
Network Working Group Vinton Cerf
Request for Comments: 675 Yogen Dalal
NIC: 2 Carl Sunshine
INWG: 72 December 1974

 SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAM

 December 1974 Version

1. INTRODUCTION

 This document describes the functions to be performed by the
 internetwork Transmission Control Program [TCP] and its interface to
 programs or users that require its services. Several basic
 assumptions are made about process to process communication and these
 are listed here without further justification. The interested reader
 is referred to [CEKA74, TOML74, BELS74, DALA74, SUNS74] for further
 discussion.

 The authors would like to acknowledge the contributions of R.
 Tomlinson (three way handshake and Initial Sequence Number
 Selection), D. Belsnes, J. Burchfiel, M. Galland, R. Kahn, D. Lloyd,
 W. Plummer, and J. Postel all of whose good ideas and counsel have
 had a beneficial effect (we hope) on this protocol design. In the
 early phases of the design work, R. Metcalfe, A. McKenzie, H.
 Zimmerman, G. LeLann, and M. Elie were most helpful in explicating
 the various issues to be resolved. Of course, we remain responsible
 for the remaining errors and misstatements which no doubt lurk in the
 nooks and crannies of the text.

 Processes are viewed as the active elements of all HOST computers in
 a network. Even terminals and files or other I/O media are viewed as
 communicating through the use of processes. Thus, all network
 communication is viewed as inter-process communication.

 Since a process may need to distinguish among several communication
 streams between itself and another process [or processes], we imagine
 that each process may have a number of PORTs through which it
 communicates with the ports of other processes.

 Since port names are selected independently by each operating system,
 TCP, or user, they may not be unique. To provide for unique names at
 each TCP, we concatenate a NETWORK identifier, and a TCP identifier
 with a port name to create a SOCKET name which will be unique
 throughout all networks connected together.

Cerf, Dalal & Sunshine [Page 1]

Google Ex. 1013, pg 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 675 Specification of Internet TCP December 1974

 A pair of sockets form a CONNECTION which can be used to carry data
 in either direction [i.e. full duplex]. The connection is uniquely
 identified by the <local socket, foreign socket> address pair, and
 the same local socket can participate in multiple connections to
 different foreign sockets [see Section 2.2].

 Processes exchange finite length LETTERS as a way of communicating;
 thus, letter boundaries are significant. However, the length of a
 letter may be such that it must be broken into FRAGMENTS before it
 can be transmitted to its destination. We assume that the fragments
 will normally be reassembled into a letter before being passed to the
 receiving process. Throughout this document, it is legitimate to
 assume that a fragment contains all or a part of a letter, but that a
 fragment never contains parts of more than one letter.

 We specifically assume that fragments are transmitted from Host to
 Host through means of a PACKET SWITCHING NETWORK [PSN] [ROWE70,
 POUZ73]. This assumption is probably unnecessary, since a circuit
 switched network could also be used, but for concreteness, we
 explicitly assume that the hosts are connected to one or more PACKET
 SWITCHES [PS] of a PSN [HEKA7O, POUZ74, SCWI71].

 Processes make use of the TCP by handing it letters. The TCP breaks
 these into fragments, if necessary, and then embeds each fragment in
 an INTERNETWORK PACKET. Each internetwork packet is in turn embedded
 in a LOCAL PACKET suitable for transmission from the host to one of
 its serving PS. The packet switches may perform further formatting or
 other operations to achieve the delivery of the local packet to the
 destination Host.

 The term LOCAL PACKET is used generically here to mean the formatted
 bit string exchanged between a host and a packet switch. The format
 of bit strings exchanged between the packet switches in a PSN will
 generally not be of concern to us. If an internetwork packet is
 destined for a TCP in a foreign PSN, the packet is routed to a
 GATEWAY which connects the origin PSN with an intermediate or the
 destination PSN. Routing of internetwork packets to the GATEWAY may
 be the responsibility of the source TCP or the local PSN, depending
 upon the PSN Implementation.

 One model of TCP operation is to imagine that there is a basic
 GATEWAY associated with each TCP which provides an interface to the
 local network. This basic GATEWAY performs routing and packet
 reformatting or embedding, and may also implement congestion and
 error control between the TCP and GATEWAYS at or intermediate to the
 destination TCP.

Cerf, Dalal & Sunshine [Page 2]

Google Ex. 1013, pg 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 675 Specification of Internet TCP December 1974

 At a GATEWAY between networks, the internetwork packet is unwrapped
 from its local packet format and examined to determine through which
 network the internetwork packet should travel next. The internetwork
 packet is then wrapped in a local packet format suitable to the next
 network and passed on to a new packet switch.

 A GATEWAY is permitted to break up the fragment carried by an
 internetwork packet into smaller fragments if this is necessary for
 transmission through the next network. To do this, the GATEWAY
 produces a set of internetwork packets, each carrying a new fragment.
 The packet format is designed so that the destination TCP may treat
 fragments created by the source TCP or by intermediate GATEWAYS
 nearly identically.

 The TCP is responsible for regulating the flow of internetwork
 packets to and from the processes it serves, as a way of preventing
 its host from becoming saturated or overloaded with traffic. The TCP
 is also responsible for retransmitting unacknowledged packets, and
 for detecting duplicates. A consequence of this error
 detection/retransmission scheme is that the order of letters received
 on a given connection is also maintained [CEKA74, SUNS74]. To perform
 these functions, the TCP opens and closes connections between ports
 as described in Section 4.3. The TCP performs retransmission,
 duplicate detection, sequencing, and flow control on all
 communication among the processes it serves.

2. The TCP INTERFACE to the USER

2.1 The TCP as a POST OFFICE

 The TCP acts in many ways like a postal service since it provides a
 way for processes to exchange letters with each other. It sometimes
 happens that a process may offer some service, but not know in
 advance what its correspondents’ addresses are. The analogy can be
 drawn with a mail order house which opens a post office box which can
 accept mail from any source. Unlike the post box, however, once a
 letter from a particular correspondent arrives, a port becomes
 specific to the correspondent until the owner of the port declares
 otherwise.

 In addition to acting like a postal service, the TCP insures end-to-
 end acknowledgment, error correction, duplicate detection,
 sequencing, and flow control.

Cerf, Dalal & Sunshine [Page 3]

Google Ex. 1013, pg 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 675 Specification of Internet TCP December 1974

2.2 Sockets and Addressing

 We have borrowed the term SOCKET from the ARPANET terminology
 [CACR70, MCKE73]. In general, a socket is the concatenation of a
 NETWORK identifier, TCP identifier, and PORT identifier. A CONNECTION
 is fully specified by the pair of SOCKETS at each end since the same
 local socket may participate in many connections to different foreign
 sockets.

 Once the connections is specified in the OPEN command [see section
 2.3.2], the TCP supplies a [short] Local Connection Name by which the
 user refers to the connection in subsequent commands. In particular
 this facilitates using connections with initially unspecified foreign
 sockets.

 TCP’s are free to associate ports with processes however they choose.
 However, several basic concepts seem necessary in an implementation.
 There must be well known sockets [WKS] which the TCP associates only
 with the "appropriate" processes by some means. We envision that
 processes may "own" sockets, and that processes can only initiate
 connections on the sockets they own [means for implementing ownership
 is a local issue, but we envision a Request Port user call, or a
 method of uniquely allocating a group of ports to a given process,
 e.g. by associating the high order bits of a port name with a given
 process.]

 Once initiated, a connection may be passed to another process that
 does not own the local socket [e.g. from logger to service process].
 Strictly speaking this is a reconnection issue which might be more
 elegantly handled by a general reconnection protocol as discussed in
 section 3.3. To simplify passing a connection within a single TCP,
 such "invisible" switches may be allowed as in TENEX systems.

 Of course, each connection is associated with exactly one process,
 and any attempt to reference that connection by another process will
 be signaled as an error by the TCP. This prevents stealing data from
 or inserting data into another process’ data stream.

 A connection is initiated by the rendezvous of an arriving
 internetwork packet and a waiting Transmission Control Block [TCB]
 created by a user OPEN, SEND, INTERPUPT, or RECEIVE call [see section
 2.3]. The matching of local and foreign socket identifiers determines
 when a successful connection has been initiated. The connection
 becomes established when sequence numbers have been synchronized in
 both directions as described in section 4.3.2.

Cerf, Dalal & Sunshine [Page 4]

Google Ex. 1013, pg 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 675 Specification of Internet TCP December 1974

 It is possible to specify a socket only partially by setting the PORT
 identifier to zero or setting both the TCP and PORT identifiers to
 zero. A socket of all zero is called UNSPECIFIED. The purpose behind
 unspecified sockets is to provide a sort of "general delivery"
 facility [useful for logger type processes with well known sockets].

 There are bounds on the degree of unspecificity of socket
 identifiers. TCB’s must have fully specified local sockets, although
 the foreign socket may be fully or partly unspecified. Arriving
 packets must have fully specified sockets.

 We employ the following notation:

 x.y.z = fully specified socket with x=net, y=TCP, z=port

 x.y.u = as above, but unspecified port

 x.u.u = as above, but unspecified TCP and port

 u.u.u = completely unspecified

 with respect to implementation, u = 0 [zero]

 We illustrate the principles of matching by giving all cases of
 incoming packets which match with existing TCB’s. Generally, both
 the local (foreign) socket of the TCB and the foreign (local) socket
 of the packet must match.

 TCB local TCB foreign Packet local Packet foreign

 (a) a.b.c e.f.g e.f.g a.b.c

 (b) a.b.c e.f.u e.f.g a.b.c

 (c) a.b.c e.u.u e.f.g a.b.c

 (d) a.b.c u.u.u e.f.g a.b.c

 There are no other legal combinations of socket identifiers which
 match. Case (d) is typical of the ARPANET well known socket idea in
 which the well known socket (a.b.c) LISTENS for a connection from
 any (u.u.u) socket. Cases (b) and (c) can be used to restrict
 matching to a particular TCP or net.

Cerf, Dalal & Sunshine [Page 5]

Google Ex. 1013, pg 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

