
BSRNCITS332

| BSR NCITS 332

¢ DHPN-1008 / Page 1 of 150

W31American National Standards Institute
11 West 42nd Street

New York, New York

10036

DHPN-1008 / Page 2 of 150

BSR NCITS 332

American National Standard

for Information Technology —

Fibre Channel Arbitrated Loop (FC-AL-2)

Secretariat

Information Technology Industry Council

Approved (not yet approved)

American National Standards Institute, Inc.

Abstract

This standard defines functional requirements for an interoperable Arbitrated Loop topology to support the
Fibre Channel standard.

DHPN-1008 / Page 3 of 150

' Approval of an American National Standard requires review by ANSI that theAme ri ca n . . .
_ requirements for due process, consensus, and other criteria for approval have

N at| 0 n al been met by the standards developer.

Standard Consensus is established when, in the judgement of the ANSI Board of
Standards Review, substantial agreement has been reached by directly and

materially affected interests. Substantial agreement means much more than

a simple majority, but not necessarily unanimity. Consensus requires that all

views and objections be considered, and that a concerted effort be made
towards their resolution.

The use of American National Standards is completely voluntary; their

existence does not in any respect preclude anyone, whether he has approved

the standards or not, from manufacturing, marketing, purchasing, or using

products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and

will in no circumstances give an interpretation of any American National

Standard. Moreover, no person shall have the right or authority to issue an

interpretation of an American National Standard in the name of the American

National Standards Institute. Requests for interpretations should be

addressed to the secretariat or sponsor whose name appears on the title

page of this standard.

CAUTION NOTICE: This American National Standard may be revised or

withdrawn at any time. The procedures of the American National Standards

Institute require that action be taken periodically to reaffirm, revise, or

withdraw this standard. Purchasers of American National Standards may

receive current information on all standards by calling or writing the American
National Standards Institute.

CAUTION: The developers of this standard have requested that holders of patents that may be
required for the implementation of the standard disclose such patents to the publisher. However,
neither the developers nor the publisher have undertaken a patent search in order to identify
which, if any, patents may apply to this standard. As of the date of publication of this standard
and following calls for the identification of patents that may be required for the implementation of
the standard, no such claims have been made. No further patent search is conducted by the de-
veloper or publisher in respect to any standard it processes. No representation is made or implied
that licenses are not required to avoid infringement in the use of this standard.

Published by

American National Standards Institute, Inc.

11 West 42nd Street, New York, NY 10036

Copyright © 1999 by Information Technology Industry Council (ITI)
All rights reserved.

No part of this publication may be reproduced in any
form, in an electronic retrieval system or otherwise,
without prior written permission of ITI, 1250 Eye Street NW,
Washington, DC 20005.

Printed in the United States of America

DHPN-1008 / Page 4 of 150

Contents

Page

Forewordxi

Introduction xiii

1 Scope 1

2 Normative references 2

3 Definitions and conventions 3

4 Structure and concepts 8

5 Addressing 13

6 FC-AL Ordered Sets 17

7 FC-AL Primitive Signals and Sequences 18

8 L_Port operation 24

9 L_Port state transition tables 49

10 Loop Initialization procedure 73

Tables

1 8B/10B characters with neutral disparity 14

2 Primitive Signals 17

3 Primitive Sequences 17

4 MONITORING (State 0) transitions 50

5 ARBITRATING (State 1) transitions 54

6 ARBITRATION WON (State 2) transitions 57

7 OPEN (State 3) transitions 59

8 OPENED (State 4) transitions 61

9 XMITTED CLOSE (State 5) transitions 64

10 RECEIVED CLOSE (State 6) transitions 67

11 TRANSFER (State 7) transitions 70

12 INITIALIZATION process (State 8) transitions 72

13 Reserved 72

14 OLD-PORT (State A) transitions 72

15 AL_PA mapped to bit maps 78

Figures

0 Fibre Channel roadmap xiii

1 Examples of the Loop topology 10

2 FC-PH with Arbitrated Loop addition 11

3 State Diagram 31

4 Loop Initialization Sequences 76

i

DHPN-1008 / Page 5 of 150

Page

5 Loop Initialization Sequence AL_PA bit map 80

6 Loop Initialization state diagram example 83

7 POWER-ON state diagram 85

8 OLD-PORT state diagram 87

9 Loop Fail Initialization state diagram 89

10 Normal Initialization state diagram 91

11 OPEN-lN|T state diagram 93

12 Slave Initialization state diagram 95

13 Slave AL_PA position map state diagram 98

14 Master Initialization state diagram 99

15 Master AL_PA position map state diagram 101

Annexes

A L_Port Elasticity buffer management 103

B Loop Port State Machine examples 107

C Dynamic Half-Duplex 110

D Access unfairness 112

E Half-duplex operation 113

F BB_Credit and Avai|ab|e_BB_Credit management example 114

G L_Port clock design options 116

H Mark Synchronization examples 118

I Port Bypass Circuit example and usage 119

J Public L_Ports and Private NL_Ports on a Loop 122

K Assigned Loop Identifier 123

L Selective replicate for parallel query acceleration 124

M Controlled FC-AL configurations 127

N Insertion modes of Hubs 129

O L_Port power-on considerations 130

P L_Port initialization flow diagram 131

Q Examples of Switch Port Initialization 132

Index135

II

DHPN-1008 / Page 6 of 150

Foreword (This foreword is not part of BSR NCITS 332.)

This standard defines functional requirements for an inter-operable Arbitrated Loop

topology for Fibre Channel.

This standard was prepared by Task Group T11 (formerly X3T9.3) of the Accredited

Standards Committee X3 during 1993. The standard process started in 1989. This

document includes annexes that are informative and are not considered part of the
standard.

Requests for interpretation, suggestions for improvements or addenda, or defect re-

ports are welcome. They should be sent to the NCITS Secretariat, Information Tech-

nology Industry Council, 1250 Eye Street, NW, Suite 200, Washington, DC 20005-
3922.

This standard was processed and approved for submittal to ANSI by the National

Committee for Information Technology Standards (NCITS). Committee approval of

the standard does not necessarily imply that all committee members voted for ap-

proval. At the time it approved this standard, NCITS had the following members:

DHPN-1008 / Page 7 of 150

Technical Committee T11 on Lower Level Interfaces, which developed and reviewed

this standard, had the following members:

Kumar Malavalli, Chair

Edward L. Grivna, Vice-Chair

Neil Wanamaker, Secretary

David Baldwin

Paul Boulay
Joe Breher
Scott Carlson
James Coomes
Robert Cornelius

Roger Cummings
Zane Daggett
Scott Darnell
Jan V. Dedek
Don Deel

David Deming
Mark DeWi|de
Schelto Van Doorn
Mike Dudek

Peter Dunlap
Mike Fitzpatrick
David Ford
Michael S. Foster
Kenneth J. Fredericks

Edward M. Frymoyer
Edward A. Gardner
Chuck Grant
Michael E. Griffin

Virginia F. Haydu
David F. Hepner
Michael Hoard

Albert F. Kelley
Robert W. Kembel
Bret Ketchum
Ronald J. Kleckowski
Dale LaFol|ette
Paul A. Levin

Tom Lindsay
William Lynn
William R. Martin

Gregory McSor|ey
Vince Melendy
Dennis P. Moore
Francis Mottini

Chris Mulvey
James Myers
Hari Naidu
J. Michael Nauman
James Nelson
Tom Palkert
Elwood Parsons
Robert K. Pedersen

Curtis A. Ridgeway
Elizabeth G. Rodriguez

Roger Ronald
Earl E. Rydell
Colin L. Schaffer
John Scheible
Pak Seto

Robert N. Snively
Jeffrey Stai
Gary R. Stephens
Arlan Stone
Rich Taborek
Fred Van Roessel

Matt Wakeley
Gary Warden
Jeffrey L. Williams
John Williams

Michael Wingard
Danny Ybarra
Leonard Young
Jeff Young
Carl Zeitler

Dal Allan (Alt.)
Rick Allison (Alt.)
Greg Alvey (A|t.)
Ravi Anantharaman (Alt.)
Charles Binford (Alt.)
Daniel Brown (Alt.)
Craig Carlson (A|t.)
Edward Chang (Alt.)
Terry Cobb (A|t.)
Bill Collette (Alt.)
Jeff Connell (A|t.)
Dave Cravens (Alt.)
Jerry D’Alessandro (Alt.)
Robert Dahlgren (Alt.)
Mike Dorsett (A|t.)
Steve Finch (Alt.)
Dave Ford (Alt.)
Ren Franse (A|t.)
Matt Gaffney (A|t.)
Dave Gampell (A|t.)
Michael Gervvig (Alt.)
Joe Golio (Alt.)
Thom Hall (Alt.)
Bill Ham (Alt.)
Daniel Heim (Alt.)
Scott Hilliker (Alt.)
Lee Hu (A|t.)
David E. lnstone (Alt.)
James R. Johns (A|t.)
Skip Jones (Alt.)

Larry Jones (Alt.)
Gregory Kapraun (A|t.)
Michael J. Karg (Alt.)
Julie Ann Kembel (Alt.)
Allen N. Kramer (Alt.)
Bill Kuypers (Alt.)
Michael Lamatsch (A|t.)
Larry Lamers (Alt.)
Alan Langerman (Alt.)
Edwin S. Lee Ill (Alt.)
Mark Lippitt (A|t.)
Bill Mable (Alt.)
Paul Manka (A|t.)
Roland Marot (A|t.)
Bob Mayer (Alt.)
Jim McGillis (Alt.)
Brian McKean (Alt.)
Stephan Meyer (Alt.)
Gene Milligan (Alt.)
Mike Morandi (A|t.)
Eli Moyle (Alt.)
Jay H. Neer (A|t.)
Chris Nieves (Alt.)
Charles Nogales (A|t.)
John J. Nutter (Alt.)
Michael O’Donnel| (A|t.)
Robert Pearson (Alt.)
George Penokie (A|t.)
David Peterson (Alt.)
Craig Prunty (Alt.)
Michael Pugh (Alt.)
Said Rahman (Alt.)
Bart Raudebaugh (Alt.)
Ron Reynolds (A|t.)
Wayne Rickard (Alt.)
Chris Simoneaux (Alt.)
Brian R. Smith (Alt.)
Bernard Warnakula Sooriya (A|t.)
Steven E. Swanson (Alt.)
Jacqueline Sylvia (Alt.)
Tad Szostak (Alt.)
Jonathan Thatcher (Alt.)
Lloyd E. Thorsbakken (A|t.)
Luis Torres (Alt.)
Kevin White (Alt.)
Lynn Whitfield (Alt.)
Steven Wilson (Alt.)
Paula Zoller (A|t.)

DHPN-1008 / Page 8 of 150

Introduction

This American National Standard specifies an enhancement to the signaling protocol

of the Fibre Channel Physical and Signaling Interface (FC-PH), ANSI X3230, to sup-

port communication among two or more Ports without using the Fabric topology. The

following diagram shows the relationship of this document to other parts of Fibre

Channel. The roadmap is intended to show the general relationship of documents to

one another, not a hierarchy, protocol stack, system architecture; it does not show

the complete set of Fibre Channel documents.

FC-SB FC-FP FC-LE SCSI-FCP SCSI-GPP FC-I3 FC-I3

Mapping of Single-Byte Mappin of Link _ scsi Fc G°"°F‘° ReVi3I°" I° R9VI3I°" ‘°
Command Code Sets HIPPI-%P Encapsulation P.-o:oco| P3°k°"z°d IPI-3 Disk std IPI-3 Tape stdProlocol

Fibre Channel Enhanced Physical
FC-PH

FC-FG
Generic Fabric Requirements

Fibre Channel Physical Interface

X3230-1994

I
I
I
I
I

I Switch Fabric
I
I
I
I
I
I

Figure 0 - Fibre Channel roadmap

FC-AL features enhanced Ports, called L_Ports, which arbitrate to access an Arbi-

trated Loop. Once an L_Port wins arbitration, a second L_Port may be opened to

complete a single point-to-point circuit (i.e., communication path between two

L_Ports). When the two connected L_Ports release control of the Arbitrated Loop,

another point-to-point circuit may be established. An L_Port may have the ability to

discover its environment and work properly, without outside intervention, with an

F_Port, an N_Port, or with other L_Ports.

There is no change to the framing protocol of ANSI X3, FC-PH-X, however, modifica-

tion to the Port hardware is required to transmit, receive, and interpret the new Arbi-

trated Loop Primitive Signals and Sequences. The clauses in this document are

organized as follows:

Clause 1 describes the scope.

Clause 2 lists the normative references.

Clause 3 provides descriptions and conventions.

Clause 4 provides an overview and general description of FC-AL.

Clause 5 describes the Arbitrated Loop Physical Address.

Clause 6 describes the FC-AL Ordered Sets.

Clause 7 describes the Primitive Signals and Sequences.

Clause 8 describes the operation of an L_Port including the state machine.

Clause 9 provides a table representation of the FC-AL states.

Clause 10 describes the L_Port initialization procedure.

DHPN-1008 / Page 9 of 150

DHPN-1008 / Page 10 of 150

AMERICAN NATIONAL STANDARD BSR NCITS 332

for Information Technology —

Fibre Channel —

Arbitrated Loop Topology (FC-AL-2)

1 Scope

This American National Standard for FC-AL specifies signaling interface enhancements for ANSI X3, FC-PH-x

to allow L_Ports to operate with an Arbitrated Loop topology. This standard defines L_Ports that retain the

functionality of Ports as specified in ANSI X3, FC-PH-x. The Arbitrated Loop topology attaches multiple

communicating points in a Loop without requiring switches.

The Arbitrated Loop topology is a distributed topology where each L_Port includes the minimum necessary

function to establish a Loop circuit. A single FL_Port connected to an Arbitrated Loop allows multiple NL_Ports
to attach to a Fabric.

When an L_Port is operating on a Loop with at least one other L_Port, the L_Port uses the protocol extensions

to ANSI X3, FC-PH-X that are specified in this standard.

When an L_Port is connected with an N_Port or an F_Port, the L_Port communicates using the protocol

defined in ANSI X3, FC-PH-x.1

Each L_Port may use a self-discovering procedure to find the correct operating mode without the need for
external controls.

1 In order to interoperate with an N_Port or an F_Port, the L_Port must have implemented the OLD—PORT state.

1

DHPN-1008 / Page 11 of 150

ANSI NCITS 332-1999

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this

standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and

parties to agreements based on this standard are encouraged to investigate the possibility of applying the most
recent editions of the standards listed below.

2.1 Approved references

ANSI X3272-1996, Information Technology — Fibre Channel — Arbitrated Loop (FC-AL)*

ANSI X3230-1994, Information Technology — Fibre Channel — Physical and Signaling Interface (FC-PH)*

ANSI X3297-1997, Information Technology — Fibre Channel — Physical and Signaling Interface (FC-PH-2)*

ANSI X3803-1998, Information Technology — Fibre Channel — Physical and Signaling Interface (FC-PH-3)*

ANSI X3289-1996, Information Technology — Fibre Channel — Fabric Generic Requirements (FC-FG)*

ANSI NCITS 321-1998, Information Technology — Fibre Channel — Switch Topologies and Switch Control (FC-

SW)*

ANSI X3lTR-18-1997, Information Technology — Fibre Channel — Private Loop DirectAttach (FC-PLDA)*

ANSI NCITS TR-20-1998, Information Technology — Fibre Channel — Fabric Loop (FC-FLA)*

2.2 References under development

At the time of publication, the following referenced standards were still under development. For information on

the current status of the documents, or regarding availability, contact the relevant standards body or other

organization as indicated.

NCITS Project 1305-D, Information Technology — Fibre Channel — Switch Topologies and Switch Control (FC-

SW-2)

NCITS Project 1315-DT, Information Technology— Fibre Channel — Tape (FC-TAPE)

* For electronic copies of some standards, visit ANSl’s Electronic Standards Store (ESS) at www.ansi.org. For printed
versions of all standards listed here, contact Global Engineering Documents, 15 Inverness Way East, Englewood, CO
80112-5704, (800) 854-7179.

DHPN-1008 I Page 12 of 150

BSR NCITS 332

3 Definitions and conventions

3.1 Definitions

For the purpose of this standard, the definitions in clause 3 of ANSI X3, FC-PH-x and the following definitions apply.

Definitions in this clause take precedence over any definitions in ANSI X3, FC-PH-x.

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

3.1.11

3.1.12

3.1.13

3.1.14

3.1.15

3.1.16

3.1.17

3.1.18

Arbitrated Loop: A Fibre Channel topology where Ports use arbitration to gain access to the Loop.

Arbitrated Loop Physical Address (AL_PA): A unique one-byte valid value as established in 5.1.

Arbitrated Loop Destination Address (AL_PD): The Arbitrated Loop Physical Address of the L_Port on the

Loop that should receive the Primitive Signal or Primitive Sequence. For example, the AL_PD is the y value

of the OPNyx or OPNyy Primitive Signal.

Arbitrated Loop Source Address (AL_PS): The Arbitrated Loop Physical Address of the L_Port on the Loop

that transmitted the Primitive Signal or Primitive Sequence. For example, the AL_PS is the x value of the

OPNyx Primitive Signal.

close: A procedure used by an L_Port to terminate a Loop circuit.

current Fill Word: The Fill Word currently selected by the LPSM to be transmitted when needed. The initial

value is the Idle Primitive Signal (see 8.4).

Dynamic Half-Duplex: A procedure initiated by the L_Port in the OPEN state to change a full-duplex transfer

to a half-duplex transfer. The resulting half-duplex transfer is from the L_Port in the OPENED state to the L_Port

in the OPEN state (see 7.5 and annex C).

fairness window: the period during which a fair L_Port can arbitrate and win access to the Loop only once (see

4.3).

Fill Word: A Transmission Word which is an Idle or an ARByx Primitive Signal. These words are transmitted

between frames, Primitive Signals, and Primitive Sequences to keep a fibre active (see ANSI X3, FC-PH-x,
clause 17).

FL_Port: An F_Port (i.e., Fabric Port) which contains the Loop Port State Machine defined by this document.

F/NL_Port: An NL_Port that detects OPN(OO,x) and provides Fibre Channel services in the absence of an

FL_Port.

full-duplex: Communication model 2 referred to as duplex in ANSI X3, FC-PH-x. Both L_Ports are allowed to
transmit and receive Data frames.

half-duplex: Communication model 1 in ANSI X3, FC-PH-x. Only one L_Port is allowed to transmit Data
frames.

Hub: a device for interconnecting L_Ports.

Loop: The Arbitrated Loop described in this document.

Loop circuit: A bidirectional path that allows communication between two L_Ports on the same Loop.

Loop Failure: Loss of word synchronization for greater than R_T_TOV; or loss of signal (see ANSI X3, FC-PH-x,
16.4.2).

L_Port: Either an FL_Port or an NL_Port as defined in ANSI X3, FC-PH-x, 3.1.

DHPN-1008 / Page 13 of 150

BSR NCITS 332

3.1.19 NL_Port: An N_Port (i.e., Node Port) which contains the Loop Port State Machine defined by this document.

Without the qualifier "Public" or "Private," an NL_Port is assumed to be a Public NL_Port.

3.1.20 non-L_Port: A Port that does not support the Loop functions defined in this standard (see Port in ANSI X3,

FC-PH-x).

3.1.21 Non-Participating mode: The operational mode of an L_Port which does not have an AL_PA, but is enabled
into the Loop (see 8.1.4).

3.1.22 Non-Participating Bypassed mode: The operational mode of an L_Port which does not have an AL_PA and

is bypassed from the Loop (see 8.1.4).

3.1.23 open: A procedure used by an L_Port to establish a Loop circuit.

3.1.24 Participating mode: The operational mode of an L_Port which has an AL_PA and is enabled into the Loop (see

8.1.4).

3.1.25 Participating Bypassed mode: The operational mode of an L_Port which has an AL_PA, but is bypassed from
the Loop (see 8.1.4).

3.1.26 Port_Name: A unique 64-bit identifier as defined in the LOGI or ACC frame (see ANSI X3, FC-PH-x, 23.6.4).

3.1.27 Primitive Sequence: Three identical consecutive Ordered Sets before the function conveyed by the Primitive

Sequence is performed (see ANSI X3, FC-PH-x, 16.4).

3.1.28 Private Loop: A Loop that does not include a Participating FL_Port (see figure 1 and annex J).

3.1.29 Private NL_Port: An NL_Port that does not attempt a Fabric Login and does not transmit OPN(OO,x) (see figure
1 and 5.2).

3.1.30 Public Loop: A Loop that includes a Participating FL_Port and may contain both Public and Private NL_Ports

(see figure 1 and annex J).

13.1.31 Public NL_Port: An NL_Port that attempts a Fabric Login (see figure 1 and 5.2).

3.1.32 replicate frame: A Class 3 frame which may be received and processed by one or more NL_Ports while being

forwarded (see 7.3).

3.1.33 transfer: A procedure used by an L_Port to close an existing Loop circuit in order to establish a new Loop circuit

without relinquishing control of the Loop.

3.1.34 trusted AL_PA: an AL_PA which is assumed to be valid and unique through a vendor-specified means (e.g.,

a Hard Address).

3.2 Editorial conventions

In FC-AL, many conditions, mechanisms, sequences, events or similar terms are printed with the first letter of each word

in upper case and the rest lower case (e.g., Loop). States are defined in all upper case letters. Any lower case words

not defined in 3.1 have the normal technical English meaning.

In case of conflicts between text, tables, and figures, the following precedence shall be used: text, tables, figures. State
diagrams have precedence as stated in the appropriate clauses.

The word, shall, when used in this standard, states a mandatory rule or requirement. The word, may, when used in this

standard, states an optional rule. The word, should, when used in this standard denotes flexibility of choice with a

strongly preferred alternative (equivalent to the phrase ‘is recommended‘).

DHPN-1008 / Page 14 of 150

BSR NCITS 332

The words, recognize, recognizes, or recognized, when used in this standard, indicates that an L_Port has detected a

Primitive Signal or Primitive Sequence.

Each individual entry that appears within parentheses of FC-AL Ordered Sets (e.g., ARByx and OPNy) represents the

hexadecimal value of an AL_PA or special flags (e.g., hex 'F7', hex 'F8‘, and hex 'FF').

All history variables, when used in this standard, are assumed to be set to zero (0) at power-on time. Any optional history

variable that is not implemented tests as zero (0) in all tests of that variable.

The ISO convention of numbering is used; i.e., the thousands and higher multiples are separated by a space and a

comma is used instead of the decimal point (e.g., 1 062,5 Mbits/sec).

Whenever ANSI X3, FC-PH-x is referenced, all ANSI X3, FC-PH documents referenced in clause 2 are implied.

3.3 Abbreviations, acronyms, and other special words

ACCESS

AL_PA

AL_PD

AL_PS

AL_T|ME

ARB_PEND

ARB_WON

ARB(AL_PA)

ARB(val)

ARByx

ARBf_SENT

Avai|ab|e_BB_Credit

BB_Credit

BYPASS

CLS

CFW

DHD

Access history variable — a two-valued variable (i.e., 0/1) to indicate access fairness history

(see 8.1 .1).

Arbitrated Loop Physical Address (see 5.1)

Arbitrated Loop Destination Physical Address (e.g., the y value in OPNyx and OPNyy)

Arbitrated Loop Source Physical Address (e.g., the x value in OPNyx)

Arbitrated Loop timeout value (see 8.2.2)

Arbitration PENDing history variable — a two-valued variable (i.e., 0/1) to help an L_Port

remember that it has originated one or more ARB(AL_PA) Primitive Signals (see 8.1.1).

Arbitration Won history variable — a two-valued variable (i.e., 0/1) to remember whether the

L_Port won arbitration (see 8.1.1).

Arbitrate Primitive Signal — an ARByx in which y = x = AL_PA of the L_Port (see 7.1.1)

Arbitrate Primitive Signal — an ARByx in which y = x = val ('va|' represents a one byte

hexadecimal value).

Arbitrate Primitive Signal — any Ordered Set that begins with K28.5, D20.4 ('y' and 'x' may be

used in adjacent text to denote the value of characters 3 and 4 within the Ordered Set) (see 7.1).

Arbitrate hex ‘FF’ Sent history variable — a two-valued variable (i.e., 0/1) that indicates that the

L_Port has requested REQ(arbitrate (FF)) and the LPSM has modified the current Fill Word to
ARB(FF) (see 8.1.7 and 8.4.3).

Available Buffer-to-Buffer Credit (see 8.3.4)

Buffer-to-Buffer Credit as established during Login (see 8.3.4 and ANSI X3, FC-PH-x, 26.5.2)

BYPASS history variable — a two-valued variable (i.e., 0/1) which indicates whether an L_Port
is bypassed (see 8.1.4).

CLoSe Primitive Signal (see 7.4)

Current Fill Word (i.e., Idle or ARByx) (see 3.1.10 and 7.1)

Dynamic Half-Duplex Primitive Signal (see 7.5)

DHPN-1008 / Page 15 of 150

BSR NCITS 332

DHD_RCV

DUPLEX

EE_Credit

ERR_|N|T

LIFA

LIHA

LILP

LIM

LIP

L|Pfx

LIPA

LlPyx

URP

USA

USM

U_FL

UJD

LP_TOV

LPB

LPBfx

LPByx

LPE

LPEfx

LPEyx

Dynamic Half-Duplex ReCeiVed history variable — a two valued variable (i.e., 0/1) to indicate

that the L_Port in the OPENED state has detected and supports DHD (see 8.1.5).

DUPLEX history variable — a two-valued variable (i.e., 0/1) to indicate whether the L_Port is

allowed to originate Data frames (see 8.1.2).

End-to-End Credit (see ANSI X3, FC-PH-x, 26.4.4)

ERRor |NlTia|ization history variable — a two-valued variable (i.e., 0/1) to indicate that the

L_Port has attempted initialization which failed (see 8.1.6).

Loop Initialization Fabric Assigned — Loop Initialization Sequence (see 10.5)

Loop Initialization Hard Assigned — Loop Initialization Sequence (see 10.5)

Loop Initialization Loop Position — Loop Initialization Sequence (see 10.5)

Loop Initialization Master — the L_Port which is responsible for initializing the Loop (see clause

10)

Loop Initialization Primitive Sequence — any of the LIP Primitive Sequences (see 7.8)

Loop Initialization Primitive Sequence — perform a vendor unique reset of all (except AL_PA =

x) L_Ports (f = hex 'FF') (see 7.8.5)

Loop Initialization Previously Acquired — Loop Initialization Sequence (see 10.5)

Loop Initialization Primitive Sequence — perform a vendor unique reset of an L_Port at AL_PA

= y (see 7.8.5)

Loop Initialization Report Position — Loop Initialization Sequence (see 10.5)

Loop Initialization Soft Assigned — Loop Initialization Sequence (see 10.5)

Loop Initialization Select Master — Loop Initialization Sequence (see 10.5)

Loop Initialization FLag — Loop Initialization flag (see 10.5)

Loop Initialization |Dentifier — Loop Initialization identifier (see 10.5)

LooP TimeOut Value (see 8.2.3)

Loop Port Bypass Primitive Sequence — either LPByx or LPBfx (f = hex 'FF') (see 7.7.1 and

7.7.2)

Loop Port Bypass Primitive Sequence — used to bypass all (except AL_PA = x) L_Ports (f =

hex 'FF') (see 7.7.2)

Loop Port Bypass Primitive Sequence — used to bypass an L_Port at y = AL_PA (see 7.7.1)

Loop Port Enable Primitive Sequence — either LPEyx or LPEfx (see 7.7.3 and 7.7.4)

Loop Port Enable Primitive Sequence — used to enable all bypassed L_Ports (f = hex 'FF') (see

7.7.4)

Loop Port Enable Primitive Sequence — used to enable a bypassed L_Port at y = AL_PA (see

7.7.3)

DHPN-1008 / Page 16 of 150

LPSM

MRKtx

MK_TP

(Non F8) LIP

OPNr

OPNfr

OPNy

OPNyr

OPNyx

OPNyy

PARTICIPATE

REPEAT

REPLICATE

SOFiL

XM|T_2_lDLES

3.4 Symbols

BSR NCITS 332

Loop Port State Machine (see 8.4)

Mark Primitive Signal (see 7.6)

Mark Type — used to identify the type of Mark Primitive Signal (see 7.6)

Any Loop Initialization Primitive Sequence as defined in 7.8, where character 3 is not equal to
hex 'F8'.

Open Replicate Primitive Signal — either OPNyr or OPNfr (see 7.3)

Open Primitive Signal — broadcast rep|icate(see 7.3.2)

Open Primitive Signal — either OPNyx or OPNyy (see 7.2)

Open Primitive Signal — selective replicate(see 7.3.1)

Open Primitive Signal — full-duplex (see 7.2.1)

Open Primitive Signal — half-duplex (see 7.2.2)

PARTICIPATE history variable — a two-valued variable (i.e., 0/1) that indicates whether an

L_Port has an AL_PA and is participating on the Loop (see 8.1.4).

A symbol whose value is derived from BYPASS and PARTICIPATE, which indicates that an

L_Port merely repeats received Transmission Words (see 8.1.4).

Replicate history variable — a two valued variable (i.e., 0/1) to indicate if an L_Port has

transmitted OPNr while in the OPEN state or an NL_Port has received OPNr while in the

MONITORING or ARBITRATING states (see 8.1.3).

Start_of_Frame Primitive Signal (K28.5 D21.5 D22.2 D22.2) used during Loop Initialization (see

10.5).

Xmit 2 ldles history variable — a two-valued variable (i.e., 0/1) that indicates whether the L_Port

needs to transmit two (2) ldles (see 8.1.1).

Logic symbols are represented in state tables and diagrams as follows:

— the logical 'or' is represented as ‘|';

— the logical ‘and’ is represented as '&';

— the logical negation is represented as '~' (tilda);

— the ‘less-than‘ is represented as '<';

— the ‘greater-than’ is represented as '>';

— comparisons are represented as '=' (equal) and '<>' (not equal);

— setting a variable is done using the colon equal operator, ':='; and,

— the concatenation symbol is represented as '||'.

DHPN-1008 / Page 17 of 150

BSR NCITS 332

4 Structure and concepts

This clause provides an overview of the structure, concepts, and mechanisms that allow two or more L_Ports to

communicate without using a Fabric topology. Readers unfamiliar with FC-AL should read or scan clauses 1 and 4

before attempting to master the detailed material in clauses 5 through 10.

4.1 Overview

FC-AL is a serial data channel, structured for low-cost connectivity, that provides a logical bidirectional, point-to-point

service between two L_Ports. Each L_Port represents a communication point. The additional functions, that are added

to allow an N_Port or F_Port to operate on a Loop, permit the L_Ports to form a simple, blocking, non-meshed, switching
environment.

— Blocking refers to the number of circuits that can be concurrently active. Only one pair of L_Ports may
communicate at one time although there may be up to 127 Participating L_Ports attached on one Loop. All other

communication must wait (i.e., is blocked).

— Non-meshed refers to the attribute of a Loop where there is exactly one path on each Loop between L_Ports. Non-

meshed implies that any single fibre problem may stop all activity on the Loop. Meshed, in this context, means
that there may be alternate paths available between L_Ports.

— Switching refers to the Loop circuitry added to each L_Port compared to a non-L_Port. The circuitry acts as a two-

port switch where information received on the inbound fibre of the L_Port is directed to either the local FC-2

function or placed on the outbound fibre for another L_Port to process.

The Loop supports a maximum of one point-to-point circuit at a time. When two L_Ports are communicating, the Loop

topology supports simultaneous, symmetrical, bidirectional flow between the two L_Ports. All other L_Ports are

monitoring or arbitrating for access to the Loop.

The Loop supports all Classes of Service as specified in ANSI X3, FC-PH-x, 4.9. Individual L_Ports may choose to

implement, at the FC-2 level, only a subset of the Classes of Service which are available. Such an implementation does

not affect the operation of the Loop protocol.

The Loop guarantees in-order delivery of frames in all Classes of Service when the source and destination are on the

same Loop. Frames transmitted from an NL_Port to an FL_Port are received at the FL_Port in the transmitted order;

frames transmitted from an FL_Port are received at the NL_Port in the transmitted order. Out-of-order frames may be

received at a destination NL_Port, but that out-of-order characteristic is not caused by the FL_Port or the Loop.

Unlike the Fabric topology where a circuit is established only for a dedicated connection or virtual circuit, a Loop circuit

must be established between two L_Ports on the Loop before the FC-PH framing protocol may be used. The two L_Ports

may use the framing protocol and any Class of Service appropriate for their implementations and for the FC-4 protocol

being used. Other L_Ports on the same Loop may form their own Loop circuit after the current Loop circuit is closed.

DHPN-1008 / Page 18 of 150

BSR NCITS 332

4.2 General description

In a Fabric topology, one or more Fabric E|ement(s) is required to connect more than two Ports together (see ANSI

X3.289, FC-FG, for the minimum requirements of a Fabric).

The Loop topology reduces the number of transceivers required to interconnect L_Ports to one transceiver per L_Port.
Up to 127 L_Ports may be in the Participating mode on one Loop.

The different topologies which are defined in ANSI X3, FC-PH-x have certain pertinent distinguishing characteristics.

— The point-to-point topology is non-blocking. Each N_Port may transmit frames to the other at any time within

the limits of the implemented protocols of the N_Ports.

The number of transceivers needed to completely interconnect n N_Ports using multiple links may be calculated

using the formula: t= n (n - 1) where tand n represent the number of transceivers and N_Ports, respectively. For

example, to connect six (6) N_Ports requires 30 transceivers.

Also, ifa link in a point-to-point topology fails, communication between that pair of Ports stops. Communication
between other point-to-point connected Ports continues.

— The Fabric topology may be configured to be non-blocking between any two N_Ports. It is commonly

acknowledged that most data processing-type Nodes cannot sustain high-speed data transfer for long periods of

time to all peripheral devices (although there may be some exceptions). A Fabric offers a way to take advantage

of these natural pauses in communication, allowing fewer interconnects. The available bandwidth is shared

between the N_Ports, but this sharing adds contention and therefore a management function is required.

One advantage for the Fabric topology is that when there is at least one free F_Port in the Fabric, a new N_Port

can be added to the free F_Port without disrupting the remaining N_Ports. The new N_Port has the potential to
communicate with all other N_Ports in the Fabric. However, adding an N_Port does not guarantee that the new

N_Port can communicate with any of the currently attached N_Ports (see ANSI X3.289, FC-FG).

Because a Fabric topology may permit multiple paths between any two F_Ports in the Fabric (i.e., the meshing

capability of the Fabric topology), a Fabric topology may be more robust. For a Node with only one N_Port, there

is always a single point of failure at the link to the Fabric Element.

— The Loop topology functions are the result of reducing the Fabric topology to its simplest form. There is exactly

one link bandwidth to share among all L_Ports. This makes the Loop the ultimate blocking topology, yet it retains

considerable connectivity. There can be only one active Loop circuit at a time, independent of the number of

L_Ports on a Loop. New L_Ports can be added at any time, although only a maximum of 127 may be participating.

Should any link in a Loop fail, communication between all L_Ports stops on that Loop.

Fabric management is reduced to a minimum with the remaining functions distributed in each L_Port on the Loop.

This eliminates the central management function of a Fabric and at least one-half of the transceivers compared

to a Fabric topology. Once communication is established between two L_Ports, the normal ANSI X3, FC-PH-x

protocol is used for all operations.

Figure 1 shows two independent Loop configurations each with multiple L_Ports connected. Each line in the figure

between L_Ports represents a single fibre. The configuration in figure 1(a) shows two Loops: one includes two NL_Ports

(i.e., point-to-point) and the other includes six NL_Ports (i.e., Private Loops). The configuration in figure 1(b) shows a

Loop which includes one FL_Port (i.e., a Public Loop) and five NL_Ports (either Public or Private NL_Ports). (See annex
J.)

DHPN-1008 / Page 19 of 150

BSR NCITS 332

NI-_F'ort<T NL_Port Fabric switch FL_Port NL_Port

TNL_Fm NL_Port

NL_Port

NL_Port%

C To other N and NL_Ports
‘L ° and switches

Figure 1 — Examples of the Loop topology

The Loop topology and the Fabric topology together provide a compromise between connectivity and performance. A

number of Loops may be connected through a Fabric. For example, four sixteen-port Loops (one FL_Port and fifteen

NL_Ports) may be connected through a four-port Fabric to achieve a connectivity of sixty L_Ports with better

performance than if all sixty NL_Ports were on one Loop.

4.3 Access fairness algorithm

The protocol for the Loop permits each L_Port to continuously arbitrate to access the Loop. A priority is assigned to each
Participating L_Port based on the Arbitrated Loop Physical Address (AL_PA). As with other prioritized protocols, this

could lead to situations where the lower priority L_Ports cannot gain access to the Loop. The access fairness algorithm
sets up an access window in which all L_Ports are given an opportunity to arbitrate and win access to the Loop. When

all L_Ports have had an opportunity to access the Loop once, a new access window is started. An L_Port may arbitrate

again and eventually win access to the Loop in the new access window. Not every L_Port is required to access the Loop

in any one access window.

When an L_Port which uses the access fairness algorithm has arbitrated for and won access to the Loop, the L_Port shall

not arbitrate again until at least two (2) ldles have been transmitted by the L_Port. The access window is defined as the
time period between when the no L_Ports are arbitrating until all L_Ports requesting to arbitrate have won arbitration.

An access window may vary in size depending on the number of arbitrating L_Ports. A special arbitration Primitive

Signal (i.e., ARB(F0)) is used as the Fill Word during this interval to prevent an early reset of the access window. The

details of the access fairness algorithm are contained in the Loop state machine (see 8.4).

The access fairness algorithm does not limit the time that an L_Port controls the Loop once it wins arbitration, just as

ANSI X3, FC-PH-X does not limit the time for a Class 1 connection. However, if access is denied longer than LP_TOV,
the access window is reset and an L_Port may begin arbitrating.

All L_Ports shall implement the access fairness algorithm, FL_Ports or NL_Ports are not required to use the access

fairness algorithm nor use it consistently. For example, if one L_Port requires more Loop accesses than the other

L_Ports, that L_Port may choose to be unfair. Although, the standard encourages all L_Ports to use the access fairness

algorithm, the decision when to be fair or unfair is beyond the scope of this standard (see annex D).

4.3.1 Access fairness for NL_Ports

To provide equal access to the Loop for all NL_Ports, it is recommended that each NL_Port use the access fairness

algorithm. When an NL_Port is using the access fairness algorithm, it is called a fair NL_Port.

When a fair NL_Port has access to the Loop and detects that another L_Port is arbitrating, the fair NL_Port should close
the Loop at the earliest possible time and arbitrate again in the next access window.

10

DHPN-1008 / Page 20 of 150

BSR NCITS 332

4.3.2 Access unfairness for NL_Ports

The configuration of some Loops may require that certain NL_Ports have more access to the Loop than just once per

access window. Examples of these NL_Ports include, but are not limited to, a subsystem controller or a file server.

An NL_Port may be initialized (or may temporarily choose) not to use the access fairness algorithm. When an NL_Port

is not using the access fairness algorithm, it is called an unfair NL_Port. The decision whether to use the access fairness

algorithm is beyond the scope of this standard. (See annex D.)

When an unfair NL_Port has arbitrated for and won access to the Loop and does not detect that another L_Port is

arbitrating, that NL_Port may keep the existing Loop circuit open indefinitely or the L_Port may use the transfer
procedure to open another L_Port on the Loop.

When an unfair NL_Port controls the Loop and detects that another L_Port is arbitrating, the unfair NL_Port may close

the Loop, keep the existing Loop circuit open, or it may use the transfer procedure to open another L_Port on the Loop.

4.3.3 Access unfairness for FL_Ports

A Participating FL_Port is always the highest priority L_Port on the Loop based on its AL_PA. An FL_Port is encouraged

to use the access fairness algorithm, but it may choose to be unfair since the majority of its traffic is with the rest of the

Fabric. lfthe FL_Port were required to use the fairness algorithm at all times, it would be more likely to fill buffers in the

Fabric, causing non-Loop communications to be affected.

When an FL_Port controls the Loop and detects that an NL_Port is arbitrating, the FL_Port may close the Loop, keep

the existing Loop circuit open, or it may use the transfer procedure to open another NL_Port on the Loop.

4.4 Relationship to ANSI X3, FC-PH-x

lfa Port uses FC-AL, it extends the FC-2 and FC-1 functions of ANSI X3, FC-PH-x. Figure 2 shows logically where the

Loop (FC-AL) function is located. This functional level does not have a formally defined interface to the other levels.

FC-2 Signaling Protocol

FC-AL This Standard

FC-1 Transmission Protocol

FC-0 Physical

Figure 2 — FC-PH with Arbitrated Loop addition

When two L_Ports are communicating, the L_Ports may use all of the functions specified in ANSI X3, FC-PH-x. The

following list is a clause-by-clause analysis of the differences between N_Ports or F_Ports and NL_Ports or FL_Ports,
respectively. The Loop:

— supports communication models 1 and 2 identified in ANSI X3, FC-PH-x, 4.6, but it does not support model 3. Any

two L_Ports may operate in half-duplex mode during one Loop circuit. The direction of the half-duplex mode may
be changed by establishing a new Loop circuit in the opposite direction;

— adds new error detection or recovery protocols in 8.3 in addition to those identified in ANSI X3, FC-PH-x, 4.14, and
related clauses;

— places no limit on the use of any one type of transmitter (although they shall all be of the same data rate) for the

cable plant ofa Loop. Some requirements (e.g., Open Fibre Control) may prevent interoperability when mixed on

a single Loop. (See ANSI X3, FC-PH-x, clauses 5 through 10);

DHPN-1008 / Page 21 of 150

BSR NCITS 332

specifies that all NL_Ports and the optional FL_Port on a Loop shall use the same data rate. (See ANSI X3,

FC-PH-x, clause 5);

the ANSI X3, FC-PH-x buffer-to-buffer flow control is not used for L_Ports that are monitoring the Loop. (See 8.3.4);

expands the number of Ordered Sets beyond those specified in ANSI X3, FC-PH-x, clause 11. (See clause 6);

expands the number of Primitive Signals and Sequences beyond those specified in ANSI X3, FC-PH-x, clause 16.

(See clause 7);

extends the Ordered Sets that may be deleted to include Idle, ARByx, and all Primitive Sequences. (See 8.3.2);

specifies the Primitive Signals that may be inserted on a Loop between frames for clock skew management. (See
8.3.2);

modifies an F_Port behavior to allow clock skew management by L_Ports on a Loop. An FL_Port in the OPEN,

OPENED, or RECEIVED CLOSE state shall originate at least six (6) Primitive Signals between Class 2 or Class

3 frames. In a Class 1 connection, the clock skew needs to be managed between the two NL_Ports (i.e., from one

end of the circuit to the other end);

defines a local physical address and native address identifier assignment algorithms when an FL_Port is not present

on a Loop. (See clause 10);

requires a minimum payload size of 132 bytes for Loop Initialization. (See 10.5);

permits an L_Port to manage a separate BB_Credit for each L_Port on the Loop or the L_Port may choose to use

a single value for BB_Credit. The single value shall be between zero (0) and the minimum value for all L_Ports;

requires that the L_Port set the "Alternate BB_Credit Management" bit to 1 in the N_Port Common Service

Parameters during Login. (See ANSI X3, FC-PH-x, 23.6.3 and 26.5);

permits a Loop circuit to be terminated when Avai|ab|e_BB_Credit is unbalanced;

requires that each L_Port is capable of mapping the S_|D in each frame it receives to the AL_PA of the L_Port that
transmitted this frame;

requires that the destination ofa connect request (SOFc1) sent through an FL_Port is to a Port not on the Loop; the
FL_Port is not able to open another NL_Port on the same Loop (this would require three open L_Ports);

requires Loop Initialization Sequences to be used during the initialization procedure; and,

allows an NL_Port (in the absence of an FL_Port) to act as an F/NL_Port. The F/NL_Port shall provide the Fabric

Login service associated with well-known address identifier hex 'FFFFFE'. The F/NL_Port may also provide
services associated with other well-known address identifiers.

When a Loop circuit has been established between two L_Ports (i.e., an FL_Port to an NL_Port or an NL_Port to an

NL_Port) (see ANSI X3, FC-PH-x, clause 26 for flow control), FC-2 uses:

— the point-to-point topology model, when both communicating NL_Ports are on the same Loop; or,

— the Fabric topology model, when one communicating Port is outside the Loop.

12

DHPN-1008 / Page 22 of 150

BSR NCITS 332

5 Addressing

5.1 Arbitrated Loop Physical Address (AL_PA)

Each L_Port (if it chooses to participate on the Loop, see 8.1.4) shall be assigned a local Arbitrated Loop Physical

Address (AL_PA). The AL_PA establishes the priority of an arbitrating L_Port (i.e., the lower the AL_PA, the higher the
priority).

Each L_Port shall use an AL_PA value that results in neutral disparity. (See ANSI X3, FC-PH-X, clause 11). The

algorithm described below or in table 1 provides a means for the L_Port to select an AL_PA.

The AL_PA shall be a valid data character as specified in ANSI X3, FC-PH-X, clause 11 that does not change the current

running disparity of a Transmission Word. The algorithm below is dependent on the FC-1 naming convention for an

information byte in ANSI X3, FC-PH-x, 11.1 and table 26, identified as Dxx.y. The xx portion of the FC-1 naming

convention is based on bits identified as E, D, C, B, and A in ANSI X3, FC-PH-X, 11.1, in that order. The y portion of

the FC-1 naming convention is based on bits identified as H, G, and F in ANSI X3, FC-PH-x, 11.1, in that order. A

decimal value is assigned to each bit combination with the range of O to 31 for xx and O to 7 for y, respectively. The

entire range for valid data characters using the FC-1 naming convention is DO0.0 through D31.7.

Disparity for a valid data character is calculated as follows:

— arrange an information byte in the manner prescribed for the naming convention in ANSI X3, FC-PH-x, 11.1, to
obtain the Dxx.y data byte name;

— ifthe XX portion of a valid data character is (in decimal) 0, 1, 2, 4, 8, 15, 16, 23, 24, 27, 29, 30, or 31, set HI to 1.

Ifthe XX portion is (in decimal) 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 25, 26, or 28, set HI to 0;

— if the y portion of a valid data character is (in decimal) 0, 4, or 7, set L0 to 1. Ifthe y portion is (in decimal) 1, 2,
3, 5, or 6, set L0 to 0; and,

— compute the XOR function for HI and LO (i.e., XOR(H|,LO)).

Ifthe computed value of the XOR function is O, the value is disparity neutral and is a valid AL_PA. If the computed value

of the XOR function is 1, the value is disparity biased and the FC-2 byte is not a valid AL_PA.

DHPN-1008 / Page 23 of 150

BSR NCITS 332

Table 1 identifies with an asterisk (*) each 8B/10B character that has neutral disparity ordered by the Dxx.y naming

convention. The right-most column shows the FC-2 byte notation values for each row with neutral disparity in table 1.

Table 1 — 8B/10B characters with neutral disparity

Hex value
IIE

Km];
22]“

222“

2]]

222“

22]

E1222

2]]

E122)“

E22]

222

222

222

222

222

222“

222“

222

222

222

2]]

222

222

222“

22]“

222

2]]

222“

222

222“

222“

222“
TOTAL 13 19 19 19 13 19 19 13

134

Legend: * — character with neutral disparity

14

DHPN-1008 / Page 24 of 150

BSR NCITS 332

5.1.1 Valid AL_PAs

The following valid AL_PAs are assigned to the first 127 neutral disparity values from table 1:

hex '00‘: (1) AL_PA for FL_Port or alias AL_PA of F/NL_Port

Highest priority.

AL_PA hex '00’ shall be assigned to the FL_Port in the Participating mode. The maximum number of FL_Ports
in the Participating mode on a single Loop shall not exceed one. Additional FL_Ports may be present, but they

shall be in the Non-Participating or Non-Participating Bypassed mode.

If there is no Participating FL_Port on the Loop, a Participating NL_Port may accept this value as an alias AL_PA

for its LPSM, but not as its only AL_PA.

hex '01‘ through hex 'EF': (126) AL_PA for NL_Ports

Descending priority is assigned as AL_PA values increase in the range from hex '01‘ through hex 'EF'. All valid
values in this range are lower in priority than hex '00‘.

Each Participating NL_Port shall be assigned one valid AL_PA in this range. The maximum number of
Participating NL_Ports on a single Loop shall not exceed 126.

5.1.2 Special AL_PAs and flags

The following special AL_PAs and flags are assigned to the last 7 neutral disparity values from table 1. These values

replace an AL_PA to provide special functions:

hex 'FO': (1) Value used in ARB for fairness and during Loop Initialization. Value hex 'FO' is the next lower priority
outside the range hex '00‘ through hex 'EF'.

hex 'F1' through hex 'F6‘: (0) Reserved

hex 'F7': (1) Value used in LIP to indicate that the L_Port is initializing and also a value for an L_Port which does
not have an AL_PA.

hex 'F8': (1) Value used in LIP to indicate a Loop Failure has been detected at the receiver of the L_Port.

hex 'F9' through hex 'FE‘: (3) Reserved

hex 'FF‘: (1) Value used to address all L_Ports (except the originating L_Port) in OPNfr, LPBfx, LPEfx, and L|Pfx
and as a special ARB(FF) Fill Word.

DHPN-1008 / Page 25 of 150

BSR NCITS 332

5.2 Native address identifier

A native address identifier shall be assigned to each Participating NL_Port (up to the maximum of 126 NL_Ports) with

the following characteristics:

— the low-order byte (bits 7-0) of the native address identifier is the AL_PA of the L_Port. The AL_PA shall be

16

unique on a Loop, shall be in the range of hex '01’ through hex ‘EF', and shall be valid according to table 1.

all Private NL_Ports shall have the upper two bytes of their native address identifier (bits 23-8) equal to
hex 'OO0O'.

all Public NL_Ports shall have the upper two bytes of their native address identifier (bits 23-8) equal to the upper

two bytes of the native address identifier of the FL_Port (hex 'XXXXO0'). The FL_Port shall acquire this value

(which shall not equal hex '000OO0') from its Fabric Element. The upper two bytes shall be unique for each Loop
to allow multiple Loops to attach to the same Fabric.

All Public NL_Port shall process PLOGI, LOGO, and ABTS frames with a D_|D of hex '0O00‘||AL_PA or
hex ‘XXXX‘||AL_PA.

If an FL_Port is not present, these upper two bytes shall be set to zero (hex '00OO').

a native address identifier may be assigned to another NL_Port if a Participating NL_Port enters the Non-
Participating mode.

DHPN-1008 / Page 26 of 150

6 FC-AL Ordered Sets

BSR NCITS 332

Table 2 specifies the Ordered Sets that shall be detected and may be originated by L_Ports on the Loop as additional

Primitive Signals (see ANSI X3, FC-PH-X, 11.4). Table 3 specifies the Ordered Sets that shall be recognized and may

be originated by L_Ports on the Loop as additional Primitive Sequences (see clause 7).

Table 2 — Primitive Signals

Beginning RDPrimitive Signal

Arbitrate ARByx Negative
Arbitrate ARB(val) Negative
Close CLS Negative
Dynamic Half—Duplex DHD Negative
Mark MRKtx Negative
Open full—duplex OPNyx Negative
Open half—duplex OPNyy Negative
Open selective replicate OPNyr Negative
Open broadcast replicate OPNfr Negative

Table 3 — Primitive Sequences

Beginning RDPrimitive Sequence

Loop Initialization——F7,F7 LlP(F7,F7) Negative
Loop Initialization——F8,F7 LlP(F8,F7) Negative
Loop lnitialization——F7,x LIP(F7,x) Negative
Loop lnitialization——F8,x LIP(F8,x) Negative
Loop lnitialization——reset LIPyx Negative
Loop lnitialization——reset all LIPfx Negative
Loop Initialization——reserved LIPba Negative
Loop Port Bypass LPByx Negative
Loop Port Bypass all LPBfx Negative
Loop Port Enable LPEyx Negative
Loop Port Enable all LPEfx Negative

K28.
K28.
K28.
K28.
K28.
K28.
K28.
K28.
K28.

K28.
K28.
K28.
K28.
K28.
K28.
K28.
K28.
K28.
K28.
K28.

U'lU'lU'lU'lU'lU'lU'lU'lU'l

U'lU'lU'lU'lU'lU'lU'lU'lU'lU'lU'l

Ordered Set
2 3

D20.4 y
D20.4 val
D5.4 D2l.5
DlO.4 D2l.5

D3l.2 MKiTP
Dl7.4 ALiPD
Dl7.4 ALiPD
Dl7.4 ALiPDDl7.4 D3l.7

Ordered Set
2 3

D2l.O D23.7
D2l.O D24.7
D2l.O D23.7
D2l.O D24.7

D2l.O AL_PDD2l.O D31 7
D2l.O b

D9.0 AL_PDD9.0 D3l.7

D5.0 AL_PDD5.0 D3l.7

x
val

D2l.5
D2l.5

ALiPS
ALiPS
ALiPD
D3l.7
D3l.7

Characters 3 and 4 of Ordered Sets ARByx, ARB(va|), MRKtx, OPNyx, OPNyy, OPNyr, and OPNfr shall contain
one of the neutral dis arit values from table 1, whenever such an Ordered Set is ori inated see 7.1 to 7.6 .

D23.7
D23.7

AL_PS
AL_PS
AL_PS
AL_PSS11

AL_PS
AL_PS
AL_PS
AL_PS

1, whenever such an Ordered Set is originated (see 7.7 to 7.8).

whenever such an Ordered Set is originated (see 7.7 to 7.8).

AL_PD and AL_PS characters of the above Ordered Sets shall contain one of the neutral disparity values from table

The b and a characters of the above Ordered Sets shall contain one of the neutral disparity values from table 1,

DHPN4008/Page27of15O

BSR NCITS 332

7 FC-AL Primitive Signals and Sequences

The Arbitrate Primitive Signal (ARByx) may be transmitted in place of an Idle and therefore becomes a Fill Word which

may be removed for clock skew management. The Mark Primitive Signal (MRKtx) may also be transmitted in place of

a Fill Word, but it shall not be removed for clock skew management. All Primitive Signals (except MRKtx and Fill

Words) defined in this standard shall follow the ANSI X3, FC-PH-x rule for transmitting R_RDYs (i.e., two (2) Fill Words

shall precede and follow these Primitive Signals with at least six (6) Primitive Signals between frames). (See ANSI X3,

FC-PH-x, 16.3.2 and clause 6 for a specification of the following Ordered Sets.)

Except as specifically described, the LPSM shall fully decode (test the value of all bits in all four characters of) received

Ordered Sets to detect reception of a Primitive Signal or Primitive Sequence. Any received Ordered Set that does not

fully match one defined in this standard or in ANSI X3, FC-PH-x shall be treated as an ‘Other Ordered Set.‘

7.1 Arbitrate Primitive Signals (ARByx)

A received Ordered Set shall be detected as an Arbitrate Primitive Signal (ARByx) by detecting that its first two

characters (fully decoded) are equal to the value shown in table 2, regardless of the value of characters 3 and 4 (y and

x). L_Ports shall only originate an Arbitrate Primitive Signal (ARByx) where y = x. All Arbitrate Primitive Signals shall

be treated as Fill Words for clock skew management. An Arbitrate Primitive Signal is further classified by examining

the values of y and x. The values of y and x used, shall be the data bytes resulting from 8B/10B decoding.

lfthe values ofy and X are equal, a received Arbitrate Primitive Signal shall be detected as an ARB(va|), where ‘val’ is

the value ofy or x. lfthe values ofy and X are different, a received Arbitrate Primitive Signal should not be recognized

as an ARB(va|).2

7.1.1 ARB(AL_PA)

ARB(AL_PA) is an ARB(val) which is transmitted on a Loop by a Participating L_Port to request access to the Loop.

Each ARB(AL_PA) shall contain the AL_PA of the L_Port making the request (REQ(arbitrate own AL_PA)).

7.1.2 ARB(FO)

ARB(FO) is an ARB(val) which is transmitted on a Loop to manage the access fairness algorithm. Since this is a low-
priority ARByx, any arbitrating L_Port shall replace the ARB(FO) with its ARB(AL_PA). ARB(FO) is also used while

selecting a temporary Loop Initialization Master during Loop Initialization.

7.1.3 ARB(FF)

ARB(FF) is an ARB(val) which may be originated by any L_Port in the MONITORING state when the access fairness

window has been reset and no Fill Words other than ARB(FF) or Idle are received. Since this is the lowest-priority

ARByx, any arbitrating L_Port may replace the ARB(FF) with its ARB(AL_PA). ARB(FF) has fewer bit transitions than

the Idle. ARB(FF) may replace Idle to reduce the Electromagnetic Interference (EMI) which may be caused by the Idle.

7.2 Open Primitive Signals (OPNy)

A received Ordered Set shall be detected as an Open Primitive Signal (OPNy) by detecting that its first two characters

(fully decoded) are equal to the value shown in table 2 and that its fourth character is not equal to hex 'FF'. If characters

3 and 4 are not equal, the received OPNy shall be detected as an Open full-duplex (OPNyx); if characters 3 and 4 are

equal, the received OPNy shall be detected as an Open half-duplex (OPNyy). The values used for comparison shall

be the data bytes resulting from 8B/10B decoding.

3Some L_Ports may not implement this recommendation. and may detect a received ARByx as an ARB(val) when y <> x. With such L_Ports it is
vendor specific whether y or x is used as the value of ‘val’. However, the Primitive Signals ARB(FO). ARB(FF) and ARB(AL_PA) (where AL_PA is
the AL_PA of the receiving L_Port) should not be detected except when y : x (i.e., by checking all four characters of the Primitive Signal). L_Ports
should only originate Arbitrate Primitive Signals (ARByx) where y : x. regardless of whether they test this on received Ordered Sets. These
recommendations may be required by future standards.

18

DHPN-1008 / Page 28 of 150

BSR NCITS 332

An originating L_Port may determine the AL_PD (y value) of OPNy by checking the D_|D of the frame. If the left-most

two bytes of the D_ID are the same as the left-most two bytes of the native address identifier of the originating L_Port,

the left-most two bytes of

the D_ID are hex '00O0‘, or the originating L_Port is a Private NL_Port, then the AL_PD shall be the right most byte of

the D_|D. Otherwise, the AL_PD shall be hex '00‘ (the FL_Port); the D_|D is addressed to the Fabric or to a Port not on
the same Loop.

7.2.1 Open full-duplex (OPNyx)

Open full-duplex (OPNyx) is transmitted on a Loop by a Participating L_Port to indicate that it is ready for Data and

Link_Contro| frame transmission and reception (i.e., full-duplex) (see ANSI X3, FC-PH-x, 4.6, model 2). The OPNyx

shall contain the AL_PD (destination = y value) of the L_Port to be opened and the AL_PS (source = x value) of the

L_Port which transmitted OPNyx.

OPNyx that is received by a Participating L_Port (where y = AL_PA of the L_Port) in the MONITORING or

ARBITRATING states indicates that another Participating L_Port desires to communicate in full-duplex mode with the

L_Port that received OPNyx. The opened L_Port may transmit Data frames.

7.2.2 Open half-duplex (OPNyy)

Open half-duplex (OPNyy) is transmitted on a Loop by a Participating L_Port to indicate that it is ready for Data and

Link_Contro| frame transmission and Link_Contro| frame reception (i.e., half-duplex) (see ANSI X3, FC-PH-x, 4.6, model

1). The OPNyy shall contain the AL_PD (destination) y value) of the L_Port to be opened.

OPNyy that is received by a Participating L_Port (where y = AL_PA of the L_Port) in the OPEN state indicates that the

L_Port opened itself. OPNyy that is received by an L_Port (where y = AL_PA of the L_Port) in the MONITORING,

ARBITRATING states indicates that another Participating L_Port desires to communicate in half-duplex mode with the

L_Port that received OPNyy. In half-duplex mode, the opened L_Port shall not transmit Data frames.

7.3 Open Replicate Primitive Signals (OPNr)

A received Ordered Set shall be detected as an Open Replicate Primitive Signal (OPNr) by detecting that its first two

characters (fully decoded) are equal to the value shown in table 2 and that its fourth character is equal to hex 'FF‘. If

character 3 is not equal to hex 'FF‘, the received OPNr shall be detected as an Open selective replicate (OPNyr); if

character 3 is equal to hex 'FF', the received OPNr shall be detected as an Open broadcast replicate (OPNfr). The

values used for comparison shall be the data bytes resulting from 8B/10B decoding.

Open Replicate (OPNr) is transmitted on a Loop by a Participating L_Port which desires to communicate with a group

of NL_Ports on the same Loop. The requesting L_Port has won arbitration and is in the OPEN state. Transmitted frames

shall be Class 3, although no buffer-to-buffer flow control (R_RDY) is used. If R_RDYs are transmitted by the L_Port

in the OPEN state, they shall not be passed to FC-2. Frame reception is not guaranteed at each designated NL_Port

(i.e., D_|D of the frame header may not be recognized by FC-2 or receive buffers may not be available). To avoid

overflowing buffers and to assure that all designated NL_Ports can receive each replicate frame, the requesting L_Port

should limit the number and size of frames that it transmits. The L_Port in the OPEN state shall discard all received
frames.

NOTE — Although an FL_Port does not replicate frames through the Fabric, an FL_Port may transmit OPNr to communicate with multiple
NL_Ports.

When a Participating L_Port is in the MONITORING or ARBITRATING state and detects OPNr (where the AL_PD is

either hex ‘FF’ or the AL_PA of the NL_Port), it shall set REPLICATE to TRUE(1). While REPLICATE is TRUE(1), each

received Transmission Word (except for normal Fill Word processing - updating the CFW appropriately) shall be

retransmitted to the next L_Port on the Loop and shall also be provided to the FC-2 of the NL_Port for further processing;

FL_Ports shall not propagate any frame through the Fabric.

NOTE — Restricting the FL_Port prevents duplicate frames from being delivered to an NL_Port on the same Loop as the originator of the OPNr
from a broadcast or multicast server in the Fabric.

When CLS is received, all L_Ports with REPLICATE set to TRUE(1), shall set REPLICATE to FALSE(0).

DHPN-1008 / Page 29 of 150

BSR NCITS 332

7.3.1 Open selective replicate (OPNyr)

Open selective replicate (OPNyr where y = AL_PD and r = hex 'FF') is transmitted on a Loop by a Participating L_Port

which desires to communicate with a subset of NL_Ports on the Loop. The requesting L_Port shall transmit OPNyr

(where y is a member of the subset) to each NL_Port in the subset group. OPNyr may be transmitted to group members

in any order. (See annex L.)

NOTE — The following sequence of events is a valid example and shows some of the versatility of using OPNyr.

Arbitrate and win

Transmit OPN(17,FF), transmit frame (17 processes)
Transmit OPN(23,FF), transmit frame (17 and 23 process)
Transmit OPN(76,FF), transmit frame (17, 23, and 76 process)
CLS

7.3.2 Open broadcast replicate (OPNfr)

Open broadcast replicate (OPNfr where fand r = hex 'FF') is transmitted on a Loop by a Participating L_Port which
desires to communicate with all Participating NL_Ports on the Loop.

7.4 Close Primitive Signal (CLS)

Close (CLS) is transmitted on a Loop by an L_Port in the OPEN, OPENED, or RECEIVED CLOSE state. Once an

L_Port has transmitted CLS, the L_Port shall not transmit frames or R_RDYs in the current Loop circuit. CLS indicates

that the transmitting L_Port is prepared to or has ended the current Loop circuit (see 8.4). CLS is also transmitted to

indicate that the INITIALIZATION process has completed (see 10.5.4).

7.5 Dynamic Half-Duplex Primitive Signal (DHD)

Dynamic Half-Duplex (DHD) is transmitted on a Loop by the L_Port in the OPEN state to indicate to the L_Port in the

OPENED state that the L_Port in the OPEN state has no more Data frames to transmit. DHD shall only be requested

by the L_Port in the OPEN state if both L_Ports in the current Loop circuit have indicated support of DHD via Login and

ifthe L_Port in the OPEN state had transmitted OPNyx (full-duplex open). The DHD supported Login bit is found in FC-

PH-3 (see ANSI X3.303-199x, FC-PH-3, 23.6.2.3). DHD may allow L_Ports to make more efficient use of the established

Loop circuit (see annex C) by allowing an L_Port which is in the OPENED state to transmit all Data frames, even though

the L_Port in the OPEN state has finished its data transfer.

NOTE — DHD adds minimal delay to the closing process (i.e., the next arbitrating L_Port will win at nearly the same time whether DHD is used
or not.

Transmitting DHD only affects Data frames (i.e., Link_Contro| frames and R_RDYs may still be transmitted) just as in

the definition of OPNyy (half-duplex open) (see 7.2.2). The recipient of DHD shall transmit CLS when it has finished its
transmissions.

NOTE — DHD does not prohibit either L_Port from transmitting the first CLS. However, the L_Port in the OPEN state, if it had transmitted DHD,
would normally wait for the L_Port in the OPENED state to transmit the first CLS.

7.6 Mark Primitive Signal (MRKtx)

A received Ordered Set shall be detected as a Mark Primitive Signal (MRKtx) by detecting that its first two characters

(fully decoded) are equal to the value shown in table 2.

Mark (MRKtx) is transmitted on a Loop by a master control point to inform other Nodes of a certain action (e.g.,

synchronization; see annex H). The L_Port shall request to transmit MRKtx at the appropriate time (REQ(mark as tx))

and the LPSM shall attempt to transmit one MRKtx for this request by transmitting MRKtx instead of the next Fill Word.

Since MRKtx shall only replace a Fill Word, it is possible that the mark may not be sent in the desired time. The

REQ(mark as tx) may be withdrawn before the MRKtx can be transmitted (i.e., no MRKtx is transmitted).

NOTE — In order to avoid any delay when transmitting MRKtx, Fill Words are not required to precede or follow the MRKtx (i.e., Fill Words are not
inserted before or after MRKtx).

20

DHPN-1008 / Page 30 of 150

BSR NCITS 332

The Mark Type (MK_TP) is expressed in character 3; the AL_PA of the originator of the MRKtx is in character 4 (x

value). MK_TP is vendor unique and the interpretation and use is beyond the scope of this standard. The value(s) shall

be assigned from the neutral disparity characters in table 1.

When MRKtx is received by the originator (i.e., x = AL_PS) and REPEAT is FALSE(O), the MRKtx shall be replaced with

the CFW. All other L_Ports which are in the MONITORING, ARBITRATING, XMITTED CLOSE, or TRANSFER state
or with REPEAT is TRUE(1) shall retransmit the received MRKtx.

NOTE — Since not all states retransmit MRKtx, in order to guarantee that all L_Ports receive MRKtx, the originator should be in the OPEN state
and no other L_Ports in the OPENED state (i.e., all other L_Ports are either in the MONITORING or ARBITRATING state).

7.7 Loop Port BypasslEnable Primitive Sequences

If an L_Port receives three consecutive identical Ordered Sets whose first two characters (fully decoded) are equal to

the values shown in table 3, then the L_Port shall recognize a Loop Port Bypass Primitive Sequence or a Loop Port

Enable Primitive Sequence. If character 3 is not equal to hex ‘FF’, a normal Loop Port Bypass or Loop Port Enable

Primitive Sequence shall be recognized; if character 3 is equal to hex 'FF', a Loop Port Bypass all or Loop Port Enable

all Primitive Sequence shall be recognized.

The Loop Port Bypass and Loop Port Enable Primitive Sequences are used to control access of an L_Port to the Loop

as well as to control the optional Port Bypass Circuit. The Port Bypass Circuit may be used to physically bypass an
L_Port, however, the L_Port is also logically bypassed (i.e., the L_Port shall not originate Transmission Words on the

Loop). (See 8.1.4 and annex I.)

When an L_Port is in either Participating Bypassed or Non-Participating Bypassed mode, the L_Port shall not originate

Transmission words (except for clock skew). The L_Port shall only monitor the Loop (as in the Non-Participating mode).

Ifa Participating Bypassed L_Port recognizes LIP, it shall relinquish its AL_PA and enter the Non-Participating mode.

Although LPB or LPE may be transmitted in a number of states, not all states retransmit LPB or LPE. To guarantee that

L_Ports receive LPB or LPE, the originator shall be in the OPEN state and all other L_Ports shall be in the MONITORING

or ARBITRATING state; or all L_Ports shall be in the MONITORING, NORMAL-INITIALIZE, LOOP-FAIL-INITIALIZE,

LOOP-FAIL-ERR_|N|T, LOOP-FAIL-ERR_|N|T-2, OPEN-INIT-SELECT-MASTER, or SLAVE-WAIT-FOR-MASTER state.

To ensure that all L_Ports are in the MONITORING, NORMAL-INITIALIZE, LOOP-FAIL-INITIALIZE, LOOP-FAIL-

ERR_|N|T, LOOP-FAIL-ERR_|N|T-2, OPEN-INIT-SELECT-MASTER, or SLAVE-WAIT-FOR-MASTER state, the

originator of LPB or LPE shall enter NORMAL-INITIALIZE, LOOP-FAIL-INITIALIZE, or OPEN-INIT-START and not

forward any L|SMs from other L_Ports or any L|Ps until it has completed its management of bypassed L_Ports. After the

originator of LPB or LPE has completed its management of bypassed L_Ports it shall enter the NORMAL-INITIALIZE
state.

Since an L_Port cannot guarantee that other L_Ports will not begin sending L|Ps, it cannot be guaranteed that an L_Port
which has an AL_PA and is bypassed will not lose its AL_PA while it is bypassed due to another L_Port transmitting L|Ps.

Due to this, LPB or LPE operation should be used with caution except with L_Ports that have trusted AL_PAs as
described in 3.1.34.

7.7.1 Loop Port Bypass (LPByx)

Loop Port Bypass (LPByx) is transmitted on a Loop to bypass an L_Port and to activate the optional Port Bypass Circuit.

The originator of the LPByx (as identified by AL_PS in character 4 — x value) may be a diagnostic manager or an

operating L_Port that has determined that a "defective" L_Port (identified by AL_PD in character 3 — y value) exists on

the Loop. (See annex I.)

When LPByx is recognized, where y = AL_PA of the L_Port, the L_Port shall set BYPASS to TRUE(1). LPByx may be

used to diagnose the optional Port Bypass Circuit, for error recovery, or for any reason to cause an L_Port to be
bypassed.

Each L_Port in the MONITORING, ARBITRATING, NORMAL-INITIALIZE, LOOP-FAIL-INITIALIZE, LOOP-FAIL-

ERR_|N|T, LOOP-FAIL-ERR_|N|T-2, OPEN-INIT-SELECT-MASTER, or SLAVE-WAIT-FOR-MASTER state shall

retransmit the received LPByx. When LPByx is received by the originator (i.e., x = AL_PA of the L_Port) and REPEAT

is FALSE(0), the LPByx shall be replaced with the CFW.

DHPN-1008 / Page 31 of 150

BSR NCITS 332

Once an L_Port is bypassed and the optional Port Bypass Circuit has been activated, the L_Port shall only monitor the

Loop for LPEyx (where y = AL_PA of the L_Port), LPEfx, or LIP. LIP is only used as a signal to relinquish its AL_PA;

i.e., upon receipt of LIP, if BYPASS is TRUE(1), then the LPSM shall set PARTICIPATE to FALSE(O) and shall not go
to the OPEN-INIT-START state.

7.7.2 Loop Port Bypass all (LPBfx)

Loop Port Bypass all (LPBfx where f = hex 'FF') is transmitted on a Loop to bypass all L_Ports and activate the optional

Port Bypass Circuit(s) of all L_Ports (except the L_Port at X) . The originator of the LPBfx is identified by the AL_PS in

character4 (x value). LPBfx may be used to verify that an operating Loop is possible. It may also be useful to bypass

a Non-Participating L_Port (i.e., the L_Port does not have an AL_PA). (See annex I.)

When LPBfx is recognized, all L_Ports on the Loop (participating or non-participating) except the L_Port at x, shall set

BYPASS to TRUE(1).

NOTE — If multiple L_Ports are simultaneously transmitting LPBfx, all L_Ports will be bypassed. An L_Port which transmitted LPBfx and which
was bypassed by another LPBfx (where x <> AL_PA of the L_Port), may at a later time attempt to deactivate the optional Port Bypass Circuit and
participate on the Loop. The L_Port, which is attempting Loop recovery with LPBfx, may have a faulty transmitter and therefore, can by this means
be bypassed by another L_Port.

Each L_Port in the MONITORING, ARBITRATING, NORMAL-INITIALIZE, LOOP-FAIL-ERR_|N|T, LOOP-FA|L-

ERR_|N|T-2, OPEN-INIT-SELECT-MASTER, or SLAVE-WAIT-FOR-MASTER state shall retransmit the received LPBfx.

When LPBfx is received by the originator (i.e., x = AL_PA of the L_Port) and REPEAT is FALSE(O), the LPBfx shall be

replaced with the CFW.

7.7.3 Loop Port Enable (LPEyx)

Loop Port Enable (LPEyx) is transmitted on a Loop to enable an L_Port that had been previously bypassed and to

deactivate the optional Port Bypass Circuit without an intervening LIP being received. The destination L_Port is

identified by the AL_PD in character 3 (y value). The originator of the LPEyx is identified by the AL_PS in character 4

(x value). (See annex I.)

When LPEyx is recognized, where y = AL_PA of the L_Port, the L_Port shall set BYPASS to FALSE(O).

Each L_Port in the MONITORING, ARBITRATING, NORMAL-INITIALIZE, LOOP-FAIL-ERR_|N|T, LOOP-FA|L-

ERR_|N|T-2, OPEN-INIT-SELECT-MASTER, or SLAVE-WAIT-FOR-MASTER state shall retransmit the received LPEyx.

When LPEyx is received by the originator (i.e., x = AL_PA of the L_Port) and REPEAT is FALSE(O), the LPEyx shall

be replaced with the CFW.

7.7.4 Loop Port Enable all (LPEfx)

Loop Port Enable all (LPEfx where f = hex 'FF') is transmitted on a Loop to deactivate all Port Bypass Circuits and enable

all L_Ports into the Loop. The originator of the LPEfx is identified by the AL_PS in character 4 (x value). When an
L_Port has been bypassed, it may have lost its AL_PA (e.g., the L_Port is required to relinquish its AL_PA upon

recognizing LIP). Therefore, LPEfx allows these L_Ports (which no longer have an AL_PA) to be enabled on the Loop.

(See annex I.)

When LPEfx is recognized, the L_Port shall set BYPASS to FALSE(O).

Each L_Port in the MONITORING, ARBITRATING, NORMAL-INITIALIZE, LOOP-FAIL-ERR_|N|T, LOOP-FA|L-

ERR_|N|T-2, OPEN-INIT-SELECT-MASTER, or SLAVE-WAIT-FOR-MASTER state shall retransmit the received LPEfx.

When LPEfx is received by the originator (i.e., x = AL_PA of the L_Port) and REPEAT is FALSE(O), the LPEfx shall be

replaced with the CFW.

22

DHPN-1008 / Page 32 of 150

BSR NCITS 332

7.8 Loop Initialization Primitive Sequences (LIP)

If an L_Port receives three consecutive identical Ordered Sets whose first two characters (fully decoded) are equal to

the values shown in table 3, then the L_Port shall recognize a Loop Initialization Primitive Sequence. If character 3 is

equal to hex ‘F7', then a normal LIP (L|P(F7)) shall be recognized; if character 3 is equal to hex 'F8', then a Loop Failure

LIP (L|P(F8)) shall be recognized; if character 3 is equal to the AL_PA of the L_Port, then a reset LIP (L|Pyx) shall be

recognized; and, if character 3 is equal to hex 'FF', then a reset all LIP (L|Pfx) shall be recognized.

Loop Initialization (LIP) is a Primitive Sequence used by an L_Port to detect if it is part of a Loop or to recover from
certain Loop errors (see 8.4.3, item 21 and item 23 and clause 10).

The LIP contains information on why the LIP was transmitted in the right-most two characters (characters 3 and 4). Other

L_Ports may make decisions based on this information (e.g., inform an operator of a Loop Failure).

7.8.1 Loop Initialization — no valid AL_PA

Loop Initialization (L|P(F7,F7)) is used by the originating L_Port to acquire an AL_PA.

7.8.2 Loop Initialization — Loop Failure; no valid AL_PA

Loop Initialization (L|P(F8,F7)) is used by the originating L_Port to indicate that a Loop Failure has been detected at its

receiver (hex ‘F8'); hex 'F7' is used to indicate that the L_Port does not have a valid AL_PA.

7.8.3 Loop Initialization — valid AL_PA

Loop Initialization (L|P(F7,AL_PS)) is used by the originating L_Port (identified by AL_PS) to reinitialize the Loop. The

L_Port may have noticed a performance degradation (e.g., it has been arbitrating longer than it deemed reasonable) and
is trying to restore the Loop into a known state.

7.8.4 Loop Initialization — Loop Failure; valid AL_PA

Loop Initialization (L|P(F8,AL_PS)) is used by the originating L_Port (identified by AL_PS) to indicate that a Loop Failure
has been detected at its receiver.

7.8.5 Loop Initialization — reset L_Port

Loop Initialization (L|P(AL_PD,AL_PS)) is used by the originating L_Port (identified by AL_PS) to reset the NL_Port

(identified by AL_PD). All L_Ports shall treat this LIP as specified in 7.8.3, however, the NL_Port at AL_PD shall also

perform a vendor specific reset. If AL_PD = hex 'FF', a vendor specific reset shall be performed by all L_Ports (including

those without an AL_PA, but not the one at AL_PS).

7.8.6 Loop Initialization — reserved

Loop Initialization (L|Pba) is reserved for future use. The ‘b' and ‘a' characters of the L|Pba Ordered Set shall contain

one of the neutral disparity values from table 1, and the L|Pba shall not be a member of any LIP defined in 7.8.1 through
7.8.5. A L|Pba shall be treated just like any other (Non F8) LIP (see 10.5).

DHPN-1008 / Page 33 of 150

BSR NCITS 332

8 L_Port operation

To simplify L_Port design and minimize Transmission Word propagation delay, the following rules apply:

— all routing decisions by the LPSM (except during the Loop INITIALIZATION process) shall be made based on the

AL_PA in the Primitive Signals (i.e., during normal operation, no LPSM routing decisions are made based on frame
content);

— logging errors that are detected when retransmitting Transmission Words is optional; and,

NOTE —V\lhi|e an L_Port is not required to log errors encountered while retransmitting Transmission Words, fault isolation and error
analysis may be enhanced by doing so.

— Transmission Words are not routed to the FC-2 of the NL_Port in the ARBITRATING and MONITORING states

unless REPLICATE is set to TRUE(1) (see 7.3).

The maximum delay ofa Transmission Word through an L_Port in the MONITORING or ARBITRATING state shall not
exceed six (6) Transmission Word periods except when in clock skew management deletion pending state (see annex

A).

The following steps provide an example for how an L_Port transfers one or more ANSI X3, FC-PH-x frames on a Loop:

(1) The L_Port requests the LPSM to obtain access to the Loop.

(2) The LPSM enters the ARBITRATING state and transmits its ARB(AL_PA) in place of the appropriate received Fill
Word (see 7.1) until a matching ARB(AL_PA) is received. When the matching ARB(AL_PA) is received, the L_Port

opens the Loop (i.e., stops retransmitting received Transmission Words).

(3) The LPSM transmits OPNy to establish a point-to-point Loop circuit on the Loop with another L_Port. OPNy may

be followed by ANSI X3, FC-PH-x frame(s). The number of frames that can immediately be transmitted is based

on BB_Credit (see 8.3.4).

(4) Either L_Port (of the Loop circuit) may transmit CLS when the L_Port desires to close the Loop circuit. When an

L_Port receives CLS, it completes transmitting its frame(s), retransmits the CLS, and closes its end of the Loop

circuit. When the CLS returns to the L_Port which originated the CLS, this L_Port closes its end of the Loop circuit.

NOTE — Since either open L_Port may transmit CLS, an L_Port must be prepared to handle CLS simultaneously with or on the next
Transmission Word after entering the XMITTED CLOSE state.

8.1 History variables

8.1.1 Access fairness history

The access fairness algorithm requires four memory elements that shall be maintained and used by each L_Port (see

8.4 for management requirements of each memory element):

a) ACCESS — the value of this variable is used by an L_Port to determine the status of the fairness window (i.e.,

whether the L_Port may arbitrate for access to the Loop). If ACCESS is FALSE(O), then an L_Port which is using

the fairness algorithm, shall not arbitrate for access to the Loop; if ACCESS is TRUE(1), then an L_Port may

arbitrate for access to the Loop and the L_Port may use the TRANSFER state to open a Loop circuit with another
L Port.

b) ARB_WON — the value of this variable is used by an L_Port to indicate that this L_Port has won arbitration. If

ARB_WON is FALSE(O), then the L_Port did not win arbitration; if ARB_WON is TRUE(1), then the L_Port won
arbitration.

24

DHPN-1008 / Page 34 of 150

BSR NCITS 332

c) ARB_PEND — the value of this variable is used by an L_Port which has been opened while arbitrating to remember

that it has transmitted one or more ARB(AL_PA) Primitive Signals. If ARB_PEND is FALSE(O), then the L_Port was

not arbitrating; if ARB_PEND is TRUE(1), the L_Port was arbitrating.

NOTE —This history variable forces the L_Port to finish arbitrating even if the L_Port no longer desires access to the Loop to assure that
the fairness window is reset.

d) XMlT_2_lDLES — the value of this variable is used by an L_Port to remember that after receiving ARB(FO), two

(2) Idles shall be transmitted when Idle is received. The current Fill Word when set to Idle shall not be modified until

XMlT_2_lDLES is FALSE(O).

NOTE — Since the Idle is used to reset the fairness window, by transmitting two Idles, the probability of at least one Idle traversing the
Loop is increased. If only one Idle is transmitted, it could be removed by another L_Port if that L_Port needs to delete a Fill Word for clock
skew.

8.1.2 Duplex mode history

The OPEN, OPENED and RECEIVED CLOSE state requires one memory element, called DUPLEX, to determine

whether the L_Port is allowed to originate Data frames. If DUPLEX is FALSE(O), the Loop circuit is operating in half-

duplex mode; if DUPLEX is TRUE(1), the Loop circuit is operating in full-duplex mode (see 8.4 for management

requirements of DUPLEX).

8.1.3 Replicate mode history

The MONITORING and ARBITRATING states require one memory element, called REPLICATE, to remember if OPNr

had been received. If REPLICATE is FALSE(O), the states operate normally; if REPLICATE is TRUE(1), all received

Transmission Words (except for normal Fill Word processing - updating the CFW appropriately) shall be retransmitted

and also shall be provided to the FC-2 of the NL_Port for further processing. (See 7.3 and 8.4.3, item 13 and item 14.)

The OPEN state requires REPLICATE to remember that OPNr was transmitted in the ARBITRATION WON or

TRANSFER state. If REPLICATE is FALSE(O), the state operates normally; if REPLICATE is TRUE(1), the L_Port may

originate additional OPNr‘s; the L_Port shall not use BB_Credit management. (See 7.3 and 8.4.3, item 15 and item 16.)

8.1.4 Operational mode history

An L_Port uses two memory elements to record the L_Port's operational mode:

a) PARTICIPATE — set TRUE(1) if the L_Port has an AL_PA, set FALSE(O) if the L_Port does not have an AL_PA.

b) BYPASS — set TRUE(1) if the L_Port activates its optional Port Bypass Circuit, set FALSE(O) if the L_Port

deactivates its optional Port Bypass Circuit.

REPEAT is a symbol that is defined to simplify the LPSM description. REPEAT is TRUE(1), if PARTICIPATE is

FALSE(O) or BYPASS is TRUE(1) or both. REPEAT is FALSE(O), if PARTICIPATE is TRUE(1) and BYPASS is

FALSE(O). When REPEAT is TRUE(1), the LPSM repeats most incoming transmission words (except for normal Fill

Word processing—updating the CFW appropriately) without responding to them. When REPEAT is FALSE(O), the LPSM
actively participates on the Loop.

The combined values of the PARTICIPATE and BYPASS variables record the four L_Port operational modes:

1) Participating (PARTICIPATE = 1, BYPASS = 0) — the L_Port has an AL_PA and is enabled into the Loop. The

L_Port may use the Loop and respond to all requests directed to it. This is the normal operational mode in which

most Loop access occurs. In this mode, REPEAT is FALSE(O).

2) Non-Participating (PARTICIPATE = 0, BYPASS = 0) — the L_Port does not have an AL_PA, but is enabled into

the Loop. The L_Port repeats transmission words (except for normal Fill Word processing—updating the CFW

appropriately) and only responds to a limited number of requests such as Loop Initialization. If the L_Port wishes
to obtain an AL_PA and participate in the Loop, the L_Port may initiate Loop Initialization; it shall attempt to obtain

an AL_PA if Loop Initialization occurs. In this mode, REPEAT is TRUE(1).

DHPN-1008 / Page 35 of 150

BSR NCITS 332

3) Participating Bypassed (PARTICIPATE = 1, BYPASS = 1) — the L_Port has an AL_PA, but is bypassed (i.e., not

enabled) from the Loop. The L_Port activates its optional Port Bypass Circuit if one is present. The L_Port also

repeats transmission words (except for normal Fill Word processing—updating the CFW appropriately) in case no

Port Bypass Circuit is present. The L_Port shall respond to an LPEyx directed to its AL_PA. In this mode, REPEAT
is TRUE(1).

4) Non-Participating Bypassed (PARTICIPATE = 0, BYPASS = 1) — the L_Port does not have an AL_PA and is

bypassed (i.e., not enabled) from the Loop. The L_Port activates its optional Port Bypass Circuit if one is present.

The L_Port also repeats transmission words (except for normal Fill Word processing—updating the CFW

appropriately) in case no Port Bypass Circuit is present. The L_Port does not respond to any Primitive Signal or

Primitive Sequences directed to a specific AL_PA. In this mode, REPEAT is TRUE(1).

8.1.5 DHD received history

The OPENED state requires one memory element if DHD is supported, called DHD_RCV. This variable is set to

TRUE(1) if DHD is received. The variable is checked when the L_Port in the OPENED state has completed all

transmissions to the L_Port in the OPEN state. If DHD_RCV is FALSE(O), then the L_Port may continue to wait to

receive CLS (normal operation) or it may transmit CLS. If DHD_RCV is TRUE(1), then the L_Port shall transmit CLS.

(See annex C.)

8.1.6 Error Initialization history

The LOOP-FAIL-INITIALIZE state may use one memory element, called ERR_|N|T. The variable is checked by the

L_Port in the LOOP-FAIL-INITIALIZE state to determine whether Loop Initialization (see clause 10) should be continued

or delayed (to avoid initializing in 10.5 when there is a low probability that it will complete). If L|P(F8) is received and

ERR_|N|T is FALSE(O), Loop Initialization shall be attempted; if ERR_|N|T is TRUE(1), then Loop Initialization shall be

delayed. (See 8.4, item 13 and item 21 and 10.5.4.)

8.1.7 ARB(FF) history

The MONITORING state uses a memory element, called ARBf_SENT, to indicate that the L_Port has requested the

LPSM to modify its CFW to ARB(FF) from Idles. If ARBf_SENT is FALSE(O), the current Fill Word is managed normally;

ifARBf_SENT is TRUE(1), then the current Fill Word shall remain ARB(FF) until an ARB(AL_PA) is received or ARB(F0)

(if REPEAT is TRUE(1)) is received. (See 8.4.)

8.2 Timeouts

8.2.1 FC-PH timeout values

Timeout values (e.g., R_T_TOV) and related timeout procedures in ANSI X3, FC-PH-x, 29.2, shall be used as
appropriate.

8.2.2 Arbitrated Loop timeout value

The Arbitrated Loop timeout value (AL_T|ME) is 15 ms, which represents two times the worst case round-trip latency

for a very large Loop. AL_T|ME is based on twice the sum of the following values:

— 134 times an L_Port internal latency of six (6) Transmission Word periods at 1,062 5 Gbits/sec of the L_Port and

— 134 times 10 km, the cable latency (5 ns/meter).

AL_T|ME is primarily used during the INITIALIZATION process to control events that require a Loop round-trip latency

to complete. The sequencing of these events must be coordinated between multiple L_Ports, which requires that all

L_Ports use AL_T|ME consistently. During the INITIALIZATION process, L_Ports shall measure AL_T|ME with a

tolerance of -0%, +20% (i.e., an AL_T|ME timeout shall expire from a minimum of 15ms up to a maximum of 18ms).

NOTE — It is conceivable that the maximum round-trip delay of a Loop configuration is greater than the AL_T|ME. However, determining
interoperability when using a different AL_T|ME value is outside the scope of this standard.

26

DHPN-1008 / Page 36 of 150

BSR NCITS 332

8.2.3 Loop timeout value

The Loop timeout value (LP_TOV) is 2 seconds. LP_TOV is used to keep a Loop from deteriorating due to protocol

errors or lost Ordered Sets. For example, LP_TOV is used to reset the fairness window (see 4.3) and during the

INITIALIZATION process to time start-up events (see 10.5.4).

8.3 Operational characteristics

8.3.1 Transmission Word processing

8.3.1.1 Power-on Transmission Words

At power-on, the L_Port shall turn off its transmitter until it is ready to participate in Loop Initialization.

8.3.1.2 Invalid Transmission Words and Transmission Characters

An L_Port shall make substitutions for invalid received Transmission Words and Transmission Characters (see 8.4) as
follows:

— in the MONITORING or ARBITRATING states:

— if an invalid Transmission Word is detected, the L_Port shall substitute the CFW for that Transmission Word.

— if an invalid Beginning Running Disparity is detected on an Ordered Set, the L_Port shall substitute the CFW.

— in any other state the L_Port shall follow the rules defined in ANSI X3, FC-PH-x, 24.3.5, and clause 29.

8.3.2 Clock skew management

When an L_Port implements receive and transmit clocks with different reference sources, a buffer is required between

the receiver and transmitter logic to manage the clock frequency and phase differences (see annex G for clock design

options).When a buffer is required, the L_Port shall implement the buffer as defined in annex A. To prevent buffer

over-run or under-run, the L_Port shall use the clock skew management rules defined in annex A to control the level of
data.

When processing Transmission Words between frames, any ARByx shall be treated the same as Idle. Fill Words or any

Ordered Set defined for use as a Primitive Sequence shall be treated equally. (See clause 7; ANSI X3, FC-PH-x, clause

17; and, annex A and G.)

8.3.3 Error detection and recovery

Each state in 8.4 contains the procedures for handling failures. State transitions are considered to take place

instantaneously and no error detection takes place during a state transition. Any failure or subsequent state request that
occurs during a state transition shall be detected in the subsequent state.

Following recovery from a failure, the L_Port shall comply with the provisions for Sequence integrity, error detection,

and Sequence recovery specified in ANSI X3, FC-PH-x, 24.3.5 and clause 29.

8.3.4 BB_Credit and Available_BB_Credit

BB_Credit and Avai|able_BB_Credit are used when transmitting a SOFc1, a Class 2, or a Class 3 frame. Before Login,

the "Alternate BB_Credit Management" bit (see ANSI X3, FC-PH-x, 23.6.3 and 26.5) and BB_Credit shall be set to 0 and

one (1) in the OLD-PORT state and to 1 and zero (0) in the OPEN-INIT-START state, respectively (see 8.4.3 item 21

and item 23, and 10.5.4). During Login, BB_Credit shall be set to a value that represents the number of receive buffers
that the L_Port shall guarantee to have available when a Loop circuit is established.

DHPN-1008 / Page 37 of 150

BSR NCITS 332

When on a Loop, L_Ports have unique characteristics (unlike point-to-point or Fabric-attached N_Ports):

— Loop circuits are dynamic;

— if not properly managed, an L_Port may have frames in the receive buffers from the previous Loop circuit when a

new Loop circuit is established; even a BB_Credit equal to one (1) may overrun the receive buffers;

— using BB_Credit equal to zero (0) requires a turn-around delay and impedes performance at the beginning of each
Loop circuit; and,

— balancing BB_Credit at the end of a Loop circuit may impede performance.

"Alternate BB_Credit Management" is used to achieve the best performance while addressing these unique Loop

characteristics. To avoid a turn-around delay at the beginning of a Loop circuit, L_Ports may take advantage of the

BB_Credit which is established during Login. Although balancing BB_Credit is not required (receive buffers may be

emptied after the Loop circuit is closed), the BB_Credit value represents the number of receive buffers that an L_Port

is assumed to have available when the next Loop circuit is established. Therefore, an L_Port shall not enter the

MONITORING state until the number of available receive buffers is at least equal to the largest BB_Credit value which
the L_Port disseminated during Login.

BB_Credit in the following discussion is identified as open BB_Credit (i.e., the BB_Credit of the L_Port which transmits

the OPNy) and opened BB_Credit (i.e., the BB_Credit of the L_Port which receives the OPNy) (see annex F).

A positive opened BB_Credit allows the L_Port to follow OPNy with frames, without waiting for an R_RDY (i.e., there
is no round-trip delay).

NOTE — “A|ternate BB_Credit Management“ is written from the view of the L_Port which transmits the OPNy. This L_Port knows the opened
BB_Credit and its open BB_Credit, but it has no knowledge of what the opened L_Port will use for the open BB_Credit. The L_Port which receives
the OPNy may choose to use the open BB_Credit, or immediately use Avai|ab|e_BB_Credit.

8.3.4.1 BB_Credit management per Loop circuit

For each Loop circuit, BB_Credit for the L_Ports in the OPEN and OPENED state is any value less than or equal to the

BB_Credit which the other L_Port in the Loop circuit advertised during Login. L_Ports shall not have more than 255
outstanding R_RDYs during any Loop circuit.

NOTE — lfthe L_Port in the OPEN state is using an opened BB_Credit of zero (0), a Loop turn-around delay is required (i.e., an R_RDY must be
received) before the L_Port is allowed to transmit the first frame.

The L_Port which transmits OPNy shall obey the following rules for transmitting R_RDYs:

NOTE — Since a minimum of six (6) Fill Words are required between the OPNy and the first frame, the L_Port may transmit one R_RDY instead
of one Fill Word without any performance penalty. The number of R_RDYs which the L_Port transmits before the first frame is a balance between
delaying the transmission of the first frame and delaying receiving frames.

— if the open BB_Credit equals zero (0), the L_Port shall transmit one R_RDY for each currently available receive
buffer.

— if the open BB_Credit is greater than zero (0), the L_Port shall transmit one R_RDY for each BB_Credit which this

L_Port advertised plus one R_RDY for each additional available receive buffer.

— If CLS is received before all R_RDYs have been transmitted, the remaining R_RDYs are not required to be
transmitted in the Loop circuit.

The L_Port may transmit the number of frames specified by the opened BB_Credit before receiving an R_RDY. The

L_Port shall discard one received R_RDY for each of these frames sent. When the number of discarded R_RDYs equals

the opened BB_Credit, the L_Port shall use Available_BB_Credit management.

28

DHPN-1008 / Page 38 of 150

BSR NCITS 332

The L_Port which receives OPNy shall obey the following rules for transmitting R_RDYs:

NOTE —The number of R_RDYs which the L_Port transmits before the first frame is a balance between delaying the transmission of the first frame
and delaying receiving frames.

— if the opened BB_Credit equals zero (0), the L_Port shall transmit one R_RDY for each currently available receive
buffer.

— if the opened BB_Credit equals zero (0), the L_Port may transmit CLS if there are no available receive buffers.

— if the opened BB_Credit is greater than zero (0), the L_Port shall transmit one R_RDY for each BB_Credit which

this L_Port advertised plus one R_RDY for each additional available receive buffer.

— If CLS is received before all R_RDYs have been transmitted, the remaining R_RDYs are not required to be
transmitted in the Loop circuit.

The L_Port shall initialize the open BB_Credit to zero (0). If the L_Port can determine the open BB_Credit, it may

transmit the number of frames specified by the open BB_Credit. If the L_Port transmitted frames based on the open

BB_Credit, it shall discard one received R_RDY for each of these frames sent. When the number of discarded R_RDYs

equals the open BB_Credit, the L_Port shall use Avai|able_BB_Credit management.

8.3.4.2 Available_BB_Credit management per Loop circuit

Once the L_Port has discarded the same number of R_RDYs as BB_Credit, the L_Port shall use Availab|e_BB_Credit

for transmitting additional frames.

Avai|able_BB_Credit is one of the following values:

— zero (0) — the initial value until one or more R_RDYs have been received; or.

— the number of R_RDYs received less the number of frames transmitted.

The L_Port may transmit the number of frames specified by Avai|able_BB_Credit. For each frame sent,

Avai|ab|e_BB_Credit is decremented by one (1); for each R_RDY received, Avai|ab|e_BB_Credit is incremented by one

(1). As long as Avai|ab|e_BB_Credit greater than zero, the L_Port may transmit frames during this Loop circuit.

DHPN-1008 / Page 39 of 150

BSR NCITS 332

8.4 Loop Port State Machine (LPSM)

The Loop Port State Machine (LPSM) shall be used to define the behavior of the L_Ports when they require access to

and use of a Loop. The following subclauses specify the state names, state diagram, and item references for the LPSM.

8.4.1 State names

The state names and numbers used in the LPSM, along with a brief description, are given below. Reference items for

each state are considered part of each state. The reference item numbers are identified in the L_Port state machine

diagram in 8.4.2. The reference item text follows the state machine diagram in 8.4.3.

MONITORING (0): The LPSM is transmitting received Transmission Words and, if it is in the Participating

mode, monitoring the Loop for certain Ordered Sets (e.g., OPNy and OPNr). This is the

default state of any L_Port.

ARBITRATING (1): The LPSM is arbitrating for control of the Loop.

ARBITRATION WON (2): The LPSM has received a matching ARB(AL_PA) (i.e., AL_PA = AL_PA of this L_Port)

while arbitrating.

OPEN (3): The LPSM has transmitted OPNy while in the ARBITRATION WON state. Normal FC-2

protocol follows.

OPENED (4): The LPSM has received a matching OPNy (i.e., y = AL_PA of this L_Port) while in the

MONITORING or ARBITRATING state. Normal FC-2 protocol follows.

XMITTED CLOSE (5): The LPSM has transmitted CLS and intends to relinquish control of the Loop.

RECEIVED CLOSE (6): The LPSM has received CLS.

TRANSFER (7): The LPSM, while in the OPEN state, has transmitted CLS and requires the Loop to

communicate with another L_Port.

INITIALIZATION process (8): The LPSM is initializing or re-initializing?

OLD-PORT (A): The LPSM has determined that it wants to operate in a point-to-point mode utilizing ANSI

X3, FC-PH-X protocol without FC-AL.

‘The INITIALIZATION process encompasses the INITIALIZING and OPEN-INIT states that were defined in the first publication of this
standard.

30

DHPN-1008 / Page 40 of 150

BSR NCITS 332

8.4.2 State diagram

The state diagram is shown in figure 3. The numbered reference items for states and state transitions in 8.4.3 are

normative parts of the LPSM definition. lfthe details were in the state diagrams, the diagrams would be difficult to read
and interpret.

States are identified with a single letter or digit followed by a single colon character (e.g., 6:). Transitions identified as

"(Xn):", where n is a single digit or letter, represent valid transitions from multiple states to the ending state, /7, caused

by an event outside the steady state operation of the LPSM. A transition identified as "(mn):", where m and n are single

digits or letters, represents a transition from state m to state /7. Each transition and state is accompanied by detailed

specifications and requirements identified by the numbered reference item.

(X8) :
Item 1

- A; (Optional)
8. SA .
INITIALIZATION Process OLD-PORTitem 21 T»Item 23

(80) 3 OA - RERQ(bé/yi>_aDsBs L_Port)
Rcvd CLS | REQ(non-participat.) EE)Q-(0|d_ on)” CV (xo) ;
Item 12 Item 2 P item 12

O: MONITORING
” Item 13 ‘é

(01) I _ (04) ; Item 12

fiEQ(tarb1trate as x) Rcvd OpNy _t)em H 7 mom or
em (when allowed)

1 I (
ARBITRATING nem 4
Item 14 (14): ARB_PEND =1

Rcvd OPNy
Item 7

(12) :
Rcvd own ARB

Item 5 V (61) :

2: 4: (45) 3 5;
ARBITRATION OPENED _’ RECENED ’ _
WON Item 17 (36) . CLOSE (60) I
Item 15 Item 19

(23) : (51) 3
Xmlt OPNy | OPNr 3_ (35) ; 5.
Item 6 O-PEN Tm)XMITTED —

Item 16 (45) I |Ct3LO~:»§ (50) I’ em

(37) I . .
Item 10 (73) . LEGEND. _

Item 11 Box - R.As'\t/laée number, STATE, re erence item.
7: REQ(text) - L_Port request to change

(70) 3 TRANSFER , - (S1‘tra¢)tr?n-to) ' state transition
Item 12 Item 20 event causing transition. '

(X.) : - from multiple states

Figure 3 — State Diagram

DHPN-1008 / Page 41 of 150

BSR NCITS 332

8.4.3 Reference items

For detailed information about a state or state transition, refer to the item number in the list below.

For conditions that are not explicitly listed in this section as causing state changes to occur, the LPSM shall remain in
the current state.

1

10

11

12

32

Transition (X8): This transition4 shall be made at power-on of an L_Port, after detecting a failure (see clause 10 and
ANSI X3, FC-PH-x, clause 23), when a LIP is recognized, or from any state when the L_Port requests it (see 10.5.3).

All fibre-type dependent operations shall be complete before making this transition (e.g., Open Fibre Control) (see

ANSI X3, FC-PH-X, clauses 5 to 10).

Transition (0A:; (8A): The LPSM shall make the transition to the OLD-PORT state (if supported) (see item 13, item
23, and 10.5.4).

Transition (01): The LPSM shall make the transition to the ARBITRATING state (see item 13 and item 14).

Transitions (51):, (61): The LPSM shall make the transition to the ARBITRATING state (see item 14, item 18, and

item 19).

Transition (12): The LPSM shall make the transition to the ARBITRATION WON state (see item 14 and item 15).

Transition (23): The LPSM shall make the transition to the OPEN state (see item 15 and item 16).

Transitions (04):, (14): The LPSM shall make the transition to the OPENED state (see item 13, item 14, and item

17).

Transitions (35):, (45): The LPSM shall make the transition to the XMITTED CLOSE state (see item 15, item 16,

item 17 and item18).

Transitions (36):, (46): The LPSM shall make the transition to the RECEIVED CLOSE state (see item 16, item 17,

and item 19).

Transition (37): The LPSM shall make the transition to the TRANSFER state (see item 16 and item 20).

Transition (73): The LPSM shall make the transition to the OPEN state (see item 16 and item 20).

Transitions (X0):, (50):, (60):, (70): The LPSM shall make the transition to the MONITORING state (see item 13,

item 15, item 18, and item 20).

‘Some implementations may choose to allow an L_Port to exit the INlTlALlZATlON process without completing initialization. These L_Ports
‘initialize’ outside the scope of this standard.

DHPN-1008 / Page 42 of 150

BSR NCITS 332

13 State 0 (MONITORING) actions (table 4 and the following text describe the MONITORING state): The LPSM shall

set ERR_|N|T to FALSE(O), DUPLEX to FALSE(O), ARB_WON to FALSE(O), ARB_PEND to FALSE(O), ARBf_SENT

to FALSE(O), and REPLICATE to FALSE(O), The LPSM shall retransmit all received Transmission Words unless

specifically stated otherwise.

If PARTICIPATE is FALSE(O), the L_Port does not have an AL_PA. Therefore, the tests for val = AL_PA, x =

AL_PA, or y = AL_PA are ignored and the entries for val <> AL_PA, x<> AL_PA, or y <> AL_PA shall be followed.

If Idle is received, the CFW shall be modified as follows:

— if REPEAT is FALSE(0) and:

— if ARBf_SENT is FALSE(O), the CFW shall be set to Idle and ACCESS shall be set to TRUE(1) or

— if ARBf_SENT is TRUE(1), the CFW shall be changed to ARB(FF).

— if REPEAT is TRUE(1), the CFW shall be set to Idle.

If ARByx is received, the CFW shall be modified as follows:

— if ARByx = ARB(FO) and the CFW is Idle or ARB(FF):

— if REPEAT is FALSE(O), XM|T_2_|DLES shall be set to TRUE(1) and the CFW shall not be changed or

— if REPEAT is TRUE(1), the CFW shall be changed to ARB(FO).

NOTE — If an L_Port is in the MONITORING state while the Loop is in the INITIALIZATION process as described in clause 10, then
PARTICIPATE must remain FALSE(0) or BYPASS must remain TRUE(1) until ARB(FO) is received by every L_Port. ARB(FO) during
the INITIALIZATION process indicates that a LIM has been selected

— ifARByx = ARB(FO) and the CFW is neither Idle nor ARB(FF), the CFW shall be set to ARB(FO), ARBf_SENT

shall be set to FALSE(O), and XM|T_2_|DLES shall be set to TRUE(1);

— if ARByx = ARB(FF), the CFW shall be modified as follows:

— if REPEAT is FALSE(0):

— if the CFW is not Idle or XM|T_2_|DLES is FALSE(O), the CFW shall be changed to ARB(FF) or

— if the CFW is Idle and XM|T_2_|DLES is TRUE(1), the CFW shall not be changed.

— if REPEAT is TRUE(1), the CFW shall be changed to ARB(FF).

— if ARByx <> ARB(va|) (i.e., y <> x), the CFW should not be changed;5 or,

5Some L_P0rts may set the CFW to the received ARByx, but this practice is not recommended.

DHPN-1008 / Page 43 of 150

BSR NCITS 332

34

— if ARByx = ARB(val):

— if REPEAT is FALSE(O):

— if val <> AL_PA of the L_Port and:

- if the CFW is not Idle or XM|T_2_|DLES is FALSE(O), the CFW shall be set to ARB(va|) and

ARBf_SENT shall be set to FALSE(O) or

- if the CFW is Idle and XM|T_2_|DLES is TRUE(1), the CFW shall not be changed.

— if val = AL_PA of the L_Port, the CFW shall be set to Idle, ARBf_SENT shall be set to FALSE(O).

— if REPEAT is TRUE(1), the CFW shall be changed to ARB(va|).

If a Fill Word is to be transmitted, the CFW shall be used. If the CFW is Idle and XM|T_2_|DLES is TRUE(1),

XM|T_2_|DLES shall be set to FALSE(O) after two ldles are transmitted.

If REPEAT is FALSE(O):

3)

b)

9)

h)

J)

if REPLICATE is TRUE(1), the LPSM shall receive (i.e., present to the FC-2 of the NL_Port for further

processing) and retransmit all Transmission Words (except for normal Fill Word processing — updating the CFW
appropriately);

if OPNfr is received, the LPSM of the NL_Port shall set REPLICATE to TRUE(1) and shall retransmit the
received OPNfr;

if OPNyr is received, where y = AL_PA of the NL_Port, the LPSM shall set REPLICATE to TRUE(1) and shall

retransmit the received OPNyr;

if OPNy is received, where y = AL_PA of the L_Port, the LPSM shall make the transition to the OPENED state
(see item 7 and item 17);

if any other OPNy is received, it shall be retransmitted;

if MRKtx is received and:

— if x = AL_PA of the L_Port, the LPSM shall transmit the CFW; the MRKtx is discarded;

— ifthe MK_TP and AL_PS match the expected values, the action identified by MK_TP shall be performed;
or,

— if x <> AL_PA of the L_Port, the received MRKtx shall be retransmitted.

if CLS is received while REPLICATE is TRUE(1), the LPSM shall set REPLICATE to FALSE(O) and retransmit
the received CLS;

ifthe L_Port requests arbitration (REQ(arb own AL_PA)) and ACCESS is TRUE(1), the LPSM shall make the

transition to the ARBITRATING state (see item 3 and item 14);

if LP_TOV has elapsed since the L_Port began requesting arbitration (REQ(arb own AL_PA)), ACCESS may
be set to TRUE(1); or,

ifthe L_Port requests to transmit a MRKtx (REQ(mark as tx)), the LPSM shall transmit one MRKtx at the next

Fill Word (see clause 7), unless REQ(mark as tx) is removed before MRKtx is transmitted.

DHPN-1008 / Page 44 of 150

BSR NCITS 332

If LIP is recognized:

— if BYPASS is FALSE(O), the LPSM shall make the transition to the OPEN-INIT-START state (see item 1, item
21, and clause 10); or,

— if BYPASS is TRUE(1), the L_Port shall relinquish its AL_PA, shall set PARTICIPATE to FALSE(O), and shall
remain in the MONITORING state.

If LPByx (y = AL_PA of the L_Port) or LPBfx is recognized or the L_Port requests to be bypassed (REQ(bypass

L_Port)), the LPSM shall set BYPASS to TRUE(1); shall set REPLICATE to FALSE(O); shall set ARBf_SENT to

FALSE(O); and, shall retransmit the LPB, if one was received.

If LPEyx (y = AL_PA of the L_Port) or LPEfx is recognized or the L_Port requests to be enabled (REQ(enab|e

L_Port)), the LPSM shall set BYPASS to FALSE(O) and shall retransmit the LPE, if one was received.

The LPSM shall retransmit all other received Transmission Words on the Loop (see 8.3.1).

Invalid Transmission Character substitution shall be performed as specified in 8.3.1.

Ifthe L_Port requests to transmit ARB(FF) (REQ(arbitrate (FF))) the LPSM shall set ARBf_SENT to TRUE(1) after

six (6) ldles have been forwarded.

Ifthe L_Port requests initialization (REQ(initia|ize)), the LPSM shall make the transition to the NORMAL-INITIALIZE
state (see item 1, item 21, and clause 10).

Ifthe L_Port requests to use the point-to-point protocol as defined in FC-PH-x (REQ(o|d-port)), the LPSM shall make

the transition to the OLD-PORT-REQ state (see item 2, item 23, and 10.5.4.3).

Ifthe LPSM detects a Loop Failure on its inbound fibre and:

— if REPEAT is FALSE(O), the LPSM shall make the transition to the INITIALIZATION process (see item 21 and
10.5.4).

— if REPEAT is TRUE(1), the LPSM shall transmit L|P(F8) until the Loop recovers from the failure. The L_Port
shall remain in the MONITORING state.

If the L_Port requests not to participate on the Loop (REQ(nonparticipat.)), it shall relinquish its AL_PA; set

PARTICIPATE to FALSE(O); and, shall set ARBf_SENT to FALSE(O). The LPSM may transmit L|Ps (with the right-
most two characters equal to hex 'F7F7‘) to invoke the Loop Initialization procedure and allow another L_Port to

acquire the relinquished AL_PA. If L|Ps are transmitted, the L_Port shall transmit at least 12 L|Ps. The L|Ps are

only transmitted once for each REQ(nonparticipat.) to allow this request to be active until the L_Port requests to

participate (REQ(participating)).

NOTE — The L_Port may arbitrate for the Loop (using ARB(AL_PA) in order to quiesce any ongoing activity before transmitting LIP.

If the L_Port requests to participate on the Loop (REQ(participating)), the LPSM shall make the transition to the

NORMAL-INITIALIZE state (see item 1, item 21, and clause 10).

NOTE —The L_Port may arbitrate for the Loop (using ARB(va|) where val is a trusted AL_PA) in order to quiesce any ongoing activity
before transmitting LIP.

35

DHPN-1008 / Page 45 of 150

BSR NCITS 332

14 State 1 (ARBITRATING) actions (table 5 and the following text describe the ARBITRATING state): The LPSM shall

36

set DUPLEX to FALSE(O) and ARB_WON to FALSE(O). The LPSM shall retransmit all received Transmission

Words unless specifically stated otherwise. The LPSM shall transmit an ARB(AL_PA) (where AL_PA is the AL_PA

of the L_Port) when either an Idle or a lower priority ARB(AL_PA), ARB(FO), or ARB(FF) is received. Once the

LPSM has transmitted its own ARB(AL_PA), it shall set ARB_PEND to TRUE(1) and shall not transmit a lower-
priority ARB(AL_PA).

If Idle is received and:

— ifXM|T_2_|DLES is FALSE(O), the CFW shall be set to ARB(AL_PA) (where AL_PA is the AL_PA of the L_Port)
or

— if XM|T_2_|DLES is TRUE(1), the CFW shall be set to Idle.

If ARByx is received, where ARByx <> ARB(va|) or ARByx = ARB(val) and val does not equal the AL_PA of the

L_Port, the CFW shall be modified as follows:

— if XM|T_2_|DLES is FALSE(O) or the CFW is not Idle and:

— ifARByx = ARB(va|) where val < AL_PA of the L_Port, the CFW shall be changed to the received ARB(va|);

— ifARByx = ARB(va|) where val = hex ‘F0’, the CFW shall be changed to ARB(AL_PA) (where AL_PA is the

AL_PA of the L_Port) and XM|T_2_|DLES shall be set to TRUE(1);

— ifARByx = ARB(va|) where val > AL_PA of the L_Port, the CFW shall be changed to ARB(AL_PA) (where

AL_PA is the AL_PA of the L_Port); or,

— if ARByx <> ARB(val), the CFW should not be changed.6

— if XM|T_2_|DLES is TRUE(1) and the CFW is Idle, the CFW shall not be changed.

If a Fill Word is to be transmitted, the CFW shall be used. If the CFW is Idle and XM|T_2_|DLES is TRUE(1),

XM|T_2_|DLES shall be set to FALSE(O) after two ldles are transmitted.

|fARB(val) is received, where val = AL_PA of the L_Port, the LPSM shall make the transition to the ARBITRATION

WON state (see item 5 and item 15).

If REPLICATE is TRUE(1), the LPSM shall receive (i.e., present to the FC-2 of the NL_Port for further processing)

and retransmit all Transmission Words (except for normal Fill Word processing - updating the CFW appropriately);

NOTE — To avoid a "broadcast storm“, an FL_Port does not propagate any Transmission Words into the Fabric.

|fOPNfr is received, the LPSM of the NL_Port shall set REPLICATE to TRUE(1) and shall retransmit the received
OPNfr.

If OPNyr is received, where y = AL_PA of the NL_Port, the LPSM shall set REPLICATE to TRUE(1) and shall

retransmit the received OPNyr.

|fOPNy is received, where y = AL_PA of the L_Port, the LPSM shall make the transition to the OPENED state (see
item 7 and item 17).

If any other OPNy or OPNr is received, it shall be retransmitted.

If CLS is received and REPLICATE is TRUE(1), REPLICATE shall be set to FALSE(O).
retransmitted.

The CLS shall be

“Some L_P0rts may set the CF W to the received ARByx, this practice is not recommended.

DHPN-1008 / Page 46 of 150

BSR NCITS 332

If MRKtx is received and:

— if x = AL_PA of the L_Port, the LPSM shall transmit the CFW; the MRKtx is discarded;

— if the MK_TP and AL_PS match the expected values, the action identified by MK_TP shall be performed; or,

— if x <> AL_PA of the L_Port, the received MRKtx shall be retransmitted.

If LIP is recognized, the LPSM shall make the transition to the OPEN-INIT-START state (see item 1, item 21, and
clause 10).

If LPByx (y = AL_PA of the L_Port) or LPBfx is recognized, the LPSM shall set BYPASS to TRUE(1) and shall make

the transition to the MONITORING state (see item 12 and item 13).

Invalid Transmission Word substitution shall be performed as specified in 8.3.1; any other received Transmission
Words shall be retransmitted on the Loop.

If the LPSM detects a Loop Failure on its inbound fibre or the L_Port requests initialization (REQ(initia|ize)), the

LPSM shall make the transition to the INITIALIZATION process (see item 1, item 21, and clause 10).

lfthe L_Port requests to transmit a MRKtx (REQ(mark as tx)), the LPSM shall transmit one MRKtx at the next Fill

Word (see clause 7), unless REQ(mark as tx) is removed before MRKtX is transmitted.

DHPN-1008 / Page 47 of 150

BSR NCITS 332

15 State 2 (ARBITRATION WON)’ actions (table 6 and the following text describe the ARBITRATION WON state):
This is a transition state during which Transmission Words are not received.

The ARB(val) which was received in the ARBITRATING state, is replaced with the appropriate OPN as follows:

— ifthe L_Port requires access to the Loop (REQ(open yx), REQ(open yy), REQ(open fr), or REQ(open yr)), the

LPSM shall transmit OPNy or the requested OPNr and shall make the transition to the OPEN state (see item

6 and item 16). If OPNr is transmitted, REPLICATE shall be set to TRUE(1).

— if the L_Port does not need access to the Loop (REQ(c|ose)), the LPSM shall transmit OPNyy (where y = AL_PA

of the L_Port) and shall make the transition to the OPEN state (see item 6 and item 16).

NOTE — The L_Port transitions through the OPEN state in order to properly manage the fairness window.

7The ARBITRATION WON state is a documentation artifact and may not be defined in some implementations. In FC—AL (ANSI X3.272:l996),
a decision was made in this state whether to open the Loop or not; in this standard, the only decision is whether to open this L_Port (and to close the
Loop without sacrificing the fairness window), to open another L_Port (normal operation), or to initialize.

38

DHPN-1008 / Page 48 of 150

BSR NCITS 332

16 State 3 (OPEN) actions (table 7 and the following text describe the OPEN state): To identify this as the L_Port that

won arbitration, the LPSM shall set ARB_WON to TRUE(1), ARB_PEND to FALSE(O), DUPLEX to TRUE(1), and

the CFW to ARB(FO). Ifthe L_Port is using the access fairness algorithm, ACCESS shall be set to FALSE(O); if the

L_Port is not using the access fairness algorithm, ACCESS shall be set to TRUE(1). The LPSM shall transmit at

least six (6) Ordered Sets (i.e., CFWs and R_RDYs) before transmitting any frames or CLS (see 8.3.4.1).

NOTE —The six (6) Ordered Sets maintain the ANSI X3, FC-PH-x spacing before SOF; R_RDYs allow the OPENED L_Port to transmit
frame(s) without using BB_Credit. One R_RDY does not take any extra bandwidth.

The L_Port shall process, and shall not retransmit subsequent Transmission Words received on its inbound fibre.

The L_Port shall transmit Primitive Signals, Primitive Sequences, or frames as specified in ANSI X3, FC-PH-x (see
8.3.4).

If Idle is received, the CFW shall be set to Idle and ACCESS shall be set to TRUE(1).

If ARB(FO) is received, the CFW shall be set to Idle and XM|T_2_|DLES shall be set to TRUE(1).

NOTE — Receiving ARB(FO) indicates that no other L_Port is now arbitrating (i.e., no L_Port changed ARB(FO) to ARB(va|)).

If a Fill Word is to be transmitted, the CFW shall be used.

NOTE — Since ARB_WON is TRUE(1) in this state, XM|T_2_|DLES will not be set to FALSE(O).

If CLS is received, the LPSM shall make the transition to the RECEIVED CLOSE state (see item 9 and item 19).

If MRKtx is received, where the MK_TP and AL_PS match the expected values, the action identified by MK_TP shall

be performed. The received MRKtx shall not be retransmitted.

If REPLICATE is TRUE(1) and the L_Port requests a broadcast replicate (REQ(open fr) or another selective replicate

REQ(open yr)), the LPSM shall transmit OPN(fr) or one OPN(yr) for each request at the next appropriate Fill Word,
respectively.

|fACCESS is TRUE(1) and the L_Port requests a transfer (REQ(transfer)), the LPSM shall transmit CLS instead of

the appropriate Fill Word and then shall make the transition to the TRANSFER state (see item 10 and item 20). If

ACCESS is FALSE(O), the request to transfer is treated as a request to close. If a Class 1 connection exists, the

L_Port shall remove the Class 1 connection before transmitting CLS; only the L_Port which received EOFdt shall
transmit the first CLS.

The LPSM may begin to close the Loop (REQ(close)) or REQ(send DHD) by transmitting CLS or DHD instead of

the next appropriate Fill Word. If CLS is transmitted, the LPSM shall make the transition to the XMITTED CLOSE
state or the TRANSFER state. If DHD is transmitted, the LPSM shall remain in the OPEN state, shall set DUPLEX

to FALSE(O) and shall not transmit Data frames. If a Class 1 connection exists, the L_Port shall remove the Class

1 connection before transmitting CLS; only the L_Port which received EOFdt shall transmit CLS (see item 8 and item
18 or item 20).

NOTE — Reasons for transmitting CLS or DHD include, but are not limited to:

— ARB(va|) was detected to indicate that another L_Port is arbitrating (the OPEN L_Port may close the Loop at a convenient time);
— frame transmission is required with a different L_Port;
— the L_Port has not received any credit to transmit frames before a timeout occurred (an appropriate value would be AL_T|ME since this

L_Port is the originator of the Loop circuit);
— there are no additional frames to transmit to the other L_Port; or,
— the L_Port is making the transition to the Non-Participating mode.

If LIP is recognized, the LPSM shall make the transition to the OPEN-INIT-START state (see item 1, item 21, and
clause 10).

DHPN-1008 / Page 49 of 150

BSR NCITS 332

If LPB is recognized:

— ifx = AL_PA of the L_Port, the L_Port should stop transmitting LPB; the received LPByx shall be discarded, or

— if y = AL_PA of the L_Port or hex ‘FF’, the LPSM shall set BYPASS to TRUE(1) and transition to the

MONITORING state (see item 12 and item 13).

If REPLICATE is TRUE(1), received Transmission Words shall not be forwarded; they shall either be processed or
be discarded.

If the L_Port requests another L_Port to be bypassed (REQ(bypass L_Port y) or REQ(bypass all)) or enabled

(REQ(enab|e L_Port y) or REQ(enab|e all)), the LPSM shall begin to transmit LPB or LPE at the next Fill Word, until

the Primitive Sequence is received.

If the LPSM detects a Loop Failure on its inbound fibre or the L_Port requests initialization (REQ(initia|ize)), the

LPSM shall make the transition to the INITIALIZATION process (see item 1, item 21, and clause 10).

lfthe L_Port requests to transmit a MRKtx (REQ(mark as tx)), the LPSM shall transmit one MRKtx at the next Fill

Word (see clause 7), unless REQ(mark as tx) is removed before MRKtx is transmitted.

40

DHPN-1008 / Page 50 of 150

BSR NCITS 332

17 State 4 (OPENED) actions (table 8 and the following text describe the OPENED state): The LPSM shall set

ARB_WON to FALSE(O), REPLICATE to FALSE(O), DHD_RCV to FALSE(O), and shall transmit the CFW to replace

the received OPNy. The L_Port shall transmit at least six (6) Ordered Sets (CFWs and R_RDYs) before transmitting

any frames or CLS (see 8.3.4.1). If the opened BB_Credit is zero (0), and the L_Port has no available receive

buffers, the L_Port may transmit CLS and make the transition to the XMITTED CLOSE state (see item 8 and
item18). The L_Port shall process, and shall not retransmit subsequent Transmission Words received on its inbound

fibre. The L_Port shall transmit Primitive Signals, Primitive Sequences, or frames as specified in ANSI X3, FC-PH-x

(see 8.3.4). If OPNyx was received, DUPLEX shall be set to TRUE(1); if OPNyy was received, DUPLEX shall be

set to FALSE(O) and no Data frames shall be transmitted.

If ARB_PEND is TRUE(1) and if the L_Port no longer needs access to the Loop (e.g., it was able to complete the

transmission of all its frames), then the L_Port may set ARB_PEND to FALSE(O). Subsequent to setting ARB_PEND

to FALSE(O), the L_Port shall change the CFW to the next received Fill Word and shall not transmit a CLS until a

minimum of six (6) CFWs have been transmitted. Normal LPSM processing for CFW and XM|T_2_|DLES shall
resume.

If Idle is received and:

— if ARB_PEND is FALSE(O), the CFW shall be set to Idle and ACCESS shall be set to TRUE(1) or

— if ARB_PEND is TRUE(1) and:

— ifXM|T_2_|DLES is FALSE(O), the CFW shall be changed to ARB(val) (where val = AL_PA of the L_Port)
or

— if XM|T_2_|DLES is TRUE(1), the CFW shall be changed to Idle.

If ARB(FO) is received and:

— if the CFW is not Idle or XM|T_2_|DLES is FALSE(O), XM|T_2_|DLES shall be set to TRUE(1) and:

— if ARB_PEND is FALSE, the CFW shall be set to ARB(FO) or

— ifARB_PEND is TRUE(1), the CFW shall be set to ARB(AL_PA) (where AL_PA is the AL_PA of the L_Port)

— if the CFW is Idle and XM|T_2_|DLES is TRUE(1), the CFW shall not be changed.

If ARByx is received and ARByx <> ARB(va|), the CFW should not be changed.8

|fARByx is received, where ARByx = ARB(va|) and either XM|T_2_|DLES is FALSE(O) or the CFW is not Idle, then:

— if ARB_PEND is FALSE(O), the CFW shall be modified as follows:

— if ARByx = ARB(val) where val = AL_PA of the L_Port, the CFW shall be changed to Idle or

— if ARByx = ARB(va|) where val <> AL_PA of the L_Port, the CFW shall be changed to the received
ARB(va|).

— if ARB_PEND is TRUE(1), the CFW shall be modified as follows:

— ifARByx = ARB(va|) where val >= AL_PA of the L_Port, the CFW shall be changed to ARB(AL_PA) (where

AL_PA is the AL_PA of the L_Port) or

— ifARByx = ARB(va|) where val < AL_PA of the L_Port, the CFW shall be changed to the received ARB(va|).

*Some L_P0rts may set the CF W to the received ARByx, this practice is not recommended.

DHPN-1008 / Page 51 of 150

BSR NCITS 332

42

If a Fill Word is to be transmitted, the CFW shall be used. If the CFW is Idle and XM|T_2_|DLES is TRUE(1),

XM|T_2_|DLES shall be set to FALSE(0) after two ldles are transmitted.

If OPNr or OPNy are received, they shall be discarded.

If DHD is received and if DHD is supported, the LPSM shall set DHD_RCV to TRUE(1). Receiving DHD is an

indication to this L_Port that the LPSM in the OPEN state has no more Data frames to transmit. The L_Port shall

respond to DHD by transmitting frames or CLS.

If DHD_RCV is TRUE(1) and the L_Port has completed all transfers (or it had nothing to transmit when it received

DHD) to the L_Port in the OPEN state, it shall REQ(c|ose) to begin closing the Loop circuit (see annex C).

If CLS is received, the LPSM shall make the transition to the RECEIVED CLOSE state (see item 9 and item 19).

If MRKtx is received, where the MK_TP and AL_PS match the expected values, the action identified by MK_TP shall

be performed. The received MRKtx shall not be retransmitted.

The LPSM may begin to close the Loop (REQ(close)) by transmitting CLS instead of the next appropriate Fill Word

and then shall make the transition to the XMITTED CLOSE state. If a Class 1 connection exists, the L_Port shall

remove the Class 1 connection before transmitting CLS; only the L_Port which received EOFdt shall transmit the

first CLS (see item 8 and item 18).

NOTE — Before transmitting CLS and transitioning to the XMITTED CLOSE state, the L_Port should ensure that it has enough buffers
for the current outstanding credit plus the maximum BB_Credit which the L_Port distributed during Login..

Reasons for transmitting CLS include, but are not limited to:

— frame transmission is required with a different L_Port;
the L_Port was opened full-duplex and has not received any credit to transmit frames before a timeout occurred (an appropriate value
would be LP_TOV since this L_Port is the responder in the Loop circuit);
the L_Port was opened half-duplex and the L_Port has Data frames to transmit to the other L_Port; or,
the L_Port is making the transition to the Non-Participating mode.

If LIP is recognized, the LPSM shall make the transition to the OPEN-INIT-START state (see item 1, item 21, and
clause 10).

If LPByx (y = AL_PA of the L_Port) or LPBfx is recognized, the LPSM shall set BYPASS to TRUE(1), and transition

to the MONITORING state (see item 12 and item 13).

If the LPSM detects a Loop Failure on its inbound fibre or the L_Port requests initialization (REQ(initia|ize)), the

LPSM shall make the transition to the INITIALIZATION process (see item 1, item 21, and clause 10).

lfthe L_Port requests to transmit a MRKtx (REQ(mark as tx)), the LPSM shall transmit one MRKtx at the next Fill

Word (see clause 7), unless REQ(mark as tx) is removed before MRKtx is transmitted.

DHPN-1008 / Page 52 of 150

BSR NCITS 332

18 State 5 (XMITTED CLOSE) actions (table 9 and the following text describe the XMITTED CLOSE state): The LPSM

shall set DUPLEX to FALSE(O) and transmit only the CFW (except MRKtx). The L_Port shall process, but shall not

retransmit subsequent Transmission Words received on its inbound fibre (except MRKtx).

If the L_Port does not receive CLS in less than LP_TOV, the LPSM may make the transition to the NORMAL-
INITIALIZE state to transmit L|P(F7).

If Idle is received and:

— if ARB_PEND is FALSE(O), the CFW shall be set to Idle and ACCESS shall be set to TRUE(1) or

— if ARB_PEND is TRUE(1) and:

— ifXM|T_2_|DLES is FALSE(O), the CFW shall be changed to ARB(val) (where val = AL_PA of the L_Port)
or

— if XM|T_2_|DLES is TRUE(1), the CFW shall be changed to Idle.

If ARB(FO) is received and:

— if the CFW is not Idle or XM|T_2_|DLES is FALSE(O), XM|T_2_|DLES shall be set to TRUE(1) and:

— if ARB_WON is TRUE(1), the CFW shall be set to Idle or

NOTE — Receiving ARB(FO) indicates that no other L_Port is now arbitrating (i.e., no L_Port changed ARB(FO) to
ARB(vaI)).

— if ARB_WON is FALSE(O), the CFW shall be modified as follows:

- if ARB_PEND is FALSE(O), the CFW shall be changed to ARB(FO) or

- if ARB_PEND is TRUE(1), the CFW shall be changed to ARB(val) (where val = AL_PA of the L_Port).

— if the CFW is Idle and XM|T_2_|DLES is TRUE(1), the CFW shall not be changed.

If ARByx is received and ARByx <> ARB(va|) (i.e., y <> x), the CFW should not be changed.9

|fARByx is received, ARB_WON is FALSE(O), ARB_PEND is TRUE(1), and either XM|T_2_|DLES is FALSE(O) or
the CFW is not Idle, then the CFW shall be modified as follows:

— if ARByx = ARB(val) where val >= AL_PA of the L_Port, the CFW shall be changed to ARB(AL_PA) (where

AL_PA is the AL_PA of the L_Port) or

— if ARByx = ARB(val) where val < AL_PA of the L_Port, the CFW shall be changed to the received ARB(va|).

If ARByx is received, ARB_WON is FALSE(O), ARB_PEND is FALSE(O), and either XM|T_2_|DLES is FALSE(O)
or the CFW is not Idle, then the CFW shall be modified as follows:

— if ARByx = ARB(val) where val = AL_PA of the L_Port, the CFW shall be changed to Idle or

— ifARByx = ARB(val) where val <> AL_PA of the L_Port, the CFW shall be changed to the received ARB(va|).

If a Fill Word is to be transmitted, the CFW shall be used. If the CFW is Idle, XM|T_2_|DLES is TRUE(1) and

ARB_WON is FALSE(O), XM|T_2_|DLES shall be set to FALSE(O) after two ldles are transmitted.

NOTE — When ARB_WON is TRUE(1) in this state, XM|T_2_|DLES will not be set to FALSE(O).

°Some L_P0rts may set the CF W to the received ARByx, this practice is not recommended.

DHPN-1008 / Page 53 of 150

BSR NCITS 332

If CLS is received and:

— ifARB_PEND is FALSE(O), the LPSM shall transmit the CFW and shall make the transition to the MONITORING
state (see item 12 and item13).

NOTE — If ARB_WON is TRUE(1) and if the L_Port had advertised a BB_Credit > O, in order to avoid any over-runs, it is advisable
that the number of available buffers at least equal BB_Credit before making the transition to the MONITORING state.

— ifARB_PEND is TRUE(1), the LPSM shall transmit the CFW and shall make the transition to the ARBITRATING
state (see item 4 and item 13).

If MRKtx is received and:

— if x = AL_PA of the L_Port, the LPSM shall transmit the CFW; the MRKtx is discarded;

— if the MK_TP and AL_PS match the expected values, the action identified by MK_TP shall be performed; or,

— if x <> AL_PA of the L_Port, the received MRKtx shall be retransmitted.

If LIP is recognized, the LPSM shall make the transition to the OPEN-INIT-START state (see item 1, item 21, and
clause 10).

If LPByx (y = AL_PA of the L_Port) or LPBfx is recognized, the LPSM shall set BYPASS to TRUE(1) and shall make

the transition to the MONITORING state (see item 12 and item 13). If any other LPByx is received, it shall be

replaced with the CFW.

If the LPSM detects a Loop Failure on its inbound fibre or the L_Port requests initialization (REQ(initia|ize)), the

LPSM shall make the transition to the INITIALIZATION process (see item 1, item 21, and clause 10).

lfthe L_Port requests to transmit a MRKtx (REQ(mark as tx)), the LPSM shall transmit one MRKtx at the next Fill

Word (see clause 7), unless REQ(mark as tx) is removed before MRKtX is transmitted.

44

DHPN-1008 / Page 54 of 150

BSR NCITS 332

19 State 6 (RECEIVED CLOSE) actions (table 10 and the following text describe the RECEIVED CLOSE state): The

L_Port may continue to transmit frames until Availab|e_BB_Credit or EE_Credit is exhausted. Any frame or R_RDY

received from the other L_Port shall be discarded. The LPSM shall process and shall not retransmit subsequent

Transmission Words received on its inbound fibre. The L_Port shall transmit Primitive Signals, Primitive Sequences,

orframes as specified in ANSI X3, FC-PH-x. The L_Port should promptly transmit any remaining frames (if any) and
then transmit CLS.

NOTE — The other L_Port participating in the Loop circuit may timeout receipt of this L_Port‘s CLS after LP_TOV.

When the LPSM transmits CLS (REQ(c|ose)):

— if ARB_PEND is FALSE(O), the LPSM shall transition to the MONITORING state (see item 12 and item 13).

NOTE — Before transmitting CLS, if the L_Port had advertised a BB_Credit > 0, in order to avoid any overruns, it is
advisable that the number of available buffers at least equal BB_Credit before making the transition to the MONITORING
state.

— if ARB_PEND is TRUE(1), the LPSM shall transition to the ARBITRATING state (see item 4 and item 13).

If ARB_PEND is TRUE(1) and if the L_Port no longer needs access to the Loop (eg, it was able to complete the

transmission of all its frames), then the L_Port may set ARB_PEND to FALSE(0). Subsequent to setting ARB_PEND

to FALSE(O), the L_Port shall change the CFW to the next received Fill Word and then transmit a minimum of six

(6) CFWs before transmitting CLS.

If Idle is received and:

— if ARB_PEND is FALSE(O), the CFW shall be set to Idle and ACCESS shall be set to TRUE(1) or

— if ARB_PEND is TRUE(1) and:

— ifXM|T_2_|DLES is FALSE(O), the CFW shall be changed to ARB(val) (where val = AL_PA of the L_Port)
or

— if XM|T_2_|DLES is TRUE(1), the CFW shall be changed to Idle.

If ARB(FO) is received and:

— if the CFW is not Idle or XM|T_2_|DLES is FALSE(O), XM|T_2_|DLES shall be set to TRUE(1) and:

— if ARB_WON is TRUE(1), the CFW shall be set to Idle or

NOTE — Receiving ARB(FO) indicates that no other L_Port is now arbitrating (i.e., no L_Port changed ARB(FO) to
ARB(va|)).

— if ARB_WON is FALSE(O), the CFW shall be modified as follows:

- if ARB_PEND is FALSE(O), the CFW shall be changed to ARB(FO) or

- if ARB_PEND is TRUE(1), the CFW shall be changed to ARB(val) (where val = AL_PA of the L_Port).

— if the CFW is Idle and XM|T_2_|DLES is TRUE(1), the CFW shall not be changed.

If ARByx is received and ARByx <> ARB(va|) (i.e., y <> x), the CFW should not be changed.”

|fARByx is received, ARB_WON is FALSE(O), ARB_PEND is TRUE(1), and either XM|T_2_|DLES is FALSE(0) or
the CFW is not Idle, then the CFW shall be modified as follows:

“Some L_P0rts may set the CF W to the received ARByx, this practice is not recommended.

DHPN-1008 / Page 55 of 150

BSR NCITS 332

46

— if ARByx = ARB(val) where val >= AL_PA of the L_Port, the CFW shall be changed to ARB(AL_PA) (where

AL_PA is the AL_PA of the L_Port) or

— if ARByx = ARB(val) where val < AL_PA of the L_Port, the CFW shall be changed to the received ARB(va|).

If ARByx is received, ARB_WON is FALSE(O), ARB_PEND is FALSE(O), and either XM|T_2_|DLES is FALSE(O)
or the CFW is not Idle, then the CFW shall be modified as follows:

— if ARByx = ARB(val) where val = AL_PA of the L_Port, the CFW shall be changed to Idle or

— ifARByX = ARB(val) where val <> AL_PA of the L_Port, the CFW shall be changed to the received ARB(va|).

If a Fill Word is to be transmitted, the CFW shall be used. lfthe CFW is Idle; XM|T_2_|DLES is TRUE(1); and,

ARB_WON is FALSE(O), XM|T_2_|DLES shall be set to FALSE(O) after two ldles are transmitted.

NOTE — When ARB_WON is TRUE(1) in this state, XM|T_2_|DLES will not be set to FALSE(O).

If MRKtx is received, where the MK_TP and AL_PS match the expected values, the action identified by MK_TP shall

be performed. The received MRKtx shall not be retransmitted.

If LIP is recognized, the LPSM shall make the transition to the OPEN-INIT-START state (see item 1, item 21, and
clause 10).

If LPByx (y = AL_PA of the L_Port) or LPBfx is recognized, the LPSM shall set BYPASS to TRUE(1) and transition

to the MONITORING state (see item 12 and item 13).

If the LPSM detects a Loop Failure on its inbound fibre or the L_Port requests initialization (REQ(initia|ize)), the

LPSM shall make the transition to the INITIALIZATION process (see item 1, item 21, and clause 10).

lfthe L_Port requests to transmit a MRKtx (REQ(mark as tx)), the LPSM shall transmit one MRKtx at the next Fill

Word (see clause 7), unless REQ(mark as tx) is removed before MRKtX is transmitted.

DHPN-1008 / Page 56 of 150

BSR NCITS 332

20 State 7 (TRANSFER) actions (table 11 and the following text describe the TRANSFER state): The L_Port shall set

DUPLEX to FALSE(0). The LPSM shall transmit only the CFW (except MRKtx). The L_Port shall process, but shall

not retransmit subsequent Transmission Words received on its inbound fibre (except MRKtx).

If the L_Port does not receive CLS in less than LP_TOV, the LPSM may make the transition to the NORMAL-
INITIALIZE state to transmit L|P(F7).

If Idle is received, the CFW shall be set to Idle and ACCESS shall be set to TRUE(1).

If ARB(FO) is received, the CFW shall be set to Idle and XM|T_2_|DLES shall be set to TRUE(1).

NOTE — Receiving ARB(FO) indicates that no other L_Port is now arbitrating (i.e., no L_Port changed ARB(FO) to ARB(vaI)).

If a Fill Word is to be transmitted, the CFW shall be used.

NOTE — Since ARB_WON is TRUE(1) in this state, XM|T_2_|DLES will not be set to FALSE(0).

If CLS is received and:

— the L_Port still requires access to the Loop (REQ(open yx) or REQ(open yy), the LPSM shall transmit OPNy to

replace the received CLS, shall set REPLICATE to FALSE(0), and shall make the transition to the OPEN state
(see item 11 and 16);

— the L_Port still requires access to the Loop (REQ(open fr) or REQ(open yr)), the LPSM shall transmit OPNr to

replace the received CLS, shall set REPLICATE to TRUE(1), and shall make the transition to the OPEN state
(see item 11 and 16); or,

— the L_Port no longer needs access to the Loop (REQ(monitor)), the LPSM shall make the transition to the

MONITORING state (see item 12 and item 13).

NOTE— Ifthe L_Port had advertised a BB_Credit > 0, in order to avoid any overruns, it is advisable that the number of available
buffers at least equal BB_Credit before making the transition to the OPEN or MONITORING state.

If MRKtx is received and:

— if x = AL_PA of the L_Port, the LPSM shall transmit the CFW; the MRKtx is discarded;

— if the MK_TP and AL_PS match the expected values, the action identified by MK_TP shall be performed; or,

— if x <> AL_PA of the L_Port, the received MRKtx shall be retransmitted.

If LIP is recognized, the LPSM shall make the transition to the OPEN-INIT-START state (see item 1, item 21, and
clause 10).

If LPByx (y = AL_PA of the L_Port) or LPBfx is recognized, the LPSM shall set BYPASS to TRUE(1) and shall make

the transition to the MONITORING state (see item 12 and item 13). If any other LPByx is received, it shall be

replaced by the CFW.

If the LPSM detects a Loop Failure on its inbound fibre or the L_Port requests initialization (REQ(initia|ize)), the

LPSM shall make the transition to the INITIALIZATION process (see item 1, item 21, and clause 10).

lfthe L_Port requests to transmit a MRKtx (REQ(mark as tx)), the LPSM shall transmit one MRKtx at the next Fill

Word (see clause 7), unless REQ(mark as tx) is removed before MRKtx is transmitted.

DHPN-1008 / Page 57 of 150

BSR NCITS 332

21

22

23

48

Process 8 (INITIALIZATION process) actions (table 12 and the following text describe the entry actions for the

INITIALIZATION process, and the state diagrams and text of 10.5.4 describe the detailed actions in these states):

The LPSM shall set BYPASS to FALSE(0); shall transmit the Transmissions Words as defined in 10.5.4; and, shall
not retransmit received Transmission Words except LPB and LPE or as required by 10.5.4.

NOTE — The INITIALIZATION process encompasses the INITIALIZING state that was defined in the first publication of this
standard.

Reserved

NOTE — The INITIALIZATION process encompasses the OPEN-INIT state that was defined in the first publication of this standard.

State A (OLD-PORT) actions (table 14 and the following text describe the entry actions to the optional OLD-PORT

state; the state diagrams and text of 10.5.4 describe the detailed actions in the OLD-PORT state): The LPSM shall

set the CFW to Idle; the L_Port shall process, but the LPSM shall not retransmit Transmission Words received on

its inbound fibre. The L_Port shall transmit Primitive Signals, Primitive Sequences, or frames as specified in ANSI

X3, FC-PH-x. Before Login“, the "Alternate BB_Credit Management" bit shall be set to 0 and the BB_Credit shall
be set to one (1).

“Private NL_Ports only support NL_P0rt Login.

DHPN-1008 / Page 58 of 150

9L_

BSR NCITS 332

Port state transition tables

The following tables provide complimentary and necessary information to the text in 8.4. The tables show the transitions

from one state to the next in the LPSM that are based directly on receipt of information from the inbound fibre or from

L_Port controls. All inputs affecting the LPSM are repeated in each table to provide an exhaustive list of related outputs
and transitions.

The following notations, conventions, and abbreviations are used in table 4 through table 14:

app.
DISP

FC-2

FP

f-d

h-d

Inst.

The ENTRY ACTIONS in the top block of tables 4-14 shall be completed before the LPSM shall accept any

condition specified in the column labeled ‘|NPUT.‘ The column labeled ‘ACTION / OUTPUT‘ typically represents
the action taken based on the received Transmission Word and identifies the next Transmission Word which

shall be transmitted on the Loop. In addition, there is minimal descriptive text as to what action should be taken

(e.g., ‘Receive Word‘ states that this Transmission Word is to be received by the L_Port).

When XM|T_2_|DLES is TRUE(1), ARB_WON is FALSE(O), and the LPSM has transmitted two (2) ldles, the

LPSM shall set XM|T_2_|DLES to FALSE(0) (see 8.1.1 and 8.4.3).

L_Port requests typically cause Transmission Words to be transmitted asynchronously to the request. Therefore,

the column labeled ‘ACTION / OUTPUT’ for L_Port requests may not relate to a Transmission Word.

‘None/Inst.‘ indicates that no Transmission Word is transmitted in this state.

‘when BB_Credit' implies that the number of receive buffers equals the advertised BB_Credit Login value of
the L_Port.

‘same word‘ implies that the Transmission Word which was received is retransmitted.

‘receive word‘ implies that the Transmission Word is presented to FC-2 of the L_Port for further processing.

Each Primitive Sequence entry represents the point of recognition (i.e., the third consecutive Transmission Word

of the same Ordered Set has been received).

If PARTICIPATE is FALSE(O), the L_Port does not have an AL_PA. Therefore, the entries for val = AL_PA,

x = AL_PA, or y = AL_PA are ignored and the entries for val <> AL_PA, x<> AL_PA, or y <> AL_PA shall be
followed.

Requests to an L_Port which are not appropriate inputs may be ignored. Some implementations may choose

to report an error status to the L_Port for these requests.

The entry labeled "ANY OTHER O.S." addresses the first and second Ordered Set of each Primitive Sequence.

(See ANSI X3, FC-PH-x, 16.4.1.)

The entry labeled "ANY OTHER O.S." is used to process an Ordered Set which is a valid Transmission Word,

but which is not specifically accounted for in the state tables. This allows new Ordered Sets to be defined
without disrupting previous implementations.

Entries "at the next Fill Word" and “at the next app. Fill Word" pertain to Fill Words at the L_Port's output.

appropriate N/A Not Applicable to this state

Disparity N/C No Change

ANSI X3, FC-PH-x FC-2 Protocol Opt. Optionally

Framing Protocol O.S. Ordered Set

full-duplex PSeq FC-PH Primitive Sequence(s)

half-duplex PSig FC-PH Primitive Signal(s)

Instantaneous (i.e., no Transmission

Words are transmitted in this state)
REQd Required

DHPN-1008 / Page 59 of 150

BSR NCITS 332

Table 4 — MONITORING (State 0) transitions

ENTRY ACTIONS

ACCESS := N/c DUPLEX := 0 DHD_RCV := N/c

ARB_PEND := 0 REPLICATE := 0 BYPASS := N/C

ARB_WON := 0 CFW := N/C ERR_INIT := 0

ARBf_SENT := 0 XM|T_2_|DLES := N/c

INPUT ACTION I OUTPUT NEXT STATE

LOSS of SYNC. < R_T_TOV Idle or CFW” MONITORING

Loop Failure
REPEAT = O . LOOP-FAIL-INITIALIZE

REPEAT = 1 MONITORING

INVALID TRANS. WORD FW MONITORING

RUNNING DISP at O.S. FW MONITORING

ELASTICITY WORD REQd MONITORING
VALID DATA WORD

FL_POrt MONITORING
NL_Port

REPLICATE = 0 Same Word MONITORING

REPLICATE = 1 Receive Word

Same Word MONITORING

VALID TRANS. WORD = O.S.

FRAME DELIMITER

FL_Port Same Word MONITORING
NL_Port

SOFXX

REPLICATE = 0 Same Word MONITORING

REPLICATE = 1 Receive Word

Same Word MONITORING

EOFXX

REPLICATE = 0 Same Word MONITORING

REPLICATE = 1 Receive Word

Same Word MONITORING

PRIMITIVE SIGNALS

Idle

REPEAT = 0

ARBf_SENT = 0 CFW := Idle
ACCESS := 1

CFW MONITORING

ARBf_SENT = 1 CFW := ARB(FF)
CFW MONITORING

REPEAT = 1 CFW := Idle

CFW MONITORING

FLRDY M0N'T0R'NG
ARByx

y <> X CFW” MONITORING

“The previous version of this standard used idle for the Output. lmplementors felt it was simpler to use the current Fill Word.

“Some L_P0rts may set the CF W to the received ARByx, however, it is recommended that the CF W is not changed.

50

DHPN-1008 / Page 60 of 150

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

ARB(FF)
REPEAT = 0

CFW <> Idle I
XM|T_2_|DLES = 0 CFW := ARB(FF)

CFW MONITORING

CFW = Idle &

XM|T_2_|DLES = 1 CFW MONITORING

REPEAT = 1 CFW := ARB(FF)
CFW MONITORING

ARB(F0)

CFW = Idle I ARB(FF)
REPEAT = 0 XM|T_2_|DLES :=1

CFW MONITORING

REPEAT = 1 CFW := ARB(F0)
CFW MONITORING

CFW <> Idle I ARB(FF) CFW := ARB(F0)
ARBf_SENT := 0

XM|T_2_|DLES := 1
CFW MONITORING

ARB(val)
REPEAT = 0

Val <> AL_PA

CFW <> Idle |
XM|T_2_|DLES = 0 CFW := ARB(va|)

ARBf_SENT := O
CFW MONITORING

CFW = Idle &

XM|T_2_|DLES = 1 ARBf_SENT := O
CFW MONITORING

val = AL_PA CFW := Idle

ARBf_SENT := O
CFW MONITORING

REPEAT = 1 CFW := ARB(va|)
CFW MONITORING

OPNr (OPNfr | OPNyr)
PARTICIPATE = 1

FL_Port Same Word MONITORING
NL_Port

f= hex 'FF‘

REPEAT = O REPLICATE := 1

Same Word MONITORING

REPEAT = 1 Same Word MONITORING

y = AL_PA
REPEAT = O REPLICATE := 1

Same Word MONITORING

REPEAT = 1 Same Word MONITORING

All other OPNr Same Word MONITORING

PARTICIPATE = 0 Same Word MONITORING

OPNy
REPEAT = 0

y = AL_PA OPENED

y <>AL_PA MONITORING
REPEAT = 1 MONITORING

DHPN-1008 / Page 61 of 150

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

CLS

REPLICATE = 0 Same Word MONITORING

REPLICATE = 1 REPLICATE := 0

Same Word MONITORING

M0N'T0R'NG
MRKtX

REPEAT = 0

X = AL_PA MONITORING

X <>AL_PA MONITORING
REPEAT = 1 MONITORING

PRIMITIVE SEQUENCES

LIP

BYPASS = O None/Inst. OPEN-INIT-START

BYPASS = 1 PARTICIPATE := O

ARBf_SENT := 0
Same Word MONITORING

LPB (LPByx | LPBfx)
x = AL_PA

REPEAT = O CFW MONITORING

REPEAT = 1 Same Word MONITORING

y <>AL_PA Same Word MONITORING

y = AL_PA REPLICATE := O
BYPASS := 1

ARBf_SENT := 0
Same Word MONITORING

REPLICATE := O

BYPASS := 1

ARBf_SENT := 0
Same Word MONITORING

LPE (LPEyx | LPEfx)
x = AL_PA

REPEAT = O CFW MONITORING

REPEAT = 1 Same Word MONITORING

y <>AL_PA Same Word MONITORING

y = AL_PA BYPASS := 0
Same Word MONITORING

f= hex 'FF‘ BYPASS := 0

Same Word MONITORING

52

DHPN-1008 / Page 62 of 150

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

L_Port CONTROLS

REQ(monitor) None/Inst. MONITORING

REQ(arb Own AL_PA)
ACCESS = 0 MONITORING

ACCESS = 1

REPEAT = O ARBITRATING

REPEAT = 1 MONITORING

REQ(arbitrate FF)
REPEAT = O

CFW = Idle ARBf_SENT := 1 MONITORING
(when 6 Idles sent)

CFW <> Idle None/Inst. MONITORING

REPEAT = 1 None/Inst. MONITORING

None/Inst. MONITORING
None/Inst. MONITORING
None/Inst. MONITORING
None/Inst. MONITORING
None/Inst. MONITORING
None/Inst. MONITORING
None/Inst. MONITORING
None/Inst. OLD-PORT-REQ
None/Inst. NORMAL-INITIALIZE

REQ(nonparticipat.) Optionally Transmit 12 LIPS
PARTICIPATE := O

ARBf_SENT := O MONITORING

REQ(mark as tx)
REPEAT = O MRKtx at the next Fill Word MONITORING

REPEAT = 1 None/Inst. MONITORING

REQ(bypass L_Port) REPLICATE := O
BYPASS := 1

ARBf_SENT := O MONITORING

None/Inst. MONITORING
None/Inst. MONITORING
BYPASS :=o MONITORING

None/Inst. MONITORING
None/Inst. MONITORING

REQ(initiaIize) None/Inst. NORMAL-INITIALIZE

DHPN-1008 / Page 63 of 150

BSR NCITS 332

Table 5 — ARBITRATING (State 1) transitions

ENTRY ACTIONS

ACCESS := N/C DUPLEX := 0 DHD_RCV := N/C

ARB_PEND := N/C REPLICATE := N/C BYPASS := N/C

ARB_WON := 0 CFW := N/C ERR_|N|T := N/C

ARBf_SENT := N/C XM|T_2_|DLES := N/C

INPUT NEXT STATE
LOSS of SYNC. < R_T_TOV ARBITRATING
Loop Failure LOOP-FAIL-IINITIALIZE
INVALID TRANS. WORD ARBITRATING
RUNNING DISP at o.s. ARBITRATING
ELASTICITY WORD REQd ARBITRATING
VALID DATA WORD

FL_Port Same Word ARBITRATING
NL_Port:

REPLICATE = 0 Same Word ARBITRATING

REPLICATE = 1 Receive Word

Same Word ARBITRATING

VALID TRANS. WORD =O.S.

FRAME DELIMITER

FL_Port Same Word ARBITRATING
NL_Port:

SOFXX

REPLICATE = 0 Same Word ARBITRATING

REPLICATE = 1 Receive Word

Same Word ARBITRATING

EOFXX

REPLICATE = 0 Same Word ARBITRATING

REPLICATE = 1 Receive Word

Same Word ARBITRATING

PRIMITIVE SIGNALS

Idle

XM|T_2_|DLES = 0 CFW := ARB(AL_PA)
ARB_PEND := 1
CFW ARBITRATING

XM|T_2_|DLES = 1 CFW := Idle
CFW ARBITRATING

FLRDY ARB'TRAT'NG
ARByx

y <> X CFW” ARBITRATING

“While some L_P0rts may set the CFW to the received ARByx, it is recommended that the CF W is not changed.

54

DHPN-1008 / Page 64 of 150

val = AL_PA
CFW = IDLE &

XM|T_2_|DLES = 1

OPNr (OPNfr | OPNyr)
FL_Port

NL_Port
f= hex 'FF‘

y = AL_PA

All other OPNr

CFW := ARB(va|)
CFW

CFW := ARB(AL_PA)
ARB_PEND := 1

XM|T_2_|DLES := 1
CFW

CFW := ARB(AL_PA)
ARB_PEND := 1
CFW
None/Inst.

CFW

Same Word

REPLICATE := 1

Same Word

REPLICATE := 1

Same Word

Same Word

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATION WON

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

ARB(va|)

CFW <> IDLE I
XM|T_2_|DLES = 0

OPENED

ARBITRATING

CLS

REPLICATE = 0 Same Word

REPLICATE = 1 REPLICATE := 0

Same Word ARBITRATING

ARB'TRAT'NG

CFW ARBITRATING

Same Word ARBITRATING

PRIMITIVE SEQUENCES

None/Inst. OPEN-INIT-START
LPB (LPByx| LPBfx)

ARBITRATINGx = AL_PA CFW

y <>AL_PA Same Word ARBITRATING

y = AL_PA BYPASS := 1
None/Inst. MONITORING

f= hex 'FF‘ BYPASS := 1

None/Inst. MONITORING

ARBITRATING

DHPN-1008 / Page 65 of 150

BSR NCITS 332

INPUT

L_Port CONTROLS

REQ(monitor)

REQ(arb own AL_PA) None/Inst.

REQ(open yx) f-d

REQ(open yy) h-d None/Inst.

REQ(open fr)

REQ(open yr)

REQ(c|ose)

REQ(send DHD)

REQ(transfer)

REQ(o|d-port)

REQ(participating)

ACTION I OUTPUT NEXT STATE

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

ARBITRATING

NORMAL-INITIALIZE

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

REQ(nonparticipat.) None/Inst.

REQ(mark as tx) MRKtx at the next Fill Word

REQ(bypass L_Port) None/Inst.

REQ(bypass L_Port y)

REQ(bypass all)

REQ(enab|e L_Port)

REQ(enab|e L_Port y)

REQ(enab|e all)

REQ(initia|ize) None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

56

DHPN-1008 / Page 66 of 150

BSR NCITS 332

Table 6 — ARBITRATION WON (State 2) transitions

ENTRY ACTIONS

ACCESS := N/C DUPLEX := N/C DHD_RCV := N/C

ARB_PEND := N/C REPLICATE := N/C BYPASS := N/C

ARB_WON := N/C CFW := N/C ERR_|N|T := N/C

ARBf_SENT := N/C XM|T_2_|DLES := N/C

INPUT ACTION I OUTPUT NEXT STATE

LOSS of SYNC. < R_T_TOV N/A

Loop Failure N/A

INVALID TRANS. WORD N/A

RUNNING DISP at O.S. N/A

ELASTICITY WORD REQd N/A

VALID DATA WORD N/A

VALID TRANS. WORD =O.S.

FRAME DELIMITERS

SOFXX

EOFXX

PRIMITIVE SIGNALS

R_RDY

ARByx

OPNr

OPNy

CLS

DHD

MRKtx

PRIMITIVE SEQUENCES

LIP

LPB (LPByx | LPBfx)

LPE (LPEyx | LPEfx)

ANY OTHER O.S.

DHPN-1008 / Page 67 of 150

BSR NCITS 332

INPUT

L_Port CONTROLS

REQ(monitor) N/A N/A

REQ(arb own AL_PA) N/A N/A

REQ(open yx) f-d OPNyx OPEN

REQ(open yy) h-d OPNyy OPEN

REQ(open fr) REPL|CATE:=1
OPNfi

REQ(open yr) REPL|CATE:=1

OPNyr

REQ(c|ose) y := AL_PA of L_Port

OPNyy OPEN

REQ(send DHD) N/A N/A

REQ(transfer) N/A N/A

REQ(o|d-port) N/A N/A

REQ(participating) N/A N/A

REQ(nonparticipat.) N/A N/A

REQ(mark as tx) N/A N/A

REQ(bypass L_Port) N/A N/A

REQ(bypass L_Port y) N/A N/A

REQ(bypass all) N/A N/A

REQ(enab|e L_Port) N/A N/A

REQ(enab|e L_Port y) N/A N/A

REQ(enab|e all) N/A N/A

REQ(initia|ize) None/Inst. NORMAL-INITIALIZE

ACTION I OUTPUT NEXT STATE

OPEN

OPEN

58

DHPN-1008 / Page 68 of 150

BSR NCITS 332

Table 7 — OPEN (State 3) transitions

ENTRY ACTIONS

ACCESS := 0 if using fairness DUPLEX := 1 DHD_RCV := N/C

ACCESS := 1 if not using REPLICATE := N/C BYPASS := N/C

fairness CFW := ARB(FO) ERR_|N|T := N/C

ARB_PEND := 0 XM|T_2_|DLES := N/C

ARB_WON := 1

ARBf_SENT := N/C

INPUT

LOSS of SYNC. < R_T_TOV

Loop Failure

INVALID TRANS. WORD FC-2 FP/PSig/PSeq OPEN

RUNNING DISP at O.S. FC-2 FP/PSig/PSeq OPEN

ELASTICITY WORD REQd N/A OPEN

VALID DATA WORD FC-2 FP/PSig/PSeq OPEN

VALID TRANS. WORD =O.S.

FRAME DELIMITERS

SOFXX

EOFXX

PRIMITIVE SIGNALS

ACTION I OUTPUT

FC-2 FP/PSig/PSeq

None/Inst.

NEXT STATE

OPEN

LOOP-FAIL-INITIALIZE

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

CFW := Idle

ACCESS := 1

FC-2 FP/PSig/PSeq OPEN

R_RDY FC-2 FP/PSig/PSeq OPEN

ARB(FO) CFW := Idle

XM|T_2_|DLES := 1

FC-2 FP/PSig/PSeq OPEN

FC-2 FP/PSig/PSeq OPEN

OPNr FC-2 FP/PSig/PSeq OPEN

OPNy FC-2 FP/PSig/PSeq OPEN

CLS FC-2 FP/PSig/PSeq RECEIVED CLOSE

DHD FC-2 FP/PSig/PSeq OPEN

MRKtx FC-2 FP/PSig/PSeq OPEN

PRIMITIVE SEQUENCES

LIP None/Inst.

LPB(LPByx | LPBfx)
x = AL_PA FC-2 FP/PSig/PSeq OPEN

y <>AL_PA FC-2 FP/PSig/PSeq OPEN

y = AL_PA BYPASS := 1
None/Inst. MONITORING

f= hex 'FF‘ BYPASS := 1

None/Inst. MONITORING

LPE (LPEyx| LPEfx) FC-2 FP/PSig/PSeq

ANY OTHER o.s. FC-2 FP/PSig/PSeq

ARByx

OPEN-INIT-START

DHPN-1008 / Page 69 of 150

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

L_POrt CONTROLS

None/Inst. OPEN
None/Inst. OPEN
None/Inst. OPEN

OPEN
REQ(open fr)

REPLICATE = 0 None/Inst. OPEN

REPLICATE = 1 OPNfr at the next app. Fill Word OPEN (when OPNfr sent)

REQ(Open yr)
REPLICATE = 0

REPLICATE = 1 OPNyr at the next app. Fill Word OPEN (when OPNyr sent)

REQ(close) CLS at the next app. Fill Word XMITTED CLOSE

(when CLS sent)

REQ(send DHD)
DUPLEX = 0 None/Inst. OPEN
DUPLEX = 1 DUPLEX := 0

DHD at the next app. Fill Word OPEN (when DHD sent)

REQ(transfer)

ACCESS = O CLS at the next app. Fill Word XMITTED CLOSE

(when CLS sent)

ACCESS = 1 CLS at the next app. Fill Word TRANSFER (when CLS sent)

REQ(old-port) OPEN

REQ(participating) OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

NORMAL-INITIALIZE

None/Inst.

None/Inst.

None/Inst.

MRKtx at the next Fill Word

REQ(nOnparticipat.)

REQ(mark as tx)

REQ(bypass L_Port) None/Inst.

REQ(bypass L_POrt y) LPByx at the next Fill Word

REQ(bypass all) LPBfx at the next Fill Word

REQ(enab|e L_POrt)

REQ(enab|e L_Port y) LPEyx at the next Fill Word

REQ(enab|e all) LPEfx at the next Fill Word

REQ(initialize) None/Inst.

None/Inst.

60

DHPN-1008 / Page 70 of 150

BSR NCITS 332

Table 8 — OPENED (State 4) transitions

ENTRY ACTIONS

ACCESS := N/C DUPLEX := 0 if OPNyy DHD_RCV := O

ARB_PEND := N/C DUPLEX := 1 if OPNyX BYPASS := N/C

ARB_WON := 0 REPLICATE := 0 ERR_|N|T := N/C

ARBf_SENT := N/C CFW := N/C XM|T_2_|DLES := N/C

INPUT ACTION I OUTPUT NEXT STATE

LOSS of SYNC. < R_T_TOV FC-2 FP/PSig/PSeq OPENED

Loop Failure None/Inst. LOOP-FAIL-INITIALIZE

INVALID TRANS. WORD FC-2 FP/PSig/PSeq OPENED

RUNNING DISP at O.S. FC-2 FP/PSig/PSeq OPENED

ELASTICITY WORD REQd N/A OPENED

VALID DATA WORD FC-2 FP/PSig/PSeq OPENED

VALID TRANS. WORD = O.S.

FRAME DELIMITERS

SOFXX

EOFXX

PRIMITIVE SIGNALS

Idle

ARB_PEND = O CFW := Idle
ACCESS := 1

FC-2 FP/PSig/PSeq OPENED

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

OPENED

OPENED

ARB_PEND = 1

XM|T_2_|DLES = 0 CFW := ARB(AL_PA)

FC-2 FP/PSig/PSeq OPENED

XM|T_2_|DLES = 1 CFW := Idle

FC-2 FP/PSig/PSeq OPENED

R_RDY FC-2 FP/PSig/PSeq OPENED

ARB(F0)

CFW <> Idle 1
XM|T_2_|DLES = 0

ARB_PEND = 0 CFW := ARB(F0)

XM|T_2_|DLES := 1

FC-2/FP/PSig/PSeq OPENED

ARB_PEND = 1 CFW := ARB(AL_PA)

XM|T_2_|DLES := 1

FC-2/FP/PSig/PSeq OPENED
CFW = Idle &

XM|T_2_|DLES = 1 FC-2/FP/PSig/PSeq OPENED

ARByx

y <> X FC-2 FP/PSig/PSeq‘5 OPENED

“While some L_POI'IS may set the CFW to the received ARByx, it is recommended that the CF W is not changed.

DHPN-1008 / Page 71 of 150

BSR NCITS 332

62

INPUT ACTION I OUTPUT NEXT STATE

ARB(val)

CFW <> Idle |
XM|T_2_|DLES = 0

ARB_PEND = 0

val <>AL_PA

val = AL_PA

ARB_PEND = 1

val >=AL_PA

val < AL_PA

CFW = Idle &

XM|T_2_|DLES = 1

OPNr

OPNy

CLS

DHD

MRKtX

PRIMITIVE SEQUENCES

LIP

LPB (LPByx| LPBfx)
y <>AL_PA

y = AL_PA

f= hex 'FF‘

LPE (LPEyx|LPEfx)

ANY OTHER o.s.

CFW := ARB(va|)

FC-2 FP/PSig/PSeq
CFW := Idle

FC-2 FP/PSig/PSeq

CFW := ARB(AL_PA)

FC-2 FP/PSig/PSeq

CFW := ARB(va|)

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

DHD_RCV := 1

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

RECEIVED CLOSE

OPENED

OPENED

None/Inst. OPEN-INIT-START

FC-2 FP/PSig/PSeq
BYPASS := 1
None/Inst.

BYPASS := 1
None/Inst.

FC-2 FP/PSig/PSeq OPENED

FC-2 FP/PSig/PSeq OPENED

OPENED

MONITORING

MONITORING

DHPN-1008 / Page 72 of 150

BSR NCITS 332

INPUT

L_PORT CONTROLS

REQ(monitor)

REQ(arb own AL_PA) None/Inst.

REQ(open yx) f-d

REQ(open yy) h-d None/Inst.

REQ(open fr)

REQ(open yr)

REQ(c|ose)

ACTION I OUTPUT NEXT STATE

OPENED

OPENED

OPENED

OPENED

OPENED

None/Inst. OPENED

CLS at the next app. Fill XMITTED CLOSE

Word (when CLS sent)

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

OPENED

NORMAL-INITIALIZE

None/Inst.

None/Inst.

None/Inst.

REQ(send DHD)

REQ(transfer)

REQ(old-port)

REQ(participating)

None/Inst.

None/Inst.

None/Inst.

None/Inst.

REQ(nonparticipat.) None/Inst.

REQ(mark as tx) MRKtx at the next Fill Word

REQ(bypass L_Port) None/Inst.

REQ(bypass L_Port y) None/Inst.

REQ(bypass all) None/Inst.

REQ(enab|e L_Port)

REQ(enab|e L_Port y)

REQ(enab|e all)

REQ(initialize) None/Inst.

None/Inst.

None/Inst.

None/Inst.

DHPN-1008 / Page 73 of 150

BSR NCITS 332

Table 9 — XMITTED CLOSE (State 5) transitions

ENTRY ACTIONS

ACCESS := N/C DUPLEX := O DHD_RCV := N/C

ARB_PEND := N/C REPLICATE := N/C BYPASS := N/C

ARB_WON := N/C CFW := N/C ERR_|N|T := N/C

ARBf_SENT := N/C XM|T_2_|DLES := N/C

INPUT ACTION I OUTPUT NEXT STATE

LOSS of SYNC. < R_T_TOV Idle or CFW XMITTED CLOSE

Loop Failure None/Inst. LOOP-FAIL-INITIALIZE

INVALID TRANS. WORD CFW XMITTED CLOSE

RUNNING DISP at O.S. CFW XMITTED CLOSE

ELASTICITY WORD REQd N/A XMITTED CLOSE

VALID DATA WORD CFW XMITTED CLOSE

VALID TRANS. WORD =O.S.

FRAME DELIMITERS

SOFXX

EOFXX

PRIMITIVE SIGNALS

Idle

ARB_PEND = 0 CFW := Idle
ACCESS := 1

CFW XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

ARB_PEND = 1

XM|T_2_|DLES = 0 CFW := ARB(AL_PA)
CFW XMITTED CLOSE

XM|T_2_|DLES = 1 CFW := Idle
CFW XMITTED CLOSE

XMITTED CLOSE

ARB(F0)

CFW <> Idle |
XM|T_2_|DLES = 0

ARB_WON =1 CFW := Idle

XM|T_2_|DLES := 1
CFW XMITTED CLOSE

ARB_WON = 0

ARB_PEND = 0 CFW := ARB(F0)

XM|T_2_|DLES := 1
CFW XMITTED CLOSE

ARB_PEND = 1 CFW := ARB(AL_PA)

XM|T_2_|DLES := 1
CFW XMITTED CLOSE

CFW = Idle &

XM|T_2_|DLES = 1 CFW XMITTED CLOSE

ARByx

y <> X CFW‘6 XMITTED CLOSE

“While some L_P0rIs may set the CFW to the received ARByx, it is recommended that the CF W is not changed.

64

DHPN-1008 / Page 74 of 150

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

ARB(va|)

ARB_WON = 1 XMITTED CLOSE

ARB_WON = O

CFW <> Idle |
XM|T_2_|DLES = 0

ARB_PEND = 0

val <>AL_PA CFW := ARB(va|)
CFW XMITTED CLOSE

val = AL_PA CFW := Idle
CFW XMITTED CLOSE

ARB_PEND = 1

val >=AL_PA CFW := ARB(AL_PA)
CFW XMITTED CLOSE

val < AL_PA CFW := ARB(va|)
CFW XMITTED CLOSE

CFW = Idle &

XM|T_2_|DLES = 1 CFW XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

CLS

ARB_WON = O

ARB_PEND = 0 CFW MONITORING

ARB_PEND = 1 CFW ARBITRATING

ARB_WON = 1

ARB_PEND = 0 CFW MONITORING

(when BB_Credit)

ARB_PEND = 1 CFW ARBITRATING

(when BB_Credit)

CFW XMITTED CLOSE

CFW XMITTED CLOSE

Same Word XMITTED CLOSE

PRIMITIVE SEQUENCES

None/Inst. OPEN-INIT-START
LPB (LPByx | LPBfx)

x = AL_PA CFW XMITTED CLOSE

y <>AL_PA CFW XMITTED CLOSE

y = AL_PA BYPASS := 1
None/Inst. MONITORING

f= hex 'FF‘ BYPASS := 1

None/Inst. MONITORING

LPE (LPEyX | LPEfX) CFW XMITTED CLOSE

ANY OTHER O.S. CFW XMITTED CLOSE

DHPN-1008 / Page 75 of 150

BSR NCITS 332

INPUT

L_Port CONTROLS

REQ(monitor)

REQ(arb own AL_PA) None/Inst.

REQ(open yx) f-d

REQ(open yy) h-d None/Inst.

REQ(open fr)

REQ(open yr)

REQ(c|ose)

REQ(send DHD)

REQ(transfer)

REQ(o|d-port)

REQ(participating)

ACTION I OUTPUT NEXT STATE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

XMITTED CLOSE

NORMAL-INITIALIZE

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

REQ(nonparticipat.) None/Inst.

REQ(mark as tx) MRKtx at the next Fill Word

REQ(bypass L_Port) None/Inst.

REQ(bypass L_Port y)

REQ(bypass all)

REQ(enab|e L_Port)

REQ(enab|e L_Port y)

REQ(enab|e all)

REQ(initia|ize) None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

66

DHPN-1008 / Page 76 of 150

BSR NCITS 332

Table 10 — RECEIVED CLOSE (State 6) transitions

ENTRY ACTIONS

ACCESS := N/C DUPLEX :=N/C DHD_RCV := N/C

ARB_PEND := N/C REPLICATE := N/C BYPASS := N/C

ARB_WON := N/C CFW := N/C ERR_|N|T := N/C

ARBf_SENT := N/C XM|T_2_|DLES := N/C

INPUT ACTION I OUTPUT NEXT STATE

LOSS of SYNC. < R_T_TOV FC-2 FP/PSig/PSeq RECEIVED CLOSE

Loop Failure None/Inst. LOOP-FAIL-INITIALIZE

INVALID TRANS. WORD FC-2 FP/PSig/PSeq RECEIVED CLOSE

RUNNING DISP at O.S. FC-2 FP/PSig/PSeq RECEIVED CLOSE

ELASTICITY WORD REQd N/A RECEIVED CLOSE

VALID DATA WORD FC-2 FP/PSig/PSeq RECEIVED CLOSE

VALID TRANS. WORD =O.S.

FRAME DELIMITERS

SOFXX

EOFXX

PRIMITIVE SIGNALS

Idle

ARB_PEND = O CFW := Idle
ACCESS := 1

FC-2 FP/PSig/PSeq RECEIVED CLOSE

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

RECEIVED CLOSE

RECEIVED CLOSE

ARB_PEND = 1

XM|T_2_|DLES = 0 CFW := ARB(AL_PA)

FC-2 FP/PSig/PSeq RECEIVED CLOSE

XM|T_2_|DLES = 1 CFW := Idle

FC-2/FP/PSig/PSeq RECEIVED CLOSE

R_RDY FC-2 FP/PSig/PSeq RECEIVED CLOSE

ARB(F0

CFW <> Idle I
XM|T_2_|DLES = 0

ARB_WON = 1 CFW := Idle

XM|T_2_|DLES := 1

FC-2 FP/PSig/PSeq RECEIVED CLOSE

ARB_WON = 0

ARB_PEND = 0 CFW := ARB(F0)

XM|T_2_|DLES := 1

FC-2 FP/PSig/PSeq RECEIVED CLOSE

ARB_PEND = 1 CFW := ARB(AL_PA)

XM|T_2_|DLES := 1

FC-2 FP/PSig/PSeq RECEIVED CLOSE
CFW = Idle &

XM|T_2_|DLES = 1 FC-2/FP/PSig/PSeq RECEIVED CLOSE

ARByx

y <> X FC-2 FP/PSig/PSeq” RECEIVED CLOSE

“While some L_P0rts may set the CFW to the received ARByx, it is recommended that the CF W is not changed.

DHPN-1008 / Page 77 of 150

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

ARB(va|)

ARB_WON = 1

ARB_WON = O

CFW <> Idle |
XM|T_2_|DLES = 0

ARB_PEND = 0

val <>AL_PA

val = AL_PA

ARB_PEND = 1

val >=AL_PA

val < AL_PA

CFW = Idle &

XM|T_2_|DLES = 1

OPNr

OPNy

CLS

DHD

MRKtX

PRIMITIVE SEQUENCES

LPB (LPByx| LPBfx)
x = AL_PA

y <>AL_PA

y = AL_PA

f= hex 'FF‘

FC-2 FP/PSig/PSeq

CFW := ARB(va|)

FC-2 FP/PSig/PSeq
CFW := Idle

FC-2 FP/PSig/PSeq

CFW := ARB(AL_PA)

FC-2 FP/PSig/PSeq

CFW := ARB(va|)

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq

None/Inst.

FC-2 FP/PSig/PSeq

FC-2 FP/PSig/PSeq
BYPASS := 1
None/Inst.

BYPASS := 1
None/Inst.

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

OPEN-INIT-START

RECEIVED CLOSE

RECEIVED CLOSE

MONITORING

MONITORING

LPE (LPEyx| LPEfx) FC-2 FP/PSig/PSeq

ANY OTHER o.s. FC-2 FP/PSig/PSeq

RECEIVED CLOSE

RECEIVED CLOSE

68

DHPN-1008 / Page 78 of 150

BSR NCITS 332

INPUT

L_Port CONTROLS

REQ(monitor)

REQ(arb own AL_PA) None/Inst.

REQ(open yx) f-d

REQ(open yy) h-d None/Inst.

REQ(open fr)

REQ(open yr) None/Inst.

REQ(c|ose)

ARB_PEND = 0 When BB_Credit, CLS at the MONITORING

next app. Fill Word (when CLS sent)

ARB_PEND = 1 When BB_Credit, CLS at the ARBITRATING

next app. Fill Word (when CLS sent)

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

NORMAL-INITIALIZE

ACTION I OUTPUT NEXT STATE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

RECEIVED CLOSE

None/Inst.

None/Inst.

None/Inst.

REQ(send DHD)

REQ(transfer)

REQ(o|d-port)

REQ(participating)

None/Inst.

None/Inst.

None/Inst.

None/Inst.

REQ(nonparticipat.) None/Inst.

REQ(mark as tx) MRKtx at the next Fill Word

REQ(bypass L_Port) None/Inst.

REQ(bypass L_Port y)

REQ(bypass all)

REQ(enab|e L_Port)

REQ(enab|e L_Port y)

REQ(enab|e all)

REQ(initia|ize) None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

DHPN-1008 / Page 79 of 150

BSR NCITS 332

Table 11 — TRANSFER (State 7) transitions

ENTRY ACTIONS

ACCESS := N/C DUPLEX := O DHD_RCV := N/C

ARB_PEND := N/C REPLICATE := N/C BYPASS := N/C

ARB_WON := N/C CFW := N/C ERR_|N|T := N/C

ARBf_SENT := N/C XM|T_2_|DLES := N/C

INPUT ACTION I OUTPUT NEXT STATE

LOSS of SYNC. < R_T_TOV Idle or CFW TRANSFER

Loop Failure None/Inst. LOOP-FAIL-INITIALIZE

INVALID TRANS. WORD CFW TRANSFER

RUNNING DISP at O.S. CFW TRANSFER

ELASTICITY WORD REQd N/A TRANSFER

VALID DATA WORD CFW TRANSFER

VALID TRANS. WORD =O.S.

FRAME DELIMITERS

SOFXX

EOFXX

PRIMITIVE SIGNALS

TRANSFER

TRANSFER

CFW := Idle

ACCESS := 1

CFW TRANSFER

R_RDY TRANSFER

ARB(F0) CFW := Idle

XM|T_2_|DLES := 1
CFW TRANSFER

CFW TRANSFER

OPNr CFW TRANSFER

OPNy CFW TRANSFER

CLS Per applicable request under

L_Port CONTROLS in this table

DHD CFW

ARByx

OPEN / MONITORING

TRANSFER

CFW TRANSFER

Same Word TRANSFER

PRIMITIVE SEQUENCES

LIP None/Inst. OPEN-|N|T-START

LPB (LPByx | LPBfx)
x = AL_PA CFW TRANSFER

y <>AL_PA CFW TRANSFER

y = AL_PA BYPASS := 1
None/Inst. MONITORING

f= hex 'FF‘ BYPASS := 1

None/Inst. MONITORING

70

DHPN-1008 / Page 80 of 150

BSR NCITS 332

INPUT ACTION I OUTPUT NEXT STATE

ANY OTHER O.S. CFW TRANSFER

L_Port CONTROLS

REQ(monitor) CFW when CLS received MONITORING

(when BB_Credit)

TRANSFERREQ(arb own AL_PA) None/Inst.

REQ(open yx) f-d When CLS received & BB_Credit
REPLICATE := O

OPNyx

REQ(open yy) h-d When CLS received & BB_Credit
REPLICATE := O

OPNyy

REQ(open fr) When CLS received & BB_Credit
REPLICATE := 1

OPNfi

REQ(open yr) When CLS received & BB_Credit
REPLICATE := 1

OPNyr OPEN

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER

NORMAL-INITIALIZE

REQ(c|ose)

REQ(send DHD)

REQ(transfer)

REQ(o|d-port)

REQ(participating)

None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

REQ(nonparticipat.) None/Inst.

REQ(mark as tx) MRKtx at the next Fill Word

REQ(bypass L_Port) None/Inst.

REQ(bypass L_Port y) None/Inst.

REQ(bypass all)

REQ(enab|e L_Port)

REQ(enab|e L_Port y)

REQ(enab|e all)

REQ(initia|ize) None/Inst.

None/Inst.

None/Inst.

None/Inst.

None/Inst.

DHPN-1008 / Page 81 of 150

BSR NCITS 332

Table 12 — INITIALIZATION process (State 8) transitions

ENTRY ACTIONS

ACCESS := 1 DUPLEX := 0 DHD_RCV := 0

ARB_PEND := 0 REPLICATE := 0 BYPASS := 0

ARB_WON := 0 CFW := Idle ERR_|N|T := (see 10.5.4)

ARBf_SENT := O BB_Credit := O XM|T_2_|DLES := 0

Alternate BB_Credit := 1

INPUT ACTION I OUTPUT NEXT STATE

Described in 10.5.4 ——

Table 13 — Reserved

Table 14 — OLD-PORT (State A) transitions (optional)

ENTRY ACTIONS

ACCESS := N/C DUPLEX := N/C DHD_RCV := N/C

ARB_PEND := N/C REPLICATE := N/C BYPASS := (see 10.5.4)

ARB_WON := N/C CFW := Idle ERR_|N|T := (see 10.5.4)

ARBf_SENT := N/C BB_Credit := 1 XM|T_2_|DLES := 0

Alternate BB_Credit := 0

INPUT ACTION I OUTPUT NEXT STATE

Described in 10.5.4 ——

72

DHPN-1008 / Page 82 of 150

BSR NCITS 332

10 Loop Initialization procedure

Loop Initialization is a logical procedure used by an L_Port to determine its environment and to validate an AL_PA.

During the procedure, the L_Port uses the LPSM and FC-2 protocol to discover its environment and react appropriately.

At least a 132 byte receive buffer shall be available to receive each of the following Loop Initialization frames (see 10.5):

LIFA, LIPA, LIHA, LISA, LIRP, and LILP; all other frames (i.e., LISM) may be discarded if the L_Port cannot accept the

frame (e.g., buffers are full).

10.1 Loop Initialization summary

A general summary of Loop Initialization follows (see 8.4.3, item 21, table 12, and 10.5.4):

During Loop Initialization, one L_Port shall win as Loop Initialization Master (LIM) to manage the initialization

procedure. All FL_Ports shall be capable of performing this function; NL_Ports may perform this function.

However, if no L_Port is selected as the LIM during the LISM sequence, then the Loop is inoperative.

During Loop Initialization, only SOFiL shall be used to precede the Loop Initialization Sequences. R_RDYs shall

not be used for flow-control and shall not be transmitted. If an R_RDY is received, it shall be discarded.

PARTICIPATE is set FALSE(O) when ARB(FO) is received and TRUE(1) when an AL_PA is taken in the Loop

Initialization Sequences LIFA, LIPA, LIHA or LISA. In FC-AL-1, PARTICIPATE was set TRUE(1) after CLOSE was

received and not well defined between ARB(FO) and CLOSE being received.

If a non-L_Port is attached point-to-point to the L_Port, the L_Port may complete the initialization procedure

described in ANSI X3, FC-PH-x, the OLD-PORT state. While in the OLD-PORT state, only FC-2 specified

communication shall be used between the L_Port and the non-L_Port without further use of the Loop protocol.

If two or more L_Ports are connected in a Loop without any non-L_Ports present, one FL_Port and up to 126

NL_Ports may finish the initialization procedure in the MONITORING state and in the Participating mode. FC-2

specified communication is used as permitted by the Loop LPSM.

If one or more non-L_Ports are connected in a Loop with one or more L_Ports, the Loop is not operational.

Arbitrary positioning of non-L_Ports on a Loop may cause one or more L_Ports to discover that at least one

upstream L_Port is an L_Port. However, the L_Ports are unable to successfully complete the remaining portions

of the initialization procedure and remain in the initialization procedure.

If more than one FL_Port or more than 126 NL_Ports are connected to a Loop, only one FL_Port and up to 126

NL_Ports may enter the Participating mode. The remaining L_Ports operate in the MONITORING state and in the
Non-Participating mode.

The initialization procedure permits a Non-Participating L_Port to attempt Loop Initialization after waiting an
implementation-selected time or when a Participating L_Port voluntarily yields its AL_PA. This allows the limited

number of available AL_PAs to be shared.

NOTE— If an L_Port in the Participating mode goes to the Non-Participating mode, it may invoke the Loop Initialization procedure
to allow another L_Port to use its AL_PA (see 8.4.3, item 13).

If an FL_Port exits the initialization procedure in the Participating mode, its AL_PA shall be hex '00‘ and it shall

accept a D_|D of hex 'FFFFFE' as specified in ANSI X3, FC-PH-x. A Public NL_Port on the Loop may form a Loop

circuit with AL_PA hex '00’ and shall receive normal Fabric topology responses from the FL_Port as specified in
ANSI X3, FC-PH-x.

If a Public NL_Port exits the initialization procedure in the Participating mode, it attempts Login (if required in
10.5.3, step (6)) with the well-known address hex 'FFFFFE' through AL_PA hex '00‘ to obtain its native address

identifier (see ANSI X3, FC-PH-x, 21.4.7 and 23.3.1). The S_|D = hex '0000'||AL_PA or 'xxxx'||AL_PA where 'xxxx‘
is the previous Login value.

DHPN-1008 / Page 83 of 150

BSR NCITS 332

— If a Public NL_Port exits the initialization procedure in the Participating mode and detects that an FL_Port is not

in the Participating mode on the Loop, it may accept the responsibility of providing Fibre Channel services (e.g.,
accept well-known addresses hex 'FFFFFO‘ to hex 'FFFFFE'). An NL_Port in this mode (known as an F/NL_Port)

shall accept an alias AL_PA of hex '00’ (in addition to its normal AL_PA) and detect OPN(OO,x), but shall not
transmit ARB(O0,00).

If an FL_Port initializes later than this F/NL_Port, the NL_Port shall no longer respond to alias AL_PA hex '00‘.

10.2 Loop Initialization introduction

An L_Port starts the Loop Initialization procedure by making the transition to the NORMAL-INITIALIZE state.

NOTE — Loop Initialization may be disruptive (i.e., frames may be lost if frames are being transmitted). To minimize this disruption, the Loop
may be quiesced by transmitting ARB(va|) (where val is a trusted AL_PA of the L_Port) to win access to the Loop prior to issuing the first
LIP. If the L_Port wins arbitration, the L_Port may assume that the Loop is not being used by another L_Port and the L_Port may begin
transmitting L|Ps.

Reasons for entering Loop Initialization include:

— to acquire an AL_PA so that the L_Port may participate on the Loop. The AL_PA of a Participating L_Port, and the

corresponding priority of an NL_Port, may change each time the initialization procedure is invoked. The priority

of the FL_Port is always the same;

— provide notification of a possible configuration change; and,

— error recovery.

When BYPASS is FALSE(0), an L_Port shall enter the OPEN-INIT-START state whenever any LIP is detected. This

may interrupt two communicating L_Ports, but normal FC-PH error recovery (after returning to the MONITORING state)
may be used to restore any exchanges in progress.

Figure P.1 (see annex P) provides a flowchart-like view of the Loop Initialization procedure; 10.5 provides a detailed set

of state diagrams for the INITIALIZATION process.

10.3 Loop Initialization timers

The INITIALIZATION process times the completion of many events using multiples of AL_T|ME (see 8.2.2). The

notation nxAL_T|ME denotes a timer whose nominal expiration occurs at n times the value of AL_T|ME.

In some cases a timer expiration triggers a specific event. In others, the timer represents the minimum or maximum
time to wait for an event. These are denoted as follows:

— Start(nxAL_TlME) - the starting of the timer;

— expire(nxAL_TlME) - an event that shall occur no earlier than n times the value of AL_T|ME and no later than n

times the value of AL_T|ME plus 20% (e.g., expire(2xAL_T|ME) denotes an event that shall occur between 30ms

and 36ms from Start(2xAL_T|ME));

— minimum(nxAL_TlME) - an event that shall occur no earlier than n times the value of AL_T|ME (e.g.,

minimum(1xAL_TlME) denotes an event that shall occur no earlier than 15ms from Start(1xAL_T|ME)); and,

— maximum(nxAL_TlME) - an event that shall occur no later than n times the value of AL_T|ME plus 20% (e.g.,

maximum(4xAL_T|ME) denotes an event that shall occur no later than 72ms from Start(4xAL_T|ME)).

Timer values persist across state transitions. A timer started in one state may reach a value that causes a condition, such

as expire(timer), to be true in another state. Once a timer condition is true, that condition remains true until the timer is
explicitly started again with start(timer).

74

DHPN-1008 / Page 84 of 150

BSR NCITS 332

10.4 Node-initiated L_Port initialization

This procedure is entered for one of the following reasons:

— to decide if a Loop is present and to acquire an AL_PA at power-on;

— at the discretion of the Node (e.g., for Loop Failures);

— whenever the AL_PA is modified during Fabric Login to the well-known address hex ‘FFFFFE'; or,

— to acquire an AL_PA after a previous attempt was unsuccessful. (This would be the case if more than 126 NL_Ports
or more than one FL_Port existed on the Loop.)

NOTE— Loop Initialization may be disruptive (unless the Loop is quiesced before Loop Initialization begins). For this reason initializing
should be used infrequently and the time delay between retrying is recommended to be in minutes.

— to relinquish an AL_PA when going to the Non-Participating mode.

The L_Port that is attempting to initialize shall make the transition to the NORMAL-INITIALIZE state (REQ(initia|ize))

(see 10.5). Ifthe L_Port recognizes LIP, it shall transfer to the OPEN-INIT-START state (see 10.5.4.6). Ifthe LIP is not

recognized within minimum(3xAL_T|ME) while the received signal is valid, the LPSM may remain in the NORMAL-

INITIALIZE state or if supported, shall make the transition to the OLD-PORT state.

DHPN-1008 / Page 85 of 150

BSR NCITS 332

10.5 L_Port initialization

After the L_Port has performed the entry actions for the OPEN-INIT-START state (see 10.5.4.6), the L_Port shall

continue the initialization procedure as defined in 10.5.3, steps (1) to (6). This initialization procedure shall use the Loop

Initialization Sequences as defined in figure 4.

10.5.1 Loop Initialization Sequences

Start_of_Frame delimiter - 4 bytes

SOFiL

Frame_Header - 24 bytes

ZZXXXXXX | OOXXXXXX | 01380000 | 00000000 | FFFFFFFF | 00000000

where 'XXXXXX' is hex '000000' for an FL_Port and hex '0000EF' for an NL_Port or F/NL_Port, or some other value specified by a
future standard.”

Payload - 12, 20, or 132 bytes

LI_1D

LI FL ’

l28—byte ALiPA position map

 (l—byte offset followed by up to 127 ALiPAs)

where Ll_lD and Ll_FL contain the following:

Ll_ID (identifiers) (16 bits)
Value (hex) Name Description Payload size)

'1 101' LlSM Select Master based on 8—byte Port_Name (l2—byte)
'1 102' LlFA Fabric Assign AL_PA bit map (20—byte)
'1 103' LlPA Previously Acquired AL_PA bit map (20—byte)
'1 104' LlHA Hard Assigned AL_PA bit map (20—byte)
'1 105' LISA Soft Assigned AL_PA bit map (20—byte)
'1 106' LIRP Report AL_PA position map (l32—byte)
'1 107' LlLP Loop AL_PA position map (l32—byte)

Ll_FL (Flag) (16 bits; all 'r's are reserved—not checked, but originated as zero)
Ll_ID Flag Mask (binary) Meaning
LlSM — rrrr rrrr rrrr rrrr reserved
LlFA — rrrr rrrr rrrr rrrr reserved
LlPA — rrrr rrrr rrrr rrrr reserved
LlHA — rrrr rrrr rrrr rrrr reserved

LISA 8 rrrr rrrl rrrr rrrr LIRP and LILP supported
LIRP — rrrr rrrr rrrr rrrr reserved
LlLP — rrrr rrrr rrrr rrrr reserved

Cyclic Redundancy Check - 4 bytes

CRC

End_of_Frame delimiter - 4 bytes

EOFt

Figure 4 — Loop Initialization Sequences

“To allow a future NL_Port to win as LIM, the NL_Port may use a LISM frame with a D_lD of hex '000000' and S_lD of hex 'XXXXXX' (where
'XXXXXX' is to be defined, however, the right—most bit is reserved). These NL_Ports will yield to FL_Ports with an S_lD of hex '000000'; existing
NL_Ports will yield to D_lD of hex 000000‘.

76

DHPN-1008 / Page 86 of 150

BSR NCITS 332

The ANSI X3, FC-PH-x rules for valid frames apply to transmitting the Loop Initialization Sequences which are shown

in figure 4. When an L_Port receives these Loop Initialization Sequences, the L_Port shall discard or not process all

frames which contain the following errors (the L_Port is not required to verify the frame header):

— code violations;

— CRC errors;

— a frame that does not end in EOFt or EOFn;

— payload violations (i.e., a payload which does adhere to the payloads described in figure 4).

When forwarding Loop Initialization Sequences, the Non-Loop Initialization Master L_Ports may use the frame header

defined in figure 4, or the received frame header. However, the D_|D and S_ID of the received LISM frame shall be
used in either case.

The one Loop Initialization Sequence that carries an 8-byte Port_Name is:

LISM) Select Master: used to select a LIM.

The four Loop Initialization Sequences that carry a 16-byte AL_PA bit map are:

LIFA) Fabric Assigned: used to gather all Fabric Assigned AL_PAs.

LIPA) Previously Acquired: used to gather all Previously Acquired AL_PAs.

LIHA) Hard Assigned: used to gather all Hard Assigned AL_PAs (e.g., configuration switches (see annex K)).

LISA) Soft Assigned: used to assign any remaining bits as a Soft Assigned AL_PA.

The two Loop Initialization Sequences that carry a 128-byte AL_PA position map are:

LIRP) Report Position: used to collect the relative positions of all Participating L_Ports on the Loop.

LILP) Loop Position: used to inform all L_Ports of the relative positions of all Participating L_Ports on the Loop

from the perspective of the LIM.

DHPN-1008 / Page 87 of 150

BSR NCITS 332

10.5.2 Assigned AL_PA values

All AL_PAs that are used in the Loop protocol are specified in table 1. The AL_PAs are assigned to the 16-byte AL_PA

bit maps of figure 5 as shown in table 15.

Table 15 — AL_PA mapped to bit maps

AL_PA Bit AL_PA Bit AL_PA Bit AL_PA Bit

Word ' (hex) Word ' (hex) Word ' (hex)

________________________________\
—‘l\)CA)-§U'|O7\I®CO

l\)l\)l\)l\)l\)l\)l\)l\)l\)K)l\)K)K)l\)l\)K)l\)K)l\)l\)K)l\)K)l\)l\)l\)l\)l\)K)l\)l\)
0

0

0

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

(3—\l\)0O-l>U103\lCD\'O
O l\)

O—\l\)(A)-bU'lO3\lQ>(O (3—\l\)0O-l>U103\lCD\'O
NOTE — '--' is reserved for the L_bit (Fabric Login required); AL_PA = '00‘ is

reserved for the FL_Port

78

DHPN-1008 / Page 88 of 150

BSR NCITS 332

10.5.3 Loop Initialization steps

The following initialization steps shall be performed. From the time the LIM is selected and sends the first ARB(FO) until

the CLS at the end of the INITIALIZATION process has gone around the Loop, AL_PAs are unstable and any addressed

Primitive Sequence (e.g., LPByx) may not be acted upon by the desired L_Port.

1) Select initial Native Address Identifiers (D_lD and S_|D)

Each FL_Port shall choose an initial value for its Native Address Identifier of hex '000O0O‘ to be used in its LISM

frame (see 10.5.1).

Each NL_Port shall choose an initial value for its Native Address Identifier of hex '00O0EF' to be used in its LISM

frame (see 10.5.1).

Until an L_Port has acquired an AL_PA by completing Loop Initialization (or through some other means), it cannot

be uniquely distinguished with an LPByx. If an L_Port has a trusted AL_PA, it may respond to this AL_PA (e.g., as
in LPB or LPE) until the AL_PA is determined not to be usable by this L_Port (see 10.5.4.1).

If an NL_Port implements the LIM function, the NL_Port shall continue at step (2); otherwise, the NL_Port shall
continue at step (3).

2) Select a Loop Initialization Master (LIM)

The L_Port shall continuously transmit Loop Initialization Sequences (L|_|D='L|SM') formatted as shown in figure 4.

Successive Loop Initialization Sequences shall be separated by six or more ldles.

NOTE — Frames are sent continuously because they may be discarded by any L_Port that does not have a receive buffer available
(flow control is not used during Loop Initialization).

When a valid Loop Initialization Sequence (L|_|D='L|SM') is received, the D_|D, S_|D, and Port_Name shall be

compared to the transmitted frames as follows:

a) if the received D_|D, S_|D, and Port_Name are equal to the transmitted D_|D, S_|D, and Port_Name,
respectively, then the L_Port shall become the LIM. The LIM shall continue at step (4).

b) if the received D_|D is lower than the transmitted D_|D, then the received Loop Initialization Sequence is
algebraically lower. The L_Port shall continue at step (3).

c) ifthe received D_|D is equal to the transmitted D_|D and the received S_|D is lower than the transmitted S_|D,

then the received Loop Initialization Sequence is algebraically lower. The L_Port shall continue at step (3).

d) ifthe received D_|D is equal to the transmitted D_|D, the received S_|D is equal to the transmitted S_|D, and the
received Port_Name is algebraically lower than the transmitted Port_Name, then the received Loop Initialization

Sequence is algebraically lower. The L_Port shall continue at step (3).

lfa LIM is not selected before LP_TOV expires, the L_Port shall make the transition to the NORMAL-INITIALIZE state
to transmit L|P(F7).

3) Wait for a Loop Initialization Master

The L_Port shall repeat all frames that it receives until the L_Port receives ARB(FO). When ARB(FO) is received,

PARTICIPATE shall be set to FALSE(O) and the L_Port shall continue at step (5). An L_Port shall wait a minimum

of LP_TOV for ARB(FO). If LP_TOV expires before ARB(FO) is received (no LIM was selected), the L_Port shall

make the transition to the NORMAL-INITIALIZE state to transmit L|P(F7).

NOTE — Frames may be originated or repeated at a faster or slower rate than they are received. Frames may be fonivarded without any
qualification or error checking.

DHPN-1008 / Page 89 of 150

BSR NCITS 332

4) LIM — transmit remaining Loop Initialization Sequences

80

a) The LIM shall transmit ARB(FO) a minimum of LP_TOV or until ARB(FO) is received. When ARB(FO) is received,

PARTICIPATE shall be set to FALSE(O). If LP_TOV expires before ARB(FO) is received, the LIM shall make the

transition to the NORMAL-INITIALIZE state to transmit L|P(F7).

b) The LIM shall transmit the Loop Initialization Sequences (L|_|D='LlFA', ‘LIPA’, 'L|HA', and 'L|SA'). These Loop

Initialization Sequences contain a 16-byte AL_PA bit map in the payload. Each bit represents one AL_PA (see

figure 4, figure 5, and table 15).

I
3322 2222 2222 1111 1111 11
1098 7654 3210 9876 5432 1098 7654 3210

n L000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

‘ where ‘L’ is the Fabric Login Required bit (L_bit)

Figure 5 — Loop Initialization Sequence AL_PA bit map

Except for the L_bit, each bit in figure 5 represents a valid AL_PA (according to tables 1 and 15). The L_bit shall
only be set by the FL_Port or F/NL_Port to indicate that a new Fabric Login is required.

The LIM shall transmit the four Loop Initialization Sequences that contain the 16-byte AL_PA bit maps as follows:

LIFA

LIPA

LIHA

LISA

The LIM shall prime the AL_PA bit map with binary zero (0) and shall set to one (1) the bit that corresponds

to its Fabric Assigned AL_PA and shall set PARTICIPATE to TRUE(1). Ifthe LIM is an FL_Port, it shall

set the bit associated with AL_PA hex '00‘. The L_bit may be set if the FL_Port requires a Fabric Login.

The L_bit shall be set if this is the first initialization attempt by an NL_Port that has assumed the role of
an F/NL_Port.

The LIM shall prime the AL_PA bit map with the AL_PA bit map of the previously received Loop

Initialization Sequence (L|_|D='L|FA'). The LIM shall check if the bit that corresponds to its Previously

Acquired AL_PA is set. If it is not set to 1, the LIM shall set the bit to 1 and shall set PARTICIPATE to

TRUE(1) (unless a bit was set in LIFA); if the bit is already set to 1, the LIM may attempt a Hard Assigned
AL PA.

The LIM shall prime the AL_PA bit map with the AL_PA bit map of the previously received Loop

Initialization Sequence (L|_|D='L|PA'). The LIM shall check if the bit that corresponds to its Hard Assigned

AL_PA is set. If it is not set to 1, the LIM shall set the bit to 1 and shall set PARTICIPATE to TRUE(1)

(unless a bit was set in LIFA or LIPA); if the bit is already set to 1, the LIM may attempt a Soft Assigned
AL PA.

The LIM shall prime the AL_PA bit map with the AL_PA bit map of the previously received Loop

Initialization Sequence (L|_|D='L|HA'). The LIM shall set the AL_PA position map, Flag 8 in L|_FL, to
one(1). The LIM may set any available bit to 1 (unless a bit was set in LIFA, LIPA, or LIHA) which

corresponds to its Soft Assigned AL_PA. If a bit was available, the LIM shall adjust its AL_PA according

to which bit it set, shall set PARTICIPATE to TRUE(1), and shall continue in step c. If no bits were
available, the LIM shall continue in step c (the L_Port may attempt to re-initialize per 10.4 at the request

of the Node).

DHPN-1008 / Page 90 of 150

5)

BSR NCITS 332

c) When the LISA Sequence is received, the LIM shall check Flag 8 in L|_FL. If Flag 8 is set to one (1), the LIM

shall transmit two additional Loop Initialization Sequences as follows:

LIRP The LIM shall set the AL_PA position map to all hex 'FF‘. Ifthe LIM has an AL_PA, the AL_PA position

map shall be set to hex '01xxFFFFFF...FF' (where ‘xx‘ is the AL_PA of the LIM). If the LIM does not have

an AL_PA, the AL_PA position map that the LIM originates shall be set to hex ‘00FF...FF'. The left-most

byte is the offset of the last AL_PA added to the map.

LILP The LIM shall transmit the AL_PA position map which was received in the previous Loop Initialization

Sequence (L|_|D='L|RP‘). The first byte indicates the number of participating L_Ports on the Loop. The

second byte shows either the address of the LIM or the first participating L_Port after the LIM. The other

bytes contain the AL_PAs of the remaining participating L_Ports on the Loop (in order and relative to each

other) with the last AL_PA being adjacent to the first AL_PA in byte two. A hex ‘FF’ is not a valid AL_PA.

d) When the last Loop Initialization Sequence (L|_|D='L|SA‘ or ‘L|LP') is returned, the LIM shall transmit CLS to place

all L_Ports into the MONITORING state. When CLS is received by the LIM, the LIM shall make the transition to

the MONITORING state (either in the Participating mode if it has a valid AL_PA or in the Non-Participating mode)

and relinquish its LIM role. At this time, all possible AL_PA values have been assigned for the number of L_Ports
and every L_Port that has a valid AL_PA shall be in Participating mode.

NOTE — If the LIM advertised BB_Credit > 0, it should assure that sufficient receive buffers are available for the next Loop
circuit before transmitting CLS.

Ifthe LIM detects an invalid or unexpected Loop Initialization Sequence, the L_Port shall make the transition to the

NORMAL-INITIALIZE state to transmit L|P(F7).

The LIM shall use LP_TOV to wait for each of the above Loop Initialization Sequences and the CLS. If LP_TOV

expires before each transmitted Loop Initialization Sequence or CLS is received, the LIM shall make the transition

to the NORMAL-INITIALIZE state to transmit L|P(F7).

When CLS is received, the LIM shall transition to the MONITORING state and be prepared to receive an immediate

OPN. The LIM shall continue at step (6).

Non-Loop Initialization Master L_Port — select unique AL_PA

A non-Loop Initialization Master L_Port shall retransmit any received ARB(FO) when it is prepared to receive (e.g.,

empty its receive buffers) and retransmit the following Loop Initialization Sequences (L|_|D='LIFA‘, 'L|PA', 'L|HA',

'L|SA‘, ‘LIRP’, and 'L|LP'), followed by CLS.

The Loop Initialization Sequences are updated as follows (see figure 4, figure 5, and table 15):

LIFA The L_Port shall check if the bit that corresponds to its Fabric Assigned AL_PA is set. If it is not set to 1, the

L_Port shall set the bit to 1 and shall set PARTICIPATE to TRUE(1); if the bit is already set to 1, the L_Port

may attempt setting a bit in LIPA. The L_Port shall retransmit the Loop Initialization Sequence.

LIPA The L_Port shall check if the bit that corresponds to its Previously Acquired AL_PA is set. If it is not set to 1,

the L_Port shall set the bit to 1 and shall set PARTICIPATE to TRUE(1)(unless a bit was set in LIFA); if the
bit is already set to 1, the L_Port may attempt setting a bit in LIHA. The L_Port shall retransmit the Loop

Initialization Sequence.

LIHA The L_Port shall check if the bit that corresponds to its Hard Assigned AL_PA is set. If it is not set to 1, the

L_Port shall set the bit to 1 and shall set PARTICIPATE to TRUE(1) (unless a bit was set in LIFA or LIPA); if

the bit is already set to 1, the L_Port shall either attempt setting a bit in LISA or go to the Non-Participating

mode. The L_Port shall retransmit the Loop Initialization Sequence.

LISA The L_Port shall set any available bit to 1 (unless a bit was set in LIFA, LIPA, or LIHA) that corresponds to its

Soft Assigned AL_PA. The L_Port shall set any flags in L|_FL to zero(O) which it does not recognize (or

support). Flag 8 in L|_FL (LIRP and LILP supported) shall be supported. If a bit was available, the L_Port

shall adjust its AL_PA according to which bit was set and shall set PARTICIPATE to TRUE(1). The L_Port

shall retransmit the Loop Initialization Sequence.

DHPN-1008 / Page 91 of 150

BSR NCITS 332

5)

82

LIRP If LIRP is received, if the L_Port has an AL_PA, it shall read the left-most byte (offset), increment it by one,

store the offset, and store its AL_PA into the offset position. The L_Port shall retransmit the Loop Initialization

Sequence.

LILP If LILP is received, the L_Port may use the AL_PA position map to save the relative positions of all

Participating L_Ports on the Loop. This information may be useful for error recovery. The first byte indicates

the number of nodes participating on the Loop. The second byte shows either the address of the LIM or the

node after the LIM. The other bytes contain the AL_PAs of the participating nodes on the Loop, in order

relative to each other, with the last AL_PA being adjacent to the first AL_PA in the list. An AL_PA of hex ‘FF'

is invalid. The L_Port shall retransmit the Loop Initialization Sequence.

lfthe L_Port detects an invalid or unexpected Loop Initialization Sequences, the L_Port may make the transition to

the NORMAL-INITIALIZE state to transmit L|P(F7).

The L_Port shall use LP_TOV to wait for each Loop Initialization Sequence and the CLS. If LP_TOV expires before

each Loop Initialization Sequence or CLS is received, the L_Port shall make the transition to the NORMAL-
INITIALIZE state to transmit L|P(F7).

When CLS is received, the L_Port shall retransmit CLS and make the transition to the MONITORING state (either

in the Participating or the Non-Participating mode). lfthe L_Port is in the Participating mode, it shall continue at step

(6); if the L_Port is in the Non-Participating mode, it has completed Loop Initialization (the L_Port may attempt to re-

initialize at 10.4 at the request of the Node). When CLS is transmitted, the L_Port shall be prepared to receive an
immediate OPN.

NOTE — If the L_Port advertised BB_Credit > 0, it should assure that sufficient receive buffers are available for the next Loop circuit
before transmitting CLS.

Select final AL_PA and exit Loop Initialization

a) lfan FL_Port is in Participating mode, it has completed the initialization procedure with an AL_PA of hex '00‘ and
shall exit the Loop Initialization.

b) If a Private NL_Port is in Participating mode, the NL_Port has completed the initialization procedure with an

AL_PA in the range of hex '01’ through hex 'EF' and shall exit Loop Initialization.

c) lfa Public NL_Port is in Participating mode, the NL_Port shall have acquired an AL_PA in the range of hex '01‘

through hex 'EF'. If one of the following occurred, the NL_Port shall implicitly logout with the Fabric:

— the NL_Port detected that the L_bit (Login required) was set to 1 in the Loop Initialization Sequence (L|_|D=

'L|SA').

— the NL_Port was unable to set to 1 its Fabric Assigned AL_PA bit or its Previously Acquired AL_PA bit in the

Loop Initialization Sequence (L|_|D='L|FA' or 'L|PA') (i.e., another NL_Port is using the AL_PA); or,

— the NL_Port has not previously executed a Fabric Login.

Normal responses to a Fabric Login request are:

— the transmitted OPN(0O,AL_PS) is returned to the NL_Port. No L_Port on the Loop has accepted the OPNy.

The NL_Port shall set its native address identifier to hex 'OOO0XX‘ (where ‘XX’ is its AL_PA).

lfthe NL_Port is capable of providing Fabric services in the absence of an FL_Port (i.e., the NL_Port accepts

the well-known address hex 'FFFFFE' as well as its own native address identifier), this NL_Port (known as an

F/NL_Port) shall accept OPN(00,x) in addition to its own AL_PA. If this is the first time that the NL_Port is

assuming the responsibility of an F/NL_Port, to ensure that all previous Login requests are reset, the

F/NL_Port shall make the transition to the NORMAL-INITIALIZE state (REQ(initialize)) and set the L_bit (Login

required) to 1 in the Loop Initialization Sequence (L|_|D=‘L|FA');

NOTE — To prevent another L_Port from winning arbitration, this F/NL_Port should not relinquish control of the Loop (i.e., not
transmit CLS or make the transition to the NORMAL-INITIALIZE state) until it is prepared to receive OPN(OO,AL_PS).

DHPN-1008 / Page 92 of 150

BSR NCITS 332

Ifthe NL_Port is not capable of becoming an F/NL_Port, the NL_Port shall exit Loop Initialization.

— the NL_Port receives an Accept (ACC) Link Service Sequence. The NL_Port shall use the D_|D in the ACC

Sequence as its native address identifier and bits 7-0 of the D_lD as its Fabric Assigned AL_PA. The NL_Port

shall compare the Fabric Assigned AL_PA in the ACC sequence with the AL_PA acquired prior to step (5):

— if they are equal, the NL_Port shall exit Loop Initialization or

— if they are unequal, the NL_Port shall make the transition to the NORMAL-INITIALIZE state

(REQ(initia|ize)) to re-initialize and acquire the Fabric Assigned AL_PA value.

10.5.4 Loop Initialization state diagram

The following text provides a detailed state diagram of the INITIALIZATION process. In clause 10, in case of conflicts

between text and figures, the following precedence shall be used: figures and then text. 10.5.4 takes precedence over
clause 9 table 12 and table 14, which takes precedence over 8.4.3 item 21 and item 23, which takes precedence over
10.5.3.

All state diagrams in this subclause use the style shown in figure 6.

/state labelS0: State Zero S]: State OneTransition from multiple states into
actions Started on entry to S0 actions Started on entry to S1this state based on the same entry

conditionsar! A||:S0

lézfidiifiii f‘()—|’l|'il—l1S-I11)!-!FOl\’1—.S(it:§l_ ' _ _ _ ' 7
action taken on this transition

condition for transition from S0 back to itself

/ _ aq_io.ru.alsmQiu.h.iLI.ran§_iIioL . _ . _ .
S0:S(> ;(._)ptional action taken on this transition I

condition for transition from SI to S0

acti n taken on this transition _ _ _
Optional transitions are
denoted with a broken

Transition Label 1"“
note that the S0 actions are resumed following
this transition. but timers are not restarted.

Actions taken on a specific transition are
Optional actions for transitions or states are noted below the transition arrow.
included in dashed boxes. V _ _ , __ , ,L onditions tor a specific transition are

noted above the transition arrow.

Figure 6 — Loop Initialization state diagram example

These state diagrams are represented using vertical staffs to represent states and horizontal arrows to represent state
transitions.

Time elapses only within discrete states with instantaneous transitions between states. Transitions are illustrated with

triggering conditions located above the transition arrow and any actions on transition located below the transition arrow.

Transition actions are performed while remaining in the previous state, before entry into the new state. The state name

appears above the vertical staff representing the state, immediately followed by entry actions if any.

Entry actions are executed every time a state is started. This means that a transition that points back to the same state

shall repeat the actions from the beginning. All the actions started upon entry complete before any tests are made to exit
the state.

Optional states are depicted with a broken box around the state. Entries to an optional state are shown as solid lines

to depict that they are mandatory if the state is implemented. If there is a broken transition line into an optional state
this is an optional transition even when the state is implemented.

Broken line transitions into required states, indicate optional transitions.

DHPN-1008 / Page 93 of 150

BSR NCITS 332

The following event-processing sequence is assumed:

a) Evaluate all transition conditions from the current state.

b) If a transition condition is satisfied, then:

1) perform the associated transition actions in the current state;

2) enter the new state; and,

3) perform entry actions, if any for the new state.

There are four additional memory elements used in this state diagram definition:

|ip_type This is an 8-bit byte that contains a hexadecimal value of the next LIP to be generated.

|ip_addr This is an 8-bit byte that contains the hexadecimal value of the address field for the next LIP to be sent.

prev_addr This is an 8 bit byte that contains the previously acquired address if one exists. This is used during the

address selection phase of Loop Initialization. It is set to hex 'FF' when it is not valid.

my_addr This is the 8 bit address that this L_Port uses when comparing LIP, LPB, and LPE addresses, and when

originating L|Ps. It is set to hex 'F7‘ when it is not valid.

The following state diagrams only define the states necessary to perform Loop Initialization. They do not attempt to

document the normal Loop Port State Machine (LPSM) that is documented in a state diagram in clause 8 and in table

format in clause 9 of this specification. These state diagrams define the operation of the INITIALIZATION process and
the OLD-PORT state.

Transitions notes with the state diagrams, describe transitions that enter or leave state diagrams or need additional
clarification.

10.5.4.1 Validity of AL_PA

During Loop Initialization, the AL_PA that an L_Port had previously acquired becomes unstable. This subclause defines

the point where the AL_PA is valid for various uses.

Initially, an L_Port does not have an AL_PA. This means that the L_Port cannot respond to addressed LPB, LPE, or

L|Pyx. Additionally, this L_Port is not participating in normal Loop operation. When Loop Initialization begins, the L_Port

may attempt to acquire an AL_PA during the Hard Assigned or Soft Assigned phases of Loop Initialization.

After an L_Port has completed Loop Initialization once with PARTICIPATE is TRUE(1), it has an acquired AL_PA (this

value shall be stored in prev_addr and my_addr upon the transition to MONITORING state). This AL_PA also becomes

a fabric assigned AL_PA if FLOGI is completed. At this point in time the L_Port may respond to addressed LPB, LPE,
L|Pyx, in addition to participating in normal Loop operation.

If LIP occurs, all AL_PAs must be revalidated. Because AL_PAs may change during this process, the following rules
apply:

1) An L_Port may respond to addressed LPB, LPE, and L|Pyx until it has forwarded an ARB(FO). The L_Port shall use

the value in my_addr to validate the address in these Primitive Sequences. After an ARB(FO) has been forwarded,

the AL_PA is considered unstable, my_addr is set to hex 'F7‘, and shall therefore only allow the L_Port to validate

the address of LPB, LPE, or L|Pyx to all L_Ports (i.e., y = hex ‘FF') until Loop Initialization has been completed with

the CLS being both received and transmitted, at which point the AL_PA acquired during this Loop Initialization is be
placed in my_addr, and may be used to validate the addresses in recognized LPB, LPE, and L|Pyx Primitive

Sequences.

2) An L_Port may attempt to regain its current AL_PA, which is stored in prev_addr, during either the Fabric Assigned

(if FLOGI has been completed) or Previously Acquired phase of Loop Initialization. This AL_PA may be used for

84

DHPN-1008 / Page 94 of 150

BSR NCITS 332

regaining the current AL_PA until some other L_Port claims it during Loop Initialization. At this point in time

prev_addr is set to hex 'FF‘ to indicate that it is no longer valid. When Loop Initialization is completed, either the

L_Port has a new acquired AL_PA, or is Non-Participating with no AL_PA. If the L_Port is Non-Participating, it shall

not recognize any addressed Primitive Signal or Primitive Sequences.

If REQ(nonparticipat.) is asserted in the INITIALIZATION process, an immediate transition to the MONITORING state

shall be made with the transition actions being: PARTICIPATE is FALSE(O); my_addr = hex 'F7‘; and, prev_addr =
hex 'FF‘.

If REQ(bypass L_Port) is asserted or if LPBfx is recognized in the INITIALIZATION process (except in the

POWER-ON-INIT (P0) and the OLD-PORT (OPO) states) and the state transitions are not explicitly identified, an

immediate transition to the MONITORING state shall be made with the transition actions being: BYPASS is TRUE(1);

PARTICIPATE is FALSE(O); my_addr = hex ‘F7’; and, prev_addr = hex 'FF'.

In all states of the INITIALIZATION process, except PO, Loop Failure causes a transition to the F0 state as defined by

A||:FO. REQ(initialize) shall be removed upon entry into the NORMAL-INITIALIZE state, unless the L_Port is attempting

to bypass or enable other L_Ports. REQ(o|d port) shall be removed upon entry into OLD-PORT state.

DHPN-1008 / Page 95 of 150

BSR NCITS 332

10.5.4.2 POWER-ON state diagram

Figure 7 shows the POWER-ON state diagram. This state diagram maintains the transmitter off until the L_Port is

capable of initializing, and accomplishes the transition to the NORMAL-INITIALIZE or MONITORING state.

P0:POWER-ON-INIT

* transmitter off

* ERR_INIT := FALSE
* BYPASS := TRUE
* PARTICIPATE := FALSE

* my_addr := hex ‘F7'
* preV_addr := hex ‘FF’

REQ(initialize) T _ I0. NORMAL
Pozlobj’ OINITIALIZE

Power on
1ip_type set by request

1ip_addr := my_addr

AL_PA assignment and
Validation outside

To scope of standard
MONITORING <— — -P0:M- — —

transmitter on

Figure 7 — POWER-ON state diagram

POWER-ON state diagram notes:

Transmitter off requires that for copper links the transmitter is either tri-stated, or driven to a constant value. For optical

links, the optical output should be zero. It is not sufficient for optical links to drive a constant intermediate power level,
as this may cause the receiver which has very high gain to mistakenly perceive that the remote L_Port is actually

transmitting data.

Transition A|l:P0 This transition is taken from any state within the LPSM at power-on.

Transition P0:|0b This transition is taken to the NORMAL-INITIALIZE state when REQ(initialize) is asserted.

Transition P0:M This optional transition is taken by an L_Port that does not use Loop Initialization to acquire and

verify an AL_PA. If Loop Initialization is not used to acquire and verify AL_PAs, my_addr and

prev_addr shall be assigned by a method outside the scope of this standard. It is the

responsibility of the implementation to assure AL_PAs are valid and that there are no conflicts.

Even if the L_Port does not use Loop Initialization to acquire and verify an AL_PA, it shall
participate in Loop lnitializations initiated by other L_Ports on the Loop.

86

DHPN-1008 / Page 96 of 150

BSR NCITS 332

10.5.4.3 OLD-PORT state diagram

Figure 8 shows the OLD-PORT state diagram. In the OLD-PORT state, the LPSM is not running except to respond to

recognized L|Ps. The Port State Machine is operating as defined in ANSI X3, FC-PH-X.

OP0:0LD-PORT

* PSM Operation
*Stzm(lxA[.7l‘lMi-.)
* myiaddr :IIex ‘I-'7'
* prev_addr : hex ‘H-"
"’-‘PARl'[('[P/\’[‘I:':I-/\[.S|€
* |€RR_INIT 2: I-/\l.SI-i"'—'_'_'_'I

_ _ _ _ _ _ _ _ REQ(ini1ialize)
l— Ol’l:OLD-PORT-REQ 0P0:10b—>'I‘o 10:

lipjype set by request NORMAL-INI'l'IALILI;‘
Iipiaddr :: my iaddr

’-‘transrniner on
’-‘BYP/\SS :I-'/\I.SI-i
*Iip_type :: hex ‘I-7'
’-‘myiaddr ': hex ‘I-'7'

RI;'Q(oId-po11)& ~RI.’Q(ini1ialize) (UP I OLS I N08

From Monitoring MIOPI Recogfinzedd) & I2 LIPS
transmme ' ~ >

(OLS I N05 Recognized) &
OP I :0P() expire(lxAL7’I'IMI_')

0P0:1oa—> To 10:
. _ V, I. , N(')RMAL-INI'l'I/\LILIj

REQ(ini1ialize) “P33 P9 ‘’ he‘ I 7To 10:
NORM/\L-INI’I'I/\LILI;‘ <e0i>1;iob “F’—“dd‘ ‘: mkaddr

I

Link failure detected expird “AL “MDTo 1-'0: ' ' :
u

LOOP-I‘AIL-INI'l'I/\LILIj OPHIOIipity pe 1: hex 'I"8'
Iipiaddr :: my iaddr

I
An)‘ other transmission word
received

Transmit LIP(lip7t)'pe.lip7addr)OP I :0P I

0i>0:010r‘—> To 010:
OPLN-INI'I‘-SI/\R'l'

Iipitype 1: 1) pe received
Iipiaddr 1: addr received

LIP(I"8) Recognized &
expire(lxAL7’I'IMI.')

0P():0I()g?> To 010:
Iipitype 1: 1) pe received OPI-'N'INI'IV'S’I‘AR'I‘
Iipiaddr 1: addr received

expire(3xAL7’I'IMI.')
I()1OP0

From [l|:N(,)RM/\[,»[N['l'[/\l.[/Ii I ERR_|N|T:= TRUE |

expire(lxAL7’I'IMI;') &
OLS I NOS Recognized Link failure detected

/\Il(,)PO ,_ ,
' 090:1-0:» '9 "I"
I 1ip7N,e.:hex.,.-8. LOOP-[AIL-INIIIALILI;.

u

I

I

I

Iu

Iu

Iu

Iu

Iu

I

I

I-

(Non I8) LIP Recognized & II

Iu

Iu

II

Iu

Iu

II

II

Iu

I
lipiaddr :: myiaddr I

II._._._._._._._._._._._._._._._

Figure 8 — OLD-PORT state diagram

DHPN-1008 / Page 97 of 150

BSR NCITS 332

OLD-PORT state diagram notes:

Transition |0:OP0

Transition A|l:OP0

Transition M:OP1

Transition OP0:|0b

Transition OP0:|0a

Transition OP0:Ol0f

Transition OP0:O|0g

Transition OP0:F0

Transition OP1:|0b

Transition OP1:OP1

88

This transition is taken from the NORMAL-INITIALIZE state to the optional OLD-PORT state

after minimum(3xAL_T|ME).

This transition is taken from the OPEN-INIT-SELECT-MASTER or SLAVE-WAIT-FOR-MASTER

state to the optional OLD-PORT state after minimum(1xAL_T|ME) if OLS or NOS is recognized.

This transition is taken when REQ(old-port) is asserted and REQ(initialize) is not asserted in the
MONITORING state.

This transition shall be taken to the NORMAL-INITIALIZE state when REQ(initialize) is asserted.

This transition is taken to the NORMAL-INITIALIZE state when NOS or OLS are recognized,

after expire(1xAL_T|ME).

This transition to the OPEN-INIT-START state is taken when a (Non F8) LIP is recognized after

expire(1XAL_T|ME).

This transition to the OPEN-INIT-START state is taken when L|P(F8) is recognized after

expire(1XAL_T|ME).

This transition is taken when BYPASS is FALSE(O) and a Link Failure is detected as defined in
ANSI X3, FC-PH-x.

This transition is taken to the NORMAL-INITIALIZE state when REQ(initialize) is asserted.

On any Transmission Word other than LIP, OLS, or NOS, when REQ(initia|ize) is not asserted,

L|P(F7,F7) shall be transmitted.

DHPN-1008 / Page 98 of 150

BSR NCITS 332

10.5.4.4 Loop Failure Initialization state diagram

Figure 9 shows the Loop Failure Initialization state diagram. This state diagram attempts to initialize the Loop when a

Loop Failure has been detected.

F0:LOOl’-FAIL-INITIALIZE

(Non I8) LIP Recognized
Loop I"ailure & To 010:. . . . ‘ I Tb , . . .
BYPASS :1‘/\LSL 100mb OPLN-[NIT-SIARI

‘NH 0 lipit} pe I: type received
“P79 pe :: hex T8. lip_addr I: addr received (N0n1‘g)L1p Recognized

lipiaddr :: myiaddr I, I tomb To Om:

LIP“.-8) Rgcognjzed & “pin PE 1: we received 0Pl.'N-lNl'l‘-S’l'AR'l'
LRRJN” : IALSL .1-0 Om, lipiaddr I: addr received

from OP0: Link I ailure detected hex Il%'()I()c OPLN_[NI I _5lARl
0LL)—i’(')R’i'+0*’0il‘0 ,ilp_I}p€ I: hex ‘I8’

lipiaddr :: myiaddr

u

.

.

.

u

u

u

LPB}x Recognized LIP(l"8) Recognized & I.'RR_INl’l' : I
(\ <> m\ addr& v <> hex 'II') I H _, ,,. , 7' . ': . ' ILDPC-: hex”; -—-—-—-—.—- LI-’B\\Rec0gniZed ILPL R d I L - v ‘ »

lecognje ‘ d ilp_€lddt‘ I: addrreceivedI— U <> m‘ addr& \, <> hex.”».)I .‘orwar receive $1 rt LP '1‘0V) ' , ' ’ - '
l»0a:l»0a LPB or LPE 3 I 7 I LPL Recognized Iu F2:LO0P-FAIL-ERR_INIT-2 I"or\vard received '

I I I I_ LPB or Ll-‘IL I,I;'xpire(2xAL_'l'IMI;') I M1mmum(L|’,l0V) _

loop failure ' [HQ I
qayzfr) up ape :: hex .1,7. LPB}x Recognized (} : m) iaddr I I

An)‘ other transmission word 11}-Lt) pe ;: hex'1‘g' lirfaddr :: m‘ addr } : hex'I"I"') I (RI.'Q(b} pass L7I’ort) &
received or loop failure Iipiaddr ;: mvviaddr Su;.[(2xAL '1'-[RID LIP not Recognized) 7 I

’I'ransmitLIP(lip t)'pe.lip addr) 1 PM [0 MONHORING '
’ ’ BYPASS -: IRUI-i Iu

I

u

u

I

u

-

liobillob LPB} x Recognized (y <> myiaddr &
} <> hex 'I"I"') I LPE Recognized Any other transmission word

forward received ’ . ‘ _ ‘
LPB or LPE Iransmit LiP(ilp_t)'pe.ilp7£lddl')

-

II

Iu

I received

I 1‘ lb: 1" lbI
I‘ _ (Non I8) LIP Recognized

Any other transmission word To Om.
received I‘2I0I0b:>0PLN_[NI.[._§.l.AR.l.lipit} pe I: type received ‘

Transmit LIP(liIp7t)'pe.lip7addr) up addr _: addr receivedI‘2b:l"2b

LPB}x Recognized (y : myiaddr I y :

I hex'l"l"') I (RI;‘Q(b} pass L7I’ort) & LIP notI Recognized) 7I"2IM:>'I‘o M()Nl'l'0RING

L BYPASS -: IRUI-i

RI.'Q(initialize) I
(NOS I OLS Recognized)

I‘()IIOe>
lipit} pe I: hex 'l"7'

’I'o I0:
NORMAL-INI'l'I/\LILl;‘

LPB}x Recognized (} : m) iaddr I
} : hex'I"I"') I (RI.'Q(b} pass L7I’ort) &

LIP not Recognized) ,l_
o

i‘0:i\/Ia» MONITORING
BYPASS :: TRUE

Figure 9 — Loop Fail Initialization state diagram

Loop Fail Initialization state diagram notes:

Transition A|l:F0 This transition is taken from any state other than P0:POWER-ON-INIT when a Loop Failure is

detected and BYPASS is FALSE(0).

DHPN-1008 / Page 99 of 150

BSR NCITS 332

Transition F0:|0

Transition A||:F1

Transition F0:O|0b

Transition F0:O|0c

Transition F0:|0

Transition F0:M

Transition F1 :Ol0b

Transition F2:O|0b

Transition F0a:F0a

Transition F0b:F0b

Transition F1 a:F1a

Transition F1 b:F1 b

Transition F2a:F2a

TransitionF2b:F2b

This transition is taken from the LOOP-FAIL-INITIALIZE state to the NORMAL-INITIALIZE state

when REQ(initialize) is asserted.

This transition is taken from the OPEN-INIT-SELECT-MASTER or the SLAVE-WA|T-FOR-

MASTER state when L|P(F8) continues to be recognized after the Loop should be flushed of
L|Ps and ERR_|N|T is TRUE(1). This indicates that there is still an error condition on the Loop.

This transition is taken from the LOOP-FAIL-INITIALIZE state to the OPEN-INIT-START state

when a (Non F8) LIP has been recognized by this L_Port, and the remainder of the

INITIALIZATION process may be attempted.

This transition is taken from the LOOP-FAIL-INITIALIZE state to the OPEN-INIT-START state

when L|P(F8) has been recognized by this L_Port, and the remainder of the INITIALIZATION

process may be attempted. On this transition, the optional ERR_|N|T memory element is set
TRUE(1).

This transition is taken from the LOOP-FAIL-INITIALIZE state to the NORMAL-INITIALIZE state

when NOS or OLS are recognized. This allows for waiting expire(3xAL_T|ME) before

transitioning to the optional OLD-PORT state.

This transition is taken from the LOOP-FAIL-INITIALIZE state to the MONITORING state when

LPB for this AL_PA or LPBfx is recognized. The L_Port shall remain in the MONITORING state

until it is enabled on the Loop and recognizes LIP, or REQ(initialize) is asserted.

This transition is taken from the LOOP-FAIL-ERR_|N|T state to the OPEN-INIT-START state

after error initialization has been started and (Non F8) LIP is recognized.

This transition is taken from the LOOP-FAIL-ERR_|N|T-2 state to the OPEN-INIT-START state

after error initialization has been started and (Non F8) LIP is recognized.

When LPB that is not addressed to this L_Port or LPE is recognized it shall be forwarded, and
the LPSM shall remain in the LOOP-FAIL-INITIALIZE state.

If any Transmission Word other than those explicitly identified in the state transitions from

LOOP-FAIL-INITIALIZE is recognized, L|P(|ip_type, lip_addr) shall be originated and the LPSM
shall remain in the LOOP-FAIL-INITIALIZE state.

When LPB that is not addressed to this L_Port or LPE is recognized it shall be forwarded, and

the LPSM shall remain in the LOOP-FAIL-ERR_|N|T state.

If any Transmission Word other than those explicitly identified in the state transitions from

LOOP-FAIL-ERR_|N|T is recognized, a L|P(|ip_type, lip_addr) shall be originated and the LPSM

shall remain in the LOOP-FAIL-ERR_|N|T state.

When LPB that is not addressed to this L_Port or LPE is recognized it shall be forwarded, and

the LPSM shall remain in the LOOP-FAIL-ERR_|N|T-2 state.

If any Transmission Word other than those explicitly identified in the state transitions from

LOOP-FAIL-ERR_|N|T-2 is recognized, a L|P(|ip_type, lip_addr) shall be originated and the

LPSM shall remain in the LOOP-FAIL-ERR_|N|T-2 state.

LOOP-FAIL-ERR_|NlT state: This state is used by multi-Loop L_Ports that do not desire to use bandwidth to continually

perform Loop Initialization on a Loop that has a failure while attached to another Loop that is operational. These L_Ports

can use the ERR_|N|T process to periodically test and see if the Loop has become operational. By setting ERR_|N|T

after L|P(F8) is recognized after expire(1xAL_T|ME), these L_Ports can limit the time spent in the OPEN-INIT-START

state. These L_Ports shall set ERR_|N|T and wait in the LOOP-FAIL-ERR_|N|T state until a (Non F8) LIP is recognized,

or until a minimum(LP_TOV) timeout occurs. If a minimum(LP_TOV) timeout occurs, an L_Port shall transition to the

LOOP-FAIL-ERR_|N|T_2 state where it shall generate L|P(F7) until expire(2xAL_T|ME) or a (Non F8) LIP is recognized.

After expire(2xAL_T|ME), the L_Port shall transition through LOOP-FAIL-INITIALIZE back to the LOOP-FAIL-ERR_|N|T

90

DHPN-1008 / Page 100 of 150

BSR NCITS 332

state and wait another LP_TOV. This allows the L_Port to only attempt initialization every LP_TOV, limiting the amount

of time spent in the INITIALIZATION process.

10.5.4.5 Normal Initialization state diagram

Figure 10 shows the normal initialization state diagram. This state diagram attempts to circulate LIP around the Loop

before the address selection phase of initialization is begun.

l0:NORMAL-INITIALIZE

* Transmitter on

* ERR_lNlT :: FALSE
* BYPASS 2: FALSE

* XMlT_2_lDLES :: FALSE

LPByx Recognized((y : my_addr | y : hex'FF') &
< ' dd RE b’ L P It

_Am0a X >my_a r)l Q(ypass _ 0) To: T»
10 M MONITORING

lip_type :: hex ‘F7’
lip_addr 2: my_addr

Stan(3XAL_TIME) * BYPASS ;: TRUE
REQ(bypass or enable)* & ~(LPByx Recognized
(y = my_addr | y = hex'FF'))

(REQ(initialize) l

REQ(Pam°iPating)) & Originate requested LPB 10 :10
~REQ(old—port) or LPE a 3

—A11:I0bT»

lip_type set by request
lip_addr 2: my_addr
Start(3xAL_TlME)

(Non F 8) LIP Recognized & ~(REQ(bypass or
enable)* l REQ(bypass L_Port))

l0:Ol0b:> To 010:
lip_type :: type received

lip_addr 2: addr received OPENJNITSTART

LlP(F8) Recognized & ~(REQ(bypass

or enable)* l REQ(bypass L_Port)) To 010:
I0‘OI°°T’ 0PEN—lNlT—START

REQ(if1itia1iZ€) l lip_type :: hex ‘F8’
From F02 (OLS l N05 recognized) lip_addr 2: addr received

LO0P—FAlL—lNlTlALlZE jF0rl0—> ''''''''' — ' —.
! ERR_lNlT2:TRUE Ilip_type :: hex ‘F7’

lip_addr 2: my_addr
Start(3xAL_TlME)

Expire(3xAL_TlME) & ~(REQ(bypass or enable)*
l REQ(bypass L_Port) l LIP Recognized)

IODPO: To OPO: OLD—PORT

Any other transmission word received

[0 10 Transmit LlP(lip_type,lip_addr)
°' ° ((LPByx Recognized ((y <> my_addr) & (y <> hex 'FF‘)) l

LPE Recognized) & x <> my_addr) & ~(REQ(bypass or
enable)# l REQ(bypass L_Port))

Forward received

LPB or LPE 101711017

REQ(bypass or enable) refers to any of the following requests: REQ(bypass L_Port Y), REQ(bypass all), REQ(enable L_Port y),
or REQ(enable all)

Figure 10 — Normal Initialization state diagram

DHPN-1008 / Page 101 of 150

BSR NCITS 332

Normal Initialization state diagram notes:

Unless this L_Port is attempting to manage other L_Port's Port Bypass Circuits, REQ(initialize) shall be removed upon

entering the NORMAL-INITIALIZE state.

Transition All:l0a

Transition Al|:|0b

Transition l0:O|0b

Transition |0:O|0c

Transition |0:OP0

Transition l0:M

Transition l0a:l0a

Transition l0b:|0b

Transition l0c:l0c

92

This transition is made from subsequent states of the INITIALIZATION process when an error

in initialization is detected. The errors that are detected are protocol errors or LP_TOV timeout.

The transition may actually be controlled from outside the LPSM, and therefore, may take an
extended time.

This transition is taken from any state when REQ(participating) or REQ(initializing) is asserted.

The type of LIP to be generated is indicated in the request.

This transition from the NORMAL-INITIALIZE state to the OPEN-INIT-START state is taken

when (Non F8) LIP has been recognized, and the address selection phase of initialization can
be started.

This transition is taken when L|P(F8) has been recognized, and the address selection phase of

initialization can be started. The LIP that was recognized indicates that there may still be a Loop

Failure. If ERR_|N|T is supported, it shall be set to TRUE(1) on this transition.

This transition from the NORMAL-INITIALIZE state to the optional OLD-PORT state is taken

when LIP has been transmitted until expire(3xAL_T|ME) without LIP being recognized and none

of the listed REQs being asserted.

This transition from the NORMAL-INITIALIZE state to the MONITORING state is taken when

LPByx (where y = AL_PA of the L_Port) or LPBfx is recognized; or when REQ(bypass L_Port)

is asserted. The L_Port shall remain in the MONITORING state until it is enabled on the Loop

and recognizes LIP or REQ(initialize) is asserted while REQ(old-port) is not asserted.

When LPB that is not addressed to this L_Port or LPE is recognized, it shall be forwarded and

the LPSM shall remain in the NORMAL-INITIALIZE state if none of the specified REQs are
asserted.

lfa request to bypass or enable (REQ(bypass L_Port y), REQ(bypass all), REQ(enab|e L_Port

y), or REQ(enab|e all)) is asserted, and if LPB addressed to this L_Port is not recognized, the

L_Port shall originate the requested LPB or LPE and remain in the NORMAL-INITIALIZE state.

If any Transmission Word other than those explicitly identified in the state transitions from

NORMAL-INITIALIZE is recognized while none of the specified REQs are asserted, a

L|P(|ip_type, lip_addr) shall be originated and the LPSM shall remain in the NORMAL-
INITIALIZE state.

DHPN-1008 / Page 102 of 150

BSR NCITS 332

10.5.4.6 OPEN-INIT state diagram

Figure 11 shows the OPEN-INIT state diagram. The OPEN-INIT state diagram is where the Loop Initialization Master

(LIM) is determined for this Loop Initialization.

OI0:OPEN-[NIT-START
OI1:OPEN-[NIT-SELECT-MASTER

* Transmit a minimum of
12 LIP(l1p71_\pc.lip7addr)
* S1ar1(lxAL_TIl\/IE)
* Access : TRUE

LPByx Recognized (y : my_addrl
y : hex‘FF') l REQ(bypass L_Port)

. : Tb ~
L“) Recogmzed 0113 M To M()NIT()RIN(:Minimum ofl2 LIPs

1 sent & LIM supportedi_____ ._l
— ———0I02OIl_—_———

Starl(LP_TOV)

-All’()I0a BYPASS 2: TRUE
lip_type :: type received
lip_addr 2: addr received

rifliD._ULP§ i11€2<._'E8'_ . _ .
.|_then ERR_INIT :: TRUE

(REQ(bypass or enable)” & ~(LPByx Recognized
(y = my_addr| y = hex'FF'))

Originate requested LPB Onmona
(Non F8) LIP Recognized or LPE

.A1[»()[()b T}(NON F8)L1P Recognized &
lip_type :: type received 9XP11’9(1XA1«_T11V11‘3)
lip_addr 2: addr received Oniolod N1«_1’01’T & (1«1SM W/ 0,10 < 1"1eX'EF1)l(D_ID : hex 'EF' & S_ID < hex ‘EF')l

(D_ID : hex 'EF' & S_ID : hex 'EF' &
WWN < Port Name) Received &

~(REQ(bypass or enable)" l REQ(bypass L_Port))
01150:)?» S0

SLAVE-WAIT-F()R—l\/[ASTER

lip_type :: type received
LIP(F8) Recognized & lip_addr 2: addr received
ERR_INIT : FALSE-All’()IUC

lip_type :: type received
lip_addr :: addr_received.— - — - — - — - — - — - — -

i_’5_"3—_1E‘_T-_ 731.15 _ '
(LISM W/

D_ID : local D_ID & S_ID : local S_ID &
WWN : Port Name) Received &

~(REQ(bypass or enable)” l REQ(bypass L_Port))

(Non F8) LIP Recognized & _ 0“ ‘M0 To M0;expire(lxAL_TIME) LMF8) Re°°g"'Zed & ‘ MASTER-START
A“0md ERR-INIT : FALSE

lip type :: type received & eXp're(1XAI‘:TIME)
lip_addr 2: addr received 0Il 20I0e L1P(F8) Remgniled & _iimype ;: hex 'Fg' ERR_INIT : TRUE & Expire(lxAL_TIME) &

lip_addr 2: addr received :(R13Q(13>’P3S5 OT 911a1319)"' l REQ(13.VP355 1-_1)01’1))
LIP(F8) Recognized & 0111:] , T“ F1
ERRiINIT : FALSE & 1 l§_RL{iIEI'_]";— _TE[_Jl§— _ I W V V LOOP-FAIL-ERR_lNIT
expire(lxAL_TIME) '!F’—‘~”F’e 2’ 1“ F8 ,S0 ()I()c l1p_addr 2: addr received

lip_type :: type received
lip_addr :: addr_received.— — — — — — — — — — — — — —

- ERR_INIT: TRUE Il_ _ _ _ _ _ _ _ _ _ _ _

FL_Port & (LISM W/
(D_ID : hex '00‘ & S_ID : hex '00 '&

WWN < Port Name) Received &
~(REQ(bypass or enable)" l REQ(bypass L_Port))

0l1b:lVI:> To MONITORING
(Non F8) LIP Recognized &
expire(lxAL_TIME)

PARTICIPATE :: FALSE
my_addr 2: hex 'F7'

From OPU T0P0:OI0f P1e"_add"3: he?‘ 11:1?
OLD-PORT lip_type :: type received

lip_addr 2: addr received Minimum(LP_TOV) T [0
0 I

_ O1H0a ’N()RMAL-INITIALIZElip_type 2: hex ‘F7’
lip_addr 2: my_addrAny other transmission wordLIP(F8) Recognized & ’received

expire(l xAL_TIME)

From ()P0
OLD-PORT —OP0:0I0g EXPif€(1XA1-,T11V1E)& 015

Transmit 1415M (l NOS Recognized
'1F’—‘YPe ‘: We ‘e°°1Ved SJD :: DJD 2: hex '00‘ 011mpg» To OPO2 OLD-PORT
'iP—_“‘¥‘1§.:E1‘3";“.°:1‘Le‘1_ . for FL_P0rI

1_ERR_1N1T;: TRUE | S_ID 2: D_ID :: hex 'EF' LPByx Recognized (y 0 my_addr & y <> hex 'FF')l
1- ' — ' — ' — ' — ' — ' — for NL_Port LPE Recognized & ~(REQ(bypass or enable)” l

WWN :: Port Name) REQ(bypass L_Port))
Interspersed with Idles .

Minimum ofl2 LIPs sent & Forward recewed OnbgonbLIM not supported 011030110 LPB 01 LPE 1
T“ 5”‘ 4:010:30SLAVE-WAIT-F()R—l\/[ASTER

Start(LP_TOV)

"‘ REQ(bypass or enable) refers to any ofthe following requests: REQ(bypass L_Port y), REQ(bypass all), REQ(enable L_Port y),
or REQ(enable all)

Figure 11 — OPEN-[NIT state diagram

DHPN-1008 / Page 103 of 150

BSR NCITS 332

OPEN-INIT state diagram notes:

Transition A|l:Ol0a

Transition Al|:O|0b

Transition A|l:Ol0c

Transition Al|:O|0d

Transition S0:Ol0e

Transition OP0:Ol0f

Transition OP0:O|0g

Transition O|0:S0

Transition O|1a:M

Transition Ol1b:M

Transition Ol1:|0a

Transition O|1:S0

Transition O|1:M0

Transition O|1:F1

Transition O|1:OP0

Transition Ol1a:O|1a

Transition Ol1b:O|1 b

94

This transition is taken from any Loop Initialization state if LIP is recognized after the LIM has

been selected or from any state outside the INITIALIZATION process if LIP is recognized.

This transition is the normal entrance to the OPEN-INIT-START state upon recognition of a (Non

F8) LIP.

This transition is the entrance to the OPEN-INIT-START state upon recognition of L|P(F8), when

ERR_|N|T is FALSE(O), in the LOOP-FAIL-INITIALIZE and NORMAL-INITIALIZE states.

This is the re-entrance to the OPEN-INIT-START state upon the recognition of a (Non F8) LIP

after expire(1xAL_TIME) without successfully selecting a LIM.

This is the re-entrance to the OPEN-INIT-START state upon the recognition of L|P(F8) when

ERR_|N|T is FALSE(F0) after expire(1xAL_TIME) without successfully selecting a LIM.

This is the entrance to the OPEN-INIT-START state upon the recognition of a (Non F8) LIP after

expire(1xAL_TIME) in OLD-PORT state.

This is the entrance to the OPEN-INIT-START state upon the recognition of L|P(F8) after

expire(1xAL_TIME) in OLD-PORT state.

This transition from the OPEN-INIT-START state to the SLAVE-WAIT-FOR-MASTER state is

taken after forwarding at least 12 received L|P(lip_type,Iip_addr) if the L_Port is not capable of

performing the LIM functions.

This transition from the OPEN-INIT-SELECT-MASTER state to the MONITORING state is taken

when LPByx (where y = AL_PA of the L_Port) or LPBfx is recognized; or when REQ(bypass

L_Port) is asserted. The L_Port shall remain in the MONITORING state until it is enabled on

the Loop and recognizes LIP or REQ(initialize) is asserted while REQ(o|d-port) is not asserted.

This transition from the OPEN-INIT-SELECT-MASTER state to the MONITORING state is taken

when an FL_Port does not become a LIM.

This transition from the OPEN-INIT-SELECT-MASTER state to the NORMAL-INITIALIZE state

is taken when the L_Port after minimum(LP_TOV) while trying to select a LIM. This takes the
L_Port back to attempting initialization.

This transition is taken when this L_Port has determined that it is not the LIM.

This transition is taken when this L_Port has determined that it is the LIM.

This transition from the OPEN-INIT-SELECT-MASTER state to the LOOP-FAIL-INITIALIZE

state is taken when L|P(F8) is recognized after expire(1xAL_TIME) and ERR_|N|T is TRUE(1).

This transition from the OPEN-INIT-SELECT-MASTER state to the optional OLD-PORT state

is taken when OLS or NOS is recognized after expire(1xAL_TIME).

lfa request to bypass or enable (REQ(bypass L_Port y), REQ(bypass all), REQ(enab|e L_Port

y), or REQ(enab|e all)) is asserted, and if LPB addressed to this L_Port is not recognized, the

L_Port shall originate the requested LPB or LPE and remain in the OPEN-|N|T-SELECT-
MASTER state.

When an LPB that is not addressed to this L_Port or an LPE is recognized, it shall be forwarded
and the LPSM shall remain in the OPEN-INIT-SELECT-MASTER state, if none of the REQs are
asserted.

DHPN-1008 / Page 104 of 150

BSR NCITS 332

Transition Ol1c:O|1c lfany Transmission Word other than those explicitly identified in the state transitions from the

OPEN-INIT-SELECT-MASTER state is recognized while none of the specified REQs are

asserted, LISM shall be originated and the LPSM shall remain in the OPEN-|N|T-SELECT-
MASTER state.

10.5.4.7 Slave Initialization state diagram

Figure 12 shows the Slave Initialization state diagram. This machine is where the L_Port acquires an address if it is not
the LIM. The L_Port enters this state when it has determined that there is another L_Port with higher priority on the Loop

or the LIM function is not supported by this L_Port.

S0:SLAVE-WAIT-FOR-MASTER S3=SLA"E'UFA"'
* If Fabric Assigned

S1:SLAVE-FLUSH-BUFFERS" S2:SLAVE_L"V.A_VVAn.,., * Ifbit eoresponding toprev_addr IS not already

From Um: *I-'inish transmission ofan ' Set‘
()Pl-',N-lNI’['-S'|'/\R'l‘ outbound flames) * Originate ARB(F0) or * Set that bit in bitmap.

*Urigmate [cues forward Transmission words * 13:;/‘R ' [Cw/\ ' E 3: [RU"/* _ 1 - '1
previaddr .— hex H-

* Forward l.|F/\ Frame.

*See detailed notes

From OI I: V .
()P|-IN-lNl'l‘-SH.|€CT—M/\S'l‘|€R 1

LIFA Received S3:S4—>T‘‘ 34?
g2;s3 SI,/\VI-I-[IPA-W/\I'l‘

((Non F8) LIP Recognized) & ARB(F0> Received
Expire(lxAL_TIME) S0:Sl

To 0:0: v . Start LP TOV) _ _ 4

..p_‘—.)pe.3§;‘?iSS.ad my_ad§rw- ,l£“_“1”f“‘_Ll’—_“_’X)lSL?i‘“_°E‘?fl_
lip_addr 1: addr received ERR_INIT 3: FALSE lAny frame other than LIFA ReceivedPARTICIPATE :: FALSE — - — - — - — - — - — - — - — - — - 4
(LIP(F8) Recognized) & S2:I0aj> T“ 1“?
ERR_INIT : FALSE & “p_1)pe:: hex vF7~ NORM/\[1-lNl’['lAl.l/_l-I
Expire(lxAL_TIME) lip_addr :: m>'_addr

To 010: 30.01%()PI-ZN-I NIT-S'|'/\R'I‘
lip_t) pe :: hex ‘F8’
lip_addr 1: addr received-
3_EfzEiN_1r'::'rE1i'E_' -;._‘ _ _ . _ _ _ _ __J

Expire(lxAL_TIME) & OLS

LPByx Recognized () <> my_addrl ‘NOS ReC°g"iZVed V
) <> hex rm ms Recognized 300* 0 > To 0P0: OLD-PORT

V Forward received LPB _
S0a:S0a or LPE (LIP(F8) Recognized) &

ERR_INIT : TRUE &
Expire(1xAL_TIME)

Any other transmission word SOIF ITb

receiwd lip I) pe :: hex ‘F8’

V V Forward LISMs received “p—addr 3: addr receiwd
S0b5S0b interspersed with fill words

To F I 3
I .()()P-FAII .-I-IRR_INI'I‘

Minimum(LP_TOV)
sauna» T“ 1“?

iip_1) pe V: hex 'F7' NORM/\[1-lNl’['lAl.I/I-I
lip_addr :: my_addr

LPByx recognized (y : m)_addr l) : hex
T13). ‘
(REQ(bypass L_Port) & LIP not Recognized)

S0:M > To MONITORING

BYPASS :: TRUE

"‘ in an) ofthese states when LIP is Recognized an immediate transition to 0101 OPEN-INIT-START is taken with the transition actions of:
lip_t) pe 1: I) pe received; lip_addr 1: addr received: if lip_type : hex 'F8' and ERR_INIT supported, then ERR_INIT :: TRUE

Figure 12 — Slave Initialization state diagram

DHPN-1008 / Page ‘I05 of 150

BSR NCITS 332

S5:SLAVE-LIPA”

* It‘Previousl_v acquired S7:Sl_,AVE—L[HA"‘
* lfbit corresponding to S6:SLAVE'LlHA'“,AlTW. * [fl I A ’ ' '

previacw is not already set * Originate Idles or Forward ard Sslgned & bu '5 Hmalready set_ * set bit in bitmap ’l' _ L i W d . . .

S4:SLAVE-LIFA-WAIT" is P,\R.[.K.”,A.[.F .:.,.RUF ,f::;:‘:(',",§'9;‘.()\,‘;' 5 * set bu ll] bitmap
* originate ldles or forward * l-Ilse * F P/(‘iii I It ' I RU‘:transmission words * prev_addr :: hex ‘FF‘ Omar ‘ Tame‘
* Start(l.P_'l‘(,)V) * Forward l.lP/\ fiame.

_ s7;sx—> To S8:LIHA Received Sl.AVl-I-|.lSA-WAIT
S6:S7

FROM S3. 83:84 ’S1./\VI-I-Lil"/\ S5 :86
Lll’A Received

S4:S5
Minimum(Ll’7'l‘0V) Minimum(LP7'l'(')V) i CLS Recei\ ed i
lCLS Receivedi ----.----------- --.----

. — - — - — - — - — - —. I An) trame other than LIHA Received ITo 10: | An)’ frame other than I '— - — - — - — - — - — - — - — - — - — -
NORMA].-INl'l'IAl.I/.l-I - UPA Received I V’ 103 ’ To 10

lip_t)pe :: hex ‘l-'7' NORlVlAl.-INl'|'IAl.I/.|-I
lipiaddr :: m}7addr

|_ _ _ _ _ _ _ _ ___.

lipit) pe :: hex 'l"7'
lipiaddr :: m}7addr

S9:SLAVE-LISA"

* lfSofi Assigned & any bit 2 2 _ ~ _ I v-
s8=sLAvE-LISA-WAIT" available in bitmap 5"‘ 5”“ E “S “A”* 0"igl"‘“€ idles 0' F°"“'a'd * set unused bit in bitmap * Originate Idles or Forward

T”“‘5‘“‘5Sl0" Words * PAR’l'lClPA'|'l-I .: 'l‘RU|-I Transmission Words 51 "SLA"'E‘CLSi
* 3'3“(”’_"‘0Vl * Forward LISA Frame. * siart(i.P_'i‘<,)v) i-nm»a,u as

S1 IIM ‘T0 l\/IUNITURING
IfP/\R’l'lCIPA'I‘l.' : 'l‘RUl.'
*prev7addr :: Acquired /\L7P/\
*m} iaddr :: Acquired /\L7P/\

CLS Received
8 1 0:8 I 1

From SL3:
Sl./\VE-l.ll.P-

From S7:
S1./\V|{-[.1] l/\ S7:S8—> LISA Received

585° so-s10
Minimum(LP ’l'0V)i N* —sL3:s11
C_L$ 5e9e§‘9d_l _ _ _ _ _ Us Use

| Any frame other than I *l"re"_3ddr 1: hex “"1”

l___LlS‘_A_R:°e_‘fd___l
N0RMAl.-INl'l'IAl.I/.l-I 88 ma

lip_1) pe 2: hex 'l"7' LIRP Received To S1 .0:
lilladdr 1: m>—add" S1075]-OS’ S1.AV|€-l.UUP-MAP-START

Minimum(LP7’l'0V) i

T010:
“lL1>Pe 1: hex 'l"7' NORMA].-INl'l'IAl.I/.l-I
lipiaddr :: m}7addr

"‘ in an} ofthese states \vhen Lll’ is Recognized an immediate transition to 010: (')l’l;‘N-lNI'l‘-S'l'AR'l' is taken with the transition actions of:
lipit) pe :: t} pe received: lipiaddr :: addr recei\ ed: if lipit) pe : hex ‘F8’ and l.'RR7lNl'l' supported. then l.'RR7INl’l' :: ’l'RUl;'

Figure 12 (concluded) — Slave Initialization state diagram

Slave Initialization state diagram notes:

State S0: SLAVE-WAIT-FOR-MASTER is used to forward received LISM frames. Implementations may directly forward

frames as they are received; however, not all LISM frames will necessarily be received due to buffer limitations.

Additionally, the L_Port may store the most recently received LISM frame and transmit it interspersed with ldles until

another LISM is received and stored in the buffer. This may yield LISM transmission at a different rate than reception.

NOTE — Because this state is being timed by LP_TOV, it is important to update the LISM being forwarded. If every device takes more
than 15 msec to forward each LISM received, and there are 128 devices on the Loop, the delay to win LIM would exceed LP_TOV.

State S1: SLAVE-FLUSH-BUFFERS is used to ensure that the L_Port is ready to receive the LIFA frame that may be

received shortly after forwarding the ARB(FO) around the Loop. In this state, the L_Port should complete sending any

frame that it was transmitting when ARB(FO) was received and transmit Idle until it has a buffer to receive the LIFA

frame. Upon reception of LIP in this state, the transition A|l:O|Oa shall be taken back to the OPEN-INIT-START state.

96

DHPN-1008 / Page 106 of 150

BSR NCITS 332

NOTE — Because this state and the next is being timed by LP_TOV, it is important that the buffers be flushed quickly, and ARB(FO)
forwarded quickly. If each device takes more than 15 msec to flush buffers and originate or forward the LIFA frame, the total delay, would
exceed LP_TOV.

Transition O|0:S0

Transition O|1:S0

Transition S0:O|0d

Transition S0:Ol0e

Transition A|l:Ol0a

Transition S0:F1

Transition S0:OP0

Transition All:l0a

Transition S10:SLO

Transition S11:M

Transition SL3:S11

Transition S0a:S0a

Transition S0b:S0b

This transition is the starting point for the Slave Initialization state diagram when the LIM is not

supported. It is reached directly from the OPEN-INIT-START state.

This transition is the starting point for the Slave Initialization state diagram when the LIM is

supported (but the L_Port yielded to another L_Port). It is reached when the L_Port determines
in the OPEN-INIT-SELECT-MASTER state that it is not the LIM.

This transition is taken when a (Non F8) LIP is recognized in the SLAVE-WAIT-FOR-MASTER

state after expire(1xAL_TIME). This causes the L_Port to return to the OPEN-INIT-START
state.

This transition is taken when the L_Port recognized L|P(F8) when ERR_|N|T is FALSE(O) after

expire(1xAL_T|ME). This transition sets the ERR_|N|T flag to TRUE(1) if ERR_|N|T is
supported.

This transition is taken when any LIP is recognized in the SLAVE-FLUSH-BUFFERS, SLAVE-
LIFA-WAIT, SLAVE-LIFA, SLAVE-LIPA-WAIT, SLAVE-LIPA, SLAVE-LIHA-WAIT, SLAVE-LIHA,

SLAVE-LISA-WAIT, SLAVE-LISA, SLAVE-CLS-WAIT, SLAVE-CLS states. This causes the

L_Port to return to the OPEN-INIT-START state and set ERR_|N|T to TRUE(1) if the |ip_type

is hex 'F8' and if ERR_|N|T is supported.

This transition to the LOOP-FAIL-ERR-INIT state is taken when L|P(F8) is recognized and

ERR_|N|T is TRUE(1).

This transition from the SLAVE-WAIT-FOR-MASTER state to the optional OLD-PORT state is

taken when OLS or NOS is recognized after expire(1xAL_T|ME).

This transition occurs in any of the indicated states when an error is detected in the address

selection machine. The errors that are detected are protocol errors or LP_TOV timeouts. The

transition may actually be controlled from outside the LPSM, and therefore, may take an

extended time. These transitions go back to the NORMAL-INITIALIZE state and attempt to
begin initialization again using L|P(F7).

This transition is made after all addresses have been assigned, and all L_Ports are capable of

generating an AL_PA position map. This transition is to the SLAVE-LOOP-MAP-START state

in the Slave AL_PA position map generation state diagram.

This transition to the MONITORING state is the completion of Loop Initialization. At this point

the L_Port is participating in the Loop if PARTICIPATE is TRUE(1), or it remains in the

MONITORING state and forgets any previously acquired AL_PA as a Non-Participating L_Port

if PARTICIPATE is FALSE(O).

This transition is from the SLAVE-LILP-CLS state in the Slave AL_PA position map state

diagram after it has received CLS. It transitions here, generates CLS and finishes the

INITIALIZATION process.

When an LPB that is not addressed to this L_Port or an LPE is recognized it shall be forwarded,
and the LPSM shall remain in the SLAVE-WAIT-FOR-MASTER state.

If any Transmission Word other than those explicitly identified in the state transitions from

SLAVE-WAIT-FOR-MASTER is recognized, received L|SMs are forwarded and the LPSM shall
remain in the SLAVE-WAIT-FOR-MASTER state. If no LISM frames have been received, the
CFW shall be transmitted.

DHPN-1008 / Page 107 of 150

BSR NCITS 332

10.5.4.8 Slave AL_PA position map state diagram

Figure 13 shows the Slave AL_PA position map state diagram. All FC-AL-2 L_Ports must implement this; however, if

there are FC-AL-1 L_Ports on the Loop this state diagram may not be used.

SLOISLAVE-LOOP-MAP-START‘ SL1 ISLAVE-LILP-VVAIT‘ ' V : SL3:SLA\"E-LILP-CLS:
*[fPAR.[.](.]P/\.H_. :].RU|_. * _ - I ‘ V SL2-SI-‘AV E'L"-‘P * Origi-mite idles or forward* /\dd loop map information to ongimifi 1d as or mmard * "a"5r"‘55‘°" ‘mrds“RP frame transmission words forward [.[[.P l-rame >r g[an([4pi'['(V)V)
* forward LIRP frame * S[an([’P—Vl‘OV)

('LSSi:g°::‘:'led To SI l'S[./\V|-I»(‘[.SSLOISL I
1 SIOISLU LILP Received

SL I ISLZ

From $10
Si./\V|‘I-CLS-W’/\[i‘

. L“I“£‘E“1lL.";V‘.'0_"}l

! Any frame Received

Minimum(LP7'l‘0V) 1 (‘LS Recei\ed l sL3:ioa—> AHNITWW_ ' _ ' _ ' _ ' _ ' _ ' _ ' _ ' _ ' lipity pe :: hex 'l"7'
lipiaddr :: myiaddr

. "I

| Any frame other than LILP Recei\'edJ-To [UC : TI
SL1 ma NORM/\[,»[Nl’[‘l/\[.[[l-ilipity pe :: hex 'l"7'

lipiaddr :: myiaddr

‘ in an} ofthese states when Lil’ is Recognized an immediate transition to 010: (')Pl;'N-lNl'l‘-S’l'AR’l' is taken with the transition actions of:
lipitype :: 1) pe recei\ ed: lipiaddr :: addr recei\ ed: iflipit) pe : hex 'l"8' and l.'RR7lNl’l' supported. then l;'RR7lNl'l' I: 'l‘RUl;'

Figure 13 — Slave AL_PA position map state diagram

Slave AL_PA position map state diagram notes:

Transition S10:SLO This is the main entry point to the Slave AL_PA position map state diagram from the Slave

Initialization state diagram.

Transition A|l:Ol0a This transition is taken when LIP is recognized in the SLAVE-LOOP-MAP-START, SLAVE-

LILP-WAIT, SLAVE-LILP, SLAVE-LILP-CLS states. This causes the L_Port to return to the
OPEN-INIT-START state.

Transition All:l0a This transition is taken when an error is detected in any of the indicated states of the address

selection machine. The errors that are detected are protocol errors or LP_TOV timeouts. The

transition may actually be controlled from outside the LPSM, and therefore, may take an

extended time. These transitions go back to the NORMAL-INITIALIZE state and attempt to begin
initialization again.

Transition SL3:S11 This transition is taken to S11:SLAVE-CLS, when the AL_PA position map process is completed

and CLS has been received. It is the final transition before Loop Initialization is completed in

the Slave Initialization state diagram.

98

DHPN-1008 / Page 108 of 150

BSR NCITS 332

10.5.4.9 Master Initialization state diagram

Figure 14 shows the Master Initialization state diagram. This machine is where the L_Port acquires an AL_PA if it is the

LIM. The L_Port enters this state when it has received its own LISM frame back.

M I IMASTER-LIFAW
MUIMASTER-START"

* originate ARBWO) * Set login bit ifrequired

C""""“"“S"' It M2 MASTER Lin WAIT’* . . . ; _ A _ A "

mm“ ‘P’ 1 UV) corresrxmdine Iopreuaddr * Originate idles* P/\R'l‘lCIP/\'l‘l-Z ::'['RUl-Z * s,m([4p TOV)From OI l: T01 [IMO * Uriginate l.|F/\ Frame. 7
(,)PHN-[NIT-SHI.HC'l‘-i\/I/\STI5R Received Tn N1}MZIM"mf .. .' .

/\RB(l"0) Recognized I J M/\5 ' l‘«R-UP/\MOIM 1
M’ ' Ll’ 'l‘0V 1, .

To 10: lmmum(M(;m) "V‘v‘;addr h _ An) frame other than Lll"/\
N0RM/‘'-‘'N'T'/\”7-'‘3 ‘ a P‘/‘RI [GPA] ‘ Received \ Minimum(Ll’7'l‘0V)

lipfipe ,: hex v,.-7- l;RR_INl'l‘ :— l ALSL ‘CLS Recehed
lipiaddr 1: m}7addr Mzimajp To 10:

mm) pe .: hex v[.-7- NORMAL-lNl’['lA[.I/_l-I
lipiaddr 1: m}7addr

M3:MASTER-LlPA"‘

*lf Previously acquired
*if bit conesponding to prev_addr

is not already set in received M5;MASTER.]_,[HA"
l.lFA fiame

*set bit in bitmap . . V . .
* PARTlCIPAT|__/ ::_[_RUI_: * It I lard /\>ssigned 8. bit 15 not

Jttelse M4: MASTER-Ll PA—WAlT"‘ “"”e“f>' 5f‘b'.‘I‘ Teflved “PA "am*prev addr : he‘< ‘FF’ 4: - - Se 1 In I map_ - - Originate ldles Jsp/\R'|‘[C]p/\'|‘ VI-RUE
*Urigi"me HP/\ flame‘ * sV“'t([1P_T0V) *()riginate I ll lA Frame

From M2. MAS'l‘l-ZR- M2;M~ . V
L”_.A_WN.]. ’ Lll’A Rece1\ ed

M4:M5 _ To Me:
M3‘M(’j’ MAST]-ZR-1.1] [A-WAIT

An) frame other than LIPA Received \ CLS Received \
Minimum(Ll’7'l‘0V)

1\14<10ae>""“ “’3‘ N0Rl\/I/\|.-|NIT|/\[.I/_|€
lipit) pe :: hex 'l"7'

lipiaddr 1: m}7addr

"‘ in an} ofthese states when LIP is Recognized an immediate transition to 010: OPLN-INI'l‘-S'l‘AR'l' is taken with the transition actions of:
lipitype :: t} pe received: lipiaddr :: addr received: iflipitype : hex ‘l8’ and l.'RR7lNI'l‘ supported. then l.'RR7lNl'l' :: 'l‘RUl;'

Figure 14 — Master Initialization state diagram

DHPN-1008 / Page 109 of 150

BSR NCITS 332

From M5‘
M/\S’I‘l-.R-I.ll [A

Any frame other than LIHA
Received l Minimum(LI’7'l'0V)
l CLS ReceivedTo [U

NORM/\I.-INl'l'IAl.I/|€

M7:MASTER-LISA‘
* Set l.[_l-‘I.
* lfsofi Assigned and any bits unset in
bitmap

* Set bit in received I.II I/\ frame
* P/\R’l‘l(‘[PA’l‘l-. ':’l‘RUl-i

* Originate LISA Frame.

LIHA Received M7:M8
at/1o:M7

M8: MASTER-LISA-VVA IT‘
M6: MASTER-LI HA-VVA IT‘

* Originate ldles
* SIzm(l.P_T()V)

* Originate ldles
* SIzm(l.P_T()V)

M51M6 Any frame other than LISA
Received l Minimum(LI’7'l'0V)

l CLS Received
M8:I()a?>

lipit} pe I: hex 'l"7'
lipiaddr :: myiaddr

To [U
NORM/\I.-[Nl'l'[/\l.I/|€

<— M6:I()a

lipit} pe I: hex 'l"7' N ’ ‘
lipiaddr :: myiaddr LISA Received & L171 L : 0

M31M9** To M9" MAST}-.R-Cl.S

LISA Received & LI7I‘L : l

M8:MLOj> To MI 0M ASTI-.R-I ,(,)(,)P-M/\ P-STAR I‘

M IOIMASTER-CLS-VVAIT‘
* Originate ldles
* SIzm(l.P_T()V)

M9:MASTER-CLS“
* Originate (LS

CLS Received
M IOINITDIO M(')NI'l'0RING

from M8:
MASIILR-LIS/\-WAI'l' M8‘M9

Ifl’/\R'l'IClPA'l'l.' : IRUIL
*pre\7addr I: Acquired AL7I’A
*m)'7addr :: Acquired AL7I’A

Else
*prev7addr :: hex 'l"l"'

from ML3I ,_
MAS’I'l.'R-LILI’-WAIT MLLMQ

An} l"rame Received l Minimum(LI’7'l'0V)

Minions» "i°.'°‘ H ,‘ V NORMAL-INI l IALILI;
llp_I}p€ I: hex 'l'7'

lipiaddr :: my iaddr

‘ in an) ofthese states when LIP is Recognized an immediate transition to 010: OPEN-INI’I'-S’I'AR'I‘ is taken with the transition actions of:
lipity pe :: type recei\ ed: lipiaddr I: addr received: iflipitype : hex 'l"8' and I.'RR7INI’I' supported. then I.'RR7INI’I' :: 'l'RUl;‘

Figure 14 (concluded) — Master Initialization state diagram

Master Initialization state diagram notes:

Transition O|1:M0

Transition A|l:Ol0a

Transition All:l0a

Transition M8:MLO

100

This transition is the starting point for the Master Initialization state diagram. It is reached when

the L_Port determines in the OPEN-INIT-SELECT-MASTER state that it is the LIM.

This transition is taken when LIP is recognized in the MASTER-LIFA, MASTER-LIFA-WAIT,
MASTER-LIPA, MASTER-LIPA-WAIT, MASTER-LIHA, MASTER-LIHA-WAIT, MASTER-LISA,

MASTER-LISA-WAIT, MASTER-CLS, MASTER-CLS-WAIT states. This causes the L_Port to
return to the OPEN-INIT-START state.

This transition is taken when an error is detected in any of the indicated states of the address

selection machine. The errors that are detected are protocol errors or LP_TOV timeouts. The

transition may actually be controlled from outside the LPSM, and therefore, may take an

extended time. These transitions go back to the NORMAL-INITIALIZE state and attempt to
begin initialization again.

This transition to the MASTER-LOOP-MAP-START state is taken after all addresses have been

assigned, and all L_Ports are capable of generating an AL_PA position map.

DHPN-1008 / Page 110 of 150

Transition M10:M

Transition ML3:M9

BSR NCITS 332

This transition to the MONITORING state is the completion of Loop Initialization. At this point

the L_Port is participating in the Loop if PARTICIPATE is TRUE(1), or it remains in the

MONITORING state and forgets any previously acquired AL_PA as a Non-Participating L_Port

if PARTICIPATE is FALSE(0).

This transition is taken from the MASTER-LILP-WAIT state, and indicates that Loop Initialization

is ready to be completed. The LIM must generate CLS to complete Loop Initialization.

10.5.4.10 Master AL_PA position map state diagram

Figure 15 shows the Master AL_PA position map state diagram. All FC-AL-2 L_Ports shall implement this; however,

if there are FC-AL-1 L_Ports on the Loop this state diagram may not be used.

MLO:MASTER-LOOP-MAP-START‘

IF P/\R'|'IC|P/\T|-I : TRUI-I
* Uriginate l.IRP flame with

this nodes infonnation in it
I-Zlse

* Uriginate LIRP with hex'00
hex ‘I-'F‘ in it

From M8:

MLl:MASTER-LIRP-WAIT‘
ML2:MASTER-LILP‘
* Forward LIRP infonnation
in [,||.P trame

ML3:MASTER-LILP-WAIT‘
* originate idles
* Start(l.P_’['OV)

* originate idles
* Start(l.P7’[‘0V)

— M8:MLO

MASTI-ZR-I .|SA-WAIT MLOMLI

LIRP Received
ML l IML2 MLZIMLJ An) frame other than LILPReceived I CLS recei\ ed I

Minimum(LP7'l'(')V)
ML3:I()aj>

Iipitype :: hex 'I‘7'
Iipiaddr :: myiaddr

1.0
Any frame other than LIRP NORM/\l«-INITI/\|-I/|‘3
Received I CLS recei\ ed I
Minimum(LP7'l'(')V) 1.0

MLIIIOEITP NORMAL-INI'l'IAl.lZl-Z
Iipitype :: hex 'I‘7'
Iipiaddr :: myiaddr

Receive LILP
.‘ To M0:

MLJ‘M9:’ MASTI-ZR-(‘l.S

‘ in an} ofthese states when LIP is Recognized an immediate transition to 010: OPLN-lNl'l'-S’l'AR'l' is taken with the transition actions of:
Iipit) pe :: t} pe received: lipiaddr I: addr received: iflipity pe : hex 'I‘8' & I;‘RR7lNI'I‘ supported. then I.'RR7INI’I' :: IRUIL

Figure 15 — Master AL_PA position map state diagram

Master AL_PA position map state diagram notes:

Transition M8:MLO

Transition A|l:Ol0a

Transition All:l0a

Transition ML3:M9

This is the main entry point to the Master AL_PA position map state diagram from the Master

Initialization state diagram.

This transition is taken when LIP is recognized in the MASTER-LOOP-MAP-START, MASTER-

LIRP-WAIT, MASTER-LILP, MASTER-LILP-WAIT states. This causes the L_Port to return to
the OPEN-INIT-START state.

This transition is taken when an error is detected in any of the indicated states of the address

selection machine. The errors that are detected are protocol errors or LP_TOV timeouts. The

transition may actually be controlled from outside the LPSM, and therefore, may take an

extended time. These transitions go back to the NORMAL-INITIALIZE state and attempt to begin
initialization again.

This transition is taken to MASTER-CLS, when the AL_PA position map process is completed.

101

DHPN-1008 / Page 111 of 150

DHPN-1008 / Page 112 of 150

BSR NCITS 332

Annex A

(normative)

L_Port Elasticity buffer management

This annex defines the L_Port elastic buffer and the clock skew management rules for inserting and deleting Fill Words.

The elasticity buffer provides buffering between the receiver input and the transmitter to prevent over-run and under-run

conditions at the transmitter. To prevent L_Ports from being starved of opportunities to delete and minimize buffer

requirements in all L_Ports, a two priority algorithm for clock skew management delete operations is incorporated. For

a description of the elasticity buffer function and example see annex G.

A.1 L_Port elasticity buffer implementation

The elasticity buffer shall be implemented as a first-in-first-out (FIFO) device with the input coming from the receiver

logic and the output going to the transmitter logic. An example of the elasticity buffer is illustrated in figure A.1.

Buffering required for clock resynchronization is not shown.

*> Level 4

*> Level 3
M

*> Level 2 U ’
X

X) Level 1

InputT
Fill Word insert

Figure A.1 — Elasticity buffer

Only valid Transmission Words are entered into the elasticity buffer. The information content of the valid Transmission

Words entered into the buffer is called valid information. The buffer is divided into four levels. Each level represents

buffering for a clock skew management state.

The buffer may be implemented either in bit, character, half word (two characters), or word wide units. The amount of

valid information in the buffer is a count of the units entered into the buffer minus the units removed at the output.

NOTE — It is recommended to use either a character or half word wide buffer. Bit wide implementations require a very high logic speeds for
implementation. Word wide implementations do not provide a fine enough unit of measuring the level of valid information in the buffer.

A.2 Clock skew management

Clock skew management inserts and deletes Transmission Words to control the amount of valid information in the buffer.

These operations are performed outside of FC-2 frames to allow the frames to be forwarded without modification. For

clock skew management, Fill Words or any Ordered Set defined for use as a Primitive Sequence shall be treated equally.

The insertion of Fill Words is required when the receive clock is slower than the transmit clock to prevent buffer

under-run. Deletion of Fill Words is required when the receive clock is faster than the transmit clock to prevent buffer
over-run.

103

DHPN-1008 / Page 113 of 150

BSR NCITS 332

A.3 Clock skew management states

Clock skew management has 4 states as shown in figure A.2: insertion pending, quiescent, low priority deletion pending,

and high priority deletion pending. The current state is determined by the amount of valid information in the buffer.

Full

High Priority Deletion Pending

(Level 4)

Low Priority Deletion Pending

(Level 3)

Quiescent

(Level 2)

Insertion Pending

(Level 1)

Empty Buffer Depth

Figure A.2 — Clock skew management states

A.3.1 Insertion pending

To allow an FC-2 frame to be transmitted unmodified, at least a minimum amount of valid information must be in the

buffer to ensure buffer under-run will not occur during the frame transmission.

Rule for insertion: When the amount of valid information is less than level 2, in level 1, the L_Port shall insert the current

Fill Word immediately after any Fill Word.

A.3.2 Quiescent

When the amount of valid information in the buffer is greater than the level requiring an insertion and less than the level
requiring a deletion, in level 2, the clock skew management algorithm is in the quiescent state. No requests to change

the buffer depth are pending. This is the nominal state of the clock skew management.

A.3.3 Deletion pending

At least a minimum of free space must be in the buffer to prevent buffer over-run during frame retransmission.

Transmission Words may be deleted to reduce the depth of the buffer to provide free space.

Deletion of Transmission Words is more difficult than insertion. When a deletion is required between frames, e.g., in

an inter-frame gap, a minimum number of Primitive Signals shall be maintained between frames to meet ANSI X3,

FC-PH-X requirements and the Idle Primitive Signals which reset the fairness window shall be propagated.

When frames are originated onto the Loop, the FC-PH requirement of six Primitive Signals between frames is followed.

The inter-frame gap may be reduced to 2 Fill Words plus other Primitive Signals by clock skew management. To prevent

Ports from being starved of opportunities to delete, a two priority algorithm shall be used.

A.3.3.1 Low priority deletion pending

When the amount of valid information in the buffer triggers a request to delete, the low priority rules for deletion are

followed. The low priority rules protect some Fill Words in inter-frame gaps for L_Ports requiring a more critical delete

after all the low priority deletes have occurred.

104

DHPN-1008 / Page 114 of 150

BSR NCITS 332

Low Priority Rules: When the amount of valid information reaches level 3, the L_Port shall:

— after 4 Fill Words with no intervening non-Ordered Set (data words), the L_Port deletes the next Fill Word and

NOTE — A non-Ordered Set indicates an intervening frame. By detecting non-Ordered Sets, the L_Port is not required
to detect 80F and EOF frame delimiters. New frame delimiters may be defined in the future.

— if the CFW changes to Idle while a delete is pending, the L_Port shall not delete the first Idle.

NOTE — This Idle is protected to allow the LPSM to manage the fairness window as required.

After a low priority Transmission Word delete, the L_Port shall:

— enter the low priority state and wait 4 Fill Words before another delete or

— enter the quiescent state with no delete pending.

Examples:

EOF FW FW FW FW FW FW SOF

A A May delete one for low priority
EOF AR AR AR AR ID ID SOF

A May delete one for low priority
EOF AR AR AR ID ID ID SOF

A A May delete one for low priority
EOF FW FW RR FW FW RR FW FW SOF

A A May delete one for low priority

Legend:
EOF = End of Frame AR = ARByx
SOF = Start of Frame ID = Idle

FW = Fill Word (ARByx or Idle) RR = RiRDY

A.3.3.2 High priority deletion pending

L_Ports that are close to over-running their buffers follow the high priority rules for deletion.

High Priority Rules: When the amount of valid information reaches level 4, the L_Port shall:

— after 2 Fill Words with no intervening non-Ordered Set (data words), the L_Ports deletes the next Fill Word and

— if the CFW changes to Idle while a delete is pending, the L_Port shall not delete the first Idle

After a high priority Transmission Word delete, the L_Port shall:

— enter the low priority state and wait 4 Fill Words before another delete or

— re-enter the high priority state and wait 2 Fill Words before another delete depending on buffer free space.

105

DHPN-1008 / Page 115 of 150

BSR NCITS 332

Examples:

EO7 FW FW EW

EO7 AR AR AR

EO7 FW FW RR

EO7 FW FW EW

Legend:
E07 =
S07 =
FW =

FW

A.4 Buffer size

FW FWA A

ID IDA A

FW RR

FW FW

End of Frame
Start of Frame

Fill Word (ARByx or Idle)

SOF

SOF

FW FW SOFA

SOF

A

May delete one for high priority

May delete one for high priority

May delete one for high priority

May delete both (third and sixth) for high priority

AR
ID
RR

ARByx
Idle
R RDY

The size of the elasticity buffer allows for maximum phase and frequency mismatch between the transmitter and receiver

for the length of the largest frame size and the number of frames before a deletion opportunity occurs. See annex G

for a description of the worst case period between clock skew management operations. The objective is to keep the size

of the elasticity buffer to a minimum. This will ensure minimum Port latency and maximize Loop performance.

The size of the buffer is the sum of space required for each clock skew management state.

The L_Port shall implement a buffer space of at least .25 word (1 character) in level 1 for the insertion pending state.

The L_Port shall implement a buffer space of at least 1 word (4 characters) in level 2 for the quiescent state.

The L_Port shall implement a buffer space of at least 1 word (4 characters) in level 3 for the low priority deletion state.

The L_Port shall implement a buffer space of at least 1 word (4 characters) in level 4 for the high priority deletion state.

106

DHPN-1008 / Page 116 of 150

BSR NCITS 332

Annex B

(informative)

Loop Port State Machine examples

The two examples in this annex use seven of the nine states in the LPSM and twelve of the twenty-two state transitions

as defined in 8.4. Of the ten unused state transitions, four are for rare events or error handling. Therefore, much of the
Loop protocol is covered in these two simple examples.

B.1 L_Port initialization example

The general, error free procedure for taking the LPSM of a Public NL_Port through Loop Initialization to the point of

Fabric Login follows (see clause 8 for reference items and LPSM transitions):

The NL_Port powers on and attempts to join the Loop;

The NL_Port may use a trusted AL_PA (since it does not have a valid AL_PA) to instruct the LPSM to arbitrate

(REQ(arb own AL_PA)) and to initialize (REQ(initialize)).

The LPSM makes transition (01);

The LPSM, now in the ARBITRATING state, begins to replace any Idle or ARB(val) (where val is higher than the

trusted AL_PA) with ARB(val) (where val is a trusted AL_PA). The LPSM monitors its inbound fibre for the ARB(vaI)

which it transmitted. (See 8.4.3 item 14 for details);

The LPSM makes transition (12);

The LPSM, now in the ARBITRATION WON state, detects (REQ(initia|ize)) (see 8.4.3 item 15 for details);.

The LPSM makes transition (28);

The LPSM, now in the INITIALIZATION process, performs Loop Initialization as described in clause 10 and waits

for CLS to indicate that the INITIALIZATION process has completed.

The LPSM detects CLS.

The LPSM makes transition (80);

The NL_Port, now in the MONITORING state, is ready to execute a Fabric Login if it is a Public NL_Port (see 10.5,
step (5)).

The complete list of state transitions and states in the order used is: (01), 1: ARBITRATING; (12) 2: ARBITRATION

WON; (28), 8: INITIALIZATION process; (80), O: MONITORING.

107

DHPN-1008 / Page 117 of 150

BSR NCITS 332

B.2 N_Port Login example

After the NL_Port initialization procedure has completed (see 10.5), and the NL_Port has a native address identifier (and

an AL_PA) and is in Participating mode, a general, error-free procedure for performing NL_Port Login with another
NL_Port is described below. In this example, one NL_Port AL_PA is hex '26‘; the other NL_Port AL_PA is hex '32‘. The

example assumes: there is no Participating FL_Port; the arbitrating NL_Port is using the access fairness algorithm;

BB_Credit is the default value zero (0) for both NL_Ports; and, both NL_Ports start from the MONITORING state.

— NL_Port 26 arbitrates to access the Loop (REQ(arbitrate as 26)). Assume that the variable ACCESS is set to

TRUE(1) (see 8.4.3, item 14 for details).

The LPSM makes transition (01);

— NL_Port 26, now in the ARBITRATING state, can arbitrate because its access window has been reset (ACCESS is

TRUE(1). The LPSM begins replacing all Idles and lower priority ARB(va|) with its own ARB(26,26) (see 8.4.3, item

14 for details).

The LPSM monitors for ARB(26,26) on its inbound fibre.

Assuming no higher priority NL_Port is arbitrating, ARB(26,26) is received.

The LPSM makes transition (12);

— NL_Port 26, now in the ARBITRATION WON state, must decide whether to open the Loop or not. ACCESS is set

to FALSE(O). In this example, the Loop is to be opened (REQ(open 32,26)). (See 8.4.3, item 15 for details.)

The NL_Port 26 transmits OPN(32,26) to cause the other NL_Port to go to the OPENED state in full-duplex mode.

The LPSM makes transition (23);

— NL_Port 26, now in the OPEN state in full-duplex mode, follows OPN(32,26) with one or more R_RDY (one for each

available receive buffer) and the CFW until a frame is transmitted. ARB_WON is set to TRUE(1). (See 8.4.3, item

16 for details.)

Concurrently, NL_Port 32, in the MONITORING state, receives OPN(32,26) and goes to the OPENED state.

The LPSM for NL_Port 32 makes transition (04);

— NL_Port 32, now in the OPENED state, transmits the CFW to replace OPN(32,26) on the Loop, followed by one or

more R_RDYs (one for each available receive buffer) and the CFW until a frame is transmitted. ARB_WON is set

to FALSE(O). DUPLEX is set to TRUE(1). (See 8.4.3, item 17 for details);

— NL_Port 26 is in the OPEN state and NL_Port 32 is in the OPENED state.

A Loop circuit has been established between the two NL_Ports. Since BB_Credit was zero (0), at least one R_RDY

must be received before a frame may be transmitted by each NL_Port (i.e., normal ANSI X3, FC-PH-x Login
protocol can now be used);

— NL_Port 26 and NL_Port 32 have previously (during L_Port initialization) determined that there is no Fabric.

NL_Port 26 transmits an N_Port Login Sequence with D_|D of hex ‘000O32' and S_|D of hex '00O026‘. Both

NL_Ports recognize these as legitimate native address identifiers for a Loop without an FL_Port. The CFW again

follows transmission of the Sequence.

The N_Port Login Sequence arrives at NL_Port 32 and is processed; an R_RDY is transmitted when the receive
buffer becomes available;

108

DHPN-1008 / Page 118 of 150

BSR NCITS 332

— NL_Port 32 transmits an Accept response to NL_Port 26 honoring its requested native address identifier and

confirming its Own native address identifier.

NL_Port 26 receives the Accept Sequence and begins to close the Loop (REQ(close)) by transmitting CLS, followed

by the CFW (note that an R_RDY was not required) (see 8.4.3, item 18 for details).

The LPSM for NL_Port 26 makes transition (35) to the XMITTED CLOSE state;

— The CLS is received by NL_Port 32.

The LPSM for NL_Port 32 makes transition (46);

— The LPSM for NL_Port 32, now in the RECEIVED CLOSE state, transmits CLS (REQ(close)) (see 8.4.3, item 19

for details).

The LPSM for NL_Port 32 makes transition (60);

— The LPSM for NL_Port 32, now in the MONITORING state, has completed its work for the Loop circuit. NL_Port
32 may begin arbitrating to carry out its own work;

— The LPSM for NL_Port 26, now in the XMITTED CLOSE state, monitors its inbound fibre for CLS (see 8.4.3, item

18 for details).

The CLS is received on its inbound fibre.

The LPSM for NL_Port 26 makes transition (50);

— The LPSM for NL_Port 26, now in the MONITORING state, has completed its work for the Loop circuit. If NL_Port

26 is a fair L_Port, it must now wait until an Idle is seen (i.e., ACCESS is TRUE(1)) before it can attempt to arbitrate
again.

NOTE — NL_Port 26 could have used the TRANSFER state if it required further use of the Loop.

The complete list of state transitions and states in the order used are:

NL_Port 26 NL_Port 32

0: MONITORING, (01) 0: MONITORING, (04)

1: ARBITRATING, (12) 4: OPENED, (46)

2: ARBITRATION wON, (23) 6: RECEIVED CLOSE, (60)

3: OPEN, (35) 0: MONITORING

5: XMITTED CLOSE, (50)
0: MONITORING

109

DHPN-1008 / Page 119 of 150

BSR NCITS 332

Annex C

(informative)

Dynamic Half-Duplex

Although Fibre Channel is by nature a full-duplex link (i.e., Data frames may travel in both directions in the fibre pairs

simultaneously), some L_Port implementations can only support one-directional data transfers. There are two types of
L_Ports possible:

1) Full-duplex L_Ports are those that may simultaneously transmit and receive Data frames (this type of Data frame

transfer is referred to bi-directional transfer).

2) Half-duplex L_Ports are those which can transmit or receive Data frames, but not at the same time (this type of Data

frame transfer is referred to as simplex transfer).

This annex describes a method to minimize the number of arbitration cycles for a full-duplex L_Port by using the

established Loop circuit more efficiently. The description is independent of which Class of Service is being used.

C.1 Close initiative description

Although, not required by this standard, the L_Port in the OPEN state normally transmits the first CLS to close the Loop.

When a full-duplex Loop circuit exists (i.e., OPNyx was transmitted and the L_Port in the OPENED state receives CLS,

it may continue to transmit frames until it has no more credit (i.e., Avai|ab|e_BB_Credit=0 or EE_Credit=0). Once the

OPENED L_Port is no longer able to transmit any frames, it must forward CLS. This assumes that both L_Ports may

have transferred Data frames in opposite directions when a full-duplex Loop circuit exists.

NOTE — An L_Port which has transmitted CLS is not allowed to transmit any frames or R_RDYs.

There are at least two cases where it may be useful to transfer the close initiative rather than transmitting CLS to allow

the L_Port which holds the close initiative to transmit the first CLS.

1) Some implementation are not able to handle simultaneous transmit and receive Data frames at the node. Often,

these nodes have Data frames pending for the OPEN L_Port, but because of the implementation, cannot take

advantage of the bi-directional Loop circuit which exists.

2) Even if full-duplex data transfers are possible, if the OPEN L_Port transmits CLS, the OPENED L_Port can only

transmit Data frames based on existing credit.

Both of these cases would require a re-arbitration to transmit the Data frames which an L_Port was unable to transmit..

To avoid this extra re-arbitration cycle, the DHD Primitive Signal is provided. Transmitting DHD allows the OPEN L_Port

to continue to transmit R_RDYs and Link_Control frames (but no Data frames). The OPENED L_Port remembers that

it has received DHD by setting DHD_RCV to TRUE(1). If DHD_RCV is TRUE(1), the OPENED L_Port holds the close

initiative and is expected to transmit the first CLS when it has no more frames to transmit to the OPEN L_Port. The

OPEN L_Port may transmit CLS at any time following transmission of DHD, although it would normally wait until it

received the CLS from the OPENED L_Port.

110

DHPN-1008 / Page 120 of 150

C.2 Dynamic Half-Duplex examples

BSR NCITS 332

Table C.1 describes how two L_Ports (A in the OPEN state and B in the OPENED state) may make better use of a full-

duplex Loop circuit by using DHD. Table C.1 shows both R_RDY and Link_Contro| frame flow control. If the Class of
Service does not use one or the other, these would be absent from the table.

NOTE — Once the close initiative is transferred from one L_Port to the other via DHD, the OPEN L_Port is only allowed to transmit
Link_Contro| frames (e.g., ACKs) and R_RDYs (i.e., Data frames may not be transmitted once DHD has been transmitted).

Table C.1 — Dynamic Half-Duplex

L_Port A (OPEN state) L_Port B (OPENED state)

Full-duplex L_Port (able to transmit and

receive Data frames simultaneously)
- Transmit n-1 Data frames.

- Transmit last frame

If Login DHD is FALSE(O), transmit CLS.

Loop circuit is closed—next arbitrating
L_Port wins Loop.

If Login DHD is TRUE(1), transmit DHD.

Continue to transmit R_RDYs and

Link_Contro| frames (if any)

Transmit CLS to close Loop circuit.

OPNyx ==>
R_RDYs ==>
frame(s) ==>
<== R_RDYs

<== frames

frame(n) ==>
CLS ==>

<== frame(s)
<== CLS

DHD ==>

<== frames

R_RDYs ==>
<==R_RDYs

<== frame(n)
<== CLS
CLS ==>

Full-duplex L_Port (able to transmit and

receive Data frames simultaneously)

Transmit R_RDY and Link_Contro| frames

(if any)
Transmit Data frames

CLS received, continue transmitting frames
until Availab|e_BB_Credit=O or
EE_Credit=0).

Transmit CLS (a new arbitration cycle is
required to transmit remaining frames).

DHD received, continue transmitting frame;
set DHD_RCV to TRUE(1).

Transmit n-1 Data frames

Transmit R_RDYs and Link_Contro| frames

(if any)

Transmit last frame
Transmit CLS

Loop circuit is closed—next arbitrating
L_Port wins Loop.

NOTE—Tab|e C.1 shows frame transfers based on R_RDY flow control. For certain Classes of service (e.g., unbuffered Class 1), the R_RDYs
would not be used (except on the first frame) and all flow control would be based on End-to-end-Credit.

FC-AL allows an L_Port in the OPEN state to use the TRANSFER state to make a connection to another L_Port without

re-arbitrating. When DHD is transmitted by the OPEN L_Port, it normally would not transmit the first CLS. However,

based on the access fairness algorithm (i.e., when to use the TRANSFER state), if ACCESS is TRUE(1), the L_Port in

the OPEN state may still go to the TRANSFER state by transmitting CLS (assuming this is done before the L_Port

received CLS).

111

DHPN-1008 / Page 121 of 150

BSR NCITS 332

Annex D

(informative)

Access unfairness

This annex describes how access unfairness might be used to improve Loop performance, and how access unfairness

can be used to allow an NL_Port to reclaim ACK buffers when they become full.

D.1 Improving Loop performance

One possible use of the Loop is a serial version of a conventional single-Initiator parallel Small Computer System

Interface (SCSI) bus. In this configuration, there is only one Initiator and many Target devices connected to the Loop.

lfall NL_Ports on the Loop, including the Initiator, follow the access fairness algorithm, then the Initiator may not be able

to obtain sufficient Loop bandwidth to optimize overall performance by achieving a high level of parallelism among its

Targets. A specific example is the situation where the Initiator transmits READ commands to all Targets. The Targets
may take some time to locate the read data and then the Targets need to transmit the data to the Initiator.

Once a Target acquires the Loop and transmits its read data, it may be inactive unless it is given another command.

lfthe Initiator follows the access fairness algorithm, it will wait for all Targets that have read data pending to access the

Loop, before it can access the Loop and transmit a new command to the Target. To reduce the time that a Target is

inactive, the Initiator may want to unfairly acquire the Loop and transmit a new command to the Target. The Target can

then start locating the data for the new command.

D.2 Emptying ACK buffers

With a Loop topology, a low-cost NL_Port may need to buffer outbound ACKs in Class 2.

One example occurs if a simple First-In-First-Out (FIFO) ACK buffer is used. The ACKs destined for the currently

connected NL_Port cannot be sent because they are queued behind ACKs for other NL_Ports in the ACK FIFO.

Another example occurs in a full-duplex Loop circuit. If NL_Port A transmits CLS to NL_Port B at the same time that

NL_Port B transmits Data frames to NL_Port A, then NL_Port A must buffer ACKs for the Data frames that it receives

after it has sent the CLS. This occurs because NL_Port A will receive Data frames after it has sent the CLS and made

the transition to the XMITTED CLOSE state. NL_Port A cannot transmit frames (including ACKs) or R_RDYs in the

XMITTED CLOSE state. Using DHD (instead of CLS), allows the L_Port in the OPEN state to continue to transmit ACKs
for the received Data frames.

Alternatively, if the ACK buffer becomes full, NL_Port A may choose to unfairly arbitrate and acquire the Loop so that

it can transmit the queued ACKs and reclaim its ACK buffer space. NL_Port A may use the TRANSFER state to speed
up the process.

112

DHPN-1008 / Page 122 of 150

BSR NCITS 332

Annex E

(informative)

Half-duplex operation

This annex describes where half-duplex mode may be used to prevent ACK buffers from overflowing during Class 2
operation.

The operational characteristics of the Loop differ slightly from a point-to-point or from a Fabric topology. When an

N_Port is directly connected to an F_Port, it can transmit an ACK frame whenever buffer-to-buffer credit is available.

With the Loop, not only is Avai|ab|e_BB_Credit required, but the Loop must also have a circuit open with the correct

L_Port before an ACK can be sent. At times, an NL_Port may need to buffer ACKs because it cannot access the Loop
to transmit them.

Depending upon how ACK buffering is implemented, an NL_Port that is receiving Data frames may not be able to

transmit the corresponding ACKs. If a simple FIFO is used to buffer ACKs, the ACKs for the currently connected

NL_Port cannot be sent because they are queued behind ACKs for other NL_Ports in the ACK FIFO.

Another example where an NL_Port must buffer ACKs is in a full-duplex Loop circuit. If NL_Port A transmits CLS to

NL_Port B at the same time that NL_Port B transmits Data frames to NL_Port A, then NL_Port A must buffer ACKs for

the Data frames that it receives after it has sent the CLS. This occurs because NL_Port A will receive Data frames after

it has sent the CLS and made the transition to the XMITTED CLOSE state. NL_Port A cannot transmit frames (including

ACKs) or R_RDYs in the XMITTED CLOSE state.

When an N_Port is connected directly to an F_Port, if it experiences a resource shortage to buffer ACKs, it will not

transmit R_RDYs to the F_Port. The F_Port cannot transmit any frames to the N_Port without BB_Credit and therefore

the N_Port will not owe EE_Credit and will not have to buffer the ACKs. The N_Port may continue to transmit ACKs and

once sufficient ACK buffering is available the N_Port will transmit R_RDY to enable the F_Port to transmit frames.

On a Loop, an NL_Port has two techniques that can be used to reduce or prevent the receipt of Data frames and

therefore, the number of ACKs it must buffer. The first technique is similar to the Fabric example above, where the

NL_Port withholds R_RDYs when a Loop circuit is opened. For example, an NL_Port can specify at Login that it has

an BB_Credit of zero (0). When the NL_Port receives OPNy, it will not transmit any R_RDYs, preventing the opening

NL_Port from transmitting any frames. The NL_Port will therefore not have to buffer ACKs.

A second technique, which an NL_Port can use to reduce or prevent the receipt of Data frames, is to establish a Loop

circuit in half-duplex mode. When the opened NL_Port receives the OPNyy, it is not allowed to transmit Data frames,

only Link_Control frames. This guarantees that the NL_Port that established the Loop circuit, will not receive Data

frames and therefore will not be required to buffer ACKs.

113

DHPN-1008 / Page 123 of 150

BSR NCITS 332

Annex F

(informative)

BB_Credit and Available_BB_Credit management example

The following is an example implementation using BB_Credit and Avai|able_BB_Credit which was described in 8.3.4.

Assume two L_Ports, A and B, and that A arbitrated and won and plans to open B; full-duplex is used; and, both A and

B have frames to transmit. L_Port A has sixteen receive buffers available and a BB_Credit Login value of two for L_Port

B. L_Port B has eight receive buffers available and a BB_Credit Login value of one for L_Port A.

L_Port A:

1) looks up the opened BB_Credit Login value for B (two);

2) checks to see how many receive buffers it has available (sixteen);

3) transmits OPN(B,A), CFW, CFW, R_RDY, CFW, CFW, R_RDY, CFW, CFW, R_RDY, and two Fill Words, followed

by two frames (opened BB_Credit Login value for B). Note that had the opened BB_Credit been zero (0), no frames

could have been sent by A. The remaining thirteen R_RDYS are transmitted after the first frame and subsequent
frames;

4) receives and counts the R_RDYs sent by B (eight). Once L_Port A has received and discarded the two R_RDYs

(which are for the frames already shipped against the opened BB_Credit in 3 above), L_Port A has an

Avai|able_BB_Credit of six that it may use to transmit up to six additional frames;

5) transmits one frame for each Available_BB_Credit;

6) receives R_RDYs sent by B and increments Avai|ab|e_BB_Credit;

7) receives the number of frames sent by B into the receive buffer(s);

8) transmits one R_RDY for each receive buffer that has been made available

9) repeats steps 5 through 8 until all frames have been sent;

10) transmits CLS;

11) continues to receive frames from B, but transmits no R_RDYs or frames; and,

12) receives CLS and closes its end of the Loop.

L_Port B:

1) receives OPN(B,A) and opens the Loop;

2) looks up the open BB_Credit for A (one);

3) checks to see how many receive buffers it has available (eight);

4) transmits CFW, CFW, R_RDY, CFW, CFW, R_RDY, CFW, CFW, R_RDY and two Fill Words, followed by one

frame (open BB_Credit Login value for A). Note that had the open BB_Credit been zero(0), no frames could have

been sent by B until the first R_RDY was received from A. The remaining five R_RDYs are transmitted after the

first frame. Once L_Port B has received and discarded one R_RDY (which is for the frame already shipped against

the open BB_Credit) and counted the other R_RDYs from A, L_Port B has an Avai|ab|e_BB_Credit of fifteen that

it may use to transmit up to fifteen additional frames;

114

DHPN-1008 / Page 124 of 150

5)

5)

BSR NCITS 332

receives and counts the R_RDYs sent by A by increasing Avai|ab|e_BB_Credit by one for each R_RDY. L_Port

B can now transmit an additional frame for each R_RDY that it has received;

receives the number of frames sent by A into the receive buffer(s);

7) transmits an R_RDY for each receive buffer that has been made available;

8)

9)

repeats steps 5 through 7 until CLS is received from A; and,

may continue to transmit frames until Availab|e_BB_Credit or EE_Credit is exhausted, followed by CLS. When the

CLS is sent, L_Port B closes its end of the Loop.

There are several variations on the previous example.

1)

2)

3)

4)

5)

Data frame transfer is only from A to B even though OPN(B,A) (full-duplex) is used. L_Port A transmits three

R_RDYs followed by the number of frames represented by the opened BB_Credit Login value. In this case, B has

no Data frames to transmit, but transmits one R_RDY for each available receive buffer and Link_Control frames

(e.g., ACKs) to A. Note that B may limit the number of frames that A can transmit by transmitting one R_RDY for

each available receive buffer, followed by CLS. Once L_Port A has received the CLS, it can then only transmit

frames until its Available_BB_Credit is exhausted before it must close its end of the Loop;

Both open and opened BB_Credit is zero (0). In this case, neither A nor B can transmit any frames until at least

one R_RDY is received. For each R_RDY received, a frame may be sent. Note that when BB_Credit is zero (0),

a Loop turn-around delay is required at A before transmitting the first (and possibly the only) frame. By

guaranteeing a minimum number of receive buffers (as indicated by BB_Credit), this turn-around delay may be
eliminated;

L_Port A transmits OPN(B,A) (full-duplex), followed by at least one R_RDY, followed by two frames (the opened

BB_Credit Login value for L_Port B). L_Port B does not look up the open BB_Credit for A, and transmits at least

one R_RDY (one for each available receive buffer). L_Port B waits for the first R_RDY from A. When at least one

R_RDY is received (i.e., Avai|ab|e_BB_Credit is one (1)), B can transmit one frame;

L_Port A transmits OPN(B,B) (half-duplex). In this case, L_Port B cannot identify A and must wait for the first frame

from A to transmit any frames (note: since this is a half-duplex OPNyy, no Data frames may be transmitted by B).

Once a frame is received, the S_|D in the frame header may be used to determine the AL_PA of A. B can then

establish the open BB_Credit for A. If B is using a minimum Loop value for the open BB_Credit, the AL_PA ofA
is not required; and,

L_PortA transmits OPN(B,B) (half-duplex). In this case, L_Port B must wait for the first R_RDY from A. Once at

least one R_RDY is received (i.e., Avai|ab|e_BB_Credit is one (1)), B can transmit one Link_ Control frame to A.

115

DHPN-1008 / Page 125 of 150

BSR NCITS 332

Annex G

(informative)

L_Port clock design options

This annex describes two approaches to clock implementations for L_Port design.

G.1 L_Port synchronous clock design

When the L_Port uses the receive clock for transmission, the design is synchronous. A buffer is not required between

the receiver and the transmitter. An example is shown in figure G1. This design approach is not recommended for the

L_Port design operating at FC-PH specified frequencies. Some of the jitter properties of the received clock are

transferred to the output even when reconditioning or filtering is used. This transfer of jitter makes the number of L_Ports
that may be connected in a Loop undetermined.

rdata
Receiver T) Transmitter AP

rclock

Figure G.1 — Example of a synchronous L_Port design

G.2 L_Port asynchronous clock design

When the L_Port uses a local reference clock for transmission, the design is asynchronous. An elasticity buffer is

required between the receive logic and the transmitter. This buffer is necessary because of the clock frequency

difference between the receiver and transmitter. The receiver is recovering its clock from the input data stream. The

transmitter clock is generated from an oscillator at the L_Port. This buffer is also required by an L_Port if the receive
data is resynchronized to a local clock such as the transmit clock.

The elasticity buffer expands and contracts to control the over-run and under-run conditions resulting from the clock

frequency difference. The buffer control directs the insertion and removal of Fill Words outside FC-2 frames to prevent

over-run and under-run conditions from occurring in FC-2 frames. This control is called clock skew management.

An example of an asynchronous design is shown in figure G.2. This design approach is recommended for L_Ports. The

use of a stable local clock for transmission provides isolation from the receive clock jitter.

rdata

’> Rgcgiver T) Buffcr y» Transmitter

local clock

Figure G.2 — Example of an asynchronous L_Port design

116

DHPN-1008 / Page 126 of 150

BSR NCITS 332

G.2 Clock skew management function periodicity

The period between clock skew management operations is dependent on the possible difference between the receive

and transmit clocks. ANSI X3, FC-PH-X specifies the allowed clock deviations of + or - 100 ppm (parts per million),

independent of the frequency.

Assuming a worst case frequency mismatch between two connected Ports (i.e., 200 ppm), the maximum duration for

a frame is based on the total frame length of2156 characters (i.e., 2112 (data field) + 24 (FC-2 header) + 12 (SOF, EOF,

and CRC) + 8 (two Fill Words)). The net elasticity needed for a maximum size frame is:

2156 Characters * 10 bits/char * 200 ppm = 4,3 bits per frame.

This means that before a frame is transmitted, the elasticity buffer must have at least 4,3 bits of data and free space to

ensure against buffer under-run and over-run.

Since L_Ports are required to maintain word synchronization and clock skew management is only valid at Transmission
Word boundaries, a clock skew adjustment may be required every:

40 bits / 4,3 bits per frame = 9,3 frames.

117

DHPN-1008 / Page 127 of 150

BSR NCITS 332

Annex H

(informative)

Mark Synchronization examples

This annex describes two examples of how the Mark (MRKtx) Primitive Signal may be used on a Loop. Since some

states do not retransmit MRKtx, the only way to guarantee that the originator receives the transmitted MRKtx is for the

originator to be in the OPEN state and for all other L_Ports to be in the MONITORING or ARBITRATING states.

H.1 Clock synchronization

When the type of mark (MK_TP) is clock synchronization (e.g., hex '00‘), the Mark Primitive Signal may be used to

synchronize clocks between a number of processors. Through configuration or implementation, one processor is

assigned the task of providing a Master clock. It is the responsibility of this processor to generate enough MRKtx

Primitive Signals to keep the other processors within a prespecified clock tolerance.

The processor with the Master clock transmits one MRKtx (with t = hex '00‘ and x = its AL_PA) instead of a Fill Word

for each REQ(mark as tx). Each recipient of the MRKtx checks the AL_PA to synchronize on the correct Master clock

(since the AL_PA is used to identify the originator, this allows multiple Master clock originators). If the AL_PA matches

the one being used for synchronization, the receiving processor adjusts (if necessary) its clock and retransmits the

MRKtx. If the MRKtx is returned to the originator, the originator replaces it with the CFW.

Because the MRKtx may not be inserted onto the Loop except during normal Fill Word transmission, it is possible that

a MRKtx may not be originated or retransmitted. If the processors can accept a missing MRKtx, the MRKtx provides

a low-cost method (does not require a separate clock synchronization interface) for keeping clocks synchronized. To

obtain an initial clock value, the ANSI X3, FC-PH-X defined Time Server at well-known address hex 'FFFFFB' may be

used. Once every processor has this initial clock value, the MRKtx may be used to maintain clock synchronization. The

Time Server function may be provided by an F/NL_Port in the absence of a Fabric.

If the originator of the MRKtx receives the MRKtx, it may calculate the latency for the MRKtx to traverse the Loop. If

this latency is greater than the clock synchronization tolerance, a system administrator may be informed that the MRKtx

is unpredictable in the configured environment.

H.2 Disk spindle synchronization

When the type of mark (MK_TP) is disk spindle synchronization (e.g., hex '01‘), the Mark Primitive Signal may be used

to synchronize disk spindles between a number of disk drives. Through configuration or implementation, one disk drive

is assigned the task of providing a Master clock. It is the responsibility of this disk drive to generate enough MRKtx

Primitive Signals to keep the other disk drives within a prespecified spindle synchronization tolerance.

The disk drive with the Master clock transmits one MRKtx (with t = hex '01‘ and x = its AL_PA) instead of a Fill Word for

each REQ(mark as tx). The recipient of the MRKtx checks the AL_PA to synchronize on the correct Master disk spindle

(since the AL_PA is used to identify the originator, this allows multiple Master spindle synchronization originators). If

the AL_PA matches the one being used for synchronization, the receiving disk drive adjusts (if necessary) its spindle

motor and retransmits the MRKtx. If the MRKtx is returned to the originator, the originator replaces it with the CFW.

Because the MRKtx may not be inserted onto the Loop except during normal Fill Word transmission, it is possible that

a MRKtx may not be originated or retransmitted. If the disk drives can accept a missing MRKtx, the MRKtx provides

a low-cost method (does not require a separate spindle synchronization interface) for keeping disk spindles synchronized.

If the originator of the MRKtx receives the MRKtx, it may calculate the latency for the MRKtx to traverse the Loop. If

this latency is greater than the disk spindle synchronization tolerance, a system administer may be informed that the

MRKtx is unpredictable in the configured environment.

118

DHPN-1008 / Page 128 of 150

BSR NCITS 332

Annex I

(informative)

Port Bypass Circuit example and usage

This annex describes a Port Bypass Circuit which may be used to keep a Loop operating when an L_Port location is

physically removed or not populated; L_Ports are powered-off; or, a failing L_Port is present. A Port Bypass Circuit
provides the means to route the serial channel signal past an L_Port. Also described are the L_Port Bypass/Enable (LPB

or LPE) Primitive Sequences. The main purpose of these Primitive Sequences is to physically control the Port Bypass

Circuit and logically control the L_Port (ie, the LPSM is forced into and held in the MONITORING state). LPB and LPE

are Primitive Sequences which are usually transmitted for 2xAL_T|MEs or until the transmitted Primitive Sequence is
received.

l.1 Port Bypass Circuit

Figure |.1 shows an example Port Bypass Circuit. The input from the previous L_Port, n-1, feeds a multiplexer (MUX)

and the local L_Port. The other input to the multiplexer is from the local L_Port. A select signal determines whether the

input from L_Port n-1 or the input from the local L_Port is transmitted to the next L_Port, n+1. The Port Bypass Circuit

is an asynchronous switch (i.e., when it switches, it may cause a loss of synchronization at the next L_Port). To avoid

unnecessary reinitializations and error counters to overflow, L_Ports and Port Bypass Circuits should be used which

avoid counting this loss of synchronization as an error and going to the LOOP-FAIL-INITIALIZE state.

Port Bypass Circuit

L_Port
n+ 1

From previous

In Out

Local L_Port

Figure [.1 — Example Port Bypass Circuit

|.1.1 Default bypass

The Port Bypass Circuit for an unpopulated location or a powered-off L_Port defaults to the Port Bypass Circuit being

set (i.e., the input from n-1 passes through the multiplexer to n+1).

|.1.2 Power-on reset bypass

At power-on, an L_Port leaves the Port Bypass Circuit set and enters the MONITORING state with PARTICIPATE set

to FALSE(O) (i.e., in Non-Participating mode). This allows the Loop to continue to function while the L_Port performs

a self-test. When the L_Port is ready to enter the Participating mode, the L_Port deactivates its Port Bypass Circuit and
enters the NORMAL-INITIALIZE state.

119

DHPN-1008 / Page 129 of 150

BSR NCITS 332

|.2 Using a Port Bypass Circuit

Any L_Port may accept the role of Loop manager to execute diagnostics and to recover a failing Loop. The selection

criteria ofa Loop manager should include the ability to report failures to an operator or system log. A "Loop manager"

in the context of this discussion is an L_Port that has the ability to diagnose a Loop (i.e., uses LPB and LPE to bypass
and enable other L_Ports).

|.2.1 Diagnostic Test of the Port Bypass Circuit

Loop Initialization must be completed before the Port Bypass Circuit may be tested. L_Ports must be in the Participating

mode (i.e., have an AL_PA) for the test to be effective.

The Loop manager arbitrates for the Loop; transmits OPNyy (where y is the AL_PA of the Loop manager); and, transmits

the L_Port Bypass Primitive Sequence (LPByx, where y = AL_PA of the L_Port under test and X is its AL_PA) until the

Primitive Sequence is received. This allows any receiver, affected by an L_Port switching out of the Loop, to
synchronize to the new input. The Loop manager removes all LPBs that it originated.

In order to verify that the Port Bypass Circuit is present and operating, the Loop manager may: transmit CLS and enter

the TRANSFER state; when CLS is received, transmit OPNyx (where y = AL_PA of the L_Port under test). If the OPNyx

is received by the Loop manager, the Port Bypass Circuit is functioning normally.

The Loop manager completes the test by transmitting the L_Port Enable Primitive Sequence (LPEyx where y is the

AL_PA of the bypassed L_Port and X is its AL_PA) until the Primitive Sequence is received. The Loop manager removes

all LPEs that it originated. In order to verify that the L_Port is no longer bypassed the Loop manager may: transmit CLS

and enter the TRANSFER state; when CLS is received, transmit OPNyx (where y = AL_PA of the L_Port under test).

lfthe OPNyx is not received by the Loop manager within AL_T|ME, the Port Bypass Circuit has been deactivate and is

functioning normally. The Loop manager may then transmit CLS and wait for the CLS to be returned. If other Port

Bypass Circuits are to be tested, the Loop manager may use the TRANSFER state until all AL_PAs have been tested.

lfat any time during the above test, the Loop manager recognizes a LIP, the AL_PA of the bypassed L_Port has been

relinquished. The Loop manager then can only use LPEfx to enable a previously bypassed L_Port.

|.2.2 Recovery from Loop Failure

If an L_Port detects a Loop Failure, it may use the following recovery procedure. Waiting for R_T_TOV, allows recovery
from transient conditions.

After the Loop Failure is detected, the L_Port may perform an optional Loop-back self test. If the Loop-back test fails,

the L_Port may request to be bypassed (REQ(bypass L_Port)) to allow the Loop to recover. If the Loop-back test passes,

the L_Port requests to go to the LOOP-FAIL-INITIALIZE state where it transmits a L|P(F8) (see 7.8.2 or 7.8.4) for up to
2xAL_T|MEs or until LIP is recognized.

If LIP is recognized, the L_Port goes to the OPEN-INIT-START state and transmits at least twelve of the received L|Ps
(see 7.8.1 or 7.8.3).

If LIP is not recognized within 2xAL_T|MEs, the L_Port transmits LPByx to bypass the failing L_Port (identified by the

y value). The Loop manager may use the AL_PA position map from the most recent Loop Initialization to identify the

failing L_Port (it is the L_Port adjacent to the L_Port that detects the Loop Failure). If this AL_PA position map is not

available, the Loop manager may attempt all valid AL_PAs (excluding its own), bypassing all L_Ports until the failing

L_Port is identified. The Loop manager may also transmit LPBfx to bypass all L_Ports (even those that do not have a

valid AL_PA). The Loop manager transmits each LPByx for up to 2xAL_T|MEs or until the Primitive Sequence is

recognized to allow any receiver affected by a Port switching out of the Loop to synchronize to the new input. Once the

failing L_Port has been bypassed, if any other L_Ports had been bypassed, they should be reenabled with LPEyx. If the

Loop Failure occurs during a time when the failing L_Port does not have a valid AL_PA, manual intervention may be

required to find the failing L_Port or LPBfx may be used to bypass all L_Ports and if successful, one L_Port at a time

may be reenabled with LPEyx until the failing L_Port can be identified.

120

DHPN-1008 / Page 130 of 150

BSR NCITS 332

|.2.3 Power-on with a failing L_Port

An L_Port that is unable to pass its self-test does not deactivate its Port Bypass Circuit. If an L_Port has an AL_PA

which it previously saved in non-volatile storage, it follows the same procedure as if the Loop failed after being
operational (see |.2.2).

In a Loop without valid AL_PAs, recovery of the Loop may require manual intervention (e.g., physically removing one

L_Port after another until the failing L_Port is identified), unless the failing L_Port can initiate a bypass (REQ(bypass
L_Port)).

|.2.4 Reconfiguring a Loop with LPB and LPE

A Loop manager may elect to use the Port Bypass Circuit to physically switch Participating L_Ports in and out of the
Loop. When an L_Port is enabled on the Loop, the Loop manager should begin Loop Initialization to ensure that there

are no AL_PA conflicts.

121

DHPN-1008 / Page 131 of 150

BSR NCITS 332

Annex J

(informative)

Public L_Ports and Private NL_Ports on a Loop

This annex describes how Public L_Ports and Private NL_Ports may be used on a Public Loop. Figure J.1 shows an

example of such a configuration. Two advantages of connecting L_Ports in this fashion are: security (Private NL_Ports
may not be addressed by Ports not on the Loop) and the Private NL_Ports may be lower cost.

Private
Loop

Device

Private
Loop

Device
Figure J.1 — Public L_Ports and Private NL_Ports on a Loop

In this example, an NFS (Network File System) client on the left transmits an NFS command through the Fabric to the

NFS server (the NFS client only knows that the NFS server has access to the requested data, but does not know the

location of the data). The NFS server is also a SCSI initiator and it knows which SCSI target has the data. A SCSI

command is sent by the NFS server (SCSI initiator) to any of the SCSI targets on the Loop. When the SCSI target has

the requested data, it transmits the data to the SCSI initiator, which in turn transmits it via an NFS response to the NFS
client.

As shown in this example, Private NL_Ports (SCSI targets) do not communicate with any Port not on the Loop, including

the FL_Port. However, the Public NL_Port (SCSI target) may be addressed by both the NFS server (SCSI initiator) and
the SCSI initiator on the other side of the Fabric.

122

DHPN-1008 / Page 132 of 150

BSR NCITS 332

Annex K

(informative)

Assigned Loop Identifier

This annex shows in table K.1 how a 7-bit Loop Identifier (e.g., a switch) may be used to represent the Hard Assigned

AL_PA as used in clause 10.5. If there are no conflicts or an attached Fabric does not reassign the AL_PA, the value

represented by this Assigned Loop Identifier will be the AL_PA of the L_Port. (See also table 15.)

Table K.1 — Assigned Loop Identifier

AL_PA Switch Setting AL_PA Switch Setting AL_PA Switch Setting
(hex) (hex) (dec) (hex) (hex) (dec) (hex) (hex) (dec)

GOO L».)K)l—‘

ooooooooooo D1UOU33>\OOO\1o‘\Ln»J>
OO\1o‘\U1»J>b.)k)l—‘O

OF
_,O
_,l
_,2
_,3
_,4
_,5
_,6
_,7
_,8
_,9
_,A
_,B
_,C
_,D
_,E
_,F

|\.

njtI1UOU3D><xooo\1o\:_nu>o)ml—-
U'lU'lU'lU'l (.A)l\)l—‘©
U'lU'l U'l>J>

NOTE — The values are intentionally from lowest to highest priority. AL_PA = 00 is reserved
for an FL_Port; '--' is not available.

123

DHPN-1008 / Page 133 of 150

BSR NCITS 332

Annex L

(informative)

Selective replicate for parallel query acceleration

This annex describes a relational database example that benefits from the selective replicate capability of FC—AL.
Because queries are ad hoc, it is not known in advance which Ports will take part in a given multicast group, and the

group can change with each query. This annex illustrates how OPNyr is preferable to using traditional multicast groups,

which must be set up in advance. OPNyr significantly speeds up the execution of parallel queries.

The examples show a sort-merge join which is a technique employed by several database vendors. An example of a

hypothetical parallel query engine is provided in clause L.2 and a specific example of a query is provided in clause L.3.

L.1 Parallel query technology

Parallel query is a technique for significantly reducing the response time of complex queries against very large

databases. The basic technique divides the query among multiple CPUs, where each CPU applies the query against

a partitioned, disjoint subset of the database tables selected in the query. Most parallel query algorithms focus on joins,

where row pieces from one or more tables are combined on some matching attribute.

L.2 Shared disk cluster

A cluster composed of multiple hosts accessing a large shared disk pool is illustrated in figure L.1. There are /7 database

servers accessing a shared database striped across all drives that are attached via one or more Loops. Every server

has direct access to any partition of the database on the shared disk pool. The Loops serve a dual role in the cluster.

First, they function as a high speed disk channel for SCSI traffic between servers and disk. Second, they function as

a high bandwidth, low-latency port-to-port interconnect for IP (Internet Protocol) traffic between servers. As this example
shows, many database blocks are passed directly between servers during the parallel query.

FC / Ethernet / FDDI

Terminal or Client
connections

Database
Sen/er

M ltpl FCALL p ’/1

2 J 2 J FC—AL direct
attached disks

Figure L.1 — FC—AL parallel query server

124

DHPN-1008 / Page 134 of 150

BSR NCITS 332

L.3 Parallel query example

To illustrate a complex query typical of a direct marketing application often found in DSS (Decision Support Systems)

or Data Warehousing, the following query is used as an example of how a parallel query could be executed to take

advantage of selective replicate on the above configuration:

Select customer, address, num_purchases
From R, S
Where R.a = S.b

and num_purchases > 10

and (area code = 415
or area code = 408

or area code = 510)

\lO7U'l-b(A)l\)—\
This is a join of relations (database tables) R and S that satisfy the matching attribute in line 3. The matching attribute

(R.a and S.b) is the customer ID. The query is intended to find all customers in the San Francisco Bay Area that have

made a large number of purchases (more than 10). Relation S is the total worldwide customer population. Relation R

is all purchases in California for the past three months. Relation S is many times larger than relation R, since R will only

contain the subset of customers who have made purchases in the San Francisco Bay Area over the last three months.

Tuples (records) from relation R are qualified by line 4, while tuples from relation S are qualified by lines 5 to 7. Applying

qualifiers to a relation are known as a projection in database language. A projection reduces the number of tuple

candidates that must be examined to determine if they match the join criteria in line 3.

Relations R and S are striped across all disk drives, D, in the cluster. Assume that there are m hosts available to

participate in the query, where m <= /7.

When the query is submitted to the cluster, a processor (e.g., B) is selected as the query coordinator. The query

coordinator determines how the query will be executed and elects the other processors to participate in the parallel query.

The decision as to which processor and how many processors will participate is made at run time. It is based on such

factors as the load at each individual processors, the type of query being submitted, and the privilege of the user. For

example, Tony CEO may be allowed to use all processors while Joe Clerk may only use 4 processors. The m

participating processors form a multicast group that is dynamically created when the query is parsed. The query

coordinator determines that relation R is too small to parallelize, since the overhead of parallelism will outweigh any
speedup.

The query plan generated by the coordinator is illustrated by the following pseudo-code:

CPU B (query coordinator)

notify all participants 1 to m-1

1 multicast query plan // includes split table

scan R // read all tuples in R

apply predicate to R -> R‘

sort R‘ -> R" // sort on joining attribute R.a
2 multicast R"

wait for "scan S done" messages 1 to m-1

3 multicast "do join" messages" 1 to m-1

wait for "join done" messages 1 to m-1
done!

CPU 1 to m-1 (query slaves)

receive query plan

scan S / (m-1) -> S‘

// partitioned on tuple ID into m-1 buckets

for each tuple
apply predicate

hash lookup in split table -> I

// hashed on phone # into m-1 buckets
if I <> me

transmit to CPU I

125

DHPN-1008 / Page 135 of 150

BSR NCITS 332

transmit "scan S done" message to B
when "do join" message received

sort S‘ -> S” // sort on joining attribute S.a
while not at end of S"

for each tuple in R"

lookup R".a in S"

if match write to join result
transmit "join done" message to B
done!

The selective FC-AL Primitive Signal, OPNyr, is used by the query coordinator in lines 1 to 3 above. In line 1, the query

plan must be sent to all participants. It tells each CPU which partition of relation S it should scan, and the hash function

and split table values to use for each bucket. Line 2 is used to transmit the sorted relation R" to all participants. Line

3 is used to synchronize the completion of the scan phase with the start of the join phase.

This example demonstrates the utility of the selective replicate Primitive Signal for different uses. It can be employed

to synchronize multiple CPUs with control messages (1 and 3). More importantly, it can be used to replicate large blocks

of data between coordinating CPUs (2). In addition, the low overhead of forming constantly changing multicast groups

allows efficient schedulers to determine the appropriate level of parallelism for each task at run time.

126

DHPN-1008 / Page 136 of 150

BSR NCITS 332

Annex M

(informative)

Controlled FC-AL configurations

This annex describes FC-AL implementations that require control of address assignments, the ability to control when

and if Loop Initialization occurs, and uninterrupted processing while L_Ports are being inserted and removed from a

Loop. One example of such an implementation is a disk storage subsystem. The degree of configuration control varies

from implementation to implementation. These implementations are allowed by this standard, but may not interoperate

with other L_Ports. The implementor of controlled configurations is responsible for functionality.

M.1 Address Control

FC-AL devices may have an interface connector for attachment to backplanes in storage cabinets. This connector

provides 7 pins for delivering an address to the device. Annex K provides a mapping of these addresses: assigned Loop

identifiers, to AL_PAs. The AL_PAs selected by these addresses are defined as Hard Addresses. The degree of address
control required may vary between implementations.

M.1.1 Preferred Hard Addressing

In some implementations, the Hard Address may simply be a desired starting point for AL_PA determination using the

Loop Initialization procedure. If there are no conflicts for the Hard Address the device obtains this AL_PA and

participates. If there is a conflict for the Hard Address, the device may accept a Soft Address and participates. The host

system must be capable in these implementations to dynamically determine the identity of the device at each AL_PA,

since AL_PAs of the device may change with configuration changes.

M.1.2 Required Hard Addressing

In some implementations, the use of the Hard Address may be required. These implementations want the device at a

Hard Address for device identification. Identification may be for maintenance or to insure devices are located in proper

cooling and power distribution zones (e.g., in RAID configurations).

The cabinet may have device numbers affixed at device locations or slots. With the address fixed to a location, the

device at a given AL_PA may be easily identified for removal and replacement. If the device is unable to obtain its Hard

Address during Loop Initialization, the device is directed to become non-participating (i.e., it does not select a Soft
Address). The device may attempt to obtain its Hard Address during the next Loop Initialization.

The direction to require hard addressing is outside the scope of this standard.

M.2 Configuration Change Control

FC-AL provides dynamic configuration changes with in-band control of Port Bypass Circuits and Loop Initialization to

verify or obtain AL_PAs. Enabling an L_Port onto a Loop and Loop Initialization may be disruptive.

M.2.1 Port Bypass Circuit Control

The switching of a Port Bypass Circuit causes the receiver of the next L_Port in the Loop to resynchronize to a new serial

input. During this process, FC-2 transfers or control information may be lost and error recovery may be required.

Implementations may control devices when to enable their L_Ports into the Loop. This method may use the Loop Port

Enable (LPE) Primitive Sequence or provide control of the Port Bypass Circuits external to the L_Port. A controlling

L_Port may win arbitration, open itself, and then switch the Port Bypass Circuits to not disrupt normal Loop transfers.

If the LPE is used, the AL_PA in the LPE may be the Hard Address, if required hard addressing is used in the

configuration, or the enable all, hex ‘FF’. Multiple L_Ports may be enabled if there are duplicate AL_PAs or enable all
is used.

127

DHPN-1008 / Page 137 of 150

BSR NCITS 332

The direction to not enable the L_Port until LPE is recognized is outside the scope of this standard.

M.2.2 Loop Initialization Control

An L_Port requesting initialization may also disrupt Transmission Words between other L_Ports and cause information

loss and error recovery. L_Ports are not required to request initialization if address determination and verification is by

a method outside the scope of the standard.

Devices may be configured to not request initialization when their L_Ports are enabled into the Loop. The host may

periodically, or at operator intervention, begin Loop Initialization. Loop Initialization is not required if the implementor
disables the use of Soft Addresses and ensures there are no Hard Address conflicts.

128

DHPN-1008 / Page 138 of 150

BSR NCITS 332

Annex N

(Informative)

Insertion modes of Hubs

There are several different ways that Hubs insert Loop Segments into a Loop. A Loop Segment is a portion of a Loop

which includes one or more L_Ports. The following are four examples and are not considered to be an exhaustive list.

1. Hubs may insert a Loop Segment when periodic K28.5 characters are received for a minimum time period. If an

L_Port transmits Idle, LIP, or any other Ordered Set containing a K28.5 character during power-up, this type of Hub

would switch the Loop Segment into the Loop before the L_Port(s) were ready to participate. This would make the

Loop non-functional while the L_Port(s) are becoming ready.

2. Hubs may insert a Loop Segment when any valid Transmission Word is received. If an L_Port transmits Idle, LIP,

any other Ordered Set containing a K28.5 character, or any other valid 8B/10B encoded character during power-up,

this type of Hub would switch the Loop Segment into the Loop before the L_Port(s) were ready to participate. This

would make the Loop non-functional while the L_Port(s) are becoming ready.

3. "Smart" Hubs may use more sophisticated methods to determine when to insert a Loop Segment. Since this

behavior is Hub dependent it should not be used to determine the power-up operation of an L_Port.

4. Hubs may also wait for a management function to insert a Loop Segment into the Loop.

Additionally, while these are some ways that Hubs may operate for the purpose of inserting a Loop Segment into a Loop,

it is not possible for an L_Port to determine which type of Hub it is attached to.

129

DHPN-1008 / Page 139 of 150

BSR NCITS 332

Annex 0

(Informative)

L_Port power-on considerations

When looking at the power-on condition of an L_Port, there are three different cases which must be considered:

1. An L_Port connected directly in a Loop;

2. An L_Port connected in a cabinet (e.g., Just-a-Bunch-of-Disks (JBOD) or disk array); and,
3. An L_Port connected to a Hub.

An NL_Port should power on with its transmitter disabled until it is able to either begin the INITIALIZATION process or

enter the MONITORING state in Non-Participating mode.

In Case 1, the Loop will not be operational until the L_Port turns on its transmitter, and enters either the NORMAL-

INITIALIZE state or the MONITORING state. However, the Loop was not operational before this L_Port powered up.
Waiting some additional time to get the Loop operational should not present a problem in this case.

In Case 2, there is a Port Bypass Circuit that is controlled externally or by the L_Port, which will keep this L_Port off the

Loop until some external event indicates that it should be inserted into the Loop. If the Port Bypass Circuit is enabled

before the L_Port powers up, and remains enabled until the L_Port turns on its transmitter and enters the NORMAL-

INITIALIZE state or MONITORING state, there will be no disruption to the Loop.

In Case 3, all Hubs should be capable of bypassing an L_Port when its transmitter is off; since this is equivalent to either

no L_Port connected, or an L_Port connected with its power turned off. By having the L_Port maintain its transmitter in

the off condition until the L_Port is ready to enter the NORMAL-INITIALIZE or MONITORING state, a Hub can keep the

L_Port bypassed until the L_Port is capable of participating in the Loop.

130

DHPN-1008 / Page 140 of 150

BSR NCITS 332

Annex P

(Informative)

L_Port initialization flow diagram

Figure P.1 provides a high-level flowchart-like view of the Loop Initialization procedure. The processes are represented

as rectangles. The flows are represented as directed lines. The text in the diagram is brief and highly abbreviated. The

major steps for clause 10 are identified in the upper right-hand corner of selected process blocks.

10.3

INITIALIZING (Retri’Transmit LIPS
Retry

Exit to TimeoutOLD- PORT (T
state

LIP received

10.4.3 StepSelect
Initial AL_PA

ll) Retransmit rcvd LIP

10.4.3 Step (2)
Select LIM ReceivedLIP
e after

LISM rcvd > LISM xmit Transmit LISM
Receive LISM "L_TIME

Compare LISMs

L1sM rcvd = L1sM xmi: ; LISM rcvd < LISM xmit

LIPILP_TOV 10.4.3 Step (4: 10-4-3 Step (3) LIP|LP_TOVtimeout LIM Wait Master timeout
<7 OCCUZTEC‘ 4* occurred _>

before Transmit ARB(po) Retransmit all before
ARB 1'CVd until received received frames ARE rcvd

PARTICIPATE = 0 i ARBIFO) rcvd i PARTICIPATE = 0
10.4.3 Step(4) 10.4.3 Step (5)

(Cont) Transmit ARB(l:"O)
*Transmit LIFA Receive LIE‘A
Receive LIFA *Transmit LIFA

*Transmit LIPA Receive LIPA
LIPiLP TOV Receive LIPA *TrenSmit LIPA LIPILP TOV

cl-meglt *Transmit LU-IA *Receive LIHA t_1_meD_ut
j occurred I Receive LIHA Transmit LIHA occurred &>

between *Transmlt LISA *Rece1ve LISA between
events Recelve LISA T”e“?“*t LISA eventsTransmit LIRP Receive LIRP

Receive LIRP Transmit LIRP
Transmit LILP ReCEiV§ LIL-P

*Note--the L Port Receive LILP Tranémlt LILP
may Set an it, pA Transmit CLS ReCelV§ CL5bit before trens- Receive CI-‘S Transmit CLS
mitting the LoopInitialization

Sequence. If a bit is CLS d .

set, PARTICIPATE. = 1. CLS Km”
V AL_PA valid i No AL_PA

10.4.3 Step (62 No AL_PAEXIT was available
NL_Port: WAIT

Login if req'd and retry

Figure P.1 — L_Port initialization flow diagram

131

DHPN-1008 / Page 141 of 150

BSR NCITS 332

Annex Q

(informative)

Examples of Switch Port Initialization

This annex presents some example scenarios that may occur during Switch Port Initialization. This aids in the

understanding of how to use the OLD-PORT state diagram to achieve two operational switches when connected together.

NOTE — This annex is a modification and a clarification of an annex published in FC-SW.

Q.1 Example 1: two E/F/FL_Port-capable Switch Ports

In this example, two Switch Ports that are E/F/FL_Port-capable (i.e., this Port may be used as an E_Port, an F_Port, or

an FL_Port) are attached to each other. Figure Q.1 illustrates this example.

switch ‘ Switch
port x P Port Y

(E/F/FL Port- (E/F/FL_Port
Capable) capable)

Figure Q.1 — Switch Initialization example 1

According to the initialization algorithm, since both Switch Ports are E/F/FL_Port-capable, they start the process with

Loop Initialization. L|Ps are sent and recognized, and each Switch Port starts sending LISM frames. When Switch Port

X receives LISM from Switch Port Y, it sees that its Port_Name is lower than the Port_Name in the Payload, and

continues sending the same LISM.

On the other hand, when Switch Port Y receives LISM from Switch Port X, it sees that its Port_Name is higher than the

Port_Name in the Payload. This causes Switch Port Y to start sending the LISM it received, with the Port_Name

belonging to Switch Port X. Switch Port Y also transitions to the MONITORING state with PARTICIPATE = FALSE(0),
because only one FL_Port may be Participating on a Loop.

Switch Port X receives its LISM and assumes the role of Loop Master. Switch Port X then proceeds to send all of the

other Loop Initialization Sequences, and by the end of Loop Initialization, discovers that it is the only L_Port on the Loop.

Because there may be a Non-Participating Switch Port on the Loop, Switch Port X knows it must attempt Link

Initialization. Switch Port X begins Link Initialization by REQ(old-port). Switch Port X transitions to the OLD-PORT-REQ

state and begins transmitting LIP; this causes Switch Port Y to begin Loop Initialization. Switch Port Y transmits a
minimum of 12 of the received L|Ps in the OPEN-INIT-START state and transitions to the OPEN-INIT-SELECT-MASTER

state. When Switch Port X recognizes LIP, it transitions to the OLD-PORT state and transmits OLS for

minimum(2xAL_T|ME). After a maximum(1xAL_T|ME), Switch Port Y recognizes ANSI X3, FC-PH-x Primitive

Sequences (OLS, NOS) and transitions from the FL_Port operating mode to E/F_Port mode. The Link protocol continues
to completion and a point-to-point Link is now active.

Switch Port X and Switch Port Y may now attempt to Exchange Link Parameters and establish an Inter-Switch Link.

132

DHPN-1008 / Page 142 of 150

BSR NCITS 332

Q.2 Example 2: two E/F/FL_Port-capable Switch Ports and one Nx_Port

In this example, two Switch Ports that are E/F/FL_Port-capable are attached to each other as in the first example, but

there is also an N/NL_Port on the Loop. Figure Q.2 illustrates this example.

switch I4 Switch
Port X POFI Y

(E/F/FL Port— (E/F/FL_Port
Capable) capable)

Port
Z

(N/NL Port-
Capable)

Figure Q.2 — Switch Initialization example 2

According to the initialization algorithm, since both Switch Port are E/F/FL_Port-capable and Port Z is N/NL_Port-

capable, they start the process with normal Loop Initialization. L|Ps are sent and recognized, and each Switch Port and

the N/NL_Port start sending LISM frames. As in the first example, Switch Port X receives LISM from Switch Port Y, it

sees that its Port_Name is lower than the Port_Name in the Payload, and continues sending the same LISM.

When Port Z receives the LISM from Switch Port X, Port Z finds a D_|D of zero, meaning that the originator is an

FL_Port. Since an FL_Port always wins as a Loop Master, the NL_Port continues sending the received LISM from

Switch Port X. When Switch Port Y receives Switch Port X's LISM from Port Z, it sees that its Port_Name is higher than

the Port_Name in the Payload. This causes Switch Port Y to start sending the LISM it received, with the Port_Name

belonging to Switch Port X. Switch Port Y also transitions to the MONITORING state in Non-Participating mode, because
only one FL_Port may be Participating on a Loop.

Switch Port X receives its LISM and assumes the role of Loop Master. Switch Port X then proceeds to send all of the

other Loop Initialization Sequences, and by the end of Loop Initialization, discovers that there is only one other L_Port

on the Loop. Because that one other L_Port may be capable of point-to-point operation, Switch Port X knows it must
attempt Link Initialization.

Switch Port X begins Link Initialization by asserting REQ(o|d-port) which begins transmitting LIP in the OLD-PORT-REQ

state, and causes Port Z to begin Loop Initialization. Port Z transmits a minimum of 12 received L|Ps in the OPEN-|N|T-

START state (which causes Switch Port Y to begin Loop Initialization) and transitions to either the OPEN-|N|T-SELECT-
MASTER or the SLAVE-WAIT-FOR-MASTER state. Switch Port Y transmits a minimum of 12 received L|Ps in the

OPEN-INIT-START state and transitions to the OPEN-INIT-SELECT-MASTER state. Switch Port X recognizes LIP,

transitions to the OLD-PORT state and transmits OLS for minimum(2xAL_T|ME). If after minimum(1xAL_T|ME), Port

Z recognizes OLS and reacts to it, it transitions to the OLD-PORT state and transmits LR in response. Switch Port Y

being in the OPEN-INIT-SELECT-MASTER state does not recognize LR, and continues with the INITIALIZATION

process; thereby blocking LR to Switch Port X. Switch Port X will fail Link Initialization; it should remove REQ(o|d-port)

to allow Loop Initialization to complete. When Loop Initialization completes successfully, and Switch Port X operates

as an FL_Port, and Port Z operates as an NL_Port. Switch Port Y stays Non-Participating until a system administrator
comes to save it from oblivion.

Note that if Port Z had been bypassed, the process would have completed as in example 1, because the Primitive

Sequences would have been ignored by Port Z. At a later time, when Port Z is enabled, Loop Initialization begins (i.e.,

Port Z starts sending LIP to get an AL_PA), and things sort themselves out as described in example 2. If Switch Port

Y had been bypassed, then Switch Port X would have become an F_Port in a point-to-point Link with N_Port Z.

133

DHPN-1008 / Page 143 of 150

BSR NCITS 332

If Port Z was L_Port capable only when it went to the OPEN-INIT-START state, it would stall in either the OPEN-|N|T-

SELECT-MASTER or SLAVE-WAIT-FOR-MASTER state transmitting LISM or waiting for an ARB(FO). This would cause

Switch Port X to fail at Link Initialization, and then go back to Loop Initialization. Again, Switch Port Y stays Non-

Participating until a system administrator comes to save it from oblivion.

Q.3 Example 3: one E/F/FL_Port-capable Port and one E/F_Port-capable Port

switch ‘ Switch
1).," X D Port Y

(E/F/FL Port- (E/F/Port
C npnble) cnpnble)

Figure Q.3 — Switch Initialization example 3

In this example, a Switch Port that is E/F/FL_Port-capable is attached to a Switch Port that is E/F_Port-capable. Figure

Q.3 illustrates this example. According to the initialization algorithm, the Switch Port that is E/F/FL_Port-capable starts

the process with normal Loop Initialization. However, the Switch Port that is E/F_Port-capable starts the process with
Link Initialization as defined in ANSI X3, FC-PH-x. Switch Port X sends LIP; Switch Port Y sends OLS Primitive

Sequences. If Switch Port X recognizes OLS during Loop Initialization, it transitions to the OLD-PORT state after
expire(2xAL_T|ME) and completes Link Initialization.

Switch Port X and Switch Port Y may now attempt to Exchange Link Parameters and establish an Inter-switch Link.

134

DHPN-1008 / Page 144 of 150

BSR NCITS 332

Index

ACCESS x, xv, 3, 5, 8, 10, 11, 18, 21, 24, 25, 30, 33, 34, 38, 39, 41, 43, 45, 47, 50, 53, 54, 57, 59-61, 64, 67, 70, 72,
74,108,109,111-113,122,124

ACK buffer . 112

Address Identifier . 12, 16, 19, 73, 79, 82, 83, 108, 109

AL_PA3-7, 10-13, 15, 16, 18, 19, 21-26, 30, 33-38, 40-47, 49, 51-56, 58-71, 73-86, 90, 92, 94, 97-101, 107, 108, 115,
118,120,121,123,127,133

AL_PA position map . 76, 77, 80-82, 97, 98, 100, 101, 120

AL_PD . 3, 5, 17, 19-23

AL_PS . 3, 5, 17, 19, 21-23, 34, 37, 39, 42, 44, 46, 47, 82
AL_T|ME . 5, 26, 39, 74, 120

alias AL_PA . 15, 74

Alternate BB_Credit . 12, 27, 28, 48, 72
annex A . x, 24, 27, 103

annex B . x, 107

annex C . x, 3,20, 26,42, 110
annexD .. x,10,11,112

annexE .. x,113

annex F .. x, 28, 114

annexG .. x,27,103,106,116
annex H .. x, 20, 118

annexl .. x,21,22,119

annex J . x, 4, 9, 122

annex K . x, 77, 123, 127

annex L . x, 20, 124

ARB(AL_PA) . 5, 18, 24, 26, 30, 35, 36, 41, 43, 46, 54, 55, 61, 62, 64, 65, 67, 68

ARB(F0) 10, 18, 25, 26, 33, 36, 39, 41, 43, 45, 47, 51, 59, 61, 64, 67, 70, 73, 79-81, 84, 96, 97, 133

ARB(FF) . 5, 15, 18, 26, 33, 35, 36, 50, 51

ARB(val) . 5, 17, 18, 33-36, 38, 39, 41, 43, 45-47, 51, 55, 62, 65, 68, 74, 107, 108

ARB_PEND . 5, 24, 33, 36, 39, 41, 43-46, 50, 54, 55, 57, 59, 61, 62, 64, 65, 67-70, 72

ARB_WON . 5, 24, 33, 36, 39, 41, 43-47, 49, 50, 54, 57, 59, 61, 64, 65, 67, 68, 70, 72, 108

ARBf_SENT . 5, 26, 33-35, 50-54, 57, 59, 61, 64, 67, 70, 72
arbitrate . xv, 3, 5, 10, 17, 18, 20, 24, 35, 53, 107-109, 112

Arbitrated Loop . i, iii, xiii, xv, 1-3, 5, 10, 11, 13, 26
ARBITRATING 7, 8, 10, 11, 13, 18-25, 27, 30, 32, 34, 36, 38, 39, 43-45, 47, 53-56, 65, 69, 107-109, 111, 118

ARBITRATION WON . 5, 25, 30, 32, 36, 38, 55, 57, 107-109

Availab|e_BB_Credit . x, 5, 12, 27-29, 45, 110, 111, 113-115

BB_Credit x, 5, 12, 24, 25, 27-29, 39, 41, 42, 44, 45, 47-49, 65, 69, 71, 72, 81, 82, 108, 110, 111, 113-115
blocking . 8, 9, 133

broadcast replicate . 7, 17, 19, 20, 39
buffer . x, 5, 12, 19, 27-29, 73, 79, 96, 97, 103-106, 108, 112-117

BYPASS X, 5-7, 17, 21, 22, 25, 26, 33, 35, 37, 40, 42, 44, 46-48, 50, 52-72, 74, 85, 88, 89, 92, 94, 119-121, 127, 130

CFVE, 19, 21, 22, 25-27, 33, 34, 36, 37, 39, 41, 43-48, 50-55, 57, 59, 61, 62, 64, 65, 67, 68, 70-72, 97, 105, 108, 109,
114,118

Class 1 .. 10,12,39,42,111

C|ass2 .. 12, 27,112,113

Class 3 .. 4,12,19,27

CLS 17, 19, 20, 24, 26, 28-30, 34, 36, 39, 41-45, 47, 52, 55, 57, 59, 60, 62, 63, 65, 68-71, 79, 81, 82, 84, 97, 98, 100,
101,107,109-115,120

communicate . 8, 9, 19,20, 30, 122

communication point . 8

configuration . x, 9, 11,26, 74, 77, 112, 118, 122, 125, 127
connectivity .. 8-10
current Fill Word . 3, 5, 25, 26, 50, 104

D_|D . 16, 19, 73, 76, 77, 79, 83, 108, 133

135

DHPN-1008 / Page 145 of 150

BSR NCITS 332

DHD .. 5, 6, 17, 20, 26, 39, 41, 42, 50, 52-72, 110-112

DHD_RCV . 6, 26, 41,42, 50, 54, 57, 59, 61, 62, 64, 67, 70, 72, 110, 111
diagnostic manager . 21

disparity . 13-15, 17, 21, 23, 27, 49
DUPLEX x, 3, 5-7, 11, 17-20, 25, 33, 36, 39, 41-43, 47, 49, 50, 54, 57, 59-61, 64, 67, 70, 72, 108, 110-115

E_Port .. 132

EE_Credit .. 6,45,110,111,113,115

elasticity buffer . X, 103, 106, 116, 117
F/NL_Port . 3, 12, 15, 74, 76, 80, 82, 83, 118

F_Port .. xi, xv, 1, 3, 8, 9, 12, 113, 132-134
Fabric . xv, 1-4, 6, 8-12, 16, 19, 28, 36, 73, 75-78, 80-84, 107, 108, 113, 118, 122, 123

fair .. 3,10,109

fairness .. 3, 5, 10, 11, 15, 18, 24-26, 38, 39, 59, 104, 105, 108, 111, 112

FC-1 . 11, 13

FC-2 . 8, 11-14, 30, 59, 61, 62, 67, 68, 73, 127
FC-4 . 8

FC-PH xv, 1-6, 8-13, 17-19, 24, 26, 27, 30, 32, 39,41, 45, 48, 49, 73, 74, 104, 108, 116,118

Fibre Channel services . 3, 74

figure 1 .. 4, 9, 10

figure 10 . 91

figure 11 . 93

figure 12 . 95, 96

figure 13 . 98

figure 14 . 99, 100

figure 15 .. 101

figure 2 . 11

figure 3 . 31

figure 4 . 76, 77, 79-81

figure 5 . 78, 80, 81

figure 6 . 83

figure 7 . 85

figure 8 . 87

figure 9 . 89

figure A.1 .. 103

figure A.2 . 104

figure G.1 .. 116

figure G.2 .. 116

figure |.1 .. 119

figure J.1 .. 122

figure L.1 . 124

figure P.1 .. 74, 131

figure Q.1 . 132

figure Q.2 . 133

figure Q.3 . 134
Fill Word 3, 5, 10, 15, 18-20, 24-26, 28, 34, 36, 37, 39-47, 49, 50, 53, 56, 60, 63, 66, 69, 71, 104-106, 118

FL_Port xi, 1, 3, 4, 8-12, 15, 16, 19, 36, 50, 51, 54, 55, 73-76, 78-80, 82, 94, 108, 122, 123, 132-134

Flag 8 . 80, 81

Flags . 5, 15, 81

half-duplex . 20
Hard Assigned AL_PA . 76, 80, 81, 123

history . 5-7, 24-26
Hub .. 3, 129, 130

in-order delivery . 8
INITIALIZING . 6, 15, 26, 30,48, 75, 85, 92
initiator . 112, 122

invalid Transmission Word . 27, 37

Item 1 . 35, 37, 39, 40, 42, 44, 46, 47
Item 10 . 39

Item 11 . 47

Item 12 . 37, 40, 42, 44-47

136

DHPN-1008 / Page 146 of 150

BSR NCITS 332

Item 13 . 25, 26, 32, 37, 40, 42, 44-47, 73

Item 14 . 25, 32, 34, 107, 108

Item 15 . 25, 32, 36, 107, 108

Item 16 . 25, 32, 38, 108

Item 17 . 32, 34, 36, 108

Item 18 . 32, 39, 42, 109

Item 19 . 32, 39,42, 109
Item 2 . 35

Item 20 . 32, 39

Item 21 . 23, 26, 27, 35, 37, 39, 40, 42, 44, 46, 47, 73, 83

Item 23 . 23, 27, 32, 35, 83
Item 3 . 34

Item 4 . 44, 45
Item 5 . 36

Item 6 . 38

Item 7 . 34, 36

Item 8 .. 39, 41, 42

Item 9 . 39, 42

L_bit . 78, 80, 82

L|_FL . 6, 76, 80, 81

L|_|D . 6, 76, 79-82
LIFA . 6, 73, 76, 77, 80, 81, 96, 97, 100

LIHA . 6, 73, 76, 77, 80, 81, 97, 100

LILP . 6, 73, 76, 77, 81, 82, 97, 98, 101

LIM . 6, 33, 73, 76, 77, 79-82, 93-97, 99-101

LIE’, 7, 15, 17, 21-23, 26, 32, 35, 37, 39, 42-44, 46, 47, 50, 52, 55, 57, 59, 62, 65, 68, 70, 74, 75, 79-82, 84, 88, 90-92,
94, 97, 98, 100, 101, 120,129,132-134

LIPA . 6, 73, 76, 77, 80, 81, 97, 100

LIRP .. 6, 73, 76, 77, 81, 82, 101

LISA . 6, 73, 76, 77, 80, 81, 97, 100

LISM . 6, 73, 76, 77, 79, 95-97, 99, 132, 133

Login .. x, 4, 5, 12, 20, 27, 28, 42, 48, 49, 73, 75, 78, 80, 82, 107,108, 111, 113-115

Logout . 82

Loop circuit . 1, 3, 4, 8, 9, 11, 12, 20, 24, 25, 27-29, 39, 42, 45, 73, 81, 82, 108-113

Loop Failure x, 3, 15,23, 35, 37,40,42,44,46,47, 50, 54, 57, 59, 61, 64, 67, 70, 85, 89, 92, 120

Loop Identifier . X, 123
Loop Initializationx, 6, 7, 12, 15, 17, 18, 23-27, 35, 73-77, 79-84, 86, 90, 93, 94, 97, 98, 101, 107, 120, 121, 127, 128,

131-134

Loop Initialization master . 6, 18, 73, 77, 79, 81, 93

Loop manager . 120, 121

Loop Port State Machine . X, 3, 4, 6, 30, 84, 107

Loop Segment . 129
LOSS of SYNC . 50, 54, 57, 59, 61, 64,67, 70

LP_TOV . 6, 10, 26, 34, 42, 43, 45, 47, 79-82, 90, 92, 94, 96-98, 100, 101
LPByx 6, 17, 21, 35, 37, 40, 42, 44, 46, 47, 52, 55, 57, 59, 60, 62, 65, 68, 70, 79, 92, 94, 120
LPEfx . 6, 15, 17, 21, 22, 35, 52, 55, 57, 59, 60, 62, 65, 68, 70, 120

LPEyx . 6, 17, 21, 22, 25, 35, 52, 55, 57, 59, 60, 62, 65, 68, 70, 120
mark .. x, 6, 7, 17, 18, 20,21, 34, 37,40,42,44,46,47, 53, 56, 58, 60, 63, 66, 69, 71, 118
Master clock . 118

MK_TP .. 7, 17, 21, 34, 37, 39, 42, 44, 46, 47, 118
MONITORING 8, 12, 18, 19, 21, 22, 24-28, 30, 32, 33, 35, 37, 40, 42, 44-47, 50-53, 55, 59, 62, 65, 68-71, 73, 74, 81,

82, 84, 85, 88, 90, 92, 94, 97, 101, 107-109,118, 119, 130, 132, 133

MRKtx 6, 17, 18, 20, 21, 34, 37, 39, 40, 42-44, 46, 47, 52, 53, 55-57, 59, 60, 62, 63, 65, 66, 68-71, 118

multicast . 19, 124-126

N_Port ..x, xv,1,4, 8, 9,12,108,113,133
native address identifier . 12, 16, 19, 73, 79, 82, 83, 108, 109

NL_Po'it4, 7, 8, 10-12, 15, 16, 19, 20, 23-25, 34, 36,48, 50, 51, 54, 55, 73, 74, 76, 79, 80, 82, 83, 107-109, 112, 113,
118,122,130,133

node . 4, 9, 75, 80, 82, 110

OLD-PORT . 53, 56, 58, 60, 63, 66, 69, 71, 85, 88, 132, 133

137

DHPN-1008 / Page 147 of 150

BSR NCITS 332

OPEN 4, 7, 11, 12, 17-22, 24-30, 32, 35, 37-39, 42, 44, 46-48, 52, 53, 55, 56, 58-60, 62, 63, 65, 66, 68-71, 74-76, 88,
90, 92-95, 97, 98, 100, 101,108-115, 118, 120, 127, 132, 133

OPEN-INIT . 22, 27, 37, 39, 42, 44, 46, 47, 52, 55, 59, 62, 65, 68, 70, 74-76, 120

OPENED XV, 3, 6, 12, 19-21, 24-26, 28-30, 32, 34, 36, 39, 41, 42, 51, 55, 61-63, 108-111, 113-115

OPNfr .. 7, 15, 17, 19, 20, 34, 36, 51, 55, 58, 60, 71

OPNr . 7, 19, 25, 30, 36, 38, 42, 47, 51, 55, 57, 59, 62, 65, 68, 70

OPNy 5, 7, 18, 19, 24, 28, 30, 34, 36, 38, 41, 42, 47, 51, 55, 57, 59, 62, 65, 68, 70, 82, 113

OPNyr .. 7, 17, 19,20, 34, 36, 51, 55, 58,60, 71, 124, 126

OPNyX .. 3, 5, 7,17-20,41,58,61,71,110,111,120

OPNyy .. 3, 5, 7, 17-20, 38,41, 58,61, 71, 113, 115, 120
optional . 4, 5, 12, 21, 22, 24-26, 48, 72, 83, 86, 88, 90, 92, 94, 97, 120
Ordered Set . 5, 17-20, 23, 27,49, 103, 105, 129

PARTICIPATE7, 13, 22, 25-27, 33, 35, 49, 51-53, 73, 74, 79-81, 84-86, 97, 101, 119, 125, 129, 132

participating 4, 7-11, 15, 16, 18-22, 25, 26, 30, 35, 39, 42, 45, 53, 56, 58, 60, 63, 66, 69, 71, 73-75, 77, 81, 82, 84, 85,
92,97,101,108,119-121,125,127,130,132-134

Payload . 12, 76, 77, 80, 132, 133

Physical Address . XV, 3, 5, 10, 12, 13

Port Bypass Circuit . X, 21, 22, 25, 26, 119-121, 127, 130
Port_Name . 4, 76, 77, 79, 132, 133

Previously Acquired AL_PA . 76, 80-82, 97, 101

Primitive Sequences . . . 3, 6, 12, 17, 21, 23, 26, 39, 41, 45, 48, 52, 55, 57, 59, 62, 65, 68, 70, 84, 85, 119, 132-134

Primitive Signals XV, 3, 5, 12, 17-19, 24, 39, 41, 45, 48, 50, 54, 57, 59, 61, 64, 67, 70, 104, 118
Private Loop . 2, 4

Private NL_Port . 4, 19, 82

Public Loop . 4, 9, 122

Public NL_Port . 4, 16, 73, 74, 82, 107, 122

R_T_TOV . 3, 26, 50, 54, 57, 59, 61, 64, 67, 70, 120
RECEIVED CLOSE . 12, 20, 25, 30, 32, 39, 42, 45, 59, 62, 67-69, 109
REPEAT . 7, 21, 22, 25, 26, 33-35, 50-53, 79, 83

REPLICATE X, 4, 7, 17, 19, 20, 24, 25, 33-36, 38-41, 47, 50-55, 57-61, 64, 67, 70-72, 124-126

REQ(arb own AL_PA) . 34, 53, 56, 58, 60, 63, 66, 69, 71, 107

REQ(c|ose) . 38, 39, 42, 45, 53, 56, 58, 60, 63, 66, 69, 71, 109

REQ(initialize) 35, 37, 40, 42, 44, 46, 47, 53, 56, 58, 60, 63, 66, 69, 71, 75, 82, 83, 85, 88-90, 92, 94, 107

REQ(mark as tx) . 20, 34, 37, 40, 42, 44, 46, 47, 53, 56, 58, 60, 63, 66, 69, 71, 118

REQ(monitor) . 47, 53, 56, 58, 60, 63, 66, 69, 71

REQ(nonparticipat.) . 35, 53, 56, 58, 60, 63, 66, 69, 71, 85

REQ(old-port) . 53, 56, 58, 60, 63, 66, 69, 71, 88, 132, 133

REQ(open yr) . 38, 39, 47, 53, 56, 58, 60, 63, 66, 69, 71

REQ(open yX) . 38, 47, 53, 56, 58, 60, 63, 66, 69, 71

REQ(open yy) . 38, 47, 53, 56, 58, 60, 63, 66, 69, 71

REQ(participating) . 35, 53, 56, 58, 60, 63, 66, 69, 71, 92

REQ(transfer) . 39, 53, 56, 58, 60, 63, 66, 69, 71

S_|D .. 12, 73, 76, 77, 79, 108, 115
SCSI initiator . 122

SCSI target . 122

Select unique AL_PA . 81
selective replicate . X, 7, 17, 19, 20, 39, 124-126
skew .. X,12,18,21,24,25,27,103,104,106,116,117

SOFiL . 7, 73, 76

Soft Assigned AL_PA . 76, 77, 80, 81
state machine . X, Xv, 3, 4, 6, 10, 30,84, 87, 107

synchronization . X, 3,20, 117-119
table 1 .. 13-17, 21, 23, 78

table 10 . 45, 67

table 11 . 47, 70

table 12 . 48, 72, 73, 83
table 13 . 72

table 14 . 48,49, 72, 83

table 15 .. 78, 80, 81, 123
table 2 . 17-20

138

DHPN-1008 / Page 148 of 150

BSR NCITS 332

tab|e3 .. 17, 21,23

table 4 . 33, 49, 50

table 5 . 36, 54

table 6 . 38, 57

table 7 . 39, 59

table 8 .. 41, 61

table 9 . 43, 64
tab|eC.1 .. 111
table K.1 . 123

target . 112, 122
TEST .. x, 18, 90, 119-121
timeout . 5, 6, 26, 39, 42, 45, 90, 92

topology .. i, iii, xiii, xv, 1, 3, 8-10, 12, 73, 112, 113
transceivers . 9

TRANSFER 3, 4, 9, 11, 20, 21, 24, 25, 30, 32, 39, 47, 53, 56, 58, 60, 63, 66, 69-71, 75, 109-112, 115,116, 120
Transmission Words . 7, 21, 24-27, 30, 33-41, 43, 45, 47-49, 103, 104, 128

trusted AL_PA . 4, 35, 74, 79, 107
unfair . 10, 11

valid AL_PA . 13, 15, 23, 80, 81, 107, 120
XMITTED CLOSE . 21,24, 30, 32, 39, 41-43, 60, 63-66, 109, 112, 113

139

DHPN-1008 / Page 149 of 150

BSR NCITS 332

End of Document

Printed:

June 28, 1999 at 11:10PM

140

DHPN-1008 / Page 150 of 150

