IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS TYLER DIVISION

```
ERICSSON, INC., ET AL )
    -vs- )
    )
            Tyler, Texas
            ) 9:00 a.m.
            June 5, 2013
```

 TRANSCRIPT OF TRIAL
 MORNING SESSION
 BEFORE THE HONORABLE LEONARD DAVIS,
 UNITED STATES CHIEF DISTRICT JUDGE, AND A JURY
 A P P EARANCES
 FOR THE PLAINTIFFS:
 MR. THEODORE STEVENSON, III
 MR. DOUGLAS A. CAWLEY
 McKOOL SMITH
 300 Crescent Court, Ste. 1500
 Dallas, Texas 75201
 MR. JOHN B. CAMPBELL, JR.
 McKOOL SMITH
 300 W. 6th Street, Suite 1700
 Austin, Texas 78701
 COURT REPORTERS: MS. JUDITH WERLINGER
 MS. SHEA SLOAN
 shea_sloan@txed.uscourts.gov
 Proceedings taken by Machine Stenotype; transcript was
 produced by a Computer.

```
    FOR THE DEFENDANT:
```

 FOR THE DEFENDANT:
 MR. GREGORY S. AROVAS
 MR. GREGORY S. AROVAS
 KIRKLAND & ELLIS, LLP
 KIRKLAND & ELLIS, LLP
 6 0 1 ~ L e x i n g t o n ~ A v e n u e
 6 0 1 ~ L e x i n g t o n ~ A v e n u e
 New York, New York 10022
 New York, New York 10022
 MR. LUKE DAUCHOT
 MR. LUKE DAUCHOT
 KIRKLAND & ELLIS, LLP
 KIRKLAND & ELLIS, LLP
 333 S. Hope Street
 333 S. Hope Street
 29th Floor
 29th Floor
 Los Angeles, California 90071
 Los Angeles, California 90071
 MR. ADAM ALPER
 MR. ADAM ALPER
 KIRKLAND & ELLIS, LLP
 KIRKLAND & ELLIS, LLP
 55 California St.
 55 California St.
 24th Floor
 24th Floor
 San Francisco, California 94104
 San Francisco, California 94104
 MR. MICHAEL E. JONES
 MR. MICHAEL E. JONES
 POTTER MINTON, PC
 POTTER MINTON, PC
 110 N. College, Ste. 500
 110 N. College, Ste. 500
 P.O. Box 359
 P.O. Box 359
 Tyler, Texas 75710-0359
 Tyler, Texas 75710-0359
 MR. ROBERT A. VAN NEST
 MR. ROBERT A. VAN NEST
 KEKER & VAN NEST, LLP
 KEKER & VAN NEST, LLP
 6 3 3 \text { Sansome st.}
 6 3 3 \text { Sansome st.}
 San Francisco, California 94111
    ```
    San Francisco, California 94111
```



```
2
3
```

$P R O C E E D I N G S$
COURT SECURITY OFFICER: All rise for the
jury.
(Jury in.)
THE COURT: Please be seated.

Good morning, Ladies and Gentleman of the
Jury.

JURORS: Good morning.
THE COURT: Good to see you this morning.
You look bright-eyed again. We'll see what you look
like at the end of the day today.

Very well. Mr. Stevenson, you may

```
proceed.
```

MR. STEVENSON: Thank you.

THE COURT: Oh, before you do, do either side have any exhibits they wish to offer today?

MS. MOORE: Yes, Your Honor.
At this time, Plaintiffs offer their
exhibit list titled Plaintiff's Preadmitted Exhibit List for June 5th, 2013.

THE COURT: All right. They will be marked as Plaintiff's Exhibit List No. 3.

Do Defendants have any objections to the exhibits listed thereon?

MR. DE VRIES: We do not, Your Honor.

THE COURT: All right. They are
admitted.

All right. Do Defendants have a similar
list?

MR. DE VRIES: We do, Your Honor. Thank
you.
At this time, Defendants offer
Defendants' List of Preadmitted Exhibits for June 5th,
2013.
THE COURT: All right. Is there any
objection to those?
MS. MOORE: No, Your Honor.
THE COURT: Those will be marked as
Defendant's Exhibit List No. 3, and they are admitted.
All right, Mr. Stevenson. You may
proceed.
MR. STEVENSON: Thank you, Your Honor.
SCOTT NETTLES, Ph.D., PLAINTIFFS' WITNESS,
PREVIOUSLY SWORN
DIRECT EXAMINATION (CONTINUED)
BY MR. STEVENSON:
Q. Dr. Nettles, are you ready?
A. Yes, sir, I am.
Q. All right. I'd like to get into the claims
today, but before we embark upon that, I thought it

```
might be a little bit helpful to maybe spend a few
minutes with a refresher of what we heard last night
before we left.
    A. Sounds good to me.
    Q. So this is our diagram of the network.
    A. Yes, sir.
    Q. And the base station is what? Remind us
again.
    A. That's your router in your home in 802.11.
    Q. And in 802.11, these terminals were what?
    A. They would be laptops or desktops or tablets
or all sorts of devices that would connect wirelessly.
    Q. And remind us about what these blue dashed
lines are that we saw yesterday, please.
    A. The blue dashed lines are really rectangular
boxes that carry the data that the user's actually
interested in.
    Q. Are these the things we will be talking about
that are packets?
    A. Yes, sir, they're packets.
    Q. And are they carried on the radio waves along
the wireless network?
A. Exactly.
Q. If people have their laptops on in this room right now with 802.11, are there packets flying around
```

```
in the air?
    A. Yes, sir, there are.
    Q. And what do the packets carry?
    A. Well, they carry -- the blue ones carry user
data, along with a bunch of fields with other
information.
    Q. And these packets would be where, if you were
sending the picture to somebody, pieces of that picture
might be torn up and put inside to be sent across the
network?
    A. Yes, sir, that's exactly correct.
    Q. And are the inventions we're going to be
talking about today dealing with the way packets are
created and dealt with by the transmitters and
receivers?
    A. Yes, sir, they are.
    Q. And do all the members of the network have to
understand, have a common agreement, on what the form of
the packets are going to be?
    A. Yes, sir. That's an aspect of the standard.
    Q. Yesterday we looked into some packets, I think
we zoomed in on a packet, and we saw some compartments.
        Remind us the word you used to describe what
those compartments are.
    A. I used the word field, but I'll probably use
```

```
that word and the word compartment today.
    Q. Okay. And are those compartments important in
a packet network such as this?
    A. Oh, yes, sir. They're -- they're very
important. Exactly how big they are, exactly where they
are, exactly what their constants are, that's a lot of
what the standard is about.
    Q. And, again, does every member of the network
need to agree on where the compartments are in the
packets and what they do?
    A. Yes, sir. Otherwise, they won't be able to
communicate.
    Q. And I think we'll be dealing with some
inventions that talk a.bout those fields or compartments,
right?
    A. Yes, sir, we will.
    Q. Okay. Well, let's move on now to the '215
patent.
            MR. STEVENSON: And I believe this is at
Tab 6 in the jury notebook as Plaintiffs' Exhibit 10.
            Q. (By Mr. Stevenson) When was this patent filed
for?
    A. This patent was filed on April 9th, 1999.
    Q. How can you tell that?
    A. Well, what we are seeing here is the front of
```

```
the packet -- of the patent. It's easy to get them
mixed up. The front of the patent. And we -- there's
some blowouts here that have some specific information.
    So the first blowout says: Provisional
application filed on April 9, 1999.
    Q. And dates are important when it comes to
patents, right?
    A. Very important, yes, sir.
    Q. The date the patent issued was?
    A. August the 3rd, 2004.
    Q. And can you explain to us, just in a nutshell,
how we ought to think about this patent, and then we're
going to obviously unpack that and talk about it in
detail, but give us a headline for the patent.
    A. Well, if you'll remember, we talked a little
bit about block acknowledgements. That's the way that
the receiver is going to tell the transmitter what
information was successfully received and what
information was not successfully received.
    And this patent concerns providing flexibility
in the standard to have different kinds of responses and
specifically with a type identifier field, which is
going to help provide that flexibility.
    Q. Okay. What were the inventors working on when
they came up with this invention?
```

A. They were working on 3G cellular standards.
Q. That's the 3G cellular standards that would be
in one of these phones?
A. Yes, sir.
Q. Why would an invention for a $3 G$ cellular
standard be also applicable to Wi-Fi or 802.11n?
A. Well, these are all wireless networks, and especially when they're sending data, they work in very similar ways, and in particular, both $3 G$ networks and 802.11 have these protocols that involve these acknowledgements. They're call ARQ protocols.
Q. Do both cellular and 802.11 networks use data -- excuse me -- use ARQ protocols?
A. Yes, sir, they both do.
Q. What does that stand for, ARQ?
A. That stands for automatic repeat request.
Q. Okay. And could you tell us what that means in lay terminology?
A. Well, it's really the protocol we've already been talking about. It's a protocol whereby, in our specific case, the transmitter is going to send a request to the receiver to tell it what it received, and the receiver's going to respond, and then the transmitter is going to, again, in our case, optionally retransmit.

```
            And that whole process of sending and
acknowledgement and the retransmitting and then maybe
sending another acknowledgement, that's what an ARQ
protocol is.
    Q. Okay. And so cellular phones, as well as home
Wi-Fi, do those things?
    A. Yes, sir, they do.
    Q. Do both use packets?
    A. Yes, sir, they do.
    Q. And do both have acknowledgements of packets?
    A. Yes, sir. That's part of the ARQ protocol.
    Q. Do both cellular networks and Wi-Fi have to
deal with dropped packets and that sort of thing?
    A. Yes, sir. Again, they're both wireless, so...
    Q. And my phone can be on the cellular system,
right, to make cellular calls, but, simultaneously, I
think I can connect to Wi-Fi.
    A. Yes, sir, that's correct.
    Q. Are those using, like, you know, kind of
different networks?
    A. They're using different networks, yes, sir.
    Q. At the same time?
    A. At the same time.
    Q. Okay. So you told us that this patent deals
with that response that we saw on the animation
```

```
yesterday, which is when the base station says, did you
get all my packets, and then the terminal says, yeah, I
got 1, 2, 4, 9, dropped 3 and 6?
    A. Yes, sir, that's correct.
    Q. Okay. And so are we -- is this patent dealing
with that response back to the base station?
    A. Yes, sir, exactly.
    Q. What triggers this response that we're talking
about?
A. In this case, there's a request. So the
response is called a block acknowledgement, and the
request is called a block acknowledgement request.
    Q. Okay. And does this patent deal with the
format of the response of that acknowledgement?
    A. Yes, sir, it does.
    Q. And why is the response format important?
    A. Well, we'd like to have a number of possible
different formats as part of the standard so that we can
have flexibility in the system.
    Q. When can a transmitter send this
acknowledgement -- excuse me -- send a request?
    A. Well, typically, it's sent after it's sent a
group of packets that it wants to know whether or not
they've been received or not.
    Q. Now, explain to me, please -- you mentioned
```

```
this invention gives flexibility. How does it do that?
    A. Well, it allows the protocol to define a
number of different possible responses and for the
receiver to indicate which of those possible responses
it's actually using in the block acknowledgement.
    Q. Why not just have one?
    A. Because really if we had one, we'd be saying
that one size fits all; and one size, in this case,
doesn't fit all.
    Q. Is there in the patent an indication of
different types of message formats and how the packets
indicate which one is being used?
    A. Oh, yes, sir, that's -- since that's the
primary point of the invention, that's very clearly
described in the patent.
    Q. And what is that called in the patent?
    A. That's called the type identifier.
    Q. What does the type -- well, what is the type
identifier? Is that one of the compartments that's in
the packet going back?
    A. Yes, sir, exactly.
    Q. And we're talking here about the red packets
rather than the orange ones?
    A. Yes, sir. The red packets, they're going from
the receiver to the transmitter.
```

Q. And do those have compartments in them as
well?
A. Yes, sir, all packets do.
Q. So is this type identifier field located in a compartment in one of those red packets?
A. Exactly.
Q. Do you have a slide that shows visually for us how the type identifier would work?
A. Yes, sir, I do. I think it's the next slide.
Q. Okay. Do you want to go to that?
A. Yes, sir.
Q. All right. Let's orient everyone to what
we're seeing.
A. So here we see the base station on the left and the terminal on the right.
Q. What we're seeing on your slide is sort of a zoom-in of the base station and one of the terminals?
A. And the base station in this case is going to act as the transmitter, and the terminal is going to act as the receiver.
Q. That's what the blue arrows indicate?
A. Yes, sir. And we'll see some packets getting sent as the animation proceeds.

MR. STEVENSON: Stop that there.
Q. (By Mr. Stevenson) Are we basically now seeing

```
these blue packets sent across?
    A. That's exactly correct.
    Q. And what happens next?
    A. Well, next the receiver is going to send back
a block acknowledgement. That's this orange packet that
we see.
    Q. And is this one of those control packets or
those red packets?
    A. Yes, sir, it is.
    Q. And does this one correspond to that message
we talked about earlier?
A. Yes, sir. This is the block acknowledgement message.
Q. Is this the one where the -- the terminal is saying, here's the packets I got from you, and here's the packets I didn't get?
A. Exactly.
Q. And -- and I'm going to forward -- I'm going to jump into the future a little bit here with the patents, but how is the transmitter going to use that information later on down the line on which packets got lost and which packets didn't get lost?
A. Well, obviously, if a packet was successfully received, there's no reason to retransmit it, so it's going to look at the ones that weren't successfully
```

```
received, and then later on, it's going to make a
decision about whether or not to retransmit those
packets or not.
    Q. Okay. But that's in the future. Let's deal
with now what we're talking about in the present.
    Can we zoom in to that message and see it in a
little more detail and look at the compartments?
    A. Yes, sir, we can.
            MR. STEVENSON: Would you zoom in to it?
    Q. (By Mr. Stevenson) What's the dark orange and
the light orange?
    A. The dark orange is this type identifier field.
It's the thing that's going to tell us what the rest of
the packet means.
    And the light orange is called a bitmap. It's
a list of yeses and noes that explain which packets have
been received and which packets haven't been received.
    Q. So, for instance, the 1s and 0s that we see
there --
    MR. STEVENSON: And, Mr. Diaz, would you
go back to the slide, please. Thank you.
    Q. (By Mr. Stevenson) The 1s and 0s we're seeing
there, 10, 11, 10, is that a code to indicate which
packets have gotten through and which ones haven't?
    A. It's really a list of yeses and noes. So it
```

```
says the first packet was received; the second packet
wasn't, et cetera.
    Q. }1\mathrm{ is a yes, and 0 is a no?
    A. In this case, yes, sir.
    Q. Okay. Now, there's a -- the -- the front
field that's darker orange is identified as type
identifier. What's that?
    A. Well, that's the -- that's the field that lets
us know what the format of the second field is. So what
does it -- what does the second field mean? We have to
look at the type identifier.
    Q. When you say it lets us know --
    A. Sorry. It lets the transmitter know.
    Q. Okay. So the terminal is sending this group
of 1s and 0s to the base station in the light yellow?
    A. Right.
    Q. And those are going to basically be the list
or correspond to the -- which packets have been received
and which haven't?
    A. Exactly.
    Q. And so what -- what is the type identifier
doing to help out in that process?
    A. Well, it's telling us basically the format of
that list and what kind of exactly -- exact information
that list is carrying.
```

Q. Okay. And does this type identifier key into
another table --
A. Yes, sir.
Q. -- that we saw a second ago?
A. There's a table that says what the
different -- so we see 10 here, but, obviously, there
are four different values. And this is the table.
Q. Okay. Explain to us why 10 is four different
values.
A. Well, it's -- 10 is one value, but there's two bits there, and so that field can have the value 00,01 , 10, or 11.
Q. Okay. You can't have any 2 s or 3 s or 4 s in there?
A. No, sir.
Q. Its all --
A. It's all $1 s$ and $0 s$.
Q. Is that how networks like this talk, just all $1 s$ and $0 s ?$
A. Yes, sir. That's how digital computers work.
Q. Okay. Okay. So if you have two spots for numbers, and they have to either be 1 or 0 , that gives you four variations, basically, right?
A. Exactly four, yes, sir.
Q. $00,01,10$, and 11.
A. Exactly.
Q. So this type of identifier field now, we look below it, and does that match up to a table that gives
you what the identifiers would -- would correspond to?
A. That's exactly what this table is.
Q. So explain to us how the base station in this example would use that table to figure out the message type for the rest of the packet.
A. For example, in this example, the type
identifier is 10 , so the receiver, the base station in
this case, would take the 10 and would look in the table
and would see that it means that the rest of the
information is a bitmap. And that's what we call this
content field, is a bitmap, this list of $1 s$ and $0 s$.
Q. So this is sort of matching up a number in a
table and then going over and seeing what it is?
A. That's correct.
Q. All right. And there are other choices there,
aren't there? No more list ACK?
A. Yes, sir.
Q. What do those mean?
A. Well, no more is a way of indicating that
there's going to be no more indications of what things have been received or not received.

A list means that there's going to be a list,

```
so a list might actually say 1, 4, 7, instead of using a
bitmap.
    And then an ACK would just be a plain ACK
    that you would typically use if there was only one
    packet that you were trying to acknowledge.
    Q. Okay. Let's say the rules of the system were
    such that we were just going to send a bitmap all the
    time.
    A. Yes, sir.
    Q. Never had in the rules a list or an ACK or
    anything else?
    A. Right.
    Q. Would you need a type identifier?
    A. No, sir, you wouldn't.
    Q. You could just send a bitmap over, and
everyone would know how to decode it?
    A. That's right. And, in fact, you wouldn't want
    to use a type identifier because it would take up space
    in that case.
    Q. What's wrong with taking up space?
    A. Well, it's overhead. It's something that you
    have to pay for sending.
    Q. Okay. Now, I'd like to take this animation
        you did and relate it back to the patent we're looking
    at so we can tie it into what's in the patent.
```

A. Okay.
Q. Is this table that you've shown us, in the
patent somewhere?
A. Yes, sir, exactly this table.
Q. And is that in the '215 patent?
A. Yes, sir. So here we see the table. MR. STEVENSON: And I'll invite everyone

```
in their patents to turn to Column 9.
```

A. And in the background, we can see the actual
patent, and it's by columns. And this part of the
patent is called a written description, and it's where
the inventors describe how to make or use -- how to make
their invention.
Q. (By Mr. Stevenson) Wait a second and let everybody get there.

All right. Where do -- and we see this table
that was in your animation at the top of Column 9?
A. Yes, sir. It's exactly the same table.

MR. STEVENSON: And, Mr. Diaz, could you
pull up this patent, PX 10, on our exhibit display?
Q. (By Mr. Stevenson) I notice something in the next column, which is Column 10, I'd like to get you to look at.
A. Okay.
Q. And that's at Column 10, Line 10. I think the way the Court told us, you can look at the top line of the column and then go down on the left to the small numbers. Column 10, Line 10.
A. Yes, sir. That's how it works.
Q. What does -- what does this say? Could you
read it to us, please?
A. This says: Although embodiments of the method and apparatus of the present invention have been illustrated in the accompanying drawings and described in the foregoing detailed description, it will be understand -- understood that the invention is not limited to the embodiments disclosed but is capable of numerous rearrangements, modifications, and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
Q. All right. What does that mean to you?
A. Well, it's explaining that, although they've given a specific description of how to build the invention, there could be lots of other different ways to build the invention that would still meet the claims and would be part of the claimed invention.
Q. All right. So the Court instructed us that that you can consider the patent in a couple of

```
different sections.
    A. Yes, sir.
    Q. One part is the claims, which start right
there in Column 10, right under that paragraph you just
read.
```

 A. Yes, sir.
 Q. What do you understand the claims to be?
 A. Well, the claims are what really define the
 invention. In fact, actually, each individual claim is
its own invention.
Q. Okay. So the claims are a legal description
of the invention for purposes of figuring out if there's
infringement?
A. Exactly.
Q. And everything before the claims, the
tables -- and if you flip back, there's a lot of them --
and figures and a lot of diagrams. What are the --
what's the purpose of those in a patent?
A. Well, they're so that -- one of the
requirements of a patent is that you have to actually be
able to -- somebody has to be able to read the patent
and build the thing that's been invented or use the
method.
And so the purpose of the previous is really
to explain to someone who, in this case, is a computer

```
programmer, a networking person, how to build this
invention in a specific context.
    Q. Okay. Did this invention get carried over
into 802.11n, years later?
    A. Oh, yes, sir.
    Q. Let's look at the claim now. And we'll be
looking at two claims from this patent, Claim 1 and
Claim 2.
        How did you go about determining if the claim
was infringed?
    A. I looked at each one of the limitations --
that's each one of the things that are set aside with a
box beside it -- and I looked in the products, and I
asked: Does the product do the thing that's in the
limitation? So can I find this action in the product?
    Q. And so the question is, if all the boxes check
off, the claim is infringed?
    A. That's exactly the question.
    Q. Now, as part of doing the analysis, does it
matter if the patent owner attended the standard meeting
for the standard that was being accused?
    A. No, sir. It only matters if the claim
limitations are met.
    Q. Okay. Does it matter if the alleged infringer
attended the standard-setting meeting?
```

A. No, sir. It only matters if the limitations are met.
Q. Does it matter if anybody wrote up a paper and contributed it to the standard for voting to see if it got in as to whether that claim is infringed?
A. No, sir. It really only matters if the individual limitations are all met.
Q. Who have you found in your work infringes
Claim 1?
A. The router Defendants, the computer
Defendants, and Intel.
Q. Let's talk about this claim a little bit now in more detail. Is a method for minimizing feedback responses in an ARQ protocol.
A. Yes, sir.
Q. And, again, ARQ protocol is something that's not just in cellular; it's also in Wi-Fi?
A. Yes, sir.
Q. And this is a method claim. Explain what a method claim is, please, as you understand it.
A. In -- for method claims to infringe, you have to do the method. So a method claim is like a recipe. It's a set of steps. And so to infringe, you have to do each one of the individual steps.
Q. And we see these three steps here?
A. That's right.
Q. So we should go through each three of the
steps and see if those are met in the standard in the
product.
A. That's right.
Q. Who have you found -- well, let me ask this:

Does the programming that the Defendants put in their
products perform this method automatically without user
intervention?
A. Yes, sir, it does.
Q. And in addition to the Defendants, who else
performs the method that you found?
A. The users of the devices the Defendants sell.
Q. Who's responsible for that?
A. The Defendants.
Q. Why is that?
A. The Defendants induce the users to practice this method by basically selling something that does the method and encouraging them to use it.
Q. And have you seen evidence that the Defendants intend that their devices be used for $802.11 n ?$
A. Yes, sir. That -- that's -- that's the whole reason for selling them.
Q. And when 802.11 n devices connect, do they

```
connect at the highest speed they can, as in 802.11n?
    A. Yes, sir, they do.
    Q. Let's look at the first two steps here. Let's
take them together. The first is sending a plurality of
first data units over a communication link. And the
next is receiving said plurality of data units.
    A. Yes, sir.
    Q. What devices perform these steps on the
network?
    A. The transmitter will send the plurality of
data units. That's really saying that the transmitter
sends packets, and the receiver will receive those
packets.
    Q. And -- and, again, as a reminder, although in
one of these networks you have a router and either
laptops or other devices, all of them are capable of
transmitting and receiving, right?
    A. Oh, yes, sir, and all of them actually do
transmit and receive in the normal process of using the
network.
    Q. What are the data units that are referred to
here, the first data units?
    A. Those are the packets we've been looking at.
    Q. The blue packets?
    A. Yes, sir.
```

Q. And are a plurality sent?
A. Yes, sir. It wouldn't be a very useful
network if you only sent one packet.
Q. And would they be received after being sent at
least --
A. Not always, but usually, yes, sir.
Q. Have you found these two elements met by the Defendants with regard to their accused products?
A. I have.
Q. I'm going to check those off as we go.

Let's go to the next element. It says: Responsive to the receiving step, constructing a message field for a second data unit, said message field, including a type identifier field and at least one of a sequence number,
field length, field, and content field.
A. Yes, sir.
Q. Let's parse this out.

This step has to be done responsive to the
receiving step?
A. That's right.
Q. And have you found that is true in the Defendants' products?
A. Yes, sir, I have.
Q. Then it has to construct a message field for a second data unit?
A. Yes, sir.
Q. Now, let's stop there. What's the second data unit?
A. The second data unit in this particular case is going to be the block acknowledgement that the receiver is going to send.
Q. And what does a block acknowledgement do?
A. It acknowledges a group of packets and which ones have been received and which ones haven't.
Q. Okay. And has the Court given us a

```
construction for this particular term?
```

A. Yes, sir, it has.
Q. And is that construction contained in the jury notebook at Tab 1, as well as on the screen here?
A. Yes, sir.
Q. And I think we made -- it says definition
here. We may use construction and definition
interchangeably. Would you read the Court's
construction or definition to us?
A. Responsive to the receiving step, generating a message field, including a field that identifies the message type of the feedback response message from a number of different message types.
Q. Okay. Did you apply that in your work here?
A. Yes, sir. I'm required to.
Q. Now, you called this a block acknowledgement,
the --
A. Yes, sir.
Q. -- second data unit. What does a block
acknowledgement do within the standard in the products?
A. Well, it's a way of acknowledging more than
one packet at a time.
Q. Okay. This is the message in the tutorial you gave us about I received 1, 2, 5, and 9 and missed 3 and $6 ?$
A. Exactly.
Q. Does the standard have rules about when
receivers send block acknowledgements?
A. Yes, sir, it does.
Q. And when is that?
A. Well, when -- when it's -- the receiver is
asked to send them, because it's gotten a block
acknowledgement request.
Q. Okay. Does the receiver have to follow the rules?
A. Yes, sir, it does.
Q. How many different types of block
acknowledgement requests are there?
A. There are two types of block acknowledgement requests.
Q. Okay. What are those called?
A. We call them explicit and implicit.
Q. Does the standard define the type of response
message that can be sent?
A. Yes, sir, it does. It defines a set of types.
Q. Okay.

MR. STEVENSON: Can we go to the next
slide, please?
Q. (By Mr. Stevenson) All right. Is this a copy, or at least a slide that has the first page of the standard?
A. Yes, sir. This is the amendment from 2009
that basically set up 802.11n.
Q. Is this Plaintiffs' Exhibit 286?
A. Yes, sir, it is.
Q. And can we go into this and see which -- where those definitions are?
A. We can.
Q. Okay. We had something pop up, and we're going to be seeing a lot of this in the slides. I want to make sure that we're all understanding what we're seeing.

And have you got a copy of your standard in
front of you?
A. I do.
Q. Okay. And it may help you to look at that, whichever is better for you. What are we seeing sort of pulled up on this slide as a call-out in front of the cover page of the standard?
A. Well, that's a figure that appears on Page 30 of the actual standard.
Q. Is this something you made up as an animation, or is this actually a -- a picture of the document?
A. This is -- this is a Xerox copy of the -- of the document.
Q. All right. And so this long rectangle with compartments is what -- can you relate it back to us on what we're -- what would be here?
A. It's the second data unit.
Q. The second data unit?
A. Yes, sir.
Q. And it would be one of these orange squares?
A. Yes, sir, one that's going from the receiver
to the transmitter.
Q. So what we've done is we've -- we've zoomed in on the orange square now to look deep inside it, and this is -- this isn't an animation. This is really what's in the standard as to the compartments in that orange square?
A. Yes, sir. And this is really what's going to be transmitted over the radio waves eventually, as well.
Q. So we're going to look into the orange square. What are we looking for to see if there's

```
infringement?
```

A. We're looking for this type identifier field.
Q. Okay. Will you show us -- can we zoom in on this -- on the standard and see where you found the type identifier field?
A. Yes, sir. If you'll -- if you'll notice, one of the compartments right in the middle is called BA control, and that's going to be where the type identifier field is.
Q. Okay. Is that a single compartment, or is it a -- compartments within a compartment?
A. So as we said, these are complicated systems, so often the compartments have compartments nested
inside of them. So this is one of those kinds of
compartments. So we should look inside to see the
actual type identifier field.
Q. Okay. Sort of like those Russian

```
gift-within-a-gift-within-a-gift things?
```

A. Yes, sir.
Q. All right. So we're now into now -- so what you've done is you've zoomed into what's inside that

```
control field?
    A. That's right.
    Q. Is that more compartments?
    A. Yes, sir. These are the compartments that are
inside of that -- that control field. And this is
actually on Page 31 of the standard.
    Q. And that's Figure 7-16?
    A. Yes, sir, it is.
    Q. Okay.
    A. And what we see here is that there are two
fields that are highlighted, the multi-TID field and the
compressed bit map field. And those two fields taken
together are the TID that's described in the claim.
    Q. There's numbers that say bits under the bottom
of that?
    A. Yes, sir.
    Q. What do those numbers refer to?
    A. Well, that's telling us that the very first
bit of this field is the BlockAck policy and that the
next two bits are the multi-TID and compressed bitmap
and that -- and those are the ones we've identified as
the TID. And then there are 9 that are reserved.
        That's so that later on, if we want to change
the standard, we can add stuff there.
    Q. Okay. You said TID a couple of times --
```

A. Type identifier.
Q. Type identifier?
A. Yes, sir.
Q. All right.
A. Sorry.
Q. Is that the type identifier that is called out
in the claim?
A. Yes, sir, it is.
Q. The TID is the type identifier?
A. Yes, sir.
Q. And do you have to take these two
compartments -- the multi-TID and the compressed bitmap
together for your code?
A. You do.
Q. Okay. How many numbers go in that first
compartment, the multi-TID?
A. Only a or a 1.
Q. What about the next one, the compressed
bitmap?
A. Only a or a 1.
Q. So we have four variations of this, different
types?
A. Yes, sir, exactly.
Q. In addition to a type identifier field, there
has to be at least one of a sequence number, a blank

```
field, and a content field. Can you show us where those
are in the standard?
    A. Yes, sir. If you look just to the right of
the BA control field, there's something called a BA
information field on the top figure.
    Q. Now, that's -- that's in yellow now.
    A. Yes, sir. And so that's -- that's where --
that's where the -- there's actually going to be a
sequence number and a content field in the BA
information field.
    Q. Okay. Can you zoom into the BA information
field?
    A. Yes, sir, we can.
    Q. Okay. Let's see what's in there.
        There's two compartments or sub compartments
within that?
    A. Yes, sir. This is a figure from Page 33, and
the first sub compartment is starting sequence control.
That's a sequence number. And the second field is the
BlockAck bitmap. That's a kind of content field. In
fact, it's a content field that is a bitmap.
    Q. All right. So does that satisfy this
requirement of the content field?
    A. Yes, sir, it does.
    Q. Now, let's -- let's put our English grammar
```

```
hats on for a minute.
    It says -- the claim requires the message
field include the type identifier field -- we've seen
that?
    A. Yes, sir.
    Q. And at least one of them, a sequence number
field, a length field, and a content field?
    A. That's right.
    Q. So for this part of the claim, at least one
of, how many of these three selections need to be
present for it to be met?
    A. Just one.
    Q. Why is that?
    A. Well, because that's what "at least one of"
means.
    Q. So type identifier field, plus at least one of
any of the following three selections, and this is true?
    A. Yes, sir.
    Q. Which one of the three selections does the
standard use for the second part of that sentence?
    A. The standard actually has two of them. It has
a sequence number and a content field.
    Q. Now, are there rules in the standard about
what information has to go into each one of these slots?
    A. Yes, sir. I mean, the rules are about what
```

```
are the possible things that can go there. But in
particular, there's very specific things in the standard
about what can be in that type identifier field.
    Q. And is there some guidance given in there?
    A. Oh, yes, sir. There's -- there's a table that
explains what the possible values are and what they
mean.
    Q. Here's what I think might be helpful for all
of us at this stage is if we take this information we've
seen here now and put it back into the format of that
first animation you showed us, maybe it would be a
little more helpful to us?
    A. Yes, sir. It won't be as abstract then.
    Q. Right. Okay. So this is what we showed at
the beginning to sort of introduce the patented idea.
Now we have this for purposes of the claim comparison.
    A. Exactly.
    Q. Is this back to the base station and terminal
that we're seeing?
    A. Right, and -- and the transmitter and
receiver.
    Q. And now instead of trying to depict how the
patent works, are you trying to depict how the standard
works?
    A. Yes, sir, I am, and -- and how the devices
```

```
work that follow the standard.
    Q. So let's go ahead and roll forward with this.
        All right. We've seen some blue packets?
    A. Yes, sir.
    Q. So those are the information packets that are
being sent?
    A. That's right.
    Q. And we have a yellow packet after it, which
is --
    A. That's actually the BlockAck request. So
that's saying I'd like to get a BlockAck.
    Q. Block acknowledgement is a BlockAck?
    A. Sorry. Block acknowledgement.
    Q. Okay. All right. Then does the terminal
respond?
    A. Yes, sir, it does.
    Q. And what is the BA?
    A. That's a block acknowledgement.
    Q. That's what we just looked at with all the
fields that nest within each other from the standard?
    A. Exactly.
    Q. Let's see how that works now. Can we zoom
    into the block acknowledgement?
        Is -- and this is compartments within it?
    A. Yes, sir.
```

Q. And have you shown -- are you just showing now
the compartments that matter to the claims and taking
out the remainder from the standard to show what's
important?
A. That's exactly right.
Q. What's the first compartment you're showing?
A. That's that type identifier that we talked
about which is really two fields in that BA control
field.
Q. All right.
A. So two bits.
Q. And is there something that that would
correspond to that's in the standard?
A. Yes, sir. That particular value says that
it's a compressed BlockAck or a compressed block acknowledgement.
Q. Okay. We just saw some things pop up on this, and I want to make sure everyone knows what they are. The type identifier that you pointed to, 01, remember before when we were talking about the patent, we went and looked that up in a table?
A. Exactly.
Q. Now we're talking about how the standard works.

Does that type identifier you found in the

```
standard match up to a table in the standard?
    A. It does.
    Q. What's the number of that table?
    A. That table is -- that table is Table 7-6K, and
that's Page 32 of the 209 stand -- 2009 standard.
    Q. In your example, you have the type identifier
as 01. What would that match up to in the table?
    A. That matches up to compressed BlockAck or
compressed block acknowledgement.
    Q. Are there other message types other than
compressed BlockAck that are allowed by the standard?
    A. Yes, sir, there are two other kinds, plus a
reserved.
    Q. Okay. And, again, those are identified on
this chart, right?
    A. Yes, sir, exactly. Those are the choices in
the system.
    Q. And is this chart on the bottom of your
animation, is that, again, taken directly -- is that a
picture from the standard itself?
    A. Yes, sir. It's on Page 32.
    Q. So if the jury later wanted to get Exhibit 286
and go to this page, they could see this lower half of
the slide verbatim?
```

 A. Oh, yes, sir. And on pages close to that,
    ```
they could see the other things we've been looking at.
    Q. Tell me what the other message types are that
are defined by the standard.
    A. There's a basic block acknowledgement --
that's another kind of bitmap -- compressed BlockAcks or
bitmaps. Reserved means sometime in the future we might
want to use that value; but right now we don't have a
use for it because standards need to evolve, and so you
often have reserved things.
    And then the last one is called a Multi-TID
BlockAck.
    Q. Okay. And what does that do?
    A. It lets you acknowledge more than one TID.
That's another aspect of the system we'll talk about
later on. So what it really is, is a list of bitmaps.
    Q. Now, the Court's definition states that
responsive to the receiving step, generating a message
field, including a field that identifies the message
type of the feedback response from a number of different
messages.
    Are there a number of different messages here
in the standard?
    A. Yes, sir, absolutely.
    Q. Does the type identifier that you've
identified, the -- the two numbers identify the type of
```

```
feedback message response from one of the options in the
standard?
    A. Yes, sir. That's exactly its purpose.
    Q. Is this element met by the Defendants?
    A. Oh, yes, sir, it is.
    Q. We checked off all three elements of Claim 1.
And what does that allow you to conclude, Dr. Nettles?
    A. That the claim is infringed and, therefore,
that the patent is infringed.
    Q. Do the Defendants' products send a type
identifier in every block acknowledgement response?
    A. Yes, sir, they do.
    Q. And do the receivers construct them to respond
to which packets they've received -- previously
received?
    A. Yes, sir, they do.
    Q. Now, in addition to looking at the standard,
did you do anything to double-check your analysis?
    A. Yes, sir, I did.
    Q. What did you do?
    A. Well, I looked at documents. I looked at
deposition testimony. I looked at the code. And I did
testing.
    Q. Did you test some representative models of the
chipsets used by the Defendants to confirm they send a
```

```
type identifier?
    A. Yes, sir, I did.
    Q. And would this type identifier be necessary
for interoperability with other devices?
    A. Yes, sir, it is.
    Q. Let's go on to Claim 2 now.
        Claim 2 is in a little bit different format.
Can you explain to us what kind of format it's in?
    A. It's called a dependent claim, so that means
it depends on a different -- another claim.
    Q. What -- what does it mean to depend on another
claim, Dr. Nettles?
    A. It means that to show that that claim is
infringed, we first have to show that the claim that it
depends from is infringed. In this case, we have to
show that Claim 1 is infringed, and then we also have to
show that any additional limitations that have been
added are met.
    Q. Is one way we can think of Claim 2 requires
for infringement the -- every element of Claim 1, plus
whatever is added by Claim 2?
    A. Yes, sir, that's exactly what it means.
    Q. So is it fair that Claim 2 would be narrower
in scope necessarily than Claim 1?
    A. Yes, sir.
```

```
    Q. Let's see what Claim 2 modifies. Again, we
have to link up, I think, the -- the English here.
    It says: The message type -- excuse me, I'm
sorry, the message field comprises a bitmap message.
    A. Yes, sir.
    Q. So what -- what is this -- is this saying that
when we get to this message field over here, that
before -- in the -- in the main claim could be met by
one of -- at least one of a sequence number, length
filed, or content field, any one of these, is that
narrowing this down for a particular selection?
    A. Yes, sir, it's -- it's basically saying that
the content field has to include a bitmap.
    Q. And if the content field isn't a bitmap, is
Claim 2 infringed?
    A. No, sir, it's not.
    Q. So this is basically saying that to perform
this method, it has to be a bitmap every time, not
something else?
    A. That's right.
    Q. Do the Defendants' devices that comply with
the standard use a bitmap as the message type?
    A. Yes, sir, they do.
    Q. And we saw that compressed BlockAck in the
prior slide. Is that a bitmap?
```

A. Yes, sir, it includes a bitmap.
Q. Do the Defendants use a bitmap every time?
A. Yes, sir, they do.
Q. So they -- they select a bitmap consistently
in their products?
A. Yes, sir.
Q. Have you found this element to be met?
A. I have.
Q. Do the Defendants infringe Claims 1 and 2 of
the '215 patent?
A. They do.
Q. And are these claims, Dr. Nettles, essential
to compliance with the 802.11 n standard?
A. They are.
Q. Anything else to add on this patent, or can we move on to the next one?
A. We can move on.
Q. The next patent I would like to discuss would be the '435 patent.
A. Yes, sir. MR. STEVENSON: Mr. Diaz, would you go
back one slide?
Q. (By Mr. Stevenson) And just to remind everyone where we are in the order or table of contents, we've talked about the '215. We've got two coordination

```
patents coming up, '435 and '625, and then two other
patents. And I -- I may have called these the
synchronization patents in opening. I call them
coordination here, and that's just -- that's not a term
in the claims. That's just my shorthand for it.
    A. Yes, sir.
    Q. All right. Let's go to the '435.
        What is the filing date of this patent?
    A. This was filed on March 18th, 1999.
    Q. And what date did it issue?
    A. December 11th, 2001.
    Q. And we have the Examiners there. Who were
those?
    A. William Trost and Congvan Tran.
    Q. So those are the people who work at the Patent
Office as Examiners who reviewed these patents?
    A. Yes, sir, that's exactly what it is.
    Q. I think we have different Examiners on each
one?
    A. We do.
    Q. What does this patent -- excuse me, what does
this patent deal with?
    A. We talked earlier about the idea that
sometimes the transmitter needs to discard a packet.
        And when the transmitter does that, it has to
```

```
inform the receiver of that so that they can stay in
sync. And this patent involves what the receiver does
to stay in sync with the transmitter.
    Q. Okay. Let me go back to our example and
hopefully it will be helpful and we can see where in the
flow of packets this one fits in.
    Now, we talked before about the message going
back from the terminal to the base station. The patent
just talked about saying here are the packets I didn't
get?
```

A. That's right.
Q. Now, where does this patent pick up in that sequence of actions?
A. When the transmitter gets that block acknowledgement that says that some of the packets were missing, it has a choice. It can either retransmit those packets or it can decide to drop those packets.

But if it decides to drop the packets, the receiver is still waiting -- I mean, it told it -- the receiver told the transmitter, I haven't gotten this packet, so the receiver is waiting for that packet. So the transmitter needs to tell the receiver that it's not going to send that packet, and the receiver needs to forget about that packet.
Q. Why would the transmitter ever want to not try

```
to retransmit a lost packet?
    A. Well, we talked about this specific example of
a movie or a phone call.
    Sometimes it's better to just drop information
    and not re-transmit it and avoid creating a pause than
    it is to try to re-transmit it over and over again and
    make a disruptive pause.
    Q. And in these ARQ type systems, who decides
    when they're going to stop trying to retransmit lost
    packets?
    A. The transmitter is going to make that
decision.
    Q. Now, does the transmitter need to stay
coordinated or in sync with the receiver when it's
making these decisions about not retransmitting lost
packets?
    A. Yes, sir, it does.
    Q. What does the Ericsson invention teach that
the receiver has to do?
    A. Well, the receiver is going to have to -- so
the transmitter's going to have to send some information
to the receiver, and then the receiver's going to have
to compute which packets are no longer going to be
retransmitted. And then it has to release its
expectations of ever receiving those packets. Basically
```

```
it has to forget about those packets.
    Q. Okay. And then does it have it to keep some
sort of record of this?
    A. Well, yes, sir. So all the time it's keeping
a record of which packets it expects, and then it has to
update that record.
    Q. Let's go through the claim on the foam board,
and I think talk about it. I think the first couple
will be quick, and then we have to dig into the details
of the next few.
        Is this another method claim?
    A. Yes, sir, it is.
    Q. And who performs, if you found this method?
    A. The Defendants perform this method.
    Q. And how do they perform the method?
    A. Well, they program their systems to
automatically perform this method without any user
intervention.
    Q. And in addition, do the Defendants, for the
    reasons you mentioned before, induce end users to do
    this, as well?
    A. Oh, yes, sir.
    Q. This is a method that's complementary to the
selective repeat, automatic repeat request protocol.
        And I know the preamble we don't have to check
```

```
off, but just so people don't get confused or lost in
this and wonder what's going on, can you explain what
that lead-in generally means?
```

 A. Well, it's -- yeah, could -- could you turn
 it? I --
Q. I'm sorry.
A. I don't have a -- I haven't memorized the
exact language.
So this is explaining that -- this is a method
that involves the discarding of these packets, as we've
been talking about, and the transmitter and receiver
have to coordinate. And --
Q. It says it's complementary. What does that
mean?
A. Well, that -- I think what it really means
is -- is this is -- this is an additional way an $A R Q$
protocol can work.
Q. Okay. And -- and Ericsson isn't claiming in
this case they invented the block acknowledgement?
A. Oh, no, sir.
Q. Or the ARQ protocol?
A. Oh, no, sir.
Q. Rather, these are specific enhancements and
improvements to those particular things that have been
around?
A. Oh, yes, sir.
Q. The first element is transmitting a data
packet discard notification message from the transmitter
to the receiver, indicating data packets the transmitter
has discarded.
And then the next step is receiving the data
packet discard notification message?
A. Yes, sir.
Q. Tell us how that -- those two steps are met by the Defendants?
A. The transmitting step is met when the transmitter sends a block acknowledgement request,
either an implicit one or an explicit one. And the
receiving step is met when the receiver receives that
block acknowledgement request.
Q. And, again, how many types of block
acknowledgement requests are there?
A. There are two.
Q. And what are the two types of block
acknowledgement requests?
A. Explicit and implicit.
Q. Now, did -- where did you get -- get the word

```
implicit from?
```

A. It's in the standard.
Q. And can we show the -- the slide in the

```
standard just so we could verify where you got that
terminology?
    A. Yes, sir. I think there's a slide that shows
Page 136.
            MR. STEVENSON: Can you go to the next
one, Mr. Diaz? Well, let's just -- we'll just move on
up. Maybe we could look at the standard. Can you pull
up 9.10.7.5 from the standard, which is PX 286?
    A. And go to Page 136.
        MR. STEVENSON: Okay. There we go. Can
you zoom in on that, Mr. Diaz?
    Q. (By Mr. Stevenson) And I just want to show
where it is -- where it calls this an implicit BlockAck
request.
    A. So if we look at the second line of the second
paragraph.
        MR. STEVENSON: I think you were there,
Mr. Diaz. Second paragraph.
        THE WITNESS: Blow up the second
paragraph.
    A. Now, if we look at the second line, we see it
says: i.e., implicit BlockAck request or implicit block
acknowledgement request.
        MR. STEVENSON: There we go. We found
it.
```

Q. (By Mr. Stevenson) All right. What's the difference between an implicit and an explicit block acknowledgement request?
A. Could I -- could I give an example?
Q. Sure.
A. Suppose you're going to invite somebody to a party, so you send the party invitation; but you want to know whether or not they're going to attend the party. There's two ways that you could go about finding that out.

A few days after you send a party invitation, you could send them another piece of mail or you could call them on the phone and you could say, are you coming to the party? Let me know. That would be an explicit request, so that would be an explicit acknowledgement request for a party.

But the other way -- and probably the way you would do it first -- is you'd write RSVP on the invitation and then the person who got the invitation would know that they should send back an answer to tell you whether or not they're coming or not. So that would be an implicit request because it's part of the actual invitation, not a completely separate request.
Q. Does each of those two types of requests meet the claim elements?
A. Yes, sir, they do.
Q. Does the system have to have both to infringe or just one, in your view?
A. Just one. THE COURT: All right. Mr. Stevenson, if
you're at a breaking place, I believe we'll take our
morning break at this time, and we will be on break until 10:15.

Be in recess.

COURT SECURITY OFFICER: All rise.
(Jury out.)
(Recess.)
COURT SECURITY OFFICER: All rise for the
jury.
(Jury in.)
THE COURT: Please be seated.
All right. You may proceed,
Mr. Stevenson.
Q. (By Mr. Stevenson) All right. We were talking about the implicit and explicit block acknowledgement requests when we left; and just to pick back up, the block acknowledgement request is the transmitter of packets asking the receiver, what did you get and not get. Right?
A. That's right.
Q. And we have two kinds of implicit and explicit, the RSVP and the regular?
A. That's correct.
Q. So let me ask about each one separately. And, again, does each one independently potentially infringe the claims?
A. Yes, sir, that's correct.
Q. Okay. So let me ask about each one separately, and we'll just go through them separately and discuss them as we go along.

How does the explicit block acknowledgement
request indicate data packets the transmitter has
discarded?
A. It's going to contain a sequence number, so a number that indicates someplace in the sequence of packets that we've been sending, and it's going to indicate that any packets below that sequence number are no longer being processed by the transmitter.
Q. And now let me ask the same question as to the implicit block acknowledgement request.
A. It's also going to contain sequence numbers, packets; and based on the sequence numbers in the packets in the implicit block acknowledgement request, the receiver is going to be able to compute which packets the transmitter is no longer going to transmit.
Q. And we're going to talk a little more in detail in the next patent about these implicit and explicit block acknowledgements, but could you just give us an idea of when this implicit one is used?
A. Well, the implicit one is part of something called an A-MPDU.
Q. Okay. And just say that out for us so we're not all wondering.
A. Yes, sir. Well, that stands for aggregated MPDU. MPDU is the, I guess, unfortunate name that the standard gives to the packets that we've been talking about. And the A part means aggregated. So what that means is, really, we're going to send a bunch of packets as a group rather than one at a time.
Q. Okay. We're going to have a bunch of acronyms as we go along. Let me get you to say them out, and then let's just give an explanation for it that we can all understand, a shorthand for it. We have an A-MPDU we're going to talk about, right?
A. Yes, sir.
Q. And that's an aggregated MPDU.
A. Yes.
Q. The A is. Now, what's the MPDU part stand for?
A. Well, that stands for MAC protocol data unit, and that's the kind of packets that the MAC, which is what we're talking about, sends and receives.
Q. MAC protocol data unit. Okay. And that's a packet.
A. That's right.
Q. And what does MAC mean?
A. That means media access control.
Q. And that's another --
A. Yes, sir.
Q. What is a media access control?
A. The -- in these systems, you have to have some system for figuring who gets to talk when, who controls the floor, basically. And so that's media access, who gets to access the media. That's the radio waves.
Q. Is this --
A. And that's what the MAC does.
Q. Is this media access control, is this inside of each computer and router on the network?
A. Yes, sir. It's -- it's part of the 802.11
standard and its implementations.
Q. Is this how they decide who gets to talk when, so they don't talk over each other?
A. That's exactly what's it for.
Q. Okay. So now, having done all that, so nobody

```
is wondering what do these mean, can we just say that as
a shorthand subject -- if we ever need to refine it more
later, let's refine it, but just as a shorthand, so it's
understandable, an implicit block acknowledgement gets
sent out with a group of packets?
    A. Yes, sir. That is completely correct.
    Q. And then let's go back to the claim elements.
        The first step is: Transmitting a data packet
discard notification message from the transmitter to the
receiver indicating data packets the transmitter has
discarded.
    A. That's right.
    Q. Is that either the implicit or the explicit
block acknowledgement request?
    A. Yes, sir, it is.
    Q. And then would you expect those to be received
by the packet -- received by the receiver?
    A. Yes, sir, barring some error.
    Q. So let's talk about the next two elements, and
let's talk about those together.
    The next element -- and this is, again, Claim
1 of the '435 patent -- is: The computing which data
packets have been discarded by the transmitter based on
the data packet discard notification message and then
removing entries from a first list indicating the data
```

```
packets expected to be received from the transmitter
wherein the entries correspond to data packets
identified in the computing step.
    A. Yes, sir.
    Q. Okay. I want -- that's a lot. I'd like to
back up and talk about those in a little bit more
explanatory detail.
    Can you tell us generally what -- how this is
done in the standard?
    A. The standard defines something called a
window, and the window involves which packets it's
expecting to receive. And one of the manifestations of
the window is in something called the scoreboard, and
the scoreboard has a way of keeping track of actually a
number of different windows all together.
    Q. Okay. That's a lot of information. Let's see
if we can --
    A. I'm sorry.
    Q. Oh, I know, and it's my job to try to unpack
it.
    Let's do this. Can we show in the standard
the evidence that you relied on? And then what I want
to do is, after showing all that, let's go back and look
at an animation that you've put together so we can
understand it a little more visually.
```

A. Yes, sir, we can do that.
Q. First, let's just get this out on the table,
as far as the information goes.
The defense counsel said in opening that
802.11 -- 802.11n doesn't have to compute discard
packets. I don't know if you remember that --
A. Yes, sir. I --
Q. -- in the transcript.
A. I saw that in the transcript, yes, sir.
Q. Is that correct?
A. No, sir, it's not.
Q. Is there a computation in the standard?
A. Yes, sir.
Q. Can we see that computation in the standard?
A. Yes, sir, we can.
MR. STEVENSON: Will you pull up the
standard, Mr. Diaz?
Q. (By Mr. Stevenson) Where should we go to?
A. We should go to 9.10.7.3, which is on
Page 30 -- Page 134.
Q. Okay.
A. And if we look at Section B. So Section B is
talking about when you get the implicit block
acknowledgement.
Q. Okay. Is that the computation you were

```
referring to that needs to be undertaken?
    A. Yes, sir.
        And then Section -- if we scroll down a little
bit, Section C --
    THE WITNESS: Yes, sir, on the right-hand
page, Section C.
    A. -- that's talking about the explicit block
acknowledgement request.
    Q. (By Mr. Stevenson) Is this the computation
you're also referring to?
    A. Yes, sir, it is.
    Q. And these -- I think we're going to need your
help, obviously, in understanding it; but how do these
computations, which are in the standard, get imported
into the accused devices in these cases?
    A. Well, the Defendants and their suppliers
implement these computations as part of their building
of the systems. So these scoreboards, for example, are
part of the implementations that we've looked at.
    Q. So when you say part of the implementations,
is that essentially meaning the persons and engineers
who built the devices program into these devices this --
    A. Yes, sir.
    Q. -- these computational steps we're seeing
here?
```

A. Yes, sir. And the reason that these steps are
in such detail and sort of look like mathematics is,
this is what we might call pseudocode. So this is just
one step above the actual code. A programmer would read
this and then would write, you know, probably several
pages of code to do exactly the things that are
described here.
Q. You also mentioned a scoreboard. Is that in
the standard?
A. Yes, sir, it is.
Q. Where is that?
A. Well, actually, the section we're looking at, 9.10.7.3, it's all about the scoreboard.

MR. STEVENSON: Now let's zoom in on that
first paragraph.
Q. (By Mr. Stevenson) And it says: Scoreboard context control during full-state operation.
A. Yes, sir.
Q. And please tell us, just at a real easy level, what a scoreboard is?
A. A scoreboard is really just a way to -- in this case, to keep track of a lot of complicated information about different possible flows of packets and which things have been received and which things haven't been received, just like a scoreboard in your

```
normal life presents a bunch of data about what is going
on at a sporting event.
    Q. Is the receiver keeping the scoreboard?
    A. Yes, sir, it is.
    Q. And, again, I'll keep mentioning this just to
make sure we remember, all the devices on the network
both transmit and receive.
    A. Oh, yes, sir.
    Q. So some day -- at one moment, the router may
be the transmitter, and then the next moment, it may be
the receiver as well.
    A. Yes, sir. In fact, usually, they swap roles
back and forth.
    Q. Okay. So do all devices keep this scoreboard?
    A. They keep their own each individual
scoreboard, yes, sir.
    Q. And do the scoreboards need to stay
synchronized or coordinated somehow?
A. Well, the scoreboard and the receiver needs to be kept synchronized with what the transmitter is doing?
Q. Right. Better way to phrase my question, yes. All right. So we've seen all this, and maybe one way you could explain it to us so we can understand it, without walking through the pseudocode, is to do another animation. Have you prepared one?
```

A. Yes, sir. I think that would be helpful.
Q. So what are we seeing here? Tell us -- zoom us in to what part of the network we're in right now and what we're looking at, please.
A. Well, suppose that terminal 4 is the receiver.

We're looking at what's going in -- on inside of the receiver. You might describe it as the brain of the receiver.
Q. So is this a -- now, in the real world, there's not a blue and white board that says scoreboard with noes on it. This is all in computation logic, right?
A. Yes, sir. It's either going to be computer code and data that the computer code acts on; or in the case of the scoreboard, it might actually be electronic circuits that implement the scoreboard. Both of those are possible.
Q. But the transistors and bits and all that going on, is this at least a fair way to explain how the algorithm in the standard works?
A. Yes, sir, it is.
Q. Okay. What is the line of boxes that goes from left to right that's numbered 1 through 14?
A. Those are the places that we're going to store the packets as they come in. Remember, packets have

```
sequence numbers, and so we're going to store a packet
with sequence number 1 in 1 and 2 in 2, et cetera.
    Q. Can we show that?
    A. Yes, sir, we can.
    Q. And before we start, you put on there a dotted
green box. What does that represent?
    A. Well, I mentioned earlier that there was an
idea of a window. So the window keeps track of, in the
receiver, what packets it's currently expecting to
receive. And so we see right now that the receiver's
expecting to receive packets 1 through 6.
    Q. Okay. Now, beneath it is our scoreboard?
    A. Yes, sir.
    Q. And explain what is shown on the scoreboard.
    A. Well, the scoreboard is keeping track of which
packets have actually been received and which packets
haven't; and right now, we haven't received any packets,
and so it says, no, for all of those packets.
    Q. Now, can we put this into action and then see
how packets show up and what happens to them?
    A. We can.
    Q. All right.
                                MR. STEVENSON: Let's start that.
        Can you rewind that? That may have gone
on a little bit fast. Carefully.
```

Q. (By Mr. Stevenson) We saw a blue box come in
from the left and drop into 1 and X. What does that
indicate?
A. Well, that indicates that that packet was
actually lost for some reason and didn't actually
arrive.
Q. So let's -- let's make sure we all understand
what we're seeing with reference to this.
One of these packets is coming into the
terminal; and before it got there, it got lost.
A. Yes, sir. Probably because it was interfered
with somehow.
Q. Microwave?
A. Microwave oven would be a good example.
Q. So what you've shown is X, an "X" there, because there was a slot in the terminal waiting to get the packet, never showed up?
A. That's right.
Q. Okay. Maybe better luck with the next one. What happens, let's say, with the next one here?
A. So we see the 2 come in and it's actually received, so it goes into the slot. And we also see that the scoreboard now says, yes, to indicate it was received.
Q. And is the terminal doing computations to

```
update this scoreboard for the yeses that we're seeing
```

update this scoreboard for the yeses that we're seeing
here?
here?
A. Oh, yes, sir.
A. Oh, yes, sir.
Q. Okay. Let's show -- let's show what happens
Q. Okay. Let's show -- let's show what happens
next.
next.
A. So 3 is received. Again, it's updated in the
A. So 3 is received. Again, it's updated in the
scoreboard.
scoreboard.
Q. Okay. What happens next?
Q. Okay. What happens next?
A. 4 comes in. It's received. Again, it's
A. 4 comes in. It's received. Again, it's
updated in the scoreboard.
updated in the scoreboard.
Q. Next slide.
Q. Next slide.
A. 5 -- 5 is lost, also.
A. 5 -- 5 is lost, also.
Q. Another microwave zap?
Q. Another microwave zap?
A. And then 6. It's received. So the scoreboard
A. And then 6. It's received. So the scoreboard
now indicates that the same information that we see in
now indicates that the same information that we see in
the -- in the actual buffers there, that 1 and 5 were
the -- in the actual buffers there, that 1 and 5 were
not received.
not received.
Q. All right. So now our window is all taken
Q. All right. So now our window is all taken
into account. We have 2 missing packets?
into account. We have 2 missing packets?
A. That's right.
A. That's right.
Q. Out of 6 possible packets?
Q. Out of 6 possible packets?
A. That's right.
A. That's right.
Q. What happens next?
Q. What happens next?
A. Well, next we see an explicit block
A. Well, next we see an explicit block
acknowledgement is going to come, and the first thing

```
acknowledgement is going to come, and the first thing
```

```
that's going to happen --
    Q. Okay. Let's back up a little bit.
        MR. STEVENSON: Can we back up that --
that movement?
    Q. (By Mr. Stevenson) So you said an explicit
block acknowledgement comes.
    A. Yes, sir. I think actually in this animation
it's -- it's any kind of block acknowledgement.
    Q. Okay. So it could be an explicit or an
implicit?
    A. Yes, sir.
    Q. Okay. And that would be sent by the base
station in this example, if that's who is transmitting?
    A. That's right.
    Q. And that would be sent down to the terminal.
Is that the -- the block acknowledgement request --
excuse me, I may be confused. Is this the block
acknowledgement request we're talking about?
A. Yes, sir.
Q. Okay. So that comes from the base station
down to the terminal, and it's indicating or it's asking
which packets didn't you get; is that right?
A. That's right.
Q. Okay. What does that do, that request to the window?
```

A. Well, that request is going to -- to shift the window. That's -- that's part of what it does.
Q. Why does the request shift the window?
A. Well, because either the request is additional
packets arriving in the case of the implicit one and so
it shifts the window, or an explicit BlockAck request,
that's -- that's part of its role is to -- is to shift
the window.
Q. Is that all defined and -- and required to be computed according to the standard?
A. Yes, sir.
Q. Is that all in the map we saw in the standard a minute ago?
A. Yes, sir, it is.
Q. Now, the window has moved over.
A. That's right.
Q. What happens next?
A. Well, the next thing that happens is the next step of the claim, we have to update the scoreboard to indicate that we are no longer waiting on 1 and 5.
Q. Well, before we leave this step of the claim, is the step of computing which data packets have been discarded by the transmitter, based on the data packet discard notification message, is that met in what you've seen in the standard and Defendants' products?
A. Yes, it is.
Q. And the computation, is that according to the
rules that are set forth mathematically in that section
of the standard you showed us?
A. Yes, sir, it is.
Q. And is that a computation?
A. Oh, yes, sir. I mean, computers have to
always compute things.
Q. Thank you. Now, let's go to the next element.
A. Okay.
Q. Removing entries from a first list indicating
data packets expected to be received from the
transmitter wherein the entries correspond to data
packets identified in the computing step.
A. Yes, sir.
Q. How does that happen?
A. Well, we can -- if we re-run the animation, we
can -- we can see it happening.
Q. Okay.

MR. STEVENSON: Back that up. We may not
have all seen it, Mr. Diaz.
A. So --
Q. (By Mr. Stevenson) Tell us what we're looking
for, and then show us.
A. So right now we see the scoreboard. That's the list that's keeping track of the packets that we expect with the noes. The noes are the ones that we're still expecting. And now we're going to -- based on how we move the window, we're going to change the scoreboard to be expecting the next setup of packets. And in the process, we're no longer expecting any of the packets -you know, we're not expecting 1 and 5, and so that's what the next step is about.
Q. Okay. And in the animation we showed something flying into a garbage. Obviously, there aren't little garbage cans inside the computers. Is this all implemented in the processing of the computers that are within the accused devices?
A. Yes, sir. And actually the storage involved will be recycled. So they're -- there's recycling, if not garbage cans.
Q. And have you verified this operation by looking at the source code for the domestic chip manufacturers?
A. Yes, sir.
Q. Have you found this element to be met?
A. Yes, sir, I have.
Q. Let's go on to Dependent Claim No. 2.
A. Yes, sir.
Q. And, again, is looking at this dependent
claim -- we do it the same way we looked at the prior
one, which is to see if everything in 1 is met and then
add 2 to 1 ?
A. That's exactly how it works.
Q. 2 requires that we add in, that the data

```
packet discharge notification message contains a field
```

indicating the format of the message?
A. Yes, sir, that's correct.
Q. Does -- is there a data packet -- is there an
indication of the format of the message in the data
packet discard notification?
A. Yes, sir, there is.
Q. All right. Can you show that on your slides?
A. Yes, sir. It comes actually from the 2007
standard, I believe.
Q. All right. Is this PX 283?
A. Yes, sir, it is. You can't see the date, but
this is the -- this is the 2007 standard that the 2009
standard builds upon.
Q. Okay. And, again, is this a -- this isn't
something you created. Is this verbatim direct out of
the standard?
A. Exactly.
Q. If the jury wanted to see PX 283, go to

```
7.1.3.1. If you open that docket, you'll see exactly
this?
    A. Exactly that, yes.
    Q. Tell us how what has been highlighted here
corresponds to the final claim element.
    A. Well, this says it's the frame control field.
Frames are another word that we use in this standard to
talk about packets. And the frame control field has a
type field and a subtype field, and that's going to
describe, as a code, what kind of packet it is; and what
kind of packet it is includes its format.
    And so the type and the subtype field are
going to describe the format of the message. And both
the explicit and the implicit block acknowledgement
requests are going to have these type and subtype
fields. This is a very basic picture of what the
packets look like.
    Q. Are those two fields, the type and subtype,
required for interoperability between the Defendants'
products?
    A. Oh, yes, sir. I mean, these are -- the system
would fail terribly without those fields.
    Q. Is this element met?
    A. Yes, sir.
    Q. Are these claims essential to compliance with
```

```
the 802.11n standard?
    A. Yes, sir, they are.
    Q. And do you find Claims 1 and 2 of the '435
patent infringed by Defendants?
    A. Yes, sir, I do.
    Q. Is there anything more to discuss on this that
we've left out, Dr. Nettles?
    A. I don't -- no, sir, not that I can think of.
    Q. Move on to the next one.
        I believe the '625 patent that we'll be
talking about next is in Tab 3 --
    A. Yes, sir.
    Q. -- of the jury notebook.
        Tell us the date of filing of the '625 patent,
please.
    A. October 28th, 1998.
    Q. And when did it issue?
    A. July 23rd, 2002.
    Q. And the Examiner was?
    A. Kwang Yao.
    Q. Can you tell us how this patent relates to the
prior patent we talked about?
    A. Yes, sir. The prior patent talked about -- it
focused on what the receiver did when there was this
packet discarding and when there was this packet discard
```

```
message.
In this patent, we're talking about what the
transmitter does and how it commands the receiver to
take certain steps.
    Q. Okay. Do the transmitter and receiver have to
follow the same set of rules in order to stay in
coordination?
    A. Yes, sir. They're -- they're a matched pair.
    Q. And is there any place in the patent that you
can point us to that describes visually how some of
these rules work?
    A. Yes, sir, there is.
    Q. Where -- where can we look?
    A. If we look in the figure part of the patent
and we look at Figure 10B.
    Q. Okay. So that's, I believe, sheet 9 of 12 at
Tab 3 of the jury notebook.
    A. Yes, sir.
    Q. A lot to take in, Dr. Nettles. Let's start
with what these boxes are.
    A. Those boxes are another picture of the
packets. In this case, they're in the transmitter. And
this is where the transmitter is getting ready to send
this group of packets.
    Q. The boxes that say PL+ Comp. Header and SN,
```

```
those would be these blue packets that are being
```

those would be these blue packets that are being
transmitted over the air?
transmitted over the air?
A. Yes, sir, exactly.
A. Yes, sir, exactly.
Q. Okay. So we see engineers draw these a little
Q. Okay. So we see engineers draw these a little
bit differently, just depending on how much detail we
bit differently, just depending on how much detail we
need?
need?
A. That's right.
A. That's right.
Q. What are the empty dotted boxes on the left
Q. What are the empty dotted boxes on the left
and the right of those?
and the right of those?
A. Well, at the left-hand side, the dotted boxes
A. Well, at the left-hand side, the dotted boxes
are cells. That's another name for packets. I know we
are cells. That's another name for packets. I know we
have lots of names for packets. Those are cells that
have lots of names for packets. Those are cells that
have actually been discarded. And on the right-hand
have actually been discarded. And on the right-hand
side, the dotted boxes or cells, that haven't been given
side, the dotted boxes or cells, that haven't been given
to the transmitter to transmit yet.
to the transmitter to transmit yet.
Q. So how does this relate back to that window
Q. So how does this relate back to that window
you showed us with the green dotted box?
you showed us with the green dotted box?
A. The -- the various horizontal lines with
A. The -- the various horizontal lines with
double arrows, those are kinds of windows. And in
double arrows, those are kinds of windows. And in
particular, I think the most important window here is
particular, I think the most important window here is
the top one that says =W.
the top one that says =W.
Q. All right. So these windows -- you -- you
Q. All right. So these windows -- you -- you
simplified them for us in the animation, but in the
simplified them for us in the animation, but in the
patents, there's a more complicated depiction of
patents, there's a more complicated depiction of
windows.

```
windows.
```

A. Yes, sir. There's typically a number of
different windows, and they indicate different --
different things.
So the labels here say something about what
the windows -- these particular spaces in this buffer
mean.
Q. Why do we need all this detail?
A. Well, remember the goal of the patent
specification is actually to teach someone who -- who knows how to build these kinds of networking systems to actually build the invention. And these are very complicated systems, and they need to be very detailed. Otherwise, the system might break. I think we've heard deadlock referred to. Getting all the details right are part of how you avoid deadlock.
Q. Let's turn now to the claim. This is Claim 1 of the '625.
A. Yes, sir.
Q. I believe that's on the next to the last page of the patent.
A. Yes, sir.
Q. It's actually in Column 10. Is this another method claim?
A. Yes, sir, it is.
Q. And what is the method that's being claimed?
A. It's a method for discarding packets in a data network. And then it goes on to explain that it's a packet transfer protocol. It includes an automatic
repeat request scheme. That's $A R Q$ scheme, and then it
says what the steps are.
Q. Let's go through these steps. And maybe the best thing we can do is read these all the way through just so we know what we're going to be looking for, and then I may ask you a bunch of questions about how to understand them.
A. Okay.
Q. The first one is a transmitter in the data
network commanding receiver in the data network to (a) receive at least one packet having a sequence number
that is not consecutive with the sequence number of a
previously received packet. And (b) release any
expectation of receiving outstanding packets having
sequence numbers prior to the at least one packet.
A. Yes, sir.
Q. Then the next one is the transmitter
discarding all packets for which acknowledgement has not been received, and which have sequence numbers prior to the at least one packet.
A. Yes, sir.
Q. Which of the Defendants' devices practice this

```
method?
    A. All of them.
    Q. And, again, are the Defendants responsible for
performance of the method?
    A. Yes, sir, they program their devices to do
these steps without human intervention.
    Q. And do end users of the devices also perform
these steps of the method?
    A. Yes, sir. And they're induced by the
Defendants, as we discussed before.
    Q. So let's talk about now the elements.
        What have you found to be the first command we
talk about here?
    A. The first command is when you send a packet
which is not consecutive with a subsequent packet.
    Q. Is that, again, the transmitter sending the
packet?
    A. Yes, sir, the transmitter is sending the
packet.
    Q. Do all accused devices have transmitters and
capable of transmitting?
    A. Yes, sir, they are.
    Q. So we have a command -- or two things,
receiving at least one packet out of sequence, and then
(b) releasing expectation?
```

A. Yes, sir.
Q. Okay. Let's talk about those separately.
A. Okay.
Q. What have you found satisfies the receive at least one packet having a sequence number that is not consecutive with the sequence number of a previously received packet limitation?
A. That's met when you send an MPDU or an A-MPDU which is not consecutive with a previously delivered packet.
Q. Okay. And what makes that a command?
A. Well, the system doesn't have any choice about whether or not to accept that packet or not. It's -it's required to do that, and that's what makes it a command.
Q. Okay. Can you tell us where that is in the standard?
A. Yes, sir. If we look at the 2009 standard -I'm sorry, I don't know the Exhibit Number for that.
Q. I believe it's 286 -- PX 286.
A. If we look at Page 137, and if we look at
Section 9.10.7.6.1 at the top, it actually has a
discussion of 9.10.7.6.2 and 9.10.7.6.3, and 9.10.7.6.2,
which is just below, is where we would find the commands
to receive. And then part of the command -- part of the

```
next -- the next element -- the next subpart in B is
going to be in 10.6.2 and part of it's going to be in
7.6.3, which is, again, below.
    Q. Okay. That was a lot. Maybe what might be
helpful -- and it's obviously -- we've got to get
through this and explain it.
    Maybe we could look at this and get a
character or flavor for what kind of information we're
seeing and then let the jury see how it's written and
then we may have to, I think, go into an animation to
explain this in a little more understandable format.
    MR. STEVENSON: Mr. Diaz, can you go to
one-page mode, please, and just take a look at that?
    Can you go back -- I think we were --
maybe go to a single page so we can see a little bit.
    A. And do you want to look at 6.2?
    Q. (By Mr. Stevenson) Yes, let's scroll down and
see what we're looking at. I mean, these are
essentially detailed rules for conduct of the system,
right?
    A. Exactly.
    Q. Okay.
                            MR. STEVENSON: Can we go to 6.2 and zoom
in on that? And then let's go to the next page and take
a look at that, please.
```

A. We want to keep this one, also.
Q. (By Mr. Stevenson) Okay.
A. If we -- if we can do that.
Q. I think we can. Which is -- which is the command here to receive an out-of-sequence packet?
A. Well, it's -- it's a combination of two spots. The top spot, which is in 6.2 (a) is saying what happens when you get a packet where the sequence number is inside of the window. And No. 1 says: Store the received MPDU in the buffer. And the (b) step that's just below it on the screen is what happens when the sequence number is outside of the window, above the window, and it also says: Store the received MPDU in the buffer.

And so together, those say whether or not it's in the window or out of the window. You have to store the MPDU, and that's the receive.
Q. And where's the command to release expectation?
A. If we look at the (b) part that's at the bottom for the implicit block acknowledgement request, it's Steps 2 and 3. That's basically changing the way the window works.

And now, if we look a little further down on that page, we'll see where the explicit block

```
acknowledgement request is.
    So blow up the section which is 7.6.3.
    Q. Okay.
    A. And that's the explicit block acknowledgement
request. And there it's in Section (a), 1 and 2. Those
define how the -- the command about expectations.
    Q. Okay. Are these commands?
    A. Yes, sir. Again, you don't get to ignore
them.
    Q. And how are the commands communicated into the
accused devices?
    A. Well, the programmers build the devices to
work this way.
    Q. So if you're building a device that you want
to be interoperable and work according to the standard,
you have to basically program these commands into your
device?
    A. Yes, sir.
    Q. Okay. Now, we've seen a lot of rules and
window moves. I'd like to step back from the standard
for a minute, and I know you prepared an animation where
we can see visually how this works and maybe that will
help us understand better.
    A. Yes, sir, I think it will.
    Q. All right. What are we seeing here?
```

A. Well, here, again, we're seeing part of the
internals of the receiver with this buffer -- with these
slots. That's just like in the previous animation, but
now we're actually seeing the base station which is
going to act as a transmitter.
Q. Okay. And it's transmitting packets?
A. Oh, yes, sir. That's how we can transmit in
these systems.
Q. Okay. And is this what we're going to see,
like, before the packets come and get slotted in?
A. That's right.
Q. Is there a window?
A. Yes, sir, there is. And we see it. It's the
same window actually as we saw before.
Q. Okay. And this is, again, looking at the
receivers?
A. That's right. This is inside the receiver's brain, if you -- if you will.
Q. All right. Can we start showing packets going in again to the window?
A. We can. Now we see they really come from the transmitter. Again, the first one's lost. The second one is received. And because the first one was lost, this one isn't consecutive with -- we don't see 0 in the picture, but 0 is the previous one. So this is actually

```
the command to receive something that's out of sequence.
    Q. The number 2 is the command?
    A. Right. The -- the -- the -- receiving that
packet is a command to receive out of order.
    Q. And explain one more time, why is receiving
the packet a command to receive out of order?
    A. Because since this particular packet is out of
order and you're not allowed to not receive it, you're
required to receive it, it's a command.
    Q. Okay. Let's keep going.
    A. }3\mathrm{ is received. 4 is received. These are in
order, so they're not the command that the -- that the
method requires.
        Now, 5 is lost again, just like before. And 6
is received. And, again, it's a command to receive out
of ordinary because 6 is not consecutive with 4.
    Q. So this that you've described with the packets
showing up, is this true for both the MPDU and the
A-MPDU?
    A. Yes, sir. The A-MPDU is really just a group
of PDUs that are sent altogether at once.
    Q. Now, let's move on. And before we do, have
you satisfied yourself that the first part of the
command, the (a) part, receive at least one packet
having a sequence number that is not consecutive with
```

```
the sequence number of the previously received packet
```

the sequence number of the previously received packet
has been met?
has been met?
A. Yes, sir.
A. Yes, sir.
Q. Okay. We're not done with this element yet
Q. Okay. We're not done with this element yet
because we now need to go to (b)?
because we now need to go to (b)?
A. Yes, sir.
A. Yes, sir.
Q. And that's release any expectation of
Q. And that's release any expectation of
receiving outstanding packets having sequence numbers
receiving outstanding packets having sequence numbers
prior to the at least one packet.
prior to the at least one packet.
A. Yes, sir.
A. Yes, sir.
Q. Can you give us a more understandable
Q. Can you give us a more understandable
explanation? I mean, we're not going to change the
explanation? I mean, we're not going to change the
language. We're going to stick to that. But just help
language. We're going to stick to that. But just help
us understand what this is getting to.
us understand what this is getting to.
A. Well, (a) defines what the at least one packet
A. Well, (a) defines what the at least one packet
is.
is.
So, for example, 6 is an example of those --
So, for example, 6 is an example of those --
that at least one packet because it's out of sequence.
that at least one packet because it's out of sequence.
And now we have to do something to release
And now we have to do something to release
expectation of receiving, in this particular example, 1
expectation of receiving, in this particular example, 1
and 5. And in this system the way it works is the
and 5. And in this system the way it works is the
window defines what you're expecting to receive.
window defines what you're expecting to receive.
Q. And so -- let me ask you to explain that.
Q. And so -- let me ask you to explain that.
HOw --
HOw --
A. Okay.

```
    A. Okay.
```

Q. -- does the window define what the receiver is
expecting to receive?
A. Well, that's sort of the definition of the window is it's the -- the beginning of the window is the
beginning of the things that you're expecting --
currently expecting. And the end is the end of the
things that you're currently expecting. And things that
are before, you're not -- you're not expecting. You're
never going to ask for things that are earlier than the
beginning of the window --
Q. So if the --
A. -- to be transmitted.
Q. Sorry.
If the window moves across, does that release
expectation of receiving things before the window?
A. Yes, sir. That's kind of the whole reason for
doing this windowing stuff.
Q. And -- and can you show that on your
animation, please?
A. I can. I think the first one is going to show what happens when we get an explicit block
acknowledgement request.
Q. So I'm going to stop here now just to slow us
down. We talked about two kinds of block
acknowledgement requests?
A. Yes, sir.
Q. Explicit and implicit?
A. Yes, sir.
Q. And, again, do both independently infringe the
patent?
A. Yes, sir, they do.
Q. Either one could do it. You don't have to have both?
A. That's right.
Q. The first one comes across, is this the explicit or implicit version?
A. This is the explicit because you see it's --
it's labeled BAR. That's for block acknowledgement
request.
Q. Why does it have 7 in parenthesis?
A. Because that says we're going to move the
front of the window to Slot 7 .
Q. Under the standard, when block acknowledgement requests are sent, do they have to have a number with them?
A. The explicit ones do, yes.
Q. And why do they need a number with them?
A. Because the number defines what data you actually care about, where you're going to move the window, what you're going to get an acknowledgement for.
Q. Okay. After the explicit block
acknowledgement is received -- excuse me, after the explicit block acknowledgement request is received by the receiver, what does it do with its window and how does it release expectations?
A. It's going to move it to 7 .
Q. The window his has now moved over --
A. That's right.
Q. -- and shifted. And then what happens to the expectations for the prior packets?
A. Well, anything that's below the left edge of the window is no longer being expected. You don't expect to receive anything below your window. And so all of those -- the 1 and the 5, in particular, you're no longer expect to receive those. You'll no longer -you'll never ask the transmitter to send those to you.
Q. Okay. And the "you" in that being the receiver?
A. Sorry. Yes, sir.
Q. All right. And -- so now, can you show the same example for the other flavor of block
acknowledgement request, the implicit block
acknowledgement request?
A. I can. I think we show some packets coming in first, and then we'll -- and then we'll see the other

```
example.
    Q. Okay. So this just -- after you move the
window, it just keeps going on, filling up?
    A. That's right.
    Q. Is that how these things work? Do they -- do
these windows just keeping moving along and packets keep
coming in and just continually moving as more packets
come in?
    A. Yes --
    Q. And --
    A. -- repeat.
    Q. Now, can we go to the implicit block
acknowledgement request?
    A. We can. So we're back in the same situation
as we were in before. We've gotten the out-of-order --
the out-of-sequence packets, and we've got some drops.
And now we're going to have an implicit block
acknowledgement request.
    Q. Okay. And this is the group of packets we
talked about as being the other way of doing this?
    A. That's right. This is this A-MPDU thing that
we talked about.
    Q. Again, is this a sender of the -- the
transmitter of the packets deciding I don't want to try
to keep redoing 1 and 5, I'm going to move on?
```

A. That's right.
Q. This is -- don't want a pause in the video
time?
A. That's correct.
Q. So we're going to -- these -- so basically
when we talked about that little block or that little
glitch you'd see on your TV, is that because 1 and 5 are missing?
A. Exactly.
Q. Okay. So -- so basically the transmitter has
decided I'm moving on, let's go ahead and release expectation. We saw that with the -- the yellow bar before.
A. That's correct.
Q. Now, this is a different -- an alternative way of doing it in the standard?
A. That's right.
Q. Okay. Let's -- let's go ahead and see that. These all got sent as a group?
A. That's because they're A-MPDUs, and that's an aggregate group of packets.
Q. What does the IB mean?
A. That means that particular group is also an explicit block acknowledgement. That's the RSVP.
Q. Okay. And is there -- how does receipt of the

```
A-MPDU cause the window to shift?
    A. Well, the window is going to shift, in this
case, to the end of the A-MPDU. That's just the rules.
We saw earlier actually how this works in the -- in the
standard. So this is going to shift to the end.
    Q. Okay. Does receipt of the A-MPDU and this
window shift command the receiver to release expectation
of receiving packets outside the window?
    A. Yes, sir, it does.
    Q. Have you found that (b) is met by both the
implicit and explicit block acknowledgement requests
because they release any expectation of receiving
outstanding packets having sequence numbers prior to the
at least one packet?
    A. Yes, sir, it is.
    Q. So have you found the commands in this -- in
the -- excuse me, in the standard and in the Defendants'
products to do both (a) and (b)?
    A. Yes, sir, I have.
    Q. Let's go to the next element.
        The transmitter discarding all packets for
which acknowledgement has not been received, and which
have sequence numbers prior to the at least one packet.
    A. Yes, sir.
    Q. What does that refer to?
```

A. Well, now we're talking about -- again, this
is a transmitter-sort-of-focused claim, and now what
we're saying is that once the transmitter tells the
receiver that it's no longer interested in
retransmitting certain packets, it can just throw away
the packets that are below the point that it said now
I'm -- it's saying I'm -- now I'm interested in this
spot, but nothing before it, and so the transmitter can
discard everything that's before it.
Q. So once the window moves on and the packet
isn't going to be transmitted ever again, what happens
to it?
A. Well, the transmitter's going to discard it because it's going to re-use that space for other
packets.
Q. Any point in keeping it?
A. No, sir, not at all.
Q. And is this element met by the accused devices?
A. Yes, sir, it is.
Q. I wanted to ask you some questions about the Defendants' products and their practices. Do the Defendants use both in their products, implicit block acknowledgement requests and explicit block acknowledgement requests?
A. Yes, sir, they do.
Q. When are implicit block acknowledgement
requests used?
A. When you send one of these A-MPDUs, one of
these groups of packets together, my understanding is
that those are almost always sent as implicit BlockAck
requests.
Q. Okay. And do all the Defendants' products send A-MPDUs?
A. Oh, yes, sir. That's one of the important innovations of 802.11 n is sending these packets in groups. It's more efficient.
Q. When are explicit block acknowledgement requests used in the Defendants' products?
A. Well, one of main times is when you send an implicit block acknowledgement request and then that causes a block acknowledgement to be sent, well, block acknowledgements can get lost, also. And so if the block acknowledgement gets lost, then you have to ask again and the systems ask again by sending an explicit block acknowledgement request.
Q. Have you checked the source code for the domestic chip manufacturers to verify the accused devices follow the standard as advertised?
A. Yes, sir.
Q. And have you seen implicit block
acknowledgements sent during your testing of
representative chipsets used in the Defendants'
products.
A. Yes, sir.
Q. And same question for explicit block
acknowledgement requests.
A. Yes, sir.
Q. Which one is more frequent, implicit or explicit?
A. Oh, the implicit, sir, are much more frequent.
Q. And -- and what's the order of magnitude or the ratio, approximately?
A. Well, it -- it really depends on the conditions, but a hundred times more frequent, a thousand times more frequent, 10,000 more -- times more frequent.
Q. Okay. And what about the conditions influences how many explicit block acknowledgement requests will be sent?
A. Well, if you have conditions where it's likely for the block acknowledgements to get lost, it makes it more likely that you're going to send an explicit block acknowledgement request to fix the fact that a block acknowledgement got lost.
Q. Can you give me a real-world example? When
does that kind of thing happen?
A. Probably the easiest to understand case is if
you're communicating at the edge of your transmission
range. So it's very easy to lose packets at the edge of
the transmission range. That's one of the places it's
most likely to see explicit block acknowledgement
requests.
Q. So if I have -- let's say I have a router.
A. Okay.
Q. And I had an Internet a connection, I'd plug it in right here at the podium.
A. Okay.
Q. Put it right here.
A. Okay.
Q. I guess this is where the radio is, right?
A. It's where one of them is, yes, sir.
Q. And then whatever I'm talking with, if it's a
laptop or my phone is on Wi-Fi, if I'm real close, I
have pretty good reception?
A. If you're real close, you have great

```
reception.
```

Q. So I'm not going to get very many block acknowledgement requests that are explicit in that circumstance?
A. I wouldn't expect you to.
Q. Okay. Now let's say I was walking away and I go down the hall and further down the hall and further down the hall. I mean, sooner or later, I'm going to get out of range of this thing, right?
A. Right.
Q. And I'm going to have nothing.
A. Right.
Q. But if I get pretty far away, but I can still get some radio reception, then what happens to the frequency of block acknowledgement responses that are the explicit type?
A. I would expect to see it go up.
Q. Are these things essential to compliance with the $802.11 n$ standard?
A. Yes, sir, they are.
Q. And, again, in the infringement analysis
you've done, does it matter to you at all whether or not
Ericsson was present or not present at 802.11 meetings
when these were being put into the standard?
A. No, sir. Infringement analysis really is exactly what we've been doing: Looking to see if the products meet the claims.
Q. Let's now move on to the next patent. And this is going to be the ' 568 patent.

MR. STEVENSON: It's at Tab 4 in the jury
notebook.
A. Thank you.
Q. (By Mr. Stevenson) When was this patent filed
for, Dr. Nettles?
A. It was filed on October 15th, 1996.
Q. And what is the date this patent issued?
A. October 15th, 2002.
Q. And who are the Examiners on it?
A. Wellington Chin and Frank Duong.
Q. Can you give us a headline encapsulation of what this patent is about?
A. This packet -- this patent is about the fact that different kinds of data in the network need
different treatment, and so there needs to be a way of
identifying the kind or type of data that is in a packet
so that it can be given a different treatment.
Q. And is this -- what type of data are you
talking about, as far as different kinds?
A. Well, in the -- the claim construction
examples, include video, voice, just regular data.
Those are examples in the -- in the standard also.
Q. And I believe we can all turn to Tab 1 to look at the claim construction for the ' 568 patent. And the Court was construing the service type identifier, which

```
we're going to talk about in a minute, which identifies
the type of payload information.
    A. That's right.
    Q. And how did the Court define that?
    A. As an identifier that identifies the type of
information conveyed in the payload. Examples of types
of information include, but are not limited to, video,
voice, data, and multimedia.
    Q. Okay. Well, let's talk a little bit about the
setting in which the inventors came up with the
invention.
            What is that?
    A. They were working on cell phone standards.
And remember, this patent was filed in 1996.
    So at that time, cell phones really -- all
they could do is voice. But they were looking forward
to a time when cell phones would be able to do voice and
video and web pages and e-mail, just -- just like cell
phones do today.
Q. And what kind of issues can be created by sending different types of data over the same network?
A. Different kind of -- kinds of data in particular have different delay tolerances. And so if you want to take into account the tolerance for delay, there needs to be extra -- there needs to be new
```

```
functionality in the network to allow you to do that.
    Q. Can you give us an example?
    A. The example we've been talking about most
frequently is with voice or video.
    If your e-mail is delayed by a minute or two,
it's not a big deal. If there's a one-second pause in a
video that you're watching, then that's probably
annoying.
    If there's a one-second pause every minute in
a phone conversation, that's -- probably makes it pretty
hard to have a phone conversation. And if it's every
few seconds, it's impossible to have a phone
conversation.
Q. Can you have phone conversations over these wireless networks?
A. Yes, sir. I mean, that's one of the main things we do over them.
Q. How do you do that?
A. Well, that's -- I mean, that's what cell phones do. But you can also do that over the data network by using what we call Voice over IP technology. That's a way of doing phone calls over the Internet.
Q. Okay. And when I asked my question before, I was really referring -- and I didn't ask it well -- to the wireless Wi-Fi networks.
```

A. Oh. Oh, yes, sir.
Q. Can you do phone calls from your house over a
Wi-Fi network over the Internet?
A. Oh, yes, sir. Again, using this Voice over IP

Internet phone call technology.
Q. What are programs that do that?
A. The one that people have probably heard of the most is called Skype, but also a lot of -- you know, a lot of cable companies provide VoIP phones, and so those might go over wireless.
Q. Okay. I've -- I've heard of Skype before. I think I've seen it, like on TV, being used by families of servicemen to communicate with them overseas and that sort of thing. What's the advantage of using Skype as opposed to just making a long distance call?
A. Well, as long as the person that you want to talk to has Internet -- and, for example, service people in Afghanistan have the Internet -- you can make essentially free phone calls to them.
Q. Free long distance?
A. Yes, sir, and, in fact, video calls as well.
Q. Okay. So would that be an example of different types of traffic on the same network?
A. Yes, sir. If you were making a call like that and you were also receiving e-mail, those would be two

```
different kinds of data.
    Q. So what is the solution of the patent for
dealing with the complications or problems caused by
having different types of data on the same network?
    A. Well, they introduced something called a
service type identifier. So they created another
compartment or field where you could actually put an
identification of what kind of data was in the packet.
    Q. Have you prepared an animation that we can
look at to see and understand a little better the
service type identifier?
    A. Yes, sir, I have.
    Q. So it appears now that we are zooming in on
the base station and one of the terminals, right?
    A. Yes, sir.
    Q. And just as a persistent reminder, we keep
showing the base station in these animations
transmitting to the terminal, but they can go both ways,
can't they?
    A. Yes, sir, and they do.
    Q. I mean, if you were on a Skype call on your
computer, you would be sometimes sending and sometimes
receiving based on who's talking.
    A. Exactly.
    Q. Can we put this in motion?
```

A. We can.
Q. What is this group of multicolored packets?
A. Well, again, these are packets, but this time
we've colored them different colors to indicate that
they have different kinds of information in them.
Q. And can we zoom in on a packet?
A. We can.
Q. We zoomed in on the yellow one.
A. Yes, sir. And we see at the front, there's a 00.
Q. Are we again seeing these compartments we've been talking about?
A. Yes, sir.
Q. And was the invention here to create that compartment there on the left?
A. That's right.
Q. The one that says 00 on it?
A. Yes, sir. It can have other values, but that's the invention.
Q. Okay. And what is that called in the patent?
A. That's the service type identifier. And then
the claim construction actually just calls it type
identifier.
Q. Okay. And what is the -- in the -- in the rest of the packet, what are the squiggly things that

```
looks like a voice oscilloscope?
    A. That's our graphical representation of voice.
    Q. Now, in the real world, they're not sending
scribbles. Are they sending --
    A. 1s and 0s.
    Q. I'm just kind of curious. I mean, just a
ballpark. In one sentence, how many 1s and 0s would you
need to capture -- not one of my long sentences but just
a short sentence and turn it into a bunch of 1s and 0s?
    A. Well, the -- the typical way voice is
digitized for sending over the phone, you break every
second of conversation into 8,000 pieces.
    Q. And you're talking thousands and thousands of
1s and 0s just for a second of --
    A. 8,000. Exactly 8,000 per second.
    Q. Okay. What's the purpose of the service type
identifier?
    A. It's to identify the type of the payload.
    Q. Okay. So in this case, can we -- is there a
lookup chart in the standard?
    A. Yes, sir, there is.
    Q. And I asked about the standard. Let's start
with the patent. Let me back up.
    A. Sorry. I thought that's what you meant.
    Q. I meant to ask about the patent.
```

```
    Is there a description in the patent of what
different types of service type identifiers can be?
    A. Yes, sir, there is.
    Q. So what are we seeing here?
    A. We're seeing a table that's taken from the
patent that says, for example, that if you want to send
voice, you're going to label it 00 in the service time
identifier.
    Q. And with the -- would that then get looked up
as to what 00 stands for?
    A. Yes, sir.
    Q. And where did you get your examples for voice
and video and data and multimedia to put in this slide?
    A. It's from the patent. I'm looking for the
page number.
    Q. Is it also from the claim construction we
read?
    A. Oh, yes, sir. Those -- those particular kinds
of data are from the claim construction.
    Q. Okay.
    A. I guess maybe there's not an explicit picture.
    Q. Well, let me ask you about the importance of
the service type identifier.
    A. Yes, sir.
    Q. What does it allow the network to do?
```

```
    A. Well, it allows it to treat the different
kinds of data differently based on what kind of data it
is.
    Q. Okay. How could they be processed
differently?
    A. Well, in particular, you might give voice the
highest priority, because it's the most sensitive to
delay. You might give video the next highest priority
because it's more sensitive than data. You might give
data the lowest priority.
    Q. All right. Well, let's look now at the claim
and talk about that. And I believe the claim is located
at the last page of the patent, Tab 4, Column 13.
        This claim seems a little bit different than
the ones we talked about before. The ones we talked
about before were called a method. This one reads: A
communication station comprising.
    What kind of claim does that indicate to you
that this is?
    A. It's called an apparatus claim.
    Q. Okay. And how do you go about determining
infringement of an apparatus claim?
    A. You look to see if the accused device is an
apparatus or a machine that is capable of doing the
things that are in the claim limitations.
```

Q. But like before, do we have to go through each element and make sure that that is met in the accused devices?
A. Oh, yes, sir, except for now we're looking for capability.
Q. Okay. Which Defendants infringe Claim 1?
A. All of them.
Q. And which products infringe? All their
products?
A. Yes, sir.
Q. Let's read this together. This requires a
processor for arranging information for transmission
including providing at least one first field in which
payload information is disposed and providing at least
one second field, separate from said first field, which
includes a service type identifier which identifies a
type of payload information provided in said at least
one first field.
So is the claim setting up essentially two
fields, a first and a second?
A. That's exactly what it's doing.
Q. Are those the fields we looked at in the
animation you just showed us?
A. Yes, sir.

MR. STEVENSON: Would you go back to

```
that, Mr. Diaz, please? Thank you.
    Q. (By Mr. Stevenson) So what is being claimed
here are the two fields, the first field and the second
field.
    A. Yes, sir.
    Q. And then the next element is transmitter for
transmitting. We talked about that.
            Do the accused devices have a processor for
arranging information for transmission?
    A. Yes, sir, they do.
    Q. And are they all capable of doing that?
    A. Yes, sir. They are all capable of arranging
things to be transmitted.
    Q. Now I want to get into the first field and
second field. Are we going to need to get into the
standard to actually see visually those fields?
    A. Yes, sir, we will.
    Q. Okay. Do you have a slide that shows the
standard?
    A. I do.
    Q. Okay. And, again, this is Plaintiff's Exhibit
286.
    A. Yes, sir.
    Q. What's the best place for us to look in this
to find the -- the format?
```

A. If we look at Page 13, we see Figure 7-1.
This is the MAC frame format. Again, frame is another
word we use for packet.
Q. Let's all understand what we're seeing here.
Let's make sure we're all on the same page, so to speak.
This is one of the diagrams out of the actual standard?
A. Oh, yes, sir. It's on Page 13.
Q. And, again, this is a verbatim copy, right?
A. Yes, sir.
Q. Not something you created as a demonstrative;
this is the actual evidence.
A. Yes. This was -- yes, sir. This was scanned
from the -- from a copy of the standard.
Q. And this is called the MAC frame format.
A. Yes, sir.
Q. What's a MAC frame?
A. Well, again, MAC is the media access control
layer. That's what -- essentially, everything we've
been talking about so far, where all of that
functionality resides.
And frame is just a different word for packet.
And format just means how is the packet laid out into
compartments.
Q. Is this one of those blue things or one of the
orange things?
A. Well, actually, this is a general one, but this is basically one of the blue things.
Q. Okay. So this is the overall look at a blue packet?
A. Yes, sir.
Q. And this is actually not -- the control
information, this has the data that's the video or video, right?
A. That's right.
Q. And does every one of these packets have the format that's defined there?
A. Yes, sir, the ones that carry data do.
Q. I mean, do they all have to be consistently the same?
A. Well, yes, sir, or otherwise, there's -- I mean, again, it's -- everything has to be consistent for
people to be able to talk.
Q. Okay. So next -- can you show us where we can look into the compartments of the packet to find the first field and the second field that's recited in the claims?
A. Yes, sir. If you look at the field that says frame body, that's the payload. That's the first field.
Q. Okay. Why do you call that payload?
A. Well, that's the place in the -- in the frame
that you would deposit the data. And we call the data the payload. That's just the terminology.
Q. Okay. And can you tell from looking at this
diagram -- the way it's drawn, they're all the same size
box? In reality, are they all the same sizes in the
real packets that fly around?
A. Oh, no, sir. In fact, that's an important part about this picture, is that it shows -- above it shows a number, and the number says how many bytes that compartment can be.

And, in fact, one of the reasons that it's clear that the frame body is the payload is because it says it can be from 0 bytes all the way up to 7,955

```
bytes.
```

 So that's where -- remember, we talked about
 the packets being variable size? That's where the
variable size happens.
Q. Okay. And bytes being a computer term for?
A. $\quad 8$ bits.
Q. And bits being a computer for?
A. 1 s and 0s.
Q. Okay. So this is -- this is a lot of 1 s and
0 s in the frame body, and those 1 s and 0 s are going to
correspond to whatever content is being sent?
A. Exactly.
Q. So that -- that's your payload?
A. That's right.
Q. And is payload a pretty typical word that
people who deal with these kind of packets use to
describe the content?
A. Yes, sir. It's not the only word, but it
would be typical. Everybody would understand that word.
Q. So we talked about the payload information in the first field. Now, what we need to know next is, is there a second field, separate from the first field?
A. Yes, sir.
Q. Have you identified that second field?
A. I have.
Q. And can we show it on here?
A. We look at the $20 S$ control field.
Q. Is that separate from the payload field?
A. It is.
Q. Does that field include a service-type
identifier which identifies a type of payload
information provided in said at least one first field?
A. Yes, sir, it does.
Q. And we have "at least one" again. What does
"at least one" mean?
A. "At least one" means -- sorry. I need to --
Q. Just in ordinary parlance, does that mean one

```
or more?
    A. Yes, sir, it does.
    Q. So you could have one payload -- or more
important, two or three payloads and meet this claim?
    A. Oh, yes, sir. It's just that in this case we
only have one payload.
    Q. But that -- that -- the payload and the -- and
the -- the first and second field, payload and the other
one, have at least one field?
    A. Yes, sir.
    Q. What is inside the QoS control field you've
identified?
    A. Well, it's another one of these nested
compartments. We have to look inside.
    Q. What does QoS stand for?
    A. That stands for quality of service.
    Q. What does quality of service generally mean?
    A. It's the term we use when we want to
distinguish between different kinds of data and we want
to give them different qualities of service. Like we
want to give very good quality of service to voice and
pretty good quality of service to video and best effort
quality of service to data.
    Q. Okay. So now you zoomed in on what's inside
the QoS control, and we have another format chart.
```

A. That's right.
Q. And that's from where in the standard?
A. That's Table 7-4. That is on Page 16 of the standard.
Q. Of the --
A. 2009 standard.
Q. PX 286?
A. Yes, sir.

And what that's showing is that in that field,
the first four bits -- those are bits 0 through 3 -- are
a TID.
Q. Okay. Let me -- let me stop you there, and
ask you: You say bits 0 to 3?
A. Yes, sir.
Q. When it says bits, are you talking about data bits?
A. Yes, sir.
Q. And under that, then, there's a list of six rows.
A. Yes, sir.
Q. Each of them says TID in it.
A. That's right.
Q. What's that referring to?
A. Well, each of the rows is a different kind of
packet that all have this same basic format inside of

```
them. So the column to the left of the TID column
describes exactly what those different kinds of packets
are.
    Q. Okay. Does TID stand for something?
    A. Type identifier.
    Q. And does that type identifier correspond, in
your opinion, to the service-type identifier that is
required for the elements of the claim?
    A. Yes, sir, it does.
    Q. Do all 802.11n devices have to follow this
packet format?
    A. Yes, sir, they do.
    Q. Is there anything in the standard that would
map the TID value to the type of information it would
contain?
    A. Oh, yes, sir. There's a table.
    Q. All right.
            MR. STEVENSON: Can we show that table?
            Q. (By Mr. Stevenson) We jumped to another slide
here.
    A. Yes, sir.
    Q. Which exhibit is this from?
    A. This is from PX 0283. That's the earlier 2007
standard.
    Q. And explain how these 2009 and 2007 standard
```

```
books you have interrelate.
    A. Well, the -- the 2007 standard stands on its
own. It's complete. But the 2009 standard is basically
a revision. So it says how to revise the 2007 standard
to be the 2009 standard. So it has all the additions.
    If there's a change, it will show the
deletions. But if it's not an addition or a change,
it's going to be in the 2007 standard.
    Q. Okay. So this one is in the 2007, and it
carries forward to the 2009?
    A. That's right.
    Q. And, again, is this -- this isn't something
you created. Is this verbatim from the standard?
    A. Yes, sir, it is.
    Q. Explain what this chart is, please.
    A. Well, this is a chart that's showing what the
possible values for that TID field are. That's the UP,
the user priority field, in this table. And we see
highlighted at the bottom 4, 5, 6, and 7.
        And if we look to the right, we'll see that 4,
5, 6, and 7 are AC VI, which is a designation for video,
and then AC_VO, which is a designation for voice.
    Q. Okay. Let me -- let me ask you to walk back
through that with me just to make sure I've understood
it. In the left - second to the left column, the one
```

```
I'm pointing to with the blue arrow -- that column.
    A. Yes, sir.
    Q. Where would those numbers go in the prior
slide that we looked at?
    A. They would go in the TID field that we saw.
    Q. So the TID field is going to be a 0, 1, 2, 3,
4, 5, 6, or 7?
    A. Yes, sir.
    Q. And does that number -- would that go into the
QoS control field that we looked at in the -- in the
packet?
    A. Yes, sir. The TID field that we looked at is
a subfield of the QOS control field.
    Q. Then in the AC field, we have AC_VI -- AC_VI,
AC_VO, AC_VO.
    A. Yes, sir.
    Q. What do those refer to?
    A. Those are the particular names the standard
gives to the -- these particular priorities. So AC_VI
are -- is priority 4 and 5, and AC_Vo is priority 6 and
7.
    Q. Now, defense counsel said in opening that this
802.11n doesn't identify what's in the payload. And I
think we saw a slide of a milk truck in the fast lane.
    Do you remember that?
```

A. I saw that slide, yes.
Q. Well, is that right?
A. Well, I mean, this table says voice and video, doesn't say milk truck, but it doesn't say fast lane?
Q. Okay. So what is the significance of the table saying voice or video within the standard?
A. Well, this table is telling someone who would use this capability that if they want to carry voice, they should give it a UP of 6 or 7. And if they want to carry video, they should give it a UP of 4 or 5.
Q. So if you wanted to take advantage of the quality of service capabilities, you could do that?
A. Yes, sir.
Q. Okay. Are all the -- excuse me. In what part of the computer is this performed, this element?
A. Well, this is -- this is performed in the MAC.
Q. That's the media access controller layer?
A. Yes, sir, it is.
Q. And is that one of the lower layers or lower levels of the -- what I'll call the transmission stack?
A. Yes, sir. We're going to see a picture of that in a few minutes, but it's the -- it's the second lowest layer.
Q. Do all the accused computers in this case have the capability of transmitting this TID field as part of

```
the packets they transmit?
    A. Yes, sir, they do.
    Q. Is the same true for the router?
    A. Yes, sir, it is.
    Q. How do the routers meet these functional
limitations?
    A. Well, they also have a processor that arranges
these fields and creates these payload fields, puts
payloads in them, creates this type identifier field,
puts this value in them in really the same way as the
computers and laptops do.
Q. Have you found the first element to be met in
the Defendants' products?
    A. Yes, sir.
    Q. Let's talk about the second elements. A
transmitter for transmitting information received from
said processor, including said at least one first field
and said at least one second field.
    So you've got another one here that requires
the first and second fields that we've defined up here
to be transmitted -- well, at least a transmitter for
transmitting them.
            Do the accused devices have a transmitter?
    A. Yes, sir. I mean, that's -- that's part of
the main point of them, is to be a transmitter and a
```

```
receiver.
    Q. And do they actually transmit the first field
and second field along with every transmission?
    A. Yes, sir, they do.
    Q. Do you find that element to be met?
    A. Yes, sir, I do.
    Q. Let's move on to Claim 5. What kind of claim
is Claim 5?
    A. It's another one of these dependent claims.
It's still an apparatus claim.
    Q. Okay. So this -- is this the same thing we've
done before where we go through and see if No. 1 and No.
2 are met and then we have to add on -- there's a next
element -- what is in Claim 5?
    A. Yes, sir, exactly.
    Q. So the first two elements carry over and now
we just need to see if 5 is true?
    A. Yes, sir.
    Q. In your opinion, which Defendants infringe
Claim 5?
    A. The router Defendants.
    Q. Just the router Defendants?
    A. Yes, sir.
    Q. And why just the router Defendants?
    A. Because this limitation requires a base
```

```
station, and the routers are base stations.
    Q. What is a base station?
    A. A base station is something which connects a
wired network and a wireless network. So your router is
an example. The things that you see on the cell towers
are examples.
    Q. I've heard of cellular base stations before.
    A. Yes, sir.
    Q. Are -- are these routers and access points
we're dealing with in this case, these Defendants, are
they fairly called base stations, also?
    A. Yes, sir. I think the Defendants call them
that.
    Q. Is this term -- terminology equally applicable
to cellular, as well as Wi-Fi?
    A. Absolutely.
    Q. Have you seen evidence that the Defendants
    actually refer to their routers and access points as
    base stations?
    A. I have.
    Q. Did you put it on the slide?
    A. Yes, sir, I did.
        So this is for NETGEAR.
    Q. It is PX 0509?
    A. Yes, sir. And it says: There are various
```

```
types of access points, also referred to as base
stations, used in both wireless and wired networks.
    Q. Do you find Claim 5 to be met in the accused
devices?
    A. In the router accused devices, yes, sir.
    Q. Thank you.
        Is the capability in these claims to transmit
the first field and the second field essential to
compliance with the 802.11 standard?
    A. Yes, sir, it is.
    Q. And how does this capability improve the
performance of Wi-Fi networks?
    A. The performance of Wi-Fi networks is -- this
lets you do quality service. So this lets you
prioritize voice and video, and that's going to improve
the -- the performance in the sense that you'll get
better performance for the things that you care about
having a low delay, and the things that tolerate delay
better will -- you'll be allowed to have a little bit
more delay, so...
    Q. Are there programs that actually use this
capability that is within the routers and the computers?
    A. Yes, sir, there are.
    Q. And is this -- are these marketed as QoS
devices? Is that how they're described in the market?
```

A. Yes, sir. They'll mention something about QoS, or there will be some QoS aspect that you'll have to -- that they'll tout.
Q. All right. Are there a lot of programs or applications currently in the market that take advantage of this capability?
A. No, sir. Really just a handful.
Q. Okay. Have you identified some, though?
A. Yes, sir, I have.
Q. Which ones have you identified that use this
capability?
A. Well, one example would be a program called CSipSimple, which runs on Android phones.
Q. CSipSimple?
A. Yes, sir.
Q. And how do you get that if you have an Android phone?
A. It's a free application.
Q. What does it let you do?
A. Well, it lets you -- it's another one of these programs that lets you make the free foreign phone calls over the Internet.
Q. Okay. And that runs on Android?
A. That particular one does.
Q. And does that take advantage of this

```
capability?
    A. It does.
    Q. Are you aware of others that run on computers
that take advantage of this capability?
    A. Yes, sir. The Skype program I mentioned
before and a program called Ekiga, when running on the
Linux operating systems, takes advantage of these
capabilities.
    Q. Okay. And what does Ekiga do?
    A. It's -- it's, again, another one of these
Voice over IP phones, although I think it's more focused
on making video calls.
    Q. Okay. Like a video conference thing for your
computer?
    A. Yes, sir.
    Q. Okay. And does Windows have any programs or
applications that take advantage of this capability?
    A. Yes, sir. Under Windows 7 and Windows 8,
actually, there's a facility called QA that once you
start it, Windows Media will take advantage of this
quality of services to, for example, stream video to an
XBox using quality of service.
    Q. And does it do that the whole time, or does it
do it adaptively?
    A. It does it adaptively. So it won't always
```

A. I ran them.
Q. Okay. And did you see some testing done by

```
take advantage of this facility. Only when it thinks
```

take advantage of this facility. Only when it thinks
it's advantageous to do so.
it's advantageous to do so.
Q. And how did you determine that these programs
Q. And how did you determine that these programs
are actually taking advantage of this capability?
are actually taking advantage of this capability?
Defendants' experts where they ran some of these
Defendants' experts where they ran some of these
programs as well?
programs as well?
A. Yes, sir, I did.
A. Yes, sir, I did.
Q. And were they able -- were you able to see
Q. And were they able -- were you able to see
another test where they saw this capability being taken
another test where they saw this capability being taken
advantage of by the programs?
advantage of by the programs?
A. In certain cases, yes, sir.
A. In certain cases, yes, sir.
Q. Okay. And let me ask you this: I know you
Q. Okay. And let me ask you this: I know you
said it's a handful of programs currently being offered;
said it's a handful of programs currently being offered;
but does the fact that it is currently a handful of
but does the fact that it is currently a handful of
programs using this and taking advantage of this
programs using this and taking advantage of this
feature, affect your opinion on whether the computers
feature, affect your opinion on whether the computers
and routers infringe this apparatus claim?
and routers infringe this apparatus claim?
A. No, sir, not at all. This -- this claim is
A. No, sir, not at all. This -- this claim is
infringed because of the capability of doing this.
infringed because of the capability of doing this.
Q. Okay. Is there anything we need to talk about
Q. Okay. Is there anything we need to talk about
more on the '568 patent?
more on the '568 patent?
A. Not that I can think of.
A. Not that I can think of.
Q. Let's go to the next patent.

```
    Q. Let's go to the next patent.
```

```
                            THE COURT: How long do you anticipate
this patent will take?
    MR. STEVENSON: 25 or --
    THE COURT: All right. I think we better
    break for lunch. We've been going a pretty long time
    now, so...
    All right, Ladies and Gentleman of the
    Jury. I -- we will take our lunch break at this time.
    Please remember my instructions. Don't
    discuss the case amongst yourselves or with anyone else.
    Enjoy your lunch, and we'll see you back here at 12:25.
    We'll be in recess.
    COURT SECURITY OFFICER: All rise.
    (Jury out.)
    (Lunch recess.)
```

```
    I HEREBY CERTIFY that the foregoing is a
    true and correct transcript from the stenographic notes
    of the proceedings in the above-entitled matter to the
    best of our abilities.
```

 /s/ Shea Sloan
 SHEA SLOAN, CSR
 Official Court Reporter
 State of Texas No.: 3081
 Expiration Date: 12/31/14
 /s/ Judith Wcrlinger
 JUDITH WERLINGER, CSR
 Deputy Official Court Reporter
 State of Texas No.: 731
 Expiration Date 12/31/14