
WEBVIZ: A TOOL FOR WORLD-WIDE WEB

ACCESS LOG ANALYSIS

James E. Pitkow & Krishna A. Bharat

Graphics, Visualization and Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

E-mail {pitkow, kb}@cc.gatech.edu

ABSTRACT

Various programs have emerged that provide statistical anal-
ysis of World-Wide Web (WWW) access logs. These pro-
grams typically detail the number of accesses for a file, the
number of times a site has visited the database, and some
programs even provide temporal analysis of requests1.
However, these programs are not interactive nor do they
provide visualizations of the local database. WebViz was
developed with the intention of providing WWW database
maintainers and designers with a graphical view of their
local database and access patterns. That is, by incorporating
the Web-Path paradigm into interactive software, users can
see not only the documents (represented visually as nodes)
in their database but also the hyperlinks travelled (repre-
sented visually as links) by users requesting documents
from the database. WebViz further enables uses to selec-
tively filter the access log (i.e. restrict the graphical view by
specifying the desired domain names or DSN numbers,
directory names, and start and stop times), control bindings
to graph attributes (i.e. node size, border width and color as
well as link width and color can be bound to frequency and
recency information), play back the events in the access log
(i.e. re-issue the logged sequence of requests), select a lay-
out of nodes and links that best presents the database’s struc-
ture, and examine the graph at any instant in time. Clearly,
WebViz is a useful WWW database utility given that it can
provide the user with graphical information about document
accesses and the paths taken by users through the database.
Such analyses can facilitate structural and contextual
changes resulting in a more efficient use of the document
space. This paper details the implementation of WebViz and
outlines possible future extensions.

KEYWORDS

visualization, HTTP, administration, tools, statistics, access
logs

1. For the purposes of this paper, the terms accesses and document requests will
be used interchangeably.

INTRODUCTION

World-Wide Web (WWW) database developers, designers,
and maintainers have a potentially formable task in analyz-
ing the overall efficiency of their database. Following in the
footsteps of the all-too-common end-user question: “Where
am I?” [Nielson, 1990], comes the database-provider ques-
tion: “How are people using our database?” The latter ques-
tion requires analyses of the structure of the hyperlinks as
well as the content of the documents in the database. The
end products of such analyses might include 1) the fre-
quency of visits per document, 2) the most recent visit per
document, 3) who is visiting which document, 4) the fre-
quency of use of each hyperlink and 5) the most recent use
of each hyperlink. Granted, this list does not include all
potentially useful analyses; rather, it provides a starting
point for the development of tools to provide such function-
ality. Towards this end, we developed a C++ visualization
tool (running on SunOS 4.1.3 and X) called WebViz. The
next section describes the underlying concept of WebViz,
the Web-Path paradigm.

WEB-PATH PARADIGM

Collections of hypertext documents can be categorized by
the underlying topology of links and nodes [Parunak, 1989].
WWW databases are intrinsically directed cyclic graphs.
This can be thought of as a web-like structure. Yet most
WWW databases reside on file systems that are explicitly
hierarchical, e.g. UNIXTM, Macintosh, VAX, etc. As a result
of this incongruence, problems can arises when one
attempts to view such databases. WebViz tackles this prob-
lem by displaying the database as a directed graph2, with
nodes representing separate documents in the database and
links representing the hyperlinks, or paths, between docu-
ments. When a user “travels” from a source document to a
separate destination document via the hyperlink embedded
in the source document, a path is said to have been taken3.
This path corresponds to the user clicking on the anchor

2. The screen capture presented does not display arrows at the end of links. The
data structure WebViz uses, however contains directional information. Arrows
are soon to be implemented.

001 Facebook Ex. 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

WEBVIZ: A TOOL FOR WORLD-WIDE WEBACCESS LOG ANALYSIS Pitkow &Bharat
In Proceedings of the First International WWW Conference GVU Tech Report: GVU-GIT-94-20

point and retrieving the anchor (See Case One in Figure 1).
We refer to this scenario as internal referencing (point of
origin coming from within the database).

Note that since WWW enables users to enter a database via
any document (via a known Uniform Resource Locator, or
URL [Berners-Lee 1994]), causality between successive
document requests is not always decidable. That is, even
though there may exist a path between document A and doc-
ument B and the access log records a request for document
A followed by a request for document B from the same site,
it remains a possibility that 1) the user at the site knew the
location of both document A and document B and requested
each file separately (See Case Two in Figure 1), or 2) there
were two different users logged onto the same site who hap-
pened to request document A and document B individually
and in that order (See Case Three in Figure 1). That is the
users did not click on the hyperlink in A to get to B. We
refer to these scenarios as external referencing (point of ori-
gin exists outside the database) and dual referencing (points
of origin in same address space). Even though the possibil-
ity of other cases exists, WebViz assumes the Case One sce-
nario for successive document requests. It is this assumption
that underlies the algorithm for determining the paths taken
by users in the access log.

WebViz uses the Web-Path paradigm to display the relations
between the access log and the local database. Specifically,
the program displays the documents of the local database
and the connections between the documents as a web-like
graph structure. Information is gathered from the access log
about the number of times documents have been accessed as
well as the recency of these accesses. WebViz further infers

3. This contrasts to hyperlinks which point to different location with in the same
document. WebViz does not analyze such information since such events are not
captured by Hypertext Transfer Protocol (HTTP) servers.

paths travelled by users by assuming that successive
accesses by each user were internally referenced. The num-
ber of times paths were taken as well as the recency of the
traversals are also collected by WebViz for display.

To recap, WebViz visualizes the collection of hypertext doc-
uments as a directed cyclic graph. The links in this web-like
structure are referred to as paths, and represent the hyper-
links between documents. Nodes represent separate docu-
ments. Documents connected by hyperlinks can be
successively accessed either internally or externally. By uti-
lizing the Web-Path paradigm, WebViz collects frequency
and recency information about documents and paths to drive
the visualization. We now move onto an explanation of how
WebViz creates the visualization. The following sections are
arranged in the order that each stage is invoked during pro-
gram execution.

INITIALIZATION

WebViz currently parses the National Center for Supercom-
puting Application’s (NCSA) Hypertext Transfer Protocol
(HTTP) 1.0 server access logs. As demonstrated by other
access log analyzers, writing separate parsing routines for
other HTTP servers is trivial. The sample access log entries
below shows that the time of access, the machine name
(either hostname or DSN), and requested file are logged for
each transaction.

foo.gatech.edu [Tue Mar 8 10:50:25 1994] GET /gvu/intro_gvu.html HTTP/1.0

128.37.132.23 [Tue Mar 8 10:51:31 1994] GET /gvu/agenda.html HTTP/1.0

bar.gatech.edu [Tue Mar 8 10:52:01 1994] GET /gvu/agenda_more.html HTTP/1.0

Initially, lookups tables of hostname to DSN and DSN to
hostname mappings are read into two separate hash tables.
The intent here is to reduce the time consuming task of look-
ing up a machine’s DSN or hostname, since the log can con-

DOCUMENT A DOCUMENT B

HyperLink

USER

Known URL

DOCUMENT A DOCUMENT B

USER

Known URLs

CASE ONE CASE TWO

Figure 1: Three different access patterns

HyperLink
(not used)(used)

DOCUMENT A DOCUMENT B

USER

Known URLs

CASE THREE

HyperLink
(not used)

USER

Site Site Site

002 Facebook Ex. 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

WEBVIZ: A TOOL FOR WORLD-WIDE WEBACCESS LOG ANALYSIS Pitkow &Bharat
In Proceedings of the First International WWW Conference GVU Tech Report: GVU-GIT-94-20

tain either type of entry (see above example). Hence, the
process of looking up hostnames and DSN numbers, which
is network dependent and therefore potentially prohibitively
slow, is done precisely once for each machine in the access
log. Next, the specified access log is read into memory into a
structure we refer to as the Master Log. With each transac-
tion read, the hash tables are first consulted to see if the map-
ping is know and as a last resort, attempts the look up using
the appropriate system calls. Once the entire access log has
been processed, the time of the first and last entry can be
extracted from the Master Log for use in the View Control
Window.

The View Control Window (see Figure 2) enables the user to
determine the content of the visualization. Controls are pro-
vided the facilitate the selection of specific directories,
domain names, and start and stop times. The directory selec-
tion allows for an arbitrary number of directories to be added
to the visualization. As in the above example, lets assume
that the user only wants to view the access patterns of the
“softviz” and “people” directories, the person would add
those directories to the selection list. This permits the user to
restrict the contents of the web to only include the files
within the specified directories, hence avoiding visualizing
unnecessary files and directories. Internally referenced docu-
ments are also added to the web, though we plan to make it
an option to exclude such connections from the visualization.
Thus, even though the user may requests to see only access
patterns from a specific directory, additional files from other
directories may be included into the visualization; however,
embedded media (images, sounds, etc.) are not added.

Similarly, the domain selector enables the user to restrict the
visualization to only machines that have accessed the data-
base whose hostname or DSN contain the specified sub-
string. This allows the end user to look at the access patterns
from local machines, machines from specific companies,
etc. (In the above example, we have restricted the view to
three companies, two specified by hostname and the other
by DSN). Clearly, unless complete or nearly complete DSNs
are used, ambiguous results will occur, i.e. numerous
machines will match and their all accesses will end up in the
visualization. Finally, the user can control the start and stop
times used for the visualization. Hence, peak periods can be
isolated just as easily as longer periods of time for analysis.
To summarize, all the variable attributes recorded in the
access log (time, machine making request, and requested
file) are subject to user filtering.

Once the user has finished determining the view, the specifi-
cations are used to create a copy of the Master Log. This
copy, called the View List, contains only the entries from the
Master Log that the user desires to visualize. While this list
provides enough information to determine the number of
visits to a file and the times the file was accessed, it does not
provide the when and the number of times the path was trav-
elled. This information is gathered by creating an Edge List
that contains the source file, the destination file, the access
times for both files, and the DSN of the machine traversing
the path. A previously stated, an path is considered to have
been travelled if there exists a path in the web and the same
machine is making the successive requests, disregarding the
possibility of external references (Case Two of Figure 1)

Figure 2: The View Control Window

Figure 3: The WebViz Control Window

003 Facebook Ex. 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

WEBVIZ: A TOOL FOR WORLD-WIDE WEBACCESS LOG ANALYSIS Pitkow &Bharat
In Proceedings of the First International WWW Conference GVU Tech Report: GVU-GIT-94-20

and dual references (Case Three of Figure 1). We do place a
time constraint on the interval between accesses of three
days. That is, if the interval is greater than three days, we
assume the user requested the document via another hyper-
link than the one embedded in the source document. The
selection of the three day period was not based on any
empirical evidence. Next, the local database is processed.

LOCAL DATABASE PROCESSING

The local database is processed to ascertain the structure of
the web. The files in the database are processed one at a
time, with processing proceeding recursively through the
file system hierarchy. For each file being processed, if a cor-
responding node does not already exist in the web, a node is
added. Currently, each node contains the file’s name, size,
and last modification time, though additional information
like owner, number and type of embedded media, etc. could
be added to facilitate more sophisticated analyses. Files that
do not contain Hypertext Markup Language (HTML) are
not processed or added to the web at this stage. This deci-
sion reflects the implicit assigning of roles in HTML. That
is, marked-up files act as either end documents or as inter-
mediary documents with paths to other documents, while
non HTML files can only assume end document roles. For
each marked-up file, the contents are parsed and the URLs
that point within the database are extracted, with relatively
addressed URLs are simplified into their full path names. If

a node does not already exist for the file, a node is created
and inserted into the web. Regardless of document type, a
link is added from the processed document to the anchor,
since it can be referenced internally and hence of possible
analytical interest. At the end of the local database process-
ing stage, the structure of the web has been defined as is
ready to be displayed.

GRAPH LAYOUT

Graph layout is an arduous task in any setting - more so in
WebViz since there are multiple, possibly conflicting inter-
ests:

Clarity: The layout must make good use of the available
space to present the information in an easy to read fash-
ion. Occlusion of nodes by other nodes or edges should
be avoided.

Natural Structure: Hierarchical graphs present a natu-
ral structure for embedding. The hierarchy in the web
ought to mirrors the file system hierarchy of the database
as far as possible.

Presentation: The graph must look presentable. Center-
ing, regular spacing between nodes, staggering of nodes
to avoid collinearity contribute to this end. A good pre-
sentation will minimize the lengths of edges in the

Figure 4: WebViz Screen Dump

004 Facebook Ex. 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

WEBVIZ: A TOOL FOR WORLD-WIDE WEBACCESS LOG ANALYSIS Pitkow &Bharat
In Proceedings of the First International WWW Conference GVU Tech Report: GVU-GIT-94-20

graph. This may be incompatible with a hierarchical
embedding since home directories which tend to be high
up in the hierarchy have plenty of back edges and are
best placed near the center of the graph.

A good layout will try and do justice to all these criteria in a
judicious fashion. Since there is no clear optimization crite-
rion many schemes are possible [Rivlin, 1994; Parunak,
1989]. The one we adopt presently is a randomized scheme
with greedy placement of nodes. Besides being computa-
tionally cheap and easy to implement, the randomization has
an added benefit. If a certain embedding is not found satis-
factory the scheme can generate a new graph for the user’s
consideration. Specifically, our algorithm is as follows:

1. For each node we compute its “depth” in the UNIXTM file
system hierarchy and use it to sort the nodes. Nodes are
embedded in decreasing order of depth. As a result nodes
that are high up in the hierarchy and have a lot of references
will be placed close to their natural position.

2. The available screen space is partitioned into compart-
ments of uniform size. The number of compartments is of
the same order as the number of nodes in the graph. Each
compartment will hold at most one of the nodes to be
embedded. Note that the partitioning problem is a more
complicated in 2D than it is in 1D.

3. Compartments are staggered at regular intervals in the X
and Y direction to prevent collinearity.

4. For each node, twenty random empty compartments are
sampled. The node is embedded in the compartment which
minimizes a penalty function. The penalty function weights
the following criteria:

a) The Euclidean distance from the vertical line that par-
titions the screen space into two halves. Note that his cri-
terion tries to keep the nodes close to the center of the
screen.

b) The Euclidean distance from a horizontal line that
represents the natural position of nodes for the given
depth value. This helps place nodes close to their natural
position in the file system hierarchy.

c) The Euclidean distance from all adjacent nodes that
have already been embedded. This minimizes the length
of edges, i.e. this function attempts to clusters associated
nodes.

5. When the graph is drawn, edges (presently straight) are
drawn before nodes to prevent occlusion. Occlusion of
nodes by other nodes is avoided by the compartment scheme
which also ensures moderately good usage of the available
space.

The embedding produced by this scheme seems balanced
and presentable. However, there is always room for other
scheme, e.g. a tiered scheme that strictly follows the file sys-
tem hierarchy or a scheme that minimizes edge intersections

(see Future Work section below). We have used straight
edges rather than curved edges to simplify “picking” and
speed-up redraw, since the graph needs to redrawn for ani-
mation, as edges change thickness and color with the pas-
sage of time.

VISUAL MAPPING

Eventually in a visualization, data (processed or raw) needs
to be mapped to visual (or audio) parameters. In our case the
visual parameters are the thickness and color of nodes and
links. We render labels in a fixed color to maintain readabil-
ity. Thickness has a low resolution (4 levels currently) while
color provides a much richer level of detail. The two param-
eters in each case are mapped to the either recency or fre-
quency of access. Formally:

1. The recency of access of a node (link) is the time elapsed
since the last access (traversal) of the node (link).

2. The frequency of access of a node (link) is the number of
accesses (traversals) it has suffered since the beginning of
the simulation expressed as a percentage of the maximum
number of accesses (traversals) of any node (link) in the
graph.

Since frequency and recency ranges tend to be large and it is
desirable that the sensitivity of the mapping be greater for
small values than larger values, we use a quasi-logarithmic
function to map from four data ranges called “Quartiles” to
the visual parameter range.

To simplify computation we use a piecewise-linear curve,
consisting of four linear segments. In the case of recency we
map the real-time duration since the last access to the visual
parameter. In case of frequency it is the number of accesses
expressed as percentage of the maximum number of
accesses in the log.

The four “quartiles” are mapped to colors as shown in Fig-
ure 5. This intuitively mimics the non-linear cooling curve
of a hot body; from white hot to yellow hot through red hot
to blue. The initial variation is rapid and corresponds to the
first quartile. The variation slows down gradually and never
quite reaches the end of the 4th quartile. For the 4th Quartile
we need a finite and reasonable upper bound to get some
variation. Values larger than the upper bound map to the end
of the 4th Quartile.

Recency Quartile Frequency

0 - 60 secs First 100-51%

1 - 60 mins Second 50-21%

1 -24 hrs Third 20-6%

> 1 day Fourth 6-0%

Table 1: Quartile Mappings for Recency and Frequency

005 Facebook Ex. 1010f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

