IMPROVED ACTIVITY OF FE-S CLUSTER REQUIRING PROTEINS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This invention relates generally to the fields of microbiology and biochemistry. Specifically, the present invention is related to a recombinant host cell, in particular a yeast cell, comprising a dihydroxy-acid dehydratase polypeptide. The invention is also related to a recombinant host cell having increased specific activity of the dihydroxy-acid dehydratase polypeptide as a result of increased expression of the polypeptide, modulation of the Fe-S cluster biosynthesis activity of the cell, or a combination thereof. The present invention also includes methods of using the host cells, as well as methods for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell.

Background of the Invention

- [0002] Iron-sulfur (Fe-S) clusters serve as cofactors or prosthetic groups essential for the normal function of the class of proteins that contain them. In the class of Fe-S cluster containing proteins, the Fe-S clusters have been found to play several roles. When proteins of this class are first synthesized by the cell, they lack the Fe-S clusters required for their proper function and are referred to as apoproteins. Fe-S clusters are made in a series of reactions by proteins involved in Fe-S cluster biosynthesis and are transferred to the apo-proteins to form the functional Fe-S cluster containing holoproteins.
- [0003] One such protein that requires Fe-S clusters for proper function is dihydroxy-acid dehydratase (DHAD) (E.C. 4.2.1.9). DHAD catalyzes the conversion of 2,3-dihydroxyisovalerate to α -ketoisovalerate, and of 2,3-dihydroxymethylvalerate to α -ketomethylvalerate. The DHAD enzyme is part of naturally occurring biosynthetic pathways producing the branched chain amino acids, (i.e., valine, isoleucine, leucine), and pantothenic acid (vitamin B5). DHAD catalyzed conversion of 2,3-dihydroxyisovalerate to α -ketoisovalerate is also a common step in the multiple isobutanol biosynthetic pathways that are disclosed in U.S. Patent Appl. Pub. No. US 20070092957 A1, incorporated by reference herein. Disclosed therein is, *e.g.*, the engineering of recombinant microorganisms for the production of isobutanol.

- [0004] High levels of DHAD activity are desired for increased production of products from biosynthetic pathways that include this enzyme activity, including, *e.g.*, enhanced microbial production of branched chain amino acids, pantothenic acid, and isobutanol. Isobutanol, in particular, is useful as a fuel additive, and its ready availability may reduce the demand for petrochemical fuels. However, since all known DHAD enzymes require a Fe-S cluster for their function, they must be expressed in a host having the genetic machinery to provide the Fe-S clusters required by these proteins. In yeast, most of the steps in Fe-S cluster biosynthesis take place in mitochondria. If the DHAD is to be functionally expressed in yeast cytosol, a system to transport the requisite Fe-S precursor from mitochondria and assemble the Fe-S cluster on the cytosolic apoprotein is required. Prior to the work of the present inventors, it was previously unknown whether yeast could provide Fe-S clusters for any DHAD located in the cytoplasm (since native yeast DHAD is located in the mitochondria) and more importantly when the DHAD is expressed at high levels in the cytoplasm
- [0005] Under certain conditions the rate of synthesis of Fe-S cluster requiring apoproteins may exceed the cell's ability to synthesize and assemble Fe-S clusters for them. Cluster-less apo-proteins that accumulate under these conditions cannot carry out their normal function. Such conditions can include 1) the expression of a heterologous Fe-S cluster requiring protein especially in high amounts, 2) the expression of a native Fe-S cluster biosynthesis protein at higher levels than normal, or 3) a state where the host cell's ability to synthesize Fe-S clusters is debilitated.

[0006] BRIEF SUMMARY OF THE INVENTION

- [0007] Disclosed herein is the surprising discovery that recombinant host cells expressing a high level of a heterologous Fe-S cluster requiring protein can supply the complement of Fe-S clusters for that protein if the level(s) of at least one Fe uptake, utilization, and/or Fe-S cluster biosynthesis protein are altered.
- [0008] Provided herein are recombinant host cells comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity wherein said at least one heterologous polynucleotide comprises a high copy number plasmid or a plasmid with a copy number that can be regulated. Also provided are recombinant host cells comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity wherein said at least one heterologous polynucleotide comprises a high copy number plasmid or a plasmid with a copy number that can be regulated. Also provided are recombinant host cells comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity wherein said at least one

heterologous polynucleotide is integrated at least once in the recombinant host cell DNA. Also provided are recombinant host cells comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity, wherein said host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis. Also provided are recombinant host cells comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity and at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis.

[0009]

In embodiments, said heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of the genes in In embodiments, said heterologous polynucleotide encoding a Tables 7, 8 and 9. polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of AFT1, AFT2, PSE1, FRA2, GRX3, MSN5, and combinations thereof. In embodiments, polypeptide is encoded by a polynucleotide that is constitutive mutant. In embodiments, said constitutive mutant is selected from the group consisting of AFT1 L99A, AFT1 L102A, AFT1 C291F, AFT1 C293F, and combinations thereof. In embodiments said polypeptide affecting Fe-S cluster biosynthesis is encoded by a polynucleotide comprising a high copy number plasmid or a plasmid with a copy number that can be regulated. In embodiments, said polypeptide affecting Fe-S cluster biosynthesis is encoded by a polynucleotide integrated at least once in the recombinant host cell DNA. In embodiments, the at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of FRA2, GRX3, MSN5, and combinations thereof. In embodiments, the at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of AFT1, AFT2, PSE1, and combinations thereof.

[0010] In embodiments, said at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity is expressed in multiple copies. In embodiments, said at least one heterologous polynucleotide comprises a high copy number plasmid or a plasmid with a copy number that can be regulated. In embodiments, said at least one heterologous polynucleotide is integrated at least once in the recombinant

host cell DNA. In embodiments, said Fe-S cluster biosynthesis is increased compared to a recombinant host cell having endogenous Fe-S cluster biosynthesis.

- [0011] In embodiments, said host cell is a yeast host cell. In embodiments, said yeast host cell is selected from the group consisting of *Saccharomyces*, *Schizosaccharomyces*, *Hansenula*, *Candida*, *Kluyveromyces*, *Yarrowia*, *Issatchenkia* and *Pichia*.
- [0012] In embodiments, said heterologous polypeptide having dihydroxy-acid dehydratase activity is expressed in the cytosol of the host cell. In embodiments, said heterologous polypeptide having dihydroxy-acid dehydratase activity has an amino acid sequence that matches the Profile HMM of Table 12 with an E value of $< 10^{-5}$ wherein the polypeptide further comprises all three conserved cysteines, corresponding to positions 56, 129, and 201 in the amino acids sequences of the Streptococcus mutans DHAD enzyme corresponding to SEQ ID NO:168. In embodiments, said heterologous polypeptide having dihydroxy-acid dehydratase activity has an amino acid sequence with at least about 90% identity to SEQ ID NO: 168 or SEQ ID NO: 232. In embodiments said polypeptide having dihydroxy-acid dehydratase activity has a specific activity selected from the group consisting of: greater than about 5-fold with respect to the control host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity, greater than about 8-fold with respect to the control host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity, or greater than about 10-fold with respect to the control host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity. In embodiments, said polypeptide having dihydroxy-acid dehydratase activity has a specific activity selected from the group consisting of: greater than about 0.25 U/mg; greater than about 0.3 U/mg; greater than about 0.5 U/mg; greater than about 1.0 U/mg; greater than about 1.5 U/mg; greater than about 2.0 U/mg; greater than about 3.0 U/mg; greater than about 4.0 U/mg; greater than about 5.0 U/mg; greater than about 6.0 U/mg; greater than about 7.0 U/mg; greater than about 8.0 U/mg; greater than about 9.0 U/mg; greater than about 10.0 U/mg; greater than about 20.0 U/mg; and greater than about 50.0 U/mg.
- [0013] In embodiments said recombinant host cell produces isobutanol, and in embodiments, said recombinant host cell comprises an isobutanol biosynthetic pathway.

- [0014] Also provided herein are methods of making a product comprising: providing a recombinant host cell; and contacting the recombinant host cell of with a fermentable carbon substrate in a fermentation medium under conditions wherein said product is produced; and recovering said product, wherein the product is selected from the group consisting of branched chain amino acids, pantothenic acid, 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol, and combinations thereof.
- [0015] Also provided are methods of making isobutanol comprising: providing a recombinant host cell; contacting the recombinant host cell with a fermentable carbon substrate in a fermentation medium under conditions wherein isobutanol is produced; and recovering said isobutanol.
- [0016] Also provided are methods for the conversion of 2,3-dihydroxyisovalerate to α -ketoisovalerate comprising: providing a recombinant host cell; growing the recombinant host cell of under conditions where the 2,3-dihydroxyisovalerate is converted to α -ketoisovalerate.
- [0017] Also provided are methods for increasing the specific activity of a heterologous polypeptide having dihydroxy-acid dehydratase activity in a recombinant host cell comprising: providing a recombinant host cell; and growing the recombinant host cell of under conditions whereby the heterologous polypeptide having dihydroxy-acid dehydratase activity is expressed in functional form having a specific activity greater than the same host cell lacking said heterologous polypeptide.
- [0018] Also provided are methods for increasing the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising: providing a recombinant host cell; and growing the recombinant host cell under conditions whereby the flux in the Fe-S cluster biosynthesis pathway in the host cell is increased.
- [0019] Also provide are methods of increasing the activity of an Fe-S cluster requiring protein in a recombinant host cell comprising: providing a recombinant host cell comprising an Fe-S cluster requiring protein; changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis in said host cell; and growing the recombinant host cell under conditions whereby the activity of the Fe-S cluster requiring protein is increased. In embodiments, said increase in activity is an amount selected from the group consisting of: greater than about 10%; greater than about 20%; greater than about 60%;

greater than about 70%; greater than about 80%; greater than about 90%; and greater than about 95%, 98%, or 99%. In embodiments, the increase in activity is in an amount selected from the group consisting of: greater than about 5 fold; greater than about 8 fold; greater than about 10 fold.

- [0020] A method for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising: changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis; measuring the activity of a heterologous Fe-S cluster requiring protein; and comparing the activity of the heterologous Fe-S cluster requiring protein measured in the presence of the change in expression or activity of a polypeptide to the activity of the heterologous Fe-S cluster requiring protein measured in the theterologous Fe-S cluster requiring protein measured in the heterologous Fe-S cluster requiring protein measured in the absence of the change in expression or activity of a polypeptide, wherein an increase in the activity of the heterologous Fe-S cluster requiring protein indicates an increase in the flux in said Fe-S cluster biosynthesis pathway.
- **[0021]** Provided herein are methods for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising: changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis; measuring the activity of a polypeptide having dihydroxy-acid dehydratase activity; and comparing the activity of the polypeptide having dihydroxy-acid dehydratase activity measured in the presence of the change to the activity of the polypeptide having dihydroxy-acid dehydratase in the activity of the polypeptide having dihydroxy-acid dehydratase activity measured in the polypeptide having dihydroxy-acid dehydratase activity indicates an increase in the flux in said Fe-S cluster biosynthesis pathway.
- [0022] In embodiments, said changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis comprises deleting, mutating, substituting, expressing, up-regulating, down-regulating, altering the cellular location, altering the state of the protein, and/or adding a cofactor. In embodiments, the Fe-S cluster requiring protein has dihydroxy-acid dehydratase activity and wherein said Fe-S cluster requiring protein having dihydroxy-acid dehydratase activity has an amino acid sequence that matches the Profile HMM of Table 12 with an E value of $< 10^{-5}$ wherein the polypeptide further comprises all three conserved cysteines, corresponding to positions 56, 129, and 201 in the amino acids sequences of the *Streptococcus mutans* DHAD enzyme corresponding to

SEQ ID NO:168. In embodiments, the polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of the genes in Tables 7, 8 and 9.

- [0023] Also provided are recombinant host cells comprising at least one polynucleotide encoding a polypeptide identified by the methods provided herein. In embodiments, said host cell further comprises at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity. In embodiments, said heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity is expressed in multiple copies. In embodiments, said heterologous polynucleotide comprises a high copy number plasmid or a plasmid with a copy number that can be regulated. In embodiments, said heterologous polynucleotide is integrated at least once in the recombinant host cell DNA.
- [0024] In embodiments, said host cell is a yeast host cell. In embodiments, said yeast host cell is selected from the group consisting of Saccharomyces, Schizosaccharomyces, Hansenula, Candida, Kluyveromyces, Yarrowia, Issatchenkia, and Pichia. In embodiments, said heterologous polypeptide having dihydroxy-acid dehydratase activity is expressed in the cytosol of the host cell. In embodiments, said heterologous polypeptide having dihydroxy-acid dehydratase activity has an amino acid sequence that matches the Profile HMM of Table 12 with an E value of $< 10^{-5}$ wherein the polypeptide further comprises all three conserved cysteines, corresponding to positions 56, 129, and 201 in the amino acids sequences of the Streptococcus mutans DHAD enzyme corresponding to SEQ ID NO:168. In embodiments, said recombinant host cell produces a product selected from the group consisting of branched chain amino acids, pantothenic acid, 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol, and combinations thereof. In embodiments, recombinant host cell produces isobutanol. In embodiments, said recombinant host cell comprises an isobutanol biosynthetic pathway. In embodiments said isobutanol biosynthetic pathway comprises at least one polypeptide encoded by a polynucleotide heterologous to the host cell. In embodiments, said isobutanol biosynthetic pathway comprises at least two polypeptides encoded by polynucleotides heterologous to the host cell.

[0025] BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0026] Figure 1A depicts a vector map of a vector for overexpression of the *IlvD* gene from *S. mutans*.

- [0027] Figure 1B depicts a vector map of an integration vector for overexpression of the *IlvD* gene from *S. mutans* in the chromosome.
- [0028] Figure 2 depicts a vector map of a centromere vector used to clone *AFT1* or *AFT1* mutants and useful for other genes of interest.
- [0029] Figure 3 depicts a UV-Vis absorbance spectrum of purified *S. mutans* DHAD.
- [0030] Figure 4 depicts an EPR spectrum of purified *S. mutans* DHAD.
- [0031] Figure 5 depicts a biosynthetic pathway for biosynthesis of isobutanol.
- [0032] Figure 6A depicts a schematic of *Azotobacter vinelandii nif* genes.
- [0033] Figure 6B depicts a schematic of additional *Azotobacter vinelandii nif* genes.
- [0034] Figure 6C depicts a schematic of the equation in which NFU acts as a persulfide reductase.
- [0035] Figure 7 depicts a schematic of *Helicobacter pylori nif* genes.
- [0036] Figure 8 depicts a schematic of *E. coli isc* genes.
- [0037] Figure 9 depicts a schematic of *E. coli suf* genes.

Table 12 is a table of the Profile HMM for dihydroxy-acid dehydratases based on enzymes with assayed function prepared as described in U.S. Patent Appl. No. 12/569,636, filed Sept. 29, 2009. Table 12 is submitted herewith electronically and is incorporated herein by reference.

DETAILED DESCRIPTION OF THE INVENTION

- [0038] Described herein is a method to increase the fraction of the Fe-S cluster requiring proteins that are loaded with Fe-S clusters. Also described are recombinant host cells that express functional Fe-S cluster requiring proteins, such as DHAD enzymes, and at least one heterologous Fe uptake, utilization, or Fe-S cluster biosynthesis protein, recombinant host cells that express functional DHAD enzymes and comprise at least one deletion, mutation, and/or substitution in a native Fe-S cluster biosynthesis protein, or recombinant host cells comprising combinations thereof. In addition, the present invention describes a method to identify polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell. Also described is a method to identify polypeptides that alter the activity of an Fe-S cluster requiring protein.
- [0039] Definitions

- [0040] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present application including the definitions will control. Also, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. All publications, patents and other references mentioned herein are incorporated by reference in their entireties for all purposes.
- [0041] In order to further define this invention, the following terms and definitions are herein provided.
- [0042] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having," "contains" or "containing," or any other variation thereof, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. For example, a composition, a mixture, a process, a method, an article, or an apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present).
- [0043] As used herein, the term "consists of," or variations such as "consist of" or "consisting of," as used throughout the specification and claims, indicate the inclusion of any recited integer or group of integers, but that no additional integer or group of integers may be added to the specified method, structure, or composition.
- [0044] As used herein, the term "consists essentially of," or variations such as "consist essentially of" or "consisting essentially of," as used throughout the specification and claims, indicate the inclusion of any recited integer or group of integers, and the optional inclusion of any recited integer or group of integers that do not materially change the basic or novel properties of the specified method, structure or composition.
- [0045] Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances, *i.e.*, occurrences of the element or component. Therefore "a" or "an" should be read to include

one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.

- [0046] The term "invention" or "present invention" as used herein is a non-limiting term and is not intended to refer to any single embodiment of the particular invention but encompasses all possible embodiments as described in the application.
- [0047] As used herein, the term "about" modifying the quantity of an ingredient or reactant of the invention employed refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or solutions in the real world; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of the ingredients employed to make the compositions or to carry out the methods; and the like. The term "about" also encompasses amounts that differ due to different equilibrium conditions for a composition resulting from a particular initial mixture. Whether or not modified by the term "about", the claims include equivalents to the quantities. In one embodiment, the term "about" means within 10% of the reported numerical value, preferably within 5% of the reported numerical value.
- [0048] The term "isobutanol biosynthetic pathway" refers to an enzyme pathway to produce isobutanol from pyruvate.
- [0049] The term "a facultative anaerobe" refers to a microorganism that can grow in both aerobic and anaerobic environments.
- [0050] The term "carbon substrate" or "fermentable carbon substrate" refers to a carbon source capable of being metabolized by host organisms of the present invention and particularly carbon sources selected from the group consisting of monosaccharides, oligosaccharides, polysaccharides, and one-carbon substrates or mixtures thereof.
- [0051] The term "Fe-S cluster biosynthesis" refers to biosynthesis of Fe-S clusters, including, *e.g.*, the assembly and loading of Fe-S clusters. The term "Fe-S cluster biosynthesis genes", "Fe-S cluster biosynthesis proteins" or "Fe-S cluster biosynthesis pathway" refers to those polynucleotides/genes and the encoded polypeptides that are involved in the biosynthesis of Fe-S clusters, including, *e.g.*, the assembly and loading of Fe-S clusters.
- [0052] The term "Fe uptake and utilization" refers to processes which can effect Fe-S cluster biosynthesis such as Fe sensing, uptake, utilization, and homeostasis. "Fe uptake

and utilization genes" refers to those polynucleotides/genes and the encoded polypeptides that are involved in Fe uptake, utilization, and homeostasis. Some of these polynucleotides/genes are contained in the "Fe Regulon" that has been described in the literature and is further described hereafter. As used herein, Fe uptake and utilization genes and Fe-S cluster biosynthesis genes can encode a polypeptide affecting Fe-S cluster biosynthesis.

- [0053] The term "specific activity" as used herein is defined as the units of activity in a given amount of protein. Thus, the specific activity is not directly measured but is calculated by dividing 1) the activity in units/ml of the enzyme sample by 2) the concentration of protein in that sample, so the specific activity is expressed as units/mg. The specific activity of a sample of pure, fully active enzyme is a characteristic of that enzyme. The specific activity of a sample of a mixture of proteins is a measure of the relative fraction of protein in that sample that is composed of the active enzyme of interest. The specific activity of a polypeptide of the invention may be selected from greater than about 0.25 U/mg; greater than about 0.3 U/mg; greater than about 0.4 U/mg; greater than about 0.5 U/mg; greater than about 0.6 U/mg; greater than about 0.7 U/mg; greater than about 0.8 U/mg; greater than about 0.9 U/mg; greater than about 1.0 U/mg; greater than about 1.5 U/mg; greater than about 2.0 U/mg; greater than about 2.5 U/mg; greater than about 3.0 U/mg; greater than about 3.5 U/mg; greater than about 4.0 U/mg; greater than about 5.5 U/mg; greater than about 5.0 U/mg; greater than about 6.0 U/mg; greater than about 6.5 U/mg; greater than about 7.0 U/mg; greater than about 7.5 U/mg; greater than about 8.0 U/mg; greater than about 8.5 U/mg; greater than about 9.0 U/mg; greater than about 9.5 U/mg; greater than about 10.0 U/mg; greater than about 20.0 U/mg; or greater than about 50.0 U/mg. In one embodiment, the specific activity of a polypeptide of the invention is greater than about 0.25 U/mg. In another embodiment, the specific activity is greater than about 1.0 U/mg. In yet another embodiment, the specific activity is greater than about 2.0 U/mg or greater than about 3.0 U/mg.
- [0054] The term "polynucleotide" is intended to encompass a singular nucleic acid as well as plural nucleic acids, and refers to a nucleic acid molecule or construct, *e.g.*, messeger RNA (mRNA) or plasmid DNA (pDNA). A polynucleotide can contain the nucleotide sequence of the full-length cDNA sequence, or a fragment thereof, including the untranslated 5' and 3' sequences and the coding sequences. The polynucleotide can be

composed of any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and "Polynucleotide" embraces chemically, enzymatically, or double-stranded regions. metabolically modified forms.

[0055]

A polynucleotide sequence may be referred to as "isolated," in which it has been removed from its native environment. For example, a heterologous polynucleotide encoding a polypeptide or polypeptide fragment having dihydroxy-acid dehydratase activity contained in a vector is considered isolated for the purposes of the present Further examples of an isolated polynucleotide include recombinant invention. polynucleotides maintained in heterologous host cells or purified (partially or substantially) polynucleotides in solution. Isolated polynucleotides or nucleic acids according to the present invention further include such molecules produced synthetically. An isolated polynucleotide fragment in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA.

- [0056] The term "gene" refers to a polynucleotide that is capable of being expressed as a specific protein, optionally including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers to any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature.
- [0057] As used herein, a "coding region" is a portion of nucleic acid which consists of codons translated into amino acids. Although a "stop codon" (TAG, TGA, or TAA) is not translated into an amino acid, it may be considered to be part of a coding region, but any flanking sequences, for example promoters, ribosome binding sites, transcriptional terminators, introns, and the like, are not part of a coding region. Two or more coding

regions of the present invention can be present in a single polynucleotide construct, *e.g.*, on a single vector, or in separate polynucleotide constructs, *e.g.*, on separate (different) vectors. Furthermore, any vector may contain a single coding region, or may comprise two or more coding regions. In addition, a vector, polynucleotide, or nucleic acid of the invention may encode heterologous coding regions.

- [0058] The term "endogenous," when used in reference to a polynucleotide, a gene, or a polypeptide refers to a native polynucleotide or gene in its natural location in the genome of an organism, or for a native polypeptide, is transcribed and translated from this location in the genome.
- **[0059]** The term "heterologous" when used in reference to a polynucleotide, a gene, or a polypeptide refers to a polynucleotide, gene, or polypeptide not normally found in the host organism. "Heterologous" also includes a native coding region, or portion thereof, that is reintroduced into the source organism in a form that is different from the corresponding native gene, *e.g.*, not in its natural location in the organism's genome. The heterologous polynucleotide or gene may be introduced into the host organism by, *e.g.*, gene transfer. A heterologous gene may include a native coding region with non-native regulatory regions that is reintroduced into the native host. A "transgene" is a gene that has been introduced into the genome by a transformation procedure.
- [0060] The term "recombinant genetic expression element" refers to a nucleic acid fragment that expresses one or more specific proteins, including regulatory sequences preceding (5' non-coding sequences) and following (3' termination sequences) coding sequences for the proteins. A chimeric gene is a recombinant genetic expression element. The coding regions of an operon may form a recombinant genetic expression element, along with an operably linked promoter and termination region.
- [0061] "Regulatory sequences" refers to nucleotide sequences located upstream (5' noncoding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, enhancers, operators, repressors, transcription termination signals, translation leader sequences, introns, polyadenylation recognition sequences, RNA processing site, effector binding site and stem-loop structure.

- [0062] The term "promoter" refers to a nucleic acid sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic nucleic acid segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". "Inducible promoters," on the other hand, cause a gene to be expressed when the promoter is induced or turned on by a promoter-specific signal or molecule. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths may have identical promoter activity.
- [0063] The term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of effecting the expression of that coding sequence (*i.e.*, that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.
- [0064] The term "expression", as used herein, refers to the transcription and accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide. The process includes any manifestation of the functional presence of the expressed polynucleotide, gene, or polypeptide within the cell including, without limitation, gene knockdown as well as both transient expression and stable expression.
- [0065] The term "over-expression", as used herein, refers to expression that is higher than endogenous expression of the same or related polynucleotide or gene. A heterologous polynucleotide or gene is also over-expressed if its expression is higher than that of a comparable endogenous gene, or if its expression is higher than that of the same polynucleotide or gene introduced by a means that does not overexpress the polynucleotide or gene. For example, a polynucleotide can be expressed in a host cell

from a low copy number plasmid, which is present in only limited or few copies, and the same polynucleotide can be over-expressed in a host cell from a high copy number plasmid or a plasmid with a copy number that can be regulated, which is present in multiple copies. Any means can be used to over-express a polynucleotide, so long as it increases the copies of the polynucleotide in the host cell. In addition to using a high copy number plasmid, or a plasmid with a copy number that can be regulated, a polynucleotide can be over-expressed by multiple chromosomal integrations.

- [0066]
 - Expression or over-expression of a polypeptide of the invention in a recombinant host cell can be quantified according to any number of methods known to the skilled artisan and can be represented, e.g., by a percent of total cell protein. The percent of total protein can be an amount selected from greater than about 0.001% of total cell protein; greater than about 0.01% of total cell protein; greater than about 0.1% of total cell protein; greater than about 0.5% of total cell protein; greater than about 1.0% of total cell protein; greater than about 2.0% of total cell protein; greater than about 3% of total cell protein; greater than about 4.0% of total cell protein; greater than about 5% of total cell protein; greater than about 6.0% of total cell protein; greater than about 7.0% of total cell protein; greater than about 8.0% of total cell protein; greater than about 9.0% of total cell protein; greater than about 10% of total cell protein; or greater than about 20% of total cell protein. In one embodiment, the amount of polypeptide expressed is greater that about 0.5% of total cell protein. In another embodiment, the amount of polypeptide expressed is greater than about 1.0% of total cell protein or greater than about 2.0% of total cell protein.
- [0067] As used herein the term "transformation" refers to the transfer of a nucleic acid fragment into a host organism, resulting in genetically stable inheritance with or without selections. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" or "recombinant" or "transformed" organisms.
- [0068] The terms "plasmid" and "vector" as used herein, refer to an extra chromosomal element often carrying genes which are not part of the central metabolism of the cell, and usually in the form of circular double-stranded DNA molecules. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear or circular, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined

into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3' untranslated sequence into a cell.

- [0069] As used herein the term "codon degeneracy" refers to the nature in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a gene for improved expression in a host cell, it is desirable to design the gene such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.
- [0070] The term "codon-optimized" as it refers to genes or coding regions of nucleic acid molecules for transformation of various hosts, refers to the alteration of codons in the gene or coding regions of the nucleic acid molecules to reflect the typical codon usage of the host organism without altering the polypeptide encoded by the DNA. Such optimization includes replacing at least one, or more than one, or a significant number, of codons with one or more codons that are more frequently used in the genes of that organism.
- [0071] Deviations in the nucleotide sequence that comprise the codons encoding the amino acids of any polypeptide chain allow for variations in the sequence coding for the gene. Since each codon consists of three nucleotides, and the nucleotides comprising DNA are restricted to four specific bases, there are 64 possible combinations of nucleotides, 61 of which encode amino acids (the remaining three codons encode signals ending translation). The "genetic code" which shows which codons encode which amino acids is reproduced herein as Table 1. As a result, many amino acids are designated by more than one codon. For example, the amino acids alanine and proline are coded for by four triplets, serine and arginine by six, whereas tryptophan and methionine are coded by just one triplet. This degeneracy allows for DNA base composition to vary over a wide range without altering the amino acid sequence of the proteins encoded by the DNA.

	Т	С	Α	G
Т	TTT Phe (F)	TCT Ser (S)	TAT Tyr (Y)	TGT Cys (C)
	TTC "	TCC "	TAC "	TGC
	TTA Leu (L)	TCA "	TAA Stop	TGA Stop
	TTG "	TCG "	TAG Stop	TGG Trp (W)
С	CTT Leu (L)	CCT Pro (P)	CAT His (H)	CGT Arg (R)
	CTC "	CCC "	CAC "	CGC "
	CTA "	CCA "	CAA Gln (Q)	CGA "
	CTG "	CCG "	CAG "	CGG "
А	ATT Ile (I) ATC " ATA " ATG Met (M)	ACT Thr (T) ACC " ACA " ACG "	AAT Asn (N) AAC " AAA Lys (K) AAG "	AGT Ser (S) AGC " AGA Arg (R) AGG "
G	GTT Val (V)	GCT Ala (A)	GAT Asp (D)	GGT Gly (G)
	GTC "	GCC "	GAC "	GGC "
	GTA "	GCA "	GAA Glu (E)	GGA "
	GTG "	GCG "	GAG "	GGG "

Table 1. The Standard Genetic Code

- [0072] Many organisms display a bias for use of particular codons to code for insertion of a particular amino acid in a growing peptide chain. Codon preference, or codon bias, differences in codon usage between organisms, is afforded by degeneracy of the genetic code, and is well documented among many organisms. Codon bias often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, *inter alia*, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization.
- [0073] Given the large number of gene sequences available for a wide variety of animal, plant and microbial species, it is possible to calculate the relative frequencies of codon usage. Codon usage tables are readily available, for example, at the "Codon Usage Database" available at http://www.kazusa.or.jp/codon/ (visited March 20, 2008), and these tables can be adapted in a number of ways. *See* Nakamura, Y., *et al. Nucl. Acids*

Res. 28:292 (2000). Codon usage tables for yeast, calculated from GenBank Release 128.0 [15 February 2002], are reproduced below as Table 2. This table uses mRNA nomenclature, and so instead of thymine (T) which is found in DNA, the tables use uracil (U) which is found in RNA. Table 2 has been adapted so that frequencies are calculated for each amino acid, rather than for all 64 codons.

Amino Acid	Codon	Number	Frequency per
			thousand
Phe	UUU	170666	26.1
Phe	UUC	120510	18.4
		·	
Leu	UUA	170884	26.2
Leu	UUG	177573	27.2
Leu	CUU	80076	12.3
Leu	CUC	35545	5.4
Leu	CUA	87619	13.4
Leu	CUG	68494	10.5
		·	
Ile	AUU	196893	30.1
Ile	AUC	112176	17.2
Ile	AUA	116254	17.8
Met	AUG	136805	20.9
	•	•	
Val	GUU	144243	22.1
Val	GUC	76947	11.8
Val	GUA	76927	11.8
Val	GUG	70337	10.8
		·	
Ser	UCU	153557	23.5
Ser	UCC	92923	14.2
Ser	UCA	122028	18.7
Ser	UCG	55951	8.6
Ser	AGU	92466	14.2
Ser	AGC	63726	9.8
	•	•	
Pro	CCU	88263	13.5
Pro	CCC	44309	6.8
Pro	CCA	119641	18.3
Pro	CCG	34597	5.3
	•	•	•
Thr	ACU	132522	20.3

Table 2. Codon Usage Table for Saccharomyces cerevisiae Genes

Amino Acid	Codon	Number	Frequency per
			thousand
Thr	ACC	83207	12.7
Thr	ACA	116084	17.8
Thr	ACG	52045	8.0
Ala	GCU	138358	21.2
Ala	GCC	82357	12.6
Ala	GCA	105910	16.2
Ala	GCG	40358	6.2
T	Ιτταττ	122728	10.0
Tyr T-m		122/20	10.0
Tyr	UAC	96596	14.8
His	CAU	89007	13.6
His	CAC	50785	7.8
01		170051	
Gln	CAA	178251	27.3
Gln	CAG	79121	12.1
Asn	AAU	233124	35.7
<u>A sn</u>		162199	24.8
74511	me	1021))	27.0
Lys	AAA	273618	41.9
Lys	AAG	201361	30.8
•	CALL	045641	27.6
Asp	GAU	245641	37.6
Asp	GAC	132048	20.2
Glu	GAA	297944	45.6
Glu	GAG	125717	19.2
Olu	0110	120/11	17.2
Cys	UGU	52903	8.1
Cys	UGC	31095	4.8
Trn	LICC	67780	10.4
11p		07789	10.4
Arg	CGU	41791	6.4
Arg	CGC	16993	2.6
Arg	CGA	19562	3.0
Arg	CGG	11351	1.7
Arg	AGA	139081	21.3
Arg	AGG	60289	9.2
<u>C1</u>	CCU	156100	22.0
	1 L TL TI		1/19

Amino Acid	Codon	Number	Frequency per
			thousand
Gly	GGA	71216	10.9
Gly	GGG	39359	6.0
Stop	UAA	6913	1.1
Stop	UAG	3312	0.5
Stop	UGA	4447	0.7

- [0074] By utilizing this or similar tables, one of ordinary skill in the art can apply the frequencies to any given polypeptide sequence, and produce a nucleic acid fragment of a codon-optimized coding region which encodes the polypeptide, but which uses codons optimal for a given species.
- [0075] Randomly assigning codons at an optimized frequency to encode a given polypeptide sequence, can be done manually by calculating codon frequencies for each amino acid, and then assigning the codons to the polypeptide sequence randomly. Additionally, various algorithms and computer software programs are readily available to those of ordinary skill in the art. For example, the "EditSeq" function in the Lasergene Package, available from DNAstar, Inc., Madison, WI, the backtranslation function in the VectorNTI Suite, available from InforMax, Inc., Bethesda, MD, and the "backtranslate" function in the GCG-Wisconsin Package, available from Accelrys, Inc., San Diego, CA. In addition, various resources are publicly available to codon-optimize coding region "backtranslation" function sequences, the e.g., at http://www.entelechon.com/bioinformatics/backtranslation.php?lang=eng (visited April 15. 2008)"backtranseq" and the function available at http://bioinfo.pbi.nrc.ca:8090/EMBOSS/index.html (visited July 9, 2002). Constructing a rudimentary algorithm to assign codons based on a given frequency can also easily be accomplished with basic mathematical functions by one of ordinary skill in the art.
- [0076] Codon-optimized coding regions can be designed by various methods known to those skilled in the art including software packages such as "synthetic gene designer" (<u>http://phenotype.biosci.umbc.edu/codon/sgd/index.php</u>).
- [0077] As used herein, the term "polypeptide" is intended to encompass a singular "polypeptide" as well as plural "polypeptides," and refers to a molecule composed of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds). The term "polypeptide" refers to any chain or chains of two or more amino acids, and

does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, "protein, " "amino acid chain," or any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of "polypeptide," and the term "polypeptide" may be used instead of, or interchangeably with any of these terms. A polypeptide may be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It may be generated in any manner, including by chemical synthesis.

- [0078] By an "isolated" polypeptide or a fragment, variant, or derivative thereof is intended a polypeptide that is not in its natural milieu. No particular level of purification is required. For example, an isolated polypeptide can be removed from its native or natural environment. Recombinantly produced polypeptides and proteins expressed in host cells are considered isolated for purposed of the invention, as are native or recombinant polypeptides which have been separated, fractionated, or partially or substantially purified by any suitable technique.
- **[0079]** As used herein, the term "variant" refers to a polypeptide differing from a specifically recited polypeptide of the invention, such as DHAD, by amino acid insertions, deletions, mutations, and substitutions, created using, *e.g.*, recombinant DNA techniques, such as mutagenesis. Guidance in determining which amino acid residues may be replaced, added, or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous polypeptides, *e.g.*, yeast or bacterial, and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequences.
- [0080] Alternatively, recombinant polynucleotide variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector for expression. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide.
- [0081] Amino acid "substitutions" may be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative

amino acid replacements, or they may be the result of replacing one amino acid with an amino acid having different structural and/or chemical properties, *i.e.*, non-conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Alternatively, "non-conservative" amino acid substitutions may be made by selecting the differences in polarity, charge, solubility, hydrophobicity, hydrophilicity, or the amphipathic nature of any of these amino acids. "Insertions" or "deletions" may be within the range of variation as structurally or functionally tolerated by the recombinant proteins. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

[0082] A "substantial portion" of an amino acid or nucleotide sequence is that portion comprising enough of the amino acid sequence of a polypeptide or the nucleotide sequence of a gene to putatively identify that polypeptide or gene, either by manual evaluation of the sequence by one skilled in the art, or by computer-automated sequence comparison and identification using algorithms such as BLAST (Altschul, S. F., et al., J. Mol. Biol., 215:403-410 (1993)). In general, a sequence of ten or more contiguous amino acids or thirty or more nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene specific oligonucleotide probes comprising 20-30 contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12-15 bases may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a "substantial portion" of a nucleotide sequence comprises enough of the sequence to specifically identify and/or isolate a nucleic acid fragment comprising the sequence. The instant specification teaches the complete amino acid and nucleotide sequence encoding particular proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.

- [0083] The term "complementary" is used to describe the relationship between nucleotide bases that are capable of hybridizing to one another. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine, and with respect to RNA, adenine is complementary to uracil and cytosine is complementary to guanine.
- [0084] The term "percent identity", as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in: 1.) Computational Molecular Biology (Lesk, A. M., Ed.) Oxford University: NY (1988); 2.) Biocomputing: Informatics and Genome Projects (Smith, D. W., Ed.) Academic: NY (1993); 3.) Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., Eds.) Humania: NJ (1994); 4.) Sequence Analysis in Molecular Biology (von Heinje, G., Ed.) Academic (1987); and 5.) Sequence Analysis Primer (Gribskov, M. and Devereux, J., Eds.) Stockton: NY (1991).
- [0085] Preferred methods to determine identity are designed to give the best match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Sequence alignments and percent identity calculations may be performed using the MegAlign[™] program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignments of the sequences is performed using the "Clustal method of alignment" which encompasses several varieties of the algorithm including the "Clustal V method of alignment"

Sharp, CABIOS. 5:151-153 (1989); Higgins, D.G. et al., Comput. Appl. Biosci., 8:189-191 (1992)) and found in the MegAlign[™] program of the LASERGENE bioinformatics computing suite (DNASTAR Inc.). For multiple alignments, the default values correspond to GAP PENALTY=10 and GAP LENGTH PENALTY=10. Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal method are KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4. After alignment of the sequences using the Clustal V program, it is possible to obtain a "percent identity" by viewing the "sequence distances" table in the same program. Additionally the "Clustal W method of alignment" is available and corresponds to the alignment method labeled Clustal W (described by Higgins and Sharp, CABIOS. 5:151-153 (1989); Higgins, D.G. et al., Comput. Appl. Biosci. 8:189-191(1992)) and found in the MegAlign[™] v6.1 program of the LASERGENE bioinformatics computing suite (DNASTAR Inc.). Default parameters for multiple alignment (GAP PENALTY=10, GAP LENGTH PENALTY=0.2, Delay Divergen Seqs(%)=30, DNA Transition Weight=0.5, Protein Weight Matrix=Gonnet Series, DNA Weight Matrix=IUB). After alignment of the sequences using the Clustal W program, it is possible to obtain a "percent identity" by viewing the "sequence distances" table in the same program.

[0086] It is well understood by one skilled in the art that many levels of sequence identity are useful in identifying polypeptides, from other species, wherein such polypeptides have the same or similar function or activity, or in describing the corresponding polynucleotides. Useful examples of percent identities include, but are not limited to: 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%, or any integer percentage from 55% to 100% may be useful in describing the present invention, such as 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%. Suitable polynucleotide fragments not only have the above homologies but typically comprise a polynucleotide having at least 50 nucleotides, at least 100 nucleotides, at least 150 nucleotides, at least 200 nucleotides, or at least 250 nucleotides. Further, suitable polynucleotide fragments having the above homologies encode a polypeptide having at

least 50 amino acids, at least 100 amino acids, at least 150 amino acids, at least 200 amino acids, or at least 250 amino acids.

- [0087] The term "sequence analysis software" refers to any computer algorithm or software program that is useful for the analysis of nucleotide or amino acid sequences. "Sequence analysis software" may be commercially available or independently developed. Typical sequence analysis software will include, but is not limited to: 1.) the GCG suite of programs (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI); 2.) BLASTP, BLASTN, BLASTX (Altschul et al., J. Mol. Biol., 215:403-410 (1990)); 3.) DNASTAR (DNASTAR, Inc. Madison, WI); 4.) Sequencher (Gene Codes Corporation, Ann Arbor, MI); and 5.) the FASTA program incorporating the Smith-Waterman algorithm (W. R. Pearson, Comput. Methods Genome Res., [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor(s): Suhai, Sandor. Plenum: New York, NY). Within the context of this application it will be understood that where sequence analysis software is used for analysis, that the results of the analysis will be based on the "default values" of the program referenced, unless otherwise specified. As used herein "default values" will mean any set of values or parameters that originally load with the software when first initialized.
- [0088] Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described by Sambrook, J., Fritsch, E. F. and Maniatis, T., *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989) (hereinafter "Maniatis"); and by Silhavy, T. J., Bennan, M. L. and Enquist, L. W., *Experiments with Gene Fusions*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1984); and by Ausubel, F. M. *et al., Current Protocols in Molecular Biology*, published by Greene Publishing Assoc. and Wiley-Interscience (1987).
- [0089] <u>The Functions of Fe-S Cluster-Requiring Proteins</u>
- [0090] The functions of proteins that contain Fe-S clusters are diverse. One of the more complete efforts to classify these functions is given in the following table which is adapted from Johnson, D.C., et al., *Structure, function, and formation of biological iron-sulfur clusters*. Annu. Rev. Biochem., 2005. **74**: p. 247-281.

Table 3 Functions of Biological [Fe-S] clusters^a

Function	Examples	Cluster type

Electron transfer	Ferredoxins; redox	[2Fe-2S]; [3Fe-4S]; [4Fe-4S]
	enzymes	
Coupled electron/proton	Rieske protein	[2Fe-2S]
transfer	Nitrogenase	[8Fe-7S]
Substrate binding and	(de)Hydratases	[4Fe-4S], [2Fe-2S]
activation	Radical SAM enzymes	[4Fe-4S]
	Acetyl-CoA synthase	Ni-Ni-[4Fe-4S], [Ni-4Fe-5S]
	Sulfite reductase	[4Fe-4S]-siroheme
Fe or cluster storage	Ferredoxins	[4Fe-4S]
	Polyferredoxins	[4Fe-4S]
Structural	Endonuclease III	[4Fe-4S]
	MutY	[4Fe-4S]
Regulation of gene expression	SoxR	[2Fe-2S]
	FNR	[4Fe-4S]/[2Fe-2S]
	IRP	[4Fe-4S]
	IscR	[2Fe-2S]
Regulation of enzyme activity	Glutamine PRPP	[4Fe-4S]
	amidotransferase	
	Ferrochelatase	[2Fe-2S]
Disulfide reduction	Ferredoxin:thioredoxin	[4Fe-4S]
	reductase	
	Heterodisulfide reductase	[4Fe-4S]
Sulfur donor	Biotin synthase	[2Fe-2S]

aAbbreviations used are SAM, S-adenosylmethionine; acetyl-CoA, acetyl coenzymeA; FNR, fumarate and nitrate reduction; IRP, iron-regulatory protein; IscR, iron-sulfur cluster assembly regulatory protein; PRPP, phosphoribosylpyrophosphate.

[0091] It is believed that an increase in the supply and the efficiency of loading Fe-S clusters into one or more of the members of the above classes will have commercial and/or medical benefits. Of the many possibilities that will be appreciated by the skilled artisan, three examples are given. 1) When an Fe-S cluster containing enzyme is used in a pathway to a fermentation product and needs to be expressed at high levels to maintain a high flux in the pathway to the product (e.g., dihydroxy-acid dehydratase in the pathway to isobutanol). 2) When an Fe-S cluster containing enzyme is used in a pathway to a fermentation product and the Fe-S cluster undergoes turnover during the catalysis (e.g., biotin synthase in the commercial fermentation of glucose to biotin). 3) In a diseased state such that the normal concentration of an Fe-S cluster containing protein important for good health is low (e.g., in cases of Friedreich's ataxia).

[0092] DHAD and DHAD Assays

[0093] DHAD is an Fe-S cluster requiring protein of the dehydratase (more properly hydro-lyase) class. A gene encoding a DHAD enzyme can be used to provide expression of DHAD activity in a recombinant host cell. DHAD catalyzes the conversion of 2,3dihydroxyisovalerate to α -ketoisovalerate and of 2,3-dihydroxymethylvalerate to α ketomethylvalerate and is classified as E.C. 4.2.1.9. Coding sequences for DHADs that are suitable for use in a recombinant host cell can be derived from bacterial, fungal, or plant sources. DHADs that may be used may have a [4Fe-4S] cluster or a [2Fe-2S]. Tables 4a, 4b, 5, and 6 list SEQ ID NOs for coding regions and proteins of representative DHADs that may be used in the present invention. Proteins with at least about 95% identity to certain listed sequences have been omitted for simplification, but it is understood that proteins, including those omitted for simplification, with at least about 95% sequence identity to any of the proteins listed in Tables 4a, 4b, 5, and 6 and having DHAD activity may be used as disclosed herein. Additional DHAD proteins and their encoding sequences may be identified by BLAST searching of public databases, as well known to one skilled in the art. Typically BLAST (described above) searching of publicly available databases with known DHAD sequences, such as those provided herein, is used to identify DHADs and their encoding sequences that may be expressed in the present cells. For example, DHAD proteins having amino acid sequence identities of at least about 80-85%, at least about 85-90%, at least about 90-95%, or at least about 98% sequence identity to any of the DHAD proteins of Table 3 may be expressed in the present cells. Identities are based on the Clustal W method of alignment using the default parameters of GAP PENALTY=10, GAP LENGTH PENALTY=0.1, and Gonnet 250 series of protein weight matrix.

Table 4a. SEQ ID NOs of Representative Bacterial [2Fe-2S] DHAD Proteins and Encoding Sequences

Organism of derivation	SEQ ID NO:	SEQ ID NO:
	Nucleic acid	Peptide
Mycobacterium sp. MCS	1	2
Mycobacterium gilvum PYR-GCK	3	4
Mycobacterium smegmatis str. MC2 155	5	6
Mycobacterium vanbaalenii PYR-1	7	8
Nocardia farcinica IFM 10152	9	10

Rhodococcus sp. RHA1	11	12
Mycobacterium ulcerans Agy99	13	14
Mycobacterium avium subsp. paratuberculosis K-10	15	16
Mycobacterium tuberculosis H37Ra	17	18
Mycobacterium leprae TN *	19	20
Kineococcus radiotolerans SRS30216	21	22
Janibacter sp. HTCC2649	23	24
Nocardioides sp. JS614	25	26
Renibacterium salmoninarum ATCC 33209	27	28
Arthrobacter aurescens TC1	29	30
Leifsonia xyli subsp. xyli str. CTCB07	31	32
marine actinobacterium PHSC20C1	33	34
Clavibacter michiganensis subsp. michiganensis	35	36
NCPPB 382		50
Saccharopolyspora erythraea NRRL 2338	37	38
Acidothermus cellulolyticus 11B	39	40
Corynebacterium efficiens YS-314	41	42
Brevibacterium linens BL2	43	44
Tropheryma whipplei TW08/27	45	46
Methylobacterium extorquens PA1	47	48
Methylobacterium nodulans ORS 2060	49	50
Rhodopseudomonas palustris BisB5	51	52
Rhodopseudomonas palustris BisB18	53	54
Bradyrhizobium sp. ORS278	55	56
Bradyrhizobium japonicum USDA 110	57	58
Fulvimarina pelagi HTCC2506	59	60
Aurantimonas sp. SI85-9A1	61	62
Hoeflea phototrophica DFL-43	63	64
Mesorhizobium loti MAFF303099	65	66
Mesorhizobium sp. BNC1	67	68
Parvibaculum lavamentivorans DS-1	69	70
Loktanella vestfoldensis SKA53	71	72
Roseobacter sp. CCS2	73	74
Dinoroseobacter shibae DFL 12	75	76
Roseovarius nubinhibens ISM	77	78
Sagittula stellata E-37	79	80
Roseobacter sp. AzwK-3b	81	82
Roseovarius sp. TM1035	83	84

Oceanicola batsensis HTCC2597	85	86
Oceanicola granulosus HTCC2516	87	88
Rhodobacterales bacterium HTCC2150	89	90
Paracoccus denitrificans PD1222	91	92
Oceanibulbus indolifex HEL-45	93	94
Sulfitobacter sp. EE-36	95	96
Roseobacter denitrificans OCh 114	97	98
Jannaschia sp. CCS1	99	100
Caulobacter sp. K31	101	102
Candidatus Pelagibacter ubique HTCC1062	103	104
Erythrobacter litoralis HTCC2594	105	106
Erythrobacter sp. NAP1	107	108
Comamonas testosterone KF-1	109	110
Sphingomonas wittichii RW1	111	112
Burkholderia xenovorans LB400	113	114
Burkholderia phytofirmans PsJN	115	116
Bordetella petrii DSM 12804	117	118
Bordetella bronchiseptica RB50	119	120
Bradyrhizobium sp. ORS278	121	122
Bradyrhizobium sp. BTAil	123	124
Bradhyrhizobium japonicum	125	126
Sphingomonas wittichii RW1	127	128
Rhodobacterales bacterium HTCC2654	129	130
Solibacter usitatus Ellin6076	131	132
Roseiflexus sp. RS-1	133	134
Rubrobacter xylanophilus DSM 9941	135	136
Salinispora tropica CNB-440	137	138
Acidobacteria bacterium Ellin345	139	140
Thermus thermophilus HB27	141	142
Maricaulis maris MCS10	143	144
Parvularcula bermudensis HTCC2503	145	146
Oceanicaulis alexandrii HTCC2633	147	148
Plesiocystis pacifica SIR-1	149	150
Bacillus sp. NRRL B-14911	151	152
Oceanobacillus iheyensis HTE831	153	154
Staphylococcus saprophyticus subsp. saprophyticus	155	156
ATCC 15305	155	100
Bacillus selenitireducens MLS10	157	158

Streptococcus pneumoniae SP6-BS73	159	160
Streptococcus sanguinis SK36	161	162
Streptococcus thermophilus LMG 18311	163	164
Streptococcus suis 89/1591	165	166
Streptococcus mutans UA159	167	168
Leptospira borgpetersenii serovar Hardjo-bovis L550	169	170
Candidatus Vesicomyosocius okutanii HA	171	172
Candidatus Ruthia magnifica str. Cm (Calyptogena	173	174
magnifica)	175	1/7
Methylococcus capsulatus str. Bath	175	176
uncultured marine bacterium EB80_02D08	177	178
uncultured marine gamma proteobacterium	179	180
EBAC31A08	179	100
uncultured marine gamma proteobacterium	181	182
EBAC20E09	101	102
uncultured gamma proteobacterium eBACHOT4E07	183	184
Alcanivorax borkumensis SK2	185	186
Chromohalobacter salexigens DSM 3043	187	188
Marinobacter algicola DG893	189	190
Marinobacter aquaeolei VT8	191	192
Marinobacter sp. ELB17	193	194
Pseudoalteromonas haloplanktis TAC125	195	196
Acinetobacter sp. ADP1	197	198
Opitutaceae bacterium TAV2	199	200
Flavobacterium sp. MED217	201	202
Cellulophaga sp. MED134	203	204
Kordia algicida OT-1	205	206
Flavobacteriales bacterium ALC-1	207	208
Psychroflexus torquis ATCC 700755	209	210
Flavobacteriales bacterium HTCC2170	211	212
unidentified eubacterium SCB49	213	214
Gramella forsetii KT0803	215	216
Robiginitalea biformata HTCC2501	217	218
Tenacibaculum sp. MED152	219	220
Polaribacter irgensii 23-P	221	222
Pedobacter sp. BAL39	223	224
Flavobacteria bacterium BAL38	225	226
Flavobacterium psychrophilum JIP02/86	227	228

Flavobacterium johnsoniae UW101	229	230
Lactococcus lactis subsp. cremoris SK11	231	232
Psychromonas ingrahamii 37	233	234
Microscilla marina ATCC 23134	235	236
Cytophaga hutchinsonii ATCC 33406	237	238
Rhodopirellula baltica SH 1	239	240
Blastopirellula marina DSM 3645	241	242
Planctomyces maris DSM 8797	243	244
Algoriphagus sp. PR1	245	246
Candidatus Sulcia muelleri str. Hc (Homalodisca	247	248
coagulata)		
Candidatus Carsonella ruddii PV	249	250
Synechococcus sp. RS9916	251	252
Synechococcus sp. WH 7803	253	254
Synechococcus sp. CC9311	255	256
Synechococcus sp. CC9605	257	258
Synechococcus sp. WH 8102	259	260
Synechococcus sp. BL107	261	262
Synechococcus sp. RCC307	263	264
Synechococcus sp. RS9917	265	266
Synechococcus sp. WH 5701	267	268
Prochlorococcus marinus str. MIT 9313	269	270
Prochlorococcus marinus str. NATL2A	271	272
Prochlorococcus marinus str. MIT 9215	273	274
Prochlorococcus marinus str. AS9601	275	276
Prochlorococcus marinus str. MIT 9515	277	278
Prochlorococcus marinus subsp. pastoris str.	270	280
CCMP1986	219	200
Prochlorococcus marinus str. MIT 9211	281	282
Prochlorococcus marinus subsp. marinus str.	283	284
CCMP1375	205	204
Nodularia spumigena CCY9414	285	286
Nostoc punctiforme PCC 73102	287	288
Nostoc sp. PCC 7120	289	290
Trichodesmium erythraeum IMS101	291	292
Acaryochloris marina MBIC11017	293	294
Lyngbya sp. PCC 8106	295	296

Synechocystis sp. PCC 6803	297	298
Cyanothece sp. CCY0110	299	300
Thermosynechococcus elongatus BP-1	301	302
Synechococcus sp. JA-2-3B'a(2-13)	303	304
Gloeobacter violaceus PCC 7421	305	306
Nitrosomonas eutropha C91	307	308
Nitrosomonas europaea ATCC 19718	309	310
Nitrosospira multiformis ATCC 25196	311	312
Chloroflexus aggregans DSM 9485	313	314
Leptospirillum sp. Group II UBA	315	316
Leptospirillum sp. Group II UBA	317	318
Halorhodospira halophila SL1	319	320
Nitrococcus mobilis Nb-231	321	322
Alkalilimnicola ehrlichei MLHE-1	323	324
Deinococcus geothermalis DSM 11300	325	326
Polynucleobacter sp. QLW-P1DMWA-1	327	328
Polynucleobacter necessarius STIR1	329	330
Azoarcus sp. EbN1	331	332
Burkholderia phymatum STM815	333	334
Burkholderia xenovorans LB400	335	336
Burkholderia multivorans ATCC 17616	337	338
Burkholderia cenocepacia PC184	339	340
Burkholderia mallei GB8 horse 4	341	342
Ralstonia eutropha JMP134	343	344
Ralstonia metallidurans CH34	345	346
Ralstonia solanacearum UW551	347	348
Ralstonia pickettii 12J	349	350
Limnobacter sp. MED105	351	352
Herminiimonas arsenicoxydans	353	354
Bordetella parapertussis	355	356
Bordetella petrii DSM 12804	357	358
Polaromonas sp. JS666	359	360
Polaromonas naphthalenivorans CJ2	361	362
Rhodoferax ferrireducens T118	363	364
Verminephrobacter eiseniae EF01-2	365	366
Acidovorax sp. JS42	367	368
Delftia acidovorans SPH-1	369	370
Methylibium petroleiphilum PM1	371	372

gamma proteobacterium KT 71	373	374
Tremblaya princeps	375	376
Blastopirellula marina DSM 3645	377	378
Planctomyces maris DSM 8797	379	380
Microcystis aeruginosa PCC 7806	381	382
Salinibacter ruber DSM 13855	383	384
Methylobacterium chloromethanicum	385	386

Table 4b. Additional representative bacterial [2Fe-2S] DHAD proteins and encoding sequences

Organism of derivation	Nucleic acid	Amino acid
	SEQ ID NO:	SEQ ID NO:
Burkholderia ambifaria AMMD	387	388
Bradyrhizobium sp. BTAil	389	390
Delftia acidovorans SPH-1	391	392
Microcystis aeruginosa NIES-843	393	394
uncultured marine microorganism HF4000_APKG8C21	395	396
Burkholderia ubonensis Bu	397	398
Gemmata obscuriglobus UQM 2246	399	400
Mycobacterium abscessus	401	402
Synechococcus sp. PCC 7002	403	404
Burkholderia graminis C4D1M	405	406
Methylobacterium radiotolerans JCM 2831	407	408
Leptothrix cholodnii SP-6	409	410
Verrucomicrobium spinosum DSM 4136	411	412
Cyanothece sp. ATCC 51142	413	414
Opitutus terrae PB90-1	415	416
Leptospira biflexa serovar Patoc strain 'Patoc 1 (Paris)'	417	418
Methylacidiphilum infernorum V4	419	420
Cupriavidus taiwanensis	421	422
Chthoniobacter flavus Ellin428	423	424
Cyanothece sp. PCC 7822	425	426
Phenylobacterium zucineum HLK1	427	428
Leptospirillum sp. Group II '5-way CG'	429	430
Arthrospira maxima CS-328	431	432
Oligotropha carboxidovorans OM5	433	434
Rhodospirillum centenum SW	435	436
Cyanothece sp. PCC 8801	437	438

Thermus aquaticus Y51MC23	439	440
Cyanothece sp. PCC 7424	441	442
Acidithiobacillus ferrooxidans ATCC 23270	443	444
Cyanothece sp. PCC 7425	445	446
Arthrobacter chlorophenolicus A6	447	448
Burkholderia multivorans CGD2M	449	450
Thermomicrobium roseum DSM 5159	451	452
bacterium Ellin514	453	454
Desulfobacterium autotrophicum HRM2	455	456
Thioalkalivibrio sp. K90mix	457	458
Flavobacteria bacterium MS024-3C	459	460
Flavobacteria bacterium MS024-2A	461	462
'Nostoc azollae' 0708	463	464
Acidobacterium capsulatum ATCC 51196	465	466
Gemmatimonas aurantiaca T-27	467	468
Gemmatimonas aurantiaca T-27	469	470
Rhodococcus erythropolis PR4	471	472
Deinococcus deserti VCD115	473	474
Rhodococcus opacus B4	475	476
Chryseobacterium gleum ATCC 35910	477	478
Thermobaculum terrenum ATCC BAA-798	479	480
Kribbella flavida DSM 17836	481	482
Gordonia bronchialis DSM 43247	483	484
Geodermatophilus obscurus DSM 43160	485	486
Xylanimonas cellulosilytica DSM 15894	487	488
Sphingobacterium spiritivorum ATCC 33300	489	490
Meiothermus silvanus DSM 9946	491	492
Meiothermus ruber DSM 1279	493	494
Nakamurella multipartita DSM 44233	495	496
Cellulomonas flavigena DSM 20109	497	498
Rhodothermus marinus DSM 4252	499	500
Planctomyces limnophilus DSM 3776	501	502
Beutenbergia cavernae DSM 12333	503	504
Spirosoma linguale DSM 74	505	506
Sphaerobacter thermophilus DSM 20745	507	508
Lactococcus lactis	509	510
Thermus thermophilus HB8	511	512
Anabaena variabilis ATCC 29413	513	514

Roseovarius sp. 217	515	516
uncultured Prochlorococcus marinus clone HF10-88D1	517	518
Burkholderia xenovorans LB400	519	520
Saccharomonospora viridis DSM 43017	521	522
Pedobacter heparinus DSM 2366	523	524
Microcoleus chthonoplastes PCC 7420	525	526
Acidimicrobium ferrooxidans DSM 10331	527	528
Rhodobacterales bacterium HTCC2083	529	530
Candidatus Pelagibacter sp. HTCC7211	531	532
Chitinophaga pinensis DSM 2588	533	534
Alcanivorax sp. DG881	535	536
Micrococcus luteus NCTC 2665	537	538
Verrucomicrobiae bacterium DG1235	539	540
Synechococcus sp. PCC 7335	541	542
Brevundimonas sp. BAL3	543	544
Dyadobacter fermentans DSM 18053	545	546
gamma proteobacterium NOR5-3	547	548
gamma proteobacterium NOR51-B	549	550
Cyanobium sp. PCC 7001	551	552
Jonesia denitrificans DSM 20603	553	554
Brachybacterium faecium DSM 4810	555	556
Paenibacillus sp. JDR-2	557	558
Octadecabacter antarcticus 307	559	560
Variovorax paradoxus S110	561	562

Table 5. SEQ ID NOs of Representative Fungal and Plant [2Fe-2S] DHAD Proteins and Encoding Sequences

Description	SEQ ID NO:	SEQ ID NO:
	Nucleic acid	Peptide
Schizosaccharomyces pombe ILV3	563	564
Saccharomyces cerevisiae ILV3	565	566
Kluyveromyces lactis ILV3	567	568
Candida albicans SC5314 ILV3	569	570
Pichia stipitis CBS 6054 ILV3	571	572
Yarrowia lipolytica ILV3	573	574
Candida galbrata CBS 138 ILV3	575	576
Chlamydomonas reinhardtii	577	578

Ostreococcus lucimarinus CCE9901	579	580
Vitis vinifera		
(Unnamed protein product: CAO71581.1)	581	582
Vitis vinifera		
(Hypothetical protein: CAN67446.1)	583	584
Arabidopsis thaliana	585	586
Oryza sativa (indica cultivar-group)	587	588
Physcomitrella patens subsp. Patens	589	590
Chaetomium globosum CBS 148.51	591	592
Neurospora crassa OR74A	593	594
Magnaporthe grisea 70-15	595	596
Gibberella zeae PH-1	597	598
Aspergillus niger	599	600
Neosartorya fischeri NRRL 181		
(XP_001266525.1)	601	602
Neosartorya fischeri NRRL 181		
(XP_001262996.1)	603	604
Aspergillus niger		
(hypothetical protein An03g04520)	605	606
Aspergillus niger		
(Hypothetical protein An14g03280)	607	608
Aspergillus terreus NIH2624	609	610
Aspergillus clavatus NRRL 1	611	612
Aspergillus nidulans FGSC A4	613	614
Aspergillus oryzae	615	616
Ajellomyces capsulatus NAm1	617	618
Coccidioides immitis RS	619	620
Botryotinia fuckeliana B05.10	621	622
Phaeosphaeria nodorum SN15	623	624
Pichia guilliermondii ATCC 6260	625	626
Debaryomyces hansenii CBS767	627	628
Lodderomyces elongisporus NRRL YB-4239	629	630
Vanderwaltozyma polyspora DSM 70294	631	632
Ashbya gossypii ATCC 10895	633	634
Laccaria bicolor S238N-H82	635	636
Coprinopsis cinerea okayama7#130	637	638
Cryptococcus neoformans var. neoformans JEC21	639	640
Ustilago maydis 521	641	642
Malassezia globosa CBS 7966	643	644
---	-----	-----
Aspergillus clavatus NRRL 1	645	646
Neosartorya fischeri NRRL 181		
(Putative)	647	648
Aspergillus oryzae	649	650
Aspergillus niger (hypothetical protein An18g04160)	651	652
Aspergillus terreus NIH2624	653	654
Coccidioides immitis RS (hypothetical protein		
CIMG_04591)	655	656
Paracoccidioides brasiliensis	657	658
Phaeosphaeria nodorum SN15	659	660
Gibberella zeae PH-1	661	662
Neurospora crassa OR74A	663	664
Coprinopsis cinerea okayama 7#130	665	666
Laccaria bicolor S238N-H82	667	668
Ustilago maydis 521	669	670

Table 6. SEQ ID NOs of Representative [4Fe-4S] DHAD Proteins and Encoding Sequences

Organism	SEQ ID NO:	SEQ ID NO:
	Nucleic acid	Peptide
Escherichia coli str. K-12 substr. MG1655	671	672
Bacillus subtilis subsp. subtilis str. 168	673	674
Agrobacterium tumefaciens str. C58	675	676
Burkholderia cenocepacia MC0-3	677	678
Psychrobacter cryohalolentis K5	679	680
Psychromonas sp. CNPT3	681	682
Deinococcus radiodurans R1	683	684
Wolinella succinogenes DSM 1740	685	686
Zymomonas mobilis subsp. mobilis ZM4	687	688
Clostridium acetobutylicum ATCC 824	689	690
Clostridium beijerinckii NCIMB 8052	691	692
Pseudomonas fluorescens Pf-5	693	694
Methanococcus maripaludis C7	695	696
Methanococcus aeolicus Nankai-3	697	698
Vibrio fischeri ATCC 700601 (ES114)	699	700
Shewanella oneidensis MR-1 ATCC 700550	701	702

- [0094] Additional [2Fe-2S] DHADs may be identified using the analysis described in U.S. Patent Appl. No. 12/569,636, filed Sept. 29, 2009, which is herein incorporated by reference. The analysis is as follows: A Profile Hidden Markov Model (HMM) was prepared based on amino acid sequences of eight functionally verified DHADs. These DHADs are from Nitrosomonas europaea (DNA SEQ ID NO:309; protein SEQ ID NO:310), Synechocystis sp. PCC6803 (DNA SEQ ID:297; protein SEQ ID NO:298), Streptococcus mutans (DNA SEQ ID NO:167; protein SEQ ID NO:168), Streptococcus thermophilus (DNA SEQ ID NO:163; SEQ ID No:164), Ralstonia metallidurans (DNA SEQ ID NO:345; protein SEQ ID NO:346), Ralstonia eutropha (DNA SEQ ID NO:343; protein SEQ ID NO:344), and Lactococcus lactis (DNA SEQ ID NO:231; protein SEQ ID NO:232). In addition the DHAD from Flavobacterium johnsoniae (DNA SEQ ID NO:229; protein SEQ ID NO:230) was found to have dihydroxy-acid dehydratase activity when expressed in E. coli and was used in making the Profile. The Profile HMM is prepared using the HMMER software package (The theory behind profile HMMs is described in R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: probabilistic models of proteins and nucleic acids, Cambridge University Press, 1998; Krogh et al., 1994; J. Mol. Biol. 235:1501-1531), following the user guide which is available from HMMER (Janelia Farm Research Campus, Ashburn, VA). The output of the HMMER software program is a Profile Hidden Markov Model (HMM) that characterizes the input sequences. The Profile HMM prepared for the eight DHAD proteins is given in U.S. Appl. No. 12/569,636, filed Sept. 29, 2009 and in Table 12.
- [0095] Any protein that matches the Profile HMM with an E value of < 10⁻⁵ is a DHAD related protein, which includes [4Fe-4S] DHADs, [2Fe-2S] DHADs, arabonate dehydratases, and phosphogluconate dehydratases. In embodiments, sequences matching the Profile HMM are then analyzed for the presence of the three conserved cysteines, corresponding to positions 56, 129, and 201 in the *Streptococcus mutans* DHAD. The presence of all three conserved cysteines is characteristic of proteins having a [2Fe-2S] cluster. Proteins having the three conserved cysteines include arabonate dehydratases and [2Fe-2S] DHADs. The [2Fe-2S] DHADs. The [2Fe-2S] DHADs may be distinguished from the arabonate dehydratases by analyzing for signature conserved amino acids found to be present in the [2Fe-2S] DHADs or in the arabonate dehydratases at positions corresponding to the following positions in the Streptococcus mutans DHAD amino acid sequence. These

signature amino acids are in [2Fe-2S] DHADs or in arabonate dehydratases, respectively, at the following positions (with greater than 90% occurance): 88 asparagine vs. glutamic acid; 113 not conserved vs. glutamic acid; 142 arginine or asparagine vs. not conserved; 165 not conserved vs. glycine; 208 asparagine vs. not conserved; 454 leucine vs. not conserved; 477 phenylalanine or tyrosine vs. not conserved; and 487 glycine vs. not conserved.

- [0096] Additionally, the sequences of DHAD coding regions provided herein may be used to identify other homologs in nature. Such methods are well-known in the art, and various methods that may be used to isolate genes encoding homologous proteins are described in U.S. Appl. No. 12/569,636, filed Sept. 29, 2009, which such methods are incorporated by reference herein.
- [0097] The presence of DHAD activity in a cell engineered to express a heterologous DHAD can be confirmed using methods known in the art. As one example, and as demonstrated in the Examples herein, crude extracts from cells engineered to express a bacterial DHAD may be used in a DHAD assay as described by Flint and Emptage (J. Biol. Chem. (1988) 263(8): 3558-64) using dinitrophenylhydrazine. In another example, DHAD activity may be assayed by expressing a heterologous DHAD identifiable by the methods disclosed herein in a yeast strain that lacks endogenous DHAD activity. If DHAD activity is present, the yeast strain will grow in the absence of branched-chain amino acids. DHAD activity may also be confirmed by more indirect methods, such as by assaying for a downstream product in a pathway requiring DHAD activity. Any product that has α -ketoisovalerate or α -ketomethylvalerate as a pathway intermediate may be measured in an assay for DHAD activity. A list of such products includes, but is not limited to, valine, isoleucine, leucine, pantothenic acid, 2-methyl-1-butanol, 3-methyl-1-butanol, and isobutanol.
- [0098] Over-Expression of DHAD Activity
- [0099] Applicants have found that expression of a heterologous DHAD can provide DHAD activity when expressed in a host cell. Expression of a DHAD which may be identified as described herein can provide DHAD activity for a biosynthetic pathway that includes conversion of 2,3-dihydroxyisovalerate to α -ketoisovalerate or 2,3-dihydroxymethylvalerate to α -ketomethylvalerate. In addition, the *S. mutans* [2Fe-2S] DHAD was shown in related U.S. Appl. No. 12/569,636, filed Sept. 29, 2009,

incorporated by reference herein, to have higher stability in air as compared to the sensitivity in air of the E. coli [4Fe-4S] DHAD, which is desirable for obtaining better activity in a heterologous host cell.

- [00100] Furthermore, as described herein, it has been found that expressing a heterologous DHAD protein at higher levels can provide increased DHAD activity when expressed in a host cell. High expression of a recombinant polynucleotide can be accomplished in at least two ways: 1) by increasing the copy number of a plasmid comprising the recombinant polynucleotide; or 2) by integrating multiple copies of the gene of interest into the host cell's chromosome. As exemplified herein, expression of multiple copies of the heterologous DHAD, provides an increase in specific activity of heterologous DHAD
- [00101] Recombinant polynucleotides are typically cloned for expression using the coding sequence as part of a chimeric gene used for transformation, which includes a promoter operably linked to the coding sequence as well as a ribosome binding site and a termination control region. The coding region may be from the host cell for transformation and combined with regulatory sequences that are not native to the natural gene encoding DHAD. Alternatively, the coding region may be from another host cell.
- [00102] Vectors useful for the transformation of a variety of host cells are common and described in the literature. Typically the vector contains a selectable marker and sequences allowing autonomous replication or chromosomal integration in the desired host. In addition, suitable vectors may comprise a promoter region which harbors transcriptional initiation controls and a transcriptional termination control region, between which a coding region DNA fragment may be inserted, to provide expression of the inserted coding region. Both control regions may be derived from genes homologous to the transformed host cell, although it is to be understood that such control regions may also be derived from genes that are not native to the specific species chosen as a production host.
- [00103] Yeast cells that can be hosts for expression or over-expression of a heterologous bacterial DHAD are any yeast cells that are amenable to genetic manipulation and include, but are not limited to, *Saccharomyces, Schizosaccharomyces, Hansenula, Candida, Kluyveromyces, Yarrowia, Issatchenkia*, and *Pichia*. Suitable strains include, but are not limited to, *Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces thermotolerans, Candida glabrata, Candida*

albicans, Pichia stipitis and Yarrowia lipolytica. In one embodiment, the host is Saccharomyces cerevisiae.

- [00104] Expression is achieved by transforming a host cell with a gene comprising a sequence encoding DHAD, for example, a DHAD listed in Tables 4a, 4b, 5 or 6, or identified using the screening methods in related U.S. Appl. No. 12/569,636, filed Sept. 29, 2009, incorporated by reference herein. The coding region for the DHAD to be expressed may be codon optimized for the target host cell, as well known to one skilled in the art. Methods for gene expression in yeast are known in the art (see, e.g., Methods in Enzymology, Volume 194, Guide to Yeast Genetics and Molecular and Cell Biology (Part A, 2004, Christine Guthrie and Gerald R. Fink (Eds.), Elsevier Academic Press, San Diego, CA). Expression of genes in yeast typically requires a promoter, operably linked to a coding region of interest, and a transcriptional terminator. A number of yeast promoters can be used in constructing expression cassettes for genes in yeast, including, but not limited to, promoters derived from the following genes: CYC1, HIS3, GAL1, GAL10, ADH1, PGK, PHO5, GAPDH, ADC1, TRP1, URA3, LEU2, ENO, TPI, CUP1, FBA, GPD, GPM, and AOX1. Suitable transcriptional terminators include, but are not limited to, FBAt, GPDt, GPMt, ERG10t, GAL1t, CYC1, and ADH1.
- [00105] Suitable promoters, transcriptional terminators, and DHAD coding regions may be cloned into *E. coli*-yeast shuttle vectors, and transformed into yeast cells. These vectors allow strain propagation in both *E. coli* and yeast strains. In one embodiment, the vector used contains a selectable marker and sequences allowing autonomous replication or chromosomal integration in the desired host. Examples of plasmids used in yeast are shuttle vectors pRS423, pRS424, pRS425, and pRS426 (American Type Culture Collection, Rockville, MD), which contain an *E. coli* replication origin (*e.g.*, pMB1), a yeast 2-micron origin of replication, and a marker for nutritional selection. The selection markers for these four vectors are His3 (vector pRS423), Trp1 (vector pRS424), Leu2 (vector pRS425) and Ura3 (vector pRS426). Construction of expression vectors with a chimeric gene encoding the described DHADs can be performed by either standard molecular cloning techniques in *E. coli* or by the gap repair recombination method in yeast.
- [00106] The gap repair cloning approach takes advantage of the highly efficient homologous recombination in yeast. For example, a yeast vector DNA is digested (*e.g.*,

in its multiple cloning site) to create a "gap" in its sequence. A number of insert DNAs of interest are generated that contain $a \ge 21$ bp sequence at both the 5' and the 3' ends that sequentially overlap with each other, and with the 5' and 3' terminus of the vector DNA. For example, to construct a yeast expression vector for "Gene X," a yeast promoter and a yeast terminator are selected for the expression cassette. The promoter and terminator are amplified from the yeast genomic DNA, and Gene X is either PCR amplified from its source organism or obtained from a cloning vector comprising Gene X sequence. There is at least a 21 bp overlapping sequence between the 5' end of the linearized vector and the promoter sequence, between the promoter and Gene X, between Gene X and the terminator sequence, and between the terminator and the 3' end of the linearized vector. The "gapped" vector and the insert DNAs are then co-transformed into a yeast strain and plated on the medium containing the appropriate compound mixtures that allow complementation of the nutritional selection markers on the plasmids. The presence of correct insert combinations can be confirmed by PCR mapping using plasmid DNA prepared from the selected cells. The plasmid DNA isolated from yeast (usually low in concentration) can then be transformed into an E. coli strain, e.g. TOP10, followed by mini preps and restriction mapping to further verify the plasmid construct. Finally, the construct can be verified by sequence analysis.

[00107] Like the gap repair technique, integration into the yeast genome also takes advantage of the homologous recombination system in yeast. For example, a cassette containing a coding region plus control elements (promoter and terminator) and auxotrophic marker is PCR-amplified with a high-fidelity DNA polymerase using primers that hybridize to the cassette and contain 40-70 base pairs of sequence homology to the regions 5' and 3' of the genomic area where insertion is desired. The PCR product is then transformed into yeast and plated on medium containing the appropriate compound mixtures that allow selection for the integrated auxotrophic marker. For example, to integrate "Gene X" into chromosomal location "Y", the promoter-coding regionX-terminator construct is PCR amplified from a plasmid DNA construct and joined to an autotrophic marker (such as *URA3*) by either SOE PCR or by common restriction digests and cloning. The full cassette, containing the promoter-coding regionX-terminator-*URA3* region, is PCR amplified with primer sequences that contain 40-70 bp of homology to the regions 5' and 3' of location "Y" on the yeast chromosome. The PCR product is

transformed into yeast and selected on growth media lacking uracil. Transformants can be verified either by colony PCR or by direct sequencing of chromosomal DNA.

- [00108] In addition to the above materials and methods that may be used to express a heterologous DHAD, these same, or similar, materials and methods may be used to over-express a heterologous DHAD using modifications known to one of skill in the art. For example, when using a plasmid-based system to over-express the recombinant polynucleotide, a high-copy number vector, or a vector with a copy number that can be regulated, may be constructed. Such a regulatable or inducible system is described herein in Example 1; however, other systems are known to one of skill in the art and may be used to construct other high-copy number or copy number regulatable vectors. Alternatively, when using an integration-based system to over-express the recombinant polypeptide, an integration vector is required for targeting at multiple integration sites. A multiple integration-based systems are known to one of skill in the art and may be used to target multiple integrations of a recombinant polypeptide, for example 1; however, of a recombinant polypeptide, for example 2; however, other multiple integration sites.
- [00109] Expression of the heterologous DHAD in the recombinant host cell can be quantified, *e.g.*, by a percent of total cell protein. Such over-expression can be quantified in an amount selected from the group consisting of: (a) greater than about 0.001% of total cell protein; (b) greater than about 0.01% of total cell protein; (c) greater than about 0.1% of total cell protein; (d) greater than about 0.5% of total cell protein; (e) greater than about 1.0% of total cell protein; (f) greater than about 2.0% of total cell protein; (g) greater than about 5% of total cell protein; (h) greater than about 10% of total cell protein; and (i) greater than about 20% of total cell protein.
- [00110] The specific activity of the heterologous DHAD produced in a recombinant host cell can be quantified, *e.g.*, as U/mg. The heterologous DHAD specific activity can be selected from the group consisting of: (a) greater than about 0.25 U/mg; (b) greater than about 0.3 U/mg; (c) greater than about 0.5 U/mg; (d) greater than about 1.0 U/mg; (e) greater than about 1.5 U/mg; (f) greater than about 2.0 U/mg; (g) greater than about 3.0 U/mg; (h) greater than about 4.0 U/mg; (i) greater than about 5.0 U/mg; (j) greater than about 6.0 U/mg; (k) greater than about 7.0 U/mg; (l) greater than about 8.0 U/mg; (m)

greater than about 9.0 U/mg; (n) greater than about 10.0 U/mg; (o) greater than about 20.0 U/mg; and (p) greater than about 50.0 U/mg.

[00111] The heterologous DHAD specific activity can also be quantified, e.g., as a percent comparison to an endogenous DHAD specific activity or to some other control DHAD specific activity. An example of a "control" DHAD specific activity is that from a heterologous DHAD expressed in a recombinant host cell using a low copy number plasmid or a plasmid that is not other wise inducible or regulatable. Such a control establishes a baseline from which to compare the specific activity of the same heterologous DHAD expressed in a recombinant host cell using a high copy number plasmid or a plasmid with copy number that can be regulated, or co-expressed with polynucleotides encoding polypeptides affecting Fe-S cluster biosynthesis or Fe uptake and utilization, as described below. Thus, the increase in specific activity of the heterologous DHAD when compared to the control DHAD specific activity can be in an amount selected from the group consisting of: greater than an about 10% increase; greater than an about 20% increase; greater than an about 30% increase; greater than an about 40% increase; greater than an about 50% increase; greater than an about 60% increase; greater than an about 70% increase; greater than an about 80% increase; greater than an about 90% increase; greater than an about 95% increase; greater than an about 98% increase; and greater than an about 99% increase. The heterologous DHAD specific activity can also be expressed by "fold increase" over control. Thus, the increase in specific activity can be selected from the group consisting of: (a) greater than about 2-fold higher, (b) greater than about 5-fold higher, (c) greater than about 8-fold higher, or (d) greater than about 10-fold higher than control.

[00112] <u>Fe-S Cluster Forming Proteins and Fe Regulation, Utilization, and Homeostasis</u>

[00113] As described above, DHAD enzymes require Fe-S clusters for functioning, therefore, they must be expressed in a host having the genetic machinery to produce and load Fe-S clusters into the apo-protein if they are going to be expressed in functional form. As described elsewhere herein, in normal yeast, the mitochondria play an important role in Fe-S cluster biosynthesis. The flux in the formation and movement of Fe-S cluster precursors from mitochondria to Fe-S cluster requiring proteins in the cytosol of normal yeast is believed to be limited. For example, after a point a further increase in the expression of the protein of heterologous DHADs in the cytosol does not result in a

corresponding increase in DHAD activity. While not wishing to be bound by theory, it is believed that this is because the increased amounts of the heterologous DHAD are not getting loaded with the Fe-S cluster requisite for activity because the cell is not able to supply the increased demand for Fe-S clusters that arises in the conditions described above. Demonstrated herein is that yeast cells can be genetically modified in 2 ways (separately or contemporaneously) that will result in an increased fraction of the heterologous DHAD expressed in the cytosol being loaded with its requisite Fe-S cluster. One way is to to modify the expression of yeast genes involved in the Fe-S cluster formation, such as Fe-S cluster biosynthesis pathway genes or Fe uptake and utilization genes, The other way is to express heterologous genes involved in Fe-S cluster biosynthesis or Fe uptake and utilization in the cytoplasm of yeast.

- [00114] Yeast genes that encode polypeptides that are involved in Fe uptake and utilization and Fe-S cluster biosynthesis are candidates for modification of expression. In embodiments, the modification results in increased function of a selected Fe-S cluster requiring protein.
- [00115] As an example, Aft1 has been found to act as a transcriptional activator for genes into the iron regulon (Kumanovics, et al. J. Biol. Chem., 2008. 283, p. 10276-10286; Li, H., et al., The Yeast Iron Regulatory Proteins Grx3/4 and Fra2 form Heterodimeric Complexes Containing a [2Fe-2S] Cluster with Cysteinyl and Histidyl Ligation. Biochemistry, 2009. 48(40): p. 9569-9581. As exemplified herein, the deletion of known inhibitors of Aft1 translocation, results in an increase in specific activity of an Fe-S cluster requiring protein because it leads to an increase Fe-S cluster loading of the protien. While not wishing to be bound by theory, it is thus believed that altering expression of certain genes of the Fe regulon, whether directly or through deletion or upregulation of inhibitors, will likewise increase the loading and function of Fe-S cluster requiring proteins. For example, genes that play a role in, or are part of, Fe utilization and homeostasis in yeast, such as Fe Regulon genes, may be targeted for altered expression. Such genes are known in the art, and examples of these genes are listed in Table 7. (The list in Table 7 is taken from [1] Rutherford, J.C., et al., Activation of the Iron Regulon by the Yeast Aft1/Aft2 Transcription Factors Depends on Mitochondrial but Not Cytosolic Iron-Sulfur Protein Biogenesis. J. Biol. Chem., 2005. 280(11): p. 10135-10140; [2], i.e., Foury, F. and D. Talibi, Mitochondrial control of iron homeostasis. A

genome wide analysis of gene expression in a yeast frataxin-deficient strain. J. Biol. Chem., 2001. **276**(11): p. 7762-7768.; and [3] Shakoury-Elizeh, M., et al., *Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae*. Mol. Biol. Cell, 2004. **15**(3): p. 1233-1243.)

Gene	Putative Function	Nucleic	Amino
Name	e		Acid
		SEQ ID	SEQ ID
		NO:	NO:
ARNI	Transporter, member of the ARN family of transporters that	805	738
	specifically recognize siderophore-iron chelates; responsible for		
	uptake of iron bound to ferrirubin, ferrirhodin, and related		
	siderophores		
ARN2	Transporter, member of the ARN family of transporters that	806	739
	specifically recognize siderophore-iron chelates; responsible for		
	uptake of iron bound to the siderophore triacetylfusarinine C		
ATX1	Cytosolic copper metallochaperone that transports copper to the	802	735
	secretory vesicle copper transporter Ccc2p for eventual		
	insertion into Fet3p, which is a multicopper oxidase required		
	for high-affinity iron uptake		
CCC2	Cu(+2)-transporting P-type ATPase, required for export of	803	736
	copper from the cytosol into an extracytosolic compartment;		
	has similarity to human proteins involved in Menkes and		
	Wilsons diseases		
COTI	Vacuolar transporter that mediates zinc transport into the	816	749
	vacuole; overexpression confers resistance to cobalt and		
	rhodium		
ENB1	Endosomal ferric enterobactin transporter, expressed under	808	741
(ARN4)	conditions of iron deprivation; member of the major facilitator		
	superfamily; expression is regulated by Rcs1p and affected by		
	chloroquine treatment		
FET3	Ferro-O2-oxidoreductase required for high-affinity iron uptake	800	733
	and involved in mediating resistance to copper ion toxicity,		
	belongs to class of integral membrane multicopper oxidases		
FET5	Multicopper oxidase, integral membrane protein with similarity	814	747
	to Fet3p; may have a role in iron transport		
FIT1	Mannoprotein that is incorporated into the cell wall via a	792	725
	glycosylphosphatidylinositol (GPI) anchor, involved in the		
	retention of siderophore-iron in the cell wall		
FIT2	Mannoprotein that is incorporated into the cell wall via a	793	726
	glycosylphosphatidylinositol (GPI) anchor, involved in the		
	retention of siderophore-iron in the cell wall		
FTT3	Mannoprotein that is incorporated into the cell wall via a	794	727
	glycosylphosphatidylmositol (GPI) anchor, involved in the		
EDE 1	retention of siderophore-iron in the cell wall		
FRET	Ferric reductase and cupric reductase, reduces siderophore-	/95	728
	bound iron and oxidized copper prior to uptake by transporters;		
EDEA	expression induced by low copper and iron levels	704	700
FRE2	Ferric reductase and cupric reductase, reduces siderophore-	796	729
	bound iron and oxidized copper prior to uptake by transporters;		

Table 7. Example Fe Uptake and Utilization Genes

	expression induced by low copper and iron levels		
FRE3	Ferric reductase, reduces siderophore-bound iron prior to	797	730
	uptake by transporters; expression induced by low iron levels		
FRE4	Ferric reductase, reduces a specific subset of siderophore-bound	798	731
	iron prior to uptake by transporters; expression induced by low		
	iron levels		
FRE5	Putative ferric reductase with similarity to Fre2p; expression	799	732
	induced by low iron levels; the authentic, non-tagged protein is		
	detected in highly purified mitochondria in high-throughput		
	studies		
FRE6	Putative ferric reductase with similarity to Fre2p; expression	817	750
	Induced by low iron levels	010	
FTHI	Putative high affinity iron transporter involved in transport of	813	746
	intravacuolar stores of iron; forms complex with Fet5p;		
	expression is regulated by iron; proposed to play indirect role in		
	Utich officity increases involved in the transment of incre	801	724
	agrees the plagma membrane: forms complex with Ect2n:	801	/34
	expression is regulated by iron		
HMYI	FR localized heme-binding perovidase involved in the	823	756
	degradation of heme: does not exhibit heme oxygenase activity	025	750
	despite similarity to heme oxygenases: expression regulated by		
	AFT1		
SIT1	Ferrioxamine B transporter, member of the ARN family of	807	740
(ARN3)	transporters that specifically recognize siderophore-iron		
	chelates; transcription is induced during iron deprivation and		
	diauxic shift; potentially phosphorylated by Cdc28p		
SMF3	Putative divalent metal ion transporter involved in iron	815	741
	homeostasis; transcriptionally regulated by metal ions; member		
	of the Nramp family of metal transport proteins		
TIS11	mRNA-binding protein expressed during iron starvation; binds	824	757
(<i>CTH2</i>)	to a sequence element in the 3'-untranslated regions of specific		
	mRNAs to mediate their degradation; involved in iron		
	homeostasis		
VHTI	High-affinity plasma membrane H+-biotin (vitamin H)	822	755
	symporter; mutation results in fatty acid auxotrophy; 12		
	transmembrane domain containing major facilitator subfamily		
	member; mKNA levels negatively regulated by iron deprivation		
	and blotin		

[00116] Based on their functions and association with Fe uptake and utilization, the proteins encoded by the genes disclosed in Table 7 are candidates for affecting Fe-S cluster biosynthesis. Additional yeast genes associated with Fe uptake and utilization or Fe-S cluster biosynthesis include those listed in Table 8.

Table 8. Genes Associated With Yeast Fe Uptake and Utilization or Fe-S Cluster Biosynthesis

Gene	Nucleic	Amino	Putative Function
Name	Acid	Acid	
	SEQ ID	SEQ ID	
	NO:	NO:	
AFT1	770	703	Transcription factor involved in iron utilization and homeostasis; binds the
			consensus site PyPuCACCCPu and activates the expression of target genes in

			response to changes in iron availability
AFT2	771	704	Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; similar to Aft1p
AIMI	779	712	Interacts with Grx3/4
ARHI	855	837	Oxidoreductase of the mitochondrial inner membrane, involved in cytoplasmic and mitochondrial iron homeostasis and required for activity of Fe-S cluster-containing enzymes; one of the few mitochondrial proteins essential for viability (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
ATMI	830	763	Mitochondrial inner membrane ATP-binding cassette (ABC) transporter, exports mitochondrially synthesized precursors of iron-sulfur (Fe/S) clusters to the cytosol (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
BUD32	778	711	Interacts with Grx3/4 and Aft1p
CAD1 (YAP2)	791	724	Stress responses including Fe deprivation; also regulates CTI6 and MRS4 genes
CCCI	811	744	Putative vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation
CFD1	834	767	Highly conserved, iron-sulfur cluster binding protein localized in the cytoplasm; forms a complex with Nbp35p that is involved in iron-sulfur protein assembly in the cytosol (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
CIA1	836	769	WD40 repeat protein involved in assembly of cytosolic and nuclear iron- sulfur proteins; similar to the human Ciao1 protein; YDR267C is an essential gene (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
CMK1	784	717	Interacts with Grx4p
CTH1	825	758	mRNA binding and degradation under Fe depletion conditions
CTI6	786	719	Growth in low iron conditions
CYC8 (SSN6)	787	720	General transcriptional co-repressor, acts together with Tup1p; also acts as part of a transcriptional co-activator complex that recruits the SWI/SNF and SAGA complexes to promoters; can form the prion [OCT+]
DAP1	820	753	
DRE2	781	714	Interacts with Grx3p
ERVI	856	838	Flavin-linked sulfhydryl oxidase of the mitochondrial intermembrane space (IMS), oxidizes Mia40p as part of a disulfide relay system that promotes IMS retention of imported proteins; ortholog of human hepatopoietin (ALR) (<i>see</i> , <i>e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008)) Central players of the export pathway are the ABC transporter Atm1p of the mitochondrial inner membrane, the sulfhydryl oxidase Erv1p of the intermembrane space, and the tripeptide glutathione (23, 27, 50) (<i>see</i> Gerber, J., <i>et al.</i> , <i>Mol. Cell. Biol. 24</i> (11):4848-57 (2004))
ESA1	782	715	Interacts with Grx4p/Aft1p
FET4	809	742	Low-affinity Fe(II) transporter of the plasma membrane
FRA1	772	705	Protein involved in negative regulation of transcription of iron regulon; forms

			an iron independent complex with Fra2p, Grx3p, and Grx4p; cytosolic; mutant fails to repress transcription of iron regulon and is defective in spore formation
FRA2	773	706	Protein involved in negative regulation of transcription of iron regulon; forms an iron independent complex with Fra2p, Grx3p, and Grx4p; null mutant fails to repress iron regulon and is sensitive to nickel
GEF1	804	737	Copper transporter/loading for Fet3p
GGC1 (YHM1)	857	839	Mitochondrial GTP/GDP transporter, essential for mitochondrial genome maintenance; has a role in mitochondrial iron transport; member of the mitochondrial carrier family
GRX1	858	840	Hydroperoxide and superoxide-radical responsive heat-stable glutathione- dependent disulfide oxidoreductase with active site cysteine pair; protects cells from oxidative damage
GRX2	832	765	Cytoplasmic glutaredoxin, thioltransferase, glutathione-dependent disulfide oxidoreductase involved in maintaining redox state of target proteins, also exhibits glutathione peroxidase activity, expression induced in response to stress
GRX3	774	707	Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; monothiol glutaredoxin subfamily member along with Grx4p and Grx5p; protects cells from oxidative damage
GRX4	775	708	Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; monothiol glutaredoxin subfamily member along with Grx3p and Grx5p; protects cells from oxidative damage.
GRX5	831	764	Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; mitochondrial matrix protein involved in the synthesis/assembly of iron-sulfur centers; monothiol glutaredoxin subfamily member along with Grx3p and Grx4p (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
HDA1	790	723	Interacts with Tup1p, Ssn6p for Aft1/2p regulation in the absence of heme
IBA57	859	841	Mitochondrial matrix protein involved in the incorporation of iron-sulfur clusters into mitochondrial aconitase-type proteins; activates the radical-SAM family members Bio2p and Lip5p; interacts with Ccr4p in the two-hybrid system (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
ISA1	860	842	Mitochondrial matrix protein involved in biogenesis of the iron-sulfur (Fe/S) cluster of Fe/S proteins, isal deletion causes loss of mitochondrial DNA and respiratory deficiency; depletion reduces growth on nonfermentable carbon sources (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
ISA2	861	843	Protein required for maturation of mitochondrial and cytosolic Fe/S proteins, localizes to the mitochondrial intermembrane space, overexpression of ISA2 suppresses grx5 mutations (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
ISU1	828	761	Conserved protein of the mitochondrial matrix, performs a scaffolding function during assembly of iron-sulfur clusters, interacts physically and functionally with yeast frataxin (Yfh1p); isu1 isu2 double mutant is inviable (<i>see</i> , <i>e.g.</i> , Lill, R. and U. Muchlenhoff, Ann. Rev. Biochem. 77:669-700

			(2008))
ISU2	829	762	Conserved protein of the mitochondrial matrix, required for synthesis of mitochondrial and cytosolic iron-sulfur proteins, performs a scaffolding function in mitochondria during Fe/S cluster assembly; isu1 isu2 double mutant is inviable (<i>see, e.g.,</i> Lill, R. and U. Muchlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
JACI	862	844	Specialized J-protein that functions with Hsp70 in Fe-S cluster biogenesis in mitochondria, involved in iron utilization; contains a J domain typical to J-type chaperones; localizes to the mitochondrial matrix (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
MGE1	863	845	Mitochondrial matrix cochaperone, acts as a nucleotide release factor for Ssc1p in protein translocation and folding; also acts as cochaperone for Ssq1p in folding of Fe-S cluster proteins; homolog of E. coli GrpE (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
MRS3	819	752	Iron transporter that mediates Fe2+ transport across the inner mitochondrial membrane; mitochondrial carrier family member, similar to and functionally redundant with Mrs4p; active under low-iron conditions; may transport other cations (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
MRS4	818	751	Iron transporter that mediates Fe2+ transport across the inner mitochondrial membrane; mitochondrial carrier family member, similar to and functionally redundant with Mrs3p; active under low-iron conditions; may transport other cations (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
MSN5	776	709	Exporting Aft1p and other proteins from the nucleus
NAR1	833	766	Component of the cytosolic iron-sulfur (FeS) protein assembly machinery, required for maturation of cytosolic and nuclear FeS proteins and for normal resistance to oxidative stress; homologous to human Narf (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
NBP35	835	768	Essential iron-sulfur cluster binding protein localized in the cytoplasm; forms a complex with Cfd1p that is involved in iron-sulfur protein assembly in the cytosol; similar to P-loop NTPases (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
NFS1	864	846	Cysteine desulfurase involved in iron-sulfur cluster (Fe/S) biogenesis; required for the post-transcriptional thio-modification of mitochondrial and cytoplasmic tRNAs; essential protein located predominantly in mitochondria (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
NFU1	865	847	Protein involved in iron utilization in mitochondria; similar to NifU, which is a protein required for the maturation of the Fe/S clusters of nitrogenase in nitrogen-fixing bacteria (<i>see</i> , <i>e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
NHP6a and b	788,789	721, 722	Both are high-mobility group non-histone chromatin protein, functionally redundant with Nhp6Bp; homologous to mammalian high mobility group proteins 1 and 2; acts to recruit transcription factor Rcs1p to certain promoters
PSE1	777	710	Importing Aft1p and other proteins to the nucleus

SMF1	810	743	Low affinity Fe(II) transporter of the plasma membrane
SNF1	866	848	AMP-activated serine/threonine protein kinase found in a complex containing Snf4p and members of the Sip1p/Sip2p/Gal83p family; required for transcription of glucose-repressed genes, thermotolerance, sporulation, and peroxisome biogenesis
SNF2	867	849	Catalytic subunit of the SWI/SNF chromatin remodeling complex involved in transcriptional regulation; contains DNA-stimulated ATPase activity; functions interdependently in transcriptional activation with Snf5p and Snf6p
SNF3	868	850	Plasma membrane glucose sensor that regulates glucose transport; has 12 predicted transmembrane segments; long cytoplasmic C-terminal tail is required for low glucose induction of hexose transporter genes HXT2 and HXT4
SNF4	869	851	Activating gamma subunit of the AMP-activated Snf1p kinase complex (contains Snf1p and a Sip1p/Sip2p/Gal83p family member); activates glucose-repressed genes, represses glucose-induced genes; role in sporulation, and peroxisome biogenesis
SSQ1	827	760	Mitochondrial hsp70-type molecular chaperone, required for assembly of iron/sulfur clusters into proteins at a step after cluster synthesis, and for maturation of Yfh1p, which is a homolog of human frataxin implicated in Friedreich's ataxia (<i>see, e.g.,</i> Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
<i>TIM12</i> (<i>MRS5</i>)	871	853	Essential protein of the inner mitochondrial membrane, peripherally localized; component of the TIM22 complex, which is a twin-pore translocase that mediates insertion of numerous multispanning inner membrane protein.
TUPI	785	718	General repressor of transcription
NP_0119 11.1	821	754	
VPS41 (FET2)	872	854	Vacuolar membrane protein that is a subunit of the homotypic vacuole fusion and vacuole protein sorting (HOPS) complex; essential for membrane docking and fusion at the Golgi-to-endosome and endosome-to-vacuole stages of protein transport
YAH1	870	852	Ferredoxin of the mitochondrial matrix required for formation of cellular iron-sulfur proteins; involved in heme A biosynthesis; homologous to human adrenodoxin (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
YAP5	812	745	Regulation (CCC1)
<i>YFH1</i> (Frataxin)	826	759	Mitochondrial matrix iron chaperone; oxidizes and stores iron; interacts with Isu1p to promote Fe-S cluster assembly; mutation results in multiple Fe/S-dependent enzyme deficiencies; human frataxin homolog is mutated in Friedrich's ataxia (<i>see, e.g.</i> , Lill, R. and U. Muehlenhoff, Ann. Rev. Biochem. 77:669-700 (2008))
YRA1	783	716	Interacts with Grx4p
ZPR1	780	713	Interacts with Aft1n

[00117] Additional genes encoding polypeptides affecting Fe-S cluster biosynthesis from other host cells have been identified and include, but are not limited to, those genes listed in Table 9.

Table 9. Genes Directly Involved in Fe-S Cluster Biosynthesis from Various Cells

Gene Name	Function
SEQ ID	(Accession; CDS)
NOs(Amino	
Acid, Nucleic	
Acid)	
	Azotobacter vinelandii nif genes
(Figures 6A a	nd 6B; see Johnson, D.C., et al., Ann. Rev. Biochem. 74:247-81 (2005))
iscA ^{nif}	[Fe-S] cluster scaffold protein (see Johnson, D.C., et al., Ann. Rev.
(873, 894)	Biochem. 74:247-81 (2005))
	(YP_002797399.1; nucleotides 153037 to 153360 of NC_012560.1)
nifU	NifU is a scaffold protein for assembly and transfer of iron-sulfur
(875, 896)	clusters (see Johnson, D.C., et al., Ann. Rev. Biochem. 74:247-81
	(2005)).
	(YP_002797400.1; nucleotides 153425 to 154363 of NC_012560.1)
nifS	Cysteine desulfurase involved in the mobilization of S for nitrogenase
(874, 895)	maturation (see Johnson, D.C., et al., Ann. Rev. Biochem. 74:247-81
	(2005)).
	(YP_002797401.1; nucleotides 154365 to 155573 of NC_012560.1)
cysEl	Involved in cysteine biosynthesis (see Johnson, D.C., et al., Ann. Rev.
(876, 897)	Biochem. 74:247-81 (2005))
	(YP_002797403.1; nucleotides 156797 to 157594 of NC_012560.1)
cysE2	Involved in cysteine biosynthesis (see Johnson, D.C., et al., Ann. Rev.
(929, 947)	Biochem. $/4:24/-81$ (2005)) (VD 002801152 1, resource a single mean to formalize title 4002150 to
	$(YP_002801153.1;$ reverse complement of nucleotides 4092159 to $4002028 \text{ of NC} (0.012560.1)$
	Cysteine desulfurase involved in the mobilization of S (see Johnson
	D C et al Ann Rev Riochem 74.247-81 (2005))
iscS	$(YP_0028011511)$; reverse complement of nucleotides of 4090290 to
(930, 948)	4091504 of NC 012560.1)
	[Fe-S] cluster scaffold protein (see Johnson, D.C., et al., Ann. Rev.
	Biochem. 74:247-81 (2005))
iscU	(YP 002801150.1; reverse complement of nucleotides 4089860 to
(931, 949)	4090246 of NC_012560.1)
	[Fe-S] cluster scaffold protein (see Johnson, D.C., et al., Ann. Rev.
	Biochem. 74:247-81 (2005))
iscA	(YP_002801149.1; reverse complement of nucleotides 4089511 to
(932, 950)	4089834 of NC_012560.1)
hscB	HscB heat shock cognate protein associated with Isc-directed [Fe-S]
(933, 951)	protein maturation (see Johnson, D.C., et al., Ann. Rev. Biochem.

	74:247-81 (2005))	
	(YP_002801148.1; reverse complement of nucleotides 4088980 to	
	4089501 of NC_012560.1)	
	HSCA heat snock cognate protein associated with isc-directed [Fe-S]	
	74.247_{-81} (2005))	
hscA	$(YP_002801147)$: reverse complement of nucleotides 4087072 to	
(934, 952)	4088937 of NC_012560.1)	
	Ferredoxin	
Fdx	$(YP_002801146.1; reverse complement of nucleotides 4086/30 to 1097071 (SNC 0125(0.1))$	
(935, 953)	$\frac{408/0/1 \text{ of } NC}{0.12560.1}$	
auf S	Cysteine desulturase involved in the mobilization of S (see Johnson, D C $at al Ann Bay Biochem 74:247.81 (2005))$	
(036, 054)	D.C., et al., Ann. Rev. Biochem. $74.247-61 (2003)$ (VP 002801025 1: nucleotides 3061166 to 3062515 of NC 012560 1)	
(930, 934) sufF	$(1P_002801025.1, indeconders 3901100 to 3902515 of NC_012500.1)$	
(937, 955)	(11_002801020.1, https://doi.org/10.01110_012500.1)	
	Involved in cysteine biosynthesis (see Johnson, D.C., et al., Ann. Rev.	
cysE3	Biochem. 74:247-81 (2005))	
(938, 956)	(YP_002799274.1; nucleotides 2093069 to 2094052 of NC_012560.1)	
<i>(</i> 12)	Cysteine desulfurase involved in the mobilization of S (see Johnson,	
sufS2	D.C., et al., Ann. Rev. Biochem. 74:247-81 (2005)) (VD. 002700276 1, muclastidas 2005267 to 2007081 of NG. 012560 1)	
(939, 937)	$(YP_002/992/6.1;$ nucleotides 209526/ to 209/081 of NC_012560.1)	
lscA2 also	[Fe-S] cluster scattold protein (see Johnson, D.C., et al., Ann. Rev. Biochem. 74:247-81 (2005))	
apr 4	(VP_002801687.1: reverse complement of nucleotides 4681573 to	
(877, 898)	4681923 of NC 012560.1)	
Nfu also	Human nfu appears to be a persulfide reductase according to the	
known as	equation shown in Figure 6C. (see Liu, Y., W. Qi, and J.A. Cowan,	
NfuA	Biochem. 48(5):973-80 (2009))	
(878, 899)	(YP_002800022.1; reverse complement of nucleotides 2961161 to	
	2961745 of NC_012560.1)	
<i>nfuA</i> also	Spectroscopic and analytical studies indicate that one	
known as	[4Fe-4S] cluster can be assembled <i>in vitro</i> within a dimeric form	
AnfU	of NfuA. The resultant [4Fe-48] cluster-loaded form of NfuA is	
(879, 900)	competent for rapid in vitro activation of apo-aconitase. Based	
	a class of intermediate [Fe-S] cluster carriers involved in	
	[Fe-S] protein maturation (see Bandyonadhyay S et al. [Rio] Chem	
	283(20)·14092-99 (2008))	
	(YP 002801977.1; nucleotides 4963727 to 4964017 of NC 012560.1)	
nfuV also	Could have specialized functions related to the maturation, protection,	
known as	or repair of specific [Fe-S] proteins (see Johnson, D.C., et al., Ann. Rev.	
VnfU	Biochem. 74:247-81 (2005)).	
(880, 901)	(YP_002797514.1; reverse complement of nucleotides 263828 to	
	264118 of NC_012560.1)	
Helicobacter pylori nif genes		

(Figure '	7; see Johnson, D.C., et al., Ann. Rev. Biochem. 74:247-81 (2005))
nifS	NifS is a cysteine desulfurase.
(881, 902)	(YP_003057033.1; nucleotides 218891 to 220054 of NC_012973.1)
nifU	NifU is a scaffold protein for assembly and transfer of iron-sulfur
(882, 903)	clusters. (YP_003057034.1; nucleotides 220076 to 221056 of NC_012973.1)
nfu (927, 945)	(YP_003058109.1; nucleotides 1448886 to 1449155 of NC_012973.1)
iscS (928, 946)	(YP_003057709.1; reverse complement of nucleotides 1012615 to 1013937 of NC 012973.1)
,	<i>E. coli isc</i> genes
(Figure	8; see Johnson, D.C., et al., Ann. Rev. Biochem. 74:247-81 (2005))
iscS (883, 904)	EcoCyc: IscS is a cysteine desulfurase that catalyzes the conversion of cysteine into alanine and sulfur via intermediate formation of a cysteine persulfide. (YP_026169.1; reverse complement of nucleotides 2658339 to 2659553 of NC_000913.2)
iscU (884, 905)	EcoCyc: IscU is a scaffold protein for assembly and transfer of iron- sulfur clusters. IscU is able to form 2Fe-2S clusters and transfer them to apo-ferredoxin, acting catalytically. The chaperones HscA and HscB and ATP hydrolysis by HscA accelerate cluster transfer. (NP_417024.1; reverse complement of nucleotides 2657925 to 2658311 of NC 000913.2)
iscA (885, 906)	EcoCyc: IscA is an iron-sulfur cluster assembly protein that forms the [2Fe-2S] cluster of ferredoxin. It has been shown to bind iron with an apparent association constant of $3 \times 10^{-19} \text{M}^{-1}$. <i>In vitro</i> in the presence of IscS and cysteine, IscA can provide iron to iscU. Native [2Fe-2S] SufA can transfer its Fe-S cluster to both [2Fe-2S] and [4Fe-4S] apoproteins. (<i>see</i> Gupta, V., <i>et al.</i> , <i>J. Am. Chem. Soc. 131</i> (17):6149-53 (2009)) The results suggest that the biogenesis of the [4Fe-4S] clusters and the [2Fe-2S] clusters may have distinct pathways and that IscA/SufA paralogues are essential for the [4Fe-4S] cluster assembly, but are dispensable for the [2Fe-2S] cluster assembly in E. coli under aerobic conditions. (Tan, G., <i>et al.</i> , <i>Biochem. J.</i> , 420(3):463-72 (2009)) (NP_417023.1; reverse complement of nucleotides 2657585 to 2657908 of NC_000913.2)
hscB (886, 907)	EcoCyc: HscB is a co-chaperone that stimulates HscA (Hsc66) ATPase activity. HscB does not exhibit its own chaperone activity. HscB is required for wild-type stimulation of HscA ATPase activity by the substrate, IscU, and for wild-type interaction between HscA and IscU. This system is involved in iron-sulfur cluster assembly. (NP_417022.1; reverse complement of nucleotides 2656974 to 2657489 of NC 000913.2)

hscA (887, 908) Fdx (888, 909)	 EcoCyc: Hsc66 together with Hsc20 may comprise a chaperone system similar to DnaK/DnaJ. Hsc66 is required for the assembly of iron-sulfur clusters. IscU may be a substrate for Hsc66. In the presence of Hsc20, IscU stimulates the ATPase activity of Hsc66 up to 480-fold; the <i>in vivo</i> turnover rate of the chaperone cycle may be determined by the availability of the IscU-Hsc20 complex. Hsc66 directly interacts with IscU, IscA, and Fdx. (NP_417021.1; reverse complement of nucleotides 2655107 to 2656957 of NC_000913.2) EcoCyc: [2Fe-2S] ferridoxin (NP_417020.1; reverse complement of nucleotides 2654770 to 2655105 of NC_000913.2) 						
<i>E. coli suf</i> genes							
(Figure 9; see Jonnson, D.C., et al., Ann. Rev. Biochem. /4:24/-81 (2005))							
sufA (889, 910)	EcoCyc: SufA is part of the protein machinery that is involved in the biosynthesis of iron-sulfur clusters. <i>In vitro</i> , purified apoSufA can chelate iron-sulfur clusters by treatment with iron and sulfide under anaerobic conditions. HoloSufA then can form a fast and tight association with the target apoprotein biotin synthase (BioB) and transfers a [4Fe-4S] cluster to BioB in a slow reaction. (NP_416199.1; reverse complement of nucleotides 1762042 to 1762410 of NC 000913.2)						
sufB	EcoCvc: The SufB-SufC-SufD complex activates the cysteine						
(890, 911)	desulfurase activity SufS in conjunction with the SufE sulfur acceptor						
(57.0)7.2.7	protein. (NP_416198.2; reverse complement of nucleotides 1760546 to 1762033 of NC_000913.2)						
sufC (891, 912)	EcoCyc: SufC is part of the protein machinery that is involved in the biosynthesis of iron-sulfur clusters. The SufB-SufC-SufD complex activates the cysteine desulfurase activity of SufS in conjunction with the SufE sulfur acceptor protein. (NP_416197.1; reverse complement of nucleotides 1759790 to 1760536 of NC_000913.2)						
sufD	EcoCyc: The SufB-SufC-SufD complex activates the cysteine						
(892, 913)	desulfurase activity SufS in conjunction with the SufE sulfur acceptor						
	protein (NP_416196.1; reverse complement of nucleotides 1758544 to 1759815 of NC_000913.2)						
sufS	EcoCyc: SufS is a member of the NifS protein family. SufS exhibits						
(893, 914)	activity with respect to assembly of the ferredoxin iron-sulfur cluster in						
	an <i>in vitro</i> assay.						
	$(NF_410195.1;$ reverse complement of nucleotides $1/5/32/$ to $1/5854/$ of NC 000913.2)						
sufE1 also	(NP_416194.1: reverse complement of nucleotides 1756898 to 1757314						
known as suf E	of NC 000913.2)						
(925, 943)							
sufS2 also	(NP 417290.1; NC 000913.2 nucleotides 2941359 to 2942564)						

known as csdA	
(924, 942)	
sufE2 also	(NP_417291.1; nucleotides 2942564 to 2943007 of NC_000913.2)
known as csdE	
(926, 944)	
iscA2 also	(NP_414698.1; nucleotides 176610 to 176954 of NC_000913.2)
known as erpA	
(922, 940)	
nfu also known	(NP_417873.1; nucleotides 3543646 to 3544221 of NC_000913.2)
as nfuA	
(923, 941)	

- **[0100]** Provided herein are recombinant host cells that comprise an alteration in the expression of any polypeptide encoded by an Fe uptake and utilization or an Fe-S cluster biosynthesis gene. Encompassed are recombinant host cells that comprise at least one heterologous polynucleotide of any one of the above-referenced Fe-S cluster biosynthesis genes. Also encompassed are recombinant host cells, wherein the host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene of any one of the above-referenced Fe uptake and utilization or Fe-S cluster biosynthesis genes. Also provided are recombinant host cells that comprise at least one heterologous polynucleotide of any one of the above-referenced Fe uptake and utilization or Fe-S cluster biosynthesis genes. Also provided are recombinant host cells that comprise at least one heterologous polynucleotide of any one of the above-referenced Fe uptake and utilization or Fe-S cluster biosynthesis genes, wherein the host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene of any one of the above-referenced Fe uptake and utilization or Fe-S cluster biosynthesis genes. Fe uptake and utilization or Fe-S cluster biosynthesis genes, wherein the host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene of any one of the above-referenced Fe uptake and utilization or Fe-S cluster biosynthesis genes.
- [0101] These recombinant host cells can also comprise at least one heterologous Fe-S cluster requiring protein. For example, provided herein is a recombinant host cell comprising at least one heterologous DHAD and at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis. Also provided is a recombinant host cell comprising at least one heterologous DHAD, wherein the host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis. Also provided is a recombinant host cell comprising at least one heterologous DHAD, wherein the host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting a polypeptide affecting Fe-S cluster biosynthesis. Also provided is a recombinant host cell comprising at least one heterologous DHAD and at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis. Also provided is a recombinant host cell comprising at least one heterologous DHAD and at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis, wherein the host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis.

- [0102] Host cells that can be used in the present invention include yeast host cells including, but not limited to, *Saccharomyces, Schizosaccharomyces, Hansenula, Candida, Kluyveromyces, Yarrowia, Issatchenkia,* and *Pichia.* Bacterial host cells can also be used to create recombinant host cells that comprise at least one heterologous polynucleotide encoding a polypeptide having DHAD activity and at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis. For example, lactic acid bacteria comprising recombinant DHAD and at least one recombinant genetic expression element encoding Fe-S cluster forming proteins are the subject of U.S. Appl. No. 12/569,103, filed Sept. 29, 2009, which is incorporated by reference herein. The present recombinant host cells comprising at least one heterologous polynucleotide encoding a polypeptide having DHAD activity and at least one heterologous polynucleotide encoding a polypeptide forming proteins are the subject of U.S. Appl. No. 12/569,103, filed Sept. 29, 2009, which is incorporated by reference herein. The present recombinant host cells comprising at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis do not include those lactic acid bacteria described in U.S. Appl. No. 12/569,103, filed Sept. 29, 2009, which is incorporated by reference herein.
- [0103] The polypeptide affecting Fe-S cluster biosynthesis can be selected from the group consisting of the Fe uptake and utilization or Fe-S cluster biosynthesis pathway genes in Tables 7, 8 and 9. In one embodiment, the polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of AFT1, AFT2, PSE1, FRA2, GRX3, MSN5, and combinations thereof. In another embodiment, the polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of AFT1, AFT2, PSE1, FRA2, GRX3, MSN5, and combinations thereof, and the polypeptide affecting Fe-S cluster biosynthesis is encoded by a polynucleotide comprising a plasmid. In some embodiments, DHAD is co-expressed with AFT1, AFT2, PSE1, and combinations thereof. The polypeptide affecting Fe-S cluster biosynthesis may be a constitutive mutant, such as, but not limited to, AFT1 L99A, AFT1 L102A, AFT1 C291F, AFT1 C293F, and combinations thereof. The deletion, mutation, and/or substitution in the endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis can be selected from the group consisting of FRA2, GRX3, MSN5, and combinations thereof.
- [0104] The present invention also provides a method for increasing the activity of an Fe-S cluster requiring protein in a recombinant host cell comprising providing a recombinant host cell comprising an Fe-S cluster requiring protein, changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis in the host cell, and growing the

recombinant host cell with the changed expression or activity under conditions whereby the activity of the Fe-S cluster requiring protein is increased. Such a method can be used to increase the activity of an endogenous Fe-S cluster requiring protein, or a heterologous Fe-S cluster requiring protein. Such a method can be used to increase the specific activity of a DHAD described herein, or identified by the methods described herein. The increase in the activity of the Fe-S cluster requiring protein can be in an amount selected from greater than about 10%; greater than about 15%; greater than about 20%; greater than about 25%; greater than about 30%; greater than about 35%; greater than about 40%; greater than about 45%; greater than about 50%; greater than about 55%; greater than about 60%; greater than about 65%; greater than about 70%; greater than about 75%; greater than about 80%; greater than about 85%; greater than about 90%; and greater than about 95%. The increase in activity may be greater than about 3 fold, greater than about 5 fold, greater than about 8 fold, or greater than about 10 fold. In embodiments, the activity of the Fe-S cluster requiring protein can be in an amount that is at least about 60% of theoretical, at least about 70% of theoretical, at least about 80% theoretical, or at least about 90% theoretical.

[0105] The present invention can also be used to increase the flux in the Fe-S cluster biosynthesis pathway in a host cell and to identify polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell. In one embodiment a method is provided for increasing the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising providing a recombinant host cell comprising an Fe-S cluster requiring protein and either at least one polypeptide affecting Fe-S cluster biosynthesis, at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis, or a combination of both, and growing the recombinant host cell under conditions whereby the flux in the Fe-S cluster biosynthesis pathway in the host cell is increased. In another embodiment, a method is provided for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising: (a) changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis; (b) measuring the activity of a Fe-S cluster requiring protein; and (c) comparing the activity of the Fe-S cluster requiring protein measured in the presence of the change in expression or activity polypeptide of step (a) to the activity of the Fe-S cluster requiring protein measured in the absence of the change in expression or activity polypeptide of step (a), wherein an increase in the activity of the heterologous Fe-S cluster requiring protein indicates an increase in the flux in said Fe-S cluster biosynthesis pathway. In such methods, the Fe-S cluster requiring protein may be endogenous or heterologous to the host cell.

- **[0106]** The expression or activity of the polypeptide affecting Fe-S cluster biosynthesis can be changed by methods well known in the art, including, but not limited to, deleting, mutating, substituting, expressing, up-regulating, down-regulating, altering the cellular location, altering the state of the protein, and/or adding a cofactor, and combinations thereof. Altering the state of the protein can include, but are not limited to, such alterations as phosphorylation or ubiquitination. Any number of methods described herein or known in the art can be used to measure the activity of the Fe-S cluster requiring protein, depending upon the Fe-S cluster requiring protein chosen. For example, if DHAD is the Fe-S cluster requiring protein, the assay described in the Example 6 can be used to measure the activity of the DHAD to determine if there is an increase in the flux in the Fe-S cluster biosynthesis pathyway of the host cell.
- [0107] <u>Isobutanol and Other Products</u>
- **[0108]** Expression of a DHAD in a recombinant host cell, as described herein, provides the transformed, recombinant host cell with dihydroxy-acid dehydratase activity for conversion of 2,3-dihydroxyisovalerate to α -ketoisovalerate or 2,3-dihydroxymethylvalerate to α -ketomethylvalerate. A product that has α -ketoisovalerate or α -ketomethylvalerate as a pathway intermediate may be produced with greater effectiveness in a host cell disclosed herein having the described heterologous DHAD. A list of such products includes, but is not limited to, valine, isoleucine, leucine, pantothenic acid, 2-methyl-1-butanol, 3-methyl-1-butanol, and isobutanol.
- [0109] For example, biosynthesis of valine in yeast includes steps of acetolactate conversion to 2,3-dihydroxy-isovalerate by acetohydroxyacid reductoisomerase (ILV5), conversion of 2,3-dihydroxy-isovalerate to α -ketoisovalerate (also called 2-keto-isovalerate) by dihydroxy-acid dehydratase, and conversion of α -ketoisovalerate to valine by branched-chain amino acid transaminase (BAT2) and branched-chain animo acid aminotransferase (BAT1). Biosynthesis of leucine includes the same steps to α -ketoisovalerate, followed by conversion of α -ketoisovalerate to alpha-isopropylmalate synthase (LEU9, LEU4), conversion of alpha-isopropylmalate to

beta-isopropylmalate by isopropylmalate isomerase (LEU1), conversion of betaisopropylmalate to alpha-ketoisocaproate by beta-IPM dehydrogenase (LEU2), and finally conversion of alpha-ketoisocaproate to leucine by branched-chain amino acid transaminase (BAT2) and branched-chain amino acid aminotransferase (BAT1). The bacterial pathway is similar, involving differently named proteins and genes. Increased conversion of 2,3-dihydroxy-isovalerate to α -ketoisovalerate will increase flow in these pathways, particularly if one or more additional enzymes of a pathway is overexpressed. Thus, it is desired for production of valine or leucine to use a strain disclosed herein.

- [0110] Biosynthesis of pantothenic acid includes a step performed by DHAD, as well as steps performed by ketopantoate hydroxymethyltransferase and pantothenate synthase. Engineering of expression of these enzymes for enhanced production of pantothenic acid biosynthesis in microorganisms is described in U.S. Patent No. 6,177,264.
- **[0111]** The α-ketoisovalerate product of DHAD is an intermediate in isobutanol biosynthetic pathways disclosed in U.S. Patent Appl. Pub. No. 20070092957 A1, which is incorporated by reference herein. A diagram of the disclosed isobutanol biosynthetic pathways is provided in Figure 5. Production of isobutanol in a strain disclosed herein benefits from increased DHAD activity. As disclosed herein, increased DHAD activity is provided by expression of a DHAD in a host cell, for example, by over-expressing the DHAD, by modulating the expression or activity of a polypeptide having Fe-S cluster regulatory activity, or a combination of both expression of a DHAD and modulation of the expression or activity of a polypeptide having Fe-S cluster regulatory activity. As described in U.S. Patent Appl. Pub. No. 20070092957 A1, which is incorporated by reference herein, steps in an example isobutanol biosynthetic pathway include conversion of:
- [0112] pyruvate to acetolactate (*see* Fig. 5, pathway step a therein), as catalyzed for example by acetolactate synthase,
- [0113] acetolactate to 2,3-dihydroxyisovalerate (*see* Fig. 5, pathway step b therein) as catalyzed for example by acetohydroxy acid isomeroreductase;
- [0114] 2,3-dihydroxyisovalerate to α-ketoisovalerate (*see* Fig. 5, pathway step c therein) as catalyzed for example by acetohydroxy acid dehydratase, also called dihydroxy-acid dehydratase (DHAD);

- [0115] α -ketoisovalerate to isobutyraldehyde (*see* Fig. 5, pathway step d therein) as catalyzed for example by branched-chain α -keto acid decarboxylase; and
- [0116] isobutyraldehyde to isobutanol (*see* Fig. 5, pathway step e therein) as catalyzed for example by branched-chain alcohol dehydrogenase.
- [0117] The substrate to product conversions, and enzymes involved in these reactions, for steps f, g, h, I, j, and k of alternative pathways are described in U.S. Patent Appl. Pub. No. 20070092957 A1, which is incorporated by reference herein.
- [0118] Genes that can be used for expression of the pathway step enzymes named above other than the DHADs disclosed herein, as well as those for two additional isobutanol pathways, are described in U.S. Patent Appl. Pub. No. 20070092957 A1, which is incorporated by reference herein. Additional genes that may be used can be identified by one skilled in the art through bioinformatics or using methods well-known in the art, such as the various methods described in U.S. Appl. No. 12/569,636, filed Sept. 29, 2009, which is incorporated by reference herein, to isolate homologs. The use in all three pathways of ketol-acid reductoisomerase (KARI) enzymes with particularly high activities is disclosed in U.S. Patent Appl. Pub. No. 20080261230 A1, which is incorporated by reference herein. Examples of high activity KARIs disclosed therein are those from Vibrio cholerae, Pseudomonas aeruginosa PAO1, and Pseudomonas fluorescens PF5. U.S. Patent Appl. Publ No. 2009/0163376 and U.S. Patent Application 12/637,905, filed December 15, 2009, incorporated herein by reference, describes acetohydroxy acid isomeroreductases; U.S. Patent Appl. Publ. No. 2009/0269823, incorporated by reference herein, describes a suitable alcohol dehydrogenase.
- [0119] Additionally described in U.S. Patent Appl. Pub. No. 20070092957 A1, which is incorporated by reference herein, are construction of chimeric genes and genetic engineering of bacteria and yeast for isobutanol production using the disclosed biosynthetic pathways.

[0120] Growth for production

[0121] Recombinant host cells disclosed herein are grown in fermentation media which contains suitable carbon substrates. Suitable carbon substrates may include, but are not limited to, monosaccharides such as glucose, fructose, oligosaccharides such as lactose maltose, galactose, or sucrose, polysaccharides such as starch or cellulose or mixtures thereof and unpurified mixtures from renewable feedstocks such as cheese whey

permeate, cornsteep liquor, sugar beet molasses, and barley malt. Other carbon substrates may include ethanol, lactate, succinate, or glycerol.

- [0122] Additionally the carbon substrate may also be one-carbon substrates such as carbon dioxide, or methanol for which metabolic conversion into key biochemical intermediates has been demonstrated. Two-carbon substrates such as ethanol may also suitable. In addition to one and two carbon substrates, methylotrophic organisms are also known to utilize a number of other carbon containing compounds such as methylamine, glucosamine and a variety of amino acids for metabolic activity. For example, methylotrophic yeasts are known to utilize the carbon from methylamine to form trehalose or glycerol (Bellion *et al., Microb. Growth Cl Compd.*, [Int. Symp.], 7th (1993), 415-32, Editor(s): Murrell, J. Collin; Kelly, Don P. Publisher: Intercept, Andover, UK). Similarly, various species of *Candida* will metabolize alanine or oleic acid (Sulter *et al., Arch. Microbiol.* 153:485-489 (1990)). Hence it is contemplated that the source of carbon utilized in the present invention may encompass a wide variety of carbon containing substrates and will only be limited by the choice of organism.
- [0123] Although it is contemplated that all of the above mentioned carbon substrates and mixtures thereof are suitable in the present invention, in some embodiments, the carbon substrates are glucose, fructose, and sucrose, or mixtures of these with C5 sugars such as xylose and/or arabinose for yeasts cells modified to use C5 sugars. Sucrose may be derived from renewable sugar sources such as sugar cane, sugar beets, cassava, sweet sorghum, and mixtures thereof. Glucose and dextrose may be derived from renewable grain sources through saccharification of starch based feedstocks including grains such as corn, wheat, rye, barley, oats, and mixtures thereof. In addition, fermentable sugars may be derived from renewable cellulosic or lignocellulosic biomass through processes of pretreatment and saccharification, as described, for example, in co-owned and co-pending U.S. Patent Appl. Pub. No. 20070031918 A1, which is herein incorporated by reference. Biomass refers to any cellulosic or lignocellulosic material and includes materials comprising cellulose, and optionally further comprising hemicellulose, lignin, starch, oligosaccharides and/or monosaccharides. Biomass may also comprise additional components, such as protein and/or lipid. Biomass may be derived from a single source, or biomass can comprise a mixture derived from more than one source; for example, biomass may comprise a mixture of corn cobs and corn stover, or a mixture of grass and

leaves. Biomass includes, but is not limited to, bioenergy crops, agricultural residues, municipal solid waste, industrial solid waste, sludge from paper manufacture, yard waste, wood and forestry waste. Examples of biomass include, but are not limited to, corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, soy, components obtained from milling of grains, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof.

- [0124] In addition to an appropriate carbon source, growth media must contain suitable minerals, salts, cofactors, buffers and other components, known to those skilled in the art, suitable for the growth of the cultures and promotion of an enzymatic pathway comprising a Fe-S cluster requiring protein such as, for example, DHAD.
- [0125] <u>Culture Conditions</u>
- [0126] Typically cells are grown at a temperature in the range of about 20 °C to about 40 °C in an appropriate medium. Suitable growth media in the present invention are common commercially prepared media such as Luria Bertani (LB) broth, Sabouraud Dextrose (SD) broth, Yeast Medium (YM) broth, or broth that includes yeast nitrogen base, ammonium sulfate, and dextrose (as the carbon/energy source) or YPD Medium, a blend of peptone, yeast extract, and dextrose in optimal proportions for growing most *Saccharomyces cerevisiae* strains. Other defined or synthetic growth media may also be used, and the appropriate medium for growth of the particular microorganism will be known by one skilled in the art of microbiology or fermentation science. The use of agents known to modulate catabolite repression directly or indirectly, *e.g.*, cyclic adenosine 2':3'-monophosphate, may also be incorporated into the growth medium.
- [0127] Suitable pH ranges for the growth are between about pH 5.0 to about pH 9.0. In one embodiment, about pH 6.0 to about pH 8.0 is used for the initial condition. Suitable pH ranges for the fermentation of yeast are typically between about pH 3.0 to about pH 9.0. In one embodiment, about pH 5.0 to about pH 8.0 is used for the initial condition. Suitable pH ranges for the fermentation of other microorganisms are between about pH 3.0 to about pH 4.5 to about pH 6.5 is used for the initial condition.

- [0128] Growth may be performed under aerobic or anaerobic conditions. In one embodiment, anaerobic or microaerobic conditions are used for growth.
- [0129] Industrial Batch and Continuous Fermentations
- **[0130]** Isobutanol, or other products, may be produced using a batch method of fermentation. A classical batch fermentation is a closed system where the composition of the medium is set at the beginning of the fermentation and not subject to artificial alterations during the fermentation. A variation on the standard batch system is the fed-batch system. Fed-batch fermentation processes are also suitable in the present invention and comprise a typical batch system with the exception that the substrate is added in increments as the fermentation progresses. Fed-batch systems are useful when catabolite repression is apt to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the media. Batch and fed-batch fermentations are common and well known in the art and examples may be found in Thomas D. Brock in *Biotechnology: A Textbook of Industrial Microbiology*, Second Edition (1989) Sinauer Associates, Inc., Sunderland, MA., or Deshpande, Mukund V., *Appl. Biochem. Biotechnol.*, 36:227, (1992), herein incorporated by reference.
- **[0131]** Isobutanol, or other products, may also be produced using continuous fermentation methods. Continuous fermentation is an open system where a defined fermentation medium is added continuously to a bioreactor and an equal amount of conditioned media is removed simultaneously for processing. Continuous fermentation generally maintains the cultures at a constant high density where cells are primarily in log phase growth. Continuous fermentation allows for the modulation of one factor or any number of factors that affect cell growth or end product concentration. Methods of modulating nutrients and growth factors for continuous fermentation processes as well as techniques for maximizing the rate of product formation are well known in the art of industrial microbiology and a variety of methods are detailed by Brock, *supra*.
- [0132] It is contemplated that the production of isobutanol, or other products, may be practiced using batch, fed-batch or continuous processes and that any known mode of fermentation would be suitable. Additionally, it is contemplated that cells may be immobilized on a substrate as whole cell catalysts and subjected to fermentation conditions for isobutanol production.
- [0133] Methods for Isobutanol Isolation from the Fermentation Medium

- [0134] Bioproduced isobutanol may be isolated from the fermentation medium using methods known in the art for ABE fermentations (*see, e.g.*, Durre, *Appl. Microbiol. Biotechnol.* 49:639-648 (1998), Groot *et al.*, *Process. Biochem.* 27:61-75 (1992), and references therein). For example, solids may be removed from the fermentation medium by centrifugation, filtration, decantation, or the like. Then, the isobutanol may be isolated from the fermentation medium using methods such as distillation, azeotropic distillation, liquid-liquid extraction, adsorption, gas stripping, membrane evaporation, or pervaporation.
- **[0135]** Because isobutanol forms a low boiling point, azeotropic mixture with water, distillation can be used to separate the mixture up to its azeotropic composition. Distillation may be used in combination with another separation method to obtain separation around the azeotrope. Methods that may be used in combination with distillation to isolate and purify butanol include, but are not limited to, decantation, liquid-liquid extraction, adsorption, and membrane-based techniques. Additionally, butanol may be isolated using azeotropic distillation using an entrainer (*see, e.g.*, Doherty and Malone, *Conceptual Design of Distillation Systems*, McGraw Hill, New York, 2001).
- [0136] The butanol-water mixture forms a heterogeneous azeotrope so that distillation may be used in combination with decantation to isolate and purify the isobutanol. In this method, the isobutanol containing fermentation broth is distilled to near the azeotropic composition. Then, the azeotropic mixture is condensed, and the isobutanol is separated from the fermentation medium by decantation. The decanted aqueous phase may be returned to the first distillation column as reflux. The isobutanol-rich decanted organic phase may be further purified by distillation in a second distillation column.
- [0137] The isobutanol may also be isolated from the fermentation medium using liquidliquid extraction in combination with distillation. In this method, the isobutanol is extracted from the fermentation broth using liquid-liquid extraction with a suitable solvent. The isobutanol-containing organic phase is then distilled to separate the butanol from the solvent.
- [0138] Distillation in combination with adsorption may also be used to isolate isobutanol from the fermentation medium. In this method, the fermentation broth containing the isobutanol is distilled to near the azeotropic composition and then the remaining water is removed by use of an adsorbent, such as molecular sieves (Aden *et al. Lignocellulosic*

Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, Report NREL/TP-510-32438, National Renewable Energy Laboratory, June 2002).

[0139] Additionally, distillation in combination with pervaporation may be used to isolate and purify the isobutanol from the fermentation medium. In this method, the fermentation broth containing the isobutanol is distilled to near the azeotropic composition, and then the remaining water is removed by pervaporation through a hydrophilic membrane (Guo *et al.*, *J. Membr. Sci.* 245, 199-210 (2004)).

Examples

- [0140] The meaning of abbreviations used is as follows: "min" means minute(s), "h" means hour(s), "sec" means second(s), "µl" means microliter(s), "ml" means milliliter(s), "L" means liter(s), "nm" means nanometer(s), "mm" means millimeter(s), "cm" means centimeter(s), "µm" means micrometer(s), "mM" means millimolar, "M" means molar, "mmol" means millimole(s), "µmole" means micromole(s), "g" means gram(s), "µg" means microgram(s), "mg" means milligram(s), "rpm" means revolutions per minute, "w/v" means weight/volume, "OD" means optical density, and "OD₆₀₀" means optical density measured at a wavelength of 600 nm.
- [0141] GENERAL METHODS:
- [0142] Standard recombinant DNA and molecular cloning techniques used in the Examples are well known in the art and are described by Sambrook, J., Fritsch, E. F. and Maniatis, T., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, by T. J. Silhavy, M. L. Bennan, and L. W. Enquist, *Experiments with Gene Fusions*, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1984, and by Ausubel, F. M. *et al.*, *Current Protocols in Molecular Biology*, Greene Publishing Assoc. and Wiley-Interscience, N.Y., 1987.
- [0143] Materials and methods suitable for the maintenance and growth of bacterial cultures are also well known in the art. Techniques suitable for use in the following Examples may be found in *Manual of Methods for General Bacteriology*, Phillipp Gerhardt, R. G. E. Murray, Ralph N. Costilow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg and G. Briggs Phillips, eds., American Society for Microbiology, Washington, DC., 1994, or by Thomas D. Brock in *Biotechnology: A Textbook of Industrial*

Microbiology, Second Edition, Sinauer Associates, Inc., Sunderland, MA, 1989. All reagents, restriction enzymes and materials used for the growth and maintenance of bacterial cells were obtained from Aldrich Chemicals (Milwaukee, WI), BD Diagnostic Systems (Sparks, MD), Life Technologies (Rockville, MD), or Sigma Chemical Company (St. Louis, MO), unless otherwise specified.

[0144] Example 1. Over-expression of DHAD protein encoded by the *ilvD* gene from *S. mutans* using a plasmid-based system.

- **[0145]** Over-expression of a recombinant polynucleotide can be accomplished by increasing the copy number of a plasmid comprising the recombinant polynucleotide. To over-express the DHAD protein in yeast, an inducible vector was constructed. The pHR81 vector contains a *Ura3* marker as well as a *LEU* marker with a defective promoter (*see* U.S. Patent Appl. Pub. No. 2007/0092957, which is incorporated by reference herein). When the yeast synthetic dropout (SD; also known as complete minimal media; Teknova) growth medium is switched from SD minus uracil to SD minus leucine, the copy number of the pHR81 plasmid increases, resulting in much higher level of expression of the recombinant polynucleotide. The pHR81 vector backbone was derived from pLH472 JEG4y (SEQ ID NO: 921) and was prepared by digesting the pLH472 JEG4y vector with SpeI and SacII.
- [0146] For over-expression of a DHAD protein, the DHAD gene *ilvD* from *S. mutans* was used (*see* U.S. Published Patent Appl. No. US2009-0305363A1, which is incorporated by reference herein). This gene has been cloned under the control of the FBA promoter in vector pRS423 FBA ilvD Strep-lumio (*see* U.S. Published Patent Appl. No. US2009-0305363A1, which is incorporated by reference herein). The region containing the FBA promoter, the *ilvD* gene, and FBA terminator cassette was amplified with primer set FBAp-F(NheI) and FBAt-R(SacII) (SEQ ID NOS: 915 and 916) and cloned into the pHR81 vector. The resulting expression vector was designated as pHR81 FBA-IlvD(Sm)-lumio-FBAt (SEQ ID NO: 917; Figure 1A).
- [0147] To over express the *S. mutans* DHAD protein, the expression vector pHR81 FBA-IlvD(Sm)-lumio-FBAt was transformed into wild-type yeast strain BY4741.

Transformants were selected on agar plates with SD minus uracil. For over-expression, yeast strains containing the plasmid were initially grown at 30° C in SD liquid medium minus uracil. A fresh overnight culture (5 ml) was then transferred to a 125 ml flask containing 75 ml of SD medium minus leucine. As a control, another 5 ml of fresh overnight culture was transferred into a flask containing 75 ml of SD minus uracil. The cultures were incubated overnight before harvesting by centrifugation. The DHAD activity was measured in crude extracts of these samples using the assay described in Example 6.

- [0148]
- The DHAD specific activity obtained in the crude extract in the control samples grown in SD minus uracil was in the range of 0.2 U mg^{-1} . The average specific activity obtained from strains grown in the SD medium minus leucine, however, was 1.6 U mg⁻¹, much higher (~8-fold higher) than the activity from the control samples. DHAD requires Fe-S cluster for its function, and it was not previously known if the native yeast Fe-S cluster regulatory pathway could accommodate an over-expressed Fe-S cluster requiring protein. In a previous screening experiment using a non-inducible, low-copy number vector, the DHAD from S. mutans could be recombinantly expressed in yeast cytosol with a specific activity in the range of 0.1 to 0.2 U mg⁻¹ in the crude extract (see U.S. Patent Appl. No. 12/569,636, filed on Sept. 29, 2009, which is incorporated by reference herein). Thus, in one embodiment, over-expression of a Fe-S cluster requiring protein, such as DHAD, in yeast using a high-copy number vector provides increased specific activity, wherein the specific activity is increased by at least about 8 fold.

Example 2. Over-expression of DHAD protein encoded by the *ilvD* gene from [0149] S. mutans through chromosomal integration.

[0150] An alternate way to increase the expression of a gene in yeast is to integrate multiple copies of the gene of interest into the host cell's chromosome. To integrate the ilvD gene from S. mutans (SEQ ID NO:167) into a yeast chromosome, integration vector pZK-Delta(s)-Leu2-FBA-ilvD(Sm)-FBAt (SEQ ID NO: 918; Figure 1B) was constructed. The integration vector backbone was derived from pSuperscript (Stratagene, La Jolla, CA). The S. mutans ilvD gene (nucleotides 1306-3018 of the complement strand) was cloned into the integration vector under the control of the FBA promoter (nucleotides 3026-4023 of the complement strand) so that the *ilvD* gene would be flanked by a yeast delta sequence (nucleotides 118-267 and 5061-5760 of the complement strand). *S. cerevisiae* contains more than 200 yeast delta sequences (Kim J M *et al.* Genome Res. 1998;8:464-478). These delta sequences are targets for multiple integrations. The integration vector was also engineered to contain the defective *LEU2* marker (nucleotides 4100-5191 of the complement strand) for selection of transformed strains with multiple integration events.

[0151] For integration, the vector DNA was linearized with AscI and AatII digestion to generate delta sequence flanked strands of vector DNA comprising the *ilvD* gene, which were then transformed into the yeast strain BY4741. Transformants were selected on SD agar medium minus leucine. These transformants were then grown on SD liquid medium minus leucine at 30° C, and the cultures were harvested and analyzed for DHAD activity. The specific activity of DHAD obtained in the crude extract ranged from 0.7 to 1.2 U mg⁻¹. This specific activity was about 3- to 6-fold higher than that found in BY4741 strains transformed with an *ilvD* gene-containing plasmid without over-expression or chromosomal integration.

[0152] Example 3. Improvement of specific activity of DHAD in yeast deletion strains

- [0153] Although the over-expression strains described in Examples 1 and 2 had a high level of activity, not all of the DHAD protein expressed was active. For example, the over-expressed DHAD protein accounted for approximately 5 to 10% of the total cell protein, while yielding a specific activity of from about 0.7 to 1.6 U mg⁻¹. Expression of DHAD at 10% of total cell protein would be expected to yield a specific activity upwards of 6 to 10 U mg⁻¹. Thus, the over-expression strains can be further manipulated to lower the over-expressed DHAD protein levels while maximizing the specific activity of DHAD.
- [0154] In order to improve the specific activity, yeast strains with deletions in genes involved in iron metabolism and Fe-S cluster sensing were chosen to investigate their effects on DHAD specific activity. These strains were purchased from Open Biosystem (Huntsville, AL) and included deletions of the following genes: *ISU1*, *FRA2*, *SIN4*, *MTM1*, *FRA1*, or *GRX3*. As described in Example 1, the high copy number plasmid

pHR81 FBA-IlvD(sm)-lumio-FBAt was transformed into these strains, and DHAD overexpression was induced by changing the growth medium to SD minus leucine. Crude extracts from cultures were isolated and assayed for DHAD activity. The results, as shown in Table 11, indicate that deletions in certain genes had either a negative or a positive effect on the DHAD specific activity. Surprisingly, DHAD specific activity in the crude extract in strains with a deletion in either the *FRA2* or the *GRX3* gene increased by 2- to 3-fold as shown in Table 10. The DHAD activity obtained in other deletion strains is shown in Table 10.

Strain Background	Clone ID	Accession No.	Gene	Average SA (U mg ⁻¹)	SD
BY4741		Wildtype		1.69	0.20
BY4741	2117	YPL123W	ISU1	1.31	0.56
BY4741	4566	YGL220W	FRA2	3.41	0.24
BY4741	1976	YNL236W	SIN4	1.65	0.20
BY4741	7288	YGR257C	MTM1	0.54	0.12
BY4741	1517	YLL029W	FRA1	0.97	0.05
BY4741	4033	YDR098C	GRX3	5.45	0.14

Table 10. Effects of Deletions in Genes Involved in Iron Metabolism on DHAD Activity

[0155] These results demonstrate that modulating genes involved in iron metabolism can increase the activity of an Fe-S cluster requiring protein such as DHAD. The effect of deletions of the *FRA2* and *GRX3* genes on DHAD specific activity could result from, *e.g.*, activation of transcription of one or more of the genes in the iron regulon. Although not wishing to be bound by any one theory, activation of such genes could lead to an increase in iron uptake and an increase cytoplasmic Fe-S cluster biosynthesis. However, other factors in addition to affecting the iron regulon could also contribute to an increase in the iron content of the yeast cells. One protein that is involved in iron regulation is Aft1p, which controls many genes involved in iron uptake and metabolism.

[0156] Example 4. Constitutive expression of genes involved in iron uptake and metabolism (PROPHETIC)

- [0157] It has been shown that Fra1, Fra2, Gxr3, and Grx4 are repressors that regulate the function of Aft1p (Kumánovics, et al., J. Biol. Chem. 283:10276-10286 (2008)). Aft1p is a global regulator of iron. Activation of genes involved in iron uptake and metabolism requires the nuclear localization of Aft1p. Expression of the Aft1 constitutive mutants, e.g., Aft1-1^{up}, or an increase in the expression of wild-type Aft1p, could lead to the activation of the Fe regulon in a wild-type strain or in an AFT1 deletion strain (Yamaguchi-Iwai, et al, EMBO J. 14:1231-1239 (1995); Yamaguchi-Iwai, et al, J. Biol. Chem. 277:18914-18918 (2002); Kaplan, et al, Chem. Rev.109:4536-4552(2009)). This in turn may improve the active fraction of the DHAD enzyme which requires Fe-S clusters for its activity.
- [0158] To further examine the effect of up-regulating Aft1, the wild-type AFT1 gene and its constitutive mutants will be expressed using a centromere vector pRS411 (ATCC[®]) Number: 87538; SEQ ID NO: 919). This vector has an ampicillin selection marker for growth in E. coli and a methionine nutritional marker for selection in yeast. The wild type AFT1 gene, including its promoter and terminator, can be cloned between the KpnI and SacI sites, resulting in the construct pRS411-Aft1+flanking (SEQ ID NO: 920; Figure 2). A similar strategy can be used to clone genes that encode Aft1 constitutive mutants. The Aft1 constitutive mutants include, but are not limited to, mutants with substitutions at the following amino acids: L99 to A, L102 to A, C291 to F, or C293 to F (with respect to SEQ ID NO: 703). The pRS411 constructs with genes encoding the wild type AFT1 gene or constitutive mutants will be transformed, along with the expression vector pHR81 FBA IlvD(Sm)-lumio-FBAt, into the wild-type yeast strain BY4741 or a yeast strain with a deletion in AFT1, GRX3, or FRA2. Transformants will be selected on agar plates with SD medium minus methionine and uracil. Transformed strains will be grown in SD medium minus methionine and leucine to over-express the DHAD protein in the presence of these genes or mutants. The DHAD activity in the crude extract of these cultures will be measured.
- [0159] Aft2p protein (SEQ ID NO: 704) is a paralog of Aft1p (SEQ ID NO: 703). Aft2p is also a global regulator of iron metabolism in yeast. Similar experiments as with Aft1p can be designed and carried out to explore the possible improvement of DHAD activity by over-expression of Aft2p or its mutants.

- [0160] Alternatively, a constitutive expression of genes involved in iron uptake and metabolism can be achieved with mutants defective in the export of Aft1p to the cytoplasm from the nucleus. It has been shown that Msn5 protein is the nuclear export receptor (Ueta, *et al, Mol. Biol. 18*:2980-2990(2007)). Deletion of the MSN5 gene (SEQ ID NO: 776) has been shown to prevent the export of the Aft1p protein from the nucleus. To determine the effect of the *MSN5* deletion, the deletion strain (commercially available from Open Biosystems) will be transformed with the DHAD expression vector pHR81 FBA IlvD(Sm)-lumio-FBAt as described in Example 1. The DHAD activity in the crude extract in these cultures will be measured.
- [0161] Another alternative is to alter the expression of the PSE1 (NUCLEIC ACID SEQ ID NO: 777) gene, which encodes a protein involved in the import of Aft1p into the nucleus (Fukunaka, et al, 2003, J. of Biological Chem., vol. 278, p. 50120-50127). Expression of this gene can be accomplished by cloning it in vector pRS411 as described in this example.

[0162] Example 5. Modulation of other genes involved in Fe uptake and metabolism or Fe-S cluster biosynthesis to increase flux in an Fe-S cluster biosynthesis pathway and improve DHAD specific activity. (Prophetic)

- [0163] Fe uptake and metabolism and/or Fe-S cluster biosynthesis genes, including, but not limited to, those listed in Tables 7, 8 and 9 can potentially be deleted, mutated, expressed, up-regulated, or down-regulated to increase the flux in an Fe-S cluster biosynthesis pathway and improve specific activity of Fe-S cluster requiring proteins such as DHAD. In addition, co-factors can be added to change the activity of polypeptides having Fe-S cluster regulatory activity to increase the flux in an Fe-S cluster biosynthesis pathway and improve DHAD specific activity.
- [0164] For example, the genes that increase the flux in an Fe-S cluster biosynthesis pathway can be expressed to improve the activity of DHAD by providing an adequate amount of Fe-S clusters for the apo-enzyme. Any gene, or a combination of them, can be cloned and expressed in a pRS411 plasmid as described in Example 4. The resulting constructs, along with the DHAD expression vector pHR81 FBA ilvD(Sm)-lumio-FBAt, will then be transformed into wild-type BY4741. As a control, pRS411 without any gene
of interest and vector pHR81 FBA ilvD(Sm)-lumio-FBAt are transformed into a wildtype strain. The transformants are selected on agar plates with SD medium without uracil and methionine to maintain both plasmids as described in Example 4. Enzymatic activity for DHAD in the crude extract of different strains from the transformation will be measured. The results will be compared with the specific activity obtained from the control pRS411 without any gene of interest and vector pHR81 FBA ilvD(Sm)-lumio-FBAt transformed into a wild-type strain. An increase in specific activity indicates a gene that can be used to increase the flux in an Fe-S cluster biosynthesis pathway. Similar screening experiments can be done with the beneficial yeast deletion strains, such as, but not limited to, those strains with deletions in FRA2 and GRX3, or those identified below.

- **[0165]** As shown in Example 3, deletion or a reduction in expression of genes involved in Fe utilization and metabolism or Fe-S cluster biosynthesis, can improve the DHAD specific activity. Thus, in another example, potentially beneficial mutations for DHAD specific activity can be expanded to strains with a deletion in one or more genes listed in Tables 7, 8, or 9. In this example, the over-expression vector pHR81 FBA-IlvD(sm)-lumio-FBAt will be transformed into this collection of deletion strains, and the DHAD specific activity will be measured in the crude extract. The results will be compared with the specific activity obtained from the vector pHR81 FBA ilvD(Sm)-lumio-FBAt transformed into a wild-type strain. An increase in specific activity indicates a beneficial deletion to increase the flux in an Fe-S cluster biosynthesis pathway.
- [0166] In addition, strains with deletions in more than one of the genes involved in Fe-S cluster regulatory activity can be created to provide additive effects in improving the enzymes or proteins containing Fe-S cluster. For example, double mutants with deletions in both *FRA2* and *GXR3* genes can be used to transform vector pHR81 FBA-IlvD(sm)-lumio-FBAt, and the DHAD activity in the crude extract from the transformants can be measured.

[0167] Example 6. Determining the Specific Activity of DHAD. (Assay Method)

[0168] Quantitation of the activity of proteins requiring Fe-S clusters can be done in an assay format. If the protein is an enzyme, such as DHAD, the activity is typically expressed in terms of units of activity. A unit of enzyme activity has been defined by the

Enzyme Commission of the International Union of Biochemistry as the amount of enzyme that will catalyze the transformation of 1 micromole of the substrate per minute under standard conditions (International Union of Biochemistry, Report of the Commission on Enzymes, Oxford: Pergamon Press, 1961). Further, the term specific activity is defined as the units of activity in a given amount of enzyme. Thus, the specific activity is not directly measured but is calculated by dividing 1) the activity in units/ml of the enzyme sample by 2) the concentration of protein in that sample, so the specific activity is expressed as units/mg. The specific activity of a sample of pure, fully active enzyme is a characteristic of that enzyme. The specific activity of a sample of a mixture of proteins is a measure of the relative fraction of protein in that sample that is composed of the active enzyme of interest. DHAD activity can be measured spectrophotometrically in an end point assay using the 2,4-dinitrophenylhydrazine (2,4-DNPH) method as described in Flint, D.H. and M.H. Emptage, J. Biol. Chem. 263:3558-64 (1988). In this assay, the 2,4-DNPH reacts with the keto group of the 2-ketoisovaleric acid product to form a hydrazone, which is detected by its absorbance at 550 nm. The assay buffer contains 50 mM Tris-HC1, 10 mM MgCl₂, pH 8.0 (TM8 buffer). Sufficient 2,3dihydroxyisovaleric acid is added to the assay buffer so that its final concentration in the assay mix is 10 mM. In each assay, an enzyme containing solution and sufficient substrate containing buffer are mixed so that the final volume is 1 ml. The assay mixture is normally incubated at 37°C for 30 minutes.

- **[0169]** The assay is stopped by adding 250 μl of 10% (W/V) trichloroacetic acid. A few minutes later, 500 μl of a saturated solution of 2,4-DNPH in 1 N HCl is added. The mixture is incubated at room temperature for at least 10 min to allow formation of the hydrazone. Next, 1.75 ml of NaOH is added to solubilize the hydrazone and to precipitate unreacted 2,4-DNPH. A few minutes after the NaOH is added, the assay tubes are placed in a sonicator bath for 10 min to degas. The tubes are then centrifuged in a desk top centrifuge at top speed for 2 min to sediment the precipitate.
- [0170] The absorbance of the supernatant is then read at 550 nm within 1 hour. The absorbance of the sample assays minus the control assays are divided by 2600 (determined from an α -ketoisovaleric acid standard curve) to find the units of enzyme activity in the assay. This assay was used in the Examples described herein in which DHAD specific activity was determined.

[0171] Example 7. Purification and Characterization of DHAD from *S. mutans* expressed in *E. coli*.

- **[0172]** DHAD from *S. mutans* was purified and characterized as follows. Six liters of culture of the *E. coli* Turner strain harboring the pET28a plasmid containing the *S. mutans ilvD* gene were grown and induced with IPTG. The *S. mutans* DHAD was purified by breaking the cells with a sonicator in TM8 buffer (*see* Example 6), centrifuging the crude extract to remove cell debris, then loading the supernatant of the crude extract on a Q Sepharose (GE Healthcare) column and eluting the DHAD with an increasing concentration of NaCl in TM8 buffer. The fractions containing DHAD were pooled, brought to 1 M (NH₄)₂SO₄, and loaded onto a Phenyl-Sepharose column (GE Healthcare) equilibrated with 1 M (NH₄)₂SO₄. The DHAD were pooled, concentrated to ≤ 10 ml, loaded onto a 35 x 600 cm Superdex-200 column (577 ml bed volume) (GE Healthcare) column, and eluted with TM8 buffer. As judged by SDS gels, the purity of the *S. mutans* DHAD eluted from the Superdex column was estimated to be $\geq 90\%$.
- [0173] The UV-visible spectrum of the purified S. mutans DHAD is shown in Figure 3. The number of peaks above 300 nm is typical of proteins with [2Fe-2S] clusters. The S. mutans DHAD was reduced with sodium dithionite, and its EPR spectra was measured at various temperatures. Figure 4 shows the EPR spectra measured at temperatures between 20°K and 70°K. The EPR spectrum of the S. mutans DHAD is measureable up to 70°K, which indicates that it contains a [2Fe-2S] cluster and not a [4Fe-4S] cluster because the EPR spectra of proteins containing [4Fe-4S] clusters are not observable at temperatures much above 10°K.
- [0174] The exact protein content of the batch of purified *S. mutans* DHAD with the highest specific activity using the Bradford protein assay was determined by quantitative amino acid analysis. Combining the activity with the protein content gave a specific activity of 100 units/mg for this batch. The iron content of this batch determined by ICP-MS using methodology known in the art was 2 molecules of iron per molecule of DHAD. This is consistent with this batch of *S. mutans* DHAD containing a full complement of [2Fe-2S] clusters.

[0175] Example 8. Determining the DHAD protein content in yeast crude extract and purified samples.

- [0176] A scheme to measure the concentration of the DHAD protein in the supernatant of yeast crude extracts was developed using a Mono Q column (GE Healthcare) and a C-4 column (4.6 X 250 mm Waters XBridge DEH300 C-4 3.5 µm, Waters, Milford, MA) in tandem as follows.
- [0177] Frozen yeast cells were thawed, suspended in 50 mM Tris-HC1, 10 mM MgCl₂, pH 8.0, then broken by bead beating. The broken cells are centrifuged to remove the cell debris and generate the yeast crude extract. A 1 ml Mono Q column equilibrated with TM8 buffer containing 0.22 M NaCl and developed with a 30 ml linear gradient starting at TM8 buffer containing 0.22 M NaCl and ending at TM8 buffer containing 0.35 M NaCl was found to be ideal for separating *S. mutans* DHAD from other proteins in the yeast crude extract. 1 ml fractions were collected from this column and assayed for DHAD activity. The peak of DHAD activity was typically found in fraction 24. The sum of the activity of the DHAD in the fractions was close to that in the crude extract. Good separations using this column were obtained with as much as 1-2 mls of crude extract representing up to 200 mg of yeast cell paste.
- [0178] A C-4 column equilibrated at a 7:3 mixture of 5% formic acid in water (solvent A) and 5% formic acid in acetonitrile (solvent B), was determined to bind *S. mutans* DHAD. After the sample injection, a step change in the eluting solvent to 40% solvent B, followed by a linear increase to 50% B over the next 11.5 mls, eluted DHAD and separated it from most of the proteins that co-eluted with DHAD on the Mono Q column. A UV monitor set at 210 nm was used to detect and quantify (see below) proteins eluting from this column. The elution volume of the DHAD protein from this column could not be determined by measuring the activity since the enzyme was inactivated by these solvents. However, fractions from this column run on SDS gels verified which fractions contained the *S. mutans* DHAD and the level of contamination with other yeast proteins.
- [0179] Pure *S. mutans* DHAD was used to generate a standard curve of the relationship between the amount of protein injected onto the column and the area counts of the *S.*

mutans DHAD peak eluted from the column. The standard curve was found to be linear over the range of 0-20 μ g DHAD.

[0180] For the yeast crude extracts examined, 100 µl of the DHAD activity-containing fractions from the Mono Q column was injected onto the C-4 column. Using the standard curve for the C-4 column, the amount of DHAD protein in each of the samples was determined. The DHAD specific activity in each of the fractions from the Mono Q column and in the original yeast crude extract were then calculated based on the activity in the samples and the amount of DHAD protein in the samples.

[0181] Example 9. Determining the fraction of DHAD in the yeast crude extract loaded with Fe-S clusters

- [0182] When a purified Fe-S cluster requiring protein contains a full complement of clusters, it will have a characteristic specific activity. As previously mentioned, for *S. mutans* DHAD this specific activity is 100 units/mg. If an Fe-S cluster requiring protein is only half-loaded with clusters, its specific activity will typically be half of a sample that is fully loaded with clusters. In the case of *S. mutans* DHAD, if the enzyme is half loaded with Fe-S clusters, the specific activity would be expected to be 50 units/mg. Knowing that 100 units/mg is the specific activity of fully active pure *S. mutans* DHAD enables us to determine the fraction of DHAD in a sample that is fully loaded with Fe-S clusters. If the activity and the amount of DHAD in a sample is known we can use these numbers to calculate the specific activity and then divide the specific activity by 100.
- [0183] To make such a calculation, the specific activity must be based on the concentration of the DHAD protein (not the total protein concentration) in the sample. Determining the concentration of *S. mutans* DHAD in the presence of other proteins can be accomplished using methods described in Example 8.
- [0184] Using this methodology, we have determined the specific activity of DHAD in the crude extract of different yeast strains grown under different conditions, using the methods described in Example 3. The following four are of particular interest:
- [0185] 1) S. mutans DHAD expressed on a low copy number plasmid in yeast;
- [0186] 2) *S. mutans* DHAD expressed on plasmid pHR81 FBA-IlvD(Sm)-lumio-FBAt, under the control of the LEU2⁻ system;

- [0187] 3) *S. mutans* DHAD expressed in a GRX3 deletion strain on plasmid pHR81 FBA-IlvD(Sm)-lumio-FBAt under the control of the LEU2⁻ system; and
- [0188] 4) *S. mutans* DHAD expressed in a FRA2 deletion strain on plasmid pHR81 FBA-IlvD(Sm)-lumio-FBAt under the control of the LEU2⁻ system.
- [0189] The specific activities and inferred fraction of the DHAD present in these strains that has an Fe-S cluster are shown in Table 11.

[0190]

Gene	Plasmid and	DHAD SA in	Fraction	Inferred Fraction
Deleted	Growth	Crude Extracts	DHAD Active	of DHAD w/ Fe-S
	Conditions	(U/mg)		Clusters
	+ leucine	0.2		
	- leucine	1.69	0.1 -0.2	0.1 -0.2
FRA2	- leucine	3.41	> 0.5	> 0.5
FRA1	- leucine	0.97	0.1 -0.2	0.1 -0.2
GRX3	- leucine	5 4 5	> 0.5	> 0.5

Table 11. Specific Activities and Inferred Fraction of the DHAD Loaded Proteins

- [0191] These results indicate the level of Fe-S cluster loading in the DHAD strains lacking FRA2 and GRX3 is much higher than in cells containing functional copies of these genes.
- **[0192]** The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.

WHAT IS CLAIMED IS:

- 1. A recombinant host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity wherein said at least one heterologous polynucleotide comprises a high copy number plasmid or a plasmid with a copy number that can be regulated.
- 2. A recombinant host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity wherein said at least one heterologous polynucleotide is integrated at least once in the recombinant host cell DNA.
- 3. A recombinant host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity, wherein said host cell comprises at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis.
- 4. A recombinant host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity and at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis.
- 5. The recombinant host cell of any one of claims 3-4, wherein said heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of the genes in Tables 8 and 9.
- 6. The recombinant host cell of any one of claims 3-4, wherein said heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of the genes in Table 7.
- 7. The recombinant host cell of claim 5 or 6, wherein said heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of AFT1, AFT2, PSE1, FRA2, GRX3, MSN5, and combinations thereof.
- 8. The recombinant host cell of claim 7, wherein said polypeptide is encoded by a polynucleotide that is constitutive mutant.

- 9. The recombinant host cell of claim 8, wherein said constitutive mutant is selected from the group consisting of AFT1 L99A, AFT1 L102A, AFT1 C291F, AFT1 C293F, and combinations thereof.
- 10. The recombinant host cell of claim 7, wherein said polypeptide affecting Fe-S cluster biosynthesis is encoded by a polynucleotide comprising a high copy number plasmid or a plasmid with a copy number that can be regulated.
- 11. The recombinant host cell of claim 7, wherein said polypeptide affecting Fe-S cluster biosynthesis is encoded by a polynucleotide integrated at least once in the recombinant host cell DNA.
- 12. The recombinant host cell of claim 3, wherein the at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of FRA2, GRX3, MSN5, and combinations thereof.
- 13. The recombinant host cell of claim 4, wherein the at least one heterologous polynucleotide encoding a polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of AFT1, AFT2, PSE1, and combinations thereof.
- 14. The recombinant host cell of any one of claims 3-13, wherein said at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity is expressed in multiple copies.
- 15. The recombinant host cell of claim 14, wherein said at least one heterologous polynucleotide comprises a high copy number plasmid or a plasmid with a copy number that can be regulated.
- 16. The recombinant host cell of claim 14, wherein said at least one heterologous polynucleotide is integrated at least once in the recombinant host cell DNA.
- 17. The recombinant host cell of any one of claims 3-16, wherein said Fe-S cluster biosynthesis is increased compared to a recombinant host cell having endogenous Fe-S cluster biosynthesis.

- 18. The recombinant host cell of any one of claims 1-17, wherein said host cell is a yeast host cell.
- 19. The recombinant host cell of claim 18, wherein said yeast host cell is selected from the group consisting of *Saccharomyces*, *Schizosaccharomyces*, *Hansenula*, *Candida*, *Kluyveromyces*, *Yarrowia*, *Issatchenkia* and *Pichia*.
- 20. The recombinant host cell of any one of claims 1-19, wherein said heterologous polypeptide having dihydroxy-acid dehydratase activity is expressed in the cytosol of the host cell.
- 21. The recombinant host cell of any one of claims 1-20, wherein said heterologous polypeptide having dihydroxy-acid dehydratase activity has an amino acid sequence that matches the Profile HMM of Table 12 with an E value of $< 10^{-5}$ wherein the polypeptide further comprises all three conserved cysteines, corresponding to positions 56, 129, and 201 in the amino acids sequences of the *Streptococcus mutans* DHAD enzyme corresponding to SEQ ID NO:168.
- 22. The recombinant host cell of any one of claims 1-21 wherein said heterologous polypeptide having dihydroxy-acid dehydratase activity has an amino acid sequence with at least about 90% identity to SEQ ID NO: 168 or SEQ ID NO: 232.
- 23. The recombinant host cell of any one of claims 1-22 wherein said polypeptide having dihydroxy-acid dehydratase activity has a specific activity selected from the group consisting of:
 - (a) greater than about 5-fold with respect to the control host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity
 - (b) greater than about 8-fold with respect to the control host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity
 - (c) greater than about 10-fold with respect to the control host cell comprising at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity.

- 24. The recombinant host cell of any one of claims 1-22, wherein said polypeptide having dihydroxy-acid dehydratase activity has a specific activity selected from the group consisting of:
 - (a) greater than about 0.25 U/mg;
 - (b) greater than about 0.3 U/mg;
 - (c) greater than about 0.5 U/mg;
 - (d) greater than about 1.0 U/mg;
 - (e) greater than about 1.5 U/mg;
 - (f) greater than about 2.0 U/mg;
 - (g) greater than about 3.0 U/mg;
 - (h) greater than about 4.0 U/mg;
 - (i) greater than about 5.0 U/mg;
 - (j) greater than about 6.0 U/mg;
 - (k) greater than about 7.0 U/mg;
 - (l) greater than about 8.0 U/mg;
 - (m) greater than about 9.0 U/mg;
 - (n) greater than about 10.0 U/mg;
 - (o) greater than about 20.0 U/mg; and
 - (p) greater than about 50.0 U/mg.
- 25. The recombinant host cell of any one of claims 1-24, wherein said recombinant host cell produces isobutanol.
- 26. The recombinant host cell of claim 25, wherein said recombinant host cell comprises an isobutanol biosynthetic pathway.

- 27. A method of making a product comprising:
 - (a) providing the recombinant host cell of any one of claims 1-24; and
 - (b) contacting the recombinant host cell of (a) with a fermentable carbon substrate in a fermentation medium under conditions wherein said product is produced; and
 - (c) recovering said product,

wherein the product is selected from the group consisting of branched chain amino acids, pantothenic acid, 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol, and combinations thereof.

- 28. A method of making isobutanol comprising:
 - (a) providing the recombinant host cell of any one of claims 1-24;
 - (b) contacting the recombinant host cell of (a) with a fermentable carbon substrate in a fermentation medium under conditions wherein isobutanol is produced; and
 - (c) recovering said isobutanol.
- 29. A method for the conversion of 2,3-dihydroxyisovalerate to α -ketoisovalerate comprising:
 - (a) providing the recombinant host of any one of claims 1-24;
 - (b) growing the recombinant host cell of (a) under conditions where the 2,3dihydroxyisovalerate is converted to α -ketoisovalerate,

wherein 2,3-dihydroxyisovalerate is converted to α -ketoisovalerate.

- 30. A method for increasing the specific activity of a heterologous polypeptide having dihydroxy-acid dehydratase activity in a recombinant host cell comprising:
 - (a) providing a recombinant host cell of any one of claims 1-24; and
 - (b) growing the recombinant host cell of (a) under conditions whereby the heterologous polypeptide having dihydroxy-acid dehydratase activity is expressed

in functional form having a specific activity greater than the same host cell lacking said heterologous polypeptide.

- 31. A method for increasing the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising:
 - (a) providing a recombinant host cell of any one of claims 3-24; and
 - (b) growing the recombinant host cell of (a) under conditions whereby the flux in the Fe-S cluster biosynthesis pathway in the host cell is increased.
- 32. A method of increasing the activity of an Fe-S cluster requiring protein in a recombinant host cell comprising:
 - (a) providing a recombinant host cell comprising an Fe-S cluster requiring protein;
 - (b) changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis in said host cell; and
 - (c) growing the recombinant host cell of (b) under conditions whereby the activity of the Fe-S cluster requiring protein is increased.
- 33. The method of claim 32, wherein said increase in activity is an amount selected from the group consisting of:
 - (a) greater than about 10%;
 - (b) greater than about 20%;
 - (c) greater than about 30%;
 - (d) greater than about 40%;
 - (e) greater than about 50%;
 - (f) greater than about 60%;
 - (g) greater than about 70%;

- (h) greater than about 80%;
- (i) greater than about 90%; and
- (j) greater than about 95%.
- 34. The method of claim 32, wherein said increase in activity is an amount selected from the group consisting of:
 - (a) greater than about 5 fold;
 - (b) greater than about 8 fold;
 - (c) greater than about 10 fold.
- 35. A method for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising:
 - (a) changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis;
 - (b) measuring the activity of a heterologous Fe-S cluster requiring protein; and
 - (c) comparing the activity of the heterologous Fe-S cluster requiring protein measured in the presence of the changed expression or activity of a polypeptide of step (a) to the activity of the heterologous Fe-S cluster requiring protein measured in the absence of the changed expression or activity of a polypeptide of step (a),

wherein an increase in the activity of the heterologous Fe-S cluster requiring protein indicates an increase in the flux in said Fe-S cluster biosynthesis pathway.

- 36. A method for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell comprising:
 - (a) changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis;

- (b) measuring the activity of a polypeptide having dihydroxy-acid dehydratase activity; and
- (c) comparing the activity of the polypeptide having dihydroxy-acid dehydratase activity measured in the presence of the change in expression or activity of a polypeptide of step (a) to the activity of the polypeptide having dihydroxy-acid dehydratase activity measured in the absence of the change in expression or activity of a polypeptide of step (a),

wherein an increase in the activity of the polypeptide having dihydroxy-acid dehydratase activity indicates an increase in the flux in said Fe-S cluster biosynthesis pathway.

- 37. The method of any one of claims 30-36, wherein said changing the expression or activity of a polypeptide affecting Fe-S cluster biosynthesis comprises deleting, mutating, substituting, expressing, up-regulating, down-regulating, altering the cellular location, altering the state of the protein, and/or adding a cofactor.
- 38. The method of any one of claims 32-37, wherein the Fe-S cluster requiring protein has dihydroxy-acid dehydratase activity and wherein said Fe-S cluster requiring protein having dihydroxy-acid dehydratase activity has an amino acid sequence that matches the Profile HMM of Table 12 with an E value of $< 10^{-5}$ wherein the polypeptide further comprises all three conserved cysteines, corresponding to positions 56, 129, and 201 in the amino acids sequences of the *Streptococcus mutans* DHAD enzyme corresponding to SEQ ID NO:168.
- 39. The method of any one of claims 32-38, wherein said polypeptide affecting Fe-S cluster biosynthesis is selected from the group consisting of the genes in Tables 7, 8 and 9.
- 40. A recombinant host cell comprising at least one polynucleotide encoding a polypeptide identified by the methods of any one of claims 35-37.
- 41. The recombinant host cell of claim 40, wherein said host cell further comprises at least one heterologous polynucleotide encoding a polypeptide having dihydroxy-acid dehydratase activity.

- 43. The recombinant host cell of claim 41, wherein said heterologous polynucleotide comprises a high copy number plasmid or a plasmid with a copy number that can be regulated.
- 44. The recombinant host cell of claim 41, wherein said heterologous polynucleotide is integrated at least once in the recombinant host cell DNA.
- 45. The method of claim 35 or 36, wherein said host cell is a yeast host cell.
- 46. The method of claim 45, wherein said yeast host cell is selected from the group consisting of *Saccharomyces*, *Schizosaccharomyces*, *Hansenula*, *Candida*, *Kluyveromyces*, *Yarrowia*, *Issatchenkia*, and *Pichia*.
- 47. The method of any one of claims 28-39, wherein said host cell is a yeast host cell.
- 48. The method of claim 47, wherein said yeast host cell is selected from the group consisting of *Saccharomyces*, *Schizosaccharomyces*, *Hansenula*, *Candida*, *Kluyveromyces*, *Yarrowia*, *Issatchenkia*, and *Pichia*.
- 49. The recombinant host cell of any one of claims 40-44, wherein said recombinant host cell is a yeast host cell.
- 50. The recombinant host cell of claim 49, wherein said yeast host cell is selected from the group consisting of *Saccharomyces*, *Schizosaccharomyces*, *Hansenula*, *Candida*, *Kluyveromyces*, *Yarrowia*, *Issatchenkia*, and *Pichia*.
- 51. The recombinant host cell of any one of claims 40-44 or 49-50, wherein said heterologous polypeptide having dihydroxy-acid dehydratase activity is expressed in the cytosol of the host cell.
- 52. The recombinant host cell of any one of claims 40-44 or 49-50 wherein said heterologous polypeptide having dihydroxy-acid dehydratase activity has an amino acid sequence that matches the Profile HMM of Table 12 with an E value of $< 10^{-5}$ wherein the polypeptide

further comprises all three conserved cysteines, corresponding to positions 56, 129, and 201 in the amino acids sequences of the *Streptococcus mutans* DHAD enzyme corresponding to SEQ ID NO:168.

- 53. The recombinant host cell of any one of claims 40-44 or 49-50, wherein said recombinant host cell produces a product selected from the group consisting of branched chain amino acids, pantothenic acid, 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol, and combinations thereof.
- 54. The recombinant host cell of claim 53, wherein said recombinant host cell produces isobutanol.
- 55. The recombinant host cell of claim 54, wherein said recombinant host cell comprises an isobutanol biosynthetic pathway.

ABSTRACT

The present invention is related to a recombinant host cell, in particular a yeast cell, comprising a dihydroxy-acid dehydratase polypeptide. The invention is also related to a recombinant host cell having increased specific activity of the dihydroxy-acid dehydratase polypeptide as a result of increased expression of the polypeptide, modulation of the Fe-S cluster biosynthesis of the cell, or a combination thereof. The present invention also includes methods of using the host cells, as well as, methods for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell.

Figure 1A

[Would it be possible to provide a less blurry version of this Figure?]

Figure 5

Figure 6A

Figure 6B

"iscA2"	"nfu"	"nfuA"	"nfuV"

Figure 6C

apo-ISU	÷	2 IscS-Cy	/s-S-8	} ⁻ +	2 Fe ^{2*}	+	2 NFU ^{red}
	[2Fe	-2 S]-IS U	<u></u>	2 IseS	S-Cys-S	÷	2 NFU ^{ox}

Figure 7

Figure 8

iscR	iseS	iscU	iscA.	hsc8	hscA	fdx orf3

Figure 9

HMMER2.0 [2.2g] Program name and version NAME dhad for hmm Name of the input sequence alignment file **LENG 564** Length of the alignment: include indels ALPH Amino Type of residues Map of the match states to the columns of the alignment MAP yes Commands used to generate the file: this one means that hmmbuild (default patrameters) was applied to the alignment file COM /app/public/hmmer/current/bin/hmmbuild -F dhad-exp hmm dhad for hmm.aln COM /app/public/hmmer/current/bin/hmmcalibrate dhad-exp hmm Commands used to generate the file: this one means that hmmcalibrate (default parametrs) was applied to the hmm profile NSEQ 8 Number of sequences in the alignment file DATE Tue Jun 3 10:48:24 2008 When was the file generated XT -8455 -4 -1000 -1000 -8455 -4 -8455 -4 NULT -4 -8455 The transition probability distribution for the null model (single G state). The symbol emission probability distribution for the null model (G state); consists of K (e.g. 4 or 20) integers. The null NULE 595 - 1558 85 338 - 294 453 - 1158 197 249 902 - 1085 - 142 - 21 - 313 45 531 201 384 - 199{ probability used to convert these back to model probabilities is 1/K. The extreme value distribution parameters µ and lambda respectively; both floating point values. Lambda is positive and nonzero. These values are set when the model is calibrated with hmmcalibrate. EVD -499.650970 0.086142 Position in p 0 S HMM Ċ. 0 ۱r G Ю X 88 N 8 r ٧ W alignment d->m m->m m->i m->d li->m li->i d->d b->m lm->e -1684 -538 -233 -1296 99 1223 -1477 -1132 89 -1122 420 -1248 1553 -188 -838 -985 1(M) 1757 -1296 464 -24 -190 -1578 6 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -7245 -894 -1115 -701 -1378 -538 -29 -6203 1140 2(E) -220 -1288 232 1356 -1807 1016 -70 -1474 190 -1584 -775 132 -1298 300 -282 -183 -1092 -1872 -1262 7 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -29 -6203 -7245 -894 -1115 -701 -1378 -448 -2220 -1048 -1983 -1938 1558 -1552 3(K) -1932 1558 658 40 1569 -1091 -1319 450 -193 -278 -419 -2121 -1397 8 -149 233 43 399 106 -626 210 -466 275 394 45 96 359 117 -369 -294 -249 -500 -381 -720 -29 -6203 -7245 -894 -1115 -701 -1378 4(V) -404 -498 -1497 -939 -588 -1810 -640 1591 914 -127 335 -962 -1866 -562 -767 -868 -357 1720 -1169 -763 9 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -894 -29 -6203 -7245 -1115 -701 -1378 5(E) -265 -1340 -52 1376 -1572 -1189 113 -1125 1345 -1287 -496 99 -1321 505 198 -218 -205 597 -1598 -1032 10 399 275 -149 -500 233 43 -381 106 -626 210 -466 -720 394 45 96 359 117 -369 -294 -249 -894 -29 -6203 -7245 -1115 -701 -1378 -1841 -1443 6(S) 256 -397 -1014 -830 -646 -862 -767 -1740 -963 -568 -1249 -651 -1007 2267 1586 -862 -2080 -1672 11 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -29 -6203 -7245 -894 -1115 -701 -1378 7(M) -990 -889 -2630 157 -513 -2514 -1346 1309 -1767 820 3683 -1898 -2491 -1496 -1799 -1589 -925 150 -1336 -1041 12 -149 -381 399 210 -466 275 45 117 -369 -500 233 43 106 -626 -720 394 96 359 -294 -249 -16 -7108 -8150 -894 -1115 -701 -1378

8(E)	588	-1875	-194	1536	-2188	-1373	-59	-1931	957	-1890	-977	904	292	393	-162	483	-372	-1495	-2070	-1391	13
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
			I	I		I															
9(N)	-514	-1116	1207	-315	447	-1650	-304	-778	-224	825	-277	1457	-1738	-123	-618	-627	-454	-603	-1186	763	14
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*				ľ			ľ		ľ	· · ·			
40(11)	045	4400	4000	000	004	4007	707	440	070	004	4700	0000	0000	054	004	4054	704	445	4.400	070	45
10(N)	-815	-1190	-1360	-922	-904	-1967	-/9/	-442	-6/0	381	1/00	3009	-2099	-654	-934	-1051	-/91	-445	-1490	-9/9	15
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	2/5	394	45	96	359	11/	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-701	-13/8 *														
11(K)	-1530	-2498	-1722	-855	-3141	-2246	-428	-2627	2828	-2404	-1656	-927	662	-2	2047	-1421	-1337	-2324	-2357	-2081	16
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*			•										
10.52	0=0	100-	001	000	4000	(00)	1000		0.0-	1700	400.4	000	40-0	Fal	00.10	0.0			مر مراجع م		
12(Y)	-8/2	-1887	-861	-290	-1369	-1801	1662	-1/9/	325	-1793	-1031	893	-18/6	56	2219	-812	-780	-1514	-1565	2287	17
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	*													
13(S)	-830	-1586	-1471	-1099	-2717	-1642	-1010	-2479	-266	-2518	-1746	-1065	-2069	-676	1822	2748	-1000	-1950	-2597	-2189	18
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
				(=a]		(====	<u></u>		(000				(0.00 ¹)		<u></u>	(00)			<u></u>		
14(Q)	-851	-2131	-775	-153	-2554	-1735	-211	-2205	1908	-2094	-1244	-386	-1802	2254	974	1001	-747	-1819	-2181	-1667	19
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	*													
15(T)	-405	-1258	-618	-100	-1490	-1466	1158	-1121	1	-1299	-514	578	-1607	65	-433	960	1849	343	-1677	-1143	20
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	20
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*	210	100	720	210	001		00	000	117	000	201	210	
			0100					I													
16(I)	-1772	-1325	-4307	-3877	-1405	-3993	-3383	2935	-3705	820	-217	-3632	-3761	-3400	-3682	-3260	-1742	2033	-2838	-2525	21
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	*													
17/T\	_1010	_1220	-2004	_1771	_100	_1002	_1000	-1256	_1510	-1464	-066	-15/2	_2267	-1120	-1620	-1257	2050	_1000	_1012	2110	າາ
-		_500	- <u>2007</u>	-111	_281	200	106	-1200	210	-166	_720	275	2001	/1420	-1000 AD	250	117	-1000	_20/	_2/10	22
	-149	7109	200 8150	901	1115	701	1270*	-020	210	-400	-120	215	534	40	90	559	ш	-009	-234	-249	
	-10	-1100	-0130	-034	-1113	-701	-1570														
18(Q)	-1509	-3056	1970	44	-3310	-1666	-896	-3242	-877	-3158	-2439	-322	-2123	3562	-1493	-1259	-1550	-2779	-3260	-2446	23
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
	I				1			1													
19(D)	-1006	-2199	2178	-88	-3159	1997	-936	-2974	-948	-2977	-2174	-382	-1960	-589	-1571	1295	-1157	-2369	-3178	-2430	24
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													

20(M)	445	-796	-1082	-521	-841	-1643	-412	-403	-370	-692	2213	-646	536	1166	-698	-630	660	831	-1204	-767	25
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
21(Q)	741	-990	-1025	-507	-1249	-1551	-519	-720	-357	-1062	-345	-635	-1739	1770	-713	-589	1576	1129	-1559	-1097	26
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
22(R)	-1753	-2648	-2072	-1047	-3365	-2405	-452	-2782	1989	-2495	-1773	-1062	-2379	2402	2643	-1629	-1506	-2504	-2397	-2190	27
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
23(S)	-330	-1010	-1820	-1628	-2778	-1229	-1652	-2481	-1592	-2691	-1841	-1273	2130	-1426	-1834	2449	1034	-1716	-2961	-2594	28
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
24(P)	1882	-1119	-2231	-2302	-3062	-1360	-2209	-2710	-2339	-3013	-2243	-1676	3304	-2117	-2409	-742	-918	-1916	-3263	-3022	29
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
25(N)	969	-1230	-1066	-915	-2593	-1313	-1196	-2242	-1033	-2447	-1626	3197	-1850	-898	-1392	-582	1155	-1644	-2736	-2256	30
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
26(R)	-1847	-2640	-2014	-1161	-3282	-2428	-579	-2818	687	-2553	-1869	-1165	-2462	2447	3181	-1746	-1630	-2555	-2447	-2228	31
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
27(A)	3048	-932	-2480	-2533	-3075	-1200	-2274	-2765	-2501	-3071	-2221	-1658	-1948	-2205	-2512	1225	-739	-1842	-3322	-3078	32
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	*													
28(M)	-2406	-2296	-3638	-3594	-1525	-3105	-2824	-1047	-3121	-596	5043	-3293	-3425	-3046	-2996	-2911	-2552	-1398	-2513	-2207	33
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
29(Y)	-1674	-1506	-2863	-2464	596	-2872	2251	-972	-2024	2197	-552	-1986	-2876	-1739	-1988	-1987	-1601	-1002	-95	2332	34
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
30(Y)	-2013	-2305	-2428	-1781	-328	-2709	-654	-2240	-258	-2064	-1626	-1631	-2788	-899	2789	-2017	-1896	-2130	-857	3434	35
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*													
31(4)	2822	-1021	-2418	_2520	-3226	1808	-2264	_2041	-2626	-3220	-2270	-1722	-2026	-2202	-2624	-654	_848	-1082	-3415	-3226	36
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	-2004	359	117	-369	-294	-249	50
-	-16	-7108	-8150	-894	-1115	-701	-1378*	*	210	100	. 20	=10	001	14	~~	500		000		_ 10	

32(I)	-1247	-941	-3569	-3039	-1082	-3101	-2185	2227	-2763	766	-76	-2700	-3050	-2469	-2697	-2253	1322	1974	-1988	-1633	37
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	· /													
33(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	38
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	۲ H	1						•				•		
34(F)	-1511	-1236	-3511	-3017	2747	-2982	-1069	-260	-2651	992	2737	-2407	-2904	-2088	-2418	-2099	-1434	-489	-537	2056	39
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	· ·	f												
35(Q)	-576	-1869	-401	92	-2232	831	-173	-1930	1505	-1913	-1042	-186	-1620	1653	-51	-482	1346	-1534	-2098	-1490	40
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	: I	f												
36(D)	-1352	-3066	3028	1349	-3303	-1566	-724	-3141	1155	-3043	-2267	-165	-1991	-354	-1350	-1086	-1368	-2659	-3221	-2356	41
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	(1	r												
37(E)	-1507	-3288	2042	2762	-3520	515	-853	-3401	-981	-3296	-2566	-182	-2064	-503	-1753	-1209	-1553	-2895	-3486	-2547	42
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	" ⁴	r												
38(D)	-1445	-2778	3529	-53	-3524	-1590	-1129	-3476	-1367	-3459	-2774	-396	-2156	-825	-2122	554	-1609	-2880	-3582	-2717	43
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	· •	f												
39(F)	-2658	-2176	-4213	-4000	3815	-3933	-1352	-531	-3638	1121	-19	-3184	-3709	-2820	-3296	-3219	-2579	-1037	-601	403	44
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	۲ ۲	r												
40(D)	-684	-2193	1738	1460	-2494	-1437	-249	-2257	1694	-2199	-1308	-62	-1637	185	-450	-531	633	-1808	-2374	-1657	45
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	· •	r										•		
41(K)	-2620	-2961	-2461	-2046	-3743	-2791	-1570	-3603	3784	-3387	-2839	-2048	-3039	-1260	-465	-2604	-2536	-3331	-3001	-2988	46
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	()	r												
42(P)	1882	-1119	-2231	-2302	-3062	-1360	-2209	-2710	-2339	-3013	-2243	-1676	3304	-2117	-2409	-742	-918	-1916	-3263	-3022	47
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	, ,	1												
43(1)	-1006	_002	_2247	_1784	-650	.2452	-1256	2272	-1386	77	2212	- 1720	-2455	2020	-1400	-1528	-016	106	_1441	_1111	48
- -	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	0
-	-16	-7108	-8150	-894	-1115	-701	-1378	, ,		100	. 20	=19	001	14	~~	000		000	=01	_ 10	

44(V)	-1771	-1603	-3750	-3689	-2037	-3050	-3231	403	-3479	-1154	-1076	-3246	-3399	-3383	-3437	-2628	-1917	3536	-3074	-2677	49
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
45(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	50
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
46(1)	-1750	-1303	-4330	-3968	-1751	-4051	-3743	2027	-3837	-507	-528	-3720	-3875	-3688	-3010	-3360	_1751	2438	-3250	-2810	51
-	-1703	-1000	233	-5300	-1751	2001	106	-626	210	-466	-720	275	-3073	-5000	96	250	117	-369	-0200	-2013	JI
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	100	720	210	001	10		000	111	000	204	240	
	10	1100	0100		1110	101	1010														
47(V)	1736	-1012	-3546	-3078	-1377	-3073	-2434	2052	-2843	-608	-331	-2754	-3122	-2619	-2855	-2270	-1277	2193	-2333	-1941	52
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	k												
48/NI)	-686	-1511	-702	-806	-2927	-1386	-1339	-2841	-1264	-2950	-2137	2702	-1979	-1062	-1648	2444	-971	-2105	-3054	-2475	53
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	100	120	210	001	10	00	000		0000	201	210	
49(M)	-411	-857	-1800	-1434	-1528	1914	-1202	-1029	-1247	-1347	2989	-1217	-1912	-1119	-1444	-676	1550	-767	-1922	-1539	54
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
50(W)	-782	-1258	793	-683	1193	346	2051	-932	-556	-1092	-441	-798	-1993	-426	-909	-904	-720	-779	3163	1546	55
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
		ľ																			
51(W)	1009	-798	-1470	-935	-463	-1773	-545	-460	-751	-736	-66	-943	-1904	-606	-1002	1604	-507	-322	2535	1521	56
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
52(D)	-1137	-2711	2125	1647	-2995	-1523	-617	-2786	-528	-2743	-1933	-150	-1897	-234	-1165	-924	2117	-2331	-2948	-2141	57
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	01
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	100	120	210	001	10	00	000		0000	201	210	
53(I)	-599	-1102	-1031	-829	-1522	1429	-927	2119	-880	-1369	-699	1692	-1938	-759	-1188	-799	-698	-689	-1887	-1419	58
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	k												
	666	1110	054	004	2702	1400	1057	0440	1000	2650	1000	2202	2000	1101	1510	707	0067	1005	20000	2260	50
34(1)	-000	-1412	-904	-904	-2702	-1420	106	-2410	-1200	-2000	-1000	2293	-2000	-1101	-1519	-/0/	2907	-1035	-2000	-2300	29
-	-149	-500	203 _8150	40 _901	-301	_701	1279	+ 020	21U *	-400	-120	210	J94	40	90	১০৬	117	-209	-294	-249	
-	-10	-1100	-0130	-034	-1113	-101	-1370														
55(P)	-632	-1230	-2074	-2144	-2996	-1453	-2116	-2631	-2128	-2928	-2213	-1658	3610	-2006	-2221	-852	1302	-1931	-3185	-2917	60
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*							I	I				

56(C)	-2476	5735	-4102	-4358	-3712	-2763	-3545	-3518	-4167	-3859	-3569	-3631	-3363	-4030	-3832	-2793	-2860	-3158	-3464	-3718	61
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
57(N)	-2171	-2655	-1458	-1748	-3334	-2364	-2267	-3943	-2365	-3936	-3437	4205	-2932	-2205	-2608	-2224	-2439	-3392	-3253	-2909	62
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	I		I		I					1		
58(M)	672	-918	-3119	-2578	-742	-2668	-1734	1807	-2263	16	2712	-2271	-2704	-1960	-2216	-1806	-1058	493	-1612	-1306	63
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100											
59(H)	-1525	-2164	-1235	-1346	-2509	2296	4235	-3172	-1516	-3178	-2523	-1448	-2541	-1520	-1760	-1591	-1741	-2656	-2681	-2065	64
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
60(L)	-2478	-2009	-4717	-4196	-568	-4424	-3262	1334	-3887	2824	604	-4085	-3872	-3088	-3590	-3717	-2380	-199	-2217	-2207	65
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*						I						
61(H)	-682	-2191	1015	275	-2485	396	2379	-2251	62	-2197	-1307	1826	-1636	1527	-480	-529	-641	-1803	-2375	-1654	66
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	*	*												
62(D)	-575	-1920	1979	184	-2299	94	-242	-2029	114	-2023	-1144	-120	-1608	186	1063	-469	1413	-1605	-2229	-1561	67
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
62/1)	2610	2120	4507	4162	2144	1205	2224	02	2054	2600	520	2771	2006	2050	2400	2562	2505	751	1442	000	60
03(L)	-2010	-2139	-4097	-4105	2144	-4200	-2004 106	-03	-3034	2090	-720	-3771	-3000	-2950	-3400 06	-3503	-2505	-751	-1442	-000	00
	-149	-300	-8150	-894	-301	-701	-1378	+ -020	* 210	-400	-120	215	594	40	90	509	111	-309	-234	-243	
	10	1100	0100	004	1110	701	1070														
64(A)	2657	-1033	-2408	-2532	-3233	2193	-2364	-2950	-2626	-3237	-2386	-1719	-2027	-2301	-2635	-655	-850	-1988	-3420	-3231	69
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
65/K)	142	1957	059	270	2159	1202	66	1900	1020	442	057	26	1400	1204	122	616	202	1/60	2018	1292	70
	-149	-1007	222	210	-2150	200	-00 106	-1090	210	-466	-720	275	-1499	45	96	250	-302	-1409	-2040	-1303	10
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	-+00	-120	215	007	70	50	000	111	-000	-204	-240	
								I													
66(C)	605	1553	739	-17	-1374	-1488	-182	260	969	-203	-397	-263	-1573	159	691	-426	-331	-761	-1567	-1032	71
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
07(4)		050	0.400	0700	4000	003-1	0.1.1	400.1	0105	004	000	0400	0000	0000	0500	4074	4400	4047	0440	4705	
6/(A)	2327	-956	-3193	-2/28	-1289	-26//	-2114	1664	-2485	-601	-288	-2403	-2839	-2263	-2523	-18/1	-1126	161/	-2143	-1/65	(2
	-149	-500	233	43	-381	399	106	-626 *	210	-466	-720	2/5	394	45	96	359	11/	-369	-294	-249	
-	-10	-/ IU8	-0150	-894	-1115	-701	-13/8														

SKY SKZ -168 -168 -127 -172 -174 -227 -178 -227 -178 -428 -439 -449 -449 -441 -430 -449 -439 -449 -449 -449 -441 -449 -441 -449 -441 -																						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	68(K)	-532	-1656	-490	1321	-1891	-1527	-172	-124	2206	-1591	-782	-223	-1619	237	-106	-482	-464	-98	-1904	-1326	73
· ·< ·< · · ·< ·< <td>-</td> <td>-149</td> <td>-500</td> <td>233</td> <td>43</td> <td>-381</td> <td>399</td> <td>106</td> <td>-626</td> <td>210</td> <td>-466</td> <td>-720</td> <td>275</td> <td>394</td> <td>45</td> <td>96</td> <td>359</td> <td>117</td> <td>-369</td> <td>-294</td> <td>-249</td> <td></td>	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
Birly 384 -1884 936 898 2161 1362 4488 1991 1414 421 453 -284 342 48 2012 -138 74 1 148 500 223 43 381 389 100 6428 211 488 720 275 384 451 94 382 441 204 203 -284 220 -283 300 75 161 7108 6100 484 -101 -101 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -110 -100 -100 -100 -100 -100 -100 -110 -100 <t< td=""><td>-</td><td>-16</td><td>-7108</td><td>-8150</td><td>-894</td><td>-1115</td><td>-701</td><td>-1378</td><td>" ľ</td><td>ſ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-	-16	-7108	-8150	-894	-1115	-701	-1378	" ľ	ſ												
1.10 1.48 500 233 43 386 08 426 216 466 770 215 384 45 98 386 117 386 244 244 1 16 7100 4501 450 170 1378 7 7 7005 1602 4502 230 231 300 251 2065 233 406 241 113 706 1883 3328 3077 75 -148 500 233 43 386 06 450 120 466 3638 3677 2228 3534 117 388 248 248 7/(1) 1.760 4333 424 386 018 238 210 465 3238 3677 3228 3636 117 368 2284 248 - 1.48 500 233 43 388 117 368 2218 120 1183 1685	69(H)	384	-1854	936	889	-2165	-1363	1498	-1909	1111	-1866	-948	1091	-1464	421	-131	-284	-342	-69	-2043	-1364	74
1 1	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378 '	۱ I	1												
1.449 500 203 403 381 384 105 426 210 426 270 275 384 45 96 353 117 386 284 248 249 - 1.16 7.108 4.500 4.50	70(G)	1823	-932	-2330	-2313	-3120	2511	-2158	-2865	-2331	-3098	-2209	-1563	-1912	-2032	-2419	1138	-706	-1883	-3328	-3077	75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-16	-7108	-8150	-894	-1115	-701	-1378 '	۰ ۱	r	•	•							•			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 3 3 3 1 1 2 2 1 1 1 3	71(V)	-1760	-1333	-4244	-3789	-1262	-3902	-3190	1495	-3588	1270	-96	-3536	-3677	-3238	-3534	-3148	-1725	2865	-2654	-2373	76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378	, ,	r												
Chrvi, Class Class <t< td=""><td>72(W)</td><td>-1054</td><td>-2172</td><td>-1112</td><td>-403</td><td>-2566</td><td>-1917</td><td>-286</td><td>-2196</td><td>2516</td><td>-2095</td><td>-1292</td><td>1183</td><td>-1958</td><td>140</td><td>1333</td><td>-959</td><td>-922</td><td>-1867</td><td>2591</td><td>-1720</td><td>77</td></t<>	72(W)	-1054	-2172	-1112	-403	-2566	-1917	-286	-2196	2516	-2095	-1292	1183	-1958	140	1333	-959	-922	-1867	2591	-1720	77
- -	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378	, j	r												
$ \begin{array}{c} (302) & 311 & 323 & 324 & 33 & 336 & 326 & 336 & 136 & 106 & 626 & 210 & 466 & 720 & 275 & 394 & 45 & 96 & 359 & 117 & 396 & 294 & 249 \\ \hline & -16 & -7108 & 8150 & -894 & -1115 & -701 & -1378 & * & & & & & & & & & & & & & & & & & $	73(D)	611	-1995	1525	937	-2295	-1400	-148	-2043	211	-2006	-1106	-37	-1553	1420	-312	-408	1235	-1609	-2193	-1499	78
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378	· · · ·		100			001	10				000		10	
1100 1130 1230 1230 1230 1230 1230 1230 1231	74(A)	2716	-902	-2380	-2205	-2799	-1197	-1975	-2459	-2081	-2736	-1895	-1520	-1895	-1844	-2201	1191	1299	-1669	-3045	-2758	79
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378	د ب	r								I				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	75/C)	1700	2022	2424	100	2701	2010	1457	2777	1720	2722	2076	720	2200	1120	2441	1557	1902	2150	2660	2020	00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-1109	-2000	2424	-409	-3701	2019	106	-5777	210	-3755	-3070	275	-2009	-1100	-2441	-1557	-1093	-3150	-3000	-3030	00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-212	-2909	-8150	-273	-2534	-701	-1378	-0 <u>2</u> 0	210	-100	-120	210	554	τυ	50	000	117	-000	-204	-2+3	
76(A) 2529 -1119 -2614 -2330 -1245 -983 -1629 -371 -2042 1435 -341 -1931 -2411 -1673 -2068 -1266 -1059 -391 -2063 -1113 82 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*	70(4)	0500	4440	0044	0000	4045	4000	4000	077	0040	4405	0.44	1007	0444	4070	0000	4000	4050	207	0000	4740	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76(A)	2529	-1119	-2014	-2330	-1245	- 1983	-1829	-311	-2042	1435	-341	-1937	-2411	-18/3	-2088	-1200	-1059	-397	-2063	-1713	82
77(W) -472 -361 -2421 -1812 -298 -1979 -826 1164 -143 2485 873 -2028 -1185 -1426 -1048 -412 1116 2999 -454 83 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * -<		-149	-300	-8150	-894	-301	-701	-1378	-020	210	-400	-720	215	3 94	40	90	309	114	-309	-294	-249	
77(W) -472 -361 -2421 -1812 -298 -1979 -826 1164 -143 2485 873 -2028 -1185 -1426 -1048 -412 1116 2999 -454 83 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - - - -1401 -1593 -2736 -3511 -3519 84 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 <t< td=""><td></td><td>-10</td><td>-1100</td><td>-0100</td><td>-004</td><td>-1110</td><td>-101</td><td>-1070</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-10	-1100	-0100	-004	-1110	-101	-1070														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77(W)	-472	-361	-2421	-1812	-298	-1979	-826	1164	-1486	-143	2485	873	-2028	-1185	-1426	-1048	-412	1116	2999	-454	83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
78(P) -1198 -1737 -2187 -2394 -3665 2006 -2550 -3630 -2743 -3756 -3008 -2052 3474 -2495 -2835 -1401 -1593 -2736 -3511 -3519 84 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * * - <td>-</td> <td>-16</td> <td>-7108</td> <td>-8150</td> <td>-894</td> <td>-1115</td> <td>-701</td> <td>-1378 '</td> <td>· ·</td> <td>r</td> <td></td>	-	-16	-7108	-8150	-894	-1115	-701	-1378 '	· ·	r												
- -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * 79(Q) -999 -1075 -2106 -1568 -726 -2370 -1175 83 -1185 1373 218 -1566 -2400 2445 -1340 -1445 -946 1441 -1501 -1146 85 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150	78(P)	-1198	-1737	-2187	-2394	-3665	2006	-2550	-3630	-2743	-3756	-3008	-2052	3474	-2495	-2835	-1401	-1593	-2736	-3511	-3519	84
16 -7108 -8150 -894 -1115 -701 -1378* * 79(Q) -999 -1075 -2106 -1568 -726 -2370 -1175 83 -1185 1373 218 -1566 -2400 2445 -1340 -1445 -946 1441 -1501 -1146 85 149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 16 -7108 -8150 -894 -1115 -701 -1378* *		-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	r 🗌												
	70/0)	000	1075	2400	1500	700	0070	1475	0.01	1405	1070	040	1500	2400	011E	1240	1115	040	1111	1504	1140	05
	13(4)	-999	-10/0	-2100 222	0001- 121	-120	-2310 200	106	03 	-1100 210	-166	210 _720	-1000	-2400 201	2440 75	-1340 QR	-1445 250	-940 117	-360	-1301	-1140	00
	-	-145	-7108	-8150	-894	-1115	-701	-1378	-020	210	-+00	-120	215	J7 1	۳J	50	555	117	-203	-234	-243	

7

80(Q)	-885	-779	-2609	-2018	-481	-2414	-1253	1645	-1736	799	1924	-1827	-2405	2262	-1752	-1484	-821	802	-1240	-935	86
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* *													
81(F)	-3342	-2776	-4026	-4232	4354	-3545	-1431	-2315	-4038	-1801	-1900	-3299	-3780	-3350	-3645	-3490	-3420	-2566	-739	349	87
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *		•								·	·		
82(G)	-998	-2100	-120	-175	-2567	2528	2174	-2558	-587	-2583	-1806	1422	-1966	-461	-1038	-925	-1088	-2095	-2657	-1948	88
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *			•							•	•		
83(T)	-1213	-1674	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	89
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *											•		
84(1)	-1286	-1279	-2907	-2683	-1446	-2549	-2198	3290	-2407	-726	-534	-2386	1172	-2299	-2437	-1895	-1392	283	-2302	-1913	90
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *													
85(T)	-493	-1105	-2189	-2267	-3101	1880	-2196	-2791	-2334	-3081	-2269	-1649	-2058	-2099	-2410	-719	3135	-1948	-3282	-3046	91
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *													
86(V)	-1750	-1296	-4319	-3957	-1765	-4038	-3733	2364	-3826	-619	-543	-3716	-3869	-3685	-3902	-3354	-1743	3012	-3265	-2817	92
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *													
87(S)	923	-962	-2348	-2422	-3132	-1207	-2248	-2850	-2440	-3140	-2285	-1624	-1954	-2158	-2477	3171	-758	-1896	-3362	-3103	93
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *													
88(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	94
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *													
89(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	95
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *													
90(1)	-1880	-1493	-4193	-3724	-953	-3837	-2980	3251	-3420	257	2372	-3485	-3608	-3005	-3310	-3087	-1840	617	-2373	-2155	96
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	* *		I							I		I		
04/0	0450	000	0407	0445	0075	4407	000-	0704	0004	0005	0005	4040	4000	040E	0400	opeol	700	4050	0000	2040	
91(5)	2150	-939 E00	-240/	-2415	-30/5	-119/	-2205	-2/81	-2384	-3065	-2205	-1613	-1936	-2105	-2436	2652	-/29	-1850	-3306	-3049	9/
-	-149	-300 -7108	233 -8150	43 _801	-301	-701	1378	-020 * *	210	-400	-120	210	394	40	90	১১৪	117	-309	-294	-249	
1	1 -10	-1100	-0100	-00-	-110	-101	-1010														

92(M)	-979	-1455	-1242	-1122	-1434	-1860	-1131	-1171	-974	-1285	4091	2176	-2226	-1017	-1187	-1166	-1086	-1063	-1929	-1345	98
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	·													
93(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	99
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	r												
94(T)	-959	-1691	-1249	-949	-2563	-1747	-929	-2093	1282	-2263	-1554	-995	-2115	-600	-354	-1037	3152	-1726	-2494	-2098	100
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	r		•	•			•						
95(E)	-572	-1860	-208	2213	-2107	-1461	-191	-1808	199	-116	-983	-127	318	1199	-269	-475	-517	-1448	-2078	-1441	101
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	101
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	- 10	100	0		001	10						_ 10	
96(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	102
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	102
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1		100										_ 10	
97(M)	-2406	-2296	-3638	-3594	-1525	-3105	-2824	-1047	-3121	-596	5043	-3293	-3425	-3046	-2996	-2911	-2552	-1398	-2513	-2207	103
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	ŕ												
98(R)	-2097	-2786	-2688	-1415	-3622	-2625	-555	-2964	2585	-2627	-1957	-1318	-2577	-137	3015	-1979	-1791	-2732	-2469	-2363	104
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	r												
99(Y)	-3615	-2706	-4169	-4413	2626	-4044	-396	-2535	-3993	-1939	-1985	-2747	-3930	-2852	-3446	-3296	-3494	-2686	347	4252	105
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	r			1	I	1		l	1	L	1		
100/\$)	807	1/62	2222	2543	2185	1640	2474	3204	2686	3/07	2780	1073	2360	2483	2702	2465	1316	2/13	3310	3025	106
-	-097	-1402	2333	-20 4 3 43	-3105	399	106	-52.94	2000	-3497	-2700	275	-2300	-2403 45	-2705 96	350	117	-2413	-3310	-3023	100
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	210 r	-100	-120	210	004	τJ	50	000	117	-000	-204	-240	
		1100	0100				1010														
101(L)	-2871	-2457	-4231	-4103	-1033	-3803	-3165	-541	-3734	3130	-31	-3935	-3797	-3286	-3484	-3713	-2869	-1136	-2394	-2220	107
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	r												
102(V)	-1381	-1065	-3714	-3252	-1453	-3300	-2646	1872	-3023	-615	-373	-2949	-3287	-2816	-3039	-2506	1346	2750	-2489	-2087	108
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	1												
	· · · · ·		l					I	I												
103(S)	-897	-1462	-2333	-2543	-3185	-1640	-2474	-3294	-2686	-3497	-2780	-1973	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	109
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	1												

104(R)	-2957	-3022	-3318	-2735	-3796	-2998	-1968	-3912	-846	-3631	-3157	-2611	-3280	-1724	4056	-3026	-2913	-3650	-3096	-3185	110
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378)	·	5												
105(E)	-1719	-3572	2596	2779	-3767	-1632	-993	-3700	-1241	-3578	-2920	-234	-2167	-666	-2090	-1380	-1789	-3182	-3742	-2756	111
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* *	ł												
106(V)	-1746	-1296	-4308	-3946	-1757	-4020	-3712	2190	-3811	-614	-539	-3702	-3858	-3667	-3884	-3336	-1740	3098	-3250	-2803	112
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 4	ł	•								•			
107(I)	-2091	-1746	-3971	-3840	-1676	-3532	-3289	3684	-3581	-659	-693	-3562	-3674	-3445	-3521	-3194	-2146	449	-2877	-2493	113
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
	-16	-7108	-8150	-894	-1115	-701	-1378	4	ł	I											
108(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	114
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	۲ ۲	ł			l									
109(D) - -	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	115
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
	-16	-7108	-8150	-894	-1115	-701	-1378	۲ ۲	ł			I		I				l	I		
110(S)	-352	2942	-2955	-2957	-2876	-1254	-2382	-2573	-2692	-2927	-2128	-1827	-2001	-2405	-2607	3103	-778	-1757	-3171	-2911	116
- -	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
	-16	-7108	-8150	-894	-1115	-701	-1378	· · ·	*												
				I				I													
111(l)	-2091	-1746	-3971	-3840	-1676	-3532	-3289	3684	-3581	-659	-693	-3562	-3674	-3445	-3521	-3194	-2146	449	-2877	-2493	117
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	·	*												
112(E) -	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	118
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	•	ł												
113(T) - -	1556	-936	-2493	-2457	-2805	-1256	-2159	-2210	-2319	-2681	-1932	-1656	-1974	-2089	-2352	-598	3235	-1547	-3111	-2847	119
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
	-16	-7108	-8150	-894	-1115	-701	-1378	ہ <u>ب</u>	ł												
114(C)	1784	2110	-2013	-1532	-1093	-1580	-1089	-436	-1322	-937	-273	1093	-1932	-1127	-1472	-748	-515	1585	-1536	-1163	120
- -	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	120
	-16	-7108	-8150	-894	-1115	-701	-1378	1	10	100	120	=19	001			000	117	000	=0 II	-10	
115(M)	1831	2019	-2596	-2038	-605	-1979	-1126	244	-1727	-359	2501	-1655	-2145	-1435	-1683	-1106	-557	1087	-1153	-804	121
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* *	*												
116(Q)	-987	-2211	-43	-62	-2833	2229	-691	-2616	-407	-2604	-1797	1197	-1917	2260	-858	-880	-1045	-2139	-2772	-2099	122
----------	----------	--------	-------	--------	--------------	-------	-------	--------	--------------	--------------	-------	-------	-----------------	-------	-------	-------	-------	-------	-------	-------	-----
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* *	f												
117(0)	2212	1042	2201	2526	2250	2601	2270	2072	2627	2257	2407	1701	2022	2210	2646	660	950	2002	2424	2247	100
111(0)	2313	500	-2091	-2,520	-0200 201	2001	-2372	-2912	-2037	-5251	72407	275	-2032	-2310	-2040	-002	-035	-2003	-0404	-3247	123
	-145	-300	-8150	-894	-301	-701	-1378	* 1	210	-400	-120	215	J9 4	40	90	209	ш	-505	-234	-243	
	-10	-1100	-0100	-00-1	-1110	-101	-1070														
118(Q)	-914	-2350	-48	1661	-2621	-1571	2504	-2400	68	-2331	-1486	-201	-1796	2646	-351	-754	-865	-1984	-2463	-1787	124
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	r												
119(W)	-517	-1294	-733	-183	-1062	-1605	-234	-1037	19	-1207	-456	1435	-1690	33	756	411	-454	-819	3340	1286	125
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* /	ŕ												
120/M)	410	460	0447	1000	244	2044	007	105	1510	156	2420	1524	2102	1000	1404	1117	507	054	004	າງຂາ	400
120(101)	410	-409	-2417	-1020	-341	2041	-097	626	-1515	-100 //66	720	-1004	-2102	-1230	-1404	-1117	-307	360	-094	2200	120
	-149	-300	-8150	-894	-1115	-701	-1378	* 1	210	-400	-720	215	594	40	90	509	114	-009	-234	-249	
	10	1100	0100	004	1110	101	1070														
121(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	127
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* *	r												
400(0)	0440	000	0004	0000	0400	0007	0400	00.10	0000	0.074	0.407	4557	1000	0010	0007	4400	704	4074	0000	0050	
122(G)	2142	-930	-2334	-2298	-3100	2237	-2139	-2842	-2302	-30/4	-218/	-155/	-1909	-2010	-2397	1136	-/01	-18/1	-3308	-3053	128
-	-149	-500	233	43	-381	399	106	-626	210	-400	-720	2/5	394	45	96	359	117	-369	-294	-249	
-	-10	-/ 100	-0100	-094	-1115	-701	-1370														
123(V)	-1514	-1144	-3950	-3459	1821	-3487	-2577	2274	-3208	-209	-87	-3112	-3362	-2864	-3118	-2680	-1476	2426	-2194	-1786	129
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* *	r	I	I	I			I			I	I		
124(V)	-1743	-1294	-4292	-3873	-1511	-3988	-3433	2287	-3712	598	-319	-3626	-3774	-3456	-3716	-3260	-1717	2790	-2931	-2577	130
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* /	r												
105(A)	2014	054	2000	2005	0115	1577	2106	575	2445	1646	1000	1000	2200	2240	0454	001	070	1204	0707	2204	404
129(A)	2911	-904	-2000	-2000	-2115	-15/7	-2190	-575	-2445 210	-1040	-1202	-1900	-2200	-2210	-2401	-901	-0/0	1294	-2/2/	-2394	131
-	-149	-300	-8150	-80/	-301	-701	-1378	+ -020	210	-400	-120	215	394	40	90	209	117	-309	-294	-249	
	-10	-7100	-0100	-034	-1115	-701	-1570														
126(1)	-1764	-1323	-4298	-3936	-1668	-3994	-3655	3337	-3783	-508	-462	-3689	-3838	-3608	-3835	-3311	-1759	1847	-3164	-2747	132
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	,		. = -			1						2.0	
	<u> </u>				1		1	I													
127(G)	-1157	-1705	-2169	-2375	-3654	3021	-2534	-3611	-2730	-3741	-2984	-2024	2418	-2475	-2826	-1361	-1555	-2705	-3513	-3509	133
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* *	r												

128(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	134
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
120/0)	2476		4102	1250	2712	2762	2545	2510	4167	2050	2560	2621	2262	1020	2022	2702	2060	2150	2464	2710	105
129(0)	-24/0	-500	-4102 222	-4000	-3712	-2703	-3040 106	-3010	-410/	-3039	-3009	-3031	-3303	-4030	-3032	-2793	-2000	-3100	-3404	-3/10	135
-	-145	-300	-8150	-894	-301	-701	-1378	* 020	× 210	-400	-720	215	J 34	40	90	209	111	-309	-234	-243	
	-10	-1100	-0100	-004	-1110	-101	-1070														
130(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	136
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k	I	I	I		I	I	I		I	I		
131(K)	-2620	-2961	-2461	-2046	-3743	-2791	-1570	-3603	3784	-3387	-2839	-2048	-3039	-1260	-465	-2604	-2536	-3331	-3001	-2988	137
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	k												
132(N)	-2171	-2655	-1458	-1748	-3334	-2364	-2267	-3943	-2365	-3936	-3437	4205	-2932	-2205	-2608	-2224	-2439	-3392	-3253	-2909	138
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	κ :													
100/M)	2406	2206	2620	2504	1505	2105	2024	1047	2121	FOR	E010	2202	2425	2046	2006	2011	2552	1200	2512	2207	420
100(101)	-2400	-2290	-3030 222	-5594	-1525	-3105	-2024	-1047	-3121 210	-090	720	-3293 275	-3423	-3040	-2990	-2911	-2002	-1090	-2010	-2207	199
-	-149	-300	-8150	-80/	-301	-701	-1378	+ -020	210 *	-400	-720	215	১ 94	40	90	309	117	-309	-294	-249	
-	-10	-1100	-0130	-034	-1113	-701	-1570														
134(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	140
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* ;	*		[
	1 1																				
135(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	141
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
136(A)	2180	-935	-2286	-2196	-3057	1098	-2058	-2796	-2174	-3021	-2134	-1516	-1898	-1906	-2302	2146	-689	-1849	-3256	-2983	142
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	1	ĸ												
107/M)	1700	1400	4140	2570	660	2660	2600	1550	2202	1005	9700	2206	2404	0747	2000	2042	1700	1150	2002	1000	440
137(101)	-1/99	-1433	-4142	-35/9	-009	-3008	-2008	1008	-3293	1235	3/99	-3290	-3401	-2/1/	-3088	-2843	-1/20	0001	-2002	-1808	143
-	-149	-300	233 0150	43	-301	399 701	100	-020	210 *	-400	-720	215	394	40	90	309	117	-309	-294	-249	
-	-10	-/ 100	-0100	-094	-1115	-701	-1370														
138/1)	-2091	-1746	-3971	-3840	-1676	-3532	-3289	3684	-3581	-659	-693	-3562	-3674	-3445	-3521	-3194	-2146	449	-2877	-2493	144
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	177
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	TUU	120	210	UUT	יד	00	000		000	LUT	LTU	
	ı '*l		0,00																		
139(A)	3103	-1036	-2445	-2572	-3222	1051	-2380	-2930	-2650	-3226	-2381	-1739	-2034	-2327	-2648	-664	-857	-1981	-3412	-3228	145
- (-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	-
-	-16	-7108	-8150	-894	-1115	-701	-1378	* :	*												

140(M)	-2325	-1891	-4598	-4012	-498	-4222	-3013	1242	-3722	1864	3929	-3855	-3711	-2910	-3414	-3439	-2215	-299	-2076	-2098	146
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
141(A)	3103	-1036	-2445	-2572	-3222	1051	-2380	-2930	-2650	-3226	-2381	-1739	-2034	-2327	-2648	-664	-857	-1981	-3412	-3228	147
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k												
142(R)	-1588	-2442	-1399	-953	-3069	-2171	-708	-2795	373	-2625	-1916	1858	-2357	-324	3294	-1520	-1505	-2453	-2523	-2186	148
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k		•			•							
143(M)	-1448	-1256	-3396	-2819	-474	-3024	-1923	175	-2473	2225	2756	-2574	-2922	-2063	-2375	-2153	952	-151	-1599	-1410	149
-	-149	-500	233	43	-381	399	1020	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	145
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	120	10	001	10		000		000	201	210	
144/NI\	1662	2206	2055	70	2621	1642	1040	2622	1070	2521	2070	2477	2102	704	2071	1271	1757	2002	2622	2700	150
144(N)	-1002	-5500	2000	10	-3021	200	1040	-3022	210	-3531	-2070	275	-2102	-724	-2071	-1371	-1757	-3092	-3033	-2700	100
-	-143	-7108	-8150	-894	-1115	-701	-1378	* :	*	-400	-120	215	004		30	555	117	-003	-204	-2-+3	
	10	1100	0100		1110	101	1010														
145(I)	-1066	-921	-2828	-2239	-1041	-2675	-1601	2235	-1668	-455	-92	-2067	-2692	-1688	1701	-1795	-1024	1960	-1771	-1396	151
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k												
146(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	152
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k												
147(S)	1568	-940	-2267	-2192	-3082	1101	-2068	-2826	-2185	-3049	-2159	-1515	-1901	-1915	-2313	2603	-694	-1866	-3279	-3006	153
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k			1		I				I			
1/18/1)	-1880	-1402	_/105	-3728	-063	-38/1	-2001	3272	-3425	246	2277	-3490	-3613	-3014	-3317	-3003	_18/1	628	-2385	-2163	15/
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-2000	-2100	1.77
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	720	270	001	10	00	000		000	201	210	
149(F)	-2204	-1797	-3724	-3473	3206	-3383	-628	-1077	-3092	-746	3167	-2502	-3309	-2372	-2792	-2535	-2120	-1245	28	2460	155
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
150(V)	1265	-1028	-3200	-2994	-1833	-2150	-2480	417	-2771	-1122	-818	-2349	-2640	-2559	-2766	-1464	-1118	3028	-2700	-2325	156
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
151/\/\	2402	2000	2704	2040	000	2550	1110	2000	2620	0540	0500	2007	0770	2404	2244	2440	2527	2074	ллл	1 7 11	457
151(Y)	-3482 140	-2000 E00	-3/U1 222	-3919 10	238	-3052 200	-1112	-3000 626	-3038 210	-2516	-2526	-3UZ/	-3/72	-3101	-3341 02	-3418 250	-3527	-30/1 260	-441 204	4/11 240	1 5/
-	-149	-500	203 _8150	43 _80/	-301	୦୭୫ _701	1278	-020 *	21U *	-400	-120	210	<u>১৯</u> 4	40	90	১০৯	117	-209	-294	-249	
(-10	-1100	-0100	-034	-1115	-101	-1070														

152(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	158
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	T	⊼												
153(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	159
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
154(T)	-359	-976	-2225	-2229	-2900	-1242	-2074	-2560	-2170	-2875	-2064	-1561	-1958	-1969	-2247	1110	3375	-1760	-3152	-2850	160
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	1											
155/1)	2001	1746	2071	2840	1676	2522	2200	2694	2591	650	602	2562	2674	2445	2521	2104	2146	110	2977	2402	161
100(1)	-2091	-1740	-3971	-30 4 0 /13	-1070	2002	-0209 106	-626	-3301	-009	-090	-0002	-3074	-0440	-5521	250	-2140	-360	-2011	-2495	101
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	-+00	-720	210	JJ T		30	000	117	-009	-234	-243	
450(11)	004	4004	004	4040	0000	4 4 7 7	4707	4074	4700	4040	4000	400	4500	0.00	007	447	450	4557	0070	4440	400
156(H)	861	-1924	-384	1010	-2260	-14//	1/8/	-19/4	1/69	-1918	-1022	-120	-1566	362	697	-417	-459	-155/	-2073	-1446	162
-	-149	-500	-8150	-80/	-301	-701	-1378	-020 *	210 *	-400	-720	215	394	40	90	309	117	-309	-294	-249	
-	-10	-1100	-0130	-034	-1113	-701	-1370														
157(P)	-655	-1502	-711	-557	-2204	-1463	2143	-2122	-586	-2233	-1445	-688	2941	-560	-941	855	-805	-1657	-2369	-1763	163
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
158(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	164
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
159/H)	-744	-2193	-114	1118	-2513	-1512	2486	-2252	1178	-2183	-1308	2230	-1689	180	-233	-598	-687	-1823	-2335	-1670	165
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	-200	359	117	-369	-2000	-249	100
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	720	270	001	10		000		000	201	210	
400(141)	0070	0400	2050	0740	044	0044	400	4004	0000	4047	4047	0554	0504	0544	20000	0700	0577	4700	IOOF	0400	400
160(14)	-2072	-2139	-3850	-3/48	94 I 201	-3011	-409	-1091	-3306	1047	-1217	-2001	-3534	-2014	-2960	-2/88	-23/7	-1799	4200	3400	166
-	-149	-500	-8150	-80/	-301	-701	-1378	-020 *	210 *	-400	-720	215	394	40	90	309	117	-309	-294	-249	
-	-10	-7100	-0130	-034	-1115	-701	-1070														
161(K)	386	-1981	779	279	-2295	-1403	-114	-2043	2059	-1991	-1082	941	-1536	1263	-211	-384	-457	-1602	-2161	-1476	167
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
162(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	168
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
													,								
163(K)	-1144	-2365	-912	2048	-2856	-1912	-326	-2459	2267	-2295	-1482	-556	-1989	108	1334	-1013	-1014	-2093	-2324	-1881	169
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	×												

164(D)	-1091	-2610	2941	174	-2957	-1527	-595	-2750	1084	-2696	-1877	-176	-1885	-206	-1006	740	-1098	-2288	-2880	-2105	170
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· /	r												
165(L)	-2387	-1922	-4674	-4155	-617	-4366	-3250	1889	-3865	2650	558	-4023	-3847	-3098	-3586	-3647	-2296	-38	-2247	-2224	171
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	()	1	ł		•	I						1		
166(N)	-1021	-2427	1806	133	-2870	-1499	-635	-2647	-521	-2640	-1825	2171	-1874	-255	-1124	-860	2122	-2184	-2853	-2090	172
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	114
-	-16	-7108	-8150	-894	-1115	-701	-1378	, ,	,											_ 10	
	1							I													
167(I)	-1830	-1390	-4327	-3873	-1210	-3994	-3274	2967	-3678	1259	-30	-3633	-3730	-3283	-3604	-3249	-1791	1570	-2661	-2417	173
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	· •	r												
168/\/\	1771	1602	3750	2680	2027	2050	2221	402	3470	115/	1076	3246	2200	2282	2427	2628	1017	2526	2074	2677	17/
100(V)	-149	-1003	-3730	-3009	-2007	-3030	-5251	-626	-3473	-1104	-1070	-3240	-0099	-5505	-0407 96	-2020	117	-360	-3074	-2011	1/4
-	-16	-7108	-8150	-894	-1115	-701	-1378	-020	210	-100	-120	215	004	τJ	50	000	117	-000	-204	-240	
	1 10	1100	0100	001	1110	101	1010														
169(S)	-897	-1462	-2333	-2543	-3185	-1640	-2474	-3294	-2686	-3497	-2780	-1973	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	175
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	۲ ۲	r												
170//)	2440	074	2271	2002	1002	1244	1704	1064	1000	1022	1127	1517	1046	1674	2005	1075	641	1474	2200	2055	176
170(A)	2440	-024	-2371	-2002	-1995	-1344	-1704	-1204 626	-1099	-1032	720	-1017	-1940	-10/4	-2005	250	-041	260	-2390	-2055	1/0
-	-149	-500	-8150	-80/	-301	-701	-1378	-020	210	-400	-720	215	594	40	90	309	117	-309	-294	-249	
-	-10	-1100	-0100	-004	-1115	-101	-1570														
171(F)	-3342	-2776	-4026	-4232	4354	-3545	-1431	-2315	-4038	-1801	-1900	-3299	-3780	-3350	-3645	-3490	-3420	-2566	-739	349	177
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	r				1								
(== (=)												(== (
172(E)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	178
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-10	-7108	-8150	-894	-1115	-701	-13/8														
173(A)	2966	-1031	-2429	-2551	-3222	1544	-2368	-2934	-2633	-3225	-2377	-1727	-2028	-2309	-2637	-656	-850	-1980	-3412	-3224	179
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	, ,	r												
174(V)	-1769	-1342	-4255	-3793	-1216	-3901	-3162	1633	-3589	1486	-51	-3537	-3667	-3214	-3518	-3143	-1731	2692	-2609	-2345	180
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	" "	r												
175/01	2504	2600	الالادد	Jenj	ADDO	<u>97/7</u>	24621	1701	2052	1671	1010	ววากไ	ງງຼາງ	27/0	2770	2020	2004	1001	2660	สาวาา	101
1/5(6)	-2094	-2090	-3304 222	-3023 12	-4320 _291	200	-0402 106	-4/01	-ᲐᲧᲔᲐ 210	-40/1	-4212	-3320 275	-3352 201	-3/40 15	-3/19	-2039	-2901	-4004	-2000	-4222	101
-	-143	-300	200 _8150	43 _80/	-301	ວອອ _701	1278	-020	210	-+00	-120	210	J 94	40	90	209	117	-203	-234	-249	
L. L.	1 -10	-1100	-0100	-034	-1110	-101	-1070														

TROD, 1900, 1																						
- -	176(Q)	-729	-2116	-413	1096	-2484	-1587	1599	-2186	1695	-2094	-1219	-223	-1698	2418	90	-599	-649	-1770	-2213	-1615	182
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-16	-7108	-8150	-894	-1115	-701	-1378		5												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	177(W)	-1652	-1707	-2340	-1879	1996	-2733	2013	-1398	1758	-1386	-938	-1641	-2751	-1364	-1762	-1780	-1577	-1325	3577	2136	183
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-16	-7108	-8150	-894	-1115	-701	-1378	1	ł									•			
1 1.44 500 223 43 381 106 426 210 436 720 275 384 45 96 358 117 366 294 208 178(H) 1495 -1533 -504 15 1395 -149 7108 8150 -584 -1115 -701 422 -161 144 -171 462 615 -1231 -1914 -1304 194 -1304 194 -1304 194 -1304 -191 -191 -191 -191 -191 -191 -191 -191 -191 -191 -201 215 384 45 96 359 117 -366 -294 -244	178(T)	-421	-753	-1251	-704	-846	-1670	-535	894	-548	-690	-1	1376	-1791	-421	-846	373	1461	858	-1236	-812	184
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-16	-7108	-8150	-894	-1115	-701	-1378	r 1	ł	I	1		I			I		I	l		
119(H) 1488 -1583 -504 15 -1586 -1244 222 -1511 194 -171 -462 815 -1221 -194 -1340 158 - -146 -7108 -1555 -280 233 45 381 398 106 626 210 -466 -720 275 394 45 96 358 117 -388 -284 -244 - 146 -7108 -1515 -2130 -1284 -2638 -1524 -2562 -1662 -1925 -160 -1764 2713 -2004 -2234 186 - -146 -500 233 45 -381 399 106 462 210 -466 -720 275 394 45 98 398 117 -389 -294 -248 - -166 -700 233 45 381 396 106 426 210 466 720 275 394 45 98 398 117 -389 294 249 2059 <td>4=0/0.0</td> <td></td> <td>(=0.0</td> <td>.</td> <td></td> <td>(00=</td> <td>1101</td> <td></td> <td>(== 0</td> <td></td> <td></td> <td>o (ol</td> <td>0.10</td> <td></td> <td>1.01</td> <td></td> <td>100</td> <td>o (=</td> <td>100.1</td> <td>(0.14</td> <td>10.10</td> <td></td>	4=0/0.0		(=0.0	.		(00=	1101		(== 0			o (ol	0.10		1.01		100	o (=	100.1	(0.14	10.10	
	179(H)	1498	-1593	-504	15	-1895	-1484	22/9	-1559	1119	-1640	-810	-242	-1611	194	-1/1	-462	815	-1231	-1914	-1340	185
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	2/5	394	45	96	359	117	-369	-294	-249	
180(G) 1-1515 -2130 -2238 1-480 -2638 3288 2212 -3276 -3281 -1625 -1602 -1764 -2713 -2804 -2234 1480 - -168 -7008 -3150 -384 -1115 -700 -1378 -	-	-10	-/ 100	-0150	-094	-1115	-701	-1370														
- 149 -500 233 43 -381 399 106 -202 275 394 45 96 359 117 -369 -249 - - - 8 -7108 -8150 -894 -118 -701 -1378 -<	180(G)	-1515	-2130	-1298	-1450	-2658	3285	2212	-3276	-1691	-3291	-2638	-1524	-2562	-1662	-1925	-1600	-1764	-2713	-2804	-2234	186
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-16	-7108	-8150	-894	-1115	-701	-1378	" I	k												
- -	181(K)	-528	-2010	1346	1082	-2329	-1408	-118	-2080	1475	-2018	-1108	1161	-1543	331	1052	-394	-471	-1632	-2181	-1494	187
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- , ,	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-16	-7108	-8150	-894	-1115	-701	-1378	r 1	ł												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	182(M)	-1894	-1521	-4170	-3679	-840	-3793	-2866	2827	-3360	375	2445	-3437	-3555	-2902	-3223	-3028	-1846	470	-2249	-2059	188
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	100
183(T) -670 -1758 1731 -141 -2591 -1399 -691 -2319 -499 -2384 -1543 -387 -1786 -316 -1016 1576 2044 -1811 -2624 -1981 189 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - - -160 -1566 1408 -177 -2135 922 -2084 -1183 -386 641 264 -356 -4444 -536 -1690 -2261 -1556 190 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117	-	-16	-7108	-8150	-894	-1115	-701	-1378	, 1	+	100	720	210	001	10	00	000		0000	201	210	
183(T) -670 -1758 1731 -141 -2591 -1399 -691 -2319 -499 -2384 -1543 -387 -1766 -316 -1016 1576 2044 -1811 -2624 -1981 189 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*			1																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	183(T)	-670	-1758	1731	-141	-2591	-1399	-691	-2319	-499	-2384	-1543	-387	-1786	-316	-1016	1576	2044	-1811	-2624	-1981	189
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-16	-7108	-8150	-894	-1115	-701	-1378	· ·	ł												
- -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * * - -16 -7108 -8150 -894 -1115 -701 -1378* * * - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * - - -1967 -342 -1394 -1043 701 -2567 <td>184(E)</td> <td>345</td> <td>-2074</td> <td>925</td> <td>1994</td> <td>-2378</td> <td>-1408</td> <td>-177</td> <td>-2135</td> <td>922</td> <td>-2084</td> <td>-1183</td> <td>-38</td> <td>641</td> <td>264</td> <td>-356</td> <td>-444</td> <td>-536</td> <td>-1690</td> <td>-2261</td> <td>-1556</td> <td>190</td>	184(E)	345	-2074	925	1994	-2378	-1408	-177	-2135	922	-2084	-1183	-38	641	264	-356	-444	-536	-1690	-2261	-1556	190
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378	r 1	ł												
185(E) -1493 -2900 93 3174 -2903 -1/43 198/ -3042 -646 -295/ -2238 -411 -2146 -506 -1121 -12/2 -1503 -2629 -2905 -2134 191 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * * -			0000	0.01		0000	1=10		00.00			0000		<u></u>			(0=0	(=0.0	0000		<u></u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	185(E)	-1493	-2900	93	31/4	-2903	-1/43	1987	-3042	-646	-295/	-2238	-411	-2146	-506	-1121	-12/2	-1503	-2629	-2905	-2134	191
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	2/5	394	45	96	359	117	-369	-294	-249	
186(D) -1293 -2959 2673 2121 -3219 -1546 -713 -3043 -707 -2974 -2191 -158 -1967 -342 -1394 -1043 701 -2567 -3172 -2311 192 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * -	-	-10	-1100	-0150	-094	-1115	-/01	-13/0														
- -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * <td>186(D)</td> <td>-1293</td> <td>-2959</td> <td>2673</td> <td>2121</td> <td>-3219</td> <td>-1546</td> <td>-713</td> <td>-3043</td> <td>-707</td> <td>-2974</td> <td>-2191</td> <td>-158</td> <td>-1967</td> <td>-342</td> <td>-1394</td> <td>-1043</td> <td>701</td> <td>-2567</td> <td>-3172</td> <td>-2311</td> <td>192</td>	186(D)	-1293	-2959	2673	2121	-3219	-1546	-713	-3043	-707	-2974	-2191	-158	-1967	-342	-1394	-1043	701	-2567	-3172	-2311	192
16 -7108 -8150 -894 -1115 -701 -1378* * 187(F) -1137 -905 -3250 -2707 2365 -2647 -1016 -34 -2336 1239 267 -2150 -2626 -1861 -2133 -1752 -1069 1461 -599 1844 193 149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 16 -7108 -8150 -894 -1115 -701 -1378* *	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
187(F) -1137 -905 -3250 -2707 2365 -2647 -1016 -34 -2336 1239 267 -2150 -2626 -1861 -2133 -1752 -1069 1461 -599 1844 193 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * *	-	-16	-7108	-8150	-894	-1115	-701	-1378	1	*												
	187/F)	_1127	-005	-3320	-2707	226E	-2647	-1016	_2/	-2226	1220	267	-2150	-2626	-1861	-2122	-1752	-1060	1/61	_500	18/1	102
	<u>-</u>	-1137	-500	-5250 222	-2101 42	-281	-2047	1010	-04 -626	-2000 210	-466	_720	2130	-2020	-1001	-2133 QR	-1752	117	-369	-399	_249	199
	-	-16	-7108	-8150	-894	-1115	-701	-1378	-020	10	-100	-120	213	JJ7	TU	30	000	117	-003	-204	-273	

188(K)	-479	-1713	-409	1031	-1925	-1467	1755	-1650	1844	-349	-827	-140	-1556	319	-75	-403	-411	-1301	-1900	843	194
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	· •	f												
100/01	400	2144	ED	1047	0717	1202	615	2467	442	2402	1655	1100	1020	222	005	760	022	2000	2710	2005	405
109(0)	400	-2144	22	1047	-2/1/ 201	2000	-015	-2407	-442 210	-2402	720	275	-1020	-200	-990	-703	-925	-2000	-2710	-2005	190
-	-149	-300	-8150	-894	-301	-701	-1378	-020	210	-400	-120	215	5 74	4J	90	229	111	-309	-234	-243	
	10	7100	0100	001	1110	101	1070														
190(V)	-1752	-1320	-4254	-3806	-1311	-3916	-3232	1701	-3614	1188	-140	-3551	-3693	-3280	-3568	-3166	-1718	2833	-2703	-2409	196
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	r												
191(E)	-1199	-1750	-734	2668	-1820	-2038	-1068	1892	-867	-1273	-897	-922	-2295	-797	-1238	-1340	-1197	-426	-2325	-1789	197
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	· ·	r												
400/0)	4400	0500	4000	000	0544	0000	0.50	0000	4404	0007	4070	747	0070	4550	0040	4400	4000	4047	0440	4774	
192(C)	-1182	3528	-1398	-620	-2541	-2038	-358	-2093	1181	-2037	-12/2	-/4/	-2070	1553	2213	-1123	-1038	-1817	-2142	-1//4	198
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-10	-/ 108	-8150	-894	-1115	-701	-13/8														
193/NI)	-1478	-2527	-261	-403	-2011	-1837	2032	-2925	-735	-2845	-2195	3635	-2259	-721	-1085	-1352	-1546	-2522	-2307	-1431	100
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	100
-	-16	-7108	-8150	-894	-1115	-701	-1378	· · · ·	210	100	120	210	004	70	50	000	117	000	204	240	
	10	1100	0100		1110	101	1010														
194(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	200
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· • •	r	I	I	I	I	I	I	I			I		
195(C)	-1220	4911	-3609	-3314	-1440	-2525	-2482	1565	-2922	-706	-544	-2678	-2896	-2710	-2836	-1869	-1375	379	-2371	-1957	201
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	"	r												
												17									
196(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	202
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	11/	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-701	-13/8	· /													
107/C)	477	1115	1002	2100	2215	2154	2272	2172	2506	2207	2522	1500	2042	2177	2502	1017	005	2120	2477	2225	202
197(0)	-4/7	-1113	-1903	-2109	-381	200	106	-626	-2000	-3307	-2322	275	-2042	-2111	-2000	350	-905	-2150	-3477	-3223	203
-	-149	-300	-8150	-894	-1115	-701	-1378	-020	210	-+00	-720	215	09 1	40	90	509	117	-303	-234	-243	
	10	1100	0100	004	1110	101	1070														
198(A)	1653	-1347	-705	-249	-1969	-1385	-477	-1629	-159	-1759	-935	-434	1285	1404	-586	-450	1019	-1243	-2070	-1522	204
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· · ·	,		. = -									2	
	· ···			1				I													
199(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	205
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· • •	r							I					

200(S)	1870	-938	-2270	-2183	-3068	1488	-2056	-2810	-2168	-3032	-2144	-1511	-1898	-1901	-2300	2236	-690	-1857	-3265	-2990	206
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	*													
201(C)	-2476		-4102	-4358	-3712	-2763	-3545	-3518	-4167	-3859	-3569	-3631	-3363	-4030	-3832	-2793	-2860	-3158	-3464	-3718	207
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	LUI
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
202(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	208
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	200
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	100	120	210	001	10		0000		0000	201	210	
		I	I	I	1			I	I												
203(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	209
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
204/M)	-2406	-2206	-3638	-350/	-1525	-3105	-2824	-1047	-3121	-506	50/3	-3203	-3425	-3046	-2006	_2011	_2552	_1308	-2513	-2207	210
-	-2400	-2230	233	-5554	-381	399	106	-626	210	-466	-720	275	394	45	-2990 96	359	117	-369	-2010	-2207	210
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	100	720	270	001	10		000		000	201	210	
								I													
205(Y)	-3590	-2700	-4146	-4379	2092	-4028	-404	-2517	-3963	-1928	-1973	-2744	-3921	-2845	-3431	-3284	-3474	-2669	336	4423	211
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
206(T)	-1213	-1674	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	212
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
207(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	213
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-10	-/108	-8150	-894	-1115	-701	-13/8														
208(N)	-2171	-2655	-1458	-1748	-3334	-2364	-2267	-3943	-2365	-3936	-3437	4205	-2932	-2205	-2608	-2224	-2439	-3392	-3253	-2909	214
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	k	I	I	I		I	1	I	I	1	I		
209(T)	-1213	-1674	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	215
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
210(M)	-2355	-1988	-4343	-3834	-504	-4051	-2868	105	-3385	1451	4460	-3680	-3671	-2806	-3171	-3327	-2274	-474	-2039	-1925	216
- ()	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	k												
211(S)	2150	-939	-2407	-2415	-3075	-1197	-2205	-2781	-2384	-3065	-2205	-1613	-1936	-2105	-2436	2652	-729	-1850	-3306	-3049	217
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	ĸ												

1/168 3.44 479 2102 2002 2202 2204 2404 210 2804 210 4204 1205 221 340 490 2222 340 380 110 380 280 280 - 148 720 220 430 380 300 66 620 210 450 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 220 480 280 110 360 280 280 280 480 280 480 280 280 480 280 480 280 480 280 480 280 480 280 480 280 480 280 480 280																						
- 1.48 - 5.01 220 4.3 381 38 100 - 263 20 4.76 7.72 276 3.94 4.5 95 396 1.17 3.98 4.24 2.99 2.99 4.70 7.00 4.70 4.70 4.70 4.70 4.70 4.70	212(S)	-344	-979	-2190	-2162	-2959	-1227	-2042	-2651	-2116	-2934	-2100	-1526	-1941	-1909	-2222	2940	1775	-1804	-3187	-2882	218
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
114.N 20048 422 442 2424 2424 4221 4484 2426 4512 1258 138 2424 328 241 338 241 220 456 256 138 451 95 358 117 358 224 -305 236 430 359 100 642 220 466 720 275 384 451 95 358 117 388 244 486 220 - 148 7106 4152 3461 368 368 117 368 284 -446 480 220 - 148 700 221 433 389 106 428 210 486 720 275 384 45 96 399 117 389 428 -448 56 398 117 389 428 -448 -448 -448 -448 -448 -448 -448 -448 -448 -448	a.a.(1)				0.000		(000		0 - 0	0.50/			(a a a			0.5 (0)		=	10.10			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	213(A)	3048	-932	-2480	-2533	-3075	-1200	-2274	-2765	-2501	-3071	-2221	-1658	-1948	-2205	-2512	1225	-739	-1842	-3322	-3078	219
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-/108	-8150	-894	-1115	-/01	-13/8	1	к												
Ling -132 -132 -132 -132 -132 -132 -144 -132 -144 -132 -144 -132 -144 -132 -144 -133 -133 -133 -133 -133 -133 -133 -144 -111 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -141 -133 -133 -144 -136 -133 -133 -144 -136 -133 -144 -136 -133 -144 -136 -133 -144 -144 -136 -133 -144 -136 -133 -144 -143 -133 -133 -144 -136 -133 -133 -144 -136 -133 -133 -144 -136 -133 -133 -144 -133 -133 -145 -111 <th< td=""><td>214/1</td><td>1004</td><td>1546</td><td>4067</td><td>2650</td><td>2212</td><td>2662</td><td>2001</td><td>აიაი</td><td>2267</td><td>150</td><td>00</td><td>2107</td><td>2402</td><td>2021</td><td>2170</td><td>2004</td><td>1077</td><td>202</td><td>1445</td><td>602</td><td>220</td></th<>	214/1	1004	1546	4067	2650	2212	2662	2001	აიაი	2267	150	00	2107	2402	2021	2170	2004	1077	202	1445	602	220
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	214(1)	-1924	-1040 500	-4007	-3030	2012	-3003	-2001	626	-3307 210	100	720	-3197	-0492	-2021	-3179	-2094	-10/7	290	- 1445	-092	220
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-149	7109	200 9150	904	1115	701	1279 *	-020	210 *	-400	-720	215	0 94	4 J	90	208	117	-309	-234	-243	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-10	-/ 100	-0150	-094	-1115	-701	-1570														
Inc. Inc. <thinc.< th=""> Inc. Inc. <thi< td=""><td>215(F)</td><td>-2641</td><td>-3308</td><td>-896</td><td>3732</td><td>-3966</td><td>-2458</td><td>-2043</td><td>-4105</td><td>-2128</td><td>-4016</td><td>-3555</td><td>-1531</td><td>-2959</td><td>-1842</td><td>-2560</td><td>-2479</td><td>-2750</td><td>-3722</td><td>-3563</td><td>-3385</td><td>221</td></thi<></thinc.<>	215(F)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	221
- -	-	_149	-500	233	42	-381	2400	106	-626	2120	-466	-720	275	2000	45	96	250	117	-369	-294	_249	22 I
1 1	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	400	720	210	001	τu		000	117	000	204	240	
218[A] 2388 -814 -2506 -2162 -1686 -1545 -1688 -499 -500 -2718 -4149 -500 233 45 -581 -399 106 -626 210 -466 -720 275 384 45 96 356 117 -368 -294 -249 - -16 -7108 -8150 -884 -138 -99 -3811 2513 344 45 96 356 117 -589 -294 -249 - -168 -7108 -8150 -894 -111 -701 -1378' - - - - -591 -2111 -2145 223 - -16 -7108 -8150 -984 -1115 -701 -378' -		10	7100	0100	004	1110	101	1070														
- -	216(A)	2389	-814	-2506	-2162	-1696	-1545	-1698	-499	-1942	-1398	-813	-1640	-2076	-1723	-2027	-806	1148	1559	-2200	-1856	222
- -	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
1 0	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
217(M) -2578 -2118 4725 4465 -461 4430 -3165 99 -3811 2513 3484 4075 -3838 -2978 -3488 -3704 -2457 -591 -2111 -2145 223 - 149 500 233 43 -381 399 106 626 210 466 -720 275 394 45 96 359 117 -369 -2449 -249 - 149 500 233 43 -381 399 106 626 210 466 -720 275 394 45 96 359 117 -366 -2242 224 - 149 500 233 43 -381 399 106 626 210 466 -720 275 394 45 96 359 117 -368 -2449 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249																						
- -1449 -500 233 43 -381 398 106 -626 210 466 -720 275 394 45 96 356 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * - <td>217(M)</td> <td>-2576</td> <td>-2118</td> <td>-4725</td> <td>-4165</td> <td>-461</td> <td>-4430</td> <td>-3165</td> <td>99</td> <td>-3811</td> <td>2513</td> <td>3454</td> <td>-4075</td> <td>-3839</td> <td>-2978</td> <td>-3488</td> <td>-3704</td> <td>-2457</td> <td>-591</td> <td>-2111</td> <td>-2145</td> <td>223</td>	217(M)	-2576	-2118	-4725	-4165	-461	-4430	-3165	99	-3811	2513	3454	-4075	-3839	-2978	-3488	-3704	-2457	-591	-2111	-2145	223
- -	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
218(G) 2594 2690 3304 3623 4328 3747 3462 4761 3953 4671 4212 3320 33352 3746 -3779 2839 2981 4004 3968 4222 224 - -148 -500 233 43 -381 398 106 626 210 466 -720 275 394 45 96 359 117 -368 -294 -249 - -16 -7108 -8150 -894 -115 -701 -1378 * -	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*		I	I			I	I		I	I		
218(G) 2594 2690 -3304 -3623 4328 3747 -3462 4761 -3953 4671 4212 -3320 -3352 -3748 -3779 -2839 -2961 4004 -3668 4222 224 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -368 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * -																						
- -	218(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	224
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
219(M) -2313 -1968 4258 -3765 -518 -3966 -2006 98 -3229 1292 4523 -3056 -2769 -3097 -3249 -2243 457 -2026 -1874 225 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -884 -1115 -701 -1378<*																						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	219(M)	-2313	-1968	-4258	-3765	-518	-3966	-2806	98	-3289	1292	4523	-3599	-3636	-2769	-3097	-3249	-2243	-457	-2026	-1874	225
16 -7108 -8150 -994 -1115 -701 -1378* * 220(\$) -897 -1462 -2333 -2543 -3185 -1640 -2474 -3294 -2686 -3497 -2780 -1973 -2360 -2483 -2703 3465 -1316 -2413 -3310 -3025 226 149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 16 -7108 -8150 -894 -1115 -701 -1378* * 221(\$) -2631 -2159 4786 4228 462 4506 -3231 96 -3878 2828 2482 4157 -3880 -3016 -3541 -3793 -2509 -608 -2134 -2182 227 149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 16 -7108 -8150 -894 -1115 -701 -1378* * 222(\$P] -1501 -1778 -2473 -2371 -1710 -2311 -2045 -1321 -2060 827 -1068 -2173 3594 -2082 -2130 -1799 -1699 -1373 -2373 -1942 228 16 -7108 -8150 -894 -1115 -701 -1378* * 	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	'	*												
220(5) -597 -1462 -2333 -2343 -3163 -160 -2474 -3294 -2700 -1973 -2360 -2483 -2703 3465 -1316 -413 -3310 -3025 226 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * * - <	220/0	007	1400	2222	2542	2405	1010	0474	2204	0000	2407	0700	1070	2200	0400	0700	0405	1010	0440	2240	2025	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220(5)	-89/	-1462	-2333	-2543	-3185	-1640	-24/4	-3294	-2686	-3497	-2/80	-19/3	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	226
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	100	-626	210	-400	-720	2/5	394	45	96	359	117	-369	-294	-249	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-10	-/ 108	-8150	-894	-1115	-701	-13/8														
221(c) -2135 -4706 -4220 -402 -4006 -3231 -306 -2402 -4707 -3030 -2031 -2105 -2102 221 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * * - 222(P) -1501 -1778 -2473 -2371 -1710 -2311 -2045 -1321 -2060 827 -1068 -2173 3594 -2082 -2130 -1799 -1699 -1373 -2373 -1942 228 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 <td>221(1)</td> <td>-2631</td> <td>-2150</td> <td>-1786</td> <td>-4228</td> <td>-462</td> <td>-4506</td> <td>-2221</td> <td>96</td> <td>-3878</td> <td>2828</td> <td>2/82</td> <td>_/1157</td> <td>-3880</td> <td>-3016</td> <td>-35/11</td> <td>-3703</td> <td>-2500</td> <td>-608</td> <td>-2134</td> <td>-2182</td> <td>227</td>	221(1)	-2631	-2150	-1786	-4228	-462	-4506	-2221	96	-3878	2828	2/82	_/1157	-3880	-3016	-35/11	-3703	-2500	-608	-2134	-2182	227
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22 I(L)	1/0	500	222	12	281	200	106	626	-3070	166	7202	275	204	-5010	-00-1	-3135	-2003	360	2134	2/02	221
222(P) -160 -0150 -0350 -034 -1113 -106 -106 -2173 3594 -2082 -2130 -1799 -1699 -1373 -2373 -1942 228 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * -	-	-143	-7108	-8150	_804	-1115	-701	-1378*	-020	£10 *	-+00	-120	215	001	τJ	30	000	117	-003	-204	-2-13	
222(P) -1501 -1778 -2473 -2371 -1710 -2311 -2045 -1321 -2060 827 -1068 -2173 3594 -2082 -2130 -1799 -1699 -1373 -2373 -1942 228 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - - -1637 -1163 -1566 -1185 3670 229 - - - -1637 -163 -1566 -1185 3670 229 - - - -163 -163 -1566 -1185 3670 229 - - - -160 -108 -106 -106 -700 -371 -1304 692 -2203 -906 -1387 -1163 -1566 -1185 3670 229 229 - -		-10	-1100	-0100	-00-	-1110	-101	-1070														
	222(P)	-1501	-1778	-2473	-2371	-1710	-2311	-2045	-1321	-2060	827	-1068	-2173	3594	-2082	-2130	-1799	-1699	-1373	-2373	-1942	228
- -16 -7108 -8150 -894 -1115 -701 -1378* * - -16 -7108 -865 -836 -631 1198 -767 -1828 -1059 -1914 -1304 692 -2203 -906 -1387 -1163 -1566 -1185 3670 229 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* *		-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
223(Y) -1068 -1670 -865 -836 -631 1198 -767 -1828 -1059 -1914 -1304 692 -2203 -906 -1387 -1136 -1163 -1566 -1185 3670 229 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * *	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	100	120	-10	001	10	~~	000		000	201	E 10	
223(Y) -1068 -1670 -865 -836 -631 1198 -767 -1828 -1059 -1914 -1304 692 -2203 -906 -1387 -1136 -1163 -1566 -1185 3670 229 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * *		19		0100			101	.010														
	223(Y)	-1068	-1670	-865	-836	-631	1198	-767	-1828	-1059	-1914	-1304	692	-2203	-906	-1387	-1136	-1163	-1566	-1185	3670	229
16 -7108 -8150 -894 -1115 -701 -1378* *	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	•
	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*]				

224(S)	-897	-1462	-2333	-2543	-3185	-1640	-2474	-3294	-2686	-3497	-2780	-1973	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	230
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*												
225(S)	1172	-954	-2367	-2422	-3120	-1204	-2237	-2835	-2426	-3122	-2265	-1621	-1948	-2145	-2467	3107	-749	-1884	-3349	-3092	231
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	LUI
-	-16	-7108	-8150	-894	-1115	-701	-1378*	•	*												
226(S)	-342	-975	-2176	-2124	-2912	-1229	-2003	-2594	-2067	-2878	-2048	-1510	-1936	-1866	-2184	2553	2492	-1773	-3143	-2833	232
-	-149	-500	233	43	-381	399	106	-626	210	-466	-/20	2/5	394	45	96	359	11/	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-701	-13/8														
227(M)	-720	-1440	-710	-343	-1228	-1693	2436	-1209	-132	-1364	3099	1904	-1852	-183	-458	-776	-680	-1004	-1540	-890	233
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	k												
228(P)	2240	-1100	-2241	-2293	-3037	-1346	-2188	-2683	-2317	-2986	-2210	-1663	3041	-2093	-2391	-722	-895	-1893	-3243	-2998	234
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	2/5	394	45	96	359	117	-369	-294	-249	
-	-10	-/ 108	-8150	-894	-1115	-701	-13/8														
229(A)	2958	-1235	-1299	-1377	-2868	-1345	-1673	-2580	-1661	-2843	-2054	1555	-1995	-1468	-1921	-715	-888	-1871	-3064	-2630	235
- ()	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	;	*					,							
000/5)	500	1010	004		4440	4000		405	000	050	000	c 7 7	000	000	050	070	150	4000	4407	005	
230(E)	-509	-1046	-884	1564	-1116	-1669	-441	-485	-283	250	-206	-5//	689	-200	-656	-670	-459	1290	-1467	-995	236
-	-149	-300	233 8150	43 804	-301	399 701	1278 *	-020	21U *	-400	-720	2/5	394	49	90	309	11/	-309	-294	-249	
-	-10	-1100	-0150	-034	-1113	-701	-1570														
231(D)	-1203	-2412	2595	-117	-3286	-1536	-1057	-3176	-1165	-3186	-2436	-428	-2068	-736	-1824	2377	-1366	-2578	-3334	-2552	237
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	-	*												
000(0)	054	4000	400	074	0007	477	007	0007	04	0000	4400	405	4007	0000	440	544	507	4040	0000	4507	
232(Q)	954	-1983	-100	9/1	-2337	200	-207	-2067	01 210	-2060	-1189	-125	-1637	2000	-418	-514	-59/	-1649	-2268	-159/	238
-	-149	-500	-8150	-80/	-301	-701	-1378 *	-020	210 *	-400	-720	2/5	394	40	90	309	117	-309	-294	-249	
-	-10	-1100	-0150	-034	-1115	-701	-1570														
233(E)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	239
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
004/1/)	0000	0004	0404	00.40	0740	0704	4570	0000	0704	0007	0000	00.40	0000	4000	405	0004	0500	0004	0004	0000	
234(K)	-2620	-2961	-2461	-2046	-3/43	-2/91	-15/0	-3603	3/84	-338/	-2839	-2048	-3039	-1260	-465	-2604	-2536	-3331	-3001	-2988	240
-	- 149	-500	233 8150	43 804	-301	399 701	1278 *	-020	210 *	-400	-720	2/5	394	45	90	309	117	-369	-294	-249	
-	-10	-1100	-0130	-034	-1113	-101	-1370														
235(R)	377	-1802	-415	988	-2095	-1474	-95	-1786	1452	-1785	-911	-135	-1560	343	1555	-409	-431	376	-1986	-1375	241
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	;	*						I	I					

236(D)	1083	-1565	2662	-244	-1941	-1573	-679	612	-527	-1651	-980	-490	-1869	-358	-1003	-771	-766	-903	-2208	-1633	242
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	۲ ۲	r												
007/F)	1005	2000	1001	1010	2140	1500	671	2075	620	2002	2101	150	1025	202	1200	1001	1044	2406	2002	2240	040
231(E)	-1225	-2000	1094	1940	-3149	-1552	-071	-2910	-030	-2902	-2101	-150	-1900	-293	-1299	250	-1241	-2490	-3093	-2240	243
-	-149	-7108	-8150	-894	-1115	-701	-1378	-020	210	-400	-120	215	554	40	90	559	117	-309	-234	-249	
		I						I													
238(C)	1375	3262	-2620	-2108	-827	-1866	-1267	1631	-1811	-599	-10	-1674	-2137	-1531	-1786	-1034	790	249	-1361	-1010	244
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	" "	r												
239(E)	635	-1796	1055	1761	-2018	-1464	-263	1191	28	-1767	-946	-148	-1637	135	-481	-520	-553	-1300	-2077	-1441	245
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	r												
0.40/=>	-00	00.14	0.50		0.407	1510	000	0400	151	0.400	4074	244	1700	00	0.10	0.40		4704	0005	(000)	
240(E)	593	-2044	-252	2548	-2437	-1542	-329	-2133	151	-2120	-12/4	-244	-1/38	89	946	-646	-/1/	-1/34	-2305	-1686	246
-	- 149	-200	233 8150	43 804	-301	399 701	1278	-020	210	-400	-720	215	394	40	90	309	117	-309	-294	-249	
	-10	-1100	-0100	-034	-1113	-701	-1570														
241(S)	1884	-835	-1962	-1576	-1634	-1436	-1320	1041	-1409	-1453	-781	-1293	-1922	-1241	-1606	1973	-597	-669	-2036	-1656	247
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	f												
242(G)	2267	-1043	-2388	-2526	-2252	2642	-2373	-2975	-2639	-3260	-2410	-1722	-2033	-2311	-2648	-663	-860	-2005	-3436	-3250	248
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	240
-	-16	-7108	-8150	-894	-1115	-701	-1378	· · ·	,												
			I	I			I														
243(R)	-876	-2087	-829	1490	-2474	-1766	-229	-2106	1269	-44	-1198	-424	-1829	205	2225	-775	-768	-1753	-2143	-1647	249
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	" '	r												
244(\/)	2330	-967	-2970	-2766	-1878	-1847	-2252	32	-2541	-1299	-918	-2087	-2300	-2316	-2545	-1157	-971	2345	-2605	-2251	250
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	200
-	-16	-7108	-8150	-894	-1115	-701	-1378	· · ·	r												
			I	I			I	I													
245(I)	-1827	-1398	-4307	-3831	-1099	-3939	-3142	2286	-3619	1835	69	-3579	-3671	-3177	-3511	-3178	-1781	1918	-2524	-2310	251
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	" "	r												
246(\/)	-1178	-1448	-1943	-1452	-1776	-2261	-1140	-227	1866	-1260	-816	-1444	-2448	-902	-540	-1496	-1176	2697	-2161	-1764	252
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	LJL
-	-16	-7108	-8150	-894	-1115	-701	-1378	, ,		100	120		001	14	~~			000		_ 10	
	L			1																	
247(E)	-508	-1976	840	1547	-2280	-1393	-117	-2029	1400	-1984	-1077	1158	-1531	330	-253	-378	-454	262	-2163	-1471	253
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	r												

248(M)	1703	-991	-2901	-2342	-528	-2567	-1550	166	-2031	1544	2668	-2104	-2591	-1715	-2010	-1685	-1052	-12	-1442	-1177	254
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	*	*												
249(1)	-1947	-1516	-4385	-3885	-916	-4013	-3118	2193	-3656	2186	257	-3656	-3687	-3109	-3494	-3250	-1889	1383	-2397	-2258	255
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	200
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
250(E)	-1322	-2647	-272	2491	-3071	-1811	-576	-2759	2306	-2633	-1854	-464	-2066	-175	-177	-1144	-1256	-2368	-2692	-2140	256
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
251(K)	-1395	-2059	-1711	-1014	-2215	-2218	-641	-1709	3021	-1652	2578	-1075	-2303	-282	287	-1423	-1283	-1603	-2159	-1803	257
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
252(D)	-1285	-2888	2677	176	-3210	1189	-737	-3047	-715	-2977	-2195	-190	-1979	2106	-1379	-1050	-1315	-2564	-3161	-2320	258
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
253(I)	-2073	-1632	-4434	-3975	-911	-4130	-3238	3164	-3706	1451	244	-3779	-3785	-3187	-3557	-3413	-2021	546	-2449	-2273	259
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
254(K)	-1570	-2144	-1887	-1191	-2098	-2363	-750	-1603	3034	938	-1112	-1231	-2436	-408	215	-1616	-1443	-1580	-2166	-1804	260
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*												
255(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	261
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	•					•			•			
256(R)	-928	-1705	-1507	-1055	-2761	-1730	-896	-2490	-44	-2489	-1723	-1042	-2102	-543	2614	2258	-1053	-1998	-2546	-2158	262
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	•		•				•		•			
257(D)	-1280	-2865	3154	175	-3194	-1547	-743	-3034	-728	-2971	-2194	-190	-1979	1342	-1391	553	-1316	-2552	-3161	-2317	263
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	I	I	1			I	I		I	1		
258(1)	-1997	-1562	-4355	-3927	-1042	-4066	-3261	2242	-3654	937	97	-3718	-3783	-3239	-3555	-3364	-1959	702	-2549	-2295	264
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	204
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	*	100	, 20	-19	001	~	~~	500				_ 10	
259(M)	-2252	-1821	-4572	-3991	-530	-4164	-2990	2068	-3709	1993	3197	-3808	-3685	-2916	-3406	-3378	-2149	-172	-2084	-2091	265
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	. '													

260(T)	-1213	-1674	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	266
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· 1	*												
261(R)	-2131	-2786	-2704	-1460	-3618	-2638	-587	-2976	1735	-2645	-1985	-1353	-2603	-173	3492	-2020	-1828	-2748	-2484	-2384	267
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	ا ۲	ł												
262(K)	-1349	-2635	-381	2083	-3083	-1857	-565	-2750	2690	-2612	-1837	-514	-2090	-161	-61	-1178	-1271	-2369	-2655	-2138	268
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k i	ł												
263(A)	2821	-932	-2451	-2472	-3065	-1198	-2233	-2763	-2434	-3056	-2201	-1633	-1940	-2147	-2468	1831	-730	-1840	-3305	-3055	269
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k i	ł												
264(F)	-2063	-1686	-4037	-3677	3437	-3644	-1706	2063	-3359	135	67	-3095	-3486	-2739	-3127	-2876	-2012	-83	-1038	-158	270
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	ł												
265(E)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	271
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	ł												
266(N)	-1662	-3306	2055	78	-3621	-1643	-1040	-3622	-1272	-3531	-2870	3477	-2182	-724	-2071	-1371	-1757	-3092	-3633	-2700	272
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	ł												
267(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	273
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k i	ł												
268(I)	-1760	-1307	-4325	-3962	-1735	-4042	-3726	3135	-3828	-579	-515	-3722	-3869	-3673	-3896	-3359	-1752	2276	-3240	-2806	274
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k i	ł												
269(T)	1428	-904	-2334	-2158	-2747	-1206	-1940	-2392	-2037	-2678	-1846	-1504	-1896	-1809	-2163	902	3001	-1635	-2999	-2705	275
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	t i	ł												
270(V)	-1745	-1300	-4286	-3858	-1446	-3967	-3370	2358	-3688	852	-261	-3606	-3749	-3403	-3673	-3232	-1717	2643	-2856	-2524	276
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	ł												
271(V)	-1404	-1072	-3766	-3305	-1464	-3356	-2696	2276	-3080	-616	-379	-3001	-3325	-2870	-3091	-2563	1344	2521	-2516	-2113	277
- · · · · ·	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	د ۱	+	I	1	I	I	I	1				I]	

272(M)	866	-1113	-2656	-2412	-1322	-1920	-1883	-487	-2061	-587	4451	-1950	-2387	-1928	-2078	-1220	-1053	-498	-2134	-1803	278	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-/108	-8150	-894	-1115	-/01	-13/8	*	*													_
273(A)	2601	-957	-2898	-2711	-1943	-1740	-2211	-165	-2487	-1406	-1001	-2008	-2320	-2260	-2494	-1053	-929	1990	-2626	-2279	279	-
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*													
274(L)	-1171	-983	-3266	-2733	-796	-2795	-1888	590	-2418	2001	198	-2418	-2816	-2106	-2362	-1944	965	1777	-1724	-1426	280	-
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	¥		•			•		•						
275(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	281	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*										•			
276(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222		_
- /	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*													
277(S)	-897	-1462	-2333	-2543	-3185	-1640	-2474	-3294	-2686	-3497	-2780	-1973	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	283	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	I	•		I		I				I			
278(T)	-1213	-1674	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	284	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*						·	•						
279(N)	-2171	-2655	-1458	-1748	-3334	-2364	-2267	-3943	-2365	-3936	-3437	4205	-2932	-2205	-2608	-2224	-2439	-3392	-3253	-2909	285	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*				•			•						
280(A)	3134	-934	-2491	-2567	-3083	-1203	-2300	-2766	-2540	-3082	-2237	-1672	-1954	-2240	-2537	874	-747	-1844	-3333	-3093	286	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378	* :	¥													
281(\/)	_984	-1045	-3169	-2909	-1709	-2304	-2404	521	-2643	-988	-697	-2378	-2722	-2480	-2661	-1601	1504	2014	-2588	-2201	287	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	201	-
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	720	270	001		00	000	117	000	201	210		
000/L)	0004	2450	4700	4000	400	4500	2024	00	0070	0000	0400	4457	2000	2010	0544	2702	2500	000	0404	0400		
202(L)	-2031	-2159	-4/00	-4220	-402 201	-4500	-3231	90	-30/0	2020	2402 720	-415/	-3000	-3010	-3041	-3/93	-2509	-000	-2134	-2102	200	_
-	-149	-500	200 _8150	43 _804	-301	_7∩1	1278	-020 *	∠10 *	-400	-120	210	J94	40	90	১০খ	117	-209	-294	-249		
	-10	1100	0100	004	1110	101	1010															
283(H)	-3205	-3079	-2723	-2890	-2110	-3046	5295	-4135	-2617	-3813	-3561	-2886	-3482	-2833	-2620	-3291	-3356	-3895	-2397	-1681	289	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*													

284(L)	-1623	-1338	-3726	-3164	-251	-3255	-1820	1373	-2808	2371	514	-2785	-3086	-2281	-2613	-2389	-1543	-161	-1311	1782	290
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*												
285(L)	-2333	-1873	-4640	-4127	-650	-4326	-3241	2176	-3843	2519	523	-3982	-3833	-3105	-3579	-3604	-2247	56	-2268	-2230	291
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	i	ł					ľ							
286(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	292
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	LVL
-	-16	-7108	-8150	-894	-1115	-701	-1378*	,	k												
	II	1		I	I		I	I													
287(M)	-1886	-1507	-4178	-3693	-877	-3806	-2901	3008	-3380	335	3109	-3451	-3570	-2934	-3251	-3044	-1840	524	-2288	-2089	293
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
288(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	294
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	k												
289(H)	-1490	-2484	-362	-476	-1816	-1880	4320	-2854	-684	-2770	-2133	2185	-2285	-728	-1000	-1377	-1550	-2475	-2146	-1255	295
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*												
290(A)	2439	-911	-2326	-2131	-2811	-1197	-1934	-2480	-2011	-2745	-1898	-1490	-1888	-1785	-2153	1898	1073	-1682	-3044	-2749	296
•	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł							I					
291(I)	2038	-985	-3388	-2919	-1320	-2893	-2277	2155	-2677	-587	-297	-2593	-2992	-2450	-2697	-2087	-1208	1681	-2229	-1846	297
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł												
292(G)	-1243	-2769	311	1902	-3172	1980	-744	-2992	-697	-2936	-2152	1923	-1974	-377	-1331	-1030	-1284	-2506	-3125	-2308	298
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł	1	I			I	I	I	I	I			
293(V)	-1738	-1298	-4281	-3921	-1737	-3979	-3665	1917	-3774	-601	-528	-3671	-3834	-3628	-3843	-3293	-1735	3205	-3215	-2770	299
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	•												
294(E)	-833	-2344	1092	2412	-2643	-1464	-386	-2413	-146	-2369	-1505	-96	562	29	-717	-666	862	-1966	-2562	-1818	300
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	<u></u>	1											
295(W)	-1380	-1116	-3614	-3026	1322	-2981	-1582	1966	-2661	1775	556	-2562	-2865	-2117	-2424	-2098	-1302	-187	2908	-629	301
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	*												

296(T)	-350	-973	-2204	-2178	-2893	-1236	-2035	-2561	-2117	-2862	-2043	-1536	-1946	-1916	-2214	1618	3198	-1758	-3137	-2831	302
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	" !	1												
297(L)	-1443	-1269	-3144	-2576	-528	-3014	-1816	1945	-2155	2102	508	-2422	-2899	1193	-2133	-2129	-1369	-50	-1616	-1384	303
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	۲ ۲	r												
298(D)	-1826	-3682	3559	1199	-3883	-1662	-1073	-3846	-1391	-3720	-3110	-272	-2222	-760	-2283	-1471	-1913	-3321	-3864	-2864	304
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	۲ ۲	r												
299(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	305
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	, ,	ł	•		ł		l		ł	ľ				
300(F)	-3342	-2776	-4026	-4232	4354	-3545	-1431	-2315	-4038	-1801	-1900	-3299	-3780	-3350	-3645	-3490	-3420	-2566	-739	349	306
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	, ł	r			ľ	ľ	l			ľ				
301(Q)	-1048	-2608	205	2170	-2893	-1535	-505	-2680	-255	-2604	-1769	1814	-1849	2272	-789	-848	-1028	-2228	-2770	-2013	307
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	r	I											
302(R)	1083	-1687	691	135	-2058	-1406	-178	-1755	214	-1793	-924	-145	-1553	247	1670	-383	1217	-1367	-2031	-1404	308
- -	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	<i>د</i> ۲	r					I		I					
303(1)	-1915	-1536	-4077	-3667	2027	-3678	-2155	3137	-3381	144	94	-3225	-3506	-2848	-3202	-2914	-1871	345	-1522	-791	309
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	· •	r												
304(R)	-689	-2015	-494	24	-2395	-1582	-184	-2087	444	-2020	-1151	1161	-1687	1832	2131	626	-614	-1684	-2156	-1573	310
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	010
-	-16	-7108	-8150	-894	-1115	-701	-1378	· · · ·	1	100	0			10						_ 10	
305(D)	387	1067	1600	1350	2275	1201	1561	2025	282	1076	1067	25	1525	343	1024	260	443	159/	2152	1462	211
-	-149	-1307	233	43	-2275	399	106	-2023	202	-466	-720	275	394	45	96	359	117	-1504	-2152	-1402	311
-	-16	-7108	-8150	-894	-1115	-701	-1378	· · · ·	210	400	720	210	004	+0	50	000		000	204	240	
														100							
306(R)	-1460	-2315	-1793	-887	-2832	-2237	-431	-2288	2193	-2199	-1473	-946	-2245	-20	2706	-1394	-1275	591	-2248	-1961	312
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	2/5	394	45	96	359	11/	-369	-294	-249	
	-10	-/ IUŏ	-0150	-894	-1115	-/01	-13/8	ľ													
307(V)	-941	-1027	-3099	-2832	-1692	-2234	-2324	470	-2565	-1003	-695	-2305	-2663	-2399	-2587	-1527	1858	2876	-2536	-2152	313
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	" I	r I												

308(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	314
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
309(V)	-1090	-1215	-2097	-1824	-819	-2221	2699	-287	-1392	-1027	-591	-1674	-2482	-1446	-1482	-1482	-1143	2879	-1420	-707	315
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k												
310(L)	-2439	-1972	-4702	-4181	-588	-4401	-3258	1582	-3881	2757	587	-4061	-3862	-3093	-3590	-3689	-2344	-130	-2230	-2217	316
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k												
311(C)	2157	4166	-3012	-2973	-2780	1022	-2337	-2398	-2724	-2744	-1930	-1786	-1943	-2372	-2623	-540	-692	-1624	-3091	-2881	317
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k		I	L		1	I	ł		1			
312(D)	-1732	-3453	3468	99	-3733	-1645	-1066	-3747	-1356	-3641	-3008	1690	-2201	-755	-2209	-1416	-1833	-3208	-3752	-2776	318
•	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k			L		ł							
313(L)	-2477	-2023	-4713	-4122	1592	-4329	-2920	72	-3835	2593	2472	-3948	-3754	-2914	-3466	-3550	-2350	-634	-1927	-1830	319
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	010
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
314(K)	-2620	-2961	-2461	-2046	-3743	-2791	-1570	-3603	3784	-3387	-2839	-2048	-3039	-1260	-465	-2604	-2536	-3331	-3001	-2988	320
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* :	*					1				I			
315(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	321
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	VL 1
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	0										
316(5)	_807	-1462	-2333	-2543	-3185	-1640	-2474	-3204	-2686	-3497	-2780	-1973	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	322
-	-149	-500	233	43	-381	399	106	-626	2000	-466	-720	275	394	45	- <u>2700</u> 96	359	117	-369	-294	-249	JLL
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	720	270	001	10		000		000	201	210	
047(0)	0504	0000	0004	0000	4000		0.400	4704	0050	4074	40.40	0000	0050	0740	0770	0000	0004	4004	0000	4000	
317(G)	-2594	-2690	-3304	-3623	-4328	3/4/	-3462	-4/61	-3953	-46/1	-4212	-3320	-3352	-3/48	-3/19	-2839	-2981	-4004	-3668	-4222	323
-	-149 -16	-500	-8150	43 -894	-381	-701	-1378	-626	210 *	-400	-720	2/5	394	45	96	359	117	-369	-294	-249	
								l													
318(K)	2	-2257	-1073	-374	-2740	-1908	-278	-2339	2328	-2192	-1373	-562	-1953	2273	1344	-952	-933	-1980	-2234	-1799	324
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-701	-1378		n												
319(Y)	-3482	-2868	-3701	-3919	238	-3552	-1112	-3000	-3638	-2516	-2526	-3027	-3772	-3101	-3341	-3418	-3527	-3071	-441	4711	325
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												

320(M)	-1559	-1267	-3829	-3380	-1103	-3357	-2655	805	-3067	-64	3046	-3065	-3326	-2779	-3011	-2591	-1556	2855	-2312	-1998	326	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*													
321(M)	1225	-469	-2256	-1679	1656	-1926	-870	90	-1396	-210	2763	-1424	-2028	-1129	-1411	-1008	712	154	-951	-586	327	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*													
322(T)	-738	-2094	-84	1704	-2416	-1495	-317	-2135	61	-2127	-1275	-163	-1704	1857	-405	-613	1930	-1734	-2331	-1668	328	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k													
323(D)	-1746	-3458	3540	90	-3744	-1650	-1081	-3767	-1381	-3662	-3036	1386	-2211	-772	-2239	-1429	-1850	-3226	-3765	-2789	329	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k													
324(L)	-2451	-1983	-4707	-4186	-582	-4409	-3259	1510	-3884	2778	592	-4069	-3865	-3091	-3590	-3698	-2355	-150	-2226	-2214	330	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*													
325(H)	-2923	-2573	-2959	-2926	826	-3449	4553	-2508	-2463	-2054	-1948	-2279	-3499	-2191	-2397	-2761	-2855	-2540	123	2920	331	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*													
326(K)	373	-1957	-342	1025	-2297	-1472	-98	-2018	2111	-1954	-1056	906	-1570	352	685	-424	-473	-1592	-2105	-1469	332	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *		ĸ													
327(V)	1739	-1008	-3509	-3043	-1376	-3028	-2406	1765	-2807	-615	-334	-2718	-3093	-2585	-2823	-2226	-1263	2376	-2322	-1931	333	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k													
328(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	334	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k													
329(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	335	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	i	k													
330(I)	-1758	-1302	-4331	-3970	-1756	-4054	-3748	2976	-3840	-603	-533	-3731	-3877	-3693	-3914	-3372	-1750	2505	-3265	-2824	336	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*													
331(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	337	
- /	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	I	I		i	I	I	I		I	I			

332(Q)	1795	-1440	-730	-492	-2453	682	-812	-2151	-508	-2256	-1426	-624	-1796	2666	-901	-590	-689	-1636	-2510	-1971	338
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	f 1	*												
333(V)	-1771	-1603	-3750	-3689	-2037	-3050	-3231	403	-3479	-1154	-1076	-3246	-3399	-3383	-3437	-2628	-1917	3536	-3074	-2677	339
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	k												
334(M)	-2355	-1988	-4343	-3834	-504	-4051	-2868	105	-3385	1451	4460	-3680	-3671	-2806	-3171	-3327	-2274	-474	-2039	-1925	340
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	k												
335(K)	-2620	-2961	-2461	-2046	-3743	-2791	-1570	-3603	3784	-3387	-2839	-2048	-3039	-1260	-465	-2604	-2536	-3331	-3001	-2988	341
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	k												
336(Y)	-1187	-974	-3186	-2638	-117	-2732	-1255	1905	-2270	73	1977	-2217	-2699	-1882	-2144	-1841	-1124	71	-907	3254	342
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	*												
337(L)	-2871	-2457	-4231	-4103	-1033	-3803	-3165	-541	-3734	3130	-31	-3935	-3797	-3286	-3484	-3713	-2869	-1136	-2394	-2220	343
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	:	*												
338(L)	-2871	-2457	-4231	-4103	-1033	-3803	-3165	-541	-3734	3130	-31	-3935	-3797	-3286	-3484	-3713	-2869	-1136	-2394	-2220	344
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
339(K)	-864	-1785	-860	-366	-2128	-1763	-407	-1612	2624	-1800	-1045	629	-1900	-28	62	-851	-805	1127	-2064	-1581	345
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	k												
340(N)	602	-1686	-275	1008	-1926	-1415	1528	-1618	244	-1673	-815	1897	-1530	299	-244	-371	-391	322	-1934	-1306	346
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	*												
341(G)	-1709	-2639	1362	-690	-3785	3257	-1671	-3805	-1946	-3792	-3137	-980	-2480	-1424	-2576	-1630	-1936	-3150	-3628	-3155	347
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	r :	k												
342(F)	-942	-799	-2828	-2226	1797	-2476	-1269	1109	581	1793	516	-1952	-2453	-1557	-1815	-1558	-875	52	-1138	-794	348
- `	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	r 1	k	I				I				I			
343(L)	-2451	-1983	-4707	-4186	-582	-4409	-3259	1510	-3884	2778	592	-4069	-3865	-3091	-3590	-3698	-2355	-150	-2226	-2214	349
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	VTV
-	-16	-7108	-8150	-894	-1115	-701	-1378	, ,	*		. = •	<u> </u>	20.1								

344(H)	-3205	-3079	-2723	-2890	-2110	-3046	5295	-4135	-2617	-3813	-3561	-2886	-3482	-2833	-2620	-3291	-3356	-3895	-2397	-1681	350
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
345(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	351
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*			L		I				L	1		
346(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	352
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100											
347(C)	774	4452	-2162	-1688	-1962	-1478	-1302	-1474	-944	-1796	-1088	-1351	-1979	-1147	1684	-732	-719	-1116	-2225	-1881	353
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
348(L)	-2387	-1922	-4674	-4155	-617	-4366	-3250	1889	-3865	2650	558	-4023	-3847	-3098	-3586	-3647	-2296	-38	-2247	-2224	354
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	I						I	I				
349(T)	-1213	-1674	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	355
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	T												
350(C)	-1489	2972	-4007	-3563	-1524	-3541	-2939	2612	-3350	-617	-413	-3224	-3470	-3129	-3335	-2770	-1475	2269	-2657	-2248	356
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* :	*												
351/T)	-364	_070	-2222	-2250	-2004	-1245	-2000	_2550	_2101	-2881	-2075	-1571	-1964	_1001	-2260	905	3428	-1762	-3150	-2858	357
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	-2200	359	117	-369	-294	-2000	JJ1
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	720	210	001	10		000		000	201	210	
					(
352(G)	-2594	-2690	-3304	-3623	-4328	3/4/	-3462	-4/61	-3953	-46/1	-4212	-3320	-3352	-3/48	-3/79	-2839	-2981	-4004	-3668	-4222	358
-	-149	-500	233	43 004	-381	399	100	-626	210 *	-400	-720	2/5	394	45	96	359	117	-369	-294	-249	
-	-10	-/ 100	-0150	-094	-1115	-701	-1370														
353(K)	-1716	-2632	-2004	-1008	-3336	-2379	-444	-2764	2775	-2484	-1756	-1035	-2357	2151	1811	-1592	-1477	-2481	-2391	-2172	359
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*							ł	ľ				
					0 1 0 0	(000		0000	0700		0010	00 ()		0		(100)				a / = a	
354(T)	-1213	-16/4	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	360
-	-149	-500	233	43	-381	399	106	-626	210 *	-466	-/20	2/5	394	45	96	359	11/	-369	-294	-249	
	-10	-1 108	-0150	-894	-1115	-/01	-13/8														
355(V)	-1771	-1339	-4275	-3816	-1235	-3919	-3194	2139	-3617	1520	-66	-3558	-3681	-3244	-3547	-3164	-1733	2390	-2634	-2369	361
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* :	*			I									

356(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	362
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	'	*												
357(F)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	363
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	,	*												
250(NI)	000	4047	00	4400	0407	4547	500	4744	005	4055	4404	0.74.4	4045	444	747	767	045	4440	0007	4000	
338(IN)	-823	-1917	-90	1100	-218/	-1547	-206	-1/11	-200	- 1955	720	2/11	204	- 144	-/4/	-/5/	-015	1140	-2297	- 1000	364
-	-149	-500	200 8150	40 80/	-301	399 701	1378*	-020	210 *	-4 00	-720	215	594	40	90	209	11/	-309	-294	-249	
	-10	-/100	-0150	-094	-1115	-701	-1370														
359(L)	-2153	-1779	-4360	-3884	-675	-3965	-3012	392	-3561	2726	467	-3673	-3662	-2955	-3355	-3239	-2102	1281	-2207	-2099	365
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k												
360/E)	1136	-2084	_175	2027	-2436	-1510	_274	-21/7	1525	-2118	-1254	-175	-1602	152	_251	-503	-670	-1736	-2206	-1650	366
-	-149	-2004	233	2021	-2400	399	106	-626	210	-2110	-1204	275	304	45	96	359	117	-1750	-2230	-1030	300
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	100	120	210	001	TU		000		000	204	240	
	10	1100	0100	001	1110	101	1010														
361(H)	893	-1761	1357	214	-2092	-1387	1862	-1810	229	-1825	-942	-83	-1527	293	-273	640	793	-1409	-2050	-1397	367
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	*	*												
362(1)	608	-458	-2776	-2176	1666	-2202	-1113	1712	-1836	-222	338	-1782	-2245	-1512	-1731	-1292	867	1366	-1036	-684	368
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	,	*	100			001	10				000		- 10	
								I													
363(P)	-922	-1912	1681	-141	-2123	-1604	-687	-1787	-550	187	-1245	-427	2677	-363	-1049	-882	-947	-1524	-2338	-1711	369
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	,	*												
364(D)	-1692	-3605	3364	1256	-3770	-1599	-957	-3700	-1216	-3569	-2909	1025	-2138	-628	-2083	-1346	-1761	-3174	-3765	-2738	370
-	-149	-500	233	43	-381	399	106	-626	210	-0000	-720	275	394	45	-2000	359	117	-369	-0700	-2100	510
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	100	720	270	001	10	00	000		000	201	210	
365(Q)	-877	-1646	-633	499	-1610	-1781	-505	-1210	-63	1648	-649	-558	-1931	2241	-360	-907	-814	-1097	-1882	-1385	371
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	,	k												
266(D)	640	2010	1120	202	2254	1426	205	2000	20	2006	1017	111	1065	1445	402	FOO	1044	1670	2200	1616	270
300(P)	-040 1/0	-2019	222	203	-2004 281	- 1430	-200	-2009	29	-2000	720	-114	204	1440	-492	-029	1244	-10/2	-2300	2/01-	312
	-145	-300	-1646	-804	-301	-701	-1378*	-020	∠1U ∗	-400	-120	210	১ ৬৭	40	90	209	117	-209	-234	-249	
	511	1100	1070	007	1110	101	1010														
367(R)	-422	-1009	-851	-304	1406	-1496	-183	-740	147	-894	-230	-440	775	21	2009	-539	-381	-568	-1136	-521	373
- , ,	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-23	-6560	-7602	-894	-1115	-341	-2249*	,	*			I	I	I	I			1	I		

368(D)	1472	-1668	1835	-70	-2356	-1385	-511	-2062	-246	-2128	-1275	-318	1353	-118	-746	-526	425	-1602	-2380	-1752	374
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	ł												
369(G)	-1044	-2230	2141	-100	-3222	2291	-982	-3045	-1033	-3050	-2258	-395	-1985	-644	-1669	858	-1207	-2428	-3250	-2493	375
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	ł												
370(0)	-2562	-2004	-1886	-1971	-3251	-2661	-2079	-3690	-1565	-3469	-3081	-2107	-3091	4371	-1665	-2585	-2674	-2411	-3077	-2821	376
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	010
-	-16	-7108	-8150	-894	-1115	-701	-1378	• 1	*	100	120	210	001	10				0000		210	
		I		I			I	I										-			
371(D)	-1275	-2955	2862	1330	-3205	-1556	-670	-3029	1509	-2936	-2141	-158	-1955	-290	-1213	-1025	-1281	-2554	-3111	-2272	377
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8														
372(V)	-1738	-1298	-4281	-3921	-1737	-3979	-3665	1917	-3774	-601	-528	-3671	-3834	-3628	-3843	-3293	-1735	3205	-3215	-2770	378
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	۲ ۲	ł												
272/1	2001	1746	2071	2010	1676	2522	2200	2204	2501	650	602	2562	2674	2445	2521	2104	2146	110	2077	2402	270
373(I) -	-2091	-1740	-3971	-3040	-1070	-3032 200	-3209	-626	-3001	-009	-093	-3302	-3074	-3445	-302 I	-3194	-2140	-369	-2011	-2493	3/9
-	-16	-7108	-8150	-894	-1115	-701	-1378	-020	*	-+00	-120	215	554		50	000	117	-000	-234	-243	
										l.											
374(M)	-584	-1354	-847	-246	-1467	-1659	2505	-1087	212	-374	2571	-449	-1729	1171	1074	-634	-507	-876	-1617	-1128	380
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-701	-13/8	·													
375(P)	-910	-2031	-73	1195	-2792	-1488	-794	-2539	-629	-2588	-1788	-401	3005	-439	-1131	612	-1014	-2050	-2815	-2151	381
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	ł												
376(W)	-1588	-1300	-3783	-3197	-329	-3245	-1926	2071	-2827	1901	558	-2822	-3072	-2297	-2616	-2381	-1508	-111	3483	-1042	382
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	۲ I	ł						I			I	I		
377(E)	-1024	-2640	1844	2310	-2908	-1498	-505	-2711	-344	-2636	-1791	-107	-1824	1521	-957	207	-1011	-2243	-2817	-2021	383
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-701	-13/8	· ·													
378(N)	-826	-2349	1089	227	-2651	-1487	-341	-2416	1494	-2346	-1475	2601	-1724	1005	-522	-657	-787	-1968	-2511	-1791	384
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k 1	*												
070/2)	4000	44.0	0000	0004	0050	10.50	0000	0700	0000	0000	0000	1071		0.11	0.00	-00		40.40	0000	00.10	
3/9(P)	1932	-1116	-2232	-2301	-3058	-1358	-2206	-2706	-2336	-3009	-2238	-1674	3274	-2114	-2406	-739	-914	-1913	-3260	-3019	385
-	-149	-500	233	43 004	-381	399	105	-626	210	-400	-720	2/5	394	45	96	359	117	-369	-294	-249	
- I	- 10	-/ IUŏ	-0120	-094	-1115	-101	-13/8														

380(V)	-914	-773	-2713	-2129	-712	-2505	-1388	1452	1084	1324	204	-1926	-2507	-1580	-1808	-1591	-859	1713	-1424	-1081	386	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *		۲ 													
381(Y)	-1484	-2331	-1762	-887	-2436	-2254	-420	-2325	2137	-2195	-1475	-949	-2258	-39	1983	-1411	-1295	-2075	-2087	2868	387	-
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł	•						•		•				
382(E)	1256	-1890	-206	1353	-2196	-1401	-89	-1930	812	-1898	-996	-45	547	1252	-162	-356	-414	-1507	-2083	-1416	388	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł	•	•			•		•		•				
383(Q)	-752	-2272	1586	1407	-2561	-1448	-308	-2329	-23	-2276	-1396	-71	-1677	1749	-577	-590	1569	-1881	-2459	-1727	389	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378*	r 1	ł			I			I			I	L			
384(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	390	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	r 1	ł													
385(H)	-964	-2089	-200	-136	-2264	-1600	3833	-2320	-296	-2338	-1558	1362	1479	-276	-699	-881	-992	-1924	-2364	-1652	391	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	r 1	ł													
386(L)	-2451	-1983	-4707	-4186	-582	-4409	-3259	1510	-3884	2778	592	-4069	-3865	-3091	-3590	-3698	-2355	-150	-2226	-2214	392	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	· · · ·	+ +		. = -											
207(0)	1040	1017	1100	704	1100	4744	660	1000	407	007	207	000	4000	0011	704	704	500	220	1570	1105		
387(Q)	1043	-1017	-1190	-/21	-1189	-1714	-008	626	-49/	-907	-29/	-823	-1893	2044	-/94	-/84	-309	-339	-15/9	-1135	393	
-	-149	-7108	-8150	-894	-1115	-701	-1378*	-020	210	-400	-120	215	594	40	90	559	117	-309	-294	-249		
				I																		_
388(I)	-1760	-1308	-4323	-3961	-1730	-4039	-3721	3156	-3825	-575	-512	-3720	-3867	-3669	-3893	-3356	-1753	2241	-3236	-2802	394	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	2/5	394	45	96	359	11/	-369	-294	-249		
-	- 10	-/ 108	-8150	-894	-1115	-701	-1378															
389(L)	-2871	-2457	-4231	-4103	-1033	-3803	-3165	-541	-3734	3130	-31	-3935	-3797	-3286	-3484	-3713	-2869	-1136	-2394	-2220	395	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł													
390(K)	-1259	-2115	-1267	-676	-970	-2105	1794	-2040	2549	-1955	-1282	-808	-2165	-167	114	-1192	-1140	-1801	-1301	2517	396	-
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	k													
391(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	397	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378*	· · · ·														

92.NN 2717 2666 -148 324 228 23																						
1-98 - 500 22 43 - 381 389 107 - 286 20 - 476 - 727 275 384 45 98 389 117 389 234 - 249 - 249 - 249 - 340 370 380 417 - 761 - 760 415 - 464 - 115 - 701 - 1372	392(N)	-2171	-2655	-1458	-1748	-3334	-2364	-2267	-3943	-2365	-3936	-3437	4205	-2932	-2205	-2608	-2224	-2439	-3392	-3253	-2909	398
1 1 7 0 1 7 1 331 207 3457 428 400 118 208 118 208 118 208 303 31 303 31 303 317 208 349 411 208 428 426 466 722 723 384 45 96 351 117 368 204 426 3440 371 484 484 411 701 430 430 430 430 446 96 351 350 400 3441 351 484 436 384 396 438 214 446 428 511 386 446	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
3310 237 2457 4231 4103 3103 313 313 313 313 313 314 315 316 344 3171 288 1116 2214 423 423 423 423 423 423 423 423 423 423 423 423 424 426 543 310 313 328 3797 328 445 94 328 1117 389 224 426 - 1.46 7108 453 336 310 626 210 466 722 384 45 98 359 117 389 244 426 - 1.46 7108 4103 388 106 620 104 470 117 389 244 426 - 1.46 700 423 428 389 107 420 117 389 244 246 - 1.46 700 423	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
0.812 200 260 410 400 </td <td>202/11</td> <td>0071</td> <td>2457</td> <td>4004</td> <td>4102</td> <td>1022</td> <td>2002</td> <td>2165</td> <td>E41</td> <td>2724</td> <td>2120</td> <td>21</td> <td>2025</td> <td>2707</td> <td>2206</td> <td>2404</td> <td>2712</td> <td>2060</td> <td>1126</td> <td>2204</td> <td>2220</td> <td>200</td>	202/11	0071	2457	4004	4102	1022	2002	2165	E41	2724	2120	21	2025	2707	2206	2404	2712	2060	1126	2204	2220	200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> 393(L)</u>	-2071	-2457	-4201 222	-4105 //3	-1055	-2002	-0100	-041	-3734	166	-31	-3935 275	-3191	-3200	-0404	-3713	-2009	-1150	-2094	-2220	222
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-300	-8150	-804	-301	-701	-1378	* 020	* 210	-400	-120	215	594	4 J	90	209	111	-309	-234	-249	
384(4) 3121 434 248 258 276 253 300 223 4665 1953 2244 2533 608 746 1644 3331 308 400 - 1.46 500 233 43 366 1963 272 275 384 45 66 359 111 366 246 246 - 1.46 500 233 43 36 1996 106 426 210 466 722 275 384 45 66 359 111 366 224 2261 2261 2261 426 2275 384 45 66 359 111 366 224 2262 467 2275 384 45 66 359 117 366 246 2262 467 2275 384 45 66 359 117 366 242 442 - -466 7008 4502 3671 <td></td> <td>-10</td> <td>-1100</td> <td>-0100</td> <td>-004</td> <td>-1110</td> <td>-101</td> <td>-1070</td> <td></td>		-10	-1100	-0100	-004	-1110	-101	-1070														
1.48 500 223 43 381 388 106 226 210 445 96 388 111 388 224 249 - -16 7108 -650 -684 -1115 -701 -372 -	394(A)	3121	-934	-2489	-2561	-3081	-1203	-2295	-2766	-2533	-3080	-2234	-1669	-1953	-2234	-2533	936	-746	-1844	-3331	-3090	400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
386[E] 452 1773 2424 4576 2244 4576 2244 4576 2244 4576 2244 4586 401 386[E] -144 500 233 45 381 399 106 628 210 466 -720 275 384 45 96 386 117 389 244 249 - -146 500 233 45 381 399 106 628 210 466 -720 275 344 45 96 376 117 -899 244 - <td< td=""><td>-</td><td>-16</td><td>-7108</td><td>-8150</td><td>-894</td><td>-1115</td><td>-701</td><td>-1378</td><td>*</td><td>*</td><td>I</td><td>I</td><td>I</td><td></td><td></td><td>I</td><td>I</td><td></td><td>1</td><td>I</td><td></td><td></td></td<>	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	I	I	I			I	I		1	I		
386[E] 522 -1773 -240 676 -2244 -1866 200 -1989 -1115 -174 1198 131 -448 1226 677 -528 -2214 -1685 401 - -146 500 233 43 381 398 106 626 210 466 -720 275 394 45 96 356 117 -368 -248 -448 500 232 -2445 -252 -446 500 235 1171 -1169 -108 -104 308 364 456 4260 -2057 442 -1711 -1108 -1108 -1108 -1118 -700 -1370 * - -466 -200 2352 -3445 96 356 117 -389 244 -448 -440 -248 -440 -446 -249 - -440 -248 -440 -446 96 356 117 -368 244 -440		· · ·																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	395(E)	-522	-1773	-240	1676	-2248	-1396	-289	-1968	50	-1989	-1115	-174	1198	131	-448	1226	677	-1538	-2214	-1565	401
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
388[E] -148[-3230 1425 2928[-3481 751 -843 -3354 -856 -2520 -187 -2057 482 -1711 -1183 -1527 -2852 -3445 -2523 402 - -168 -700 233 43 -381 388 106 -628 210 466 -720 275 384 45 96 358 117 -386 -284 -248 - -16 -7108 -8150 -3944 -3281 -4761 -4763 -202 275 384 45 96 3551 4004 -3666 +222 403 - -146 -700 -334 -3381 398 106 -626 210 -466 -720 275 384 45 96 3551 117 -368 -284 -248 -2449 -448 -448 -448 -448 -448 -448 -446 -700 -731 -1640 -3066 -426 -171 -731 -1640 -3068 -4264 -448	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
398(E) -1481 -3230 1425 2386 -3841 -3364 -954 -2250 -167 -2057 -482 -1711 -1182 -2852 -3445 -2523 445 -2523 445 -2652 -2445 -2652 -2445 -2652 -2445 -2652 -2445 -2652 -2445 -2652 -2445 -2652 -2445 -2652 -2445 -2652 -2445 -2445 -2652 -2661 -270 -275 394 45 96 359 117 -368 -294 -2449 -2449 - - -166 -7108 -8150 -384 -3718 -2763 -2456 -2773 -2839 -3057 -2022 -1635 -1940 -2152 -2471 1777 -731 -1840 -3006 -3066 -404 - - - -449 -500 233 43 -381 396 106 -626 210 -466 -720 275 384 45 96 359 117 -368 -2449 -2449 -2449 -2449																						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	396(E)	-1481	-3230	1425	2936	-3481	751	-843	-3354	-954	-3256	-2520	-187	-2057	-492	-1711	-1193	-1527	-2852	-3445	-2523	402
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
397(6) -2594 -2690 -3304 -3623 -4328 3747 -3462 4761 -3953 4671 4212 -3320 -3352 -3748 -3779 -2839 -2991 4004 -3668 4222 403 - 149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -368 294 249 - 1-16 -7108 -912 -2454 -2477 -3066 -1198 -2236 -2763 -2439 -3057 -2202 -1635 -1940 -2152 -2471 1777 -731 -1940 -306 -3056 404 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 358 117 -363 -2677 405 - -149 -500 233 43 -381 399 106 -626 210 466	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	×												
99/(b) -2094 -3040 -3041 -3041 -3042 -3/19 -3/19 -3/19 -2/19 -2/98 <t< td=""><td>207(0)</td><td>0504</td><td>0000</td><td>2204</td><td>2022</td><td>4000</td><td>0747</td><td>2400</td><td>4704</td><td>2052</td><td>4074</td><td>4040</td><td>2220</td><td>2250</td><td>0740</td><td>0770</td><td>2020</td><td>0004</td><td>1001</td><td>2000</td><td>4000</td><td>400</td></t<>	207(0)	0504	0000	2204	2022	4000	0747	2400	4704	2052	4074	4040	2220	2250	0740	0770	2020	0004	1001	2000	4000	400
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	397(G)	-2594	-2690	-3304	-3623	-4328	3/4/	-3462	-4/01	-3953	-40/1	-4212	-3320	-3352	-3/48	-3/19	-2839	-2981	-4004	-3008	-4222	403
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43 004	-301	399 701	100	-020	210 *	-400	-720	2/5	394	43	90	309	117	-309	-294	-249	
398(A) 2947 -932 -2454 -2477 -3066 -1198 -2203 -2763 -2439 -3057 -2202 -1635 -1940 -2152 -2471 1777 -731 -1840 -3306 -3305 404 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * - <td>-</td> <td>-10</td> <td>-/ 100</td> <td>-0150</td> <td>-094</td> <td>-1115</td> <td>-701</td> <td>-13/0</td> <td></td>	-	-10	-/ 100	-0150	-094	-1115	-701	-13/0														
Osciency Observed	398(A)	2847	-932	-2454	-2477	-3066	-1198	-2236	-2763	-2439	-3057	-2202	-1635	-1940	-2152	-2471	1777	-731	-1840	-3306	-3056	404
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	TVT
1 1	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	720	270	001	10		000	117	000	201	210	
399(V) -1771 -1603 -3750 -3889 -2037 -3050 -3231 403 -3479 -1154 -1076 -3246 -3399 -3383 -3477 -2628 -1917 3536 -3074 -2677 405 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * - - -2798 -2944 -1216 -1387 -2183 -3405 -3320 406 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * - - -2654 -2634 -3331 -3001 -2988		10	1100	0100				1010														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	399(V)	-1771	-1603	-3750	-3689	-2037	-3050	-3231	403	-3479	-1154	-1076	-3246	-3399	-3383	-3437	-2628	-1917	3536	-3074	-2677	405
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
400(A) 3438 -1472 -2846 -3040 -3287 -1726 -2735 -2840 -3028 -3257 -2662 -2236 -2447 -2798 -2944 -1216 -1387 -2183 -3405 -3320 406 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - 401(K) -2620 -2961 -2461 -2046 -3743 -2791 -1570 -3603 3784 -3387 -2839 -2048 -3039 -1260 465 -2604 -2536 -3331 -3001 -2988 407 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - </td <td>-</td> <td>-16</td> <td>-7108</td> <td>-8150</td> <td>-894</td> <td>-1115</td> <td>-701</td> <td>-1378</td> <td>*</td> <td>*</td> <td></td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td></td> <td>I</td> <td>I</td> <td></td> <td>I</td> <td></td> <td></td>	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*		I	I	I	I		I	I		I		
400(A) 3438 -1472 -2846 -3040 -3287 -1726 -2735 -2840 -3028 -3257 -2662 -2236 -2447 -2798 -2944 -1216 -1387 -2183 -3405 -3320 406 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*																						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	406
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
401(K) -2620 -2961 -2461 -2046 -3/43 -2/91 -15/0 -3603 3/84 -3387 -2839 -2048 -3039 -1260 -465 -2604 -2536 -3331 -3001 -2988 407 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*	101/10		0004		0010	0=10	0704	(== 0					00.10		1000		0001	0.000	0004	0001		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	401(K)	-2620	-2961	-2461	-2046	-3/43	-2/91	-15/0	-3603	3/84	-338/	-2839	-2048	-3039	-1260	-465	-2604	-2536	-3331	-3001	-2988	407
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	11/	-369	-294	-249	
402(1) -1761 -1312 -4317 -3954 -1713 -4027 -3703 3225 -3814 -556 -498 -3712 -3859 -3653 -3877 -3344 -1754 2110 -3216 -2787 408 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*	-	-16	-/108	-8150	-894	-1115	-701	-13/8														
402(1) -1131 -4031 -3534 -1115 -303 3223 -3014 -303 496 -3712 -3035 -3034 -1734 -1734 2110 -3216 -2701 406 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * * -<	402/1\	1761	1212	1217	2054	1712	4027	2702	2005	2014	556	100	2712	2050	2652	2077	2244	175/	2110	2216	2707	400
	402(1)	-1/01	-1312	-4317	-3904	-1713	-4027 200	-3703	0220 626	-3014	-000	-490	-3712	-3039	-3033	-3011	-3344	-1704	2110	-3210	-2101	400
	-	-149	-300	200 _8150	43 _80/	-301	_701	1278	+ -020	21U *	-400	-120	210	394	40	90	309	117	-209	-294	-249	
403(S) -348 -981 -2200 -2194 -2989 -1227 -2073 -2686 -2157 -2970 -2136 -1541 -1946 -1946 -2253 3060 1398 -1824 -3217 -2916 409 - 149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - 16 -7108 -8150 -894 -1115 -701 -1378* *	<u> </u>	-10	-1100	-0100	-034	-1113	-101	-1010														
149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 16 -7108 -8150 -894 -1115 -701 -1378* *	403(S)	-348	-981	-2200	-2194	-2989	-1227	-2073	-2686	-2157	-2970	-2136	-1541	-1946	-1946	-2253	3060	1398	-1824	-3217	-2916	409
	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	TVV
	-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*	100	0										

404(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	410	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*													
405(V)	-917	-809	-2556	-1976	-827	-2491	-1367	1339	1455	721	94	-1841	-2501	-1487	-1710	-1570	-863	2038	-1514	-1151	411	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł													
406(K)	-1386	-2643	-447	1824	-3108	-1893	-570	-2762	2860	-2616	-1848	-552	-2117	-166	-3	-1217	-1300	-2388	-2647	-2154	412	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł													
407(N)	-537	-1563	-449	-36	-1889	1143	-307	-1529	932	-1655	-844	1794	-1658	73	-356	-518	-516	924	-1962	-1392	413	_
- , ,	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
408(P)	-894	-2181	-369	1705	-2576	-1650	-357	-2268	243	-2210	-1375	-330	2093	63	1619	-774	-835	-1876	-2347	-1769	414	-
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378*	i	ł													
409(V)	-419	-634	-1376	-807	1053	-1737	-499	-198	-623	-505	178	600	-1807	-475	475	313	-360	1389	-1016	1303	415	
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	i	ł													
410(I)	-1282	-1082	-3022	-2555	2426	-2683	1767	2555	-2191	-443	-88	-2038	-2692	-1794	-2075	-1793	-1220	-317	-361	552	416	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
411(T)	-499	-1595	-431	966	-1830	-1487	-185	-1449	1092	-1574	-754	-207	-1601	213	-206	-458	2067	159	-1877	-1296	417	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł		•			•					•			
412(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	418	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł			•	I		I	ł	I	1				
413(P)	-632	-1230	-2074	-2144	-2996	-1453	-2116	-2631	-2128	-2928	-2213	-1658	3610	-2006	-2221	-852	1302	-1931	-3185	-2917	419	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
414(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	420	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	420	-
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	1.0	100		v	501									
	· · - · ·	00.10	(-)			0000		0000		0000		<u></u>	00.10		الدجج	1000	10-0		00.10	(0.00		
415(R)	-1454	-2316	-1780	-878	-2834	-2232	-428	-2292	2281	-2200	-1473	-940	-2240	-17	2627	-1386	-1270	588	-2249	-1960	421	
-	-149	-500	233	43	-381	399	105	-626	210	-466	-720	2/5	394	45	96	359	117	-369	-294	-249		
	-10	-/ IU8	-0150	-094	-1115	-701	-13/8	[

416(V)	-1771	-1603	-3750	-3689	-2037	-3050	-3231	403	-3479	-1154	-1076	-3246	-3399	-3383	-3437	-2628	-1917	3536	-3074	-2677	422
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k												
417(F)	-3342	-2776	-4026	-4232	4354	-3545	-1431	-2315	-4038	-1801	-1900	-3299	-3780	-3350	-3645	-3490	-3420	-2566	-739	349	423
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k :	*												
418(D)	-1572	-3426	2573	2447	-3613	-1583	-879	-3513	-1050	-3393	-2684	1292	-2085	-535	-1855	-1253	-1623	-3000	-3585	-2609	424
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	k												
419(S)	-879	-1989	1498	-177	-3045	1600	-939	-2843	-904	-2867	-2046	-438	-1922	-591	-1483	2171	-1044	-2226	-3072	-2372	425
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k :	k												
420(E)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	426
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k :	*												
421(Q)	-705	-1925	-199	2112	917	-1534	-288	-1824	42	-1842	-1054	-210	-1709	2163	-420	-611	-656	-1502	-1997	-1291	427
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	¥ ;	k												
422(H)	-569	-2048	1450	1526	-2349	-1405	1830	-2103	181	-2058	-1157	-37	-1569	272	-349	713	620	-1662	-2240	-1537	428
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k ;	*												
423(C)	1626	2878	-2671	-2107	1264	-1968	-1091	233	-1777	-334	250	-1672	-2128	-1459	-1691	-1096	-529	1209	-1066	-704	429
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k ;	k												
424(M)	-2042	-1634	-4379	-3826	-659	-3976	-2899	2765	-3546	1204	3085	-3605	-3604	-2896	-3318	-3183	-1961	195	-2135	-2058	430
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	k i	k												
425(E)	412	-2447	1356	2379	-2747	-1477	-445	-2527	-243	-2477	-1622	-107	855	-36	-831	-730	-894	-2073	-2668	-1906	431
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	ł :	k	•					ľ			I	•		
426(A)	2822	-1031	-2418	-2539	-3226	1898	-2364	-2941	-2626	-3229	-2379	-1722	-2026	-2302	-2634	-654	-848	-1983	-3415	-3226	432
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	- *	*			1						-			
427(I)	-1772	-1325	_4307	-3877	-1405	-2002	-3383	2025	-3705	820	_217	-3632	-3761	-3400	-3682	-3260	-1742	20રર	-2828	-2525	433
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	JJJ
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	*	100	. 20	=19	001	14	00	000		000		_ 10	

428(L)	-875	-1634	-575	959	-1581	-1769	-525	-1179	-135	1884	-625	-547	-1931	1405	-450	-909	-816	-1074	-1883	-1383	434	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	i i	ł													
429(A)	1705	-1826	-180	949	-2318	-1410	-359	-2041	-53	-2067	-1204	1001	-1652	52	-561	1232	-595	-1609	-2298	-1643	435	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
430(D)	-1074	-2458	2381	60	-2921	1927	-658	-2710	-463	-2675	-1860	-271	-1918	-276	866	-915	-1100	-2245	-2845	-2124	436	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
431(K)	-688	-2117	785	888	-2469	-1529	-187	-2189	2380	-2106	-1221	-162	-1661	256	1134	-553	-619	-1760	-2240	-1607	437	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
432(1)	-2019	-1582	-4380	-3941	-1000	-4086	-3253	3295	-3671	1100	145	-3736	-3783	-3222	-3556	-3378	-1976	657	-2517	-2289	438	_
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378*		ł													
433(Q)	-490	-1797	-369	171	-2078	-1457	1762	-1779	1157	-1780	-905	1165	-1550	1798	-48	-396	-422	725	-1986	-1366	439	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		_
-	-16	-7108	-8150	-894	-1115	-701	-1378*	i	ł													
434(A)	1954	-1836	1733	-180	-2714	-1429	-806	-2438	-679	-2518	-1698	-430	1775	-448	-1211	-736	-894	-1923	-2765	-2117	440	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
435(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	441	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł													
436(D)	-1736	-3455	3490	97	-3737	-1646	-1070	-3753	-1363	-3647	-3016	1602	-2204	-760	-2218	-1420	-1838	-3213	-3756	-2780	442	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
437(V)	-1721	-1302	-4229	-3874	-1705	-3894	-3582	1607	-3706	-582	-513	-3610	-3786	-3559	-3767	-3209	-1725	3294	-3158	-2712	443	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł													
438(V)	594	-988	-3391	-2911	-1164	-2888	-2187	845	-2637	765	-154	-2576	-2962	-2387	-2622	-2074	-1205	2800	-2084	-1724	444	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*		ł													
120/1/1	4774	1000	0750	2000	0007	2050	2024	400	0470	4454	1070	20.40	2200	2202	2407	0000	1047	ocod	2074	0077		
439(V)	-1//1	-1603	-3/50	-3689	-2037	-3050 200	-3231	403	-34/9	-1154	-10/6	-3246	-3399	-3383	-3437 06	-2028	-1917	3536 260	-30/4	-20//	445	
-	-149	-000	233 _8150	43 _201	-301	-701	100 1279*	-020	210	-400	-120	210	394	40	90	১০৮	117	-309	-294	-249		
-	-10	-1100	-0150	-034	-1113	-101	-1370															

440(I)	-1754	-1308	-4295	-3867	-1434	-3978	-3377	2661	-3697	862	-247	-3617	-3754	-3406	-3679	-3243	-1725	2373	-2852	-2526	446
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1													
441(R)	-2957	-3022	-3318	-2735	-3796	-2998	-1968	-3912	-846	-3631	-3157	-2611	-3280	-1724	4056	-3026	-2913	-3650	-3096	-3185	447
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	i	ł												
442(Y)	-1321	-1438	-1994	-1608	2186	527	-450	-1117	-1481	-1211	-693	1178	-2522	-1217	-1665	-1518	-1275	-1021	-198	3178	448
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
443(C)	-675	2205	-2544	972	-572	-2236	-1121	1373	-1671	679	261	-1700	-2270	-1403	-1668	-1311	-621	1601	-1150	-790	449
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
444(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	450
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	i	ł												
445(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	451
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
446(K)	-1060	-2058	-1088	-460	-2432	-1917	-357	-1970	2801	-1978	-1220	-632	-1990	1339	367	-999	-946	536	-2145	-1717	452
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł												
447(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	453
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
448(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	454
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł												
449(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	455
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	i	ł												
450(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	456
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	ł	ł	1	1	I	I					1	1		
451(M)	-2406	-2296	-3638	-3504	-1525	-3105	-2824	-1047	-3121	-596	5043	-3293	-3425	-3046	-2996	-2911	-2552	-1398	-2513	-2207	457
- (W)	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	101
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	+	100	. 20	=19		14	~~	500		000		_ 10	

45207																						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	452(P)	-1659	-2241	-2022	-1646	-3185	-2242	-1373	-3000	-450	-2936	-2274	-1624	3435	-1065	2095	-1730	-1750	-2593	-2816	-2613	458
- -	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
Sig. Control Contro <thcontrol< th=""> <thcontro< <="" td=""><td>-</td><td>-16</td><td>-7108</td><td>-8150</td><td>-894</td><td>-1115</td><td>-701</td><td>-1378 *</td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thcontro<></thcontrol<>	-	-16	-7108	-8150	-894	-1115	-701	-1378 *		*												
00000 111 0000 110<	453(F)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	459
1 1 1 1 1 2 1		-149	-500	233	43	-381	399	106	-626	2120	-466	-720	275	394	45	-2000	359	117	-369	-294	-249	733
45400 2026 <t< td=""><td>-</td><td>-16</td><td>-7108</td><td>-8150</td><td>-894</td><td>-1115</td><td>-701</td><td>-1378*</td><td>020</td><td>*</td><td>100</td><td>720</td><td>270</td><td>001</td><td>10</td><td>00</td><td>000</td><td>117</td><td>000</td><td>201</td><td>210</td><td></td></t<>	-	-16	-7108	-8150	-894	-1115	-701	-1378*	020	*	100	720	270	001	10	00	000	117	000	201	210	
64(m) 2406 2288 368 358 4525 3105 2824 1047 3121 586 5843 2283 3443 266 2811 2352 4138 2294 2469 - -146 -500 235 443 3661 388 108 620 210 466 273 344 56 358 417 388 294 2491 - 146 -500 2251 4221 4103 -103 3103 3130 3133 3139 3145 541 720 721 160 4136 268 1117 389 244 240 4170 1631 587 1532 2299 1754 462 - -166 -7108 4163 5	I																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	454(M)	-2406	-2296	-3638	-3594	-1525	-3105	-2824	-1047	-3121	-596	5043	-3293	-3425	-3046	-2996	-2911	-2552	-1398	-2513	-2207	460
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
458[1] 22871 24257 4225 4103	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*												
455(L) 24271 24231 44103 -1033 3303 331 333 3377 3286 3344 3713 22864 4713 22864 4220 461 - -149 5502 233 431 381 396 106 -622 210 -466 -720 275 384 45 96 355 117 368 294 -249 - -166 -7108 -8150 -894 -1115 -701 1378 * - -466 -720 275 384 45 96 356 117 -368 -249 -449 - -166 -7108 -8150 -894 -1115 -701 1378 * - - -1671 -1674 -1221 -2290 -1878 463 - -149 -500 233 431 -381 -966 -2127 275 3844 45 96 359 117 -368 -249 -249 - -166 -7108 -8150 -894 -1117																						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	455(L)	-2871	-2457	-4231	-4103	-1033	-3803	-3165	-541	-3734	3130	-31	-3935	-3797	-3286	-3484	-3713	-2869	-1136	-2394	-2220	461
$ \begin{array}{c} - 16 -7108 - 3150 - 394 - 1115 - 701 - 1378 \\ - 701 - 1378 \\ - 1481 - 500 - 233 - 43 - 381 - 398 + 106 - 526 - 210 - 466 - 720 - 275 - 384 + 45 - 96 - 356 - 1152 - 2284 - 1754 - 462 \\ - 4481 - 500 - 233 - 43 - 381 - 398 + 106 - 626 - 210 - 466 - 720 - 275 - 384 + 45 - 96 - 356 - 117 - 368 - 224 - 249 \\ - 16 - 7108 - 8150 - 894 - 1115 - 701 - 1378 \\ - 148 - 500 - 233 + 42 - 238 - 1555 - 2358 - 2022 - 1126 - 2063 - 1224 - 941 - 2188 - 3448 - 2061 - 3212 - 1622 - 1674 - 123 - 2290 - 1878 - 463 \\ 148 - 500 - 233 + 42 - 238 - 398 - 106 - 628 - 210 - 466 - 720 - 275 - 384 + 45 - 96 - 386 - 117 - 368 - 284 - 249 \\ 16 - 7108 - 8150 - 894 - 1115 - 701 - 1378 \\ 148 - 500 - 233 + 42 - 381 - 398 - 204 - 2261 - 2125 - 2863 - 2046 - 1539 - 1948 - 1923 - 2216 - 1543 - 3289 - 2384 - 464 \\ 148 - 500 - 233 + 42 - 381 - 398 - 204 - 249 \\ 148 - 500 - 233 + 43 - 381 - 398 - 204 - 2474 - 3294 - 2666 - 3497 - 2700 - 275 - 394 + 45 - 96 - 358 - 117 - 368 - 294 - 248 \\ 148 - 500 - 233 + 43 - 381 - 398 - 106 - 628 - 210 - 466 - 720 - 275 - 394 + 45 - 96 - 358 - 117 - 368 - 294 - 248 \\ 148 - 500 - 233 + 43 - 381 - 398 - 106 - 628 - 100 - 466 - 720 - 275 - 394 + 45 - 96 - 358 - 117 - 368 - 294 - 248 \\ 148 - 500 - 233 + 43 - 381 - 398 - 106 - 628 - 210 - 466 - 720 - 275 - 394 + 45 - 96 - 358 - 117 - 368 - 294 - 248 \\ 148 - 500 - 233 + 43 - 381 - 398 - 106 - 628 - 210 - 466 - 720 - 275 - 384 + 45 - 96 - 358 - 117 - 368 - 294 - 248 \\ 16 - 7108 - 8150 - 894 - 1115 - 701 - 1378 \\ $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
458(K) 1388 -1491 -763 -332 2319 -1417 -551 -1998 1786 2068 -1221 500 -1721 -160 470 1631 -587 -1532 2299 -1754 462 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 358 117 -369 -249 -249 - -16 -7108 -8150 -8344 -1115 -701 -1378' - - - -1674 -1221 -1674 -1221 -1674 -1231 -2240 -1678 463 - -168 -168 -168 -168 -168 -168 -168 -168 -168 -168 -168 -168 -168 -168 -168 -1708 -8150 -2218 -168 -1708 -1708 -1708 -3139 -2834 -464 - - -7108 -8150 -894 -1115 -701 -1378' -720 275 <td>-</td> <td>-16</td> <td>-/108</td> <td>-8150</td> <td>-894</td> <td>-1115</td> <td>-/01</td> <td>-13/8</td> <td></td> <td>R.</td> <td></td>	-	-16	-/108	-8150	-894	-1115	-/01	-13/8		R.												
1303 1476 7133 532 2235 1477 339 1030 2000 1421 5001 2131 1432 2238 1177 368 2248 117 368 2284 249 - 148 5001 2233 431 381 399 106 626 210 466 720 275 394 45 96 356 1177 368 2284 249 - 148 -5001 223 431 381 398 106 626 210 466 -720 275 394 45 96 359 1177 -369 -294 249 - 148 -500 233 43 -361 398 106 626 210 466 -720 275 394 45 96 359 117 -368 -294 -293 -2718 1483 3280 -1758 -3139 -2834 464 - 148 -500 233 43 -381 108 108 -2824 -2860	156(K)	1268	1/01	763	222	2210	1/17	551	1008	1786	2068	1221	500	1721	160	470	1621	597	1522	2200	1754	460
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	400(N)	-1/0	-1491	-700	-552	-2019	-1417	-001	-1990	210	-2000	-1221	-500	-1721	-100	-470	350	-307	-1002	-2299	-1704	402
100 100 100 100 100 100 100 100 100 1224 841 2189 3438 2061 2129 -1822 -1674 -1231 -2290 -1878 463 - -146 -500 233 43 -381 398 106 -626 210 466 -720 275 394 45 96 359 117 -368 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * - 458(T) -351 -974 -2081 -284 -2041 -2561 -2125 -2863 -2046 -1539 -1948 -1923 -2218 1543 3230 -1758 -3139 -2834 464 - -146 -500 233 433 -381 -399 -2666 -4772 275 394 45 96 359 117 -369 -294 -248	-	-140	-7108	-8150	-894	-1115	-701	-1378*	-020	* 210	-+00	-120	215	JJ7	٦J	30	555	117	-009	-234	-2-13	
457(P) 1-1500 -1738 -2514 -2300 -1555 -2358 -2022 -1126 -2063 1224 4841 -2189 3436 -2014 -1674 -1231 -2230 -1878 463 - -149 -500 233 43 -381 399 106 -526 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -884 -1115 -7001 -1378 * - -466 -720 275 394 45 96 359 117 -369 -284 -249 - -149 -500 233 43 -381 399 106 -526 210 -466 -720 275 394 45 96 359 117 -369 -284 -249 - -16 -7108 -8150 -894 -115 -701 -1378 * - -2703 3465 -1316 -413 -3130 -3025		10	7100	0100	001	1110	701	1070														
- -	457(P)	-1500	-1738	-2514	-2380	-1555	-2358	-2022	-1126	-2063	1224	-841	-2189	3436	-2061	-2129	-1822	-1674	-1231	-2290	-1878	463
- -16 -7108 -894 -1115 -701 -1378 * 458(T) -351 -974 -2208 -2185 -2894 -1237 -2041 -2561 -2125 -2863 -2046 -1539 -1948 -1923 -2218 1543 3230 -1758 -3139 -2834 464 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 356 117 -369 -294 -249 -249 - -16 -7108 -8150 -894 -1176 -700 -1858 -968 2744 -1705 -2188 -1713 -1932 -963 -	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
458(T) -351 -974 -2208 -2185 -2894 -1237 -2041 -2561 -2125 -2863 -2046 -1539 -1948 -1923 -2218 1543 3220 -1758 -3139 -2834 464 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 1117 -369 -294 -249 - -16 -7108 -8150 -384 -1115 -701 -1378 * - - -2483 -2703 3465 -1316 -2413 -3310 -3025 465 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 294 -249 - -164 -7108 -8150 -894 -1115 -701	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	;	*	I	I	I	I	I	I	I	I	I	I		
458(T) -351 -974 -2208 -2185 -2041 -2561 -2125 -2663 -2046 -1539 -1948 -1923 -2218 1543 .3230 -1758 -3139 -2834 464 - -149 -500 233 43 -381 399 106 -526 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * - - - -2703 3465 -1316 -2413 -3310 -3025 465 - -149 -500 233 43 -381 399 106 -526 210 -466 -720 275 394 45 96 359 117 -369 -244 -249 -249 -249 -249 -244 -249 -249 -244 -2418 -2414 -1794 466 -202 275 394 45 96 359 117 -369																						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	458(T)	-351	-974	-2208	-2185	-2894	-1237	-2041	-2561	-2125	-2863	-2046	-1539	-1948	-1923	-2218	1543	3230	-1758	-3139	-2834	464
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*												
439(5) -637 -1462 -2233 -2243 -3165 -1060 -2474 -3294 -2000 -3497 -2700 -1973 -2243 -2713 3465 -1316 -22413 -3310 -3023 403 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 3944 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1175 -700 -1858 -968 2744 -1705 -2188 -1713 -1932 -963 -862 -592 -2145 -1794 466 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 3944 45 96 359 117 -369 -294 -249 -2418 -2265 467 - -16 -7108 -8150 -894 -1115 -701 -1378 * - - -466	450/0)	007	1460	2222	2542	2405	1010	0474	2204	0000	2407	0700	1070	0000	2402	0700	0405	1010	0440	2240	2025	405
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	459(5)	-897	-1462	-2333	-2543	-3105	-1040	-24/4	-3294	-2000	-3497	-2/80	-19/3	-2360	-2483	-2703 06	250	-1310	-2413	-3310	-3025	400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	200 8150	40 80/	-301	701	1378*	-020	210 *	-400	-720	215	594	40	90	209	117	-309	-294	-249	
460(M) 2706 -986 -2433 -2144 -1502 -1684 -1706 -700 -1858 -968 2744 -1705 -2188 -1713 -1932 -963 -862 -592 -2145 -1794 466 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - - -16 -7108 -8150 -864 -1115 -701 -1378 * * - - - -2046 487 -2418 -2265 467 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -2418 -2265 467 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96	-	-10	-1100	-0100	-03-	-1115	-701	-1570														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	460(M)	2706	-986	-2433	-2144	-1502	-1684	-1706	-700	-1858	-968	2744	-1705	-2188	-1713	-1932	-963	-862	-592	-2145	-1794	466
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
461(l) -2103 -1659 -4461 -3992 -869 -4152 -3233 3082 -3723 1619 290 -3801 -3788 -3171 -3557 -3432 -2046 487 -2418 -2265 467 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - 462(l) -1761 -1312 -4317 -3954 -1713 -4027 -3703 3225 -3814 -556 498 -3712 -3859 -3653 -3877 -3344 -1754 2110 -3216 -2787 468 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	k	I	I	I		I	I	I		I	I		
461(1) -2103 -1659 -4461 -3992 -869 -4152 -3233 3082 -3723 1619 290 -3801 -3788 -3171 -3557 -3432 -2046 487 -2418 -2265 467 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * -																						
	461(l)	-2103	-1659	-4461	-3992	-869	-4152	-3233	3082	-3723	1619	290	-3801	-3788	-3171	-3557	-3432	-2046	487	-2418	-2265	467
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
462(1) -1761 -1312 -4317 -3954 -1713 -4027 -3703 3225 -3814 -556 498 -3712 -3859 -3653 -3877 -3344 -1754 2110 -3216 -2787 468 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * * - <td>-</td> <td>-16</td> <td>-7108</td> <td>-8150</td> <td>-894</td> <td>-1115</td> <td>-701</td> <td>-1378*</td> <td>1</td> <td>k</td> <td></td>	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	k												
462(1) -1761 -1312 -4317 -3954 -1713 -4027 -3703 3225 -3814 -556 498 -3712 -3859 -3653 -3877 -3344 -1754 2110 -3216 -2787 468 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - <td>400(1)</td> <td>4704</td> <td>4040</td> <td>4047</td> <td>0054</td> <td>4740</td> <td>4007</td> <td>0700</td> <td>0005</td> <td>0044</td> <td>FFO</td> <td>400</td> <td>0740</td> <td>0050</td> <td>0050</td> <td>0077</td> <td>0044</td> <td>4754</td> <td>0110</td> <td>0040</td> <td>0707</td> <td></td>	400(1)	4704	4040	4047	0054	4740	4007	0700	0005	0044	FFO	400	0740	0050	0050	0077	0044	4754	0110	0040	0707	
	462(1)	-1/61	-1312	-4317	-3954	-1/13	-4027	-3703	3225	-3814	-556	-498	-3/12	-3859	-3653	-3877	-3344	-1/54	2110	-3216	-2/8/	468
	-	-149	-000 7100	233	43	-301	399	100	-020	210 *	-400	-720	2/5	394	45	96	359	11/	-369	-294	-249	
463(G) -2594 -2690 -3304 -3623 -4328 3747 -3462 -4761 -3953 -4671 -4212 -3320 -3352 -3748 -3779 -2839 -2981 -4004 -3668 -4222 469	- I	-10	-1100	-0130	-094	-1115	-701	-13/0														
	463(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	469
- -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -794 -749	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	TVV
	-	-16	-7108	-8150	-894	-1115	-701	-1378	520	*	100	1 = 0		1 00	Y		000	. 17	000	=01	- 10	

464(K)	1641	-2033	-323	914	-2415	-1565	-296	-2097	2052	-2080	-1233	-257	-1736	125	-133	-646	-702	-1707	-2258	-1657	470
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
465(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	471
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	+ +												
466(L)	-1699	-1807	-2268	-1925	-830	-2795	-1551	-455	-1225	2510	90	-1958	-2845	1927	-1308	-2067	-1651	-846	-1841	-1454	472
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł			1				L	L	1			
467(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-2052	-4671	_4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	473
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	110
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	100	120	210	001	10				000	201	210	
468(D)	853	2/15	9115	1717	2702	1/68	279	2484	1085	2/17	15/6	84	1722	11	600	606	824	2025	2504	1820	474
400(D)	-000	-2413 -500	2110	43	-2702	200	-576	-2404	210	-2417	-1340	275	394	41	96	359	-024	-2023	-2004	-1039	4/4
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	210	100	720	270	001	10		000	117	000	201	210	
400(0)	000	4700	004	000	0757	4040	000	0.170	4074	0.00	4700	700	0040	400	0.05	0070	4004	4004	0500	0400	
469(5)	-892	-1/80	-931	-688	-2/5/	-1643	-830	-24/2	16/1	-2492	-1/08	-/99	-2018	-468	-305	26/6	-1004	-1981	-2598	-2130	4/5
-	-149	-500 -7108	-8150	-894	-301	-701	-1378*	-020	210	-400	-720	275	394	40	90	309	117	-309	-294	-249	
(50(0))								<u>.</u>											00 / O		
470(C)	-1135	3503	-3700	-3406	-1670	-2549	-2675	653	-3101	-916	-667	-2727	-2925	-2870	-3030	-1868	-1288	2927	-2619	-2222	476
-	-149	-500	233	43	-381	399	100	-626	210	-400	-720	2/5	394	45	96	359	117	-369	-294	-249	
-	-10	-/ 100	-0150	-094	-1115	-701	-1370														
471(A)	2590	-1035	-2404	-2530	-3236	2290	-2365	-2954	-2627	-3240	-2389	-1719	-2027	-2302	-2637	-656	-851	-1991	-3423	-3234	477
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
472(L)	-2632	-2152	-4630	-4185	1767	-4324	-2442	-61	-3879	2789	563	-3833	-3823	-2970	-3513	-3609	-2518	-738	-1527	-945	478
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł						•			ľ	•		
473(I)	-2073	-1632	-4434	-3975	-911	-4130	-3238	3164	-3706	1451	244	-3779	-3785	-3187	-3557	-3413	-2021	546	-2449	-2273	479
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	110
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	+		0										
474/T)	1010	1674	2755	2006	2162	1022	2650	2609	2700	2105	2612	2211	2600	2700	2752	1/62	2010	2107	2206	2156	400
4/4(1)	-1213	-1074	-2100	-2900 43	-3103	390	-2009	-2090	2100	-3103	-2012	275	-2000	-2700	-2755	<u>-140୦ର</u> ସ50	117	-2197	-3200	-3130	400
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	210	TUU	120	210	UUT	<u></u>	50	000	111	000	20T	£70	
475(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	481
	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	*												

476(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	482
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*													
477(R)	-2957	-3022	-3318	-2735	-3796	-2998	-1968	-3912	-846	-3631	-3157	-2611	-3280	-1724	4056	-3026	-2913	-3650	-3096	-3185	483
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*													
478(F)	-3342	-2776	-4026	-4232	4354	-3545	-1431	-2315	-4038	-1801	-1900	-3299	-3780	-3350	-3645	-3490	-3420	-2566	-739	349	484
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*													
479(S)	-897	-1462	-2333	-2543	-3185	-1640	-2474	-3294	-2686	-3497	-2780	-1973	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	485
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*													
480(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	486
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*													
481(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	487
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*													
482(T)	-359	-976	-2225	-2229	-2900	-1242	-2074	-2560	-2170	-2875	-2064	-1561	-1958	-1969	-2247	1110	3375	-1760	-3152	-2850	488
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*													
483(Y)	-3402	-2632	-3941	-4011	1064	-3924	3388	-2526	-3541	-1996	-1973	-2625	-3821	-2664	-3170	-3135	-3280	-2619	3420	3756	489
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*											·		
484(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	490
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*			•										
485(M)	-2322	-1904	-4536	-3951	2387	-4112	-2676	67	-3649	2034	3156	-3710	-3633	-2803	-3311	-3309	-2204	-588	-1794	-1586	491
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*													
486(\/)	-1771	-1603	-3750	-3689	-2037	-3050	-3231	403	-3479	-1154	-1076	-3246	-3399	-3383	-3437	-2628	-1917	3536	-3074	-2677	492
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	TUL
-	-16	-7108	-8150	-894	-1115	-701	-1378 '	*												1.0	
487(V)	-1771	-1603	-3750	-3689	-2037	-3050	-3231	403	-3479	-1154	-1076	-3246	-3399	-3383	-3437	-2628	-1917	3536	-3074	-2677	493
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-/108	-8150	-894	-1115	-/01	-13/8														

488(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	494
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												
489(H)	-3205	-3079	-2723	-2890	-2110	-3046	5295	-4135	-2617	-3813	-3561	-2886	-3482	-2833	-2620	-3291	-3356	-3895	-2397	-1681	495
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	ł												
490(V)	-1754	-1297	-4329	-3968	-1770	-4053	-3752	2604	-3840	-621	-545	-3728	-3878	-3699	-3917	-3370	-1746	2859	-3276	-2829	496
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* :	ł										1		
401/A)	2507	020	0477	0155	1027	1460	1700	740	10/1	1564	054	1607	2022	1725	2024	720	1170	1100	2210	1072	407
491(A)	2307	-020 500	-24//	-2100	-1037	-1400	-1720	-140	-1941	-1004	-904	-1007	-2033	-1725	-2034	-7.50	117	260	-2310	2/01-	497
-	-149	-500	-8150	-894	-301	-701	-1378	* *	210	-400	-720	215	594	40	90	309	117	-309	-294	-249	
492(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	498
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*													
493(E)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	499
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* :	ł												
494(A)	3438	-1472	-2846	-3040	-3287	-1726	-2735	-2840	-3028	-3257	-2662	-2236	-2447	-2798	-2944	-1216	-1387	-2183	-3405	-3320	500
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*						1						
405(1)()	000	070	4000	4004	4050	0445	4040	FFO	4440	777	470	4040	0407	4744	4004	4470	000	000	445	0710	
495(Y)	-866	-9/6	-1863	-1331	1353	-2145	1318	-556	-1116	-///	-1/3	-1242	-2197	1/14	-1301	-11/3	-802	888	-445	2/49	501
-	-149	-500	233 8150	43 804	-381	399	100	-626	210	-400	-720	275	394	45	96	359	117	-369	-294	-249	
-	-10	-7100	-0150	-034	-1115	-701	-1570														
496(D)	417	-1831	1647	1094	-2065	-1488	-353	-1618	-107	-1820	-1019	-189	-1698	30	-623	-603	-643	1629	-2154	-1520	502
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	* 1	ł												
497(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	503
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	+												
400(0)	0504	0000	0004	0000	1000	0747	0.400	4704	0050	4074	1010	0000	0050	0740	0770	0000	0004	1001	0000	4000	
498(G)	-2594	-2690	-3304	-3623	-4328	3/4/	-3462	-4/61	-3953	-46/1	-4212	-3320	-3352	-3/48	-3/19	-2839	-2981	-4004	-3668	-4222	504
-	-149	-000 _7100	233	43	-381	399	100	-020	210	-400	-720	2/5	394	45	90	359	11/	-309	-294	-249	
	-10	-1100	-0100	-034	-1110	-701	-13/0														
499(T)	492	-1190	-706	-181	<u>-14</u> 75	311	-333	-1099	-81	71	-509	570	1113	-6	-509	-450	1123	-835	-1680	-1161	505
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378	*	*												

500(I)	-2091	-1746	-3971	-3840	-1676	-3532	-3289	3684	-3581	-659	-693	-3562	-3674	-3445	-3521	-3194	-2146	449	-2877	-2493	506
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
501(A)	3103	-1036	-2445	-2572	-3222	1051	-2380	-2930	-2650	-3226	-2381	-1739	-2034	-2327	-2648	-664	-857	-1981	-3412	-3228	507
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	001
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	100	0	1.0		10							
500/1.)	0000	4000	0744	0.400	004	0500	4040	540	00.40	of of	0.5	0700	0005	0.400	0750	07.17	0405	045	57 0	0500	
502(L)	-2239	-1892	-3/11	-3400	301	-3520	-1210	-542	-2948	2564	-35	-2/86	-3395	-2438	-2/50	-2/4/	-2165	-945	-5/3	2562	508
	- 149	-500	233	43	-301	399	100	-626	210 *	-400	-720	2/5	394	45	90	309	11/	-369	-294	-249	
-	-10	-7100	-0150	-094	-1115	-701	-1370														
503(V)	-1757	-1387	-4101	-3681	-1174	-3714	-3031	880	-3410	1254	-60	-3407	-3585	-3094	-3354	-2984	-1743	3014	-2536	-2219	509
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k												
504(Q)	-982	-2251	-866	971	-2711	-1822	-252	-2340	1444	-2194	-1356	-464	-1885	2646	1632	-858	-863	-1958	-2245	-1765	510
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
		I		I																	
505(E)	-1162	-2771	2137	2239	-3046	-1526	-626	-2849	-546	-2792	-1983	-145	-1905	-242	-1192	-940	1396	-2385	-2990	-2169	511
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
506(G)	-1707	-2684	1591	-614	-3783	3190	-1613	-3795	-1887	-3775	-3119	-915	-2456	-1358	-2539	-1610	-1924	-3150	-3636	-3124	512
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	I						I					
			I				I														
507(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	513
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k												
508(M)	-473	-522	-1819	-1236	-468	-1879	-687	1519	-996	566	1677	-1154	-1937	836	-1131	1079	-413	102	-957	-585	514
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	•••
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*		1										
		I	I	I				I													
509(I)	-1761	-1312	-4317	-3954	-1713	-4027	-3703	3225	-3814	-556	-498	-3712	-3859	-3653	-3877	-3344	-1754	2110	-3216	-2787	515
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*												
510/T)	780	1467	550	1020	2202	1425	700	1701	472	1002	1202	528	1787	268	002	617	2695	1400	2222	1782	516
-	-149	-1407	222	1023	-2202	200	106	-626	210	-1995	-7203	275	204	-500	902	-017 350	2003	-1400	-2000	-1705	510
_	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	TUU	120	210	JUT	τJ	50	000	111	000	207	L TJ	
			0100			101	1010														
511(l)	-1766	-1333	-4283	-3923	-1635	-3967	-3619	3388	-3759	-473	-437	-3672	-3822	-3576	-3804	-3285	-1764	1695	-3126	-2717	517
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*	I	I			I	I	I		1	I		

512(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	518
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
	-16	-7108	-8150	-894	-1115	-701	-1378 *	· ·	ĸ												
513(A)	2705	-1451	-1036	-913	-2506	-1504	-1143	-2174	-794	-2337	-1613	-946	-1993	2040	-1061	-809	-910	-1703	-2633	-2156	519
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	r 1	k												
514(H)	-615	-1680	1444	66	-1883	168	2650	-1558	-86	-1691	-891	-223	-1680	31	-577	-571	-585	1267	-2007	-1397	520
•	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
•	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	k												
515(K)	-654	-2006	-546	42	-2376	-1581	-133	-2066	1935	-1987	-1107	1132	-1658	1043	1058	-540	1180	-1660	-2113	-1532	521
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
	-16	-7108	-8150	-894	-1115	-701	-1378*	r 1	k	•			•								
516(N)	-933	-2085	-946	-284	-2472	-1822	-253	-2090	1711	76	-1204	1918	-1876	175	1799	-841	-817	-1755	-2132	-1663	522
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	r 1	k			L		l							
517(F)	-416	-987	-843	1107	-1070	-1583	-338	-623	-183	879	-172	-489	-1679	-94	-565	544	813	265	-1379	-905	523
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	525
-	-16	-7108	-8150	-894	-1115	-701	-1378*	r 1	*												
518(I)	-2258	-1804	-4588	-4084	-706	-4269	-3231	2527	-3807	2292	465	-3923	-3814	-3118	-3570	-3544	-2181	190	-2303	-2237	524
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	r 1	*								I				
519(0)	-477	-1909	958	282	-2211	-1389	1484	-1953	285	-1921	-1018	-32	-1517	2318	-225	630	559	-1525	-2110	-1430	525
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	525
-	-16	-7108	-8150	-894	-1115	-701	-1378*	· 1	*	100		210	001			000		000	201	210	
520/1 \	2127	17/3	1102	3706	1257	2018	2674	1/0	3402	2527	216/	3553	3500	2714	2181	2005	2010	570	1870	1818	526
-	-2127	-500	233	-37.90	-381	-3910	106	-626	210	-466	-720	275	-3009	45	96	-3095	-2013	-369	-1070	-249	520
	-16	-7108	-8150	-894	-1115	-701	-1378*	· · ·	*	100	720	210	100	+0	00	000	117	000	201	240	
	10	1100	0100				1010														
521(N)	-723	-2217	958	236	-2518	-1466	1611	-2279	1719	-2217	-1334	2285	-1666	166	-401	-570	-677	-1837	-2382	-1678	527
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	·	k												
522(V)	-1754	-1297	-4330	-3968	-1770	-4053	-3752	2623	-3841	-620	-545	-3729	-3878	-3699	-3918	-3371	-1746	2846	-3277	-2830	528
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	k												
522/01	15/5	_07/	-2003	-1825	-2867	-1206	-1700	-2580	_1799	_2705	_1022	-1262	1826	-1596	-1000	2262	-672	_1755	_2057	-2721	520
-	-149	-514	-2003 233	-1023	-2007	399	106	-2000	210	-2195	-1332	275	394	-1300	96	359	117	-1755	-3037	-2121	J29
-	-16	-7108	-8150	-894	-1115	-701	-1378	1	*	007	1 20	-19	700	νT	00	000	111	000	2 07	2 70	
	1.4		0.00																		

SAUD TTP GAU GAU <th></th>																						
- 1-484 500 223 43 531 549 266 222 43 531 549 716 571 427 526 2716 476 721 275 384 45 56 387 117 568 244 249 551 551 551 551 551 551 555 550 550 5	524(D)	-1776	-3649	3326	1869	-3838	-1642	-1031	-3788	-1322	-3660	-3029	-245	-2192	-711	-2201	-1425	-1855	-3264	-3821	-2816	530
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
S25(E) 4/23 2860 1944 2086 3/21 -1/54 -7/16 3/31 -7/16 2/318 2/16 4/16 1/988 3/31 -1/34 2/386 2/386 2/317 2/316 5/31 - 1.46 7/10 4/33 3/36 0/06 6/26 2/12 4/86 7/20 2/75 3/44 4/5 9/6 3/37 3/36 2/366 2/37 3/36 2/36 3/37 2/36 3/38 1/17 3/36 2/37 3/37 2/37 3/36 4/5 9/6 3/38 1/17 3/36 5/2 - 1.46 7/10 3/32 2/36 1/37 2/37 3/36 4/37 3/36 3/37 7/17 3/36 3/3	-	-16	-/108	-8150	-894	-1115	-/01	-13/8 *														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	525(E)	423	-2950	1944	2696	-3223	-1545	-718	-3047	-715	-2979	-2196	-161	-1968	-347	-1403	-1043	-1314	-2569	-3177	-2316	531
- 1-16 7/108 6-150 454 1/15 7/11 1/15 7/11 1/15 7/11 1/15 7/11 1/15 7/11 1/15 7/11 1/15 7/11 1/15 7/11 1/15 7/11 1/15 7/11 1/15 1/15 1/17 366 2/24 2/44 1/17 366 2/24 2/24 2/24 3/24 366 3/24 2/26 3/21 3/24 3/21 3/24 4/21 3/11 3/66 2/24 2/24 3/21 1/22 3/21 1/22 3/21 1/21 3/21	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
528/E -	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	*												
1 1 1 1 2 1 2 1 2 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 3 1 3 1 3 3 1 3 3 1 3 3 1 3 3 3 3 1 3	526(E)	-2641	-3308	-896	3732	-3966	-2458	-2043	-4105	-2128	-4016	-3555	-1531	-2959	-1842	-2560	-2479	-2750	-3722	-3563	-3385	532
- -		-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-16	-7108	-8150	-894	-1115	-701	-1378*	i	ł								L				
27/10 -2338 -1688 -4816 -4442 -1716 -333 -335 -335 -336 -456 -720 -275 -384 -456 -221 -446 -270 -275 -384 -456 -201 -221 -241 -396 -224 -244 -241 -396 -224 -246 -221 -466 -720 -275 -384 45 96 -359 -177 -784 -1691 -230 -1772 -233	E07(L)	0000	1000	4040	4040	1570	4004	2040	1110	0750	0750	070	2025	2700	2002	2440	2440	0000	202	1001	4770	500
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	527(L)	-2339	-1899	-4018	-4042	15/0	-4204	-2849	626	-3/ 58	2000	0/0 720	-3825	-3700	-2902	-3418	-3418	-2220	-382	-1924	-1//8	333
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	200 -8150	-894	-301	-701	-1378*	-020	210	-400	-720	215	<u>১94</u>	40	90	209	114	-309	-294	-249	
528(A) 2388 -1980 -241 983 -2295 -1557 -423 -2061 954 -2103 -1286 -301 -1791 -26 -375 -717 -784 -1691 -2333 -1728 524 - -166 -7108 -5150 -984 -1115 -701 -1378 ' - <td>I</td> <td>10</td> <td>7100</td> <td>0100</td> <td>001</td> <td>1110</td> <td>701</td> <td>1070</td> <td>I</td> <td></td>	I	10	7100	0100	001	1110	701	1070	I													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	528(A)	2338	-1990	-241	938	-2395	-1557	-423	-2061	954	-2103	-1286	-301	-1791	-26	-375	-717	-784	-1691	-2330	-1728	534
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
529(R) 524 -2089 -789 -146 -2504 -1729 1632 -2153 1229 -2054 -1709 -1789 1328 1231 -719 -724 -1774 -2150 -1637 535 - -148 -500 233 43 -381 399 106 -2262 210 -466 -720 275 394 45 96 359 1117 -369 -249 -249 - -16 -7108 -8150 -584 -1115 -701 +376' -	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	¢												
- -148 -500 233 43 -381 398 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -284 -249 - -16 -7108 -8150 -884 -1115 -701 -1378 * * 530(R) -2957 -3022 -3318 -2735 3796 -2948 -449 -3631 -3157 -2611 -3220 -1724 4056 -3026 -2913 -3650 -3069 -3185 536 - -144 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -894 -1115 -701 -1378 * -720 275 394 45 96 359 117 -368 -294 -249 -249 -249 -249 -249 -249 -249 -249 -249 -241	529(R)	524	-2098	-789	-146	-2504	-1729	1632	-2153	1229	-2054	-1204	-379	-1789	1328	2313	-719	-724	-1774	-2150	-1637	535
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- ,	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
530(R) -2957 -3022 -3318 -2735 -3796 -2998 -1968 -3912 -846 -3631 -3157 -2611 -3280 -1724 4056 -3026 -2913 -3650 -3086 -3185 536 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - -2458 1393 3023 -1770 -1619 -2599 -2421 -2259 537 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -244 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 <	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
Osci_1/2	530(R)	-2957	-3022	-3318	-2735	-3796	-2998	-1968	-3912	-846	-3631	-3157	-2611	-3280	-1724	4056	-3026	-2913	-3650	-3096	-3185	536
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
531(R) -1895 -2713 -2327 -1192 -3484 -2502 481 -2856 2144 -2544 -1842 -1161 -2458 1393 3023 -1770 -1619 -2599 -2421 -2259 537 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - - - - - - -160 -7108 -8150 -894 -1115 -701 -1378* * 532(A) 2935 -1714 -553 857 -2769 -1546 -1218 -2333 -1106 -2591 -1873 -809 -2065 -934 -1502 -954 -1103 -1872 -298 -2374 538 - -149 -500 233 43 -381 399 106 -626	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	ł												
531(R) -1895 -2713 -2327 -1192 -3484 -2502 481 -2256 2144 -2544 -1842 -1161 -2458 1393 3023 -1770 -1619 -2599 -2421 -2259 537 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*																						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	531(R)	-1895	-2713	-2327	-1192	-3484	-2502	-481	-2856	2144	-2544	-1842	-1161	-2458	1393	3023	-1770	-1619	-2599	-2421	-2259	537
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
532(A) 2935 -1714 -553 857 -2769 -1546 -1218 -2333 -1106 -2591 -1873 -809 -2065 -934 -1502 -954 -1103 -1872 -2898 -2374 538 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - -228 -361 562 -1492 -2090 -1419 539 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249 -249<	-	-16	-/108	-8150	-894	-1115	-/01	-13/8 *														
- -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * * 533(A) 1291 -1874 -176 1227 -2177 -1392 -109 -1909 277 -1891 -995 1134 -1522 1248 -228 -361 562 -1492 -2090 -1419 539 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*	532(A)	2935	-1714	-553	857	-2769	-1546	-1218	-2333	-1106	-2591	-1873	-809	-2065	-934	-1502	-954	-1103	-1872	-2898	-2374	538
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
533(A) 1291 -1874 -176 1227 -2177 -1392 -109 -1909 277 -1891 -995 1134 -1522 1248 -228 -361 562 -1492 -2000 -1419 539 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * * - - -164 -1227 -1315 636 -90 4479 1809 540 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	ł												
533(A) 12911 -1874 -176 1227 -2177 -1392 -109 -277 -1891 -995 1134 -1522 1248 -228 -301 502 -1492 -2090 -1419 539 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * * - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -88150 -894 <td>E00(A)</td> <td></td> <td>4074</td> <td>470</td> <td>4007</td> <td>0477</td> <td>4000</td> <td>400</td> <td>4000</td> <td>077</td> <td>4004</td> <td>005</td> <td>4404</td> <td>4500</td> <td>4040</td> <td>000</td> <td>004</td> <td>500</td> <td>4400</td> <td>2000</td> <td>4440</td> <td>500</td>	E00(A)		4074	470	4007	0477	4000	400	4000	077	4004	005	4404	4500	4040	000	004	500	4400	2000	4440	500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	533(A)	1291	-18/4	-1/0	1227	-2177	-1392	-109	-1909	211	- 1891	-995	075	-1522	1248	-228	-301	202 117	- 1492	-2090	-1419	238
-10 -10 -100 -010 -010 -100 -100 -010 -100 -100 -010 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -010 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -2028 138 -2028 -204 -204 -2049 -204 -2049 - -16 -7108 -8150 -894 -1115 -701 -1378<*	-	-149	-500	-8150	-894	-301	-701	-1378 *	-020	210	-400	-720	215	394	40	90	309	117	-309	-294	-249	
534(W) -805 -687 -2581 -2028 138 -2236 -697 897 -1681 -421 141 -1645 -2282 -1369 -1627 -1315 636 -90 4479 1809 540 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378 * * -	-	-10	-1100	-0100	-004	-1110	-101	-1070														
- -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * * - -16 -708 -8150 -894 -1115 -701 -1378* * * - - -408 -1801 -274 1284 -2096 -1822 1168 -1802 -899 -33 -1479 1381 -102 -303 595 221 -1996 -1339 541 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359	534(W)	-805	-687	-2581	-2028	138	-2236	-697	897	-1681	-421	141	-1645	-2282	-1369	-1627	-1315	636	-90	4479	1809	540
- <u>-16</u> -7108 -8150 -894 -1115 -701 -1378 * * 535(H) -408 -1801 -274 1284 -2096 -1385 500 -1822 1168 -1802 -899 -33 -1479 1381 -102 -303 595 221 -1996 -1339 541 - 149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - 16 -7108 -8150 -894 -1115 -701 -1378 * *	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
535(H) -408 -1801 -274 1284 -2096 -1385 1500 -1822 1168 -1802 -899 -33 -1479 1381 -102 -303 595 221 -1996 -1339 541 - 149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - 16 -7108 -8150 -894 -1115 -701 -1378* *	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	1	*												
149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 16 -7108 -8150 -894 -1115 -701 -1378* *	535(H)	-408	-1801	-274	1284	-2096	-1385	1500	-1822	1168	-1802	-899	-33	-1479	1381	-102	-303	595	221	-1996	-1339	541
- -16 -7108 -8150 -894 -1115 -701 -1378 * *	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	ודע
	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	+						••						

Table 1

536(Q)	-650	-1737	-627	-72	-1981	-1615	-209	-1625	1223	392	-866	-318	1222	2120	50	-598	-572	-1326	-1932	-1394	542	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	· /	r													
537(P)	-2931	-2878	-3420	-3706	-4181	-2925	-3468	-4621	-3859	-4490	-4165	-3491	4225	-3781	-3695	-3182	-3279	-4087	-3594	-4064	543	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-324	-7108	-2368	-894	-1115	-701	-1378*	· •	f				•									
538(A)	2195	-924	-968	-546	-1397	-1356	-583	-812	-365	-1167	-487	-618	-1660	1324	-684	-483	-404	462	-1703	-1242	544	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-19	-6804	-7846	-894	-1115	-428	-1961 *	۰ ۱	r					•	•			•				
539(P)	411	-1017	-1886	-1616	-1600	-1588	-1411	-962	-1408	495	-755	-1384	3156	-1323	-1577	-847	-785	-783	-2111	-1716	545	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	010	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	, j	- 10	100				10						_ 10		
540(R)	-1612	-2397	-2037	-1033	-2897	-2352	-458	-2365	2184	665	-1520	-1051	-2334	-51	2602	-1545	-1395	-2143	-2262	-2014	546	
-	-149	-500	233	43	-381	399	106	-626	2104	-466	-720	275	394	45	96	359	117	-369	-294	-2014	J70	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	, ,	1	100	120	210	001	10		000		000	201	210		
E44()/)	710	700	2224	1000	270	2020	000	142	1007	ceol	101	1507	2242	1202	1050	1170	774	1111	oer	2470	E 47	
541(1)	140	-/90	-2334	-1883	-370	-2028	-986	-143	-1007	-003	-131	-158/	-2243	-1383	0001-	-11/8	-//1	260	-905	34/9	547	
-	-149	-500 -7108	-8150	-894	-301	-701	-1378*	-020	210	-400	-720	215	394	40	90	309	117	-309	-294	-249		
540(T)		4000	4004	07	0045	4070		0000	454	0004	4040	000		44	050	4400	0077	4570	0004	4000		
542(1)	-527	-1669	1091	-27	-2315	-13/9	-443	-2033	-151	-2081	-1218	-282	55/	-41	-650	1128	20//	-15/6	-2321	-1690	548	
-	-149	-500	233 8150	43 804	-381	399	1278*	-626	210	-400	-720	2/5	394	45	90	359	11/	-309	-294	-249		
-	-10	-/ 100	-0150	-094	-1113	-701	-1370															
543(R)	-2957	-3022	-3318	-2735	-3796	-2998	-1968	-3912	-846	-3631	-3157	-2611	-3280	-1724	4056	-3026	-2913	-3650	-3096	-3185	549	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378 *	· •	r													
544(G)	-2594	-2690	-3304	-3623	-4328	3747	-3462	-4761	-3953	-4671	-4212	-3320	-3352	-3748	-3779	-2839	-2981	-4004	-3668	-4222	550	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	· •	r	1			I	1		L	L					
545(\/)	_1747	-1296	-4310	-3948	-1758	-4023	-3716	2215	-3813	-615	-540	-3705	-3860	-3670	-3887	-3330	-1741	3087	-3252	-2806	551	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	551	
-	-16	-7108	-8150	-894	-1115	-701	-1378*	· · · ·	- 10	100	0	1.0	001	10						_ 10		
540(1)	0074	0457	4004	4400	4000	0000	0405	5 44	0704	avoal	04	0005	0707	0000	0.001	0740	0000	4400	0004	0000		
546(L)	-28/1	-2457	-4231	-4103	-1033	-3803	-3165	-541	-3/34	3130	-31	-3935	-3/9/	-3286	-3484	-3/13	-2869	-1136	-2394	-2220	552	
-	-149	-500	233	43	-381	-701	100	-626	210	-400	-720	215	394	45	96	359	117	-369	-294	-249		
	-10	-/ 100	-0100	-054	-1110	-701	-13/0															
547(A)	2404	-890	-1926	-1629	-1803	1275	-1415	-1282	-1490	392	-963	-1316	-1930	-1328	-1674	-654	-644	-952	-2187	-1810	553	
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249		
-	-16	-7108	-8150	-894	-1115	-701	-1378*	· 7	' T													
SAUT SAUT <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																						
---	---------	-------	---------------	-------	--------------------	---------	-------	---------	-------	--------------	--------------	------------	-------	-----------------	-------------	--------------------	-------	-------	-------	-------	--------	-----
1 1	548(K)	-2620	-2961	-2461	-2046	-3743	-2791	-1570	-3603	3784	-3387	-2839	-2048	-3039	-1260	-465	-2604	-2536	-3331	-3001	-2988	554
· ·	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
Skyry 3827 2707 4176 4444 2850 4049 2538 4000 1412 1487 2748 3831 2238 3449 2880 3449 2880 3441 2880 3441 2880 3441 2880 3441 2881 3281 2238 3449 2881 3441 2881 3441 2881 3441 2881 3441 2881 3441 3441 2881 3411 3561 3441 3431 3431 3431 3431 3431 3441 3441 3431 <t< td=""><td>-</td><td>-16</td><td>-7108</td><td>-8150</td><td>-894</td><td>-1115</td><td>-701</td><td>-1378 *</td><td>,</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	,	5												
1 1 4 500 223 43 38 66 428 210 466 720 275 394 45 66 385 117 368 249 249 2 1.6 7708 451 466 770 275 394 45 66 386 117 368 249 249 350/A 348 477 2684 3040 307 455 366 456 270 275 394 45 395 117 368 284 2407 -148 500 233 43 361 386 106 426 720 275 394 45 96 398 117 388 2407 4267 4267 4277 2076 426 2477 4277 394 45 96 398 117 388 2407 4267 4267 4277 2075 427 394 45 96 398	549(Y)	-3621	-2707	-4176	-4424	2950	-4049	-394	-2539	-4002	-1942	-1987	-2749	-3933	-2854	-3451	-3299	-3499	-2690	349	4094	555
1 1	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
SUM 3438 -1472 2946 3040 3028 3257 2962 2208 2447 2796 2944 1216 -1837 218 3405 530 - -164 -500 233 43 361 369 106 426 210 466 -720 275 344 45 95 350 117 366 2249 2469 - -16 -7108 450 484 -016 -700 1271 2771 278 2478 -271 2775 394 45 991 390 117 366 244 2449 - -168 -7108 350 250 1521 171 -071 1372 - - - - -444 500 230 43 361 369 107 4526 1414 4561 1717 2026 452 451 459 359 117 369 2484 248	-	-16	-7108	-8150	-894	-1115	-701	-1378*	,	+									1			
Convert Convert <t< td=""><td>550(A)</td><td>3430</td><td>1/72</td><td>2846</td><td>3040</td><td>3287</td><td>1726</td><td>2725</td><td>2840</td><td>30.28</td><td>3257</td><td>2662</td><td>2236</td><td>2447</td><td>2708</td><td>2011</td><td>1216</td><td>1397</td><td>2183</td><td>3405</td><td>3320</td><td>556</td></t<>	550(A)	3430	1/72	2846	3040	3287	1726	2725	2840	30.28	3257	2662	2236	2447	2708	2011	1216	1397	2183	3405	3320	556
1 1	-	_149	-1472	2070	-50 - 0	-3207	200	106	-2070	210	-0207	-2002	2230	2777	-2130	96	359	117	-2100	-0+00	-3320	330
1 1	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	10	100	720	210	001	10	00	000	114	000	201	2-10	
551(h) -1741 -2827 -2070 -1046 -3303 -2401 2713 -2716 2476 -1755 -2075 344 45 96 359 117 -389 -216 557 - -146 500 223 42 383 40 6.282 210 466 772 275 384 45 96 359 117 389 284 -248 - -164 4706 -2865 -2403 582 2550 -1529 1721 2079 2042 345 2114 -2861 1775 2028 454 96 359 117 359 248 -249 -446 96 359 117 359 249 -449 500 233 43 389 106 452 210 466 720 275 384 45 96 359 117 359 249 249 - -169 -100 1779 <td< td=""><td></td><td>10</td><td>1100</td><td>0100</td><td></td><td>1110</td><td>101</td><td>1010</td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		10	1100	0100		1110	101	1010	I													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	551(H)	-1741	-2627	-2070	-1046	-3303	-2401	2713	-2751	2478	-2476	-1755	-1061	-2375	-27	2379	-1621	-1497	-2477	-2379	-2161	557
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	*	ł												
332(1) -1014 -500 -2406 -320 -2406 -2406 -2204 -2409	550/1)	1014	070	2056	2400	500	2550	1500	1701	2070	0040	245	0111	2504	1775	2020	454	000	206	1111	1000	550
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	552(L)	-1014	-0/0	-2900	-2408	-362	-2000	-1529	626	-2079	2042	345 720	-2114	-2001	-1//5 /5	-2028	404	-960	200	-1414	-1090	338
- -	-	-149	-500	-8150	-801	-301	-701	-1378*	-020	210	-400	-120	215	J94	40	90	208	117	-309	-294	-249	
533/\/) 933 -842 -2818 -2467 -1542 -1870 -1880 154 -2226 -1095 -617 -1932 -2328 -1995 -2259 -1126 1070 2768 -2180 -1826 559 - -16 -7108 -8150 -284 -1115 -701 -1378' * - <td></td> <td>-10</td> <td>-1100</td> <td>-0130</td> <td>-034</td> <td>-1113</td> <td>-701</td> <td>-1570</td> <td></td>		-10	-1100	-0130	-034	-1113	-701	-1570														
- -	553(V)	933	-842	-2818	-2467	-1542	-1870	-1890	154	-2226	-1095	-617	-1932	-2326	-1995	-2259	-1126	1070	2769	-2180	-1826	559
- -16 -7108 -894 -1115 -701 -1378 • 554(5) -787 -1522 -1488 -1172 -2714 -1599 -1112 -2500 -433 -2683 -1791 -1110 -2067 -796 1351 2916 -869 -1643 -2648 -2234 560 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 384 455 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 +1378 * - -1149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -2496 561 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -36	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
554(S) -787 -1522 -1486 -1172 -2714 -1599 -1112 -2200 433 -2563 -1791 -1110 -2067 -796 1351 2916 -989 -1943 -2648 -2234 560 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 555(S) -326 -1010 -1779 -1541 -2691 +1234 +1566 -2386 -1486 -2594 -1749 -1228 1196 -1330 -1747 2396 1967 -1662 -2876 -2496 561 - -148 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -249 -249 -249 -249 -249 -249 -249 -249 -241 -3331 -3090 562 5	-	-16	-7108	-8150	-894	-1115	-701	-1378 *	,	ł					1				I			
0.50(0) 101 102 210 133 1112 2210 133 2200 1110 1110 1110 2000 133 133 1200 2000 2200 2210 2200 2000 <td< td=""><td>554(\$)</td><td>_787</td><td>-1522</td><td>-1486</td><td>_1172</td><td>-2714</td><td>_1500</td><td>_1112</td><td>-2500</td><td>-433</td><td>-2563</td><td>_1701</td><td>-1110</td><td>-2067</td><td>-796</td><td>1351</td><td>2016</td><td>-080</td><td>-19/3</td><td>-2648</td><td>-2234</td><td>560</td></td<>	554(\$)	_787	-1522	-1486	_1172	-2714	_1500	_1112	-2500	-433	-2563	_1701	-1110	-2067	-796	1351	2016	-080	-19/3	-2648	-2234	560
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-101	-1522	-1400	-1172	-27 14	200	106	-2000	-400 210	-2000	-1791	275	-2007	-750	<u>ା ୦୦୮</u> ଜନ	2310	-909	-1940	-2040	-22.04	500
1 1	-	-143	-7108	-8150	-894	-1115	-701	-1378*	-020	210	-100	-120	215	JJ J	тл	30	000	111	-503	-204	-243	
555(s) -326 -1010 -1779 -1541 -2691 -1234 -1566 -2386 -1449 -2594 -1749 -1228 1196 -1330 -1747 2396 1967 -1662 -2876 -2496 561 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - -2633 -966 -1649 -963 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - - -1462 -2333 -2543 -310 -3025 563 - -16 -7108 -8150 -894 -1115 -701 -1378* * - - - -1316 -2413 -3310 -3025 563			1100	0100	001	1110	101	1070														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	555(S)	-326	-1010	-1779	-1541	-2691	-1234	-1566	-2386	-1486	-2594	-1749	-1228	1196	-1330	-1747	2396	1967	-1662	-2876	-2496	561
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378*	,	ł												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			024	0400	0504	2004	1000	2205	0700	0500	2000	0004	1000	1050	0004	0500	000	740	4044	2224	2000	500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000(A)	31ZT	-934	-2409	-2001	-3001	-1203	-2295	-2100	-2000 210	-3060	-2234	-1009	-1953	-2234	-2000	930	-/40	-1044	-3331	-3090	302
		-149	-7108	-8150	-894	-301	-701	-1378*	-020	210	-400	-120	215	3 94	40	90	309	114	-309	-234	-243	
557(S) -897 -1462 -2333 -2543 -3185 -1640 -2474 -3294 -2686 -3497 -2780 -1973 -2360 -2483 -2703 3465 -1316 -2413 -3310 -3025 563 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * -<	-	-10	-7100	-0130	-03-	-1115	-701	-1570														
- -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * 558(R) -586 -1873 -516 979 -2188 -1543 -123 -1869 1290 -353 -980 -202 -1622 314 1886 -491 782 -1495 -2024 -1439 564 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894	557(S)	-897	-1462	-2333	-2543	-3185	-1640	-2474	-3294	-2686	-3497	-2780	-1973	-2360	-2483	-2703	3465	-1316	-2413	-3310	-3025	563
- -16 -7108 -8150 -894 -1115 -701 -1378* * 558(R) -586 -1873 -516 979 -2188 -1543 -123 -1869 1290 -353 -980 -202 -1622 314 1886 -491 782 -1495 -2024 -1439 564 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378* * - 559(G) -2594 -2690 -3304 -3623 -4328 3747 -3462 4761 -3953 4671 4212 -3320 -3352 -3748 -3779 -2839 -2981 -4004 -3668 -4222 565 - -149 -500 233 43 -381 399 106 -626 210 466 -720 275	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-16	-7108	-8150	-894	-1115	-701	-1378*	,	ł												
558(R) -586 -1873 -516 979 -2188 -1543 -123 -1869 1290 -353 -980 -202 -1622 314 1886 -491 782 -1495 -2024 -1439 564 - -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 - -16 -7108 -8150 -894 -1115 -701 -1378<*			(0- 0	- 40	0	0 1 0 0		(00)		(000	a - a	0.00		(000						0004	(100	
	558(R)	-586	-1873	-516	979	-2188	-1543	-123	-1869	1290	-353	-980	-202	-1622	314	1886	-491	782	-1495	-2024	-1439	564
16 -7 108 -8150 -894 -1115 -701 -1378	-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	2/5	394	45	96	359	11/	-369	-294	-249	
- -	-	-10	-/ 108	-8150	-894	-1115	-701	-13/8	ľ													
149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249	559/(2)	_2504	-2600	-3304	-2622	_4228	3747	-3462	_4761	-2052	_4671	4212	-3320	_3350	-3748	-3770	-2820	_2021	_4004	-3668	-4222	565
	-	-2004	-500	233	-3023 43	-381	300	106	-626	210	-466	-720	275	304	45	96	359	117	-369	-294	-749	303
	-	-16	-7108	-8150	-894	-1115	-701	-1378*	1	10		120	210	דייי	-10	30	000	111	000	20T	L-10	

Table 1

To	h	ما	1
1d	U	le	

560(C)	2804	3772	-3185	-3198	-2739	-1303	-2462	-2065	-2882	-2628	-1924	-1927	-2044	-2547	-2727	-661	-799	-1463	-3099	-2886	566
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *		*												
561(V)	-1771	-1603	-3750	-3689	-2037	-3050	-3231	403	-3479	-1154	-1076	-3246	-3399	-3383	-3437	-2628	-1917	3536	-3074	-2677	567
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378 *		*												
562(T)	-1213	-1674	-2755	-2906	-3163	-1922	-2659	-2698	-2788	-3105	-2612	-2311	-2600	-2708	-2753	-1463	3819	-2197	-3286	-3156	568
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-16	-7108	-8150	-894	-1115	-701	-1378*		*												
563(D)	-2784	-3432	4016	-1200	-4140	-2466	-2197	-4505	-2621	-4365	-3956	-1551	-3014	-2039	-3232	-2593	-2938	-4046	-3710	-3552	569
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-21	-6715	-7757	-894	-1115	-701	-1378*		*												
564(F)	-525	-445	-2202	-1627	1946	-2001	-744	1247	-1346	952	561	1079	-2030	-1067	-1362	-1067	-465	338	-714	-230	570
-	*	*	*	ł	*	*	* *		*	*	* 1	k 4	*	*	*	1	k	*	*	*	
-	*	×	*	٢	*	*	* *		0												