UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

BUTAMAX[™] ADVANCED BIOFUELS LLC Petitioner

v.

GEVO, INC. Patent Owner

CASE IPR: IPR2013-00539 Patent 8,273,565

BUTAMAX[™] ADVANCED BIOFUELS LLC'S DEMONSTRATIVES FOR ORAL ARGUMENT (INTER PARTES REVIEW OF U.S. PATENT NO. 8,273,565)

Mail Stop "PATENT BOARD" Patent Trial and Appeal Board U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

DOCKET

Δ

Find authenticated court documents without watermarks at docketalarm.com.

BUTAMAX ADVANCED BIOFUELS, LLC, Petitioner, V. GEVO, INC., Patent Owner.

IPR2013-00539 (Patent No. 8,273,565)

October 28, 2014

Gevo does not contest ...

- Jurisdiction
- Claim construction
- Dr. Thiele's testimony is not rebutted by an expert

Ground 1: Gevo does not contest ...

Ground	35 U.S.C.	Claims	Index of References
1	§ 102(e)	1-4, 6-8 and 11-19	Flint (BMX1003)

• Flint (and its '333 provisional application) discloses every element of claims 1-4, 6-8, and 11-19

aper 4, pg. 26; BMX1002, pgs. 26-27; Paper 9, pgs. 16-18; Paper 19, pg. 15.

at docketalarm.com

J.S. Patent 8,273,565 B2, Claim 1

What is claimed is:

US 8,273,565 B2

SEQUENCE LISTING

lengthy "Sequence Listing" section. A copy of the ic form from the USPTO web site (http:// ronic copy of the "Sequence Listing" will also be available from the U orth in 37 CFR 1.19(b)(3).

91

What is claimed is:		11. The recombina
1. A recombinant yeast microorganism comprising a	15	wherein said DHAD is
recombinantly overexpressed polynucleotide encoding a		12. The recombina
dihydroxy acid dehydratase (DHAD), wherein said recombi-		wherein said DHAD is
nant yeast microorganism is engineered to comprise at least		13. The recombina
one inactivated monothiol glutaredoxin selected from the		wherein said DHAD is
group consisting of monothiol glutaredoxin-3 (GRX3) and	20	14. The recombina
monothiol glutaredoxin-4 (GRX4), and wherein said inacti-		wherein said DHAD is
vated monothiol glutaredoxin results from the deletion of one		15. The recombina
or more nucleotides of an endogenous gene encoding said		wherein said recombi
monothiol glutaredoxin, the insertion of one or more nucle-		engineered to compris
otides into an endogenous gene encoding said monothiol	25	polynucleotides encod
glutaredoxin, or combinations thereof.		transport (Aft) protein
2. The recombinant yeast microorganism of claim 1.		yeast microorganism
wherein said recombinant microorganism further comprises		prise increased expres
an isobutanol producing metabolic pathway, said isobutanol		encoding one or more
producing metabolic pathway comprising the following sub-	30	proteins.
strate to product conversions:		16. The recombina
(a) pyruvate to acetolactate;		wherein said recombi
(b) acetolactate to 2,3-dihydroxyisovalerate;		engineered to express
(c) 2.3-dihydroxyisovalerate to α-ketoisovalerate;		one or more constitutiv
(d) α-ketoisovalerate to isobutyraldehyde; and	35	(Aft) proteins.
(e) isobutyraldehyde to isobutanol;		17. The recombina
and wherein said DHAD catalyzes the conversion of 2.3-		wherein the recombin
dihydroxyisovalerate to α-ketoisovalerate.		microorganism selecte
3. The recombinant yeast microorganism of claim 2,		Saccharomyces, Kluyw
wherein the enzyme that catalyzes the conversion of pyruvate	40	myces, Debaryomyces
to acetolactate is an acetolactate synthase.		dida, Issatchenkia,
4. The recombinant yeast microorganism of claim 2,		Rhodotorula, and Myx
wherein the enzyme that catalyzes the conversion of aceto-		18. The recombina
lactate to 2,3-dihydroxyisovalerate is a ketol-acid reductoi-		wherein the recombin
somerase.	45	microorganism selecte
5. The recombinant yeast microorganism of claim 4,		Saccharomyces cerevi:
wherein said ketol-acid reductoisomerase is an NADH-de-		romyces bayanus, Sac
pendent ketol-acid reductoisomerase.		ces castelli, Saccharo
6. The recombinant yeast microorganism of claim 2,		motolerans, Kluyve
wherein the enzyme that catalyzes the conversion of a-ketois-	50	marxianus, Kluyveron
ovalerate to isobutyraldehyde is a 2-keto acid decarboxylase.		Zygosaccharomyces
7. The recombinant yeast microorganism of claim 2,		Debaryomyces hansen
wherein the enzyme that catalyzes the conversion of isobu-		torius, Pichia anoma
tyraldehyde to isobutanol is an alcohol dehydrogenase.		Schizosaccharomyces
8. The recombinant yeast microorganism of claim 7,	55	brata, Candida tropic
wherein said alcohol dehydrogenase is an NADH-dependent		orientalis, Issatchenkia
alcohol dehydrogenase.		Hansenula anomala, a
9. The recombinant yeast microorganism of claim 2,		19. A method of pro
wherein said recombinant yeast microorganism is further		viding the recombinant

recombinant yeast microorganism is further red to inactivate one or more endogenous pyruvate ⁶⁰ (b) cultivating the recon xylase (PDC). 2 in a culture medium containing a feedstock providing

recombinant yeast microorganism of claim 2, rein said recombinant yeast microorganism is further neered to inactivate one or more endogenous glycerol-3-phate dehydrogenase (GPD). 1. A recombinant yeast microorganism comprising a recombinantly overexpressed polynucleotide encoding a dihydroxy acid dehydratase (DHAD),

wherein said recombinant yeast microorganism is engineered to comprise at least one inactivated monothiol glutaredoxin selected from the group consisting of monothiol glutaredoxin-3 (GRX3) and monothiol glutaredoxin-4 (GRX4),

and wherein said inactivated monothiol glutaredoxin results from the deletion of one or more nucleotides of an endogenous gene encoding said monothiol glutaredoxin, the insertion of one or more nucleotides into an endogenous gene encoding said monothiol glutaredoxin, or combinations thereof.

carbon source, until a recoverable quantity of the isobutanol

produced

MX1001, col. 91, ll. 15-26.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.