Part 1: Fundamentals of Projected-Capacitive Touch Technology Geoff Walker Senior Touch Technologist Intel Corporation June 1, 2014 File Download: www.walkermobile.com/Touch_Technologies_Tutorial_Latest_Version.pdf ### **Agenda** - Introduction - Basic Principles - Controllers - Sensors - ITO-Replacement Materials - Modules - Embedded - Large-Format - Stylus - Software - Conclusions - Appendix A: Historical Embedded Touch ### Introduction - P-Cap History - P-Cap Penetration - P-Cap by Application - ❖ Touch User-Experience File Download: www.walkermobile.com/Touch_Technologies_Tutorial_Latest_Version.pdf # **P-Cap History** | Company | Significance | Year | |------------------------------|--|------| | UK Royal Radar | First published application of transparent | 1965 | | Establishment | touchscreen (mutual-capacitance p-cap on | | | (E.A. Johnson) | CRT air-traffic control terminals) | | | CERN (Bent Stumpe) | Second published application of mutual- | 1977 | | | capacitance p-cap (in the control room of | | | | the CERN proton synchrotron) | | | Dynapro Thin Films | First commercialization of mutual- | 1995 | | (acquired by 3M Touch | capacitive p-cap (renamed as Near-Field | | | Systems in 2000) | Imaging by 3M) | | | Zytronic (first license from | First commercialization of large-format | 1998 | | Ronald Binstead, an | self-capacitive p-cap; | | | inventor in the UK) | first commercialization of large-format | 2012 | | | mutual-capacitive p-cap | | | Visual Planet (second | Second commercialization of large-format | 2003 | | license from Ronald | self-capacitive p-cap | | | Binstead) | | | | Apple | First use of mutual-capacitive p-cap in a | 2007 | | | consumer electronics product (the iPhone) | | ### **P-Cap Penetration** Source: DisplaySearch Touch-Panel Market Analysis Reports 2008-2014 # P-Cap Forecast by Application...1 (Consumer) Source: DisplaySearch Touch-Panel Market Analysis Report 1Q-2014 # P-Cap Forecast by Application...2 (Commercial) # P-Cap Defines the Standard for Touch User-Experience - Smartphones and tablets have set the standard for touch in SEVERAL BILLION consumers' minds - Multiple simultaneous touches (robust multi-touch) - ◆ Extremely light touch (zero force) - Flush surface ("zero-bezel" or "edge-to-edge") - ◆ Excellent optical performance - Very smooth & fast scrolling - → Reliable and durable - ◆ An integral part of the device user experience Source: AP / NBC News ### **Basic Principles** - Self Capacitive - Mutual Capacitive - Mutual Capacitive Electrode Patterns ### **Self-Capacitance** ### Capacitance of a <u>single</u> electrode to ground - → Human body capacitance <u>increases</u> the capacitance of the electrode to ground - In a self-capacitance sensor, each electrode is measured individually Source: The author ### The Problem with Self-Capacitance - Touches that are diagonally separated produce two maximums on each axis (real points & ghost points) - ◆ Ghost points = False touches positionally related to real touches # Self Capacitance Mutual Capacitance Movement of the property # **Self-Capacitance and Pinch/Zoom Gestures** Use the direction of movement of the points rather than the ambiguous locations Source: The author ### **Self-Capacitance Electrode Variations** 20 measurements 20 measurements - Multiple separate pads in a single layer - Each pad is scanned individually - Rows and columns of electrodes in two layers - → Row & column electrodes are scanned <u>in sequence</u> ## Self-Capacitance Advantages & Disadvantages | Self-Capacitive Advantages | Self-Capacitive Disadvantages | |--------------------------------|---| | Simpler, lower-cost sensor | Limited to 1 or 2 touches with ghosting | | Can be a single layer | Lower immunity to LCD noise | | Long-distance field projection | Lower touch accuracy | | Can be used with active guard | Harder to maximize SNR | | Fast measurement | | #### Where it's used - ◆ Lower-end smartphones and feature-phones with touch - Becoming much less common due to single-layer p-cap - ◆ In combination with mutual capacitance to increase capability ### **Self-Capacitance for Hover** - Self-capacitance is used to produce "hover" behavior in some smartphones (in addition to mutual-capacitance for contact-touch location) - ◆ Also used for automatically detecting glove vs. fingernail vs. skin, and for dealing with water on the screen Source: Panasonic Source: Cypress # Multi-Touch Self-Capacitance Using Active Guard Concept...1 Guarding is a well-known technique for reducing the effects of electrical current leakage # Multi-Touch Self-Capacitance Using Active Guard Concept...2 #### Another contender: zRRo 3D single-touch for smartphones 3D multi-touch for smartphones and tablets Source: zRRo ### **Mutual Capacitance** ### Capacitance between two electrodes - → Human body capacitance "steals charge" which <u>decreases</u> the capacitance between the electrodes - ◆ In a mutual-capacitance sensor, each electrode <u>intersection</u> is measured individually Source: The author # Rows and columns of electrodes in two layers $11 \times 9 = 99$ measurements #### In the real world... "Bar and stripe", also called "Manhattan" or "Flooded-X" (LCD noise self-shielding) Source: Cypres $4 \times 10 = 40$ measurements Source: 3M Interlocking diamond pattern with ITO in "one layer" with bridges Source: The author ### More On Mutual Capacitance...1 * BTW, there isn't just one mutual capacitance... ### More On Mutual Capacitance...2 ### **❖** And there are more capacitors than just the C_m's... ### More On Mutual Capacitance...3 | Mutual-Capacitive Advantages | Mutual-Capacitive Disadvantages | |------------------------------------|---| | 2 or more unambiguous touches | More complex, higher-cost controller | | Higher immunity to LCD noise | 2 layers (or 1 with bridges) for >3 pts | | Higher touch accuracy | | | More flexibility in pattern design | | | Easier to maximize SNR | | #### Where it's used - Mid & high-end smartphones, tablets, Ultrabooks, AiOs, commercial products - Standalone self-capacitive is becoming increasingly rare in consumer electronics (except for buttons) - → With "true single-layer" sensors in low-end smartphones Bars & stripes require bridges too... Source: Synaptics #### And so does this unusual diamond pattern... Source: STMicro - **◆** 102, 106, 108, 210 - Drive (X) electrodes - **→** 114 & 202 - Sense (Y) electrodes - **+** 110 - Bridges - **♦** 120 & 230 - Dummy (floating) ITO - **+** 200 & 206 - Optional dummy ITO - **+** 212 - Blank (no ITO) # Claimed advantages of this particular pattern over traditional interlocking diamond - → Reduction in sense electrode area reduces LCD noise pickup - ◆ "Finger projections" (0.1 0.2 mm) increase the perimeter of interaction between drive and sense electrodes, which increases sensitivity - ◆ Linearity is improved due to more uniform coupling across channels - Floating separators aid in increasing the fringing fields, which increases sensitivity ### Holy Grail: True single-layer mutual capacitance sensor #### "Caterpillar" pattern - Everybody's singlelayer patterns are proprietary - ◆ Requires fine patterning, low sheet resistance & low visibility - ◆ Benefits: Narrow borders, thin stackups, lower cost, can reliably handle 2-3 touches #### ELAN's caterpillar pattern Source: ELAN ### An alternative true single-layer pattern from ELAN ◆ This is a very small portion of a much larger sensor Source: ELAN ### **Controllers** - Architecture - Touch Image Processing - Key Characteristics - Signal-to-Noise Ratio - Noise Management - Innovation Areas - Suppliers ### Mutual Capacitance Touch System Architecture - ◆ Making X*Y measurements is OK, but it's better to measure the columns simultaneously - Controllers can be ganged (operate in a master-slave relationship) for larger screens ### **Touch Image Processing** Source: Apple Patent Application #2006/0097991 ### **Key Controller Characteristics...1** ### Node count (x channels + y channels) ◆ Given typical electrode spacing of 4.5 to 5 mm, this determines how large a touchscreen the controller can support (w/o ganging) #### Scan rate - → Frames per second (fps) faster reduces latency for a better UX - → Windows logo requires 100 fps; Android is unspecified #### Signal-to-noise ratio (SNR) → More info on upcoming slides #### Operating voltage & current - ◆ OEMs continue to request lower-power touchscreen systems - → Win8 "Connected Standby" is a significant influence #### Internal core (micro/DSP) ◆ Varies from small 8-bit micro to ARM-7 or higher ### **Key Controller Characteristics...2** #### Number of simultaneous touches - → Windows Logo requires 5 (except AiO = 2); Android is unspecified - ◆ Market trend is 10 for tablets and notebooks #### Support for unintended touches - → "Palm rejection", "grip suppression", etc. - ◆ Rarely specified, but critically important - → For a 22" screen, even 50 touches isn't too many in this regard ### Amount of "tuning" required ◆ Never specified – more info on upcoming slide ### Signal-to-Noise Ratio (SNR)...1 - SNR = Industry-standard performance metric for p-cap touchscreen systems - However, no standard methodologies exist for measuring, calculating, and reporting SNR - ◆ The two components (signal & noise) depend heavily on the device under test - Noise from displays (LCDs & OLEDs) and from USB chargers is spiky – it doesn't have a normal (Gaussian) distribution – and spikes create jitter - ◆ Yet marketers typically specify SNR in the absence of noise, using the RMS noise (standard deviation) of analog-to-digital convertors (ADCs) - ◆ With Gaussian noise, you can multiply the RMS noise by 6 to calculate the peak-to-peak noise with 99.7% confidence # Signal-to-Noise Ratio (SNR)...2 Typical system (raw ADC data, no digital filters applied) # Signal-to-Noise Ratio (SNR)...3 #### SNR of system in
previous slide - ◆ C_{Finger} = Mean (Finger) Mean (NoFinger) - $+ C_{Finger} = 1850 813 = 1037$ - ◆ C_{NS} (Standard Deviation) = 20.6 counts - ◆ C_{NS} (Peak-to-Peak) = Max (NoFinger) Min (NoFinger) +1 - $+ C_{NS} = 900 746 + 1 = 155 \text{ counts}$ - ◆ SNR (Peak-to-Peak) = 1037/155 = 6.7 - ◆ SNR (Standard Deviation) = 1037/20.6 = 49.9 - → Highest SNR currently reported by marketer = 70 dB (3,162*) ^{*} Signal amplitude ratio in dB = $20\log_{10} (A_1 / A_0)$ #### Charger noise is common-mode - ◆ A smartphone on a desk (not handheld) isn't grounded, so the entire phone moves relative to earth ground as it follows the noise - ◆ A touching finger provides an alternative path to ground, which is equivalent to injecting the noise at the finger location - ◆ The noise signal can be 10X to 100X that of the signal generated by the touching finger #### Examples of charger noise spectra ◆ Effect of noise is false or no touches, or excessive jitter # Variation in common-mode noise spectra in 2 different chargers at 3 different loads Source: Cypress #### Techniques to combat charger noise - → Multiple linear and non-linear filters - ◆ Adaptive selection of the best operating frequency (hopping) - ◆ Increased drive-electrode voltage - Going from 2.7 V to 10 V increases SNR by 4X - Many proprietary methods #### Display noise - ◆ LCD noise is similar across the display; the high correlation of noise signals across all sensor signals allows relatively easy removal - Very high noise in embedded touch can require synchronization of the touch controller with the LCD driver (TCON) ## **Controller Innovation Areas** #### More information in upcoming slides - → Finger-hover - ◆ Glove-touch - Pressure sensing - Other touch-objects - ◆ Faster response (reduced latency) - Adaptive behavior - ◆ Water resistance - ◆ Software integration - Automated tuning #### More information later in this course → Passive and active stylus support # Finger-Hover...1 - There are two ways of emulating "mouseover" on a p-cap touchscreen - → Hover over something to see it change, then touch to select - Press lightly on something to see it change, then press harder to select - The industry is moving towards hover because nobody has been able to implement pressure-sensing in a way that works well and that OEMs are willing to implement - ◆ Startup: NextInput - Force-sensing using an array of organic transistors where pressure changes the gate current - ◆ Startup: zRRo - Multi-finger hover detection # Finger-Hover...2 #### What can you do with hover? - Enlarge small links when you hover over them - ◆ Make a passive stylus seem to hover like an active stylus - ◆ Magnify an onscreen-keyboard key as you approach rather than after you've touched it, or even use a "Swipe" keyboard without touching it - ◆ Preview interactive objects such as an array of thumbnails - ◆ Use as an alternative to standard proximity detection - ◆ Use multi-finger gestures for more complex operations - ◆ And more... #### **Glove-Touch** - Can be accomplished by adding self-capacitive to existing mutual-capacitive - Mutual-capacitive provides touch location - Self-capacitive provides proximity sensing - ◆ Glove-touch causes the finger to remain a constant distance above the screen; proximity sensing can detect that without the user manually switching modes #### Gloves Source: ELAN **Pass** Pass **Pass** Pass **Pass** Pass Pass Pass # **Pressure Sensing** #### Pressure-sensing is an alternative selection method - → True absolute pressure-sensing in p-cap doesn't exist today - ◆ Some (including Microsoft) believe that "touch lightly to view choices then press to select" is more intuitive than hover - It has never been implemented successfully in a mobile device - ➤ Blackberry Storm (2 models!) failed due to terrible implementation - ➤ Nissha/Peratech (QTC) collaboration never made it into mass-production - Multiple startups are working on smartphone pressure-sensing - NextInput - Uses an array of pressure-sensitive organic transistors under the LCD - FloatingTouch - ➤ Mounts the LCD on pressure-sensing capacitors made using a 3M material # **Other Touch Objects** - You will soon be able to touch with a <u>fine-tipped</u> (2 mm) passive stylus, long fingernails, a ballpoint pen, a #2 pencil, and maybe other objects - → This is being accomplished through higher signal-to-noise (SNR) ratios - Much of this improvement may come from enhancing the controller analog front-end in addition to focusing on the digital algorithms - ◆ This enhancement to the UX will be the end of "finger-only" p-cap # **Faster Response** #### Make touch more natural by reducing latency - ◆ The shorter the time is between a touch and the response, the better the user feels about the touch system - If an object lags behind your finger when you drag it, or ink lags behind a stylus when you're drawing, it doesn't feel real - ◆ Latency today is typically 75-100 ms; studies have shown that humans need less than 10 ms for comfort - Synaptics has addressed the problem by creating a direct path between the touch controller and the TCON to allow limited instant screen updates - Tactual Labs (startup) has a method of reducing latency to just a few milliseconds Source: Gigaom.com # **Adaptive Behavior: Noise Immunity** #### Adaptive noise-management by N-Trig ## Water Resistance...1 The basic concept is combining self-capacitive and mutual-capacitive sensing (again) ## Water Resistance...2 #### **❖** A large amount of water with single-touch ## Water Resistance...3 #### A large amount of water with two touches # **Software Integration** #### Make more resources available to the touch controller - → Run touch algorithms on the GPU instead of the controller micro - Algorithm-writers can take advantage of much larger resources on the host device (MIPS and memory) - This can support higher frame-rate, reduced latency, reduced power consumption, easier support of different sensor designs, etc. - Algorithmic code is easier and faster to change when it's in a "driver" than when it's in firmware in an ASIC - Most touch-controller suppliers never change the firmware in the touch controller once it ships in a device; N-Trig is the sole exception - Cost-reduction by elimination of one micro - Even more cost reduction for large screens by elimination of slave chips - ◆ Something similar to this has already been done in NVIDIA's "Direct Touch", but it hasn't been widely used in actual devices # **Automated Tuning** - For true "touch everywhere", p-cap has to become like resistive: Just slap it on and you're done - → We're far from that point today - ◆ Atmel says that the typical first integration of a p-cap touch-panel into a new product takes one full day of tweaking up to 200 individual parameters - ◆ That badly needs to be automated so that small commercial product-makers have easier access to p-cap # P-Cap Controller Suppliers #### In order by estimated 2013 revenue | Company | Country | |------------------|----------------| | Broadcom (Apple) | USA | | Atmel | USA | | Synaptics | USA | | TI | USA | | FocalTech | China & Taiwan | | Melfas | Korea | | Cypress | USA | | Goodix | China | | ELAN | Taiwan | | Mstar | Taiwan | | EETI | Taiwan | | Zinitix | Korea | | SiS | Taiwan | | llitek | Taiwan | | Imagis | Korea | | Sentelic | Taiwan | | Weida | Taiwan | | Sitronix | Taiwan | Top 7 (30%) account for about 85% of total revenue #### And a few others... - **◆** AMT - ◆ Avago - ◆ Pixcir - **♦** Silicon Labs - **♦** STMicro - ◆ Weltrend #### Sensors - Substrates - Structures - Sheet vs. Piece Method - More on OGS - Glass Strengthening - Surface Treatments - ITO Index Matching - Suppliers ## Sensor Substrates...1 #### **❖ ITO film substrates are usually PET¹ or COP²** - → Thickness has dropped from 100 μm to 50 μm - ◆ Lowest practical ITO sheet resistivity is currently ~100 Ω/□ #### ITO glass substrates - ◆ Standard thickness for GG is 0.33 mm and 0.4 mm - ◆ Some makers have developed a thinning process (like for LCDs) that reduces glass thickness to 0.2 mm - Corning and AGC have developed 0.1 mm glass but it hasn't been used in volume sensor production yet - ◆ Lowest practical ITO sheet resistivity on glass is ~50 Ω/□ 1 = Polyethylene Terephthalate 2 = Cyclic Olefin Polymer ## Sensor Substrates...2 #### **❖ PET film versus glass** | | PET | Glass | |------------------------------|---|------------------------------| | Glass Transition Temperature | 70°C | 570°C | | Aging Effects | Yellowing, curling, surface deformation | No known effect | | Transparency | 85% | =>90% | | Resolution Capability | 10-30 μm | 1 μm | | Stackup | Thinner | Thicker | | Weight | Lighter | Heavier | | Moisture Resistance | Good | Excellent | | Lamination Yield | Excellent | Good | | Mechanical Strengthening | None | Chemical, heat, ion-exchange | | Cost | \$\$ (was < glass) | \$ | #### Sensor structure abbreviations (for reference) | Symbol | Meaning | | | |--------|--|--|--| | (G) | Cover-glass (or plastic or sapphire) | | | | G | Cover-glass, or sensor-glass with ITO on one side, or | | | | | plain glass for film lamination | | | | GG | Cover-glass + one sensor-glass (without ITO location) | | | | GGG | Cover-glass + two sheets of sensor-glass (rare) | | | | G# | # = Number of ITO layers on one side of sensor-glass | | | | | (G2 = "One Glass Solution" = OGS = SOC = SOL, etc.) | | | | G1F | F = Sensor-film with ITO on one side, laminated to glass | | | | GFF | FF = Two sensor-films, laminated to glass | | | | GF# | 1 = Two ITO layers on one side of sensor-film, | | | | | laminated to glass (also called GF-Single) | | | | | 2 = One ITO layer on each side of sensor-film, | | | | | laminated to glass (also called GFxy with metal mesh) | | | | SITO | ITO on one side of substrate (single-sided); | | | | | usually includes metal bridges for Y to cross X | | | | DITO | ITO on both
sides of substrate (double-sided) | | | | F1T | F1 = Single-sided sensor-film on top of CF glass; | | | | | T = Transmit (drive) electrodes on TFT glass | | | | | (LG Display's hybrid in-cell/on-cell) | | | #### Glass-only structures | Structure Names | GGG | GG or G-SITO | GG , G-DITO or G1G | OGS or SOC | |------------------|----------------------|--|------------------------|-------------------| | Comments | Single ITO layer on | Single ITO layer | ITO layer on each | Single ITO layer | | | each piece of glass; | with bridges side of 1 glass; or ITO with bridge | | with bridges | | | Obsolete | | on one side of 2 glass | | | Example Products | None | Kindle Fire, | iPhone-1; iPad-1 | Google Nexus 4/7; | | | | B&N Nook; | (GG); Lenovo AiOs | Xiaomi 2; | | | | Nokia Lumia 800 | (G1G) | Nokia Lumia 920 | - ➤ SITO = Single-sided ITO layer; usually means there's a bridge - ➤ DITO = Double-sided ITO layer (Apple patent) - OGS = One Glass Solution (sensor on cover-glass) - SSG = Simple Sensor Glass (OGS without cover-glass shaping & finishing) #### Glass-and-film structures | Structure Names | G1F | | |-------------------------|---------------------|--| | Comments | Single ITO layer on | | | | glass; single ITO | | | | layer on film | | | Example Products | Many Samsung | | | | products in 2013; | | | | Microsoft | | | | Surface RT | | - ➤ Why would a touch-module maker use a sensor structure that requires having both glass- and film-handling equipment? - » One reason is that there was a shortage of ITO film in 2013 #### Film-only structures | Structure Names | GFF | GF2 or DITO-Film | GF1 | GF Triangle | |------------------|-------------------------|---------------------------|-------------------------|-----------------------| | Comments | Bare glass and two | Bare glass and one | Bare glass with true | Bare glass with true | | | single-sided ITO films; | double-sided | single-layer complex | single-layer triangle | | | performance is better | ITO film | pattern on film | pattern on film | | | than GF1 | | (e.g., "caterpillar") | (e.g., "backgammon") | | Example Products | Samsung Galaxy Tabs | Apple iPads; next | Many low-end | Low-end products with | | | and Notes; Google | iPhone if Apple can't get | smartphones, especially | "gesture touch", not | | | Nexus 10 | good yield on in-cell | in China | multi-touch | | Cover Glass | Cover Glass | Cover Glass | Cover Glass | |------------------|------------------|---------------|------------------| | Sense Electrodes | Sense Electrodes | Drive & Sense | Sense Electrodes | | Film | Film | Film | Film | | Adhesive | Drive Electrodes | | | | Drive Electrodes | | | | | Film | | | | - ➤ Single-layer caterpillar pattern is used to support "real" multi-touch with 2-3 touches, typically in a smartphone (that's not enough touches for a tablet) - ➤ Single-layer backgammon pattern is used to support "gesture touch" on low-end devices, i.e., the ability to detect pairs of moving fingers but not always resolve two stationary touches # Why do touch-module makers choose one structure over another? - Transmissivity - ◆ Thickness & weight - Border width due to routing - ◆ Cost & availability of ITO film or deposition - ◆ Lamination experience & yields - Existing equipment and/or method experience # **Sensor Structure by Application** #### Smartphones | Structure | Share | |------------------|-------| | GFF | 42% | | OGS/G2 | 16% | | GF1/Single-Layer | 12% | | GG SITO | 11% | | GF Triangle | 5% | | GG DITO | 5% | | G1F | 4% | | PF | 3% | | PFF | 2% | #### Tablets & Notebooks | Structure | Share | |------------------|-------| | GFF | 44% | | GF2/DITO Film | 19% | | OGS/G2 | 18% | | GG DITO | 11% | | GG SITO | 3% | | G1F | 2% | | GF1/Single-Layer | 1% | | SSG | 1% | #### All-in-Ones | Structure | Share | |-----------|-------| | GG SITO | 81% | | GFF | 13% | | SSG | 6% | Data based on DisplaySearch's "Q1-2014 Quarterly Touch-Panel Market Analysis Report", with adjustments by the author # Sheet vs. Piece Method...1 (Wintek Sheet Example - OGS) Source: Wintek # Sheet vs. Piece Method...2 (Wintek Piece Example - Discrete) Source: Wintek #### More On OGS #### One-Glass Solution (OGS) - ◆ Also called "touch on lens" (TOL), "sensor on cover" (SOC), "direct patterned window" (DPW) and many other names - Advantages - Eliminates a fourth sheet of glass (G-DITO), making the end-product thinner and lighter - Competitive weapon against embedded touch from LCD suppliers - → Disadvantages - Requires close cooperation with cover-glass makers, or increased vertical integration (preferable) - Yields are lower (more complex operations) - Bendable cover glass can affect touch performance - Harder to shield touchscreen from LCD noise - Note: There is no generic name (yet) for touch sensors built on the cover-glass without direct ITO deposition ("OGS-type") # **Glass Strengthening** #### Heat strengthened ◆ Less-rigorous version of fully tempered; does not "dice" when broken; 2X as strong as standard glass #### Fully tempered ◆ Uses heat; requires glass > 3 mm, so not used for consumer touchscreens; glass "dices" when broken (think auto windows); 4X to 6X as strong as standard glass #### Chemical strengthened (CS) ◆ Uses ion-exchange in a salt bath; best for glass < 3mm; glass does NOT "dice" when broken; 6X to 8X as strong as standard glass #### High ion-exchange aluminosilicate glass - ♦ 6X to 8X as strong as standard glass (same as CS glass) - ◆ Corning Gorilla®, Asahi Dragontrail™, Schott Xensation™ ## Sensor Surface Treatments...1 #### Historically most common treatment is anti-glare (AG) - Changes specular reflection into diffuse reflection - ◆ Used mostly for commercial & enterprise, not consumer ("glossy") - → Three methods, roughly equal cost - Chemical etching - Application of sol-gel containing silica particles - Mechanical abrasion - ◆ Level of anti-glare can be very little to a lot #### Anti-fingerprint (AF) treatment is rapidly growing - ◆ Many different forms (spray-on, rub-on, sputter, etc.); also called "anti-smudge" (AS) - Demand is increasing - ◆ Cost is dropping (currently ~\$8.50/m²) ## **Sensor Surface Treatments...2** #### Anti-reflection (AR) treatment is still a problem - → Reduces specular reflection to range of 2% to 0.4% - → Durability is typically < 1 year</p> - → It's expensive (currently ~\$34.50/m²) - → Yet it's really important for outdoor viewing, particularly of consumers' glossy screens (ideal is AF+AR = ~\$43/m²) #### Other coatings are available but less common - ◆ Anti-corruption (allows permanent Sharpie ink to be wiped off) - ◆ Anti-microbial/anti-bacterial (AM/AB, for healthcare applications) - → Hard coating (can be made up to 9H for glass-like anti-scratch) - Anti-stiction (reduces finger-sticking friction) - ◆ Anti-crack coating (increases durability at lower cost than Gorilla glass; uses atomic layer deposition [ALD]) # **ITO Refractive-Index Matching** - ❖ Reduce the reflectivity of ITO by compensating for the difference in index of refraction of ITO vs. glass/PET - Limited to 2 layers on PET; more can be used on glass - ◆ Alternating layers of material with low and high refractive index - ◆ Layer thicknesses (typically between ¼ and ½ of the wavelength of light) are chosen to produce destructive interference in reflected light, and constructive interference in transmitted light ``` ITO (RI = \sim 2.0) TiO₂ (RI = 2.48) SiO₂ (RI = 1.45) Glass (RI = 1.52) or PET (RI = 1.65) ``` Source: The author # **Sensor Suppliers** # Many touch-module makers manufacture their own sensors ◆ The remainder are made by the following companies, in order by estimated 2013 revenue | Company | Country | |-----------------------|---------| | Nissha Printing | Japan | | HannsTouch | Taiwan | | Dongwoo Fine Chemical | Korea | | Cando | Taiwan | | Innolux | Taiwan | | CSG | China | | Token | China | | CPT | Taiwan | | DNP | Japan | | Young Fast | Taiwan | | AimCore | Taiwan | #### And at least one more... ◆ Laibao (China) # **ITO-Replacement Materials** - **❖** ITO - Metal Mesh - Silver Nanowires - Carbon Nanotubes - Conductive Polymers - Graphene - Summary # ITO Replacements...1 ### Why replace ITO? - Costly to pattern & needs high temperature processing - → Highly reflective (IR = 2.6) & tinted yellow; brittle & inflexible - ◆ NOT because we're going to run out of it! ### Replacement material objectives - ◆ Solution processing (no vacuum, no converted LCD fab) - ◆ Better performance than ITO (transmissivity & resistivity) - ◆ Lower material & process cost than ITO ## Five replacement candidates - ◆ Metal mesh - Silver nanowires - Carbon nanotubes - ◆ Conductive polymers - Graphene # ITO Replacements...2 - ❖ ITO-replacement materials are having a definite market impact – 11% in 2014! - ◆ See the latest IHS market report on non-ITO films ◆ Ag halide is simply another method of making a silver mesh, so the mesh total is 85% vs. 15% for nanowire - ◆ The value is performance and cost - Both unit cost and CAPEX - Metal mesh is shipping in touchscreens, and it's looking very promising! - Brief history of first-movers - ◆ MNTech in Korea was the first to ship metal-mesh at the end of 2012 – but their factory burned down - ◆ Atmel (partnered with CIT in the UK) was the second to ship metalmesh (XSense™) for a smartphone and a 7" tablet in 1H-2013 - → FujiFilm started production of their silver-halide-based metal-mesh product in 2Q-2013 ## Metal mesh has significant advantages - ◆ Patterning via roll-to-roll printing allows both operating and capex cost to be very low – it's going to beat both litho and laser! - Electrodes and border connections are printed simultaneously, which allows borders as narrow as 3 mm (typically 9 mm with ITO) - ◆ Sheet resistivity is much lower than ITO (under 10 ohms/square) - Reduces p-cap charge time, which allows larger touchscreens - Transparency is better than ITO - → Mesh pattern creates electrical
redundancy, which improves yields - → Highly flexible bend radius typically 4 mm ## O-film is the "800-pound gorilla" of metal mesh! - ◆ Largest touch-module maker in China, #3 globally - ◆ Like "the TPK of film"; innovative and aggressive ## New roll-to-roll printing method "Hybrid printing" or "micro-imprinting" Source: The author #### O-film technical details - ◆ Additive process with little waste - → < 2 µm line width </p> - **♦** < 10 Ω/□ - → Randomized mesh design (one method of eliminating moirés) - ◆ Top surface of embedded metal line is blackened & sealed - ◆ Embedded metal reduces haze and eliminates peel-off - → Producing > 1.5M touch sensors per month (size not stated) # O-film's success makes visible a developing aspect of the ITO-replacement business ◆ A vertically-integrated sensor & module-maker is in a much better position to profit from ITO-replacements than a film-only supplier, or (even worse), an ink-only supplier # Synaptics' Opinion of Sheet Resistivity Requirements Source: Synaptics (unmodified) # An Interesting Variation on Silver Mesh...1 #### Cima NanoTech - → "Self-assembling" silver mesh - ◆ Starts with an opaque liquid coated on film with standard equipment - → 30 seconds later it dries into a random-pattern silver mesh Drying sequence Source: Cima NanoTech - → Pros: Simple, standard wet-coating process; no moiré (due to randomness); very good for large-format touch - Cons: It's just a uniformly-coated film that must be patterned with a laser or other method # An Interesting Variation on Silver Mesh...2 #### Cima NanoTech continued... Source: Cima NanoTech # Silver Nanowires...1 #### Cambrios is the first-mover and clear leader ◆ Other suppliers include Carestream, Blue Nano, Poly IC, etc. Source: Cambrios # Silver Nanowires...2 Density determines sheet resistance, independent of coating throughput Source: Cambrios # Silver Nanowires...3 ### Advantages - ♦ High conductivity (10 Ω / \Box at 94% transmission) - High transparency - ◆ Can be spin-coated or slit-coated (printing is under development) - TPK + Cambrios + Nissha joint venture - ◆ Nano-scale, so no visibility or moiré issues - Shipping in products from phones to all-in-ones - Same sensor for different pixel densities (unlike metal-mesh) - Established supply chain - Film makers: Okura, Hitachi Chemical, Toray, DIC, ShinEtsu, LGE, etc. - Module makers: eTurboTouch, LGE, Nissha, CNi, ShinEtsu, etc. ## Disadvantages - ◆ Increased haze at < 30 Ω/□</p> - ◆ Cambrios' positioning as an ink supplier (far down the food chain) # **An Interesting Variation on Silver Nano-Particles** ## ClearJet (Israel) - ◆ Inkjet-printing silver nano-particle drops < 10 μm thick</p> - ◆ Ink dries from center outward, leaving "coffee rings" ~100 μm - ◆ 95% transparency, 4 ohms/square resistivity # **Carbon Nanotubes** ## **❖** Carbon NanoBuds[™] by Canatu (Finland) - → "NanoBud" = nanotubes + bucky-balls (C₆₀ fullereens) - Probably the best current bet on CNTs, with moderate-volume production by the end of 2014 - Better optical performance than silver nanowires - Very low reflectivity and lower haze - More flexible (bend radius 0.5 mm!) - Note that the "NanoBud Reactor" is a multi-step process that includes (1) deposition of CNTs, and (2) laser patterning 88 # **Conductive Polymers & Graphene** ## Conductive Polymers (PEDOT:PSS) - ◆ Kodak (partnered with Heraeus) is the leader; AGFA is trailing - → First shipments of actual sensors began in 1H-2014 - ◆ Resistivity isn't much different from ITO, but it's easy to apply (e.g., with screen printing) - White-goods manufacturers can use it to make their own touch control panels in appliances (for example) ## Graphene – it hasn't started in touchscreens yet - ◆ Like unrolled carbon nanotubes, a one-atom thick sheet - Promising strength, transparency, and conductivity, but development is still in its infancy – and there are so many other hot applications for the material than touchscreens! - Resistivity, transparency, manufacturability just aren't there yet # ITO Replacements Summary...1 #### Current realities - ◆ It's about the ITO in touchscreens, not in LCDs - ITO used in LCDs is 1-2% of cost (~\$4 for a 40" display) - LCD makers are extremely reluctant to make changes in fabs - ◆ It's not really about flexible displays, at least not yet... - ◆ It's not really about the indium supply or cost - ◆ It's about the <u>processes</u> that ITO requires, not about ITO itself - The dominance of patterned-ITO touchscreens (p-cap) over uniform-ITO touchscreens (resistive) has drastically changed the picture - Mesh and silver nanowires are the main competitors, and mesh seems to be taking a strong lead - This entire market has come alive exceptionally quickly! # ITO Replacements Summary...2 #### Predictions - ◆ Most current capital-intensive, glass (fab)-based, p-cap module suppliers are going to be in a world of hurt because they have to maintain a targeted return on their LARGE invested capital - → Film-based module suppliers (formerly second-class citizens) will become the leaders of the touchscreen industry - ◆ Five years from now, more than 50% of p-cap sensors will be made using an ITO-replacement material - ◆ 10 years from now, p-cap fabs will be like many passive-LCD fabs today (fully depreciated and unused) # **Modules** - Routing Traces - ❖ Tail & ACF - Cover Glass - Lamination & Bonding - Integration Into a Device - Commercial Markets - Touch System - Advantages & Disadvantages - Suppliers # **Routing Traces** #### Sensor electrode connection traces - ◆ Narrow borders are the driving force - → Glass sensors use photolithography to pattern the connection traces; "double routing" (stacking) makes even narrower borders - ◆ Film sensors historically used screen-printing for both the electrodes and the connection traces; many film sensor-makers are buying photolithography equipment for the traces # Tail & ACF ### FPC with controller and ACF # Cover Glass...1 ## Cover-glass types - ◆ Soda-lime - Chemically strengthened (CS) - → Ion-exchange strengthened (e.g., alumino-silicate) - Minimum cover-glass thickness (0.4 mm today) is driven by two factors - → Durability (resistance to damage, especially with bezel-less design) - Capacitive-sensing limitations when the device is ungrounded # Cover Glass...2 ## Cover-glass processing - ◆ Forming - Decorating - ◆ Coating (AR, AG, AF, AC, AB...) ## Plastic cover-glass - ◆ It hasn't really happened yet - → Deformability is a big problem (bigger than scratching) # **Lamination & Bonding** - Lamination (film to glass, or film to film) - ◆ Yield is key - Bonding (touch module to display) - Direct bonding = No air-gap, spaced filled with solid (OCA) or liquid (OCR) adhesive - ◆ "Air bonding" = Air-gap (gasket around periphery) # **Integrating P-Cap Into a Device** - After the mechanical & industrial design are done, it's really all about just one thing: "Tuning" - ◆ Every new product must have the p-cap touch-screen controller "tuned" to account for all the variables in the configuration - Basic configuration (e.g., OGS vs. embedded) - Sensing pattern - Glass thickness - Adhesive thickness - LCD noise - LCD frame mechanics - Air-gap or direct-bonded... etc. - ◆ All controller manufacturers either supply tools (e.g., Synaptics' "Design Studio 5") or they do it themselves for their OEM customers - ◆ Initial tuning can take more than a full day of engineering time # **Commercial Markets** ## Adoption of P-Cap Into Commercial Markets (Forecast) - → Healthcare Rapid, within FDA-cycle constraints - Buying for the future with a very long product life - Zero-bezel, multi-touch, light touch are all important - ◆ Gaming Rapid, within gaming regulation constraints - Casinos want to attract the Millennium Generation - Multi-touch is very important; zero-bezel is less so - → Point of Information Moderate - Software-driven; zoom gesture could be the key - ◆ Industrial Slow - Multi-touch may be important; zero-bezel & light touch are less so - ◆ Point of Sales Very slow - Zero-bezel is the only driver; "flat-edge resistive" is good enough # Touch System...1 # **Touch Processing** - Control sensor electrodes to generate raw data - Noise avoidance via multiple techniques: Frequency Shifting, CDM, etc... - Process data to convert to Image data - Derive and report data about finger touches (position, width, gestures) - Tx signals generated - Rx conversion via A/D - Noise avoidance - Collect and Scale Capacitance - Remove Common Mode Noise - Gain Compensate - Apply Thresholds - Segmentation - Track Objects - Classify Objects - Calculate and Report Positions Source: Synaptics # Computer Actions: Gesture Processing #### Tap and Double Tap. • Light touch action – selects application #### Flick Next Page of Icons, Fast directory search, Next Photo etc. .. #### Scrolling • Slider for message forward, volume, contrast, directory search control etc.. #### Proximity detection · LCD screen wake up #### Multi Finger gestures - · Pinch for zoom - 2 Finger rotate (photo rotate) - Two finger flick - Bring up new menu - Simple games # **Human in the Loop** # Touch System...2 ## Controller output data - → Windows (USB): HID packets - ◆ Android (I2C or SPI): Vendor-defined format ## OS processing - → Built-in gesture recognition - Custom gestures ## Middleware example ♦ MyScript (formerly Vision Objects) in Samsung Galaxy Notes # P-Cap Advantages & Disadvantages | P-Cap Advantages | P-Cap Disadvantages | | |---|--|--| | Unlimited, robust multi-touch (if properly implemented) | Still relatively high cost, although it is dropping – especially in notebook sizes | | | Extremely light touch (zero pressure) | Touch object must have some amount of capacitance to ground (or active stylus) | | | Enables flush touch-surface (no bezel) | Challenging to integrate
("tuning") | | | Very good optical performance (especially compared with resistive) | Difficult to scale above 32" with invisibility | | | Extremely smooth & fast scrolling (if properly implemented) | No absolute pressure-sensing; only relative finger-contact area | | | Durable touch surface not affected by scratches and many contaminants | | | | Can be made to work with running water on the surface | | | | Can be made to work through extremely thick glass (~20 mm) | | | | Can be sealed to NEMA-4 or IP65 | | | # Module Suppliers (Discrete & Embedded) | Supplier | Share | |-----------------|-------| | Samsung Display | 13.1% | | TPK | 8.9% | | O-film | 7.8% | | GIS | 5.6% | | ECW EELY | 4.8% | | Japan Display | 4.4% | | Sharp | 4.0% | | Truly | 3.0% | | Others | 3.0% | | Melfas | 3.0% | | LG Display | 2.7% | | SMAC | 2.5% | | Iljin Display | 2.3% | | ALPS Electric | 2.1% | | Supplier | Share | |------------------|-------| | LG Innotek | 2.0% | | Wintek | 2.0% | | Laibao | 1.7% | | EACH | 1.6% | | Lcetron | 1.6% | | Top Touch | 1.6% | | Mutto Optronics | 1.5% | | ELK | 1.5% | | Synopex | 1.4% | | Young Fast | 1.3% | | Digitech Systems | 1.3% | | Panasonic | 1.1% | | Goworld | 1.1% | | JTouch | 1.0% | → 35% of suppliers account for 88% of units Source: DisplaySearch Touch-Panel Market Analysis Report 1Q-2014 # **Embedded Touch** - LCD Architecture Refresher - Embedded Terminology - Early Embedded Failures - On-Cell P-Cap - Hybrid In-Cell/On-Cell P-Cap - ❖ In-Cell P-Cap - Summary of Sensor Locations - Integrating the Touch Controller & Display Driver - ❖ Discrete Touch vs. Embedded Touch # LCD Architecture Refresher ## **IPS vs. Other LCD Architectures** Source: Presentation Technology Reviews # **Embedded Touch Terminology...1** ## Key defining characteristic - ◆ Touch capability is provided by a <u>display manufacturer</u> instead of a <u>touch-module manufacturer</u> - Touch-module manufacturers can't do in-cell or on-cell ### Marketing Terminology Alert! - ◆ Some display manufacturers call all their embedded touch "in-cell", even though they may be supplying hybrid or on-cell - Some display manufacturers use a brand name to encompass all their embedded touch products - For example, "Touch On Display" from Innolux - ◆ Some display manufacturers direct-bond or air-bond an external touchscreen to their display and call it "out-cell" # **Embedded Touch Terminology...2** | Term | Integration Method | | | |-----------|--|--|--| | In-Cell | Touch sensor is physically inside the LCD cell | | | | | Touch sensor can be: | | | | | Capacitive electrodes (same as p-cap) | | | | | Light-sensing elements (rare) | | | | On-Cell | Touch sensor is on top of the color-filter glass | | | | | (LCD) or the encapsulation glass (OLED) | | | | | Capacitive electrodes (same as p-cap) | | | | Hybrid | Touch sensor has sense electrodes on top of the | | | | (In-Cell/ | color-filter glass and drive electrodes inside | | | | On-Cell) | the cell | | | | | <u>IPS LCD</u>: Segmented Vcom electrodes on | | | | | the TFT glass | | | | | Non-IPS LCD: Segmented Vcom electrodes | | | | | on the underside of the color filter glass | | | # Early Embedded Methods All Failed # Attempts to develop embedded touch in 2003-2011 were all trying to invent something new while leveraging the LCD design - → "Pressed" capacitive, first mass-produced by Samsung in 2009 - ◆ Light-sensing, first mass-produced by Sharp in 2009 - ◆ Voltage-sensing ("digital switching"), first mass-produced by Samsung ## But none of them was really successful - ◆ Insufficient signal-to-noise ratio for robust operation - ◆ The need to press the display surface, which prevented the use of a protective cover-glass - ◆ The unreliability of pressing the display very close to the frame, where the color-filter glass has little ability to move # First Successful Embedded Touch: OLED On-Cell P-Cap - Samsung S8500 Wave mobile phone with Super AMOLED on-cell p-cap touch (Feb. 2010) - → 3.3-inch 800x480 (283 ppi) AM-OLED - "Super AMOLED" is Samsung's (odd) branding for on-cell touch - ◆ Sunlight readable - AR coating & no touchscreen overlay Window = direct-bond cover-glass Source: Samsung booth graphic at Mobile World Congress 2010 Source: Samsung # **On-Cell P-Cap** #### Principle - ◆ ITO P-cap electrode array is deposited on top of the color filter glass (under the top polarizer) - Exactly the same function as discrete (standalone) p-cap - Shown above is one ITO layer with bridges; it could also be two layers with a dielectric instead # The Display-Makers Quickly Got the Idea - Don't try to invent something new; figure out how to apply what already works (p-cap)! - The result: Sony's (JDI) "Pixel Eyes" hybrid in-cell/on-cell mutual capacitive - ◆ First successful high-volume embedded touch in LCD Source: Japan Display; annotation by the author # First Phones with Hybrid In-Cell/ On-Cell Mutual-Capacitive (May 2012) Sony Xperia P and HTC EVO Design 4G (not the iPhone 5) Source: Sony Source: HTC - Similar LCDs - ◆ 4-inch 960x540 LTPS (275 ppi) with different pixel arrays - Same touch solution - Synaptics ClearPad 3250 (four touches) - * <100 μm thinner than one-glass solution! # Apple iPhone 5: First Fully In-Cell Mutual Capacitive (Sept. 2012) #### Structure - ◆ Both sense and drive electrodes are in the TFT array, created by switching existing traces so they become multi-functional - ◆ Apple has said they may change to Innolux "Touch On Display" (TOD, Innolux's brand name for ALL of their embedded touch structures) in iPhone 6 - That doesn't actually tell us anything, since TOD includes all three embedded structures... Source: CNET # Apple's iPhone-5 Electrode Structure Source: BOE Technology Group's Central Research Institute # Other In-Cell Electrode Structures (Based On Patents) ## Apple & Samsung - Drive electrodes are segmented VCOM - Sense electrodes are metal overlaid on the CF black matrix ## Apple & Samsung - Drive electrodes are ITO stripes deposited on top of a dielectric layer over the color filter material - Sense electrodes as above ### Sharp ◆ Both drive & sense electrodes are deposited on the bare CF-glass, before the black matrix and color-filter material are applied ### LG Displays Self-capacitive method using just segmented VCOM # **Summary of Sensor Locations** | Sensor Location | Key Advantages | Key Disadvantages | |-------------------------|----------------------------|------------------------------| | Discrete sensor | Industry standard | Thickness & weight | | (separate glass) | Glass or PET | | | | Easy to add shield layer | | | | Display unconstrained | | | Top of cover-glass | None | Impractical | | Bottom of cover-glass | Good for sensing | Complex lens (yield) | | (OGS = G2) | Widest sensing area | Limited durability | | | Display unconstrained | | | Top of polarizer | None | Impractical | | Top of CF glass | Simple display integration | 2-sided CF process | | (1 or 2 layers) | Lower cost (1 layer) | Limited to display size | | Both sides of CF glass | Slightly thinner | 2-sided CF process | | (hybrid for non-IPS) | Slightly lower cost | Limited to display size | | | | Requires display integration | | Top of CF glass and | Highest performance | 2-sided CF process | | in TFT array | Slightly thinner | Limited to display size | | (hybrid for IPS) | Slightly lower cost | Requires display integration | | In cell (on TFT array | High performance | Limited to display size | | for IPS; split between | Thinnest | Requires display integration | | TFT and CF for non-IPS) | Potentially lowest cost | Complex design | # Integrating the Touch Controller and the Display Driver IC...1 # Integrating the Touch Controller and the Display Driver IC...2 #### Advantages - → Full synchronization of touch and DDI - ◆ Can work with any sensor (discrete, OGS, on-cell, in-cell, hybrid) - ◆ Reduced latency - 70 ms to 20 ms - ◆ Capable of user-input and feedback without CPU involvement - Done by programming the display configuration blocks of flash memory - Overlay capability plus image fade-in/out, animation, translation, etc. - ◆ Can support wake-on-touch - Can display sprites or graphics for log-in screen ## Disadvantages - → Design is LCD-specific (resolution & pixel layout) - ◆ Substantial NRE; appropriate only for high-volume # Comparison of Discrete (e.g., OGS) Touch with Embedded Touch...1 ### Cost: Is embedded touch really "free"? No! - Barrier to entry - There is much more intellectual property (IP) on embedded touch layer-structure & driving; making sure you don't infringe costs money - Development cost - Embedded touch is much more complex to develop than OGS - High volume is required (5M) to make it practical - ◆ Cover glass, decoration & bonding - Similar to discrete (OGS), but embedded cover-glass is just glass & decoration (no ITO), so it's easier to manufacture - Sheet-type OGS may not be as strong as plain cover-glass - ◆ Touch controller - No integration = same cost (but performance is poor) - Linked to TCON for timing control = same cost (slightly different chip) - Integrated with TCON = saves \$1-\$2 in material cost # Comparison of Discrete (e.g., OGS) Touch with Embedded Touch...2 ## Cost (continued) - ◆ FPC to connect electrodes - On-cell and hybrid = same - In-cell = none if touch controller is COG; saves another \$1-\$2 - Electrode material - Discrete OGS currently uses ITO; could move to printed metal-mesh, which could save \$10+ in tablet size (once sensor competition gets real) - On-cell = same as discrete ITO - Hybrid = only half as much added ITO (little material cost-difference) - In-cell = no added ITO # Comparison of Discrete (e.g., OGS) Touch with Embedded Touch...3 #### Performance - ♦ On-cell = same as discrete or worse - If you build the color-filter first (focus on LCD yield) then you can't
use high-temperature ITO so touch performance is worse - If you build the touch electrodes first for good performance, then you can't thin the color-filter glass - → Hybrid = same - ◆ In-cell = worse, but should improve to be same as SNR goes up #### Thickness - ◆ Embedded is typically 100 μm thinner than discrete OGS - ◆ But the thickness variation between smartphone models with embedded touch is ~1.0 mm due to other features, so 0.1 mm doesn't mean that much to the consumer (it's mostly marketing!) # Comparison of Discrete (e.g., OGS) Touch with Embedded Touch...4 ### Weight → Embedded = discrete (same number of sheets of glass) ### Power consumption - ◆ On-cell & hybrid = same as discrete - ◆ In-cell with integrated touch & TCON = probably lower, but touch power consumption is much lower than LCD power-consumption, so the decrease isn't very significant #### Off-screen icons - → Discrete = no problem - → Embedded = <u>requires additional circuitry</u> ## **Embedded Touch Conclusions...1** - Embedded touch isn't a clear win in either cost or technology; it's all about who gets the touch revenue! - The driving force in embedded touch is the displaymakers' need to add value in order to increase their profitability - Embedded touch provides little advantage to the end-user (consumer) ## **Embedded Touch Conclusions...2** - It's not clear that embedded touch will offer significant cost-savings to the device OEM, since OGS can be further cost-reduced with ITO-replacement materials - The display-makers will take some market share with embedded touch in high-volume products (DisplaySearch says 25% in 2018) but embedded touch is unlikely to become dominant because the touch-panel makers won't let their business be destroyed # **Large-Format P-Cap** - Introduction - ITO Electrodes - Wire Electrodes - Metal Mesh Electrodes - Applications ## Introduction ### Large-format touch is a much more wide-open space than consumer-electronics touch - → Multi-touch infrared (IR) has replaced traditional (single-touch) IR - ◆ Camera-based optical has dropped substantially with the exit of NextWindow (SMART Technologies) from the market - Startup: Sentons is taking a new approach to bending-wave - Startup: RAPT is taking a new approach to in-glass optical - ◆ P-cap with metal mesh is a threat to all other large-format touch technologies - Commonality of user experience (UX) with the 3 billion p-cap units shipped since 2007 may be the driving force - Cost and complexity (as always) are the impediment # **ITO Electrodes** - 3M has managed to get ITO electrodes to work in a 46-inch display (larger than any other with ITO) - → They won't disclose their secret sauce Source: Photo by Author ## One more sensor variation: 10-micron wires between two sheets of PET or glass - ◆ Commonly used for large-format touchscreens - → Two main suppliers: Visual Planet & Zytronic, both in the UK 9 floor-to-ceiling Visual Planet touchscreens in the University of Oregon Alumni Center Source: The University of Oregon ### Zytronic's new multi-touch large-format p-cap - → Previous Zytronic products were self-capacitive (2-touch max) - Binstead's frequency-variation patent was the basis of sensing - ◆ New product is <u>mutual-capacitive</u> with very dense electrode pattern - Traditional measurement of capacitance reduction caused by finger - ~1.5 mm electrode spacing in 6 mm x 6 mm cell - Density reduces visibility because the human visual system sees a more uniform contrast - 10-micron <u>insulated</u> copper wires allow crossover ("single layer") - 100's Ω/m at 10 μm - Can be applied to glass or film (including curved surfaces) - Initial controller handles all sizes up to 72"; 100"+ possible - Minimum 10 touches with palm rejection - ❖ Jeff Han from Perceptive Pixel (acquired by Microsoft in mid-2012) showed an 82" at CES 2012 (with active stylus) and a 72" at Digital Signage Expo (DSE) 2012 - ◆ Metal electrodes (not ITO) although Jeff wouldn't talk about the electrode material or who is manufacturing the touchscreens Source: Photos by Author Both the 72" & 82" look much better than the traditional Zytronic zig-zag 10-micron wire pattern 72" at DSE 2012 Source: Photos by Author ## **Metal-Mesh Electrodes** ## "Invisible" metal-mesh electrodes are the biggest threat & opportunity in large-format p-cap - → Many suppliers are working on this - → Few (if any) have made formal product announcements - Display sizes of 42" to 55" are frequently mentioned - → There are significant challenges - Total number of connections is large (~250 + ~150 = 400 for 55") - Multiple ganged controllers are required - Longer electrodes means slower sensing (larger RC time-constant) - Much larger number of electrodes takes longer to sense - Number of suppliers able to print on 1,200 mm web is limited # Applications...1 ## Large-format multi-touch applications **Gaming Tables** Source: Zytronic Vending # Applications...2 ### Applications for <u>curved</u> large-format touchscreens Source: Zytronic # Applications...3 ## BUT, stepping back from a technology focus, is the large-format touch market likely to start shrinking? - ◆ Interactive media walls touch is very necessary - <u>MultiTaction</u> makes the best vision-based touch today (author's opinion) - Point-of-information touch still seems necessary - ◆ Digital signage interaction via smartphone - → Education interaction via tablets (including multi-user!) - ◆ TV interaction via mobile & motion-based devices - → Horizontal home-gaming tables will they ever exist? - ◆ Other large-format applications?? # **Stylus Technologies** - History - Use Cases - Passive Stylus - Electromagnetic Resonance (EMR) Stylus - Active P-Cap Stylus - Prediction - Other Active Stylus Technologies # **Stylus History...1** - Microsoft Tablet PCs, PDAs, and early smartphones (e.g., Trio) always had styli (1989 to 2007), so why are we so finger-focused now? - Steve Jobs and the iPhone in 2007 "Who needs a stylus?" - Microsoft's failure to make the stylus-based Tablet PC a success with consumers caused them to de-emphasize the stylus and focus on finger-touch in Windows 7; that has continued and become even stronger in Windows 8 # **Stylus History...2** ## Is the stylus coming back into the consumer space? ## YES! - ◆ All the major p-cap controller suppliers support active & passive - ◆ PC OEMs want to differentiate their products from Apple's - ◆ Legacy Windows software on a Win8 tablet needs a stylus - ◆ Android (in Ice Cream Sandwich) supports stylus messages - ◆ Samsung has shipped >15M Galaxy Notes in two sizes - ◆ Consumption isn't enough; a stylus is great for creation # Stylus Use-Cases...1 ### Taking notes (in both Windows and Android) Notes are automatically converted into text in background; being able to search your "ink" notes is very powerful #### Annotating documents ◆ Typically Office or PDF #### Quick sketches → Typical whiteboard-type sketches ### Precision pointing device, e.g. with Windows 8 Desktop ♦ When you're trying to select tiny UI elements ### Artistic drawings ◆ It's unbelievable what a real artist can do... # Stylus Use Cases...2 Created with an N-Trig active stylus on a Fujitsu Lifebook using ArtRage software ### Passive Stylus...1 ### A passive stylus can be any <u>conductive</u> object - Metal rod - Conductive plastic - ◆ Ballpoint pen - → #2 pencil (shown at CES 2014) - Long fingernail - ◆ And those horrible 7 mm conductive-rubber-tipped styli - Needed for backwards compatibility with early tablets with low SNR ### Tip diameter - ◆ State of the art is 1.5 to 2.0 mm - Next generation is 1.0 mm - ◆ Essentially every controller supplier supports this now but not many have made it out into shipping products yet ### Passive Stylus...2 ### Advantages - ◆ Extremely low cost - ◆ Easily replaceable - ◆ Can be made any size and comfort level by low-tech methods - → Improves as SNR increases ### Disadvantages - ◆ No hover that meets Microsoft's specification - There's no OS support (yet) for differentiating between finger & stylus - ◆ No pressure-sensing, so art and handwriting aren't as good - Resolution can't be better than a finger # Electromagnetic Resonance (EMR) Stylus...1 ### Key characteristics Sensor grid schematic #### Variations - ◆ Sensor substrate (rigid FR4 vs. flexible 0.3 0.6 mm PET) - → Pen diameter (3.5 mm "PDA pen" to 14 mm "executive" pen) #### Size range ◆ 2" to 14" #### Controllers Proprietary ## 14" 2" Controller for 10.4" Source: Wacom ### Advantages - ◆ Very high resolution (1,000 dpi) - → Pen "hover" (mouseover = move cursor without clicking) - ◆ Sensor is behind LCD = high durability & no optical degradation - → Batteryless, pressure-sensitive pen Single controller can run both pen digitizer & p-cap finger touch ### Disadvantages - → Electronic pen = disables product if lost; relatively expensive - → Difficult integration requires lots of shielding in mobile computer - ◆ Sensor can't be integrated with some LCDs - ◆ Single-source for mobile CE devices (Wacom) = relatively high cost ### Applications - Phablets and tablets - ◆ E-book readers - → Opaque desktop graphics tablets - ◆ Integrated tablet (pen) monitors ### Suppliers Wacom, Hanvon, Waltop, UC-Logic/Sunrex, KYE Wacom "Bamboo" Tablet ### Samsung Galaxy Note sketching demo at CES 2012 The Galaxy Notes use both a p-cap touchscreen AND a Wacom EMR stylus (2 sensors!) Source: Photos by Author ## **Active P-Cap Stylus...1** ### **Active P-Cap Stylus...2** #### Variations - One-way digital RF transmission from stylus to p-cap sensor, with both sense & drive electrodes acting as antennas - N-Trig has by far the most-developed user experience - ◆ <u>Two-way</u> transmission between stylus and p-cap sensor - Stylus receives p-cap sensor drive-signal, amplifies it, adds digitally encoded stylus information, and transmits it back to sensor - Atmel was the first to put this into production, but their user experience is still very immature - Stylus generates
intense e-field at tip - E-field <u>adds</u> capacitance to p-cap sensor operating as usual (finger <u>subtracts</u> capacitance) - Unclear if anyone is actually doing this... ### **Active P-Cap Stylus...3** ### Advantages - ◆ Uses existing (single) p-cap sensor - → Pen "hover" (mouseover = move cursor without clicking) - ◆ Stylus tip can be very small (< 1 mm) - High resolution and accuracy ### Disadvantages - Stylus requires power source (battery or super-capacitor), which requires charging contacts in stylus-garage and charging circuit in host computer - Stylus technology is unique to each p-cap controller supplier - Total lack of interoperability will probably prevent active stylus from ever becoming mainstream - OEMs' desire to obtain high margin on accessories makes the problem even worse ## **Active vs. Passive Stylus Summary** This battle's been going on since the 1990s... ### **Prediction** ### Passive stylus is going to win (become mainstream) - → Being "good enough" is very important in the touch industry! - ♦ It's the lowest-cost solution. - ♦ However... - There is still some chicken-and-egg regarding good support for stylus in application software - Some OEMs haven't bought into the need for a stylus yet (more chicken-and-egg) ### * Active stylus will remain a niche ◆ Active stylus' total lack of interoperability and very high price as a replacement accessory will prevent it from ever becoming mainstream ## Other Active-Stylus Technologies #### Combination ultrasonic & infrared Used in many clip-on and clipboard-style digital note-taking accessories; also available for iPad ### Embedded CMOS-camera stylus by Anoto - Widely licensed for digital-pen note-taking accessories and form-filling applications - ◆ Used by LG Displays in large-format touch - ◆ Used in Panasonic 4K 20" professional tablet shown at CES 2013 ### Infrared LED light-pen ◆ Used by iDTI in their light-sensing in-cell touch monitor ### Visible laser-pointer - ◆ Used by isiQiri in large-format touch - ◆ Also works with iDTI light-sensing in-cell touch ### **Software** - Multi-Touch - OS Application-Development Support - Middleware ### **Multi-Touch** - Multi-touch is defined as the ability to recognize two or more simultaneous touch points - Multi-touch was invented in 1982 at the University of Toronto (not by Apple in 2007!) - "Pinching" gestures were first defined in 1983 (not by Apple in 2007!) - Windows 7 (2009) & Windows 8 (2012) both support multi-touch throughout the OS and are architected to support an "unlimited" number (~100) of simultaneous touch points ### **Multi-Touch Architecture** ## Why Multi-Touch Has Become So Important...1 ### Apple ◆ Apple established multi-touch as a "must-have" for coolness. The result is that people of all ages expect every display they see to be touchable with multiple fingers ### Gaming ◆ Gaming is a natural for multi-touch. Try playing air hockey without multi-touch... #### Unintended touches ◆ One of the major values of multi-touch is to allow the system to ignore unintended touches ("palm rejection", "grip suppression", etc.). As desktop screens become more horizontal (recline) this will become even more important. ## Why Multi-Touch Has Become So Important...2 #### Multi-user collaboration - ◆ When two people want to collaborate on a large screen (e.g., a student and teacher on an interactive "whiteboard" LCD), multi-touch is essential - Identifying which touch belongs to which user is still unsolved - It IS currently possible to uniquely identify multiple simultaneous styli ### How Many Touches Are Enough?...1 ### The industry has multiple answers - → Microsoft settled for 5 touches in Win8 (they wanted 10) - But now under pressure from OEMs they have buckled and reduced it to TWO touches for All-in-One desktops (BIG mistake!) - ◆ The p-cap touchscreen suppliers under 30" either say "10" or "as many as possible" (e.g., 3M's p-cap supports 60+ touches) - ◆ The large-format touchscreen suppliers say that 40 is enough ### In practice it depends on the hardware and controller firmware implementation - ◆ Ideally the touchscreen should ignore all other touches beyond however many the product is guaranteeing - ◆ This is usually called "palm rejection" and its implementation is absolutely critical to the user experience ## How Many Touches Are Enough?...2 ### The answer actually depends on the application - → For a small mobile device, 2-5 (one hand) are enough - ◆ For a <u>single-user</u> app on <u>any</u> device (even an 82" screen), it's hard to see why more than 10 (two hands) are needed - ◆ For a <u>multi-user</u> app, it depends... - For a 55-inch gaming table, 40 (8 hands) is not unreasonable - ➤ The key touchscreen specification is probably response time (latency) - For a 65-inch interactive "whiteboard" LCD, 20 (4 hands) is probably enough, although an argument can be made for 40 - ➤ BUT, the key touchscreen specifications are entirely different: minimum stylus tip size, pre-touch, jitter, ink-lag, etc., can all be critical Source: FlatFrog ### **#1 Reference On Multi-Touch** * "Multi-Touch Systems that I Have Known and Loved" www.billbuxton.com/multitouchOverview.html "If you can only manipulate one point ... you are restricted to the gestural vocabulary of a fruit fly. We were given multiple limbs for a reason. It is nice to be able to take advantage of them." Bill Buxton, 2008 Principal Researcher, Microsoft Research ## For Windows, the "Logo" Is the Starting Point - A set of touch performance standards designed to ensure a high-quality user experience - ◆ 5 touch-point minimum - ◆ Touchscreen jitter - ◆ Extra input behavior - → High-resolution timestamp - ◆ Input separation - ◆ Noise suppression - ◆ Physical input position - ◆ Reporting rate - ◆ Response latency - ◆ Cold boot latency - ◆ Touch resolution - ◆ User experience - ◆ Pre-touch - ◆ Pen tests ### **Windows 8 Touch** ### The Win8 Touch Logo specification is based on p-cap - ◆ Win7 spec was based on optical, which had little relevance - Win8 spec creates a common touch capability for mobile phones, tablets, notebooks, and desktops - This may be very significant for multi-platform applications! ### Basic spec requirements - → Minimum of 5 simultaneous touches; must ignore an additional 5 - → Tablets must be zero-bezel; otherwise 20 mm border minimum - → Respond to first touch in < 25 ms</p> - ◆ Subsequent touches must be < 15 ms at 100 Hz for all touches - → Better than 0.5 mm accuracy with < 2 mm offset from actual location</p> - ◆ No jitter when stationary; < 1 mm when moving 10 mm</p> - ◆ Pre-touch < 0.5 mm</p> - → Finger separation >= 12 mm horizontal/vertical, 15 mm diagonal - But on-screen keyboards and normal human behavior violates this! ## Windows 8 Touch Application Development ## Windows 8 - There are multiple development environments commonly used in Windows 8, each of which handles touch differently - ◆ Native C++ (Win32/COM) - Managed environment (.NET Framework) - → Silverlight & WPF (Windows Presentation Foundation) - ◆ Adobe Flash - ◆ Modern (Win-8) using C# and XAML or HTML5 and JavaScript - Modern apps today only represent one aspect of business computing: reporting/dashboards, with moderate-to-light data updating ### From my perspective... ◆ As a hardware person, I find the level of detail required to do anything significant in touch software to be excruciating # **Android Touch Application Development** ## Android has an extensive and growing API for touch & stylus - ◆ I hear complaints about the degree of bugginess - ◆ From what I can tell, the level of tediousness is a little better than Windows - → The Android API supports up to 256 touches, but the actual number depends on the hardware & firmware implementation in the device – 2 to 5 isn't unusual - ◆ Fragmentation of Android (different versions from each OEM) appears to make developing a robust run-on-anything Android touch application very difficult - The language decision is easy it's Java or nothing ## iOS Touch Application Development - iOS seems to have the most constrained touch application development environment - ◆ But it's not any easier than Android -- in the chapter on touch in "Programming iOS 5" (an O'Reilly book), the words "messy" and "tricky" seem to occur a lot - The language decision is easy it's Objective-C or nothing # Middleware...1 (Consumer Electronics) - The best example of middleware in CE devices is from MyScript (formerly "Vision Objects") - → This is what makes the Samsung Galaxy Notes possible - ◆ Extremely powerful, configurable capabilities - Note-taking, handwriting recognition, mathematics (including equations), music notation, even "ink as a data-type" (same concept as in Windows, stores both ink and ASCII text) UI: A thin layer of Samsung look & feel MyScript Middleware (Contains most of the Notes' functionality) Android Touch & Stylus API (Pretty basic) **Android** Source: The author Samsung Galaxy Notes' software stack ## Middleware...2 (Large-Format / Commercial) ### The best middleware for large-format applications (in the author's opinion) is Snowflake - Good starting point for commercial applications - ◆ Includes 30+ multi-touch apps (entertainment, presentation, creativity, media-browsing, etc.) - ◆ Includes an SDK - → Runs on Win 8/7/Vista/XP, Mac OS X Lion & Snow Leopard, and Linux Ubuntu ### Snowflake simplifies handling... - → Touch & gesture events, audio, video, images - ◆ PDFs, 3D, on-screen keyboards, web browsing - Multiple languages, QuickTime integration, etc. ### Middleware...3 #### Snowflake home screen Source: NuiTeq ### Middleware...4 ### Other alternative "middleware" for large-format - ◆ Omnitapps - Less complete, Windows only, no SDK, more for product marketing - ◆ Intuilab - Commercial multi-touch application platform with Kinect, RFID, etc. - ◆ GestureWorks (Ideum) - Robust Flash multi-touch development environment - ◆ 22 Miles - Sales productivity application for iOS, Android, Windows
& Mac - Sotouch - Application platform for wayfinding and presentations - Fingertapps (Unlimited Realities) - Multi-touch demo software ### **Conclusions** - Future Trends & Directions - Suggested Reading on Touch - * Recommended Conferences & Trade Shows on Touch ### P-cap is here to stay - → It is totally dominating consumer electronics - Consumer p-cap is getting much closer to meeting commercial application requirements - For example, glove-touch and water-resistance - ◆ P-cap's capabilities are becoming increasingly attractive in commercial applications - Curved touch-panels, particularly in automotive - Light touch expected by ALL touch-panel users - Flat-bezel in customer-facing applications - Multi-touch wherever images are viewed (e.g., photo-printing kiosk) - ◆ The forecasts for commercial penetration of p-cap are MUCH too conservative ## ITO-replacements are going to have an increasingly significant impact - ◆ Performance increase - ◆ Sensor cost reduction (including CAPEX) - → Printed metal-mesh is going to win ### Embedded touch will become significant in phones, but not in tablets and larger-screen devices - ◆ On-cell will beat in-cell - → Embedded touch isn't "free", and it reduces feature flexibility - Display makers aren't being totally successful competing with the full capability of touch-module makers - Many p-cap enhancements have been completed from an R&D viewpoint but haven't been widely sold yet - ♦ Hover - ◆ Glove-touch - ◆ Water resistance - → Improved interference-resistance - → Fine-tipped passive stylus - Some enhancements are still under development - ◆ Latency reduction - → True (absolute) pressure-sensing - ◆ Software integration (running touch algorithms on the host GPU) - The biggest remaining problem is that touch still doesn't "just work!" all the time - Missed touches - ◆ Unintended touches - The #1 reason is poor programming, not poor touchscreens (author's opinion) - Touch is continuing to evolve - ◆ P-cap controller-makers are continuing to innovate - → Touch startups are plentiful (5+ mentioned today) - → The battle between the display-makers and the touchscreenmakers is continuing with no clear winner in sight # Future Trends & Directions...5 (Going Beyond Touch) #### ❖ Intel RealSense™ "Bringing human senses to your devices" ### User-facing 3D camera use-cases - Entertainment and gaming - ◆ Interactive reality books - ◆ Immersive collaboration & creation - Object capture - ◆ Control and navigation - → Broad enabling of 3D in applications ### World-facing 3D camera - → Google "Intel CES 2014" - Download Intel's Perceptual Computing SDK #### Suggested Reading on Touch...1 Information SID Was last habened in last to the standard s September 2012 The Evolution of Touch A WIDER VIEW OF USER STEEL STE TOUCH CONTROLLES WHATTOU SHOULD KNOW IN THE WHEN THE CONTROLLES WHATTOU SHOULD KNOW IN THE CONTRO March 2011 The Best of Times for Touch "ROI-SURFACE TOUCH TOUCH TOUCH TOUCH SMALL TO MIDDING ASSENCE WITH A GREAT TOUCH TOUCH TOUCH TOUCH SMALL TO MIDDING ASSENCE BUILDING ASSENCE WITH A GREAT TOUCH EXPERIENCE BUILDING ASSENCE TOUCH EXPERIENCE PLIS FIRST Leader and Display Week 2010 Jeurnal of the 310 April Contents http://www.informationdisplay.org/IDArchive.aspx (2005-2014) March 2010 Even the oldest issue still contains useful information (e.g., on surface capacitive) December 2007 December 2006 Assertic Palac Brangeltian ive Demand for Touch Panels #### Suggested Reading on Touch...2 #### Table of Contents Alice Ning, p12 p12 MIT, p21 DNP, p44 | Letter from the publisher: Pen again by Mark Fihn | 2 | |--|----| | News from around the world | 3 | | Electronic Displays, February 29 – March 1, 2012, Nuremberg, Germany | 27 | | TEI, February 19-22, 2012, Kingston, Ontario | 31 | | VRCAI, December 11-12, 2011, Hong Kong, China | 36 | | Touch Gesture Motion Conference, December 7-8, 2011, Austin, Texas | 40 | | Conference on Advances in Computer Entertainment, November 8-11, 2011, Lisbon, Portugal | 44 | | China Display SID Conference, November 6-9, 2011, Kunshan, China | 47 | | Mobile HCI, August 30 - September 2, 2011, Stockholm, Sweden | 50 | | SIGGRAPH 2011: "The Sandbox", August 10, 2011, Vancouver, British Columbia | 54 | | Developing Next-Generation Human Interfaces Using Capacitive and infrared Proximity Sensing contributed by Silloon Labs, Austin, Texas | 57 | | Examining Glass Substrates: Insider's Guide to Stronger & Scratch Resistant Glass by Gary Barrett | 64 | | Last Word: Designing touch panels to work with gloves Techniques to increase build performance by Tony Gray | 69 | The Touck Channel is focused on bringing news and commentary about the activities of the companies and technologies related to touch screens and related technologies for the displays industry. The Touck Channel is published electronically 10 times annually by Veritas et Visus, 3305 Cheisea Place, Temple, Texas, USA, 76502. Phone: +1 254 791 0603. http://www.veritasetvisus.com Publisher & Editor-in-Chief Mark Fihn mark@wertlasetvisus.com Managing Editor Philip Hill philipwertlasetvisus.com Contributors Gary Barrett, Tony Gray, and Silicon Labs Subscription rate: US\$47.99 annually. Single Issues are available for US\$7.99 each. Hard copy subscriptions are available upon request, at a rate to be determined based on location and mailing method. Copyright 2012 by Veritas et Visus. All rights reserved. Veritas et Visus disclaims any proprietary interest in the marks or names of others. 1 At \$49/year for 10 issues, this is an excellent value as a source of touch news and touch-conference reports www.veritasetvisus.com #### Suggested Reading on Touch...3 News 32 new results for touch-screen #### Califone Intros Touchscreen MP4 Player for Education T.H.E. Journal Designed for education, Califone's new touchscreen media player supports individual and small group digital learning activities. See all stories on this topic » #### "New" Tactile iPhone 5 Touchscreen Rumor Recycles "Haptic ... The iPhone 5 News Blog (blog) iPhone 5 rumors die hard — and seem to come around and again and again. This time, it's the "new" tactile iPhone 5 touchscreen. The new story was spurred ... See all stories on this topic » #### Nintendo Wii U Console and Touchscreen Controller: Hands-on ... Nintendo Wii U release date: Christmas 2012. Price: £279.99 (unconfirmed). Rating: Very playable. See all stories on this topic » #### Tactus reveals pop-up touch-screen keyboard Tactus reveals pop-up touch-screen keyboardTactus Technology has unveiled a new technology that brings the feedback of touching something back to a ... Use Google Alerts to track your favorite touch keywords News 5 new results for "touch technology" OR "multitouch" #### Nintendo Explains Choice for Single-Touch Wii U GamePad ... Nintendo World Report Nintendo of America President Reggie Fils-Aime explained the company's stance on using single-touch functionality as opposed to multi-touch functionality with ... See all stories on this topic » #### HP boosts thin client capabilities HP is enabling customers to expand the use of thin clients for multi-touch business applications, such as self-service banking and digital signage kiosks, ... See all stories on this topic » #### Philips Exhibits Innovative Digital Signage Displays at ... Digital Signage Connection (press release) The Infrared Sensing Multi-Touch technology allows for multiple simultaneous touch points at the same time. This technology is ideal for large screen digital ... ## Suggested Conferences and Shows on Touch & Interactivity...1 - SID's Display Week (San Jose, CA, 5/31- 6/5, 2015) - ◆ Exhibits, Symposium Touch Papers on Thursday, Sunday Short Course, Monday Technology Seminars, Tuesday Exhibitors' Forum, Wednesday Touch-Gesture-Motion Conference - IHS' Touch-Gesture-Motion conferences (USA & Europe) - Touch China (Shenzhen, China) - C-Touch (Shenzhen, China; not Shanghai) - Computex (Taipei consumer electronics products) - InfoComm (USA large-format commercial products) - DisplaySearch Emerging Display Technologies (USA) - FPD International (Japan) - ACM's SIGGRAPH (USA) - ACM's Interactive Tabletops & Surfaces (USA) ## Suggested Conferences and Shows on Touch & Interactivity...2 #### Shows with commercial touch applications - ◆ National <u>Retail</u> Federation (NRF-USA) - → <u>Healthcare</u> Information Management Systems Society (HIMSS-USA) - ◆ Global Gaming Expo (G2E-USA & G2E-Asia) - ◆ Digital <u>Signage</u> Expo (DSE-USA) - Customer Engagement Technology World (CETW-USA) (Formerly "KioskCom") - ◆ Integrated Systems Europe (ISE-Europe) ### Thank You! File Download: www.walkermobile.com/SID_2014_Short_Course_S1.pdf Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 408-506-7556 mobile 408-765-0056 office 408-765-19 fax geoff.walker@intel.com www.intel.com ## Appendix A Historical Embedded Touch - In-Cell Light-Sensing - Pressed Capacitive - In-Cell Voltage Sensing - In-Cell Self-Capacitive #### **In-Cell Light-Sensing** #### Principle - ◆ Photo-sensor added in each pixel (rare) or group of pixels (4 to 16) - IR sensor (aSi or aSiGe) added to TFT array - IR emitters added to backlight - Does not depend on ambient light (as in original design from 2003) - → Works with finger or light-pen; can work as a <u>scanner</u> - ◆ Adding a cover-glass to protect the surface of the LCD reduces touch sensitivity because the finger is further away from the sensors ## First Product with In-Cell Light-Sensing Sharp's PC-NJ70A netbook (5/09) ◆ Optical in-cell touch in 4" CG-silicon 854x480 touchpad LCD (245 dpi) • 1 sensor per 9 pixels LED backlight Stylus & 2-finger multi-touch Scanning (object recognition) Japan-only; \$815 #### ◆ Problems - Required adding IR emitters into backlight - S L O W (25% of typical touchpad speed) - Short battery life ## Second
Product with In-Cell Light-Sensing #### Samsung SUR-40 (PixelSense) ◆ aSiGe sensor is 15X more sensitive than aSi, but that means the touch-screen is 15X more sensitive to ambient IR Maximum Surface-2 lighting for acceptable performance | Lighting Type | Max Lux | |---------------------|---------| | Compact Fluorescent | 600 | | Cool White LED | 560 | | Vapor Lamps | 530 | | Sunlight (filtered | 400 | | through window) | | | Metal Halide | 370 | | Warm White LED | 300 | | Sunlight (direct) | 160 | | Halogen | 60 | | Incandescent | 50 | **Environmental Lighting Optimizer Output** ## **Unique Product with In-Cell Light-Sensing** #### Integrated Digital Technologies light-pen monitor - ◆ 21.5" in-cell light-sensing monitor with IR light-pen - → Supports two-touch with two pens - ◆ Backplane by Taiwan CPE Source: IDTI Source: Photo by author #### In-Cell "Pressed" Capacitive #### Principle - ◆ Pressing the LCD changes the dielectric constant of the liquid crystal, which changes the capacitance between the conductive column spacer (CS) and the flat electrode in the TFT array. Electrode pairs can be in one pixel or in a group of pixels. - ◆ Works with any touch object within damage limits of top polarizer - Human body capacitance and dimensional change between electrodes are NOT relevant factors - Requires deflecting the LCD surface (<u>cannot add a cover glass</u>) ## First Product with In-Cell Pressed-Capacitive...1 - Samsung ST10 camera with 3" 480x320 transflective TFT with in-cell pressed-capacitive touch (4/09) - ◆ First use of any in-cell touch in a commercial product - Works with finger or stylus, but with <u>visible pooling</u> - ◆ Surface hardness = <u>low</u> - ◆ Touch-screen includes electrostatic haptic feedback - Camera includes MP3, PMP & text-viewer functions - One sensor per 8 pixels (60x40 sensing matrix) Source: Samsung ## First Product with In-Cell Pressed-Capacitive...2 #### Excerpt from Samsung ST-700 digital camera manual # Touching Touch an icon to select a menu or option. Smart Program Smart Self-Shot Movie Children Pose Guide Settings Gently flick the touch pen across the screen. - Do not use sharp objects, such as pens or pencils, to touch the screen. You can damage the screen. - The touch screen may not recognize your inputs if you touch multiple items at the same time. - The touch screen may not recognize your inputs if you touch the screen with your finger. - When you touch or drag the screen, discolorations may occur. This is not a malfunction, but a characteristic of the touch screen. Touch or drag lightly to minimize the effect. - The touch screen may not work properly if you use the camera in extremely humid environments. - The touch screen may not work properly if you apply screen protection film or other accessories to the screen. ## In-Cell Voltage-Sensing (also Called "Switch-Sensing" and "Resistive") #### Principle - Pressing LCD surface closes X & Y micro-switches in each pixel or group of pixels - → Requires deflecting the LCD surface (cannot add a cover glass) - ◆ Works with any touch object within damage limits of top polarizer #### **In-Cell Self-Capacitive** #### Principle - ◆ A single electrode per sensing element in the TFT array is connected to a reference capacitor. When a finger touches the LCD, the voltage at the electrode changes due to the capacitive coupling of the user's body-capacitance to ground. - → Works only with finger; no pressure is required - ◆ Adding a cover glass reduces touch sensitivity; reduction in SNR can make touch non-functional in noisy environments Source: Drawing = Samsung & Author; Information = Toshiba Mobile Display ## Part 2: Fundamentals of Touch Technologies other than Projected Capacitive Geoff Walker Senior Touch Technologist Intel Corporation Updated October, 2013 #### Agenda...1 - This tutorial course covers all touch technologies except projected capacitive - Because of its dominance, projected capacitive has been split off into a separate tutorial course entitled "Fundamentals of Projected-Capacitive Touch Technology" - Related materials such as "ITO Replacement Materials", "Embedded Touch", and "Software" have been updated and moved into the P-cap tutorial #### Agenda...2 - Introduction - Capacitive (1) - ◆ 1B Surface Capacitive - Resistive (2) - ◆ 2A Analog Resistive - ◆ 2B Analog Multi-Touch Resistive (AMR) - ◆ 2C Digital Multi-Touch Resistive #### Acoustic (3) - ◆ 3A Surface Acoustic Wave (SAW) - → 3B Acoustic Pulse Recognition (APR by Elo Touch Solutions) - ◆ 3C Dispersive Signal Technology (DST by 3M Touch Systems) #### Agenda...3 #### Optical (4) - 4A Traditional Infrared - ◆ 4B Waveguide Infrared (DVT by RPO) - ◆ 4C Multi-Touch Infrared - ◆ 4D Camera-Based Optical - ◆ 4E Planar Scatter Detection (PSD by FlatFrog) - ◆ 4F Vision-Based #### Other Touch Technologies (5) ◆ 5 - Force-Sensing #### Conclusions - → Touch Technology vs. Application - ◆ Usability, Performance, and Integration Characteristics - ◆ Touch Technology Primary Advantages and Flaws - ◆ Predictions for the Future #### Introduction Source: Gizmodo (Michelangelo's "The Creation Of Adam", in the Sistine Chapel, 1511) #### **Two Basic Categories of Touch** #### Opaque (non-transparent) touch - ◆ Dominated by the <u>controller chip suppliers</u> - Atmel, Cypress, Synaptics, etc. - One technology (projected [self] capacitive) - Sensor is typically developed by the <u>device OEM</u> - Notebook touchpads are the highest-revenue application - Synaptics, Alps and ELAN have the majority of the market - Sensors are all two-layer projected capacitive - ◆ There is no further discussion of opaque touch in this course #### Transparent touch on top of a display - ◆ Dominated by the <u>touch module manufacturers</u> (150+ worldwide) - ♦ 6 fundamental technologies with ~20 types ## Overall Touchscreen Market 2012-2017 #### **Units (Billions)** #### Revenue (\$Billions) Source: DisplaySearch Quarterly Touch-Panel Market Analysis Report (June 2013) Touch in 2007 was 308M units & \$1.3B... ## Touchscreen Market 2007-2018 by Technology (Units) Source: DisplaySearch Touch-Panel Market Analysis Reports 2008-2014 ## Touch Technologies by Size & Application | # | Touch Technology | Mobile
(2" – 17") | Stationary
Commercial
(10" – 30") | Stationary
Consumer
(10" – 30") | Large-Format
(>30") | |----|---------------------------------------|----------------------|---|---------------------------------------|------------------------| | 1A | Projected Capacitive | M | М | L | L | | 1B | Surface Capacitive | | M | | | | 2A | Analog Resistive | M | M | L | | | 2B | Analog Multi-Touch Resistive (AMR) | Е | | Е | | | 2C | Digital Multi-Touch Resistive (DMR) | Е | | | | | 3A | Surface Acoustic Wave (SAW) | | M | | L | | 3B | Acoustic Pulse Recognition (APR) | Е | L | | | | 3C | Dispersive Signal Technology (DST) | | | | L | | 4A | Traditional Infrared (IR) | | M | | M | | 4B | Multi-Touch Infrared | Е | Е | Е | Е | | 4C | Camera-Based Optical | | | M | M | | 4D | Planar Scatter Detection (PSD) | | | | Е | | 4E | Vision-Based (In-Cell Optical) | | | | Е | | 5 | Embedded (In-Cell/On-Cell Capacitive) | M | | | Е | | 6 | Force Sensing | | Е | | | **M** = Mainstream L = Low-volume **E** = Emerging ## Touch Technologies by Materials & Process #### A Simple Touch Isn't Simple...1 #### Touch classification from the University of Toronto Source: Daniel Wigdor #### A Simple Touch Isn't Simple...2 It's far more complex than just "how many touches?" The Breadth vs. Depth Problem Design software <u>once</u> for common capabilities (wide breadth, limited functionality) Re-design software for each platform's capabilities (narrow breadth, deep functionality) #### **Touch Is An Indirect Measurement** #### This is one reason why there are so many technologies | Touch Technology | What's Being Measured | |--------------------------------------|---------------------------| | Projected capacitive, | Change in capacitance | | Embedded (capacitive) | | | Surface capacitive | Current | | Resistive (all forms) & | Voltage | | Embedded (voltage-sensing) | | | Surface acoustic wave | Ultrasonic wave amplitude | | Acoustic Pulse Recognition & | Bending waves | | Dispersive Signal Technology | | | Infrared & camera-based (all forms), | Absence or reduction | | Planar Scatter Detection | of light | | Vision-based | Change in image | | Embedded (light-sensing) | Presence of light | | Force sensing | Force | The ideal method of sensing touch has yet to be invented! ## Capacitive Touch Technologies other than Projected Capacitive Surface Capacitive #### **Surface Capacitive** Source: 3M #### **Surface Capacitive...1** #### **Surface Capacitive...2** #### Variations Rugged substrate #### Size range ♦ 6.4" to 32" #### Controllers ◆ 3M, Microchip (Hampshire), eGalax, and Digitech #### Advantages - Much more durable than analog resistive - Resistant to contamination - Highly sensitive (very light touch) Source: 3M Source: Interactive Systems #### **Surface Capacitive...3** #### Disadvantages - ◆ No multi-touch - → Finger-only (or tethered pen) - ◆ Calibration drift & susceptible to EMI - ◆ Moderate optical quality (85% 90%) #### Applications - → Regulated (casino) gaming - → Point-of-Sale (POS) terminals - ◆ Point-of-Information (POI) kineke - ◆ Medical equipment #### Suppliers → 3M is the only significant supplier left #### Status ◆ It will be an irrelevant, obsolete technology in 5-7 years Source: 3M ## Wacom's Improved RRFC Surface Capacitive Technology...1 #### How it works - ◆ A linear voltage AND a ramp-shaped electrostatic field is created on the surface by applying AC on 2 corners & DC on the other two corners - ◆ Controller switches signals around all 4 corners, creating 4 ramp fields vs. single flat field in standard capacitive, and measures current in each case - ◆ Resulting touch-event signal is independent of all capacitance effects except those due to
finger-touch - ◆ Controller does additional digital signal processing to compensate for factors that affect accuracy and drift (Trademark = CapPLUS) RRFC = Reversing Ramped Field Capacitive ## Wacom's Improved RRFC Surface Capacitive Technology...2 #### Advantages - ◆ Solves all the problems of traditional surface capacitive - Works in mobile & stationary devices (10" to 32" now; 46" capable) - Unaffected by grounding changes, EMI, variations in skin dryness & finger size, temperature, humidity, metal bezels, etc. - Works outdoors in rain and snow - Works through latex or polypropylene gloves - Allows 4X thicker hardcoat for improved durability - ◆ Uses same ASIC as Wacom's EMR pen digitizer, so dual-mode input is lower cost & more efficient (e.g., in Tablet PC) #### Disadvantages (2 very big ones!) - ◆ No multi-touch - ◆ Sole-source supplier # **Resistive Touch Technologies** - Analog Resistive - Analog Multi-Touch Resistive (AMR) - Digital Multi-Touch Resistive (DMR) Source: Engadget Source: Bergquist Source: Elo Touch Solutions (4-Wire Construction) (5-Wire Construction) ### Types - ◆ 4-wire (low cost, short life) is common in mobile devices - **♦ 5-wire** (higher cost, long life) is common in stationary devices - ♦ 6-wire & 7-wire = obsolete 5-wire; 8-wire = replacement only ### Constructions - → Film (PET) + glass (previous illustration) is the most common - → Film + film (used in some cellphones) can be made <u>flexible</u> - ◆ Glass + glass is the most durable; automotive is the primary use - ◆ Film + film + glass, others... # Options ◆ Surface treatments (AR, AG, AF, AC, AB), rugged substrate, dual-force touch, high-transmissivity, surface armoring, many others... (50-uM glass) Source: Schott ### Size range ↑ 1" to ~24" (>20" is rare) ### Controllers - Many sources - Single chip, embedded in chipset/CPU, or "universal" controller board # Lyttee Source: Liyitec ### Advantages - → Works with finger, stylus or any non-sharp object - ◆ Lowest-cost touch technology - Widely available (it's a commodity) - ◆ Easily sealable to IP65 or NEMA-4 - → Resistant to screen contaminants - ◆ Low power consumption Source: Microchip ### Disadvantages - ◆ Not durable (PET top surface is easily damaged) - → Poor optical quality (10%-20% light loss) - ◆ No multi-touch ### Applications - Mobile devices (shrinking) - ◆ Point of sale (POS) terminals - Automotive - ◆ Industrial - ♦ Wherever cost is #1 ## Suppliers - → Young Fast, Nissha, Nanjing Wally, Truly, EELY, Mutto, J-Touch... - ♦ 60+ suppliers ### Market trends - ◆ Analog resistive is shrinking in units and revenue - P-cap dominates in most consumer applications - Analog resistive is still significant in commercial applications - Especially POS and industrial-control terminals Source: Touch International ### Multiple names - ◆ AMR (Analog Multi-Touch/Matrix Resistive) - ◆ MARS (Multi-Touch Analog Resistive Sensor) - "Hybrid analog-digital" # Primary limitation Can't touch with two fingers on the same square Typical AMR design for consumer product # Gateway ZX6910 AiO with 23" AMR touchscreen from eTurboTouch - ◆ Example of a failed consumer product with 15x13 mm AMR - Drawing parallel lines with two closely held fingers Source: Photos by Author ### Controllers ◆ AD Semi & others; some home-grown (e.g., Touch International) ### Suppliers ◆ eTurboTouch, Touch International, Mildex, Mutto, EETI... ### Advantages - Multi-touch (but without two touches on the same square) - Simple & familiar resistive technology - ◆ Lower cost than p-cap # Disadvantages - → Poor durability (PET top surface) - → Poor optical performance - ◆ Non-zero touch force ### Applications ◆ Industrial & other commercial Source: Apex 230 ### Stantum's product (iVSM) "Interpolated Voltage-Sensing Matrix" ◆ Stantum's strategy is to license controller IP to IC manufacturers, not to sell touchscreens - ◆ Aimed at tablets - ◆ Fine pitch results in a much higher number of connections than AMR (400+ on a 10" tablet screen) - 250-290 I/O's per controller "Mechanical contact switch" ### Controllers - ◆ ST Micro is currently the only one - Number of touch points is controller-dependent (2-10) ### Advantages - ◆ Multi-touch - Simple & familiar resistive technology - ◆ Lower cost than p-cap ### Disadvantages - → Poor durability (PET top surface) - → Poor optical performance - ◆ Non-zero touch force # Applications Commercial mobile applications such as education # Stantum's successes (against a BIG P-cap headwind) - ◆ Co-developed a pen & finger solution with Nissha for 5.7 to 12-inch tablets - ◆ Licensed IP to a US-based semiconductor vendor developing a controller optimized for 5.7" to 12" tablets - ◆ Design win with a tier-1 OEM for a pen & finger A4 e-reader targeted at <u>education and note-taking</u> - → Two 7" tablets for military applications (one by Harris) - ◆ 10.4" professional lighting-control application (Europe) - ◆ Signed a licensing agreement with a tier-1 OEM for a mobile enterprise tablet # One of Stantum's shipping (military) OEM products Source: Harris "A new 7-inch Android tablet that's so hard-as-nails it would make a Galaxy Tab go home and call its mother" (Engadget) - The funny thing is, Stantum's original products were the first commercial products to use multi-touch! - ◆ In 2005, when the company was selling music controllers under the name "Jazz Mutant" Source: Jazz Mutant # **Acoustic Touch Technologies** - Surface Acoustic Wave (SAW) - ❖ Acoustic Pulse Recognition (APR by Elo) - ❖ Dispersive Signal Technology (DST by 3M) # Surface Acoustic Wave Source: Kodak Source: Elo Touch Solutions ### How two touches are supported by SAW - Both Elo Touch Solutions and General Touch (China) are emphasizing zero-bezel and two-touch SAW - → This makes sense because SAW and Win7/8 will be important in commercial applications for at least the next five years - ◆ Both companies put the piezos and reflectors on the back of the glass to achieve zero-bezel - ◆ For two-touch zero-bezel, Elo uses a single set of multiplexed reflectors on the back of the glass (see US7629969) instead of the two sets of reflectors used on top of the glass for two-touch normal bezel ### Elo Touch Solutions' zero-bezel SAW Source: Photos by Author ### Size range ◆ 6" to 52" (but some integrators won't use it above 32") ### Advantages - ◆ Clear substrate (high optical performance) - → Finger, gloved hand & soft-stylus activation - ◆ Very durable; can be vandal-proofed with tempered or CS glass ### Disadvantages - ◆ Very sensitive to any surface contamination, including water - → Relatively high activation force (50-80g typical) - → Requires "soft" (sound-absorbing) touch object - Can be challenging to seal # Applications - ◆ Kiosks - Gaming ### Suppliers - ◆ Elo Touch Solutions and General Touch have >90% share - → <10 suppliers </p> ### Market trends - ◆ Two-touch and zero-bezel SAW should help reduce loss of share to p-cap in commercial applications - SAW will continue to grow moderately through 2017 - ◆ Chinese suppliers other than General Touch have significant difficulty competing due to distribution and brand limitations Source: Elo TouchSystems # Acoustic Pulse Recognition (APR) Piezoelectric transducer Source: Elo Touch Solutions - Plain glass sensor with4 piezos on the edges - Table look-up of bending wave samples ("acoustic touch signatures") ### Variations - ◆ "Stationary APR" from 10" to 52" with controller board - ◆ "Mobile APR" from 2.8" to 10" with controller ASIC ### Advantages - → Works with finger, stylus or any other touch object - → Very durable & transparent touch sensor - ◆ Very simple sensor (plain glass + 4 piezoelectric transducers) - → Resistant to surface contamination; works with scratches - ◆ Totally flush top surface ("Zero-Bezel") # Disadvantages - **♦ No "touch & hold"**; no multi-touch - → Requires enough touch-object velocity (a tap) to generate waves - Control of mounting method in bezel is critical ### Outlook: Not good! - ♦ It's <u>not available as a component</u> (touchscreen) because it requires unique calibration and specialized integration - ◆ Unsuitable for applications that use the Windows UI because of the lack of touch-and-hold - ◆ Unsuitable for public-access applications because of the need to tap (everyone today expects p-cap's light touch) - Unsuitable for consumer electronics applications because of the lack of multi-touch - ◆ Elo Touch Solutions (sole-source!) withdrew APR from digital signage applications because of poor performance (they're using Lumio's camera-based optical instead) - ♦ What's left? POS terminals! ### APR and Sensitive Object - ◆ Elo Touch Solutions (then part of Tyco Electronics) purchased Sensitive Object ("S.O.") in January, 2010 for \$62M - ◆ Sensitive Object's technology ("ReverSys") is so similar to APR that the two companies cross-licensed in July, 2007 In the 3.5 years since Elo purchased S.O., there have been zero new products that can be attributed to the acquisition Source: Sensitive Object Source: 3M # **Dispersive Signal Technology** (DST) # Dispersive Signal Technology...1 Source: 3M - Plain glass sensor with 4 piezos in the corners - Real-time analysis of bending waves in the glass ("time of flight" calculation) # Dispersive Signal Technology...2 ### Visualization of the effect of bending waves on a rigid substrate **Initial Touch Contact** Progressing Dispersion with the Beginning of Reflection Effects Down Waveform that would be sampled by APR Highly Complex Dispersion Pattern with Reflections Post-Algorithm Pattern Waveform resulting from processing by DST algorithms # Dispersive Signal Technology...3 ### Size range 32" to 55" (available only on displays sold by 3M-trained integrators) ### Advantages - → Works with finger, stylus or any other touch object - ◆ Very durable & transparent touch sensor - ◆ Very simple sensor (plain glass + 4 piezoelectric transducers) - ◆ Operates with static objects or scratches on the touch surface - → Fast
response; highly repeatable touch accuracy; light touch ### Disadvantages - ◆ No "touch & hold"; no multi-touch - ◆ Control of mounting method in bezel is critical ### Applications - ◆ Interactive digital signage; point-of-information (POI) - Status: 3M has discontinued all new development # **Acoustic Touch Startup: Sentons** #### Sentons - ◆ "The next generation in high-performance multi-touch interfaces" - ◆ A fabless analog semiconductor startup - Taking a new approach to real-time bending-wave analysis, applying the ever-increasing CPU horsepower provided by Moore's Law - 27" Sentons multi-touch touch-screen can be 30% of p-cap cost, even lower than camera-based optical - ◆ Started by five people from Telegent, the analog mobile-TV chip startup that flamed out in July 2011 SENTONS Source: Sentons Website # **Optical Touch Technologies** - Traditional Infrared (IR) - ❖ Waveguide Infrared (DVT by RPO) - Multi-Touch Infrared - Camera-Based Optical - Planar Scatter Detection (PSD) - Vision-Based "Cross-beam" light paths increases resolution and fault-tolerance in infrared touchscreens (Elo) Source: Elo Touch Solutions #### Variations ◆ Bare PCB vs. enclosed frame; frame width & profile height; no glass substrate; enhanced sunlight immunity; force-sensing #### Size range ♦ 8" to 150" #### Controllers Mostly proprietary, except IRTouch (China) ### Advantages - ◆ Scalable to very large sizes - Multi-touch capable (only 2 touches, and with some "ghost" points) - ◆ Can be activated with any IR-opaque object - → High durability, optical performance and sealability - → Doesn't require a substrate #### Multi-touch in traditional infrared - ◆ Limited to 2 not-so-good touches - ◆ "Ghost" points are the problem, and there's no good solution ### Disadvantages - Profile height (IR transceivers project above touch surface) - Bezel must be designed to include IR-transparent window - Sunlight immunity can be a problem in extreme environments - ◆ Surface obstruction or hover can cause a false touch - Low resolution - → High cost ### Applications - ◆ Large displays (digital signage) - ◆ POS (limited) - ◆ Kiosks ### Suppliers - → IRTouch Systems, Minato, Nexio, OneTouch, SMK, Neonode... - ◆ 10+ suppliers - Mobile Infrared: Neonode mobile phone implemented with traditional IR touch (2009) - ◆ Same battery life as iPhone - ◆ Low bezel profile height (~1.7mm) - → Finger-only - ◆ No multi-touch - Neonode couldn't complete in the cellphone market and went bankrupt in 2009 Source: Neonode & Pen Computing Sony e-book readers (2010) Source: PC World ### Neonode in 2013 has become the largest supplier of touchscreens for eReaders! - Amazon Kindle and B&N Nook both use Neonode - ◆ Neonode has strong IP on methods of minimizing border width and profile height - They're also in transition from traditional infrared architecture to multi-touch infrared architecture - ◆ Neonode has announced design wins in e-readers, smartphones, tablets, toys, printers, gaming consoles, in-flight infotainment systems, and automotive consoles - How much of it is real beyond e-readers is unclear - ◆ Neonode doesn't supply any actual hardware, just licenses and engineering implementation consulting services Source: RPO # Waveguide Infrared...1 ### Objective ◆ Reduce IR touchscreen cost by replacing multiple IR-emitters with a single LED and using optical waveguides to distribute the light and to channel it to a line-scan CMOS pixel array Source: RPO ## Waveguide Infrared...2 ## Waveguide Infrared...3 #### RPO timeline | ◆ Announced IR optical-waveguide infrared touch at SID | 2007 | |--|------| | ◆ Showed improved performance at SID | 2008 | | ◆ Showed larger sizes at SID | 2009 | | ◆ Appeared in a 13.3" LG Display notebook at SID | 2010 | | ◆ Went into "voluntary administration" (liquidation) in April | 2011 | | ◆ Sold all assets to an NPE (patent troll) in February (along with Poa Sana's assets it's a long story!) | 2012 | ### Why did it fail? - → There wasn't any particular application for which it was "best" - → Waveguide technology limited touchscreen size to under ~14" - ◆ RPO bet on one big partner in 2010 who cancelled their project abruptly, leaving the company with insufficient \$\$\$ to keep going Source: Citron ### **❖** A little bit of history on the 2nd-oldest touch technology - → IR touch first appeared in 1972 (PLATO IV instructional terminal) - → IR touch was used in HP's first microcomputer, the HP150, in 1983 - ◆ After 30+ years of stability, it's changed from single-touch to (briefly) 2-touch, and now multi-touch! Source: University of Illinois Source: VintageComputing.com #### "PQ Labs" method ### "PulselR" (Image Display Systems) method #### Another possible method... being used? #### Variations - ◆ Number of touch points: 2 to 48 (determined by the controller) - ◆ Architecture: 3 different ways of organizing the IR emitters and receivers (so far) - PQ Labs is licensing; others may be also #### Controller Proprietary; generally requires a <u>large</u> amount of processing ### Advantages - → High number of multi-touch points - ◆ Object-size recognition - Controller maintains position & size data for all touching objects - Similar advantages to those of traditional infrared - Works with a finger, stylus or any other IR-opaque touch object - Scalable to very large sizes (at some cost) - High durability and sealability ### Disadvantages - → Relatively low resolution (can get stair-stepping in lines) - ◆ Increased processing load as size and number of touches goes up - → Different minimum-object-size spec for stationary & moving objects - ◆ Large objects close to emitters can decrease performance - ◆ As with any traditional IR system, pre-touch (or "pen-up") is mostly a big problem that gets worse as the screen size increases - ◆ Most can't meet Win8 Logo due to pre-touch and accuracy ### Applications - Multi-player games on large horizontal displays - Multi-user interactive digital signage - ◆ 3D design and interaction; data visualization for business - ◆ NOT interactive "whiteboard" displays due to pre-touch/pen-up - Latest new multi-touch infrared product: "Projected Infrared Touch" (PIT) from General Touch - ◆ Proprietary design using traditional opto layout (like PQ Labs) - ◆ Meets Win8 Logo - ◆ Bezel is a light-guide/prism (2.5 mm high, 4 mm wide) that allows IR emitters & receivers to be located <u>under</u> the cover-glass, <u>outside</u> the LCD frame (reduced parallax due to no PCB on top) Source: General Touch #### Additional PIT features - ◆ 15" to 42" size range standard; over 42" is custom - First sizes to launch in 2Q-2013 are 21.5" & 23" (for AiO) - → 2-touch for lowest cost; 5-touch for Win8; 10-touch for high-end - Only the controller changes - ◆ Entire surface is touch-active, including the 20 mm (MS) border - Active icons can be silk-screened in the border's black matrix - ◆ Pre-touch meets the Win8 spec of 0.5 mm - Exceptionally low for any infrared touchscreen - → Touch surface can be any material that meets surface flatness spec - Can be sealed to IP65 This picture was drawn on a 46" LCD equipped with a NextWindow optical touch-screen by a visitor to the AETI Exhibition in London on January 24, 2006. - Win7 = 2 touches; 2 cameras did it (inadequately) - Win8 = 5 touches; 6 cameras are required Source: NextWindow Two touches with two cameras (Win7 market focus) had two main limitations The quality of the touch experience depended on the sophistication of the algorithms that handled ghost touches and occlusions #### Another alternative: A mirror creates "virtual cameras" #### Results - ◆ SMART invented it in 2003 but shelved it - ◆ Lumio tried it in 2010 but found that <u>four real</u> <u>cameras</u> were better - Lower cost - No mirror alignment issues - Less sensitivity to environment - Fewer pixels required for same resolution - Less CPU processing #### ❖ Another alternative: Baanto ShadowSense™ ### Baanto's competitive comparison ◆ 4 sources of sensor-data work much better than two! Source: Baanto ### Suppliers - ◆ NextWindow (SMART) - **♦** Lumio - ◆ IRTouch - ◆ Xiroku/eIT - ◆ Baanto - ◆ LG Displays - ◆ Qisda - ◆ Several more in China ### Advantages - Stylus independence - ◆ Scalability to large sizes (15" to 120") - → Multi-touch (2-5 touches) - → Object-size recognition - **♦** Low cost ### Disadvantages - ◆ Profile height (~3 mm on a 19" screen) - ◆ The "unintended touch" problem - Screen rigidity requirement ### Applications - ◆ Consumer touch monitors & AiOs - ◆ Interactive digital signage, point-of-information, & education ### Optical is able to meet the Win8 touch specifications ◆ NextWindow's newest desktop-component product (15" to 30") uses six CMOS cameras (4 in the corners + 2 on the top edge) Source: Jennifer Colegrove (DisplaySearch) at FineTech 2012 The range of form-factors and configurations in which optical touch is used is expanding Cameras & lasers at top of video wall Source: Photos by Author #### Outlook - ◆ Touch on the consumer desktop (in Win7 AiOs) failed to take off due to lack of any applications - Touch penetration hit 30% in 2010 but dropped to ~10% in 2012 - ♦ Win8 may drive more penetration, but there is still the "gorilla arm" usage-model question - "Adaptive" AiOs will help address that issue - ◆ Camera-based optical touch is ideal for large-format, but... - The interactive digital-signage market hasn't emerged yet - Interactive information on large screens is still a niche market - The education market (whiteboards) has been slow to adopt optical because of entrenched resistive and electromagnetic technologies Dell ST2220T (Win7) Touch Monitor # Planar Scatter Detection (PSD) Source: FlatFrog ## Planar Scatter Detection...1 Source: FlatFrog ## Planar Scatter Detection...2 ### Characteristics it shares with p-cap - → Flush surface ("zero bezel") - ◆ Very light touch - → Multi-touch
(40 touches) - → Windows 8 Logo ## Characteristics that are better than p-cap - → Plain glass or plastic substrate (0.3 mm) no ITO - → Works with glove, stylus or other objects (400 dpi) - → Pressure-sensitive (10 bits) - ◆ Insensitive to EMI/RFI - → High scan-rate for larger screens (up to 1 KHz) - ◆ Lower cost Source: FlatFrog ## Planar Scatter Detection...3 ### Size range - → 32" (with display) at launch in May, 2012 - → Practical size range 15" to 84" ### Disadvantages - ◆ Initial product is a 32" display for \$5,500 MSRP (+\$190 housing) - → Designed for indoor use (no sunlight) without dust or smoke - Limited to 30°C ambient due to display - Sensitive to contamination on surface - Scaling to larger sizes is similar to traditional infrared - ~200 IR emitter-receiver pairs required for 32" display; 96 pairs for 22" - → FlatFrog is a small company with limited resources ## Planar Scatter Detection...4 ## Applications - ◆ Realistic today: Gaming, digital signage, POI, medical, hospitality, command & control - → Future: consumer electronics, education Source: FlatFrog #### Full disclosure: - ◆ Intel has invested in and is doing a joint development project with FlatFrog to extend and improve the technology beyond what they have already done - Current focus is on all-in-one PCs (20" to 30") - ◆ Supply-chain (availability) will also be improved ## **Optical-Touch Startup: RAPT** #### RAPT - ◆ "Opto-electro-mechanical" (rumored to be similar to FlatFrog) - ◆ "The most robust multi-touch system on the planet and quite different from current solutions in the market" | | Capacitive | <u>Optical</u> | <u>RAPT</u> | |---------------------------|-------------------|----------------|-------------| | Multi-touch Robustness | ✓ | | ✓ | | Small Screen | ✓ | | ✓ | | Ambient Light Performance | ✓ | | ✓ | | Flush Display | ✓ | | ✓ | | Cost Effectiveness | | / | ✓ | | Large Screen | | / | ✓ | | Glove and Stylus | | / | ✓ | | Curved Surfaces | | | ✓ | Source: RAPT Website ## Vision-Based Source: Perceptive Pixel ## Principle (simplest version) Multiple touch points; Image taken without a diffuser (Source: Perceptive Pixel) Source: Perceptive Pixel Microsoft Surface (v1, 2007) "Surface computing is about integrating the physical and virtual worlds through the use of vision-based touch" Source: Information Display Projector resolution 1024x768 Touch resolution 1280x960 1 – Screen with diffuser 2 - IR LED light source 3 - Four IR cameras 4 – DLP projector 5 – <u>Vista</u> desktop Source: Popular Mechanics ## Samsung SUR40 with Microsoft Surface (v2.0, 2012) Document on surface Source: Microsoft Source: TechCrunch.com ## Samsung SUR40 - ◆ 40" full-HD (1920x1080) Samsung LCD (55 ppi) - 4" thickness includes 2.9 GHz PC with embedded 64-bit Win-7 - Corning Gorilla Glass bonded to LCD - Display still has some bezel height (not a flush surface) - ◆ In-cell touch: 8 display pixels per aSiGe IR light sensor (8 ppi) - By far the most sophisticated in-cell light-sensing so far - IR light source is added to the backlight - aSiGe sensor is 15X more sensitive than aSi, but that means the touch-screen is 15X more sensitive to ambient IR - → 50+ simultaneous touch points - Surface image-processing software is Microsoft's primary value-add - ♦ \$8,400 targeted at enterprise - → Microsoft has a 3-4 year exclusive on the SUR40, which means that Samsung doesn't see much value for themselves #### MultiTaction embedded-camera display - CVTS = Computer Vision Through Screen - IBEC = Integrated Backlight Emitter Camera - MTS = Matrix Tracking System - EHTE = Extensible Hybrid Tracking Engine - MFTO = Multi-Format Tracking Output ### MultiTaction advantages - → Immune to external lighting conditions - Reads both ambient light and reflected light from IR backlight emitters - Unlimited number of touch points and users - Identifies hands, not just touch points - Object recognition using 2D markers and generic shape-recognition - Works with IR-emitting stylus - Clear differentiation between finger and stylus - ◆ Supports Windows, Mac OS X, and Linux - Outputs touch data in TUIO, XML or Windows-Touch format - Works with all third-party software development platforms and most commercial multi-touch software suites - Modular displays can be formed into multi-user interactive walls #### Advantages - ◆ Ideal data source for analysis by image-processing software - → Object recognition by "reading" tokens on objects - Potentially unlimited number of touch points ### Disadvantages - ◆ Projection - All the usual disadvantages of projection - ◆ LCD in-cell light-sensing (SUR40) - High sensitivity to ambient IR - Embedded cameras (MultiTaction) - Display thickness and cost ## Applications - ◆ Interactive "video walls"; digital signage; high-end retail - University research (low-cost, easy to build) Source: NORTD http://www.maximumpc.com/article/features/build_your_own_multitouch_surface_computer?page=0,0 ## **Other Touch Technologies** Force-Sensing # Force Sensing Source: Vissumo #### Original Principle ◆ Suspend the touch-screen from force-sensors (strain gauges or piezos) such that movement is constrained to only the z-axis #### Variations - ◆ IBM "TouchSelect": Strain gauges (early 1990s, unsuccessful) - ◆ Vissumo: "Beam-mounted" sensors (ran out of money in 2009) - ◆ F-Origin: "Spring-arm mounted" sensors (recovered well after shrinking to just one person) - → FloatingTouch: "Flexible adhesive pad" sensors (start-up) - ◆ NextInput: "Array of pressure-sensitive organic transistors under display" (start-up) (Vissumo's design) 4 strain gauges supporting one touch panel #### **Vissumo's Amazing Demo Box** Glass-covered LCD integrated into touch panel with "soft keys" printed on back of glass Irregularly shaped, raised, textured, wooden touch surface Motor attached to and penetrating touch panel with printed speed control keys and push-pull control lever Raised, marble touch surface with toggle switches penetrating touch panel Multi-page "book" with touchable & movable metal pages "Snap-dome" keys attached to touch panel; removable padded and textured keys; speaker attached with holes through the touch panel. Source: Photo by author ## F-Origin's spring-arm suspension ## F-Origin's system block diagram **Data Processing** Motion Anti-Vibration, **FFS** USB **Filtering** Adjustments A/D conversion Data Filtering sensor SPI input Analog **Output Data** I²C Coordinate Touch / Click (x,y,z) HID or Input LIN bus Calculation Determination (S₁ to Data proprietary CAN bus S_{1+n} Zero TTL Auto n=0-7Data Export Moment Calibration Calc. Source: F-Origin #### Advantages - → Touch-object independence (touch with anything) - ◆ Touch-surface independence (any rigid material) - Can use bezel or zero-bezel - No other touch technology can handle 3D substrates with embedded moving objects - → Adjustable sensitivity (press lightly to highlight, harder to select) - Minimizes false touches - Continuous calibration filters out environmental conditions ## Disadvantages - → Limited multi-touch (2-touch = 8 sensors) - Mechanical nature reduces reliability - Most sensors add volume Source: Vissumo #### Applications Mostly commercial, although NextInput is aiming at consumer ## **Conclusions** - Touch Technology versus Application - Usability, Performance, & Integration Characteristics - Touch Technology Primary Advantages and Flaws - Prediction of the Future ## Touch Technology vs. Application | | | | | | | To | ouc | h To | ech | nol | ogi | es | | | | | |---------------------------|------------------------|------------------|-----------------------|--------------------|----------------------|-----|----------------|--------------|---------|-----|-----|---------------|---------------------|-----------------------|----------------------|----------------------| | Application | Example | Analog Resistive | Multi-Touch Resistive | Surface Capacitive | Projected Capacitive | SAW | Traditional IR | Waveguide IR | Optical | APR | DST | Force Sensing | LCD In-Cell (Light) | LCD In-Cell (Voltage) | LCD In-Cell (Charge) | LCD On-Cell (Charge) | | Kiosk Point of Info (POI) | Museum information | 0 | Χ | 0 | Х | 0 | 0 | Χ | 0 | 0 | 0 | Χ | Χ | Χ | Х | Χ | | Kiosk Commerce | Digital photo printing | 0 | Χ | 0 | 0 | 0 | Х | Х | Χ | 0 | 0 | Χ | Х | Х | Χ | Χ | | Kiosk Ruggedized | Gas pump | Χ | Х | 0 | 0 | 0 | 0 | Х | Х | Χ | Χ | 0 | Χ | Χ | Χ | Χ | | Point of Sale (POS) | Restaurant; lottery | 0 | Χ | 0 | 0 | 0 | 0 | Х | Χ | 0 | Χ | 0 | Χ | Χ | Х | Χ | | Office Automation | Office monitor | 0 | Χ | 0 | Х | 0 | Х | Х | Χ | Χ | Х | Χ | Χ | Х | Х | Х | | Industrial Control | Machine control | 0 | 0 | 0 | Χ | 0 | 0 | X | Χ | Χ | Χ | 0 | Χ | Χ | Х | Χ | | Medical Equipment | Medical devices | 0 | Χ | Χ | 0 | 0 | Х | Χ | Χ | 0 | Х | Χ | Χ | Χ | Х | Χ | | Healthcare | Patient info monitor | 0 | Χ | Χ | Х | 0 | Χ | X | Χ | 0 | Χ | Χ | Χ | Χ | Х | Х | | Military Fixed & Mobile | Submarine console | 0 | Χ | 0 | Х | Χ | 0 | X | Χ | Χ | Χ | Х | Χ | Χ | Х | Χ | | Training & Conference | Boardroom display | 0 | Χ | Χ | Х | 0 | 0 | Х | 0 | Х | 0 | Х | Χ | Χ | Х | Х | | Legal Gaming | Casino machine | Χ | Х | 0 | Χ | Χ | Χ | Х | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | Amusement Gaming | Bar-top game | Χ | Х | 0 | Χ | 0 | Χ | Χ | Χ | 0 | Χ | Χ | Χ | Χ | Χ | Χ | | In-Vehicle | GPS navigation | 0 | Χ | Χ | 0 | Χ | Χ | 0 | Χ | Χ | Χ | Χ | Χ | Χ | Х | Χ | | ATM Machine | ATM machine | Χ | Χ | 0 | 0 | O | 0 | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | Mobile Device | Smartphone | 0 | 0 | Χ | 0 | Χ | Χ | 0 | Χ | 0 | Χ | 0 | 0 | 0 | 0 | 0 | | Appliance | Refrigerator door | 0 | Χ | Χ | 0 | Χ | Χ | Х | Χ | 0 | Χ | Χ | Χ | Χ | Χ | Χ | | Architectural | Elevator control | Χ | 0 | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | 0 | Χ | Χ | Χ | Χ | | Consumer AiO & Monitor | HP TouchSmart | 0 | Χ | Χ | Χ | 0 | Χ | Χ | 0 | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | Music Controller | Jazz Mutant | 0 | 0 | Χ | 0 | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |
Digital Signage | Thru-window store | Χ | Χ | Χ | 0 | 0 | 0 | Х | 0 | 0 | 0 | Χ | Χ | Χ | Χ | Χ | ## 13 Usability Characteristics | | | Touch Technologies | | | | | | | | | | | | | | |--------------------------------|------------------|-----------------------|--------------------|----------------------|-----|----------------|--------------|---------|-----|-----|---------------|---------------------|-----------------------|----------------------|----------------------| | Desirable Characteristic | Analog Resistive | Multi-Touch Resistive | Surface Capacitive | Projected Capacitive | SAW | Traditional IR | Waveguide IR | Optical | APR | DST | Force Sensing | LCD In-Cell (Light) | LCD In-Cell (Voltage) | LCD In-Cell (Charge) | LCD On-Cell (Charge) | | Usability | | | | | | | | | | | | | | | | | Touch with any object | Н | Н | L | L | M | Н | Н | Н | Н | Н | Н | M | M | M | L | | No unintended touch | Η | Η | Н | Η | Η | L | L | L | Η | Н | Н | Ι | Ι | Н | Н | | Multi-touch | L | Н | L | Ι | M | M | M | M | L | L | L | Ι | Ι | Н | Н | | Touch & hold | Н | Н | Н | Н | Н | Н | Н | Н | L | L | Н | Н | Н | Н | Н | | High durability | L | L | М | Н | Н | Н | Н | Н | Н | Н | Н | M | L | L | Н | | High sensitivity (light touch) | M | M | Н | Н | M | Н | Н | Н | M | Н | L | Н | Н | Н | Н | | Fast response & drag | M | M | Н | Н | M | M | Н | Н | M | Н | L | L | Н | M | M | | Stable calibration | M | Н | L | Н | Η | Η | Η | Η | Η | Н | Н | Ι | Η | Н | Н | | Very smooth surface | L | L | Н | M | M | M | M | M | M | M | M | M | L | L | M | | No liquid crystal pooling | Н | Н | Н | Н | Н | Н | Η | Η | Н | Н | Η | Η | L | L | Н | | Resistant to contaminants | Н | Н | M | Н | L | M | L | M | Н | Н | Н | L | L | L | Н | | Works in rain, snow & ice | Η | Н | L | Н | L | L | L | L | L | L | Η | L | L | L | Н | | Works with scratches | L | L | M | Н | Н | Н | Н | Н | M | Н | Н | L | L | L | Н | ## 13 Performance Characteristics | | | Touch Technologies | | | | | | | | | | | | | | |---------------------------------|------------------|-----------------------|--------------------|----------------------|-----|----------------|--------------|---------|-----|-----|---------------|---------------------|-----------------------|----------------------|----------------------| | Desirable Characteristic | Analog Resistive | Multi-Touch Resistive | Surface Capacitive | Projected Capacitive | SAW | Traditional IR | Waveguide IR | Optical | APR | DST | Force Sensing | LCD In-Cell (Light) | LCD In-Cell (Voltage) | LCD In-Cell (Charge) | LCD On-Cell (Charge) | | Performance | | | | | | | | | | | | | | | | | High optical performance | L | L | М | M | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | M | | High resolution | Н | M | Н | Н | M | L | Н | Н | M | M | L | M | Η | L | Н | | High linearity | Τ | Η | M | M | M | M | Τ | M | M | M | Η | Η | Τ | Τ | M | | High accuracy & repeatability | Η | M | M | Н | Τ | M | Ι | M | M | M | Η | Н | Ι | Ι | Н | | Low power consumption | Н | Ι | L | M | L | L | M | M | Ι | L | Н | Ι | لــ | M | M | | Insensitive to vibration | Н | Ι | Н | Ι | Ι | Н | Ι | Η | Ι | M | L | Ι | Ι | Ι | Н | | Insensitive to EMI & RFI | Τ | Η | L | L | Τ | Η | Τ | Η | Τ | Τ | Η | L | L | | M | | Insensitive to ambient light | Н | Н | Н | Н | Η | M | Н | M | Н | Η | Н | L | Η | Η | Н | | Insensitive to UV light | П | | Η | Ι | Τ | Н | Τ | Н | Τ | Τ | Η | Ι | M | M | Η | | Touch-object size recognition | L | M | L | Н | L | L | Ι | Η | L | L | L | M | Ι | M | Н | | Measures Z-axis | L | L | L | M | M | L | L | L | L | L | Н | L | L | L | M | | Handwriting recognition | Н | M | L | M | L | L | M | Н | L | L | L | M | Η | L | M | | Works with bi-stable reflective | Н | Н | L | Н | L | L | M | L | Н | L | L | M | L | L | Н | ## 13 Integration Characteristics | | | Touch Technologies | | | | | | | | | | | | | | |-----------------------------|------------------|-----------------------|--------------------|----------------------|-----|----------------|--------------|---------|-----|-----|---------------|---------------------|-----------------------|----------------------|----------------------| | Desirable Characteristic | Analog Resistive | Multi-Touch Resistive | Surface Capacitive | Projected Capacitive | SAW | Traditional IR | Waveguide IR | Optical | APR | DST | Force Sensing | LCD In-Cell (Light) | LCD In-Cell (Voltage) | LCD In-Cell (Charge) | LCD On-Cell (Charge) | | Integration | | | | | | | | | | | | | | | | | Substrate independence | M | M | L | Н | L | Н | Н | Н | L | L | Н | L | L | L | L | | Scalable | M | L | M | Η | M | M | L | Η | Η | Ι | Η | L | L | L | L | | Easy integration | Η | M | L | L | M | M | М | Ι | L | L | M | Ι | Ι | Ι | Н | | Flush surface (low profile) | M | M | M | Н | M | L | M | L | Н | Н | M | Н | M | M | Н | | Narrow border width | Н | M | M | Н | L | L | M | L | Н | Н | M | Н | Н | Н | Н | | Thin and light | Н | Н | L | Н | L | L | M | L | L | L | L | Η | Η | Η | Н | | Easy to seal | Н | Η | Н | Н | L | M | M | L | Н | Н | M | M | L | L | M | | Can be vandal-proofed | L | L | M | Н | Н | M | M | L | Н | Н | Н | L | L | L | L | | Works on curved surface | М | М | L | Н | L | L | L | L | L | L | Н | Н | L | L | Н | | Can be laminated to LCD | Н | Η | Н | Η | M | M | Н | Н | L | L | L | Η | Н | Η | Η | | HID (Plug & Play) interface | L | L | L | L | L | L | L | Н | L | Н | L | L | L | L | L | | Simple controller | Н | M | L | L | L | L | M | M | M | L | Н | L | Н | M | M | | Controller chip available | Н | Н | L | Н | Н | L | Н | L | Н | L | Н | L | L | L | L | ## There Is No Perfect Touch Technology! | | Major | | | |-------------------------------|-------------------|-------------------|--| | Touch Technology | Advantage | Major Flaw | | | Projected Capacitive | Multi-touch | High cost | | | Surface Capacitive | Touch sensitivity | High drift | | | Analog Resistive | Low cost | Low durability | | | Analog Multi-Touch Resistive | Multi-touch | Resolution | | | Digital Multi-Touch Resistive | High resolution | Low durability | | | Surface Acoustic Wave | Durability | Soft touch object | | | Acoustic Pulse Recognition | Any touch-object | No touch & hold | | | Dispersive Signal Technology | Any touch-object | No touch & hold | | | Traditional Infrared | Reliability | High cost | | | Waveguide Infrared | Low cost | Contamination | | | Multi-Touch Infrared | Multi-touch | Performance | | | Camera-Based Optical | Scalability | Profile height | | | Planar Scatter Detection | Flush surface | High cost | | | Vision-Based | Multi-touch | Rear projection | | | Embedded (Hybrid & On-Cell) | Integration | Volume required | | | Embedded (Light-Sensing) | Integration | Ambient IR | | | Force-Sensing | 3D substrate | Multi-touch | | ## A Prediction of Which Technologies Will Win in the Next Five Years...1 | | Winning | Runner-Up | |----------------------|-----------------------|----------------------| | Application | Technology | Technology | | Automotive | Projected Capacitive | Analog Resistive | | Casino Gaming | Projected Capacitive | Surface Capacitive | | Consumer AiOs | Projected Capacitive | Camera-Based | | and Monitors | | Optical | | Consumer Games | Analog Resistive | Projected Capacitive | | Consumer Tablets | Projected Capacitive | Embedded | | & Notebooks | | | | Interactive Digital | Camera-Based Optical | Traditional & Multi- | | Signage | | Touch Infrared | | e-Readers | Traditional Infrared | EMR Stylus | | Industrial Terminals | Analog Resistive | Projected Capacitive | | Kiosks | Surface Acoustic Wave | Projected Capacitive | | Mobile Phones | Projected Capacitive | Embedded | | POS Terminals | Analog Resistive | Projected Capacitive | Source: Author (3/13) ## A Prediction of Which Technologies Will Win in the Next Five Years...2 | # | Touch Technology | 5-Year Prediction | |----|-------------------------------------|-------------------------| | 1A | Projected Capacitive | Dominant | | 1B | Surface Capacitive | Significant Reduction | | 2A | Analog Resistive | Major Reduction | | 2B | Analog Multi-Touch Resistive (AMR) | Disappear | | 2C | Digital Multi-Touch Resistive (DMR) | Small Niche | | 3A | Surface Acoustic Wave (SAW) | Moderate Growth | | 3B | Acoustic Pulse Recognition (APR) | Small Niche | | 3C | Dispersive Signal Technology (DST) | Disappear | | 4A | Traditional Infrared | Reduced Large-Format; | | | | Increased Small-Medium | | 4B | Multi-Touch Infrared | Moderate Growth | | 4C | Camera-Based Optical | Increased Large-Format; | | | | Decreased Desktop | | 4D | Planar Scatter Detection (PSD) | Viable Niche | | 4E | Vision-Based | Viable Niche | | 5 | Embedded | Significant Growth | | 6 | Force-Sensing | Disappear | Source: Author (3/13) ## Thank You! Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 408-506-7556 mobile 408-765-0056 office 408-765-5101 fax geoff.walker@intel.com www.intel.com