The introductory poragraph is fragmentang- a series of unrelated sentences. Suggest à initial portion Odesende morphologie bedaues gentences. Suggest à initial portion of the trileablet and buleaflet Oprogression of centre **PERCUTANEOUS AORTIC** VALVE REPLACEMENT 7 structural 7 morphologic

The aortic valve undergoes a series of changes based upon the initial structure at birth and the dynamic stresses, which it has to undergo daily. The trileaflet aortic valve will not become stenotic usually until the 7th decade unless infectious processes are introduced sooner. The incidence of aortic stenosis can reach between 2 to 9 % in this age range. The average mortality rate at all ages is 9% /year which also increases as a population ages. Coupled with these facts is the likelihood that as a person ages and becomes symptomatic with a rtic stenosis, he is less likely to be an operative candidate. The mortality of octogenarians has been reported as high as 20% for a reasonable replacement that can preclude a reasonable attempt at the therapy of choice, which is surgical replacement.

In an attempt to formulate an effective therapy for this class of patients, I have designed a series of devices, which can be placed nonsurgically so as to plan the only por ASI minimize the risk to the patient during the procedure. This procedure involves novel as well as known equipment and techniques. and addresses a need to provide a non-surgical

unt

Supporting Structure needs to he described detail. Can 400 USP etisting to et hology deliveriis. materialet omit

no data

heep to

DOCKF

therapy for abric value disease. The first in a line of options involves the placement of an aortic valve incorporated within a stent. This device would be anchored in the ascending aorta with further support supplied in branch vessels or descending aorta as seen necessary by the stress forces placed upon the artificial valve and calculated before the procedure (please see appendix1). The valve would be connected to the stents by serially connected rods. This design would displace the forces placed upon the artificial/biomechanical/bioprosthetic valve across a large surface area. Placing the device nonsurgically eliminates the need for bypass pump or sternotomy for placement. FIGURE 1. There are several variations to the valve design that can be utilized using these techniques and concepts. The first is the umbrella shaped valve, which would be placed in a position above the native valve, and when it collapses, would seal the opening between the aorta and left ventricle. This would also make it ideal for those patients who primarily have a crtic regurgitation. The hinges can be of several types: (in order to produce as much laminar flow characteristics as possible) 1. Stainless steel rods enveloped within a rubber or plastic polymer that would withstand oscerding with

passive pasttense >

NORRED EXHIBIT 2053 - Page 1 Medtronic, Inc., Medtronic Vascular, Inc., & Medtronic Corevalve, LLC v. Troy R. Norred, M.D. Find authenticated court documents without watermarks at class approximation 10

abritic value, smuses at

3 problems with artis

value surgers

morphologie charges

, mortally

Comment on

attempts at

solutions

to the problem

ie Calloon

veluplisty

Casseine my

references

don't remele

this is your

Ithought

stert was in

the ascendy

ante.

For what

types your unel meed

to explan

anating of the

presectation

Need

1 Onege

norel

stensis with

The introductory poragraph is fragmentang- a series of unrelated sentences. Suggest a initial portion Odescribe maphilogic bedaues of the trileablet and culcoffeet abritic value, souses at Oprogression of acritic **PERCUTANEOUS AORTIC** VALVE REPLACEMENT 2 structural ? morphologic

stensis with

3 problems with artis

value surpro

morphologie charges

, montably

Comment on

attempts at

solutions

to the problem

ie Calloon

veluplisty

references

don't remele

this is your

Ithought

stert was n

the ascendy

For whent

ante

types you will need

to explain

anating of the

oscerdiz auto

well

the cierta

presectation

Need

1 Unegle

moriel

The aortic valve undergoes a series of changes based upon the initial structure at birth and the dynamic stresses, which it has to undergo daily. The trileaflet aortic valve will not become stenotic usually until the 7th decade unless infectious processes are introduced sooner. The incidence of aortic stenosis can reach between 2 to 9 % in this age range. The average mortality rate at all ages is 9% /year which also increases as a population ages. Coupled with these facts is the likelihood that as a person ages and becomes symptomatic with a rtic stenosis, he is less likely to be an operative candidate. The mortality of octogenarians has been reported as high as 20% for a reasonable replacement that can preclude a reasonable attempt at the therapy of choice, which is surgical replacement.

In an attempt to formulate an effective therapy for this class of patients, I have designed a series of devices, which can be placed nonsurgically so as to plan the minimize the risk to the patient during the procedure. This procedure involves novel as well as known equipment and techniques. and addresses a need to provide a non-surgical

Supporting Structure needs to described detail. Can 400, 05t 1+15+115 +0 C+15+115+10 et hology deliveriis. materials. omit

no data

heep to

DOCKF

RM

therapy for abric unt value disease. The first in a line of options involves the placement of an aortic valve incorporated within a stent. This device would be anchored in the ascending aorta with further support supplied in branch vessels or descending aorta as seen necessary by the stress forces placed upon the artificial valve and calculated before the procedure (please see appendix1). The valve would be connected to the stents by serially connected rods. This design would displace the forces placed upon the artificial/biomechanical/bioprosthetic valve across a large surface area. Placing the device nonsurgically eliminates the need for bypass pump or sternotomy for placement. FIGURE 1. There are several variations to the valve design that can be utilized using these techniques and concepts. The first is the umbrella shaped valve, which would be placed in a position above the native valve, and when it collapses, would seal the opening between the aorta and left ventricle. This would also make it ideal for those patients who primarily bave aortic regurgitation. The hinges can be of several types: (in order to produce as much laminar flow characteristics as possible) 1. Stainless steel rods enveloped within a rubber or plastic polymer that would withstand

passive pasttense > same

I would ash engineers to justify the use of plastic polymers welding details of weight, tensile strength etc. Why rubber coating? Most intromosaler denices are coated, with something else - selicin a wethout sheer stresses with opening and closing; 2. Rubber and plastic polymer with the thickest portion at the bases and the narrowest portions at the center so that it folds during systolic contraction of the left ventricle. The tip of the valve would be of a semicircular design to permit the much desired laminar flow characteristics of the aortic valve. This would decrease the shear stress placed upon the aortic root and ascending aorta. The design may also incorporate a semi circular configuration opposing the sinuses of valsalva so as to disperse the stress upon the aortic valve along a larger surface area and to maximize the flow characteristics to the coronary arteries. This valve would be placed within a catheter system. However a steering and placement mechanism, incorporating a connection of removable rods guided by a half ball configuration, may be necessary. The femoral artery would be accessed and cannulated. The femoral vein would be accessed and cannulated. Both an antegrade and retrograde approach would be used to place the stent/valve combination within the right anatomical position. The visualization would utilize continuous roentgenogram and ultrasound techniques, which are currently available. The most important visualization tool would be ICE (intracardiac echocardiography). In this valve model, direct connection of the valve to the aortic root would not be utilized unless the direction of the jet from the aortic valve made it necessary. The procedure would involve inflation of balloons within the aortic valve and ascending aorta to deploy the stent/valve combination. If traditional valvuloplasty does not produce significant enough opening of the aortic valve and relieve the gradient between the left ventricle and aorta then a series of further steps may be required.

Removal of the native aortic valve would not be necessary. The focus Mot sure if you want would instead be upon debulking of the native aortic valve. The central theme would hinge upon abolition of the resting gradient. The techniques employed would attempt to achieve a large effective aortic valve area regardless of the functioning of the native valve post-procedure because an artificial valve designed to prevent aortic regurgitation would be in place. The valves are designed not to hinder the ejection of blood from the left ventricle, and to minimize the aortic regurgitant volume. These techniques may include the positioning of an Er-YSGG percutaneous laser to decalcify the valve and repeat balloon aortic valvuloplasty. If not effective then high frequency ultrasound percutaneously applied may be necessary. These techniques have been shown to be highly effective at producing debulking and preventing restenosis. However, they produce tremendous aortic regurgitation. This would not be a problem for the unattached valve which would work as stated previously for aortic regurgitation. If the desired

or delulk I thought you wented to the it and append

gen a rim remnant

July is this

You lun 4

and understy

eletush

9 lunen

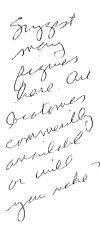
doest

The

detailed in

peragraphs

aveta


inforder

I tourd this description disorganized. You went from a name description of

IALUE DESIGN (con's) . needs to be collegesable to fit its a catheter delney system , needs to be in a variety of sizes to fit into a winde momenty of about siges materials need to be strong anough to unthstand acritic pressures materials should be bonded together to prevent embolic plenomena a mais thinksons materies need to see function in body temperature attende the engineery help here 2) NATIVE VALUE REMOVAC SYSTEM 3) CATHETER DELIVERY SYSTEM 4) SUPPORTING STRUCTURE de Liberte de la Brinder de Liberte de Lib

DOCKET

bigne? ? défine :

results were not seen then a host of options are still available; for example, the intrial two rings could be guided onto both the aortic and ventricular sides of the native aortic valve and pneumatically sealed together. Then expandable and retractable biotomes could be percutaneously placed for controlled dissection of the native aortic valve. Along this concept, the biotomes could be used for primary resection without stabilizing rings, but there would need to be a stabilization mechanism. Another such mechanism could employ the use of a micro screw into the native valve, which would act as an anchor to guide a biotome onto the native valve. Then the biotomes would take small snips in a controlled fashion off of the native valve. This would gradually increase the effective orifice area. Excitingly, because the artificial valve is not anchored or dependent upon the native valve for its function, this technique could be easily reapplied, if the native valve were to restenose, - restwithout compromising the artificial valve. A tremendous advantage of this procedure would be its independence from a need for a percutaneous bypass pump. desince in more delil

It souds like you bound decided on an ancoing mechanism. This would

die an important part of

studie

The second valve design could be best described as a conical design. It would be composed of 16 to 32 individual/rubber/plastic/metal plates, which would be interconnected by resistant fabric? Figure 2 shows how this valve would be connected together. It would be placed in direct opposition of the native aortic valve. It would expand during systole and collapse during diastole. It would also be anchored along the aortic root wall with connecting rods to the ascending aortic stents. The rods would be placed between the right and left coronary ostia tangentially along the sinus of \forall alsalva. In this design there would not be any intraluminal rods within the ascending aorta as with the umbrella design. The techniques described above to relieve the aortic stenosis would also be applicable to this valve. This valve however may not be the best valve for isolated aortic regurgitation given the direct placement of the valve over the native valve may impede opening and create an outflow obstruction. However, given the curved and redundant nature of this valve, and the fact that it centralizes the ejection jet from the left ventricle, it may produce the most laminar flow characteristics and the least hematologic sequelae. The edges may need to have a loose rim of pliable material, which act as a flap valve, to help reduce peri-valvular leaks (See appendix). To minimize components and to aid in miniaturizing the device for delivery, the connecting cones can be reduced to 2 - 4 interconnecting rods, which are draped in a sheet of fibrous polymer (See appendix).

describe

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.