ax-entail AuloSOC‘KS tlte (‘Iienl Key to
Network Security.“ Aventail Cotpotalion White Paper. (Nel-
work Security. .Aventail).
Cindy Moran. "DISN Data Networks: Secret Internet Prolo—
col Router Network (SlPRNet).“ (Moran. SlPRNfi‘l‘).
Data Fellows 1" Secure VPN+ (1“ Secure VPN+).
interim Operational Systems Doctrine for the Remote
Access Security Progmln (RASP) Secret Dial—In Solution.
(RASl’. Sll’RNLi'l').
Onion Routing. “Investigation of Route Selection Alge-
ritlims.“ available at ltttp:llwww.onion—rouler.neLI'.-\rchivesl
Routeilndexlttml. (Route Selection. Onion Routing).
Secure Computing. “Butlel- Proofing an Army Net.“ Wash—
ington 'l‘eclinology. (Secure. SlPRNl-i'l').
Sparta “Dynamic Virtual Privale Network.” (Sparta. VPN
Systems).
Standard Operation Procedure for Using the 1910 Secure
Modems. (Standard. SIPRNFXI‘).
Publieally available emails relating to
(MSl-‘l‘VXOUOISSSS MSl"1'\«"XUtJUl92U(1).
emails. 1"recStWAN).

Kaufman el al.. "implementing IPsec.” (Copyright 1999)
{Implementing IPsec).
Network Associates Gauntlet Firewall liar l lnix User‘s

Guide Version 5.0 (1999). (Gauntlet User‘s Guide Unix.
Firewall Products).
Network Associates Gauntlet Firewall Fbr Windmt's NT Get—

ting Started Guide Version 5.0 (1999) (Gauntlet Getting
Started Guide N'l'. Firewall Products).
Network Associates Gauntlet Firewall For lt'inix Getting
Started Guide Venom 5.0 (1999) (Gauntlet Unix Getting
Started Guide. l-‘irewall Products).
Network Associates Release Notes Gauntlet Firewall for
Unix 5.0 (Mar. 19. 1999) (Gauntlet Unix Release Notes.
Firewall Products).
Network Associates Gauntlet Firewall For Marion‘s NT

Administrator’s Guide Version 5.0 (1999) (Gauntlet N'l'
Administrator‘s Guide. Firewall Products).
'I‘I'Ltsled Information Systems. Inc. Gauntlet lnternet Fire-
wall firewall to Firewall linen-pact: Guide Version 3.}
(1996) (Gauntlet l-‘irewall to 1“ irewal]. l-‘irewall Products).
Network Associates Gauntlet firewall Global Virtual Pri—

vate Nettt'orlt' l-"ser‘s (ittitlefbr Windows NT Version 5.0
(1999) (Gauntlet NT cairn. ovpm.

FreeSlWAN

(1" reeStrWAN

Page 68 of 72

Network Associates Gauntlet Firewall For ltitia' Global Vir—

tual Private Netti-lurk User's Guide Version 5.0 (1999)
(Gauntlet Unix GVPN. GV‘PN)
Dan Sterile lei'naniic' Virtual Private Networks (May 23.
Ztlfltl) (Sterne DVPN. DV'PN).
Darrell Kindred llt'nautie lirtual Private Networks (DVPN)
(Dec. 21. 1999) (Kindred DVPN. DVI’N).
Dan Slenie et al. US Dt‘ttaiuir Securityt' Perimeter Research
Project Demonstration (Mar. 9. 1998) (Dynamic Security
Perimeter. DVPN).

Darrell Kindred litrnatnir: Virtual Private Nettt’rJrlt's Capabil-
ity Description (Jan. 5. 2000) (Kindred DVPN Capability.
DVPN) 11.
Oct. ”l. and 28 1997f email from Domenic J. '1‘urchi .lr.

(Sl’AR’l'AUllUOlTlE Ill-4. 1808 1811) ('l‘urclii DVPN
eluail. DVPN).
James Just & Dan Sterne Security Quit-aster: less Update
(Peb. 5. 1997) (Security Quickstart. DVPN).
Virtual Private Network l.)en1onstration dated Mar. 2]. 1998

{SPA RTAtltlm 1 R44— 54) (DVPN Demonstration. DV'PN).
('i'l‘F. lnlernelworking & BEN Technologies DARE/l lntbr—
matioa Assurance Program integrated l‘easibilitt' Benton-
stratum (Win 1.] Plan (Mar. It]. 1993} (IFI) 1.1. DVPN).

Microsoft (.‘orp. Windows NT Server Product Documenta-
tion: Administration Guide Connection Point Services.

available at htlp:ttwww.niicrosoft.comltechnettarcliivel
winntaslproddoeslinetconctservicelcpsopsmspx (Connec—
tion Point Services) (Although undated. this reference refers
to the operation of prior art versions of Microsoft Windows.
Accordingly. upon information and belief. this reference is
prior art to the palenls—insuit).
Microsoft (Torp. Windows NT Servier Product Documenta-
tion: Administration Kit Guide -(‘onnection Manager.
available at htlp:llwww.1nicrosoll.comltechnetlarcliivel
winntaslproddocslihetconctservicelcmak.tnspx (Connection
Manager) (Although undated. this reference refers to the
operation ol'prior arl versions ol'Micmsoll Windows such as
Windows NT 4.0. Accordingly. upon information and belief.
this reference is prior art to the patents in suit.)
Microsoft (Torp. Aulodial Heuristics. available at lttlpillsup—
portanicmsoftconu'kbl 1 642-19 (Autodial Heuristics)
(Although undated. this reference refers to the operation of
prior art versions of Microsoft Windows such as Windows
NT 4.0. Accordingly. upon in lbnnalion and belief. this refer—
ence is prior art to the patents in suit.).
Microsoft (‘orp.. (“any-lo: Distributed Component Object
Model. (1996) available at hltp:llmsan.microsoltcoml
en usllibrarylm5809332(printer).aspx ((.‘at‘iplo 1).
Marc Levy. (.‘OM Internet Services (Apr. 23. 1999). avail-
able at ltttp:tlntsan.nticrosoft.comlen usllibraryl
n1s809302(printer).aspx (Levy).
Markus [-lorstmann and Mary Kirlland. |)(‘OM Architecture
(Jul. 23. 1997). available at hltp:llmsan.microsoftcoml
en usllibraryltn580931 l(printer).aspx (llorstmann).
Microsoft Corp" DCOM: A Business Overview (Apr. 199?).
available at ltrtp:tlmsan.nticrosoft.comten usllibraryl
ins809320(pr1nter).aspx (IX‘OM Business Overview 1).
Microsoft (.‘orp.. Dt.‘OM Technical Overview (Nov. 1996).
available at ltrtp:llntsdn2.nticrosoft.comlen usllibraryl
ms809340(printer).aspx (I'lCOM Technical Overview I).
Microsoft Corp. DCOM Architecture White Paper (1993)
available in PDC DVD --ROM (DCOM Architecture).

US 6,502,135 C1
Page 7

Microsoft Corp. DCOMiThe Distributed Component
Object Model. A Businws Overview White Paper (Microsoft
1997) available in PDC DVD ROM (DCOM Business
Overview 11).
Microsoft Corp.. DCOM—Cariplo Home Banking Over The
Inlcniel White Paper (Microsoft I996) available in PDC
two—ROM (Cariplo ll).
Microsoft Corp.. DCOM Solutions in Action White Paper
(Microsoft 1996) available in I’DC DVDAROM (DCOM
Solutions in Action).
Microsoft Corp.. DCOM Technical Overview White Paper
(Microsoft 1996) available 12 in I’DC DVD ROM (DCOM
Technical Overview 11).
125. Scott Suhy & Glenn Wood. DNS and Microsoft Win-
dows NT 4.0 (1996) available at http://msdn2.mierosoft.
com/en us/Iibrary/msS10277(printcr).aspx (Suhy).
126. Aaron Skonnard. Essential Win/nel 313—423 (Addison
Wesley Longman 1998) (Essential Winlnet).
Microsoft Corp. Installing. Configuring. and Using PP'I'I‘
with Microsoft Clients and Sewers. (1998) available at
http:t'lmsdn2.microsoft.com/cnus/libiary/ms8l1078
(printer).aspx (Using Pl’l‘l’).
Microsoft Corp. Internet Connection Services for MS RAS.
Standard Edition. http:l/www.microsoft.com/technet/
archive/winntaslproddocs/inetconctsen'icet'bcgstart.mspx
(lntemet Connection Services I).
Microsoft Corp. lntemct Connection Services for RAS.
Commercial Edition. available athltpzllwww.microsoltcom/
technct/archive/winntaslproddocs/inetconctservicc/bcgstrtc.
mspx (Internet Connection Services 11).
Microsoft Corp.. lntcmct Explorer 5 Corporatc Deployment
Guide~Appendix B:Enabling Connections with the Con-
nection Manager Administration Kit. available at http://
www.microsott.com/technet/prodtechnol/ie/deploy/de-
ployS/appcndb.rnspx (IE5 Corporate Development).
Mark Minasi. Mastering Windows NTServer 4 135971442
(6th ed.. Jan. 15. 1999)(Mastering Windows NT Server).
Hands On. Self—Paced Training for Supporting lizrion 4.0
371 .473 (Microsoft Press I998) (I lands On).
Micmsofi Corp.. MS Point Ato~Point Tunneling Protocol
(Mndows NT 4.0). available at httpzl/wwwmicmsoftcom/
technet/archivc/winntaslmaintain/fcatusabilitylpptpwp3.
mspx (MS I’P'I'P).
Kenneth Gregg. et al.. Microsoft Windows NTServer Admin-
strator's Bible 173—206. 883—9“. 974—1076 (IDG Books
Worldwide I999) (Gregg).
Microsoft Corp.. Remote Access (Windows). available at
http://msdn2.microsoft.com/en—us/lihrary/bh545687
(VS.85.printer).aspx (Remote Access).
Microsoft Corp.. Understanding PP'I'I’ (Windows NT 4.0).
available at http://www.microsolt.com/technet/archive/
winntas/plan/pptpudstmspx (Understanding I’P'Il’ NT 4)
(Although undated. this reference refers to the operation of
prior art versions of Microsoft Windows such as Windows
NT 4.0. Accordingly. upon information and belief. this refer-
ence is priorart to the patents~in~suiL).
Microsoft Corp.. Windows NT 4.0: Virtual Private Network-
ing. available at httpz/lwwwmicrosolt.coru/tcclmct/archive/
winntas/dcploy/txmfeativpntwk.mspx (NT4 VPN)
(Although undated. this reference refers to the operation of
prior art versions of Microsoft Windows such as Windows
NT 40. Accordingly. upon infomiation and belief. this refer—
ence is prior art to the patcnts—in—suit.)

Page 09 of 72

Anthony Northrup. NT Network Plumbing: Rattlers. Prox-
ies. and Web Services 29977399 (IDG Books Worldwide
I998) (Network Plumbing).
Microsoft Corp.. Chapter l—lntroduction to Windows NT
Routingwith Routing and Remote Access Service. Available
at http:l/www.microsolt.com/tcchnet/archivc/winntas/pmd-
docs/ rras40/rrasch01.mspx (Intro to RRAS) [Although
undated. this reference refers to the operation of prior art
versions of Microsoft Windows such as Windows Nl‘ 4.0.

Accordingly. upon information and belief. this reference is
prior art to the patentseinesuit.) 13.
Microsoft Corp.. Windows NT Server Product Documenta-
tion: Chapter 5 . Planning for Large-Scale Configurations.
available at http://www.microsolt.com/technet/archive/
winntas/proddocs/rras40/rrasch05.mspx (Large-Scale Con-
figurations) (Although undated. this reference refers to the
operation ofprior art versions ofMicrosoft Windows such as
Windows NT 4.0. Accordingly. upon information and belief.
this reference is prior art to the patenlsiimsuit.)
Fisecure. FASecure Evaluation Kit (May 1999) (FSECURE
00000003) (Evaluation Kit 3).
F--Secure. l-‘v-Sccure NamcSurfcr (May 1999) (FSIECURE
00000003) (NameSurfer 3).
F$ecure. l‘LSecure VPN Administrator‘s Guide (May
1999) (from FSECURE 00000003) (F Secure VI’N 3).
F~Sccure. F--Secure SSH User's & Administrator's Guide

(May 1999) (from FSECURE 00000003) (SSII Guide 3).
F—Secure. F—Secure SSIIZDV/br Windows NT and 95 (May
I999) (from FSECURE 00000003) (SSH 2.0 Guide 3).
F~Secure. FaS‘ecure l’PN+ Administrator‘s Guide (May
1999) (from FSECURE 00000003) (VPN+ Guide 3).
F. Secure. F—t 'cure l’PN+ 4.] (1999) (from FSECURE
00000006) (VPN+ 4.1 Guide 6).
Fe Secure. F Secure SSH (1996) (from
00000006) (F—Secure SSH 6).
F—Sccurc. F—Secure SS” 2.0/or Windows NTand 95 (I998)
(from FSECURE 00000006) (PZSecure SSH 2.0 Guide 6).
FvSecure. 1:. Secure Evaluation Ki! (Sep. 1998) (FSECURE
00000009) (Evaluation Kit 9).
l’reSecurc. F-Secure 53]] User's 8r. Administrator‘s Guide

(Sep. 1998) (from FSECURE 00000009) (SSH Guide 9).
F—Secure. F—Secure SSH 2.0for Windows NT and 95 (Sep.
1998) (from l‘SliCURli 0(X)00009) (lr‘esewrc $8” 2.0
Guide 9).
F—Secure. F~Secum VPN+ (Sep. 1998) (from FSECURF.
00000009) (VPN+ Guide 9).
F—Secure, l‘lSecure Management Tools Administrator‘s
Guide (1999) (li‘om FSECURIS 00000003) (F-securc Man-
agement Tools).
F Secure. PSecure Desktop. User's Guide (1997) (from
l-‘SECURE 00000009) (Fisecure Desktop User‘s Guide).
SafeNet. Inc.. VPN Policy Manager (Jan. 2000) (VPN Policy
Manager).
F—Secure. F—Secure VPN+for Windows NT4.0 (l 998) (from
FSECURE 00000009) (Fe secure V'PN+).
IRE. Inc.. SqfeNet/Soft VPK Version 4 (Mar. 28. 2000)
(Solt~PK Version 4).

IREI'SafeNet Inc.. VPN Technologies Overview (Mar. 28.
2000) (Safenet VI’N Overview).
IRE. Inc.. SqfeNet/Security Center Tire/mica] Reference
Addendum (Jun. 22. I999) (Safenet Addendum).
IRE. Inc.. Sitstem Descriptionfor VPN Policy Manager and
SafeNet/SoftPK (Mar. 30. 2000) (VPN Policy Manager Sys-
tem Description).

I’SECURE

US 6,502,135 C1
Page 8

IRE. Inc.. About SafeNet/VPN Policy Manager (1999)
(About Safenct VPN Policy Manager).
IRE, lnc.. Sa/‘eNet/I’PN Policy Manager Quick Start Guide
Version I (1999) (SafeNet VPN Policy Manager).
Trusted Information Systems. Inc.. Gauntlet Internet Fire-
wall, Firmvall Product Functional Summary (Jul. 22. 1996)
(Gauntlet Functional Summary).
Trusted Information Systems. Inc.. Running the Gauntlet
Internet Firewall. An Administrator's Guide to Gauntlet Ver-
sion 3.0 (May 31. 1995) (Running the Gauntlet Internet Fire—
wall).
Ted Harwood. Windows NT Terminal Server and Citrix
Metafrarne (New Riders 1999) (Windows NT Ilarwood) 79.
Todd W. Matehrs and Shawn P. Genoway. Windows NT
Thing Client Solutions: lmplemetning Erminal Server and
Citrix Metal'rame (Macmillan Technical Publishing 1999)
(Windows NT Matliers).
Bemard Aboba et al.. Securing [.2773 using IPSEC (Feb. 2.
1999).
156. Finding Your Way Through the VPN Maze (I999)
(“PCP").
Linux FrecS/WAN Overview (1999) (Linux FrecS/WAN)
Overview).
'I'imeStep. The Business Case for Secure VPN: (I998)
(“TimcStcp”).
WatchGuard Technologies. Inc.. WatchGuard Firebox Sys-
tem Powerpoint (2000).
WatchGuard Technologies. Inc.. MSS Firewall Specifica-
tions (1999).
WatchGuard Technologies. Inc.. Request for Information.
Securitv Services (2000).
WathtGuard Technologies. Inc .. Protecting the Internet Dis-
tributed Enterprise. White Paper (Feb. 2000).
WatchGuard Technologies. Inc.. WatchGuard LiveSecurity
for MSS Powerpoint (Feb. 14. 2000).
WatchGuard Technologies. Inc.. MSS Version 2.5. Add—0n
for WatchGuardSOHO Release! Notes (Jul. 21. 2000).
Air Force Research Laboratory. Statement ofWorkfor Infar—
matian Assurance Svstem Architecture and Integration. PR
No. N 8 6106 (Contract No. F30602 98 C 0012) (Jan. 2‘).
I998).

GTE Intcmctworking & BBN Technologies DARPA Infor-
mation Assurance Program Integrated feasibility Benton-
stration (IFD) 1.2 Report. Rev. 1.0 (Sep. 21. I998).
BBN Information Assurance Contract. ITS Labs Monthly
Status Report (Mar. 16- Apr. 30. I998).
DARPA. Dynamic Virtual Private Network (VPN) Power-
paint.
GTE Internetworking. Contractor's Program Progress
Report (Mar. 16—Apr. 30. I998).
Darrell Kindred. Dynamic Virtual Private Networlo‘ (DVPN)
Counternieasure Characterization (Jan. 30. 2001).
Virtual Private Networking Countermeasure Characteriza-
tion (Mar. 30. 2000).
”final Private Network Demonstration (Mar. 21. 1998).
Information Assumncc/NAI Labs. Dynamic Virtual Private
Networks (VPM) and Integrated Security Management
(2000).
Information Assurance/NM

Enclave(2000).
NAI Labs. [FE 3.] Integration Demo (2000).
Information Assurance. Science Fair Agenda (2000).
Darrell Kindred et al.. Proposed Threadsfor IFE 3.] (Jan.
13. 2000).

Labs. Create/Add DVPN

Page 70 of 72

IFE 3.] Technology Dependencies (2000).
IFE 3.1 Tow/0&3! (Feb. 9. 2000).
Information Assurance. Infi)rmatiian Assurance Integration:
IFE 3.I. Hypothesis & Thread Development (Jan. 10—l l.
2000).
Information Assumncct'NAl Labs. Dynamic Virtual Private
Networks Presentation (2000).
Information AssurancelNAI Labs. Dynamic Virtual Private
Networks Presentation v.2 (2000).
Information Assumnce/NAI Labs. Dynamic l'7rtual Private
Networks Presentation v.3 (2000).
T. Braun et al.. Virtual Private Network Architecture, Cbarg-
ing and Accounting Technology for the Internet (Aug. 1.
I999) (VPNA).
Network Associates Products—P6P Total Network Security
Suite. Dynamic Virtual Private Networks (1999).
Microsofl Corporation. Microsoft Proxy Server 2.0 (1997)
(Proxy Server 2.0. Microsoft PriorAn VPN Technology).
David Johnson et al.. A Guide To Microsoft Prom? Server 3.0
(1999) (Johnson. Microsoft Prior Art VPN Technology).
Microsoft Corporation. Setting Server Parameters (I997
(Proxy Server 2.0 CD labeled MSFTVX00157288) (Setting
Server Parameters. Microsoft Prior Art VPN Technology).
Kevin Schuler. MicrosQ/t Proxy Server 2 (I998) (SchuIer.
Microsoft PriorArt VPN Technology
Erik Rozell et al.. MCSE Proajv Server 2 Study Guide (I 998)
(Rozell. Microsoft Prior 15 Art VPN Technology.
M. Shane Stigler & Mark A. Linsenbardt. IIS 4 and Proxy
Sener 2 (I999) (Stigler. Microsoft Prior An VPN Technol-
ogy).
David G. Schaer. MCSE Test Success: Proxy Server 2 (1998)
(Schaer. Microsoft Prior Art VPN Teclulology).
John Savill. The Windows NT and Windows 2000 Answer

Book (1999) (Savill. Microsofi Prior Art VPN Technology).
Network Associates Gauntlet Firewall Global Virtuzd Pri-

vute Network User's Guide for lVittduws NT Version 5.0
(1999) (Gauntlet NT (iVPN. ('iVPN).
Network Associates Gauntlet Firewall For UNIX Global lir-

tual Private Netimrk User's Guide Version 5.0 (1999)
(Gauntlet Unix GV'PN. GVPN).
File History for US. Appl. No. 091653.201. Applicant(s):
Whittle Bryan. et al.. filed Aug. 31. 2000.
AutoSOCKS v2.1, Datasheet. http://wcb.archive.org/web/
I 99702 I 2013409/vtww.avcntail.com/prodlautoskdshtml.
RanAtkinson. I lse ofDNS to Distribute Keys. Sep. 7. 1993.
http :llops. ietf.org/Iists/namedmppers/namcdmppers. I 99x!
msg00945.html.
FirslVl’N Enterprise Networks. Overview.
Chapter I: Introduction to Firewall Technology. Administra-
tion Guide: Dec. 19. 2007. http://www.book524x7.com/
book/id_762/viewer_r.asp‘lbookid-762&chunked-
41065062.

TheTI.S Protocol Version 1.0: Jan. 1999215. 65 of7l.
Elizabeth D. Zwicky. et al.. Building Internet Firewalls. 2nd
Ed.

Virtual Private Networks #Assured Digital Incorporalcd~
ADI 4500: http://web.archive.org/web/I990224050035/
www.assured~~digital.com/products/prodvpn/adia4500.btm.
Accessware the Third Wave in Network Security. Con-
clave from Internet Dynamics; Itttp://wcb.archivc.org/web/
l 1980210013830/interdyn.com/Aceesswarehtml.
Extended System Press Release. Sep. 2. 1997: Extended
VPN Uses The Internet to Create Virtual Private Networks,
www.cxtcndcdsystcms.com.

Page 71 of 72Page 71 of 72

US 6,502,135 C]
Page 9

Socks Version 5‘. Executive Summary: liltpa’tweb.
archi ve.orgfwebt’ 1 999?062 003 194 SIwwwaventail .eolni’edu-
catetwhjtepapertsockswphtml.
Internet Dynamics First to Ship Integrated Security Solu—
tions for Enterprise Intranets and Extranels; Sep. 15. 1997:
http:Hwebmehiveergfwebt‘l9980210014150!interdyn.eom.
L‘ mails front various individuals to Linux IPsee

re:l)NS 1.1)A1’ Splicing.
Microsotl Corporation‘s liiilh Amended Invalidity Conten—
tions dated Sep. IR. 2009. Virnctlez and ScienceApplica-
tions International Corp. v. Mirrmqfi Corporation and
invalidity claim charts for 11.53. Patent Nos. 7.138.180 and
6.839.?59.
The IPSEC Pmlocol as described in Atkinson. el al.. “Secu—

rity Architecture for the Internet Pmlocol.” Networking
Working Group. RFC 2401 (Nov. 1998) (“RFC 240]“):
http:#webmeltiveorgfwebt‘ 1 999 10070?0353fltttp:ttwww.
ilnib.med.tu- dresden.defimibflntemeu'l .itemturi’ip see--
docu eng.html.
S. Kent and R. Atkinson. "1P Authentication Header.“ RFC
2-102 (Nov. 1998): httpftwebarelriveorgfwebt
l 999 1 0070?03 531110139!wwwimibmedtu dresdender’
ii'nil'uf [Itlernelfl .ileraluri’ipsec— doc u _eng.ht|nl.
(V. Madson and R. (ilenli. “The Use of [IMAC-MDS—gfi

within ESP and All.” RFC 2403 (Nov. 1998): littps’t'wcb.
arehiveorghveb/ 1 999 l 00?0T0353t’http:waw.iniib.nied.tu
dresdeadet’iniibflnlemeb'l .ilentlurt'ipsee---doeu_eag.hlml.
C. Madson and R. (ilenn. “The Use 1-1M.-\(.‘ Sl-IA 1 96
with ESP and AH.” RFC 2404 (Nov. 1998): hltpfa’web.
archiveorgfwebf l 9.99 1 00? 0711363:fhttpa“t’wwwjmibanedtu
dresdenoefimibt'lntemeta’Literalurt’ipsec doeu englttml.
C. Madsoli and N. [Mraswamy "The ESP DES—CBC Cipher
Algorithm With Explicit 1V". RFC 2405 (Nov. 1998): htlpo":f
vi-‘cb.archive.or‘sywebtf 1 999 1 [XJYUTI'US 5311111}: :ti‘wwwjmib.
111ed.lu—d.msde|r.defi|nihf1nter'neli'l .iteratun’ipsec—dm:u_
eug.htm1.
S.Kent and R. Atkinson. “ [P lirieapsulating Security Payload
(ESP)." RFC 2406 (Nov. 1998); http:t’hlvelztarehive.m'g.«‘\ivebtr
1999 1 0070703 53fhttp:flwww. imib.med.tu dresdendet’
imibt’lnternev‘ljteralurt’ipsec doeu enghtml.
Derrell Piper. “The Internet IP Security Domain ol‘ Interpre—
tation for ISAKMI’.“ RFC 2407 (Nov. 1998): httpu'fwcb.
arehjveorg’web/ l 999 1 00710 T0353t’http:It‘wwwjniibanedtu
dresdendefiniihflnlemeL-‘T .ileralurt'ipsee —docu__eng.hl|n|.

Page 71 of 72

Douglas Maugham. et a1. “Internet Security Association and
Key Management Protocol (ISAKMP)? RFC 2-108 (Nov.
1998): http:Hwebarchive.orgfwebt’199910070?0353tltttp:t’r’
www.iniih.nred.tu—dresdendei’iInibi’lnlenielfl .iteralunIr

ipsec-—doeu_ eng.html.
1.). llarkins and D. Carroll. “'lhe Internet Key Enchange
(IKILJI‘ RFC 2409 (Nov. 1998}: hrtpn’tw-‘ebarehiveorgfwebt
1999 l 00?0’t‘035Mittp:wawimibmed .ru dresden.def
inlibtlnlemelfl .ileraturfipsec---(.loeu_eng.hlml.
R. Glenn and S. Kent. u‘l‘he NU 1.1. Encryption Algorithm
and Its Use With ll’seC." RFC 2410 (Nov. 1998): httprf.If
Webarchiveorywebt] 999 l (1070710353f11ttp:ffwn-‘n-ximib.
med.tu dresden.delitnibt'Internethiteraturfipsec docu
engJitInl.
R. Thayer. el al.. “11" Security Document Roadlnap." RFC.
241 1 (Nov. 1 993): ltttp:lt’webarehiveorgfwebt
1999 l 00T0ir'0353fhttp:t't’wwwimibmed .ru dresden.d e1”
imibt'lnlernett'l .ilemturfipsee---docu_eng.hlml.
Ililarie K. Orman. “The Oakley Key Detennination Prolo-
eol." RFC 2412 (Nov. 1998) in combination with 1.191.
Galvin. “Public Key Distribution with Secure DNS.” Pro-
ceedings of the Sixth USLiNlX UNIX Security Symposium.
San Jose California (Jul. 1996) (“Galvin").
David Kosiur. "Building and Managing Virtual Private Nel—
works” (1998).
P. Moekapetris. “Domain Nantes Implementation and
Specification." Network Working Group. RFC 1035 (Nov.
198?).
Request for Inter Parles Reexamination 01' Patent No. 7".188.
180. dated Nov, 25. 2009.
Exhibit 2 “Aventail Connect v3.11‘v2.6 Administrator‘s

Guide". 120 pages. 1996-4999.
Exhibit 3A. "Gauntlet l'iirewall for Windows". pp. l—137.
1998 1999.

Exhibit 33. “Gauntlet Firmvzlll for Windows". pp. 138—275.
1998--1999.

Exhibit 4. “Kosiur". Building and Managing VPNs. pp.1 39a. 1998.

Exhibit 5. Building a Microsoft \«"l-‘N: A comprehensive Col-
lection of Microfoft Resources. pp. 1 216.
Exhibit 6. Windmvs NT Server. Virtual Private Network; An

Overview. pp. 1 26, 1998.
Exhibit '1'. “Networking Working Group Request for Com-
ments: 1035" pp. l--56. 193?.

Page 72 of 72Page 72 of 72

US 6,502,135 Cl
1

INTER PARTES

REEXAMINATION CERTIFICATE
ISSUED UNDER 35 U.S.C. 316

'l'III-l ll-‘(l‘iiN'l‘ IS [ll'iRlillY AMENDED AS
lNDIL‘A’l‘ED BELOW.

Matter enclosed in heavy brackets [] appeared in the
patent, but has been deleted and is no longer a part ufthe
patent; matter printed in italics indicates additions made
to the patent.

AS It RI'iSUIfI‘ OF REFXAMINA'I‘ION. ['1‘ [MS BEI-EN
Dli'l'liRMINL'LD 'I'l l:\'l':

‘I‘hc patcutability ul‘cltlims 1-10 and 12 is continued.

New claim 18 is added and dclennilled to be palenlahle.

Claims 1] and [3-17 were not reexamined.

HE. A method of treitsparemiv meeting a virtual private
network (WW) between a when: eomputer and a target
(‘tttithtt-‘Gi'. erJtiiprisiitg the stqus of."

Page 72 of 72

1:1

15

2!)

2
(t) generatingjrotu the ('it'ent eoutpiiter a Donuiin Nettie

Service (DNS) request that requests an it” address {'or-
responding to a domain name associated with the tar-
get mmputer;

(2) deterriiining whether the DNS request transmitted in
step (i) is requesting oreess to (I secure web site; and

(3) in reswnse to determining that the DNS request in
step (.7) is requesting times; to a semire target web site.
automatieaiii' initiating the W’N between the t‘iient
emuputer and the target computer: wherein:

steps (3) and (3) are performed at a DNS server separate
from the eiient computer. and step (3) comprises the step at:
litrior to autmuatit'aib‘ initiating the I’ZPN between the eiieut
computer and the target eampttten determining whether the
('tient computer is authorized to resoive addresses ot‘nott
set'ure target roiiiputers and. it'not so authorized, returning
an errorfrotn the DNS request.

