
The following paper was originally published in the
Proceedings of the USENIX 1996 Annual Technical Conference

San Diego, California, January 1996

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Eliminating Receive Livelock in an
Interrupt-driven Kernel

Jeffrey Mogul, DEC Western Research Laboratory
K. K. Ramakrishnan, AT&T Bell Laboratories

Petitioner Apple Inc. - Exhibit 1009, p. 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Eliminating Receive Livelock in an Interrupt-driven Kernel

Jeffrey C. Mogul
Digital Equipment Corporation Western Research Laboratory

K. K. Ramakrishnan
AT&T Bell Laboratories

of once per revolution; first-generation LAN environ-Abstract
ments tend to generate a few hundred packets per
second for any single end-system. Although peopleMost operating systems use interface interrupts to
understood the need to reduce the cost of taking anschedule network tasks. Interrupt-driven systems can
interrupt, in general this cost was low enough thatprovide low overhead and good latency at low of-
any normal system would spend only a fraction of itsfered load, but degrade significantly at higher arrival
CPU time handling interrupts.rates unless care is taken to prevent several

The world has changed. Operating systems typi-pathologies. These are various forms of receive
cally use the same interrupt mechanisms to controllivelock, in which the system spends all its time
both network processing and traditional I/O devices,processing interrupts, to the exclusion of other neces-
yet many new applications can generate packetssary tasks. Under extreme conditions, no packets are
several orders of magnitude more often than a diskdelivered to the user application or the output of the
can generate seeks. Multimedia and other real-timesystem.
applications will become widespread. Client-serverTo avoid livelock and related problems, an operat-
applications, such as NFS, running on fast clients anding system must schedule network interrupt handling
servers can generate heavy RPC loads. Multicast andas carefully as it schedules process execution. We
broadcast protocols subject innocent-bystander hostsmodified an interrupt-driven networking implemen-
to loads that do not interest them at all. As a result,tation to do so; this eliminates receive livelock with-
network implementations must now deal with sig-out degrading other aspects of system performance.
nificantly higher event rates.We present measurements demonstrating the success

Many multi-media and client-server applicationsof our approach.
share another unpleasant property: unlike traditional
network applications (Telnet, FTP, electronic mail),

1. Introduction they are not flow-controlled. Some multi-media ap-
Most operating systems use interrupts to inter- plications want constant-rate, low-latency service;

nally schedule the performance of tasks related to I/O RPC-based client-server applications often use
events, and particularly the invocation of network datagram-style transports, instead of reliable, flow-
protocol software. Interrupts are useful because they controlled protocols. Note that whereas I/O devices
allow the CPU to spend most of its time doing useful such as disks generate interrupts only as a result of
processing, yet respond quickly to events without requests from the operating system, and so are in-
constantly having to poll for event arrivals. herently flow-controlled, network interfaces generate

Polling is expensive, especially when I/O events unsolicited receive interrupts.
are relatively rare, as is the case with disks, which The shift to higher event rates and non-flow-
seldom interrupt more than a few hundred times per controlled protocols can subject a host to congestive
second. Polling can also increase the latency of collapse: once the event rate saturates the system,
response to an event. Modern systems can respond to without a negative feedback loop to control the
an interrupt in a few tens of microseconds; to achieve sources, there is no way to gracefully shed load. If
the same latency using polling, the system would the host runs at full throughput under these con-
have to poll tens of thousands of times per second, ditions, and gives fair service to all sources, this at
which would create excessive overhead. For a least preserves the possibility of stability. But if
general-purpose system, an interrupt-driven design throughput decreases as the offered load increases,
works best. the overall system becomes unstable.

Most extant operating systems were designed to Interrupt-driven systems tend to perform badly
handle I/O devices that interrupt every few mil- under overload. Tasks performed at interrupt level,
liseconds. Disks tended to issue events on the order

Petitioner Apple Inc. - Exhibit 1009, p. 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

by definition, have absolute priority over all other tions to customers. The rest of this paper con-
tasks. If the event rate is high enough to cause the centrates on host-based routing, since this simplifies
system to spend all of its time responding to inter- the context of the problem and allows easy perfor-
rupts, then nothing else will happen, and the system mance measurement.
throughput will drop to zero. We call this condition
receive livelock: the system is not deadlocked, but it 3. Requirements for scheduling network tasks
makes no progress on any of its tasks. Performance problems generally arise when a sys-

Any purely interrupt-driven system using fixed in- tem is subjected to transient or long-term input over-
terrupt priorities will suffer from receive livelock un- load. Ideally, the communication subsystem could
der input overload conditions. Once the input rate handle the worst-case input load without saturating,
exceeds the reciprocal of the CPU cost of processing but cost considerations often prevent us from build-
one input event, any task scheduled at a lower ing such powerful systems. Systems are usually
priority will not get a chance to run. sized to support a specified design-center load, and

Yet we do not want to lightly discard the obvious under overload the best we can ask for is controlled
benefits of an interrupt-driven design. Instead, we and graceful degradation.
should integrate control of the network interrupt han- When an end-system is involved in processing
dling sub-system into the operating system’s schedul- considerable network traffic, its performance depends
ing mechanisms and policies. In this paper, we critically on how its tasks are scheduled. The
present a number of simple modifications to the mechanisms and policies that schedule packet
purely interrupt-driven model, and show that they processing and other tasks should guarantee accept-
guarantee throughput and improve latency under able system throughput, reasonable latency and jitter
overload, while preserving the desirable qualities of (variance in delay), fair allocation of resources, and
an interrupt-driven system under light load. overall system stability, without imposing excessive

overheads, especially when the system is overloaded.
2. Motivating applications We can define throughput as the rate at which the

We were led to our investigations by a number of system delivers packets to their ultimate consumers.
specific applications that can suffer from livelock. A consumer could be an application running on the
Such applications could be built on dedicated single- receiving host, or the host could be acting as a router
purpose systems, but are often built using a general- and forwarding packets to consumers on other hosts.
purpose system such as UNIX, and we wanted to We expect the throughput of a well-designed system
find a general solution to the livelock problem. The to keep up with the offered load up to a point called
applications include: the Maximum Loss Free Receive Rate (MLFRR), and

• Host-based routing: Although inter-network at higher loads throughput should not drop below this
routing is traditionally done using special- rate.
purpose (usually non-interrupt-driven) router Of course, useful throughput depends not just on
systems, routing is often done using more con- successful reception of packets; the system must also
ventional hosts. Virtually all Internet transmit packets. Because packet reception and
‘‘firewall’’ products use UNIX or Windows

packet transmission often compete for the sameNT systems for routing [7, 13]. Much ex-
resources, under input overload conditions theperimentation with new routing algorithms is
scheduling subsystem must ensure that packet trans-done on UNIX [2], especially for IP multicast-
mission continues at an adequate rate.ing.

Many applications, such as distributed systems• Passive network monitoring: network managers,
and interactive multimedia, often depend more ondevelopers, and researchers commonly use
low-latency, low-jitter communications than on highUNIX systems, with their network interfaces in
throughput. Even during overload, we want to avoid‘‘promiscuous mode,’’ to monitor traffic on a

LAN for debugging or statistics gathering [8]. long queues, which increases latency, and bursty
scheduling, which increases jitter.• Network file service: servers for protocols such

as NFS are commonly built from UNIX sys- When a host is overloaded with incoming network
tems. packets, it must also continue to process other tasks,

These applications (and others like them, such as so as to keep the system responsive to management
Web servers) are all potentially exposed to heavy, and control requests, and to allow applications to
non-flow-controlled loads. We have encountered make use of the arriving packets. The scheduling
livelock in all three of these applications, have solved subsystem must fairly allocate CPU resources among
or mitigated the problem, and have shipped the solu- packet reception, packet transmission, protocol

Petitioner Apple Inc. - Exhibit 1009, p. 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

processing, other I/O processing, system housekeep- IPL; interrupts do not preempt tasks running at the
ing, and application processing. same IPL. The interrupt causes entry into the as-

A host that behaves badly when overloaded can sociated network device driver, which does some in-
also harm other systems on the network. Livelock in itial processing of the packet. In 4.2BSD, only buffer
a router, for example, may cause the loss of control management and data-link layer processing happens
messages, or delay their processing. This can lead at ‘‘device IPL.’’ The device driver then places the
other routers to incorrectly infer link failure, causing packet on a queue, and generates a software interrupt
incorrect routing information to propagate over the to cause further processing of the packet. The
entire wide-area network. Worse, loss or delay of software interrupt is taken at a lower IPL, and so this
control messages can lead to network instability, by protocol processing can be preempted by subsequent
causing positive feedback in the generation of control interrupts. (We avoid lengthy periods at high IPL, to
traffic [10]. reduce latency for handling certain other events.)

The queues between steps executed at different
IPLs provide some insulation against packet losses4. Interrupt-driven scheduling and its
due to transient overloads, but typically they haveconsequences
fixed length limits. When a packet should be queuedScheduling policies and mechanisms significantly
but the queue is full, the system must drop the packet.affect the throughput and latency of a system under
The selection of proper queue limits, and thus theoverload. In an interrupt-driven operating system,
allocation of buffering among layers in the system, isthe interrupt subsystem must be viewed as a com-
critical to good performance, but beyond the scope ofponent of the scheduling system, since it has a major
this paper.role in determining what code runs when. We have

Note that the operating system’s scheduler doesobserved that interrupt-driven systems have trouble
not participate in any of this activity, and in fact ismeeting the requirements discussed in section 3.
entirely ignorant of it.In this section, we first describe the characteristics

As a consequence of this structure, a heavy loadof an interrupt-driven system, and then identify three
of incoming packets could generate a high rate ofkinds of problems causes by network input overload
interrupts at device IPL. Dispatching an interrupt is ain interrupt-driven systems:
costly operation, so to avoid this overhead, the net-• Receive livelocks under overload: delivered
work device driver attempts to batch interrupts. Thatthroughput drops to zero while the input over-
is, if packets arrive in a burst, the interrupt handlerload persists.
attempts to process as many packets as possible be-• Increased latency for packet delivery or for-
fore returning from the interrupt. This amortizes thewarding: the system delays the delivery of one
cost of processing an interrupt over several packets.packet while it processes the interrupts for sub-

Even with batching, a system overloaded with in-sequent packets, possibly of a burst.
put packets will spend most of its time in the code• Starvation of packet transmission: even if the
that runs at device IPL. That is, the design givesCPU keeps up with the input load, strict priority

assignments may prevent it from transmitting absolute priority to processing incoming packets. At
any packets. the time that 4.2BSD was developed, in the early

1980s, the rationale for this was that network adap-
4.1. Description of an interrupt-driven system ters had little buffer memory, and so if the system

An interrupt-driven system performs badly under failed to move a received packet promptly into main
network input overload because of the way in which memory, a subsequent packet might be lost. (This is
it prioritizes the tasks executed as the result of net- still a problem with low-cost interfaces.) Thus, sys-
work input. We begin by describing a typical operat- tems derived from 4.2BSD do minimal processing at
ing system’s structure for processing and prioritizing device IPL, and give this processing priority over all
network tasks. We use the 4.2BSD [5] model for our other network tasks.
example, but we have observed that other operating Modern network adapters can receive many back-
systems, such as VMS, DOS, and Windows NT, to-back packets without host intervention, either
and even several Ethernet chips, have similar charac- through the use of copious buffering or highly
teristics and hence similar problems. autonomous DMA engines. This insulates the system

When a packet arrives, the network interface sig- from the network, and eliminates much of the
nals this event by interrupting the CPU. Device in- rationale for giving absolute priority to the first few
terrupts normally have a fixed Interrupt Priority steps of processing a received packet.
Level (IPL), and preempt all tasks running at a lower

Petitioner Apple Inc. - Exhibit 1009, p. 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

priority. As a result, the first packet of the burst is4.2. Receive livelock
not delivered to the user until link-level processingIn an interrupt-driven system, receiver interrupts
has been completed for all the packets in the burst.take priority over all other activity. If packets arrive
The latency to deliver the first packet in a burst istoo fast, the system will spend all of its time process-
increased almost by the time it takes to receive theing receiver interrupts. It will therefore have no
entire burst. If the burst is made up of several inde-resources left to support delivery of the arriving
pendent NFS RPC requests, for example, this meanspackets to applications (or, in the case of a router, to
that the server’s disk sits idle when it could be doingforwarding and transmitting these packets). The use-
useful work.ful throughput of the system will drop to zero.

One of the authors has previously described ex-Following [11], we refer to this condition as
periments demonstrating this effect [12].receive livelock: a state of the system where no useful

progress is being made, because some necessary
resource is entirely consumed with processing 4.4. Starvation of transmits under overload
receiver interrupts. When the input load drops suf- In most systems, the packet transmission process
ficiently, the system leaves this state, and is again consists of selecting packets from an output queue,
able to make forward progress. This is not a dead- handing them to the interface, waiting until the inter-
lock state, from which the system would not recover face has sent the packet, and then releasing the as-
even when the input rate drops to zero. sociated buffer.

A system could behave in one of three ways as the Packet transmission is often done at a lower
input load increases. In an ideal system, the priority than packet reception. This policy is super-
delivered throughput always matches the offered ficially sound, because it minimizes the probability of
load. In a realizable system, the delivered throughput packet loss when a burst of arriving packets exceeds
keeps up with the offered load up to the Maximum the available buffer space. Reasonable operation of
Loss Free Receive Rate (MLFRR), and then is rela- higher level protocols and applications, however, re-
tively constant after that. At loads above the quires that transmit processing makes sufficient
MLFRR, the system is still making progress, but it is progress.
dropping some of the offered input; typically, packets When the system is overloaded for long periods,
are dropped at a queue between processing steps that use of a fixed lower priority for transmission leads to
occur at different priorities. reduced throughput, or even complete cessation of

In a system prone to receive livelock, however, packet transmission. Packets may be awaiting trans-
throughput decreases with increasing offered load, mission, but the transmitting interface is idle. We
for input rates above the MLFRR. Receive livelock call this transmit starvation.
occurs at the point where the throughput falls to zero. Transmit starvation may occur if the transmitter
A livelocked system wastes all of the effort it puts interrupts at a lower priority than the receiver; or if
into partially processing received packets, since they they interrupt at the same priority, but the receiver’s
are all discarded. events are processed first by the driver; or if trans-

Receiver-interrupt batching complicates the situa- mission completions are detected by polling, and the
tion slightly. By improving system efficiency under polling is done at a lower priority than receiver event
heavy load, batching can increase the MLFRR. processing.
Batching can shift the livelock point but cannot, by This effect has also been described
itself, prevent livelock. previously [12].

In section 6.2, we present measurements showing
how livelock occurs in a practical situation. Ad- 5. Avoiding livelock through better
ditional measurements, and a more detailed discus- scheduling
sion of the problem, are given in [11].

In this section, we discuss several techniques to
avoid receive livelocks. The techniques we discuss

4.3. Receive latency under overload in this section include mechanisms to control the rate
Although interrupt-driven designs are normally of incoming interrupts, polling-based mechanisms to

thought of as a way to reduce latency, they can ac- ensure fair allocation of resources, and techniques to
tually increase the latency of packet delivery. If a avoid unnecessary preemption.
burst of packets arrives too rapidly, the system will
do link-level processing of the entire burst before do-
ing any higher-layer processing of the first packet,
because link-level processing is done at a higher

Petitioner Apple Inc. - Exhibit 1009, p. 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

