
Disconnected Operation in the Coda File
System

JAMES J. KISTLER and M. SATYANARAYANAN

Carnegie Mellon University

Disconnected operation is a mode of operation that enables a client to continue accessing critical
data during temporary failures of a shared data repository. An important, though not exclusive,

application of disconnected operation is in supporting portable computers. In this paper, we show
that disconnected operation is feasible, efficient and usable by describing its design and imple-
mentation in the Coda File System. The central idea behind our work is that caching of data,

now widely used for performance, can also be exploited to improve availability.

Categories and Subject Descriptors: D,4.3 [Operating Systems]: File Systems
Management: —distributed file systems; D.4.5 [Operating Systems]: Reliability— fault tolerance;

D.4.8 [Operating Systems]: Performance —nzeasurements

General Terms: Design, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: Disconnected operation, hoarding, optimistic replication,

reintegration, second-class replication, server emulation

1. INTRODUCTION

Every serious user of a distributed system has faced situations where critical

work has been impeded by a remote failure. His frustration is particularly

acute when his workstation is powerful enough to be used standalone, but

has been configured to be dependent on remote resources. An important

inst ante of such dependence is the use of data from a distributed file syst em.

Placing data in a distributed file system simplifies collaboration between

users, and allows them to delegate the administration of that data. The

growing popularity of distributed file systems such as NFS [161 and AFS [191

This work was supported by the Defense Advanced Research Projects Agency (Avionics Lab,

Wright Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air
Force, Wright-Patterson AFB, Ohio, 45433-6543 under Contract F33615-90-C-1465, ARPA Order

7597), National Science Foundation (PYI Award and Grant ECD 8907068), IBM Corporation

(Faculty Development Award, Graduate Fellowship, and Research Initiation Grant), Digital
Equipment Corporation (External Research Project Grant), and Bellcore (Information Network-
ing Research Grant).

Authors’ address: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213.
Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1992 ACM 0734-2071/92/0200-0003 $01.50

ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992, Pages 3-25.

RPX-1018, p.1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4. J J. Kistler and M, Satyanarayanan

attests to the compelling nature of these considerations. Unfortunately, the

users of these systems have to accept the fact that a remote failure at a

critical juncture may seriously inconvenience them.

How can we improve this state of affairs? Ideally, we would like to enjoy

the benefits of a shared data repository, but be able to continue critical work

when that repository is inaccessible. We call the latter mode of operation

disconnected operation, because it represents a temporary deviation from

normal operation as a client of a shared repository.

In this paper we show that disconnected operation in a file system is indeed

feasible, efficient and usable. The central idea behind our work is that

caching of data, now widely used to improve performance, can also be

exploited to enhance availability. We have implemented disconnected opera-

tion in the Coda File System at Carnegie Mellon University.

Our initial experience with Coda confirms the viability of disconnected

operation. We have successfully operated disconnected for periods lasting one

to two days. For a disconnection of this duration, the process of reconnecting

and propagating changes typically takes about a minute. A local disk of

100MB has been adequate for us during these periods of disconnection.

Trace-driven simulations indicate that a disk of about half that size should be

adequate for disconnections lasting a typical workday.

2. DESIGN OVERVIEW

Coda is designed for an environment consisting of a large collection of

untrusted Unix 1 clients and a much smaller number of trusted Unix file

servers. The design is optimized for the access and sharing patterns typical of

academic and research environments. It is specifically not intended for

applications that exhibit highly concurrent, fine granularity data access.

Each Coda client has a local disk and can communicate with the servers

over a high bandwidth network. At certain times, a client may be temporar-

ily unable to communicate with some or all of the servers. This may be due to

a server or network failure, or due to the detachment of a portable client

from the network.

Clients view Coda as a single, location-transparent shared Unix file sys-

tem. The Coda namespace is mapped to individual file servers at the granu-

larity of subtrees called volumes. At each client, a cache manager (Venus)

dynamically obtains and caches volume mappings.

Coda uses two distinct, but complementary, mechanisms to achieve high

availability. The first mechanism, server replication, allows volumes to have
read-write replicas at more than one server. The set of replication sites for a

volume is its volume storage group (VSG). The subset of a VSG that is

currently accessible is a client’s accessible VSG (A VSG). The performance

cost of server replication is kept low by caching on disks at clients and

through the use of parallel access protocols. Venus uses a cache coherence

protocol based on callbacks [9] to guarantee that an open file yields its latest

1Unix is a trademark of AT&T Bell Telephone Labs

ACM Transactions on Computer Systems, Vol. 10, No 1, February 1992,

RPX-1018, p.2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Disconnected Operation m the Coda File System . 5

Icopy in the AVSG. This guarantee is provided by servers notifying clients

when their cached copies are no longer valid, each notification being referred

to as a ‘callback break’. Modifications in Coda are propagated in parallel to

all AVSG sites, and eventually to missing VSG sites.

Disconnected operation, the second high availability mechanism used by

Coda, takes effect when the AVSG becomes empty. While disconnected,

Venus services file system requests by relying solely on the contents of its

cache. Since cache misses cannot be serviced or masked, they appear

as failures to application programs and users. When disconnection ends,

Venus propagates modifications and reverts to server replication. Figure 1

depicts a typical scenario involving transitions between server replication

and disconnected operation.

Earlier Coda papers [18, 19] have described server replication in depth. In

contrast, this paper restricts its attention to disconnected operation. We

discuss server replication only in those areas where its presence has signifi-

cantly influenced our design for disconnected operation.

3. DESIGN RATIONALE

At a high level, two factors influenced our strategy for high availability.

First, we wanted to use conventional, off-the-shelf hardware throughout

our system. Second, we wished to preserve transparency by seamlessly inte-

grating the high availability mechanisms of Coda into a normal Unix

environment.

At a more detailed level, other considerations influenced our design. These

include the need to scale gracefully, the advent of portable workstations, the

very different resource, integrity, and security assumptions made about

clients and servers, and the need to strike a balance between availability and

consistency. We examine each of these issues in the following sections.

3.1 Scalability

Successful distributed systems tend to grow in size. Our experience with

Coda’s ancestor, AFS, had impressed upon us the need to prepare for growth

a priori, rather than treating it as an afterthought [17]. We brought this

experience to bear upon Coda in two ways. First, we adopted certain mecha-

nisms that enhance scalability. Second, we drew upon a set of general

principles to guide our design choices.

An example of a mechanism we adopted for scalability is callback-based

cache coherence. Another such mechanism whole-file caching, offers the

added advantage of a much simpler failure model: a cache miss can only

occur on an open, never on a read, write, seek, or close. This, in turn,

substantially simplifies the implementation of disconnected operation. A

partial-file caching scheme such as that of AFS-4 [22], Echo [8] or MFS

[1] would have complicated our implementation and made disconnected

operation less transparent.
A scalability principle that has had considerable influence on our design is

the placing of functionality on clients rather than servers. Only if integrity or

ACM Transactions on Computer Systems, Vol 10, No 1, February 1992

RPX-1018, p.3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

6. J J. Kistler and M Satyanarayanan

‘m

_.___—l

ACM TransactIons on Computer Systems, Vol. 10, No 1, February 1992

RPX-1018, p.4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Disconnected Operation in the Coda File System o 7

security would have been compromised have we violated this principle.

Another scalability principle we have adopted is the avoidance ofsystem-wide

rapid change. Consequently, we have rejected strategies that require election

or agreement by large numbers of nodes. For example, we have avoided

algorithms such as that used in Locus [23] that depend on nodes achieving

consensus on the current partition state of the network.

3.2 Portable Workstations

Powerful, lightweight and compact laptop computers are commonplace today.

It is instructive to observe how a person with data in a shared file system

uses such a machine. Typically, he identifies files of interest and downloads

them from the shared file system into the local name space for use while

isolated. When he returns, he copies modified files back into the shared file

system. Such a user is effectively performing manual caching, with write-back

upon reconnection!

Early in the design of Coda we realized that disconnected operation could

substantially simplify the use of portable clients. Users would not have to

use a different name space while isolated, nor would they have to man-

ually propagate changes upon reconnection. Thus portable machines are a

champion application for disconnected operation.

The use of portable machines also gave us another insight. The fact that

people are able to operate for extended periods in isolation indicates that they

are quite good at predicting their future file access needs. This, in turn,

suggests that it is reasonable to seek user assistance in augmenting the

cache management policy for disconnected operation.

Functionally, involuntary disconnections caused by failures are no different

from uoluntary disconnections caused by unplugging portable computers.

Hence Coda provides a single mechanism to cope with all disconnections. Of

course, there may be qualitative differences: user expectations as well as the

extent of user cooperation are likely to be different in the two cases.

3.3 First- vs. Second-Class Replication

If disconnected operation is feasible, why is server replication needed at

all? The answer to this question depends critically on the very different

assumptions made about clients and servers in Coda.

Clients are like appliances: they can be turned off at will and may be

unattended for long periods of time. They have limited disk storage capacity,

their software and hardware may be tampered with, and their owners may

not be diligent about backing up the local disks. Servers are like public

utilities: they have much greater disk capacity, they are physically secure,

and they are carefully monitored and administered by professional staff.

It is therefore appropriate to distinguish between first-class replicas on

servers, and second-class replicas (i.e., cache copies) on clients. First-class

replicas are of higher quality: they are more persistent, widely known,

secure, available, complete and accurate. Second-class replicas, in contrast,
are inferior along all these dimensions. Only by periodic revalidation with

respect to a first-class replica can a second-class replica be useful.

ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992.

RPX-1018, p.5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

