EY-3894E-SG-0001

" RMS Structures and
Utilities on VAX/VMS

Student Guide

Prépcred by Educational Services
: of
Digital Equipment Corporation

001 ~ Facebook Inc. Ex. 1215

Copyright © 1986, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is strictly prohibited. For copy
information, contact the Educational Services Department, Digital EqQuipment Corpo-
ration, Bedford, Massachusetts 01730.

Book production was done by Educational Services Development and Publishing in

Bedford, MA.

Printed in U.S.A.

The information in this document is subject to change without notice and should not
be construed as a commitment by Digitai Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this

document.

The software described in this document is furnished under a license and may not be
used or copied axcept in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of

its software on equipment that is not supplied by Digital.

The following are some of the trademarks of Digital Equipment Corporation.

DECtaik Professional
ALL-IN-1 DECUS RAINBOW
CTS-300 DECwriter RSTS
DATATRIEVE DIBOL RSX
DEC DSM-1t TOPS-10
DECdirect FMS-11 TOPS-20
DECmail Ki UNIBUS
DECmat KL10 VAX
DECmate MASSBUS VAXcluster -
DECnet MicroPower/Pascai VAXstation VMS
DECservice MicroVAX Ii vT
DECsystem-10 POP Work Processor
DECSYSTEM-20 P/OS

002

Facebook Inc. EX 1215

CONTENTS

Course Description (.i.ciseeeeeeesocsscosnssancssnsessancsssX
Course OrganizationeeececeerscccrsccrsccssncsscocsocsX
PrerequiSites ...ecseecesesceccsoossscosccssvassenssnnsseX
COULSE GOALS vvesesescencassscsascssassssasssesscsssssscsssXi
NON=GOALS +oeoesocovscccocsscsassnssssnsasssesosossnasssssXid

ReSOUI‘CeS .o-.ouotooooou.Oooo.too-l.o...-o.oooo-.ooo-uouxii

MODULE 1. OVERVIEW OF RMS DATA
STRUCTURES AND SERVICES

Components of the VAX/VMS I/O Systeémccceceeecceseasl=l
VAX RMS User Control BloCKS .cececsceccssssasscassceassoesl=2

File ACCeSS BlOCk (FAB) e e 06060 0000606060008 000 001-4

ReCOrd ACCGSS BlOCk (RAB)-.o.-....................1-5
Extended Attribute BlocksS (XABS) t.ceeccesecccensol=b
Name Block (NAM)1-8

RMS Naming Conventionsecceceecccccsocsccsscscocsesl=?d

Field Names o-o-cnooooonoocooo-oonnooo-ooooo--oon01-9
Field Values-................--........1-10

RMS SerViCeS/ProcedureS-.---._......-..1"12

MODULE 2. RMS UTILITIES

Part 1. Introductioneeeecesscscsscsccsccasssacscsasal=l

RMS UtilitiesS .tuieeccessecssacsosssccasscsscncssssossesasd=l

Creating FDL FileS ..cceescesceacccacscoceassososssccossseld=2
EDIT/FDL SCriptS .ceeeecioescssscncasssancacns ceeses2=3

Creating Data FilesS ...ceceesssensvescccces A 1

iii

003 Facebook Inc. Ex. 1215

Part 2. Evaluating/UtiliZing ..eeeeeceececes ceeeeeeeees=12

FDL -- Invoke Script;..2—12
FDL GraphiCS Output o-o-on-oo-oo--o-o--ooo-u000-002—17
FDL - TOUCHUP Script -o-o-ooocooooo-'u--oouolocc-2-19

MODULE 3. OVERVIEW OF FILES-11 ON-LINE
DISK FILE STRUCTURE

DiSk File Structure on VAX/VMS e e 0 s s s 00 cs e 0 -ooouooo3-1
The ODS-Z ReSErved Files EEEEEREE o.o e e s 00 e 00800000 .3-1
Comparing the ODS-1 and ODS=-2 Structures3=-2
ODS-2 DireCtories ® & @ O 0 & 5 0 O 5 0 S D S E SO P S O P S OSSO NP .3-2
Directory File StrucCtuUreccesevecessacoosssseai=3

File characteristicS ® & & 6 & 0 0 5 6 0 O O 5 O S OOV S S SO NS SO DD e S 0003-5
ODS-Z File Headers ® & 5 6 9 0 5 5O O 0 OSSO S S O S 6 S 0S8 b s e s e .3-5

Disk Physical charaCteristics ® 8 @ 0 & 0 08 " 00 O s OO SO SO S e D I3-6

DiSk organization ouo.oo..cooooooo.ooo-oo-oco.oooo-ocoao3—7

MODULE 4. OVERVIEW OF RMS FILE ORGANIZATIONS,
RECORD FORMATS, AND ACCESS METHODS

RMS File Organizationceeeseeee cosocossoscsssccasasd=l
Sequential Files ® @ 8 @ ¢ 5 0 & & 06 5 OO O B OO OO O GO OB S OO PO 04-1
Relative Files ® ® @ O 6 & & O 0 & O S G O SO SO O S PO OO O S e s e '4-2
Relative Data Cell and Bucket FOrmatcececessed=5
Record Format ® 6 & 0 & & 0 O O 6 O O S 6 O O O S P S S SO SO OO SO S S SO S S e OO .4-6 .

Record Access L-ﬁions .coococo.l.-oocccc-c-11000000000004_7

Random Access to Indexed FileSceeccccoccesessd=8
Access by Record’'s File Addressceecececocese.4-9

iv

004 Facebook Inc. Ex. 1215

MODULE S. INDEXED FILE ORGANIZATION --
INTERNAL STRUCTURE AND OVERHEAD

Part l. Internals oo...oo.......'...-lo-ooo.oo-locoooo.5_1
Overall Tree Structure and Prolog ..c.ciceeceoccens eeveesed=1

Indexed Sequential FileS ueueoseeeeceroococanenesad=3
Prolog Description .ieceeeeecsocecscccasscsoscoencsed=6

Key Descriptorsl.....".'.'..'............'........5-10
Area DeSCriptOrS ..cecececeocssnccccsccccsssccsscsssssssed=2l1
Data Bucket StructuUr®cccsecessccccsccsscscssccsscescesd=27
Data Record Fomat ..l.ll...........'....ll.......5_32
Record Reference Vectors (RRVs) and Bucket Splits5-34
simple Bucket splitsl......000000000000000005-35
Multibucket splitsl..........l....lllll......5-37
Bucket Splits with Duplicate Recordscccece...5-38

Key and Data Compression (Prolog 3) sc.eesccsccccsocccseesd=39

Primary Key COmpresSsSionc.cecceccccccccsccsccsssd~39
Data COmMpPresSsSioniceececsoccccsasesascssssscsead=dl

"Index Bucket ..cecosvcessscssscccsccssssscssscssssccssseesd—qd?
Index Record FOrmat ...ececeescecccscsnsssascascced=43
Index COMPIreSSiON ..ceeeecceccsscsscsasscsstsccasccsoancesd=46
Binary Versus Nonbinary Index Search ...cccceceerecceece.5-48
Secondary Index Buckets and Data Records (SIDRS)5-49
Secondary Index Bucket Formate:. .cecsoeessed—49
Secondary Index Data Record Format:.cseeees.5-49

CoOmMPresSSion ...cceceiceescscsscsesccssccssscsansasseead=53

Part 2. Simulated Data EXample .c..ccceceecoecccessoccsssd=54

MODULE 6. RMS UTILITIES

Part 3. INtroductionN..ceceseececccccscosccsccccccsnsocosab=l

Analyzing File Structurecceeecceeseccssas eeeb-1

Measuring Run-Time PerformancCec.cceeee. ceaesb=2

Part 4, Evaluating/Utilizingcccieeeeeccccans I
v

005 Facebook Inc. Ex. 1215

MODULE 7. FILE SHARING AND RECORD/BUCKET LOCKING:

SEQUENTIAL, RELATIVE, AND INDEXED FILES
File ShAaring ..ceeeieesecsacesccsassssncasna

RecOrd LOCKING .teeevececsosoccnsocssasscconsscs

Automatic Record Locking (RMS Default)

Alternative Record Locking Controlling Options

MODULE 8. BUFFER MANAGEMENT: SEQUENTIAL,

AND INDEXED FILES

Interaction of RMS Options with Buffersccccocee

Read-Ahead/write-Behind e 000 ce 0 c0s0 0000000

Asynchronous Option with

Read-Ahead/Write-Behind Interaction
Deferred Write ® ® © 6 &6 & 9 6 & 0 6 0 6O B0 S OB O OGP S S OSSO 0D
Asynchronous I/O ® @& &6 &6 & & & B & & 5 & & 0 O S P S SO S O O " O N

LOCAL BUEE@ES +iveeenoseeansoccoossanssscsssosanssaes
Size and Number Of BUffersS ...ccceectsecicccsncocsoscsns

Sequentialcicestesetctcccccs st nsnoa
Relative .iieeeeenececssesenassssosasessnnncsas
Indexed ...ccceeeecccnsccanae
Choosing Data Bucket Size fo - Indexed Files
Number of Bufferscccseceescccscsccsnncssass

Global Buffers and Index Caching

Manual Record UnlocKking eeccecesccssccccecccas

RELATIVE,

Single NOde ® 00 0 0900000000000 00 PIOEN SR CAECEV OSSO

REAU ON 7 tcieerseccsassassssssssasasssss

Not Rest icted to Read Onlyccoceee

Summary -- Global Buffer Performance
(as of VAX/VMS Version 4.4) .:c.eece

VAXClUSEEYS ¢ieceecocscscssesscacscscsocascasoses

Lock Value BloCK .ieeeecsactsocsccssoens
Performance Recommendations for

VAXcluster Global Buffers

Calculating the Number of Buffers

Needed to Cache IndeX ...ccceececececccasoccceces

vi

006

Facebook Inc. Ex. 1215

o e .8-11
o e 08_11
) ¢8-12
. 08-12
«..8-15
. e 08-17
...8-18

o e -8-18
...8-19

...8-28

* o 08—29

MODULE 9. RMS UTILITIES
Part 5. Optimizing and Redesigning Filescc00...9-1

. FDL optimizing FunctiOn © 9 5 66 0 ¢ 09 0006 0505 000 6B s e S
Reorganizing Files ...ccceecceocccsencsccsscnsccs

MODULE 10. OPTIMIZING FILE PERFORMANCE:
DESIGN AND TUNING SUMMARY

Design - File Creation Parameters-......10—1

Tuning - Run-Time Parameters-............10-2

MODULE 11. PERMANENT FILE ATTRIBUTES VERSUS
RUN-TIME FILE CHARACTERISTICS

Permanent File AttributesI....I........"..'....Q'.11-1
Run-Time File Characteristics ..l.......'........Q.'....11-3

File Open options .oon.l..a..ooo..lolo...ooc..ooooll-3
ReCOrd Connect options .o..o.oo...o..oo"0..0..'0.!11-3

Default Settings for RMS Control Blocks
for Higher-Level Languages ..cccsecoceccsccscsesssoseasll=T

FAB Default Settings ® @ 8 8 & &6 0 & 8 0 5 5 0 0 5 050 0068800 600 00 '11-7
RAB Default Settings ® 6 © & & &6 5 5 ¢ 0O 5 06 5 00 0SS0 O N 0 0o '11—11
xAB DefaultsQ.'.....'...'.'.'.OQ."..0'..'0.11-14
DCL Commands for Implementing Run-Time Features11-15
SET FILE'.'..Q..'..'.....\l..........'...'lll-ls
SHOW RMS—DEFAULT e @ &6 & &6 0 0 B & 0 & 5 0 0o ® & @ 8 ¢ 0 & 5 0 5 ¢ 5 s 0o .11-16
SET RMS_DEFAULT ® & 6 &6 5 5 5 & 0 0 00 ¢ 9 O S 0 S O *~ e & 6 0 5 & 5 0 0 0 00 11-17
specifying Run-Time Options © 0 006 06 00060606 0¢60e 060000600000 s000e0 011_19

RMS Run-Time Options Available Through
the FDL ADD Function"....0........I'..l.....'...11—20

vii

007 Facebook Inc. Ex. 1215

MODULE 12. CALLING RMS SERVICES DIRECTLY FROM MACRO
AND HIGHER-LEVEL LANGUAGES

The VAX/VMS Procedure Calling Standardccoecveseeesl2=1
Reporting Success or Failure of a Call .eiveeveenosesesal2=2
Calling asaFunCtiOn12—2
RMS Completion status COdeS ..o.olol..o..o..o0000012-2

Testing Completion Statuscceveteeccscconcosesl2=7

Passing Arguments toO ProcCedUreS ...ccecsssosnccaccescesal2=15

MODULE 13. ALTERNATE APPROACHES TO ACCESSING RMS CONTROL
BLOCKS DIRECTLY -- LANGUAGE EXAMPLES

USEROPEN Function or Regular I/0 ..c.icessccscccssscecsessll-1l
Entry Points to Pascal Utilities ...cceeececeeosesel3d=25
FDLSPARSE Alternativeccececececseccsseosssassacsnaealld=27
FDLSPARSE Routineceeeeesceescccacocncccoscacssl3—28
Fields in RAB Defining User Record Buffers13=32
VAX Language 1/0 Operations and RMS Services13-35

Current Record Context T B T B

MODULE 14. ADVANCED USE OF FILE SPECIFICATIONS

Search Lists and Wildcards ..ccocececcescssesccccsnscseoald-1
m; .ults or Logical Names ® 8 & 0 6 0 B O 6 0 08 806 0 00 0000 .14-1
search L’.St‘...l.....lll...l..‘.........14-1
Wildcarc..;-.............l.l..l.............14-1

RMS DefaU].t File-ParS ing ACtiVitieS @ 0606 60 0 000 e 0000 a s 014-3

RMS File-Parsing Activities Not Done by Default14-4

LIBSFIND_FILE - Find File #0000 069 0000000000000 00 oa--oool4-9

viii

008 Facebook Inc. Ex. 1215

MODULE 15. PROCESS QUOTAS AND LIMITS
Process and System Resources for File Applications15-1
Memory Requirements ..l....l0.‘0............‘.....15-1

Process Record-lLocking Quotacccecetvecescceccald=l
Other LimitsO.‘O....l......00......0........15-2

MODULE 16. RMS UTILITIES
Pal’.'t 6. ANALYZE/RMS/INTERACTIVE --.-.......-...........16-1
ANALYZE/RMS_FILE Interactive Commands16-1

Sample Interactive SeSsSionNS...ccceceecscescccccseeslb—4

MODULE 17. DATA RECOVERY FOR CORRUPTED INDEXED FILES
Detecting PrOblems LI . ® ® 0 0 & 200 00 00 000 8O 000 0SSOSO C e e 017-1
DUMP Utility 2 8 06 0 08 000 008 00 0 00 02 000 90 00 08 8 s a0 017-4

Guidelines for Recovering Data from
Corrupted Indexed FileS ..c.ecececececcsccccscnsscscsosecsl7=8

Il’ltl’.‘OdUCtion tO the PATCH Utility o.o.co.o...oooooo.oocol7-13

QualifietsC...C..-....0......l......--.....l7-13
PatCh Comands o..o..oooo.ooloon00000000000000000017-14

Data Recovery EXampleS ...c.cccccccscsccsccssssccsccocccal7=1lb

APPENDIXAo.no.o-o.ooonooooo.l..l.o -ocooooo..o-.lllanoA-l

APPENDIXB S 06000 000000t acece Rt P R OSSN coo-ooo--.a.c-B_l

ix

009 Facebook Inc. Ex. 1215

COURSE DESCRIPTION

This course 1is designed for application programmers who are
responsible for the processing of data files using the Record
Management Services (RMS). File optimization strategies are
approached from two perspectives, with emphasis placed on indexed
file structures.

1. Features that can be implemented at the DCL level

2. Features that can be implemented only within program control.

This course teaches students how to use the RMS utilities and how
to call RMS services directly from their programming language
(specifically in BASIC, COBOL, FORTRAN, PASCAL or MACRO).

COURSE ORGANIZATION

Length: 5 days
Format: Lecture/Lab (2/3 Lecture, 1/3 Lab)
PREREQUISITES

1. Completion of the VAX/VMS Utilities and Commands course or .its
equivalent.

2. At leasc ti, ~e months of programming experience in one of the
following 1lc iguages: BASIC, COBOL, FORTRAN, PASCAL, or MACRO.
This experience should include the use of regular file I/0 for
the programming language of the wuser's choice to read and
write records to a file, and to update or delete records.

010 Facebook Inc. Ex. 1215

COURSE GOALS

This course is designed to prepare students to perform the
following tasks.

Use the RMS utilities (FDL, CONVERT, ANALYZE) and selected DCL
commands (DUMP, SET FILE, SET RMS_DEFAULT). -

Interpret statistical output from ANALYZE/RMS/STATISTICS.
Tune files on an on-going basis.

Identify and implement run-time file options that might
optimize file performance for a particular application.

Perform benchmarks on file performance.

Calculate and set the number of buffers needed for a
particular file.

Identify when global buffers should be enabled for a shared
file.

Access RMS control blocks (FAB, RAB) directly from the
programming language of the wuser's choice (BASIC, COBOL,
FORTRAN, PASCAL, or MACRO). x

Call RMS services directly from the programming language of
the user's choice (BASIC, COBOL, FORTR::?. PASCAL, or MACRO).

Enable RMS alternative locking options available within
program control that control record locking and unlocking.

Recover data from corrupted files.

xi

011 Facebook Inc. Ex. 1215

NON-GOALS

This course is not designed for users who must:

e Write programs in VAX languages in which they have no prior
experience (covered in the VAX generic language courses).

@ Write programs that call system services or Run-Time Library
routines (covered in the Utilizing VMS Features from VAX
courses).

e Monitor and tune overall system file performance (covered in
the Managing Performance on VAX/VMS course).

@ Write programs that perform DECnet file operations (covered in
the DECnet courses).

RESOURCES

For complete mastery of this course, the following resources from
the vVAX/VMS documentation set should be available to you.

Guide to VAX/VMS File Applications

VAX Record Management Services Reference Manual

VAX/VMS Analyze/RMS-File Utility Reference Manual

VAX/VMS L. avert and Convert/Reclaim Utility Reference Manual

VAX/VMS File Definition Language Facility Reference Manual

xii

012 Facebook Inc. Ex. 1215

. MODULE 1
OVERVIEW OF RMS DATA
STRUCTURES AND SERVICES

Major Topics

- Components of VAX/VMS [/O system

— VAX RMS user control blocks (FAB, RAB, XAB, NAM)
- RMS naming conventions

- RMS services/procedures

Source
RMS Reference Manual — Sections 1 and 2

013 Facebook Inc. Ex. 1215

014 Facebook Inc. Ex. 1215

COMPONENTS OF THE VAX/VMS I/0 SYSTEM

fok dome buedig

A_Q "G

w-&,xaib ”@-‘ *’5’ {JM s.if{,l(ﬁtufté-)

VAX/VMS IMAGE
| ‘ 9
HIGH LEVEL AT o i TP
LANGUAGE 1/0 RTL1/O >
. L1gg 1T ouﬁP“{w//
1 Y o kif 1 ¢y$
| | ReEcORD MANAGE - b
| _menT services aowl € £ [%
[- R
Y ‘g'ﬂf
|QIO SYSTEM SERVICES
/ﬁ’ v 1 / LN -
wdeste 1
/O DRIVERS |= XQP/ACPs oo Tl
‘ \Disﬁ& + Mag¥opa Jochooct-
PERIPHERAL DEVICES - (I,m'l C,AL sipagud W(a
Ao - P”L

MKV84-0413

- Extended QIO Procedures (XQOPs) used to perform disk functions.

- Ancillary Control Processes (ACPs) used for:

magnetic tape handling functions
network functions

- 1I/0 drivers that perform device-lev' 1l operations.

015

Facebook Inc. Ex. 1215

VAX RMS USER CONTROL BLOCKS

® VAX RMS communicates with control blocks.

® The File Definition Language (FDL) and RMS
access to RMS control blocks to all programmers.

Structure

File Access
Block

Record Access
Block

Extended’
Attribute Blocks

Name Block

RMS Control Blocks

utilities prowvide

Function Mechanism
Describes a file. . and contains SFAB
file-related information

Describes a record and contains SRAB
record-related information

Contains file attribute information SXABXXX
beyond that in the File Access

Block or record-related information

beyond that in the Record Access

Block

Contains file specification SNAM

information beyond that in the File

Access Block

016

Facebook Inc. Ex. 1215

User Program and RMS Data Structures and Buffers

PROGRAM
REGION
(PO)

CONTROL
REGION

(P1)

VIRTUAL ADDRESS SPACE

% x 269

PO SPACE
o USER DATA STRUCTURES
o USER PROGRAM IMAGE

{}

[

PROCESS

AT

'P1 SPACE *

INCLUDING: IFABs, TRABs

OR BUCKETS
L

o RMS INTERNAL DATA STRUCTURES i {
S Pl M.,\ . 3
o RMS BUFFERS — MULTIBLOCKS fad

o USER BUFFERS -~ RECORDS
o USER RMS CONTROL BLOCKS
(FABs, RABs, XABs, NAMs)

FAd

Kf’*‘é*‘»""‘ - d{ur (’i&::aj:: 8
«Q' shruchires i T

///// SO SPACE
. SYSTEM o RMS.EXE ,
REt(:lor; /NG o RMS SHARED FILE 1
o] DATA STRUCTURES B
(GLOBAL BUFFERS) ** Needd CHES
7 olfer
BU-2413
* Process permanent files have their RMS internal structures in
Pl. Normal (image) files begin in Pl but can overflow into

PO, unless the image was linked using the option

IOSEGMENT=NOPOBUFS.

Global buffers are page file global sections.

This latter option is rarely used.

They appear

to a process that is mapped to them to be in PO or P1l, although
they are maintained in SO.

017

Facebook Inc. Ex. 1215

File Access Block (FAB)

The FAB is used for exchanging information with RMS before and
after any RMS file operation. The user program sets fields to
tell RMS what is needed, and RMS sets fields to show the results
of the operation.

As long as the program is not executing RMS file operations, RMS
does not access the user's FAB. RMS has its own internal FAB
which it maintains for its own purposes. This allows you to. use
one-user FAB for more than one file, if that is appropriate.

Note that RMS uses certain FAB fields to exchange information with
the program when performing file operations. The FAB must be
available for use when any file operation 1is to be performed.
Programs using asynchronous operations should allocate a FAB (and
all the other control blocks) permanently for each file.

File Access Block -- SFAB

ALO = allocation-gty GBC = global buffer count
BKS = bucket-size MRN = max-rec-number
BLS = tape block-size MRS = max-rec-size
CTX = user-value NAM = name address block
DEQ = extention-qty ORG = file—-organization
DEV = device characteristics RAT = record-attributes
DNA = default filespec-address RFM = record~format: <value>
DNS = filespec-size RTV = window-size
FAC = file-access: <value> SDC = secondary device characteristics
FNA = filespec-address SHR = file-sharing: <value>
FNS = filespec-size TS = completion status code
FOP = file-option: <value> TV = status value
FSZ = header-size XAB = xab-address

1-4

018 Facebook Inc. Ex. 1215

Record Access Block (RAB)

The Record Access Block (RAB) is used and maintained in the same
way as the FAB, except that the RAB is involved in RMS record
operations rather than file operations.

The RAB is associated with a record stream, so there could be more
than one RAB concurrently associated with the same file. For this
reason, the RAB contains a field pointing to the FAB, rather than
the other way around (this pointer is for your use, not RMS).

RMS maintains an internal RAB and does not use the user RAB unless
a record operation is executing. You will find it difficult to
use one RAB for more than one file. There are usually many record
operations in the course of a program run. If there is only one
RAB, the program will continually need to restore the contents of
the RAB from copies that it will have to maintain.

Record Access Block -= SRAB

BKT = bucket~-code RBF = record-buffer-address
CTX = user-value RFA = record-file-address
FAB = fab-address RHB = header-buffer-address
KBF = key-buffer-address ROP = record-options: <value>
KRF = key reference number RSZ = record-size
KSZ = key-~size STS = completion status code
MBC = multiblock count STV = completion value
MBF = multibuffer count TMO = seconds
PBF = prompt-buffer-address UBF = user-buffer-address
PSZ = prompt-buffer-size USZ = user-buffer-size
RAC = record-access-mode XAB = next XAB address

1-5

019 Facebook Inc. Ex. 1215

Extended Attribute Blocks (XABs)

The Extended Attribute Blocks (XABs) are a family of related
blocks that are 1linked to the FAB to communicate to VAX RMS any
file attributes beyond those described in the FAB.

An XAB can both supersede and supplement the file <characteristics
specified in the FAB. Fach type of XAB has a 6~letter mnemonic
name consisting of the prefix XAB followed by three 1letters that
are associated with the function the XAB provides. For instance,
the XAB that provides the RMS Create service with file allocation
information that supplements and supersedes the file allocation
information in the FAB is called an allocation control XAB, or
XABALL. Multiple XABs can be used for the same file.

The XABs are described in Chapters 8 through 15 of the VAX Record
Management Services Reference Manual. The XABs are generally
smaller and simpler than the FAB, RAB, and NAM blocks because each
describes information about a single aspect of the file. They are
all optional; you use only the ones that you need for any given
call to an RMS service routine.

There are seven types of XABs provided by RMS for file operations.

l. Allocation control XAB (XABALL) allows greater control over
disk file allocation and positioning during file allocation.

2. Date and time XAB (XABDAT) specifies backup, creation,
expiration, and revision date-time values, and also the
revision number.

3. File header characterist®~s XAB (XABFHC) receives the
information <contained ir the header block of a file, which
consists of certain file characteristics. This information is
restricted to user output.

4. Key definition XAB (XABKEY) defines the key characteristics to
te associated with an indexed file.

S. File n»rotection XAB (XABPRO) defines file protection
chara: seristics that specify what class of users or list of
users can have certain specified access rights. 1In the case
of an ANSI magnetic tape file with HDR1l labels, XABPRO defines
the accessibility field character.

6. Revision date and time XAB (XABRDT) specifies the revision
date~-time value and revision number to be associated with a
file.

7. Summary XAB (XABSUM) receives file characteristics associated
with an indexed file, which are not returned by XABFHC. This
information is restricted to user output.

020 Facebook Inc. Ex. 1215

The XABs used for any given RMS service call are connected to the
FAB in a linked list. The head of the list is the FABSL_XAB field
in the FAB. This field contains the address of the first XAB to
be used. Each successive XAB in the list links to the next using
the XABSL_NXT field. This field cqQntains the address of the next
XAB in the list, :

One XAB type, XABTRM, is associated with the RAB rather than with
the FAB. Its purpose is to allow extended control over terminal
read operations via RMS, rather than by using the QIO system
service.

021 Facebook Inc. Ex. 1215

Name Block (NAM)

The name block (NAM block) supplements the file specification
information available in a FAB. A NAM block is useful for opening
and locating files, especially if the file specification was
entered by a terminal user, or if wildcards or a search list
logical name may be present in a file specification, representing
multiple files.

There is only one type of NAM block, and wusually only one NAM
block 1is associated with each file. To provide an extra level of
defaults for a file specification, RMS will apply defaults wusing
additional NAM blocks that contain the file specifications of
related files.

022 Facebook Inc. Ex. 1215

RMS NAMING CONVENTIONS

Field Names

RMS uses mnemonic names to identify each field in a control block.
For example, the mnemonic name for the field in the FAB that
contains the allocation quantity is ALQ.

The mnemonic name (usually three characters in length) serves as a
suffix to a symbolic name that identifies the location of each
control block field. Use of the supplied symbolic names ensures
that you will place values in the correct control block fields.
RMS defines each symbolic name as a constant value equal to the
offset, 1in bytes, from the beginning of that control block to the
beginning of the field location. These symbolic names are called
symbolic offsets. The general format of the symbolic offset is:

CCCSX_Eff

The components of this format are summarized below.

Component Length Description
ccc . 3 letters Identifies the type of control block:
FAB, NAM, XAB (for all XABs), and RAB
$ 1 character Separator character; always a dollar
sign ($) :
p 1 letter Identifies the length of the field:
e B for byte
e W for word
e L for longword
e Q for gquadword
e T for text buffer address

1 character S< sarator character; always an
under: ore (_)

fff 3 or more Identifies the mnemonic name of the
letters field, which is used in the VAX MACRO
control block macro or higher-level
language USEROPEN functions. Some
mnemonics contain more than three
letters; for example, symbolic offset
XABSB_PROLOG (from XABKEY).

Example

The FAB field whose mnemonic is ALQ has a length of one longword
and is identified by the symbolic offset FABSL_ALQ.

023 Facebook Inc. Ex. 1215

Field Values

Field values involve four different naming conventions.

10

Xxx$C_fff

The first kind of symbolic field values are simple symbolic
field values. These are identified by the presence of a C_
immediately following the block prefix in their name. For
example, the RABSB RAC field has three symbolic values, one
each for sequential, keyed, and RFA access modes. The
symbolic names for these values are RABSC_SEQ, RABSC_KEY, and
RABSC_RFA. These symbolic field values are used in simple
assignment statements.

The C symbol is used for any field that can have only one
value (a constant).

xxx$M_fff

The second kind of symbolic field value uses mask values ¢to
define bit offsets rather than explicit wvalues. These are
identified by the presence of M_ immediately following the
block prefix in their name. For example, the FABSL_FOP field
is a longword field with the individual bits treated as flags.
Each flag has a mask value for specifying a particular file
processing option.

FABSM_CBT Contiguous 'best try'’
FABSM_CTG Contiguous
FABSM_TEF Truncate at end of file

The M symbol is used for any fields in which several options
may be specified simultaneously. These options are identified
by bits within the field.

The masking value 1is an integer value that sets the
appropriate bit(s).

xx.'V_fff -= bit offset
xxx$s_fff -- size

The third and fourth kinds of symbolic field values are also
used to define flag fields within a larger named field. These
are identified by the S_ and V_ values immediately following
the block prefix in their names. The S form of the name
defines the size of that flag field (usually the value 1 for
single bit flag fields), and the V_ form defines the bit
offset from the beginning of the larger field. These forms
can be wused with the symbolic bit manipulation functions to
set or clear the fields without destroying the other flags.

1-10

024 Facebook Inc. Ex. 1215

The V symbol is an alternative to the M symbol to be used for
any fields containing options identified by bits.

The RMS Reference Manual identifies field options by the V
symbol, However, every V symbol has a corresponding M
version,

For most of the FAB, RAB, NAM, and XAB fields that are not
supplied using symbolic values, you will need to supply sizes or
pointers. For the sizes, you can use ordinary numeric constants

or other numeric scalar quantities.

025 Facebook Inc. Ex. 1215

RMS SERVICES/PROCEDURES

RMS services can be called from any VAX 1language wusing the VAX
Procedure and Condition Handling standard. RMS services are
system services and are identified by the entry point prefix SYS$
followed by three or more characters. 1In the corresponding VAX
MACRO macro name, the SYS$S prefix is not used. For example, the
Create service has an entry point of SYSSCREATE and a VAX MACRO
macro name of S$SCREATE.

RMS Services
Service Name Macro Name Description

File Processing and File Naming

SYSSCLOSE ' SCLOSE Terminates file processing and
disconnects all record streams

SYSSCREATE S$CREATE Creates and opens a new file of any
organization

SYSSDISPLAY $DISPLAY Returns the attributes of an open
file to the user program

SYSSENTER* S$ENTER Enters a file name into a directory

SYSSERASE SERASE Deletes a file and removes its
directory entry

SYSSEXTEND SEXTEND Extends the allocated space of a

' file

SYSSOPEN SOPEN Opens an existing file and
initiates file processing

SYSSPARSE SPARSE Parses a file specification

SYS$i '"MOVE* SREMOVE Removes a file name from a
directory

SYSSRENAME SRENAME Assigns a new name to (renames) a
file

SYSSSEARCH SSEARCH Searches a directory, or possibly
multiple directories, for a file
name

1-12

026 Facebook Inc. Ex. 1215

Service Name
Record Processing

SYS$CONNECT

SYSSDELETE

SYS$DISCONNECT

SYSSFIND

SYSSFLUSH

SYSSFREE

SYSSGET

SYS$NXTVOL*

SYSSPUT

SYSSRELEASE

SYSSREWIND

SYSSTRUNCATE

SYSSUPDATE

SYSSWAIT

RMS Services (Cont.)

Macro Name

$CONNECT

S$DELETE

$DISCONNECT

S$FIND

S$FLUSH

S$FREE

$GET

$NXTVOL

$PUT

SRELEASE

SREWIND

$TRUNCATE

SUPDATE

SWAIT

Description

Establishes a record stream by
associating a RAB with an open file

Deletes a record from a .relative or
indexed file

Terminates a record stream by
disconnecting a RAB from an open
file

Locates and positions to a record
and returns its RFA

Writes (flushes) modified I/0
buffers and file attributes

Unlocks all records previously
locked by the record stream

Retrieves a record from a file
Causes processing of a magnetic
tape file to continue to the next
volume of a volume set

Writes a new record to a2 file

Unlocks a record pointed to by the
contents of the RABSW_RFA field

Positions to the first record of a
file

Tr ncates a sequential file

Rewrites (updates) an existing
record in a file

Awaits the completion of an
asynchronous record operation

* This service is not supported for DECnet operations involving
remote file access between two VAX/VMS systems,.

027 Facebook Inc. Ex. 1215

RMS Services (Cont.)
Service Name Macro Name Description
Block 1/0 Processing |
SYSSREAD SREAD Retrieves a specified number of
bytes from a file, beginning on block

boundaries

SYS$SPACE $SPACE Positions forward or backward in a
file to a block boundary

SYSSWRITE SWRITE Writes a specified number of bytes

to a file, beginning on block
boundaries

028 Facebook Inc. Ex. 1215

RMS Library Routines

Procedure Operation

FDLSCREATE Creates a file from an FDL specification and
then closes the file.

FDLSGENERATE Produces an FDL specification by interpreting a
set of RMS control blocks. It then writes the
FDL specification either to an FDL file or to a
character string.

FDLSPARSE parses an FDL specification, allocates RMS
control blocks, and then fills in the relevant
fields.

FDLSRELEASE Deallocates the virtual memory used by the

RMS control blocks created by FDLSPARSE.

Use FDL$SPARSE to f£ill in (populate)

the control blocks if you plan to release the
memory with FDLSRELEASE later.

029 Facebook Inc. Ex. 1215

030

Facebook Inc. Ex. 1215

MODULE 2
RMS UTILITIES

Major Topics

Part 1. Introduction

- RMS Utilities

- Creating FDL Files

- Creating Data Files
e CREATE/FDL
e CONVERT/FDL

Part 2. Evaluating/utilizing
- FDL — INVOKE script

-~ FDL graphics output

- FDL — TOUCHUP script

Source
Guide to VAX/VMS File Applications, C..apte~ 1 (Section 1.5)

Chapter - (Sections 4.1, 4.2, 4.4)
VAX/VMS File Definition Language Facility Reference Manual
VAX/VMS Convert and Convert/Reclaim Utility Reference Manual

031 Facebook Inc. Ex. 1215

032 Facebook Inc. Ex. 1215

PART 1. INTRODUCTION
RMS UTILITIES

e VAX RMS provides the following set of tools to assist
designing and creating data files.,

EDIT/FDL

CREATE/FDL

CONVERT/FDL

ANALYZE/RMS_FILE/FDL

Tuning Cycle

———{ EDIT/FDL]

A
SEQUENTIAL
| CONVERT }*—O EILE)

INDEXED
FILE
| ANALYZE/RMS_FILE
|
l———— —»| CONVERT/RECLAIM |
MKVB4-1827
2-1

033 Facebook Inc. Ex. 1215

CREATING FDL FILES

e The File pDefinition Language (FDL) editor allows you to:
- create and modify data file specifications
- specify all create-tixﬁe options
- model data files
- optimize FDL files
e The specifications are written in the FDL
e To generate an FDL file from an existing data file, type:

$ ANALYZE/RMS_FILE/FDL file-spec

034 Facebook Inc. Ex. 1215

EDIT/FDL Scripts

Parsing Definition File
Definition Parse Complete .

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : ?

Add to
Delete to
Exit to
Help to

Invoke to
Modify to
Quit to
Set to

View to

VAX-11 FDL Editor

insert one or more lines into the FDL definition
remove one or more lines from the FDL definition
leave the FDL Editor after creating the FDL file
obtain information about the FDL Editor

initiate a script of related questions

change existing line(s) in the FDL definition
abort the FDL Editor with no FDL file creation
specify FDL Editor characteristics

display the current FDL Definition

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : INV

(Add_Key Delete_Key Indexed Optimize
Relative Sequential Touchup)
Editing Script Title (Keyword) [-] :

You must provide an answer here (or “Z for Main Menu).

Script Title Selection

Add_Key modeling and addition of a new index‘s parameters
Delete_Key removal of the highest index's parameters
Indexed. modeling of parameters for an entire Indexed file
Optimize tuning of all indices' parameters using file statistics
Relative selection of parameters for a Relative file
Sequential selection of parameters for a Sequential file
Touchup remodeling of parameters for a particular index
(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : DE
(Type “"?" for a list of existing Primary Attributes)
Enter Desired Primary (Keyword) [TITLE] : 2

2-3

035 Facebook Inc. Ex. 1215

Current Primary Attributes

TITLE
SYSTEM
FILE
RECORD
AREA 0
AREA 1
AREA 2
KEY O
KEY 1

Enter Desired Primary (Keyword) [TITLE] : *EXIT*
(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Reyword) [Help] : MODIFY

(Type "?" for a list of existing Primary Attributes)
Enter Desired Primary (Keyword) [TITLE] : ?

Current Primary Attributes

TITLE
SYSTEM
FILE
RECORD
AREA 0
AREA 1
AREA 2
KEY O
KEY 1

Enter Desired Prima.; (Keyword) [TITLE] : *EXIT*
(Add Delete Exit He ip Invoke Modify Quit Set View)
Main Editor Function (Reyword) [Help] : SET

(Analysis Display Emphasis Granularity
Number_ Keys Output Prompting Responses)
Editor characteristic to set (keyword) [-] : ?

FDL Editor SET Function

Analysis filespec of FDL Analysis file

Display type of graph to display

Emphasis of default bucket size calculations

Granularity number of areas in Indexed files

Number_ Keys number of keys in Indexed files

Qutput filespec of FDL Output file

Prompting Full or Brief prompting of menus

Responses usage of default responses in scripts

Editor characteristic to set (keyword) [-] : *EXIT*
2-4

036 Facebook Inc. Ex. 1215

Example 1. Using ' the EDIT/FDL Invoke Script

$ edit/£fdl indxback.fdl
Parsing Definition File
bISKSINSTRUCTOR:[WOODS.RMS.COURSE]INDXBACK.FDL; will be created.
Press RETURN to continue (2 for Main Menu)
(Add Delete Exit Help Invoke Modify Quit Set View)

Main Editor Function (Keyword) [Help] : in

(Add_Key Delete_Key Indexed Optimize
Relative Sequential Touchup)

Editing Script Title (Reyword) (-] : in
Target disk volume Cluster Size (l1-1Giga) (3] :
Number of Keys to Define (1-255)[1} :
(Line Fill Key Record Init Add)

Graph type to display (Keyword) [Line] :
Number of Records that will be Initially Loaded

into the File (0-1Giga) [-] : 1000
(Fast_Convert NoFast_Convert RMS_Puts)

Initial File Load Method (Reyword) [Fast] : rms
will Initiai Records Typically be Loaded in Order

by Ascending Primary Key (Yes/No) [No] : no
Number of Additional Re :ords to be Added After

the Initial File Load , (0-1Giga) [0] :

Key 0 Load Fill Percent (50-100) [100] :
(Fixed variable)

Record Format (Keyword) [Var] : fi
Record Size (1-32231) (-] : 50

(Bin2 Bin4 Bin8 Int2 Int4 Int8 Decimal String
Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring)
Key O Data Type (Keyword) [Str]

2-5

037 Facebook Inc. Ex. 1215

Key O Segmentation desired (Yes/No) [No] :
Key 0 Length (1-50) [-] : 5
Key O Position (0-45) [0] : 0
Key O Duplicates allowed (Yes/No) [No] :
File Prolog Version (0-3)[3] :
Data Key Compression desired (Yes/No) [Yes] : n
Data Record Compression desired (Yes/No) [Yes] :tn
INDEX
DEPTH
(1]
SNSRI ENEEEENNEEEEEEEER
1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
PV-PROLOG VERSION 3 KT-KEY 0 TYPE STRING EM-EMPHASIS FLATTER (33
DK-DUP KEY 0 VALUES NO KL-KEY 0 LENGTH 5 KP-KEY 0 POSITION
RC-DATA RECORD COMP 0% KC-DATA KEY COMP 0% IC-INDEX RECORD COMP 0%
BF-BUCKET FILL 100% RF-RECORD FORMAT FIXED RS-RECORD SIZE 50
LM-LOAD METHOD RMS_PUTS IL-INITIAL LOAD 1000 AR-ADDED RECORDS 0
(TYPE “FD" TO FINISH DESIGN)
WHICH FILE PARAMETER {MNEMONIC)[REFRESH :
WHICH FILE PARAMETER (MNEMONICYREFRESH] : FD

Text for FDL Title Section
: FDL FOR INDEX BACKWARDS

Data File file-spec
¢ INDXBACK.DAT

BU-2414

(1-126 chars) [null]

(1-126 c¢hars)[null]

(Carriage_Return FORTRAN None Print)

Carriage Control

Emphasis Used 1In
Suggested Bucket Sizes:

Number of Levels in Index:
Number of Buckets in Index:

Pages Required to Cache Index:
Processing Used to Search Index:

Key 0 Bucket Siz.e
Key 0 Name
SEQ_NO

Defining Default:

(Keyword) [Carr]

Flatter files

(:)
(3 3 12)
(1 1 1)
(1 1 l)
{ 3 3 12)
(112 112 453)«4~——*
(1-63) [3] : fi
J
(1-32 chars) [null]
,/
pﬂjj N& NAWW\A
2"6 i
2 m{;‘; Jm”’%“’” A
L nﬂmp"f
038 Faceb 6k1m.ﬁx. 1215
'1 \Wﬁf’uﬁg’s

Global Buffers desired

(Yes/No) [No] :

The Depth of Key 0 is Estimated to be No Greater
than 1 Index levels, which is 2 Total levels.

Press RETURN to continue (~2 for Main Menu)

(Add Delete Exit Help Invoke Modify Quit Set View)

Main Editor Function

TITLE
IDENT

SYSTEM

FILE

RECORD

AREA 0

AREA 1

(Keyword) [Help] :

VIEW

"FDL FOR INDEX BACKWARDS"

"14-JAN-1986 13:14:58

SOURCE

NAME
ORGANIZATION

CARRIAGE_CONTROL
FORMAT '
SIZE

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_STIZE
EXTENSTION

ALLOCATION

BES _TRY_CONTIGUOUS
BUCKET__TZE
EXTENSTG:

039

VAX-1l FDL Editor"

VAX/VMS

"INDXBACK.DAT"
indexed

carriage_return
fixed
50

177
yes
3
45

Facebook Inc. Ex. 1215

KEY O

CHANGES no

DATA_AREA 0

DATA_FILL 100

DATA_KEY COMPRESSION nqQ

DATA_RECORD_COMPRESSION no —
DUPLICATES no

INDEX_AREA 1

INDEX_ COMPRESSION no

INDEX_FILL 100

LEVEL]1_INDEX_AREA 1

NAME "SEQ_NO"

PROLOG 3 .
SEGO_LENGTH 5

SEGO_POSITION 0

TYPE string

Press RETURN to continue (“2 for Main Menu)

{Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : EXIT

DISKS INSTRUCTOR: [WOODS.RMS.COURSE] INDXBACK.FDL;1 44 lines

040 Facebook Inc. Ex. 1215

$ TYPE

TITLE
IDENT

SYSTEM

FILE

RECORD

AREA 0

AREA 1

KEY O

INDXBACK.FDL

"FDL FOR INDEX BACKWARDS"

"14-JAN-1986 13:14:58

SOURCE

NAME
ORGANIZATION

CARRIAGE_CONTROL
FORMAT
SIZE

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_STZE
EXTENSTON

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET SIZE
EXTENSION

CHANGES
DATA_AREA
DATA FILL

DATA KEY_COMPRESSION

VAX-11 FDL Editor"
VAX/VMS

" INDXBACK.DAT"
indexed

carriage_return
fixed
50

180
yes
3
45

no
0
100
no

DATA_RECORL: COMPRESSICN no

DUPLICATES
INDEX_AREA
INDEX_COMPRESSICA
INDEX_FILL
LEVELT_INDEX_AREA
NAME '
PROLOG

SEGO_LENGTH
SEGO_POSITION

TYPE

041

no

1

no

100

1
"SEQ_NO"
3

5

0

string

Facebook Inc. Ex. 1215

CREATING DATA FILES

To create an empty data file from the specifications in an
file, type:

$ CREATE/FDL=fdl-filespec data-file-spec
or
FDLSCREATE (fdl-str, [file-spec-str], [default-name],
[result-name], [FID-bld], [flags],
[stmnt_num], [retlen], [sts], [stv])

Example 2. Creating Data Files

$ CREATE/FDL=INDXBACK
$ DIR/FULL INDXBACK.DAT

Directory DISKslNSTRUCTOR:[WOODS.RHS.COURSE]

INDXBACK.DAT:1 File 1ID: (32055,21.0)

Size: 184/184 Owner: [VMS .WOODS]

Created: 15-JAN-1986 10:16 Revised: 15-JAN~1986 10:16 (1)
Expires: <None specified> Backup: <No backup done>

File organization: 1Indexed, Prolog: 3, Using 1 key
In 2 areas
File attributes: Allocation: 184, Extend: 45. Maximum bucket size: 3
Global buffer count: 0. No version limit
Contiguous best try

Record format: Fixed length 50 byte records
Record attributes: Carriage return carriage control
- File protection: System:R. Owner:RWED. Group:R. World:

Access Cntrl List: None

Total of 1 file. 1.4/184 blocks.

$ T INDXBACK.DAT

$ {==--=- Null file

FDL

042 Facebook Inc. Ex. 1215

Use the CONVERT/FDL command to transfer data from any organization
and format to any other organization and record format.

S CONVERT/FDL=fdl-file input-file output-file
or
CONVSPASS_FILES (input-file-spec, output-file-spec,
[fdl-file-spec,] [exception-file-spec],
(flags]))
CONVSPASS_OPTIONS ([parameter-list-address], [flags])

CONVSCONVERT ([status-block-address], [flags])

Example 3. Transferring Data Using CONVERT

$ CONVERT/FDL=INDXBACK/STATISTICS BACKWARDS.DAT INDXBACK.DAT

or | default SYSSOUTPUT

$ ASSIGN/USER INDXBACK.STAT SYSSOUTPUT

$ REC CONV

$ CONVERT/FDL=INDXBACK/STATISTICS BACKWARDS.DAT INDXBACK.DAT

$ TYPE INDXBACK.STAT

CONVERT Statistics

Number of Files Processed: 1
Total Records Processed: 1000 Buffered 1I/0 Count: 29
Total Exception Records: 0 Direct I/0 Count: 217
Total valid Records: 1000 Page Faults: 256
Elapsed Time: 0 00:00:12.88 CPU Time: 0 00:00:04.54

$ DIR/SIZE INDXBACK.DAT
Directory DISK$INSTRUCTOR: [WOODS.RMS.COURSE]
INDXBACK.DAT:1 184

Total of 1 file, 184 b’ocks.

043 Facebook Inc. Ex. 1215

PART 2. EVALUATING/UTILIZING

FDL - Invoke Script

Example 4. Defining Indexed Key Structure Using FDL

$ edit/fdl indxl.£fdl

Parsing Definition File

DISK$INSTRUCTOR: [WOODS .RMS.COURSE] INDX1.FDL; will be created.

Press RETURN to continue (*2 for Main Menu)

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : inv

(Add_Key Delete_Key Indexed Optimize
Relative Sequential Touchup)

Editing Script Title (Keyword) [-] : in
Target disk volume Cluster Size (1-1Giga) [3] :
Number of Ke' . to Define (1-255)1[1) : 2
(Line Fill Key Record Init Add)

Graph type to display (Keyword) [Line] :
Number of Records that will be Initially Loaded
into the File (0-1Giga) [~] : 500
(Fast_Convert NoFast_Convert RMS_Puts)

Initial File Load Method (Keyword) [Fast] :
Number of Additional Records to be Added After

the Initial File Load (0-1Giga) [0] :
Key 0 Load Fill Percent (50-100) [100] :
(Fixed Variable)

Record Format (Keyword) [var] : £
Record Size (1-32231) [~] : 80

(Bin2 Bin4 Bin8 Int2 Int4 Int8 Decimal String

2-12

044 Facebook Inc. Ex

1215

Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring)

Key O Data Type (Keyword) [Str] :
Key 0 Segmentation desired (Yes/No) [No] :
Key 0 Length (1-80) [~] : 7
Key 0 Position (0-73) (0] :
Key O Duplicates allowed (Yes/No) [No] :
File Prolog Version (0-3)[3] :
Data Key Compression desired (Yes/No) [Yes] : n
Data Record Compression desired (Yes/No) [Yes] : n
Index Compression desired (Yes/No) [Yes] : n

(Type "FD" to Finish Design)

INDEX
DEPTH
]
{INENSEEsNSEsSISESENNESENENENEEE
1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
PV-PROLOG VERSION 3 KT-KEY 0 TYPE STRING EM-EMPHASIS FLATTER (33 '
DK-DUP KEY 0 VALUES NO KL-KEY 0LENGTH 7 KPF-XEY 0 POSITION
RC-DATA RECORD COMP 0% KC-DATA KEY COMP 0% IC-INDEX RECORD COMP 0%
BF-BUCKET FILL 100% RF-RECORD FORMAT FIXED F3RECORD SIZE 80
LM-LOAD METHOD _ FAST_CONV IL-INITIAL LOAD 500 AR-ADDED RECORDS 0
(TYPE “FD" TO FINISH DESIGN)
WHICH FILE PARAMETER (MNEMONIC)Y[REFRESH] : FD
BU-2415
Text for FDL Title Section (1-126 chars) [null]
: £dl for indexl :
Data File file-spec (1-126 chars) [null]

indxl.dat

(Carriage_Return FORTRAN None Print)
Carriage Control (Keyword) [Carr] :

Emphasis Used In Defining Default: (Flatter_files)
Suggested Bucket Sizes: (3 3 12)
Number of Levels in Index: (1 1 1)
Number of Buckets in Index: { 1 1 1)
Pages Required to Cache Index: (3 3 12)
Processing Used to Search Index: (115 115 463)

045 Facebook Inc. Ex. 1215

Key O Bucket Size (1-63) (3] :

Key O Name (1-32 chars) {null]
: seqg_no
Global Buffers desired (Yes/No) [No] :

The Depth of Key 0 is Estimated to be No Greater
than 1 Index levels, which is 2 Total levels.

Press RETURN to continue (°2Z for Main Menu)

(Line Fill Key)
Graph type to display (Keyword) [Line]

Key 1 Load Fill Percent (50-100)(100]}

(Bin2 Bin4 Bin8 Int2 Int4 Int8 Decimal String
Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring)

Key 1 Data Type (Keyword) [Str] :
Key 1 Segmentation desired (Yes/No) [No] :
Key 1 Length (1-80) [~] : 15
Key 1 Position (0-65) [0] : 7
Key 1 Duplicates allowed (Yes/No) [Yes] :
Data Key Corr_ ression desired (Yes/No) [Yes] Tt n
Index Compression desired (Yes/No) [Yes] t n
(Type "FD" to Finish Design)
INDEX
DEPTH
-
NSNS NESEEEEENENESEEREE
1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
PV-PROLOG VERSION 3 KT-KEY 1 TYPE STRING EM-EMPHASIS FLATTER (3)
DK-DUP KEY 0 VALUES YES KL-KEY 1LENGTH “15 KP-KEY 1 POSITION 7
RC-DATA RECORD COMP 0% KC-DATA KEY COMP . 0% IC-INDEX RECORD COMP 0%
BF-BUCKET FILL 100% RF-RECORD FORMAT FIXED RS-RECORD SIZE 80
LM-LOAD METHOD FAST_.CONV IL-INITIAL LOAD /500 AR-ADDED RECORDS 0
(TYPE “FD" TO FINISH DESIGN) :
WHICH FILE PARAMETER {MNEMONIC)[REFRESH]) :
WHICH FILE PARAMETER (MNEMONIC)REFRESH] N = *

BU-2416

046 Facebook Inc. Ex. 1215

Emphasis Used In Defining Default:
Suggested Bucket Sizes:

Number of Levels in Index:

Number of Buckets in Index:

Pages Required to Cache Index:
Processing Used to Search Index:

Key
Key
Key 1 Name

: last_name

The Depth of Key

1 Bucket Size

1 Changes allowed

(
(
(
(
(
(

(1-63) [3]

(Yes/No) [Yes]

Flatter_files

3 3 12
1 1 1
1 1 1
3 3 12
66 66 268

(1-32 chars)[null]

1l is Estimated to be No Greater
than 1 Index levels, which is 2 Total levels.

Press RETURN to continue (*2Z for Main Menu)

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function

TITLE
IDENT

SYSTEM

EILE

RECORT

AREA O

AREA 1

"fdl for indexl"

"14-JAN-1986 13:35:55

SOURCE

NAME
ORGANIZATION

Cx RIAGE_CONTROL
FOE AT
SIZE

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_STZE
EXTENSTON

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_SIZE
EXTENSTON

047

(Keyword) [Help] :

VAX-1l FDL Editor"
YAX/VMS

"indexl.dat"
indexed

carriage_return
fixed
80

90
yes
3
24

view

Facebook Inc. Ex. 1215

AREA 2

ALLOCATION 27
BEST_TRY_CONTIGUOUS yes
BUCKET STIZE 3
EXTENSION 6

AREA 3
ALLOCATION 3
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 3
EXTENSION 3

KEY 0
CHANGES no
DATA_AREA 0
DATA FILL 100
DATA KEY COMPRESSION no
DATA™ RECORD_COMPRESSION no
DUPLICATES no
INDEX_AREA 1
INDEX_COMPRESSION no
INDEX_FILL 100
LEVEL1_INDEX_ AREA 1
NAME "seq_no"
PROLOG 3
SEGO_LENGTH 7
SEGO_POSITION 0
TYPE string

KEY 1
CHANGES no
DATA_AREA 2
DATA_FILL -100
DATA KEY COMPRESSION no
DUPLICATES yes
INDEX_AREA 3
INDEX COMPRESSION no
INDEX FILL 100
LEVEL1 _INDEX_AREA 3
NAME "last _name"”
SEGO_LENGTH 15
SEGO_POSITION 7
TYPE string

Press RETURN to continue (2 for Main Menu)

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : exit

DISKSINSTRUCTOR: [WOODS.RMS.COURSE] INDEX1.FDL;1 65 lines

048 Facebook Inc. Ex. 1215

FDL Graphics Output

FDL has two graphics modes:

1.

Line
bucket size
Surface

bucket size

bucket
bucket

bucket
depth

bucket

size
size

size

size

INITIAL
LOAD
FILL
PERCENT

versus

versus

versus

versus

versus

versus

index depth

load fill percent versus index depth
key length versus index depth

record size versus index depth

initial

load

record

count

versus

index

additional record count versus index depth

A Surface_Plot Graph

4 3/2222222222/22222222222222211111
433/2222222222/2222222222222222111
433/2222222222/2222222222222222211
433/2222222222/2222222222222222222
433/2222222222/2222222222222222222
433/2222222222/2222222222222222222
7 4333/222222222/2222222222222222222
4333/2222222222222222222222222222
4333/222222222/2222222222222222222
43333/222222222/222222222222222222
44333/222222222/222222222222222222
543333/222222222/22222222222222222
5433333/22222222/22222222222222222
1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
BU-2417

The variable on _he qraph's X axis is bucket size. The numbers in

the

field portion

each bucket size for each of the other values.

of the graph indicate the number of levels at

The area on the graph within the slash marks represents
combinations that RMS will find acceptable. . A fill factor of 70%
and a bucket size of 10 blocks is a good combination. However, a

fill

factor of 70% and a bucket size of 15 blocks is poor because
it falls outside of the slash boundaries.

049

Facebook Inc. Ex. 1215

A Line_Plot Graph

INDEX
OEPTH

ens
SEREESEEERES
10 15 20 25 30 32

BUCKET SIZE (NUMBER OF BLOCKS)

BU-2418

Evaluating Line Plot

Breakpoints # Blocks/Bucket

3 to 2

3
2 to 1 /;ﬁzilé

General rule: Select the smallest bucket size that corresponds to

2 to 3 1levels of index. Round out to a multiple of the disk
cluster size.

050 Facebook Inc. Ex. 1215

FDL - TOUCHUP Script

Example 5. Utilizing EDIT/FDL Touchup to Obtain

Surface Graphics Output

$ EDIT/FDL INDX1l.FDL

Parsing Definition File

Definition Parse Complete
(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : INV

(Add_Key Delete_Key Indexed Optimize
Relative Sequential Touchup)
Editing Script Title (Keyword) [~] : TO

Target disk volume Cluster Size (1-1Giga) [3]

Key of Reference (0-1) (0]

The Definition of Key 0 will be replaced.
Press RETURN to continue ("2 for Main Menu)

(Line Fill Key Record Init Add)

Graph type to display (Reyword) [Line] : REC
Number of Records that will be Initially Loaded

into the File (0-1Giga) [~] : 500
(Fast_Convert NoFast_Convert RMS_Puts)

Initial F11e Load Method (Keyword) [Fast] :
Number of Additional Records to be Added After

the Initial File Load (0~1Giga) [0] s

Key 0 Load F/ .1 Percent (50-100) [100] :
(Fixed variable)

Record Format (Keyword) [Var] : VAR
Low bound: Record Size (1-32229) (-] : 50
High bound: Record Size (50-32229)[1000]

(Bin2 Bin4 Bin8 Int2 Int4 Int8 Decimal String
Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring)

Key 0 Data Type (Keyword) [Str]) :

Key O Segmentation desired (Yes/No) [No]

051 Facebook Inc. Ex.

1215

Key O Length (1-86) [~] : 7
Key 0 Position } (0-79) [0] :
Key O Duplicates allowed (Yes/No) [No] :
File Prolog Version (0-3)[3] :
Data Key Compression desired (Yes/No) [Yes] : N
Data Record Compression desired (Yes/No) [Yes] ¢ N
Index Compression desired (Yes/No) [Yes] : N
WORKING...
201111111 1/111111111 1111111111111
211111111 171111111111111111111111
21111111111 111111111111111111111
MEAN 201111 11117111111111111 1111111111
74 201111111111 11111111111111111111
RECORD 2111111111/1111111111111111111111
2111111111111 11111111111111111
SIZE A1 11111117111 1111111 111111111111
62 211111111 11111111111111111111111
2A111111111111111111111111111111
s 2111111111/1111111111111111111111
201111 1111/1111111111111111111111
5 2711111111191111111111111111111111
1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
PV-PROLOG VERSION 3 KT-KEY 0 TYPE STRING EM-EMPHASIS FLATTER
DK-DUP KEY 0 VALUES NO. KL-KEY 0 LENGTH 7 KP-KEY 0 POSITION 0
RC-DATA RECORD COMP 0% KC-DATA KEY COMP 0% IC-INDEX RECORD COMP 0%
BF-BUCKET FILL 100% RF-RECORD FORMAT VARIABLE
LM-LOAD METHOD FAST_CONV IL-INITIAL LOAD 500 AR-ADDED RECORDS 0
BU-2419
(Type "FD" to Finish Design
Which File Parameter (Mnemonic) [refresh] : FD
Text for FDL Title Section (1-126 chars)[null]
: INDEX1 NEW GRPHICS
Data File file-spec (1-126 chars) [null]
: INDEX1.DAT
(Carriage_Return FORTRAN None Print)
Carriage Control (Keyword) [Carr] :
Mean Record Size (1-32229)[-] : *EXIT*
(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : QUIT

052 Facebook Inc. Ex. 1215

Example. 6. FDL Session Utilizing TOUCHUP to Produce
Different Graphics Output

$ EDIT/FDL FOO

Parsing Definition File
DISKSINSTRUCTOR : [WOODS.RMS .COURSE] FOO.FDL; will be created.
(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : INV

(Add_Key Delete_Key Indexed Optimize
Relative Sequential Touchup)

Editing Script Title {Keyword) (-] : IND
Target disk volume Cluster Size (1l-1lGiga) (3] :
Number of Keys to Define (1-255) [1] : 2
(Line Fill Key Record Init Add)
Graph type to display (Keyword) [(Line] : ?

Key O Graph Type Selection
Line Bucket Size vs Index Depth as a 2 dimensional plot
Fill Bucket Size vs Load Fill Percent vs Index Depth
Key Bucket Size vs Key Length vs Index Depth
Record Bucket Size vs Record Size vs Index Depth
Init Bucket Size vs Initial Load Record Count vs Index Depth
Add Bucket Size vs Additional Record Count vs Index Depth
Graph type to display (Keyword) [Line] : INIT
Low bound: Initial Load of Recs (0-1Giga) (0] : 3000

High bound: Initial Load of Recs{3000-~1Giga)[150000] : 10000

Number of Additional Records to be Added After

the Initial File Load (0-1Giga) [0] : 4000
Will Additional Records Typically be Added in

Order by Ascending Primary Key (Yes/No) [No] :

Will Added Records be Distributed Evenly over the
Initial Range of Pri Key Values (Yes/No) [No] :
(Fixed variable)

Record Format (Keyword) [Var] : FI
Record Size (1-32231) [~] : 1400

(Bin2 Bin4 Bin8 Int2 Int4 Int8 Decimal String
Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring)
Key O Data Type (Keyword) [str] :

2-21

053 Facebook Inc. Ex. 1215

Key 0 Segmentation desired (Yes/No) [No]
Key O Length (1-255) [-]
Key O Position (0-1340) [0]
Key O Duplicates allowed (Yes/No) [No]
File Prolog Version (0~3)[3]

Data Key Compression desired (Yes/No) [Yes]
Data Record Compression desired (Yes/No) [Yes]

Index Compression desired

WORKING...

1000 433333333/222222222222222222222
433333333/222222222222222222222
43333333J3/222222222/222222222222

INITIAL 43333333/2222222222222222222222

767 43333333/222222222/2222222222222

LOAD 43333393/22222222222222222222222
4333333/222222222/22222222222222
RECORD 4333333/22222222222222222222222
333333/222222222222222222222222
COUNT 333333/222222222/222222222222222

41 333333/222222222222222222222222
333333/222222222/222222222222222

3 333333/222222222/222222222222222

1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
PV-PROLOG VERSION 3 KT-KEY 0 TYPE STRING EM-EMPHASIS
DK-DUP KEY 0 VALUES NO KL-KEY 0 LENGTH 50
RC-DATA RECORD COMP 0% KC-DATA KEY COMP 0%
BF-BUCKET FiLL 100% RF-RECORD FORMAT FIXED
LM-LOAD METHOD RMS_PUTS AR-ADDED RECORDS 4000
(TYPE “'£D" TO FINISH DESIGN)
WHICH FILE PARAMETER (MNEMONIC)YREFRESH)] KL
KEY 0 LENGTH (1-255)-] 75
2-22
054

(Yes/No) [Yes]

KP-KEY 0 POSITIOM
IC-INDEX RECORD it. MP
RS-RECORD SIZE

Facebook Inc. Ex. 1215

50

WORKING...

1000 44433333333/222222222/2222222222
44433333333/2222222222222222222
. 44433333333/222222222/2222222222
INITIAL 44433333333/222222222/2222222222
767 44333333333/222222222/2222222222
LOAD 44333333333/222222222/2222222222
65 44333333333/2222222222222222222
RECORD 44333333333/2222222222222222222
5 4433333333/222222222/22222222222
COUNT 443333333222222222/222222222222
41 44333333/222222222/2222222222222
43333333/222222222/2222222222222
3 43333333/222222222/2222222222222
1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
PV-PROLOG VERSION 3 KT-KEY 0 TYPE STRING EM-EMPHASIS FLATTER
DK-DUP KEY 0 VALUES NO KL-KEY 0 LENGTH 75 KP-KEY 0 POSITION 0
AC-DATA RECORD COMP 0% KC-DATA KEY COMP 0% IC-INDEX RECORD COMP 0%
BF-BUCKET FILL 100% RF-RECORD FORMAT FIXED RS-RECORD SIZE 1400
LM-LOAD METHOD RMS_PUTS AR-ADDED RECORDS 4000 :
BU-2421
(Type "FD" to Finish Design
Which File Parameter (Mnemonic) [refresh] : FD

Text for FDL Title Section (1-126 chars)(null]

¢ SAMPLE FDL SESSION

Data File file-spec (1-126 chars) [null]

: FOO.DAT

(Carriage_Return FORTRAN None Print)
Carriage Control (Keyword) [Carr] :

Number of Records that will be Initially Loaded
into the file (0-1 Giga)(-]: 8000

Emphasis Used In Defining Default: Flatter_files

(
Suggested Bucket Sizes: (6 15 24
Number of Levels in Index: (3 2 2
Number of Buckets in Index: (502 67 26
Pages Required to Cache Index: (3012 1005 624
Processing Used to Search Index: (75 126 2C
Key 0 Bucket Size (1-63)[15) :
Key 0 Name (1-32 chars) [null)
: NONSENSE
Global Buffers desired (Yes/No) [No] :
The Depth of Key 0 is Estimated to be No Greater
than 2 Index levels, which is 3 Total levels.
Press RETURN to continue (~2Z for Main Menu)
(Add Delete Exit Help Invoke Modify Quit Set View)
2-23
055 Facebook Inc. Ex. 1215

— ol S Nl St

Main Editor Function (Keyword) [Help] : INV

(Add_Key Delete_Key Indexed Optimize
Relative Sequential Touchup)

Editing Script Title . {Keyword) [-] : TO
Key of Reference (0-1) [0] : 0
The Definition of Rey O will be replaced.

Press RETURN to continue (2 for Main Menu)

(Line Fill Key Record Init Add)
Graph type to display (Keyword) [Key] : LINE
Number of Records that will be Initially Loaded

into the File (0-1Giga) [-] : 8000
(Fast_Convert NoFast_Convert RMS_Puts)

Initial File Load Method (Keyword) [Fast] : RMS
Will Initial Records Typically be Loaded in Order
by Ascending Primary Key (Yes/No) [No] :
Number of Additional Records to be Added After
the Initial File Load (0-1Giga) [0] : 4000
Will Additional Records Typical be Added in
Order by Ascending Primary Key (Yes/No) [No] :
Will Added Records be Distributed Evenly over the
Initial Range of Pri Key Values (Yes/No) [No] :
Key 0 Load Fill Percent (50-100)[100] :
(Fixed Vvariable)
Record Format (Keyword) [Var] : F
Record Size (1-32151) [-] : 1400

(Bin2 Bin4 Bin8 Int2 Int4 In 8 Decimal String
Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring)

Key 0 Data Type (Keyword) [Str] :

Key O Segmentation desired (Yes/No) [No] :

Key 0 Length (1-255) [~-) : 50

Key 0 Position (0-1350) [0] :

Key O Duplicates ailowed {Yes/No) [No]

File Prolog Version (0-3) (3] :
2-24

056 Facebook Inc. Ex. 1215

Data Key Compression desired (Yes/No) [Yes]

Data Record Compression desired (Yes/No) [Yes]

.o

Index Compression desired (Yes/No) [Yes] :
INDEX
DEPTH =
sREERENe
SNENEESENSESEESENNNNENANNNRAAS
1 SEEAESRNGEENEANNERENENEEEENEER
1 5 10 15 20 25 30 32

BUCKET SIZE (NUMBER OF BLOCKS)

PV-PROLOG VERSION 3 KT-KEY 0 TYPE STRING EM-EMPHASIS _ FLATTER (12&
DK-DUP KEY 0 VALUES NO KL-KEY 0 LENGTH 50 KP-KEY 0 POSITION
RC-DATA RECORD COMP 0% KC-DATA KEY COMP 0% IC-INDEX RECORD COMP 0%
BF-BUCKET FILL 100% RF-RECORD FORMAT FIXED AS-RECORD SIZE 1400
LM-LOAD METHOD AMS_PUTS IL-INITIAL LOAD 8000 AR-ADDED RECORDS 4000
(TYPE “FD" TO FINISH DESIGN)
WHICH FILE PARAMETER (MNEMONIC)YREFRESH] KL
KEY 0 LENGTH (1-255)-] 75
8U-2422
INDEX
DEPTH
1]
SENAAEER
NGNS ENNSENSEENENNNNENSEEsARES
1 SNGSSuEENSESSEAINENENAENSNERES
1 5 10 15 20 25 30 32
BUCKET SIZE (NUMBER OF BLOCKS)
PV-PROLOG VERSION 3 KT-KEY 0 TYPE STRING EM-EMPHASIS FLATTER (15)
DK-DUP KEY 0 VALUES NO KL-KEY 0 LENGTH 75 KP-KEY 0 POSITION 0
RC-DATA RECORD CC P 0% KC-DATA KEY COMP 0% ICANDEX RECORD COMP 0%
BF-BUCKET FILL . 100% RF-RECORD FORMAT FIXED RS-RECORD SIZE 1400
LM-LOAD METHOD AMS._PUTS IL-INITIAL LOAD 8000 AR-ADDED RECORDS 4000
(TYPE “FD" TO FINISH CA%iGN)
WHICH FILE PARAMETER {MNEMONIC)YREFRESH] :FD
B8U-2422
Text for FDL Title Section (1-126 chars) [null]
: SAMPLE FDL SESSION
Data File file-spec (1-126 chars) [null]
: FOO.DAT
(Carriage_Return FORTRAN None Print)
Carriage Control (Keyword) [Carr] :
2-25

057 Facebook Inc. Ex. 1215

Emphasis Used In Defining Default:

Suggested Bucket S
Number of Levels i
Number of Buckets
Pages Required to
Processing Used to

Key 0 Bucket Size

Key 0O Name
: NONSENSE

Global Buffers des

The Depth of Key

izes:

n Index:

in Index:

Cache Index:
Search Index:

(3-63)[15]

(
(
(
(
(
(

Flatter_ files

6 15 24
3 2 2
502 67 26
3012 1005 624

75 126 200

(1-32 chars)[null)]

ired

(Yes/No) [Nol :

0 is Estimated to be No Greater
than 2 Index levels, which is 3 Total levels.

Press RETURN to continue (2 for Main Menu)

(Add Delete Exit Help Invoke Modify Quit Set View)

Main Edi

TITLE

IDENT

SYSTEM

FILE

RECORD

AREA 0

AREA 1

tor Function

"SAMPLE FDL SESSION"

"14-JAN-1986 14:38:13

SOURCE

NAME
ORGANIZATION

CARRIAGE_CONTROL
FORMAT
SIZE

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_STZE
EXTENSTON

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_SIZE
EXTENSTON

058

(Keyword) [Help] :

VAX-11 FDL Editor"
VAX/VMS

"FOO.DAT"
indexed

carriage_return.
fixed
1400

46695
yes
15
11685

795
yes
15

210

Facebook Inc. Ex. 1215

VIEW

AREA 2

AREA 3

KEY O

KEY 1

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_STZE
EXTENSTION

ALLOCATION ,
BEST_TRY_CONTIGUOUS
BUCKET_SIZE
EXTENSTION

CHANGES

DATA_AREA

DATA_FILL
DATA_KEY_COMPRESSION

DATA_RECORD_COMPRESSION

DUPLICATES
INDEX_AREA
INDEX COMPRESSION

INDEX_FILL
LEVEL]_INDEX_AREA
NAME

PROLOG
SEGO_LENGTH
SEGO_POSITION

TYPE

CHANGES

DATA_AREA
DATA_FILL
DATA_KEY_COMPRESSION
DUPLICATES
INDEX_AREA
INDEX_COMPRESSION
INDEX_FILL
LEVELT_INDEX_AREA
NAME

SEGO_LENGTH
SEGO_POSITION
TYPE

2442
yes
6
612

114
yes
6
30

no
0

100

yes

yes

no

1

yes

100

1
"NONSENSE"
3

75

0

string

no
2

100

yes

yes

3

yes

100

3
"DUMMY"
75

100
string

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : EXIT

DISK$ INSTRUCTOR: [WOODS .RMS.COURSE] FOO.FDL; 1 65 lines

$

059 Facebook Inc. Ex. 1215

060 Facebook Inc. Ex. 1215

MODULE 3
OVERVIEW OF FILES-11
ON-LINE DISK FILE STRUCTURE

Major Topics

- Disk file structure on VAX/VMS
- File characteristics

- Disk physical characteristics

- Disk organization

Source
Guide 1o VAX/VMS File Applications — Chapter 1 (Sections 1.1 and 1.2)

061 Facebook Inc. Ex. 1215

062 Facebook Inc. Ex. 1215

MJ‘ u}ﬁd
on DS A
Pt

(fas) dishe

DISK FILE STRUCTURE ON VAX/VMS

e The VMS default disk

file structure 1is Files-1l1 Structure

Level 2, also called On-Disk Structure 2 (0ODS-2).

e Used by XQPs to maintain and control data on disk volumes.

The ODS-2 Reserved Files

@ Define the Files-=11 disk file structure

@ Are created when a volume is initialized

@ Are cataloged in the Master File Directory (0,0] of the volume

Volume Information Contained in ODS-2 Reserved Files

Reserved File
kedize

Index File fset volrae
(INDEXF.SYS) .§ chow ;éem/pﬂ

Storage Bit Map File
(BITMAP.SYS)

Bad Block File
(BADBLK.SYS)

Pending Bad Block Log File
(BADLOG.SYS)

Master File Directory
(000000.DIR)

Core Image File
(CORIMG.SYS)

Volume Set List File
(VOLSET.SYS)

Continuation File

(CONTIN.SYS)

Backup Log File
(BACKUP.SYS)

Information

Bootstrap block, home block, back-up
homr block, back-up index file header,
index file bit map, file headers

Location of available clusters on a
volume

Areas of volume not suitable for use

Areas of volume suspected of being
unsuitable for use

Pointers to all User File Directories

Not used by VMS. Provided tc ,reserve
structure of previous versions

Labels of other volumes in the volume

set (if more than one) zv A TicutLy CoubuED vorun:
TN 7 TEOuTL coubenh VOLWk

SET

The extension file identifier, if a —

file crosses from one volume to another

@n a loosely coupled volume set

History of backups on the volume

063 Facebook Inc. Ex. 1215

Comparing the ODS-1 and ODS-2 Structures

ODS-1 and ODS-2 Comparison

Characteristics
Transportable to RSX/IAS
Subdirectories

Alphanumeric directory names
Alphabétized directory files
Clustered allocation

Tightly coupled volume sets
Backup home block

Extended map pointers

Meaning of protection code E

ODS-2 Directories

ODs-1
Yes
No
No
No
No
No
No

No

Extend

® Directories associate symbolic file name

® User File Directories (UFDs) are er ered in the Master File

Directory (MFD).

® Subfile directories (SFDs)

directory file.

are

oDS-2
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Execute

with file ID.

entered 1in their parent

e Directory names may be in the following formats.

- UIC fourma with the group and member fields in the range 0

to 377 oct 1

- Alphanumeric format of not more than eight characters

® Subdirectory names must be alphanumeric.

&Ngymg [

i 38 SL
d‘él/\oﬁi : /\AL

s hx o NG
gk '>'12$ E&xﬁ% bé wn am &Mﬂy" @ijé & ame

4 Dose &]\@Ll 15

Ll

3-2

064

Facebook Inc. Ex. 1215

fj

e Directory files
- alphanumeric_name.DIR;1

- UIC formatted directory names converted to their numeric
equivalent

[123,012] = 123012.DIR;1

® VAX/VMS supports up to seven levels of subdirectories beneath
the UFD level.

Directory File Structure

Directory File Characteristics

- Contiguous

- Sequential

- Variable-length records

- No span blocks enabled

- The directory bit is set in the file header

- A file protection code of S:RWE,O:RWE,G:RWE,W:RE

- File entries are stored in alphabetical order

15 07 00
RECORD BYTE COUNT

VERSION LIMIT

NAME BYTE COUNT FLAGS

FILE NAME STRING
{(UPPERCASE ONLY)

VERSION NUMBER
REPEATED FOR EACH VERSION.

STORED IN DESCENDING ORDER.

FILEID

TK-5130

065 Facebook Inc. Ex. 1215

Using ODS-2 File Headers to Access a File

MFD
INDEX FILE DATA BLOCKS
o -~
T > 000000.DIR
‘ f&BEEQE.Q?E" 1 COURSE.DIR
F
B:"I-’fﬂ:sg\esea 2 JONES.DIR
BADBLK SVS SYSMGR.DIR
FILE HEADER 4 'JL A B
000000.DIR ~
~ I~
UFD [COURSE]
BeAS
= I~ g o 0 -
FILE HEADER J TEST.DAT
TEST.DAT
= -7
A= :=
FILE TEST.DAT
DATA BLOCKS
— H 1§ ‘ . ;f";.. . I‘LM t"}f ‘f" KN Mp;f}ﬁ)@ ’[7
¥ t:c,lfi',{r\ {UJQ z“‘-«i:;’(bi;»t{ i & [/‘w"‘& . y
7 "‘L B
Y T & . -
j\jz};tr) H (? 20: !t, -/
h TK-7988
o ~
== [n,m,r)
<« & K
/' | \
] i : -~
: .
§ v,,g‘ _am. N mu,;“-vawme S@i
[1%] o J;maﬂ 'i‘i’%b -

066

Facebook Inc. Ex. 1215

FILE CHARACTERISTICS

Files on a Files-11 Disk volume have the following
characteristics.

Two major data structures

1. A file header with identification and protection

information

2. One or more data blocks

Composed of logical disk blocks

Each logical block corresponds to a virtual block in the file

Blocks are grouped into clusters

Contiguous clusters are called extents

ODS-2 File Headers

Part of the volume index file
Not part of the file it describes

Divided into six areas

1. Header Area -- contains basic information for checking

access validity

2, 1Ident Area -- <contains identification and accounting

information

3. Map'Area -~ contains pointers to the blocks allocated
the file

to

4. Access Area -- contains access countro 1list entries if any

defined

S. Reserved Area -- reserved for use by customers and DIGITAL

6. Checksum Area ~- validity check on the header's contents

(the last word of the header) — STANDALD CHECKSUM VALRE

Used to locate file data blocks on the disk.

067 Facebook Inc. Ex. 1215

DISK PHYSICAL CHARACTERISTICS

A track is comprised of

the area at a single radius
! on one recording surface. !
S -

A cylinder consists of
| | these tracks in the same '
I radius on ail the racording |
surfaces.

—————— e
Recording occurs on both
surfaces of sach platter. The
extreme top and bottom
surfaces of some disk modeis
are not used for recording.
[——— - — !

Remainder of volume i
containing other cylinders.]

IK-740-82
Seek time Time needed to position the read/write
heads over the correct radius.
Rotational latency Time it takes the desired block to mowve

time

under the read/write heads, once the
read/write heads are at the correct
radius.

NOTE

The average seek time usually exceeds the average
rotational latency by a factor of 2 to 4. Placing
related blocks that are likely to be accessed as a
unit at or <close to the same radius on the disk
will provide the best performance for the transfer
of data between the disk surface and
RMS-maintained buffers.

068 Facebook Inc. Ex. 1215

DISK ORGANIZATION

e Hardware
Blocks
Tracks
Cylinders

e Software

Clusters

Each disk must have at least 100 clusters
- Defaults

1 if # blocks < 50,000
3 if # blocks > 50,000

- Small clusters

Efficient use of disk space
More clusters ==> more overhead

- Large clusters

More wasted space
Less system overhead

- Each cluster ==> 1 bit in bit-map

- Consider clusters that are a multiple/fraction of track -

size:

Disk Track-Size Cluster-Size

RAB0 31 : 1, 31

RA81 51 1, 3, 17, 51

RMOS5 32 1, 2, 4, 8, 16, 32
RPO7 50 1, 2, s, 10, 25, 50

069 Facebook Inc. Ex. 1215

(lakve &
uf Aish

Relationship Between Blocks, Clusters, and Extents
of a Typical Disk File

shuit LOGICAL
S ——p BLOCK 221
(LB 221)

LB 222

LB 223

LB 224

LB 225

LB 226

FILE DATA lelative. T .
BLOCKS ,%
&
VIRTUAL
BLOCK 1 LB 405
(VB 1)
VB2 LB 406
VB 3 LB 407
| EXTENT
1
VB 4
VB 5
VB 6
-
3-8

070

FILE DATA
BLOCKS
S
vB7
VB 8 \ EXTENT
2
vB9
P

CLUSTERSIZE =3

TK-7988

Facebook Inc. Ex.

1215

$ SHOW DEV/FULL DISKSSTUDENT (to determine disk cluster size)

Disk $1SDUA2: (BUD), device type RA8l, is online, mounted, file-oriented device,
shareable, available to cluster, error logging is enabled.

Error count 0 Operations completed 186763
Owner process " Owner UIC {1,1)
Owner process ID 00000000 Dev Prot S:RWED,O:RWED,G:RWED,W:RWED
Reference count 2 Default buffer size 512
Total blocks 891072 Sectors per track 51
Total cylinders 1248 Tracks per cylinder 14 .
Host name “BUD" Host type, available HS50, yes
Alternate host name *Lou*” Alternate host type, avail HS50, yes
Allocation class 1

Volume label "STUDENT_COM" Relative volume number]
Cluster size . 3 Transaction count 1
Free blocks 618132 Maximum files allowed 148512
Extend quantity 6 Mount count 4
Mount status System Cache name " _S$1SDUAO:XQPCACHE"
Extent cache size 63 Maximum blocks in extent cache 61813
File ID cache size 63 Blocks currently in extent cache 28014
Quota cache size 0 Maximum buffers in FCP cache 311

Volume status: subject to mount verification, file high-water marking, write-
through caching enabled.
Volume is also mounted on CHICO, SPANKY, GUMMO.

3-9

071 Facebook Inc. Ex. 1215

Map Pointers to the

Data Blocks of a Disk File

FILE DATA
BLOCKS

LB 221 VB 1

S J~ [EXTENT
FILE HEADER -« > 1
{SIZE = 1 BLOCK)
@ HEADER
oz | 1DENTI- LB 226 VB 6
2 | ricaTion
/> | MAP J
ka POINTERS }
7
k;> ACCESS LB 405 Ve 7
,/’5/ RESERVED
/fé CHECKSUM LB 406 VB8 |EXTENT
2

CLUSTERSIZE =3

LB 407 vB 9

TK-7988

10

072 Facebook Inc. Ex. 1215

Example 1.

$ DUMP/HEADER FILE.TXT

pump of an ODS-2 Disk File

Dump of file WORK:[DORSEY.PROG.EXAMPLESIFILE.TXT;1 on 19-JUN-1984 09:50:33.238

File ID (5346,24,0)

File Header

E?:)Header area
Identification area offset:

Map area offset:
Access control area offset:
Reserved area offset:
Extension segment number:
Structure level and version:
File identification:
Extension file identification:
VAX-11 RMS attributes
Record type:
File organization:
Record attributes:
Record size:
Highest block:
End of file block:
End of file byte:
Buckpt size:
Fixed control area size:
Maximum record size:
Default extension size:
Global buffer count:
Directory version limit:
File characteristics:
Map area words in use:
Access mode: “
File owner UIC:
File protection:
Back link file identification:
Journal control flags:
Highest block written:

(E;) Identification area
File name:
Revision number:
Creation date:
Revision date:
Expiration date:
Backup date:

Map area

Retrieval pointers
Count: 6 LBN:

Checksum:

073

End of file block 1 / Allocated 9

40

100

255

255

0

2'1
(5346,24,0)
(0,0,0)

Variable

Sequential

Implied carriage control
59

<none specified>

4

0

[VMS ,DORSEY]

S:RWED, O:RWED, G:RE, W:
(18439,9,0)

<none specified>

9

FILE.TXT:1 "y @ ’1{ %bf‘
2 3 s e
19-JUN-1984 09:30:53.40 WRITE ace€sS
19-JUN-1984 09:30:53:90 e

<none specified>

<none specified>

147399
213246

5051

Facebook Inc. Ex. 1215

074 Facebook Inc. Ex. 1215

MODULE 4
OVERVIEW OF RMS FILE ORGANIZATIONS,
RECORD FORMATS, AND ACCESS METHODS

Major Topics

- RMS File Organization
- Record Format

-~ Record Access Options

Source

Guide to VAX/VMS File Applications — Chapter 2 (Sections 2.1-2.2)
Chapter 8

075 Facebook Inc. Ex. 1215

076 Facebook Inc. Ex. 1215

RMS FILE ORGANIZATION

File organizations are as follows:
1. Sequential
2. Relative

3. Indexed Sequential

Sequential Files

In sequential file organization, records in the file are arranged
one after the other. This organization is the only one that
supports all record formats: fixed-length, variable-length,
variable with fixed-control, and stream (including wundefined
records).

Sequential files with fixed-length records have no overhead.

Records in sequential files are aligned on an even byte. If
record size 1is an odd number, one more byte is inserted on the
disk before the next record. This is transparent to programmers,
except when a dump is examined. .

Unlike relative and indexed sequential files, seguential files do
not have a prolog. Instead, all information about a seguential
file is stored 'in the file header, which can be viewed with the
DCL commands DIRECTORY/FULL and DUMP/HEADER, as well as with the
Analyze/RMS_File Utility.

Sequential File Organization

RECORD | RECORD | RECORD RECORD
1 2 3 n

TK-8416

077 Facebook Inc. Ex. 1215

Relative Files

In the relative file organization, records are stored in a series
of fixed-length positions called cells. This organization allows
random retrieval of records by means of the relative record
number, which identifies the position of the record cell relative
to the beginning of the file. Relative files also contain a
prolog.

Relative File Organization

CELL # 1 2 3 4 5 n
RECORD | RECORD | RECORD| EMPTY | RECORD { ...l RECORD
1 2 3 5 n
TK-8417

Prolog Description

A relative file starts with a 1-block prolog that contains
specific information about the file as a whole. The prolog is
located at virtual block 1, and the data buckets begin at wvirtual
block 2. The most important fields for a relative file are the
maximum record number field (PLGSL_MRN) and the field containing
the end-of-file block number (PLGSL_EOF). The last word of the
prolog contains the standard Files-11 additive checksum field.

078 Facebook Inc. Ex. 1215

Format of a Prolog for a Relative File

NOTE

The fields of the figure run from right-to-left

PLG$B_DBKTSIZ

RESERVED (11 BYTES)

RESERVED

—

RESERVED (8S BYTES)

PLG$B_FLAGS

I

PLG$B._AMAX PLG$B_AVBN
RESERVED PLG$W_DVBN
PLGSL_MRN
PLGSL _EOF
PLG$W_GBC PLG$W_VER_NO
& RESERVED (390 BYTES)
CHECK SUM

079

BU-2424

Facebook Inc. Ex. 1215

Contents of a Record Prolog for a Relative File

Field Name

PLGSB_DBKTSIZ

PLGSB_FLAGS

PLG$B_AVBN
PLGS$B_AMAX

PLGSW_DVBN

PLGSL_MRN

PLGSL_EOF

PLGSW_VER_NO
PLGSW_GBC

Checksum

Description

pata bucket size, This field is not used for
relative files. The FATSB_BKTSIZE field defines
the bucket size for a relative file.

Flag bits. This field contains a bit vector
specifying characteristics of the file that
this prolog defines. The following field is
defined within PLGSB_FLAGS. '

PLGSV_NOEXTEND If set, the file cannot be
extended. This field is 1 bit
long, and starts at bit 0.

This field is not used for relative files.
This field is not used for relative files.

VBN of the first data bucket. This field
contains the 16=-bit virtual block number of the
first data bucket in a relative file. This
field always contains a value of 2.

Maximum record number. This field contains the
maximum number of records that the user
specified. If the user specified 0, which is
the default, then this field contains the

max imum number possible (2,147,483,647)*.

This field can be set with the RMS field
FABSL_MRN and the FDL attribute FILE
MAX RECORD_NUMBER.

VBN of the end-of-file. This field represents
the logical end of the file. It contains the
virtual block number of the last bucke*
initialized. Buckets are filled with all
zeroes when they are initialized.

This field is not used for relative files.
This field is not used for relative files.

Additive checksum.

* The maximum value may be limited by the number of blocks on the
device to be used.

080 Facebook Inc. Ex. 1215

Relative Data Cell and Bucket Format

Records are stored in fixed-length cells in unformatted buckets.
The fixed-length cells are numbered consecutively from 1 to n.
This number is the relative record number, which indicates the
record's position relative to the beginning of the file.

Records are stored starting at byte 0 of each bucket. They are
packed contiguously so that they are byte-aligned. Cells (and
thus records) cannot span bucket boundaries. If the bucket size
is not a multiple of the cell size, then the remaining space in
the bucket is unused. The next record in the file 1is stored 1in
the first cell of the next bucket.

Each bucket contains a fixed number of fixed-length <cells, and
there are no overhead bytes in the bucket. The virtual blocks in
the buckets are initialized (zeroed) when they are first allocated
to support the way deleted records are handled.

Each cell contains at least one byte of record overhead. If the
cell contains variable-length records, then the overhead is three
bytes, which accounts for the 2-byte record-length field.

. CTRL
DATA BYTE
CELL SIZE = MAXIMUM RECORD SIZE + 1
BU-2425

Control
Byte
bit 3 0 = Cell never contained a record.
1 = A record is present in the cell
(though it may have been
deleted).
bit 2 1 = Record has been deleted.

081 Facebook Inc. Ex. 1215

RECORD FORMAT

Record formats are:

1. Fixed

2. Variable

3. Variable with fixed control (disk only)

4. Stream (disk only) ngj:&ﬁcamgd via, RMS
g. J.Lnae}uw& (Pac.&?:.;::-sys , SWAPFILE, 5YS> o«

Combinations of File Organization and Record Format
Accepted by VAX RMS

File Record Format
Organization Fixed Variable VFC Stream
Sequential Yes Yes Yes Yes
Relative Yes Yes Yes No
Indexed Yes Yes No No

4-6

082 Facebook Inc. Ex. 1215

RECORD ACCESS OPTIONS

Record access methods are as follows:

1. Sequential

2. Random by key value/relative record number
3. Random by the record's file address (RFA)

Record Access Methods for File Organizations
Supported by VAX RMS

Record File Organization

Access Mode

Permitted Seguential Relative Indexed
Sequential Yes Yes Yes
Random by relative

record number Yes* Yes No
Random by key value No No Yes
Random by record's file Yes** Yes Yes
address

* Random access by relative record number for sequential files

is permitted for fixed-length record format on disk devices.

** Randonr access by record's file address is permitted only on
disk devices.

083 Facebook Inc. Ex. 1215

Randt;m Access to Indexed Files

Each of the program’'s Get requests in random access mode to an
indexed file must specify both a key wvalue and the index that RMS
must search (for example, primary 1index, first alternate key
index, second alternate key index, and so on). When RMS finds, by
means of the index, the record that matches the key value, it
reads the record and passes it to the program. Random access can
be accomplished on any key by any of the following methods:

1. Exact match of key values.

2. Approximate match of key values. For example, if accessing an
index in ascending sort order, RMS returns the record either
equal to the user-supplied key value or with the next greater
key value; conversely, 1if accessing the index in descending
sort order (as of VMS 4.4), RMS returns the record either
equal to the user-supplied key value or with the next lesser
key value.

3. Generic match of key values. Generic match is applicable to
string data-type keys only. A generic match is a match of
some number of leading characters in the key. The number is
determined by specifying a search key smaller than the entire
field.

4. Combination of approximate and generic match.

084 Facebook Inc. Ex. 1215

Access by Record’s File Address

Random-by-RFA access 1is supported for all file organizations
provided that the files reside on disk devices. Whenever a record
is accessed successfully from a file of any organization (using
any of the record access modes already discussed) an internal
representation of the record's 1location within the file |is
returned in the RAB field RABSW_RFA. RMS can later examine the
value in the RABSW_RFA field and use it to retrieve that record,
if specifically requested to do so (with a random-by-RFA access
request).

The RFA is six bytes in length, which vary in content by file
organization, as follows:

RFA
4 BYTES 2 BYTES
SEQUENTIAL VBN " BYTE OFFSET -
RELATIVE VBN# INTGmEReRE- RELATIVE REcofD NuMBER
INDEXED VBN # D # .

BU-2426

In the case of relative and indexed files, the VBN # is the number
associated with the beginning block of a bucket.

Example

One example of the use of RFA access 1is to establish a record
position for subsequent sequential access, which also could be
done using other random record access modes (except for certain
sequential files). Consider a sequential file with
variable-length records that can only be accessed randomly using
RFA access. Assume the file consists of a list of transactions,
sorted previously by account value. Each account may have
multiple transactions, so each account value may have multiple
records for it in the file. 1Instead of reading the entire file
until it finds the first record for the desired account number, it
uses a previously saved RFA value and random-by-RFA access to set
the current record position using a Find service at the first
record of the desired account number. It can then switch to
sequential record access and read all successive records for that
account, until the account number changes or the end of the file
is reached.

085 Facebook Inc. Ex. 1215

Record Processing Operations for
Sequential, Relative, and Indexed Files

Record File Organization
Operation

Permitted Sequential Relative Indexed
Read (Get) Yes Yes Yes
Write (Put) Yes* Yes Yes
Find Yes Yes Yes
Delete No Yes Yes
Update*** Yes** Yes Yes

* In a sequential file, VAX RMS allows records to be added at the
end of the file only. (Records can be written to other points
in the file using a Put with the update-if option to overwrite
existing records.)

** When performing an update operation to a sequential file, the
programmer cannot change the length of the record.

*** YAX RMS allows update operations on disk devices only.

086 Facebook Inc. Ex. 1215

Organization

Sequential

Relative

Indexed

Summary of Advantages and Disadvantages
of RMS File Organization

Advantages
Uses disk and memory efficiently

Provides optimal usage if the
application accesses all records
sequentially on each run

Provides flexible record format

Allows data to be stored on
different types of media

Allows records to be read- and
write-shared*

Allows sequential and random
access for all languages

Allows random record deletion
and insertion

Allows records to be read-
and write-shared

Allows sequential and random
access by key value for all
languages and by RFA for some
languages

Allows random record deletion and
insertion

Allows records to be read- and
write-shared

Allows variable-length records
to change length on update

Duplicate key values possible
Automatic sort of records by

primary and alternate keys;
available during sequential access

Disadvantages
Limited random access

Cannot delete records

Can insert recoéds only
at the end of file.

Allows data to be stored
on disk only for accessing
by relative cell number

Requires that files contain
a record cell for each
relative number allocated
(files may not be densely
populated)

Requires that record cells
be the same size

Allows record insertion
only to empty cells (or
at the end of the file)

Duplicate relative cell
numbers are not allowed

Allows data to be stored on
disk only

Requires more disk space

Uses more CPU time to
process records

Generally requires multiple
disk accesses to process
a record

* Prior to VAX/VMS Version 4.4, write-sharing for sequential files was restricted
to fixed-length 512-byte records.

-~
|

11

087

Facebook Inc. Ex. 1215

088& Facebook Inc. Ex. 1215

MODULE 5
INDEXED FILE ORGANIZATION —
INTERNAL STRUCTURE AND OVERHEAD

Major Topics
Part 1. Internals
- Overall tree structure and prolog
- Key descriptors
- Area descriptors
-~ Data bucket structure
- RRVs and bucket splits
- Key and data compression (Prolog 3)
- Index bucket
- Index comp. <ssion
- Binary ve:sus nonbinary index search
- Secondary index buckets and data records (SIDRs)
Part 2. Simulated Data Example
| NOTE
The figures and tables presented in this module are based on preliminary materials prepared for File
and Record Management Internals presently being written within DIGITAL (anticipated publication
date, 1987). Although these materials are still undergoing technical review, they provide the most up-to-
date, detailed documentation of the internal layouts used for VAX/VMS indexed files by RMS.

089 Facebook Inc. Ex. 1215

090 Facebook Inc. Ex. 1215

PART 1. INTERNALS
OVERALL TREE STRUCTURE AND PROLOG

e Indexed files contain:
- a prolog
- key descriptors
- area descriptors
- primary index structure

- secondary index structure(s)

e There are three types of indexed files:
- Prolog 1
- Prolog 2

- Prolog 3 (default)

091 Facebook Inc. Ex. 1215

*3713 2ya BurlTamaa InOYITM Sa[l1]
g anbojoad 103 peswie(oax eq ued (pajafep uaaq aael s5,10091 [[e) siayong Ajdug .,

*yoea Aq pajaoddns
sadAy ejep A8y uy saouaiajjip 1oy ydeoxa Aryeol> 1 ajeaado gz pue [sanboioad

v ¥59X »483X ON ON HIVTO4d/LY3IANOD

. uotrssaaduoo xapurt

s3X sax ON ON pue ‘Aay ‘ejeq

Tinu aq

ued sajruUII]T®

sox - sax sax 103J sanyep

abueyo

ued sajeuislle

sax - sax sax 10J sanyea
sax - sagx sax 9jrUI3V
ON ON sax sax Aaeuwrad

sAay peajuauwbas

burddegaaao

(Aey Aaeuyad sAay ajruasje

9G6Z-1 pajdti3sai) o 9sc-1 Sse-1 3O aaquinN

(se3Aq 8 pue 'y ‘7)
siaqunu aabajuy

pue Aaeujq pue (s93Aq ¥ pue Z)
‘{ewyoap payoed Aquo ejep oyaaunu Aquo
‘ejep bBurags ejep bBuiaas pue HButals ejep butaas sadA] ejep Aay
¢ anbotoad ¢ anbojoad «C 2nbotoad 1 anboroad sotistiajoeaey)

+0°V SHA L€ 'SHA +L°t SHA +L°Et SHA

Facebook Inc. Ex. 1215

092

Indexed Sequential Files

In the indexed sequential (ISAM) file organization, records are
stored in a specified order defined by a key value. The records
can be retrieved either sequentially or randomly.

A basic ISAM file has a primary key, a prolog, an index associated
with the primary key descriptor, and user data associated with the
primary index. An ISAM file with alternate keys has, in addition
to these structures, alternate key descriptors for each alternate
key, an index associated with each alternate key, and RMS
information associated with each index. This information contains
pointers into the user data for the records meeting the various
key values.

Index Structure of an Indexed Sequential File

KEY 1

PROLOG AND . AREA

KEY 0 . DESCRIPTORS
DESCRIPTOR KEY N

DESCRIPTORS
LEVEL 2

KEY 0 ROOT -

BUCKET

[ﬁ] l l LEVEL 1
KEY 1 ROOT

BUCKET

ShddShhhhd SEh -

DATA SECONDARY
RECORDS INDEX DATA
RECORDS (SIORs)

POINTERS TO PRIMARY DATA RECORDS FROM THE SIDR INDEX

BU-2427

093 Facebook Inc. Ex. 1215

Tree Structure Associated with Each Key

KEY O : KEY 1

KEY Q | KEY 1

X KEY 1

KEY Q

BU-2428

NOTES
e Level 0 of each tree always contains data buckets.

e Level 1 and higher of each tree contain . .dev buckets,
with root index bucket always at the highest i :vel of
each tree.

@ Within each tree, level 0 data buckets may have a
different size than index buckets if at least two
different areas are defined. A maximum of three areas
can be defined for each tree, with a maximum of 255
areas for the total file. There is no restriction on
the data or index buckets having to be the same size
across trees.

094 Facebook Inc. Ex. 1215

Four areas were defined for the above figure:

-- Area 0 for key 0 level 0 data buckets

-- Area 1 for key 0 level 1 and higher index buckets

-- Area 2 for key 1 level 0 data buckets

-- Area 3 for key 1 level 1 and higher index buckets

A maximum of six areas could have been defined for these
two trees. A minimum of three areas would have been

necessary in order to obtain the three different bucket
sizes depicted.

FDL by default uses one bucket size for both the data and
index buckets within each tree. The area definition
produced by FDL has to be modified by the user in order
to obtain a different bucket size for the data and index
levels within any tree.

095 Facebook Inc. Ex. 1215

Prolog Description

Like a relative file, an ISAM file begins with a prolog, which |is
a map to the rest of the file., The file-related overhead, which
includes structures such as key and area descriptors, may range
from 2 to 84 blocks long, starting with virtual block 1. These
blocks are allocated from Area 0.

VBN 1 contains the prolog and the primary key descriptor, and the
area descriptor follows in VBN 2 if the file has no alternate
keys. The prolog descriptor for the primary key has one field in
common with the key descriptor--the data bucket size field
(PLGSB_DBKTSIZ)-- and the key descriptoer for the primary key
"overlays" the prolog descriptor. The last word of the prolog
contains the standard Files-~11 checksum field. The primary key
descriptor begins in byte 0 of VBN 1.

Format of a Prolog for an Indexed Sequential File
NOTE

The fields in all the figures in this module run
right-to-left,.

5 RESERVED (11 BYTES) 4
PLG$B_DBKTSIZ .
RESERVED
RESERVED
R RESERVED (85 BYTES) - »
PLG$B_AMAX PLG$B_AVBN » - o i
RESERVED PLG$W_DVB,
RESERVED
"RESERVED
PLGS$W_GBC PLGSW_VER_NO
& RESERVED (390 BYTES)
CHECK SUM T
BU-2429
5-6

096 Facebook Inc. Ex. 1215

Contents of a Record Prolog for an Indexed Sequential File

Field Name

PLGSB_DBKTSIZ

PLGSB_AVBN

PLG$B_AMAX

PLGSW_DVBN

PLGSW_VER_NO

PLGSW_GBC

Description

Data bucket size. This byte contains the
bucket size for all data level (level 0)
buckets.

VBN of the first area descriptor. This field
contains the virtual block number (which can
range from 2 to 255) of the first area
descriptor. Area descriptors are virtually
contiguous and can be directly accessed by
area number.

Maximum number of areas. This field contains

the maximum number of defined area descriptors
{(which can range from 1 to 255) for this file.
Eight area descr1ptors can fit in one v1rtual

block because each is 64 bytes long.

VBN of the first data bucket. This field
contains the 16-bit wvirtual block number of

the first data bucket in an:éﬁggnod file.
o TE Ve,

Prolog version number. The following constants
are defined for this field.

PLGSC_VER_NO Prolog 1. This version
supports string keys only.

PLGSC_VER_IDX Prolog 2. This version
supports key types other than
string.

PLGSC_VER_3 Prolog 3. This version

supports compression and space
reclamation for indexed files.

Default global buffer count. This field
contains the number of global buffers the user
requested for the file. The number may range
from 0 to 32,767; a value of 0 disables global
buffering. ,

This field can be set by the RMS field FABSW_GBC
and the FDL attribute FILE GLOBAL BUFFER_| COUNT.

097 Facebook Inc. Ex. 1215

A maximum of three area descriptors are allowed for any given key.
However, up to 255 area descriptors are allowed for a file with
multiple keys.

Format of a Prolog for a File with a Single Key

PROLOG DESCRIPTOR VBN 1
PRIMARY KEY DESCRIPTOR

PLG$B_AMAX PLG$B__AVBN
AREA DESCRIPTORS VBN 2
INDEX AND DATA BUCKETS VBN 3 - N

BU-2430

098 Facebook Inc. Ex. 1215

For a file with multiple keys, the virtual blocks containing the
index and data buckets start at the value given by the following
equation.

PLGSB_AMAX

........... + PLGSB_AVBN
8 (truncated)

Format of a Prolog for a File with Multiple Keys

PROLOG DESCRIPTOR VBN 1
PRIMARY KEY DESCRIPTOR
PLG$B_AMAX PLG$8B_AVEN “\
4
i
_.47
C7
/?
.. 2
(7
UP TO 5 VBN 2

KEY DESCRIPTORS

KEY 5 DESCRIPTOR

KEY DESCRIPTORS VBN 3
(IF MORE THAN 5)

—

AREA DESCRIPTORS PLGSB_AVEN

INDEX AND DATA BUCKETS

B8U-243t

099 -Facebook Inc. Ex. 1215

KEY DESCRIPTORS

A key descriptor gives information about the characteristics of a
key in an ISAM file. It supplies all the information RMS needs to
retrieve, insert, update, and delete records. Every key has a
"corresponding key descriptor. Every file has a primary key,
therefore it has at least one key descriptor. The primary key
descriptor is located at virtual block 1 of the file (byte 0).

Key descriptors for secondary keys are called alternate key
descriptors. They start at virtual block 2 of the prolog. An
alternate key descriptor is identical to a primary key descriptor.
Up to five alternate key descriptors can fit in a single block.

Key descriptors are linked into a chain by two fields: the
virtual block number of the next key descriptor (KEYSL_IDXFL) and
the byte offset within the block for the next key descriptor
(KEY$W_NOFF).

The three possible areas for each defined key are described by the
KEYSB_IANUM, KEY$B_LANUM, and KEYSB_DANUM fields.

wn
|

10

100 Facebook Inc. Ex. 1215

Format of a Key Descriptor

KEY$L_JDXFL
KEY$8_LANUM KEY$B_JANUM KEY$W_NOFF
KEY$B_DATBKTSZ KEY$8_IDXBKTSZ KEY$B_ROOTLEV KEY$8_DANUM
KEY$L_ROOTVBN
KE'Y$8_NULLCHAR KEY$B_SEGMENTS KEY$B_DATATYPE KEY$B_FLAGS
KEY$W_MINRECSZ KEY$B_KEYREF KEY$B_KEYSZ

KEYSW_DATFILL

KEYSW_IDXFILL

KEY$W_POSITION1 KEY$W_POSITION
KEY$W_POSITION3 KEY$W_POSITION2
KEY$W_POSITIONS KEY$W_POSITION4
KEY$SW_POSITION? KEY$W_POSITIONG
KEY$B_SIZE3 KEY$B_SIZE2 KEY$B_SIZE1 KEY$B_SIZE
KEY$B_SIZE7 KEY$8_SIZE6 KEY$B_SIZES KEY$B_SIZE4
KEY$T_KEYNAM (32 BYTES) 7
KEY$L_LDVBN
KEY$8_TYPE3 KEY$B_TYPE2 KEY$8_TYPE1 KEY$B _TYPE
KEY$8_TYPE7 KEY$8_TYPES KEY$B_TYPES KEY$B_TYPE4
BU-2432
* G, ho
3
& wox- .? ¢ & o block

* ?m(bj }w{lfb {’ K"ﬂ .D@.;wra"arr

101

Facebook Inc. Ex. 1215

Field Name

REYSL_IDXFL

KEYSW_NOFF

KEY$B_IANUM

KEYSB_LANUM

KEYSB_DANUM

Contents of a Key Descriptor
Description

VBN for next key descriptor. This field is
checked only when the KEYS$SW_NOFF field
contains a value of 0.

When the KEYSL_IDXFL and the KEY$W_NOFF
fields both contain a value of 0, the last
key descriptor has been found.

Of fset to next key descriptor. This field
contains the offset to the next key descriptor
in the chain of key descriptors. This offset

is relative to the beginning of the virtual
block number contained in the KEYSL_IDXFL field.

Index area number. This field contains the
index bucket area number to be used for the
index buckets for the key, from level 2 to the
root bucket. It represents the area
identification number contained in the
AREASB_AREAID field. It can range from 0 to
254. The default is 0, which indicates area 0.

This field is set with the RMS field
XABSB_IAN and the FDL attribute KEY INDEX_ARBA.

Level 1 area number. This field contains the
area number of the lowest level (level 1) of
the index. It represents the area
identification number contained in the
AREASB_AREAID field, ranging from 0 to 254,
If this field contains a value of 0, only the
KEY$B_IANUM field is used.

This field is set with the RMS field XABSB_LAN.

Data area number. This fiei. contains the

area number of the data leve. (level 0) of the
index buckets for the key. It represents the
area identification number contained in the
AREASB_AREAID field. It can range from 0 to
254. The default is 0, which indicates area 0.

This field is set with the RMS field XABSB_DAN
and the FDL attribute KEY DATA_AREA.

102 Facebook Inc. Ex. 1215

Contents of a Key Descriptor (Cont.)
Field Name Description

KEY$SB ROOTLEV Root level. This field contains the level
- number of the root bucket for the key. In other
words, this field contains the height of the index
tree. Levels are numbered from 0 to n, where
0 indicates the data level and n indicates the
root level.

This field sets the RMS field XABS$B_LVL after an
Open or Display service.

KEY$B_IDXBKTSZ tndex bucket size. This field contains the size
(number of virtual blocks) of the index-level
buckets (level 1 to n) for the key.

This field sets the RMS field XABS$B_IBS after an
Open or Display service.

KEYSB_DATBKTSZ Data bucket size. This field contains the size
(number of virtual blocks) of the data-level
buckets (level 0) for the key.

This field sets the RMS field XABSB_DBS after an
Open or Display service.

KEYSL_ROOTVBN VBN of the root bucket. Contains the virtual
block number of the index root bucket for the key.

After an Open or Display service, this field sets
the RMS field XABSL_RVB.

KEYSB_FLAGS Flag bits. This field may be set with the RMS
field XABSB_FLG. The following 1l-bit fields are
defined within KEY$SB_FLAGS.

KEYSV_DUPKEYS Set if duplicate key values are
allowed. This field starts at
bit 0. It may be set with the
RMS field XABSV_DUP.

KEYSV_CHGKEYS Set if the key value may change
on an update operation. This
field starts at bit 1. It may be
set with the RMS field XABSV_CHG.

KEY$V_NULKEYS Set if a null key character is
enabled. This field starts at
bit 2. It may be set with the
RMS field XABSV_NUL.

103 Facebook Inc. Ex. 1215

Contents of a Key Descriptor (Cont.)

Field Name Description

KEYSB_FLAGS
(Cont.)

KEYSV_INITIDX

KEY$SV_KEY_COMPR

KEY$V_REC_COMPR

104

KEYSV_IDX_COMPR Set if the index is compressed.

This field starts at bit 3. This
field may be cleared with the RMS
field XAB$SV_IDX_NCMPR.

Set if the index must be
initialized. This field is used
only when RMS creates the index
for this key. Because area

number information is not normally
stored in memory for an open
indexed file, the required area
numbers to create (and initialize)
the index are stored in the root
bucket field. When a bucket split
occurs and additional space has to
be allocated, the area number
stored in the bucket which is
splitting is used as the area
number for the new bucket.

This field starts at bit 4.

Set if the key is compressed in
data records. The key must be a
Prolog 3 string key. This field
starts at bit 6. This field may
be overridden with the RMS field
XABSV_KEY_ NCMPR.

Set if the data portion of the
record is compressed. This bit
applies only to Prolog 3 files.
This field starts at bit 7.

This fi (d may be overridden with
the RMS fie. ' XAB$SV_DAT_NCMPR.

Facebook Inc. Ex. 1215

Field Name

KEYSB_DATATYPE

Description

Key data type.

Contents of a Key Descriptor (Cont.)

This field is used at file

creation to declare the type of data in the

key within each data record.
with the RMS field XABSB_DTP.
constants may be specified.

KEYSC_STRING
KEYSC_SGNWORD
KEY$C_UNSGNWORD
KEY$C_SGNLONG
KEY$C_UNSGNLONG
KEY$SC_PACKED
KEYSC_SGNQUAD
KEY$C_UNSGNQUAD
KEY$SC_DSTRING
KEY$C_DSGNWORD
KEY$C_DUNSGNWORD
KEY$C_DSGNLONG

KEY$C_DUNSGNLONG

KEY$SC_DPACKED

105

It may be set
The following

Left-justified string of
unsigned, 8-bit bytes.
This is the default.
Signed binary word.
Unsigned binary word.
Signed binary longword.
Unsigned binary longword.
Packed decimal string.
Signed binary quadword.
Unsigned binary quadword.
string data type for
descending keys (as of
VMS 4.4).

Signed binary word data
type for descending keys
(as of VMS 4.4).

Unsigned binary word data
type for descending keys
(as of VMS 4.4).

Signed binary longword data
type for descending keys
(as of VMS 4.4).

Unsigned binary longword
data type for descending
keys (as of VMS 4.4).
Packed decimal string data

type for descending keys
(as of VMS 4.4).

Facebook Inc. Ex. 1215

Contents of a Key Descriptor (Cont.)

Field Name Description
KEYSB_DATATYPE KEYSC_DSGNQUAD Signed binary quadword for
{Cont,) descending keys (as of

VMS 4.4).

KEYSC_DUNSGNQUAD Unsigned binary quadword
for descending keys (as of
VMS 4.4).

KEY$SB_SEGMENTS Number of segments. This field contains
the number of key segments that make up
the key. Only string keys may have
multiple segments. A maximum of eight
segments is allowed.

After an Open or Display service, this
field sets the RMS field XABSB_NSG.

KEYSB_NULLCHAR Null character. This field contains any
user-selected ASCII character value.

This field is set with the RMS field
XAB$B_NUL.

KEYSB_KEYSZ Total key size. This field contains the sum
(in bytes) of the values in the fields
KEY$SB_SIZE through KEY$B_SIZ7.

After an Open or Display service, this field
sets the RMS field XABS$B_TKS.

KEYSB_KEYREF Key of reference. This field tells whether
a primary key or an alternate key has been
defined. It contains a value ranging from
0 to 254, indicating vhich key has been
defined. A value of = 1indicates the primary
key, 1 indicates the firs. alternate key,
and so on.

This field is set with the RMS field XABSB_REF.

KEYSW_MINRECSZ Minimum record length. This field contains
the minimum length (in bytes) needed to hold
the key.

After an Open or Display service, this field
sets the RMS field XABSW_MRL.

106 Facebook Inc. Ex. 1215

Contents of a Key Descriptor (Cont.)

Field Name Description

Index fill quantity. This field indicates

the maximum number of bytes in an index bucket.
The largest possible.fill is the bucket size, in
blocks, multiplied by 512.

KEYSW_IDXFILL

This field is set with the RMS field XABSW_IFL.

Data fill quantity. This field indicates the
maximum number of data bytes in a data bucket.

The largest possible fill size is the bucket size,
in blocks, multiplied by 512.

KEYSW_DATFILL

This field is set with the RMS field XABS$W_DFL.

Segment position. This field marks the
beginning position of the first of up to eight key
segments. It is set with the RMS field XABSW_POSO.

KEYSW_POSITION

This field marks the beginning
It is set

Position 1.
position of the second key segment,
with the RMS fieLd XABSW_POSI.

KEY$W_POSITION1

This field marks the beginning
It is set

Position 2.
position of the third key segment.
with the RMS field XABSW_POS2.

KEYSW_POSITION2

This field marks the beginning
It is set

Position 3.

KEY$SW_POSITION3
' position of the fourth key segment.

with the RMS field XABSW_POS3.

KEY$SW_POSITION4 Position 4. This field marks the beginning
position of the fifth key segment. It is set
with the RMS- field XABSW_POS4.

KEY$SW_POSITIONS Position 5. This field marks the beginning
position of the sixth key segment. It is set
with the RMS field XABSW_POSS5.

KEYSW_POSITIONG Position 6. This field marks the-beginning
position of the seventh key segment. It is set
with the RMS field XABSW_POS6.

KEYSW_POSITION7 Position 7. This field marks the beginning
position of the eighth (and last) key segment. It

is set with the RMS field XABSW_POS7.

Facebook Inc. Ex. 1215

Field Name

KEYSB_SIZE

KEY$B_SIZEl

KEY$B_SIZE2

KEYSB_SIZE3

KEY$SB_SIZEA4

KEYSB_SIZES

KEY$B_SIZE6

KEYSB_SIZE7

KEYST_KEYNAM

KEYSL_LDVBN

Contents of a Key Descriptor (Cont.)

Description

Segment size. This field contains the size
of the first key segment. It is set with the
RMS field XABSB_SIZ0.

Size 1. This field contains the size .
of the second key segment. It is set with the
RMS field XABSB_SIZl.

Size 2. This field contains the size
of the third key segment, It is set with the
RMS field XAB$B_SIZ2.

Size 3. This field contains the size
of the fourth key segment., It is set with the
RMS field XABSB_SIzZ3.

Size 4. This field contains the size of the
fifth key segment. It is set with the RMS
field XABSB_SIZ4.

Size 5. This field contains the size of the
sixth key segment. It is set with the RMS
field XAB$B_SIZ5.

Size 6., This field contains the size of the
seventh key segment. It is set with the RMS
field XABSB_SIZ6.

Size 7. This field contains the size of the
eighth key segment. It is set with the RMS
field XABSB_SIZ7.

Optional key name. This 32-byte field contains
the name of the key as an ASCII string. It is
set with the RMS fielc XA“ﬁL_KNM.

VBN of the first data buckec. This field

contains the starting virtual block number for the
first data-level bucket for the key. After an Open
or Display service, this field sets the RMS field
XABSL_DVB.

w
!

18

108 Facebook Inc. Ex. 1215

Field Name
KEY$B_TYPE
KEY$B_TYPEl
KEY$B_TYPE2
KEY$SB_TYPE3
KEYS$SB_TYPE4
KEY$B_TYPES
KEYSB_TYPE6

KEY$B_TYPE7

Contents of a Key

Description

This
This
This
This
This
This
This

This

field
field
field
field
field
field
field
field

is
is
is
is
is
is

is

Descriptor (Cont.)

not"’

not

not

not

not

not

not

not

supported
supported
supported
supported
supported
supported
supported

supported

by
by
by
by
by
by
by
by

Facebook Inc. Ex. 1215

VAX/VMS
VAX/VMS
VAX/VMS
VAX/VMS
VAX/VMS
VAX/VMS
VAX/VMS

VAX/VMS

Version

Version

Vversion

Version
Version
Vversion
Version

Version

Indexed File With and Without Areas

WITHOUT AREAS WITH AREAS

START OF FILE

ALTERNATE

Pt = PRIMARY INDEX
DR = DATA RECORDS
Al = ALTERNATE INDEX

F-MK-00098-00

110 Facebook Inc. Ex. 1215

AREA DESCRIPTORS

In an ISAM file, the user may independently allocate and manage
sections of contiguous virtual blocks, called areas, according to
how each will be used. The area descriptor contains this
function-specific information. There is an area descriptor for
every area in the file.

Defining multiple areas allows the user to declare different
bucket sizes for index buckets and data buckets. Areas also allow
the user to control where the various elements or sections of the
file are placed on the disk.

Area descriptors follow the last key descriptor of the file and

occupy contiguous virtual blocks. Up to eight area descriptors
can fit in one virtual block.

Format of an Area Descriptor

AREA$B_ARBKTSZ AREA$B_AREAID AREA$B_FLAGS 1 RESERVED
AREA$B_AOP AREA$B_ALN AREAS‘W_VOLUME
AREASL_AVAIL
AREAS$L_CVBN
AREA$L_CNBLK
AREASL_USED
AREASL_NXTVBN
AREASL_NXT
AREA$L_NXBLK
RESERVED - AREA$W_DEQ
AREAS$L_1OC
AREA$W_RFI
AREA$L_TOTAL_ALLOC e e
"‘ﬂ AREASL_TOTAL_ALLOC
RESERVED =
AREA$W_CHECK
J BU-2433
. i
g boun 4 / 5-21

111 Facebook Inc. Ex. 1215

Field Name

AREASB_AREAID

AREASB_ARBKTS?Z

AREASW_VOLUME

AREA$B_ALN

Contents of an Area Descriptor

Description

Area ID. This field contains the area
identification number, which can range from 0
to 254. It indicates the target area for RMS
operations. It is also used as a redundancy
check because all area descriptors are located
at a fixed position relative to the start of
the area descriptor blocks.

This field is set by the RMS field XAB$B_AID
or the FDL attribute AREA n, where n indicates
the area number.

Area bucket size. This field contains the
bucket size for the area, which can range from
1 to 63 blocks. It represents the granularity
of the allocation,

This field is set by the RMS field XAB$B_BKZ
and the FDL attribute AREA BUCKET_SIZE.

Relative volume number. This field contains

the relative volume number on which the file was
allocated. The relative volume number ranges
from 0 through 255. The default is 0, which
indicates the current member of the volume set.

This field may be set with the RMS field
XABSW_VOL or. the FDL attribute AREA VOLUME. -.

Extent allocation alignment. This field
indicates the type of alignment for the area to
be allocated. It allows placement control to

be specified for the file.

The following opti. is are valid for this field.
If no value is set for ..is field, RMS assumes
that placement control was not requested.

AREASC_CYL This option indicates that the
alignment starts at the specified
cylinder number. It is set with
the RMS field XABSL_LOC or the FDL
attribute AREA POSITION CYLINDER.

112 Facebook Inc. Ex. 1215

Contents of an Area Descriptor (Cont.)
Field Name Description

AREASB_ALN AREASC_LBN This option indicates that the

(Cont.) alignment starts at the specified
logical block. It may be set with
the RMS field XABSL_LOC or the
FDL attribute AREA POSITION LOGICAL.

AREASC_RFI This option indicates that the
alignment starts as close as
possible to the file specified by
the related file identification
field (XABSW_RFI), at the virtual
block number of the file specified
in the location field (XABSL_LOC).
It is also set with the FDL attribute
AREA POSITION FILE_ID or the FDL
attribute AREA POSITION FILE_NAME.

AREASC_VBN virtual block alignment. This option
indicates that the alignment starts
at the specified virtual block. It is
set with the RMS field XABSL_LOC or
the FDL attribute AREA POSITION
VIRTUAL.

This field is set with the RMS field XABS$B_ALN
or the FDL attribute AREA POSITION.

AREASB_AOP Alignment optiens. This field is a binary bit
field where each allocation option is defined
by a certain bit. Each option is identified
by a symbolic bit offset and has a corresponding
mask value.

The following fields (or masks) are defined for
this field.

/— AREASV_HARD This option specifies absolute
alignment. If the requested
alignment cannot be performed,
an error is returned.

This option starts at bit 24. It
is set with the RMS field
XABSB AOP (the XABSV HRD option)

/' 4 ; o . h h T ., — —
I T or the FDL attribute AREA
{ D({o‘w”' 0 reepfc_any “ EXACT_POSITIONING.

113 Facebook Inc. Ex. 1215

Contents of an Area Descriptor (Cont.)

Field Name Description
AREASB_AOP AREASV_ONC
(Cont.)
AREASV_CBT
AREASV_CTG

AREASL_AVAIL

This option requests that RMS
locate the allocation on any
available cylinder boundary.

This option starts at bit 25. It
is set with the RMS field
XABSB_AOP (the XABSV_ONC option)
or the FDL attribute AREA POSITION
ANY_POSITION.

This option indicates that the
allocation or a later extension
should occupy contiguous blocks,
if possible.

This option starts at bit 29. It
is set with the RMS field
XABSB_AOP (the XAB$V_CBT option)
or the FDL attribute AREA
BEST_TRY_CONTIGUOQUS.

This option indicates that the
initial allocation or later
extensions must use only
contiguous blocks.

This option starts at bit 31. It
is set with the RMS field
XABSB_AOP (the XABSV_CTG option)
or the FDL attribute AREA
CONTIGUOUS.

Available buckets. This field
contains the 32-bit wvirtual block
number of the first available
bucket in a chain of reclaimed
buckets (from the CONVERT/RECLAIM
utility). The rest of the buckets
on the chain are linked wvia the
BKTSL_NXTBKT field in each bucket

eheader.. .

‘AREASL CVBN Starting VBN for the current extent, This field
contains the first virtual block number of the
current extent, which is the extent from which
buckets are allocated.

114 Facebook Inc. Ex. 1215

Field Name

AREASL_CNBLK

AREASL_USED

AREASL_NXTVBN

AREASL_NXT

. AREASL_NXBLK

AREASW_DEQ

areo.

AREASL_LOC

Contents of an Area Descriptor (Cont.)

Description

Number of blocks in current extent. This field
contains the number of blocks that were
allocated to this extent. The AREASL_CVBN and
AREASL_CNBLK fields describe the result of an
Extend operation for the current extent.

Number of blocks used. This field contains the
number of blocks that have been allocated from
the current extent.

Next VBN to use. This field contains the
virtual block number of the starting block
number of the next bucket allocated from the
current extent.

Starting VBN for next extent. This field
contains the starting virtual block number for
the next extent in the chain. When there are
no more empty blocks in the current extent,
the next extent is made the current extent,
and the next extent is initialized (zeroed).
The area can only be extended when the next
extent description has been zeroed. Thus, a
value of 0 indicates that the current extent
is the last (or only) extent in the chain.

Number of blocks in next extent. This field
contains the number of blocks that were
allocated ta the next extent. The AREASL_NXT
and AREASL_NXBLK fields describe the result
of an Extend operation for the next extent.

Default extend quantity. This field contains
the default extend quantity, which is
the num O blocks to be added when RMS
n to extend the area. The user specifies

__-~"this value, which can range from 0 through

65,535. If a value of 0 is specified, the
file will be extended using a default
extension value determined by RMS. A size
less than 1 bucket will never be used.

This field is set with the RMS field XABS$W_DEQ
or the FDL attribute AREA EXTENSION.

Starting LBN on volume. This field contains

the starting logical block number of the
last extent of the area.

115 Facebook Inc. Ex. 1215

Contents of an Area Descriptor (Cont.)
Field Name Description

AREASW_RFI Related file ID. This field contains the
file ID of a related file.

AREASL_TOTAL_ALLOC Total block allocation. This field contains
the total number of blocks initially
allocated for an area during a Create
operation or the number of blocks to be
added to the area during an Extend operation.

This field sets the XABSL_ALQ field during
Open, Create, Display, and Extend services.

AREASW_CHECK Checksum. This field allows the standard

Files-11 checksum value to be stored in the
last word of the area descriptor block.

116 Facebook Inc. Ex. 1215

DATA BUCKET STRUCTURE

Following the prolog, key, and area deécriptors in

are storage structures called buckets, which can
buckets or index buckets. The size of a bucket
multiple of 512 bytes (1 to 63 blocks).

fhe bucket size is defined by the user. The size

buckets may be different within the same index,
size on each level for each key of reference is the

Buckets have two logical regions:
may be used to store records.

header is 14 bytes although the total size of bucket
check byte at the end of each

15 bytes; the is a

bucket.

extra Dbyte

a header area and an area
The size of the actual bucket

an IsaM file
either be data
is always a

of the index
but_ the bucket
same.

that

overhead 1is

Format of a Data Bucket for an Indexed Sequential File

BKT$W_ADRSAMPLE BKT$B_AREANQ'

BKTEB _CHECKCHAR

BKTS§W_NXTRECID

BKT§W_FREESPACE

BKTYL_NXTBKT
BKT$8_BKTCB BKT$B_LEVEL
"BKT$B_JNDEXNO FOR PROLOG J FILES)
BU-2434
5-27
117 Facebook Inc. Ex. 1215

Bucked
feader

Field Name

BKT$B_CHECKCHAR

BKT$B_AREANO

BKT$B_INDEXNO

BKT$SW_ADRSAMPLE

BKTSW_FREESPACE

BKTSW_NXTRECID

Contents of a Data Bucket
Description

Bucket check character. This field contains

a l-byte check character. Whenever a bucket is
written, the value in the check byte is
incremented and copied into the first and last
byte of the bucket. Whenever a bucket is read,
the check bytes are compared for equality. By
this technique, hardware failures during
transfer are detectable.

Area number or index number (BKT$B_INDEXNO).

For Prolog 1 and 2 files, BKT$B_AREANO contains
the area number of the area from which the
bucket was allocated.

For Prolog 3 files, BKT$B_INDEXNO contains the
index number to which this bucket belongs. For
example, a value of 0 represents the primary
index, and values of 1, 2, 3, and so on
represent alternate indexes.

Low-order word of the bucket VBN. This field
contains the low 16 bits of the first block
number in the bucket. This field is written
when the bucket is formatted and is checked
when the bucket is read into memory.

First free byte of unused space in the bucket.
This field contains the byte address relative
to the start of the bucket of the first free
byte in the unused portion of the record
storage area of the bucket.

Next available record ID. This field contains
the ID number to use for the next record
placed in the bucket. When the current ID is
used, the value in this field is incremented
by 1.

The record ID does not depend on the record's
physical position in the bucket because
records are ordered by key value. Record IDs
are assigned in different ways, depending on
the prolog version of the file.

118 Facebook Inc. Ex. 1215

Contents of a Data Bucket {(Cont.)

Field Name Description
BKTSW_NXTRECID For Prolog 3 files, the way the record ID is
(Cont.) assigned depends on whether the bucket is

newly created or a reclaimed bucket. If the
bucket is new, the first record is assigned
an ID of 1, and subsequent record IDs are
assigned in order.

If the bucket is reclaimed, the record ID is
assigned from the value in the BKTSW _NXTRECID
field, and subsequent IDs are assigned in order.

For Prolog 1 and 2 files, the BKTSW_NXTRECID
field consists of two l-byte fields,
BKTS$B_NXTRECID and BKTSB_LSTRECID, that indicate
a range of record IDs. The low byte
(BRT$SB_NXTRECID) contains the next record ID
that can be assigned. The high byte contains
the upper limit of 255 (hex FF), which is the
highest record ID that can be assigned. However,
if the bucket is new, the first record is always
assigned an ID of 1.

BKTSL_NXTBKT VBN of the next bucket. This field contains
the starting virtual block number of the next
bucket at this level of data buckets; it is a
horizontal link to the next bucket. This
pointer always points to a bucket of the same
size. The last bucket in a level points to the
first bucket in the level.

BKTSB_LEVEL Bucket level number. This field contains the
level number relative to the data level for
this bucket. Data-level buckets contain a
value of 0. The lowest level in the index
structure is represented by a value of 1, the
next highest level by a value of 2, and so on.
The root level of the index always has the
highest value.

119 Facebook Inc. Ex. 1215

Field Name

BKTSB_BKTCB

Contents of a Data Bucket (Cont.)

Description

Bucket control bits. This field is a bit-encoded
byte field and is used when RMS processes a
bucket. The following bits are defined within

this field.

BKTSV_LASTBKT

BKT$V_ROOTBKT

BKT$V_PTR_SZ

Last bucket in the horizontal
chain for that level. This l1-bit
field starts at bit 0.

Root bucket. This 1-bit field
starts at bit 1.

Size of the VBN pointers in this
bucket. This 2-bit field starts
at bit 3 and is used only for
Prolog 3 index buckets.

Facebook Inc. Ex. 1215

The record storage region has two parts: a used portion occupied
by records, and an unused portion. The used portion of the record
storage region starts at the first byte after the bucket header
area, and it ends at the byte address that is a byte less than the
address stored in the BKTSW_FREESPACE field. The record
structures in the bucket depend on how the bucket is used.

The unused portion of the record storage area starts at the byte
address stored in the BKT$W_FREESPACE field and ends at the byte
before the check byte field, which is the last byte in the bucket.
Available buckets are chained together in a linked 1list.

The Format of a Bucket

BUCKET HEADER (14 BYTES)

BKT$W_FREESPACE

BKTSL_NXTBKT

USED PORTION OF THE RECORD STORAGE AREA

UNUSED PORTION OF T+E RECORD STORAGE AREA

CHECK BYTE

0 Vef‘{lz@, d = 15 AJL

NEXT AVAILABLE BUCKET

BU-2435

121 Facebook Inc. Ex. 1215

U

Data Record Format

The format of a data record depends on whether the file 1is a
Prolog 3 file or a Prolog 1 or 2 file. Prolog 3 data records are
the only records that allow data or key compression,

As the record of a Prolog 3 file is inserted in the bucket, the
key 1is always placed at the front of the data record, even if
there is no key compression, If the key field is in the. middle of
the record, it is still extracted and placed at the front of the
record to improve performance. However, it is inserted at the

proper place before the record is retrieved and returned to the
user,

Data record overhead for Prolog 3 files with no compression and
variable-length records is eleven bytes, Wwith fixed-length
records and no compression, the overhead is nine bytes.

Format of a Prolog 3 Vvariable-Length Data Record
with No Compression

| { |
RECORD RECORD | CTRL
DATA | KEY CENCTH RFA ’ BYTE
—— |
" 2 BYTES 6 BYTES 2 BYTES 1 BYTE

Tl s adhoched o to o s
& NOT Anplu. e '

For Prolog 1 and 2 files with variable-~length records, the
overhead 1is nine bytes. With fixed-length records, the overhead
is seven bytes. The size of the record ID and the RFA fields are
smaller by one byte than the corresponding Prolog 3 fields.

Format of a Prolog 1 or 2 Variable~Length Data Record

¥ 1 ¥
RECORD REC | CTRL
DATA KEY LENGTH RFA o |ayTE
L] L
' 2 BYTES 5 BYTES 1 BYTE 1 BYTE
BU-2437

3 N“% ?%1 Léum& t ?u&. mﬁ&mjwm, Agdd éﬁf eAp i
z

122 Facebook Inc. Ex. 1215

The fields of a data record are described in the following table.
Field Name Description

Control byte Record control byte. The bits are defined
as follows:

0-1 VBN pointer size
2 Deleted record flag
3 Record reference vector record flag

The Analyze/RMS_File Utility
(ANALYZB/RMS_FILE) can display the

position and state of high-order six bits
that indicate whether the record is deleted
or whether it is an record reference vector
(RRV). The low-order 2 bits are relatively
meaningless. For example, a typical record
that has not been deleted and is not an

RRV has a control byte of hex 02, which has no
particular significance because all data
records have RFA VBN pointer sizes of four
bytes. :

Record 1ID Record identifier. This field occupies
’ two bytes.*

RFA : Record file address. This field serves as
a record reference pointer if the record is
an RRV. The RRV pointer is six bytes long
arnd is composed of the record identifier
field and the virtual block number. The
VBN portion of the RFA has a fixed size of
four bytes, and the record ID occupies two
bytes.**

f2cord length Size of the record. This 2-byte field is
present only for variable-length records
and fixed-length records for which either
data or key compression is enabled.

* PFor Prolog 3 files. For Prolog 1 and 2 files, the record ID
occupies one byte.

** For Prolog 3 files. For Prolog 1 and 2 files, an RRV
occupies five bytes because the record ID is only one byte.

123 Facebook Inc. Ex. 1215

RECORD REFERENCE VECTORS (RRYVs) AND BUCKET SPLITS

When RMS tries to insert a record into an already full bucket,
some of the old records must be moved to a new bucket to make room
for the new record. This process is called a bucket split.

When the records are moved out of their original bucket, RMS
creates special records in the original bucket that act as
pointers to the new bucket to which the records have been moved.
These special records are called record reference vectors, or
RRVs, and they remain in the bucket in which the records were
originally inserted to act as "forwarding addresses."

An RRV is created only when a record is moved for the first time.
If the record has been moved before, an RRV is not created; RMS
finds the RRV in the record's original bucket and updates it with
the record’'s new address. Even in a worst-case. situation where a
record has been moved many times, RMS can find the record with its
RRV with only one level of indirection.

RRV records are nine bytes long in Prolog 3 files and seven bytes
long in Prolog 1 or 2 files. Every data record contains an RFA
portion consisting of a 1- or 2-byte record ID and a 4-byte VBN.
Initially, the record ID refers to itself (that is, it contains a
copy of the preceding field, the record’'s own ID) and the VBN is
the wvirtual block number of the bucket in which the record is
currently located.

Formats of RRV Records

~«+——— RFA FIELD ———

9—-BYTE PROLOG 3 RRV RECORD
RECORD |CONTROL
N
ve D ID BYTE
4 BYTES 2 BYTES 2 BYTES 1 BYTE

-——— RFA FIELD e

: 7-BYTE PROLOG t AND 2 RRV RECORD
VBN I RECORD |CONTROL
D 0 BYTE
4 BYTES 1 BYTE 1 BYTE 1 BYTE
Bu-2438
5-34

124 Facebook Inc. Ex. 1215

Simple Bucket Splits

Exaﬁple 1. Simple Bucket Split

Record B is Added to the File

8
1
100 2 ‘\QQ vEN = too
= 4,2
A E \ ke 0 ?
100.1_{ 100.2 I\

BU-2439

In general, RMS tries to keep about half of the records in the
original bucket and move ‘the others to a new bucket, with the
bucket with the most space available containing the most data
after the split.

Record B Causes a Bucket Split

BU-2440

Record E is Moved

100} 4 3 RRY | 200 1 \<d

B8U-2441

125 Facebook Inc. Ex. 1215

Records C and D are

100

Added to the File

100.1

100.3

RRV

200.1

200 2

200.2

NN
. N\

Record E is Moved to a New Bucket

100
1 3 RRV
A 8 2
100.1 100.3 300.1

200
2 3 Q

c D
200.2 200.3 :\\

BU-2442

NN

BU-2443

Facebook Inc. Ex. 1215

Multibucket Splits

Example 2. Multibucket Split

Record B is Added to the File

8
C (INDEX POINTER)
\ w
10 2 Q:
A c ::
100.1 | 100.2

BU-2444

To resolve this situation, a multibucket split must take place.
The existing bucket containing records A and C is split. Two new
buckets are created; record B is moved into the middle bucket, and
record C is moved from the old bucket into the last bucket.

A Multibucket Split Occurs

B
100 1 2
A c
100.1 100.2
1 \
100 1 RRV 200 1

/L,
A,

100.1 300.1 200.1 100.2 N/

0 :Qb;fiis

BU-2445

127 Facebook Inc. Ex. 1215

An RRV record is created in the old bucket to point to the new
location of record C, and record C points back to its original
location. The next-bucket pointers are also updated. The last
bucket in the chain points back to the first bucket.

The Bucket Structure and Index are Updated

(INDEX POINTERS)
8

A
~BKT$L_NXTBKT I-BKTsL_NXTBKT I-BKTSL..NXTBKT
100 1 2 200 1 300 1
A RRV 8 c
100.1 300.1 200.1 100.2
BU-2448

The index structure is also updated. The 1index pointer to the
left bucket still points to VBN 100, but its key value now becomes
A. Two new index records have to be created as a result of the
split. First, an index pointer with key value B must be created
to point to VBN 200. A pointer with key value C must be created
to point to VBN 300.

Bucket Splits with Duplicate Records

If duplicate records are involved, bucket splits can become even
more complicated. When duplicate records occupy more than one
bucket, the overflow buckets are called continuation buckets. RMS
tries to keep duplicates together when buckets are split.

Continuation buckets do not have a pointer to the index. There is
an index pointer to the first bucket only, and RMS must follow the
horizontal data bucket links contained in the BKTSL NXTBKT field
to find any continuation buckets. -

w
|

38

128 Facebook Inc. Ex. 1215

KEY AND DATA COMPRESSION (PROLOG 3)

Compression of data and the primary key is allowed for Prolog 3
data records.

Primary Key Compression ¥ 0"“3 works e gl;ua oy

The primary key can be compressed if it is the string data type
and at least six bytes long. The overhead is two bytes: a l-byte
key length field and a l-byte front compression count. RMS allows
both front and rear compression. Front compression suppresses
leading characters that the key has in common with the previous
key. Rear compression suppresses repeating trailing characters.

Format of a Compressed Data Record

i
RECORD RECORD CTRL
DATA KEY CNT LEN LENGTH RFA o BYTE
—
1 8YTE 1 BYTE 2 BYTES 6 BYTES 2 BYTES 1 BYTE
BU-2447
Field Name Description
Record length Size of the record after compression. This

field is two bytes 1long.

Len Length of the key with compression. This
l-byte field gives the length of the key as
it is stored on the disk. This value
allows for the truncation of repeating end
characters (rear compression) because the
true length of the key may be obtained from
the key descriptor. Any difference in size
not accounted for by the front compression
is due to the rear compression. The last
character in the key is the character
compressed. This length does not include
the count field.

Cnt Count of the front bytes with compression.
This field contains the number of front
characters the key has in common with the
previous key; the first key in a bucket is
always fully expanded although repeating
characters at the end of the key are truncated.

129 Facebook Inc. Ex. 1215

Example 3. Two Data Records with Key Compression
' FIRST KEY IN BUCKET HAS
DATA KEY CNT | LEN | THE VALUE °
6C61646E6548| 00 | 06 " P
L ladnek Kendall
J 1 i ’
dbvr'ﬁnduu [teo theough—— "
rar Cemfu.uhﬂ. vl SECOND KEY IN BUCKET HAS
DATA KCEYS cg: Lor-:; THE VALUE "
6C6 K #
L Le Kendell
¢ ! !
dogs Yoty ~Mond omgh A
S BU-2448
LO“‘F'%:’ Ll
P " ‘t‘ %h The following table shows a longer example of key compression.
The first column shows the original(uncompressed) keys of the
mxcﬂﬁﬁ‘”“ file. The second and third columns show the length and count
fields after compression. The fourth column shows the resulting

compressed key.

Original Key

Barren* 7
Barret® 2
Barrett 1
Barron* 3
Benson* 6
Total Length = LEN +
I
bytes
physically
stored
X = Total -
I Length
bytes
rear end
compressed

Length Count

After Compression

Compressed Key

0 Barren*
5 t*
6 1.
4 on*
1 enson”*
CNT + X
| |
bytes # bytes
front ~ rear
compressed compressed
(LEN + CNT)
5-40
130 Facebook Inc. Ex. 1215

= bpledlh sFeng bl ot ollowed

The data portion of a data record can also be compressed if the
sequence of repeating characters is five or more characters. The
overhead required for this type of compression is three bytes.
The compression control information is stored within the data
instead of in the record header.

Data Compression

Format of a Data Record with Compressed Data

DATA COMPRESSION%

CMP ; RECORD REC CTRL
oNT DATA NXT KEY CNT LEN LENGTH RFA 0 SYTE
] h:ﬁa Z bg"w .
U-2449

The nxt field is a count of characters in the data field that
follows it. It occupies one word. If no repeating characters
were found in the data section and no characters were compressed,
this field contains the size of the whole data field.

The cmp c¢cnt field is a count of the characters that were
compressed. It is 1 byte long. If no characters were compressed,
the cmp cnt field contains a value of 0.

Example 4 shows how a= 66-byte record with repeating sequences
within the data portion compressed to a 59-byte record. Note that

the fields (but not the characters) of the record run
right-to-left.

Example 4. Compressed Data Record

LU {COMPRESSED DATA:

MANCHESTER»»sNHO3105 snsssnsen’77 MAIN STREET e JONES sssons JANE

COMPRESSED DATA:

o] MANCHESTER«««NH03105 204 8 «777 MAIN STREET 16 4 =JONES 6 5 | «JANE | S
P nxt cop axt jemp ixb e axt |
C&t b "35 . O“!' B8U-245

I " ’

] ! }

H i
5-41

131 Facebook Inc. Ex. 1215

INDEX BUCKET

The index of an ISAM file is structured as a balanced tree. The
buckets of the 1index structure are the nodes of the tree. Fach
bucket contains a logical range of key values.

Index buckets generally resemble one another, regardless of their
position in the index. The value in the BKT$B_INDEXNO field
reflects which key of reference the index bucket belongs to, where
a value of 0 indicates the primary key, a 1 indicates the first
alternate key, a 2 indicates the second, and so on.

Prolog 1 and 2 buckets generally resemble Prolog 3 buckets. Two
differences are that the BKTSB_AREANO field becomes the
BKT$B_INDEXNO field for Prolog 3 files and the BKT$W_NXTRECID
field is a byte, not a word.

The value in the BKT$B_LEVEL field reflects the bucket's position
in the index, where 1 indicates the lowest level of the index (the
level above the data). The data level of the index is always
level 0, and the root level is always the highest level.

Each level of the index is horizontally linked by the next bucket
pointers, The 1linked 1list 1is circular because the last bucket
(its address is contained in the BKTSL_NXTBKT field) points back
to the first bucket. The BKTSV LASTBKT flag is set in the last
bucket to indicate that it is the Tast bucket in the chain and
that the next bucket in the chain will be the first.

For all three prolog versions, RMS saves index bucket space by
using the smallest possible field size to represent the VBN
pointer of a bucket. For Prolog 3 files, however, all VBN
pointers in a particular index bucket are the same size, which is
the length of the largest pointer in the bucket.

Bits 3 and 4 of the bucket control byte (BKTsBiBKTCB) indicate the
pointer size for a Prolog 3 index bucket. The following table
shows the bit-patterns and their meanings.

Bits Meaning

00 2-byte pointers. Three bytes for Prolog 1 and 2.
01 3-byte pointers. Four bytes for Prolog 1 and 2.
10 4-byte pointers. Five bytes for Prolog 1 and 2.

132 ' Facebook Inc. Ex. 1215

Index Record Format

Index records for the primary key and for the upper-level
alternate indexes have the same format, However, the format
depends on the prolog version of the file; index records for
Prolog 1 and 2 files differ from Prolog 3 files.

Prolog 3 index records have two parts: the key and the VBN
pointer. They have no overhead. Keys are stored in either
ascending or descending order starting at the beginning of the
record storage area of the bucket. The associated VBN pointers
are stored after the keys at the end of the used portion of the
record storage area. In other words, the keys and the VBNs are at
opposite ends of the bucket; RMS does not consider the VBN pointer
to be part of the index record.

The key part of the index record includes the key and control
information needed to describe the key. The key represents the
highest possible key value in the bucket pointed to by the bucket
pointer in the record. When RMS performs an index search, it
follows the first path for which the search key is 1less than or
equal to the key value stored in the index record. Index records
may be either fixed- or variable-length.

Fixed-length index records are used for keys that have not been

compressed. These records have no control information, and each
key is the same length.

Format of the Key Part of a Fixed-Length Index Record

KEY KEY KEY

8u-2451

Variable-length index records are used for keys that have been
compressed. All wvariable index records have count fields to
represent the front and rear compression.

133 Facebook Inc. Ex. 1215

Format of the Key Part of a Variable-Length Index Record
With Compression

KEY FRONT

VALUE | COUNT | LENGTH

BU-2452

The length field contains the number of characters in the key
value, including the compressed characters 1if index Kkey
compression is enabled. The front count field contains the number
of leading characters that were compressed.

The VBN pointer associated with each index record is stored at the
end of the index bucket. The size of all the VBN pointers within
a bucket is the same, but it may vary from bucket to bucket.
There is no overhead associated with the VBN pointer list.

In a Prolog 3 index bucket with uncompressed keys, the VBN pointer
for the first key of the bucket is at the end of the bucket VBN
space. As more keys and more VBNs are added to the bucket, they
approach one another.

Format of the VBN Pointer List

KEYS ARE INSERTED IN THIS DIRECTION
Ha@ e ‘C[ML g —> KEY SPACE S —
s vonable (Md i (L,lz}

({mﬂﬁf M*% &§f%u 4

t’ﬁdg}((ot abieh L

o) -

(UNUSED)

VBN SPACE
[P —— =
VBNs ARE INSERTED IN THIS DIRECTION

BU-2453

134 Facebook Inc. Ex. 1215

Prolog 1 and 2 records cannot be compressed. Therefore, the
format of index records for the primary key and the upper-level
alternate indexes for these files are identical.

Format of a Prolog 1 or 2 Index Record

KEY VALUE VBN CONTROL BITS

1 BYTE

BU-2454

The first field contains index record control bits and a pointer
size. It is a l-byte bit-encoded field. Bits 0 and 1 represent
the VBN pointer size., The following table shows the bit patterns
and their meanings.

Bits Meaning

00 2-byte pointer size
01 3-byte pointer size
10 4-byte pointer size

The second field is a variable~-byte bucket pointer containing the
virtual block number of associated data bucket.

The third field is a variable-byte key value representing the
highest key value in the corresponding data bucket.

135 Facebook Inc. Ex. 1215

INDEX COMPRESSION

Index records, like data records, can be compressed to save space
in the file. Index compression 1is done exactly like data key
compression. RMS compresses both repeating leading and trailing
characters by default, as well as character strings with a length
greater than six characters.

With front compression, all the leading characters in the. key of
an index record that are the same as those in the key of the
preceding record are suppressed. This type of compression is
particularly useful at the lowest levels of the index where many
keys may start with the same characters. RMS performs no front
compression on the first record in a bucket; it is fully expanded
except for the suppression of repeating trailing characters. On
all other keys, a field in the key overhead contains the front
compression count.

Wwith rear compression, RMS suppresses repeating trailing
characters in the key. A key length field is used to determine
the number of characters truncated. When the key is expanded, RMS
gets the fixed-length of the key from the appropriate key
descriptor.

The following table shows the index key compression of a
lower-level index, where many of the keys begin and end with
identical characters. The length of the string keys is fixed at
eleven bytes.

136 Facebook Inc. Ex. 1215

*gi9jowvaeyd g o3 Aey
ay3 jo yibuey ay3 peonpea yoyym ‘pessoidwod
aieom Koy sIy3 JOo saejdeaeyo bujpesl g 8yl

*gaejdvIRyd ¥ 03 A8y
8yl Jo yibuel oyl peonpaa yoyym ‘pessaadwod
saem Aoy syyl jo saejzdoeawvyd bBugpeer § 8yl

*g19j0eIeyd ¢ 03 Aoy
eyl jo yibue eyl pednpel1 Yoyya ‘pesseidwod
eaem Aoy sIy3 jo saejowaeyd bujpeer G 8yl

*g1930wviIRyd ¢ 8] UOTIWOURIY 8Y)

ae3je Aoy eyl jo yibuer (w30l 8yl “°saaddwavyd
Buytieay Bujiveder ¢ JO UOTIRVOUNIY Y] 20]
adeoxs pepuedxe A{inj 8y 3} os ’‘Aey buypeecead
oYyl YIIm uUowwod U} 8183oVINYD ou sey A8y STYL

*ga1930RvaRYD 9 03 A8y
8yl jo yibuey eyl pednper Yojym ‘pesseidwod sem
Koy 81yl 3O 1830vaeyd> Bujpesy [RIITUT oY ATuo

*81930919Yd £ O3
Koy ay3 jo yibual 8y3 peonpsa Yojym ‘pessoadwod
ea1om Ae) syyl jo sBaeIdvavyd Bujpeal ¥ oyl

*81930vaRyd ¢ 03
Aey 9yl 3o yjbuey 8yl poonpaia yoryam ‘pesseaduod
oi1am Aoy SIYl JO saejzowvaeyd bBuipeel 9 oyl

*g1830va9Yd T 03
Aey syl Jo yjbuel oyl peonpaa Yoiys ’‘pesseiadwod
9aom Aoy SIY) JO saadowvivyd bBujpeer § oyl

*posseaduod easm sisjovaeyd Gujpesy

OuU pue S5193091RYyD / S} UOFIVOUNIY Y} aeje Aay
oy) 3Jo y3jbuey w303 8yl °savIdeaeyd buyryeay
buiivadaa p jJo uogjeounay 8yl aoj 3dasxe
papuedxa A{in3 s} 31 08 ‘38113 eyl sy Aey sIyl

uoi3ydjaossaq

Lv-S

. sU03

)

«Suyor

. yuosud

»UO

«93

3

Juaiieg

Aoy
passaaduwo)

1 8 4
z - S 14
€ S £
S 0 9
v 1 9
v v 13
[4 9 £
L4 S [4
L4 0 L
pud Uy - udl
aeay

uoissaadwo) 19313V

syauOlISUYOL

«yyUoISUYOL

sy yyUoSUYoL

vuyyyySUYOL

¥y yylUosuad

syyyyuolaed

yxyd3d0aa04

wenyyldlred

sxuyypudiaed

yibuar reaol)
Aay teuibrao

Facebook Inc. Ex. 1215

137

X éu/} ﬁ‘w:a/@"" ;ﬁwsﬁ»%{ﬂ.&::@g;{

(o e 207 vk o Ch
e 207

/ N Ak ‘-’L} 0
BINARY VERSUS NONBINARY INDEX SEARCH

If index compression has not been enabled, RMS will do a binary
search ~ through index buckets for the requested key value,
including binary and integer keys. This is why all the VBN
pointers in a given index bucket for a Prolog 3 file are the same

size.

Example 5. Retrieval of Record With Key Value = RA

ROOT INDEX BUCKET -

PA MA LA GA DE AB
ZZ RE

——— VBNs

BU-24585

1. If index compression is not enabled, a binary search of the
index bucket is performed.

Step
1) LA | MA
2) PA | RE

2. If index compression is enabled, a nonbinary search of the
index bucket is performed.

Comparisons

Binary Search 2
Nonbinary 7
Conclusion
When might you want to enable index compression? Enable index

compression if there are large string key values that, if
compressed, could cache the whole index tree in memory in, for
example, half the space. 1In this case, consider making the index
bucket smaller in order to have more 1levels in the tree than
normal to reduce the CPU time required to do the nonbinary search.

138 Facebook Inc. Ex. 1215

SECONDARY INDEX BUCKETS AND DATA RECORDS (SIDRs)

Secondary Index Bucket Format

The alternate index of a file is very similar in structure to the
primary index. The main difference is that instead of containing
data records at level 0, alternate indexes contain secondary index
data records (SIDRs), which are individual pointers to primary
index records with a particular alternate key value.

Alternate index buckets are similar in structure to primary index
buckets. The only difference is that alternate index buckets do
not have ‘a check byte as the last byte of the bucket.

The bucket overhead of a Prolog 3 SIDR bucket differs from that of
a Prolog 1 and 2 SIDR bucket. In the bucket header, the index
number (BKT$B_INDEXNO) replaces the area number (BKT$B_AREANO),
and the next record ID (BKTSW _NXTRECID) is a word instead of a
byte.

Secondary Index Data Record Format

Like the primary index, the alternate index has at least two
levels: an upper level containing the actual index entries for
that particular key, and a data level.

Upper-level secondary index records for Prolog 1, 2, and 3 files
look just 1like their corresponding upper-level primary index
records.

However, instead of data, the lowest level of an alternate index
contains a pointer array. This array is a list of pointers called
SIDRs, which point back to the data level (level 0) of the primary
index. SIDRs consist of a key and an RRV pointer. It is the RRV
pointer that actually points back to the primary data record with
that secondary key value.

Secondary data index records have a different format in Prolog 3
files than in Prolog 1 and 2 files. Keys may either be compressed
or uncompressed, which is specified by the KEYNCMPR option in the
key XAB.

139 Facebook Inc. Ex. 1215

Format of Prolog 3 Secondary Index Data Records

PTR 1 KEY 2 SIZE PTR 1 KEY 1 SIZE

RECORD | CTRL
] BYTE

BU-2456

The 2-byte field reflects the size in bytes of the whole pointer
array.

Three bits are defined within the control byte field.

Bit Name Position Meaning
DELETED Bit 2 If set, the record has been deleted.
NOPTRSZE Bit 4 If set, the record has no RRV, and the

SIDR has been deleted.

FIRST_KEY Bit 7 If set, the record is the first entry
for that SIDR.

Like ordinary data records, SIDRs can also have duplicate records.
Duplicates for SIDRs mean that more than one pointer exists for
the same key value,

SIDR duplicates are not separate records. For each dup icate,
another pointer field is appended to the SIDR. The overhead f
Prolog 3 SIDRs is fixed whether or not duplicates are allowed. .n
this example, both key 1 and key 2 have duplicate records.

50

wn
1

140 Facebook Inc. Ex. 1215

Format of Prolog 3 Secondary Index Data Records with Duplicates

PTR 2 PTR 1 KEY 2 SIZE PTR 2 PTR 1 KEY 1 SIZE

BU-2457

The fields of the record are described in the following table.

Field Name

Size

Key

Key ptr

Description

Size field. This 2-byte field contains the size in
bytes of the SIDR array. It reflects the number of
bytes between the current SIDR and the next (the
number of bytes per SIDR); it does not include
itself in the size.

Key field. This field contains the alternate
key value. It's length is specified by the user.

Pointer field. This field is the RRV pointer
from the alternate key back to the primary key
with which it is associated. It is 4 to 7
bytes long and has three parts:

Cctrl byte The control byte indicates the
size of the VBN and has flags
that indicate whether the
record has been deleted (or is
a pointer to a deleted record).

Record 1ID This word contains the record
ID of the primary data record
that contains the given
secondary key.

VBN This field contains the VBN of
the bucket where the given
primary data record is located.
It can range from 2 to 4 bytes
long. The combination of the
record ID and the VBN forms the
RFA of the primary data record
that contains the secondary key.

141 Facebook Inc. Ex. 1215

SIDR format for a Prolog 1 or 2 file differs from SIDR format for

a Prolog 3

file. Prolog 1 and 2 SIDRs have three fields that

Prolog 3 SIDRs do. not have: the control byte, the record ID, and

the duplicate

count. They do not have the Prolog 3 flags field.

Also, Prolog 1 and 2 overhead depends on whether duplicates are
allowed, which determines whether or not the duplicate count field
is present in the record.

Format of Prolog 1 and 2 Secondary Index Data Records

with Duplicate Records

PTR N

PIR2 | PTR1 | KEY | SIZE | count | 1D BYTE

DUP REC CTRL

Field Name

Ctrl byte

Rec ID

Dup count

Size

Key

RECORD | CTRL
VBN D BYTE

Description

Pointer size and data record control bits.
This l-byte field contains one of two values:

01 The 4-byte duplicates count field is present.
10 There is no duplicates count field.
Prolog 3 SIDRs do not have this field.

Record ID. This field is 1 byte long. Prr log 3
SIDRs do not have this field.

Duplicates count. This 4-byte field contains

the number of duplicate records, unless the value
in the control byte field is 10 binary, which
indicates this field is not present.

Prolog 3 SIDRs do not have this field. It is not
supported by VAX/VMS Version 4.4, so it always
contains a value of 0.

Size of the rest of the array. This field is 2
bytes long, and the size does not include itself.

Key field. This field contains the alternate key
value. It's length is specified by the user.

wn
I

52

142 Facebook Inc. Ex. 1215

Field Name Description

Ptr Key pointer. This field is the RRV pointer from
the alternate key back to the primary key with
which it is associated. It is 5 to 7 bytes long
and has three parts:

Cntl byte

Record ID

VBN

Bits 0 and 1 of the control byte
indicate the size of the VBN.
The following values are defined:

00 2 bytes
01 3 bytes
10 4 bytes

Two other bits of the control byte
are defined. If bit 2 is set, the
record has been deleted. If bit S
is set, the pointer has been
deleted because an Update operation
changed the key value.

This byte contains the ID of the
primary data record entry.

This field contains the VBN of the
bucket where the given primary data
record is located.

The pointer field is repeated for every duplicate

record.

If the array continues into another index bucket,
everything is repeated, except that the duplicates
count is absent; this absence is reflected in the
data record control bits.

Compression

As in the primary index,
secondary index. The

indicate the key length

keys may also be compressed in the

bytes at the front of the key field

and number of characters that were

compressed at the front of the key.

143 Facebook Inc. Ex. 1215

PART 2.

Bucket

Record = Fixed-length 112 (no compression)

Bytes
0 - 109 Name
110 - 111 Seq_No

Example 1 is a

SIMULATED DATA EXAMPLE
1 block (all areas)

Primary index
Alternate index

step~by-step

illustration

of an indexed file.

Eleven records are entered in random order as follows:

Order of Entry

9

RAKOS

ASHE

TODD

JONES

VAIL

BUSH

EVANS

SACK

MAYO

10 WOODs

11 SMITH

it 1

L ¥

1

1

‘ ¥

0 PAPRPIR (A 1S

L3+L
byt
@%ﬁa

batbe } Lﬁafiﬁ:’r
chadtsom

wcod hoadir
data

WW b

5;6/;;7

5

-54

144

Facebook Inc. Ex. 1215

Example 1. Entering Data Records into a New Indexed File
in Random Order from Program Control

Indexed File After Four Records Added

n PRIMARY INDEX
55 LEVEL 1
p—ar | -
g
>
VBN #7
wl®l1g| o PRIMARY INDEX
A EIE LEVEL O
<|S|ZIF
2 T 3
N ven g4
BU-2459
VAIL Inserted
7 [72]
W] 5‘5‘
8|22
>
VBN #7
| 1 .
wlw T3 . i
=] o =
AEHE AHE
< |9 < >
2 9'/ﬂ f\ 4 1.2 3 S
RAKQOS TODD
BU-2460

?/ M & C s é cadtse e Cmﬁ.\ ﬂf ' Qﬂ/ c’jé’ﬂ[M
.mjed ordor (M5 Jases Hus on oo O’Z{
(ol Hus receds oa b wched)

145 Facebook Inc. Ex. 1215

BUSH Inserted

SIANIVA
HIH

saNor

VA

aaoli

SOMVY

A¥Y

TODD

A¥Y

S3Nor

KON
RAKQS

HSNE

JHSY

BU-2461

EVANS Inserted

TvA

acgol

S3INTVA
HOIH

SOMVY

S3Nor

HSNE

S3Nor

SNYA3

A¥Y

A¥Y

HSNB

3JHSY

Y ad

4

RAK. 3

JONES

TODD

BU-2462

5-586

Facebook Inc. Ex. 1215

146

SACK Inserted

VA

agol

AYSs

S3ANTVA
HOIH

SONMVY

SaNor

HSNB

S3INOP

SNYA3

ANy

y

AYY

AN

4

HSN\8

3HSY

JONES

TODO

RAKOS

BU-2463

MAYO Inserted

VA

QaaoL

VS

15

A¥Y

A

Foy

SANTYA
HOIH

SOMvY

SOXvY

OAVN

[

S3NOP

HSNng

S3Nof

SNYA3

AYY

\
JONES

Ay

ANY

’

HSNna

JHSY

AL

SACK

TODD

RAKOS

BU-2464

5-57

Facebook Inc. Ex. 1215

147

WOODS Inserted

SQooMm

VYA

agol

AJIVS

15

AYY

A¥N

S3ANIvA
HOMH

SOXvY

o
SACK VAIL

SONvY

OAVYN

S3INor

HSNd

S3nNor

SNVYA3

ANN

JONES

AYY

TODO

Ay

HSng

RAKOS

3IHSY

8U-2465

SMITH Inserted

16

SINMVA
HOIH

S3INoP

SQ00M
VA
aoot
n
w
[=]
Avy x-.m
HLINS
»ovs
SINVA
HOM
n
HLINS
-
SOMVY 2
_ YT et
AN ,p.m
sodvy | v
OAYR
w0
S3NOP
Hsng

SaNor

SNYA3

JONES

Ay

hea

Ay

4 l'\i'

HSN@

RAKQS

3HSY

TODD

8U-2466

58

Facebook Inc. Ex. 1215

148

If the eleven records in Example 1 had been entered sorted in the
order of the primary key, the indexed file organization at the end
of the data load would have been:

o A PRIMARY INDEX
wiE|zy LEVEL 1
§ 2 |=d
n I;
VBN #7
| i
n 0 PRIMARY INDEX
215 2|8 £ g g|E 8128 LEVEL 0.
<|@| § | 2|53 1> 8
VBN #$4 VBN #5 VBN #6
BU-2487
Random Sorted*
Data Entry Data Entry
Index Levels 2 1
Index Buckets - Primary 3 1
Data Buckets - Primary 5 3
RRVs 5 0

Sorted in order of primary key of reference

Facebook Inc. Ex. 1215

Example 2. Statistics Produced by ANALYZE
for the Indexed File Created in Example 1

(Sheet 1 of 3)

SANALYZE/RMS_FILE/STATISTICS/OUT'INTERI1.STS INTER11.DAT

—— — o —— T - . 5 S e S - e A . D S W . D . S TS S R D W - T . —

RMS File Statistics 14-NOV-1985 09:19:46.13
DISKSINSTRUCTOR:[NOODS.RMS.DATA]INTERII.DAT:I Page 1

FILE HEADER

File Spec: DISKSINSTRUCTOR: [WOODS.RMS.DATA] INTER11.DAT;1
File ID: (27936,3 'o)

Owner UIC: (010,007]

Protection: System: R, Owner: RWED, Group: R, World:
Creation Date: 3-NOV-1985 11:07:19.42

Revision Date: 12-NOV-1985 18:14:59.27, Number: 4
Expiration Date: none specified

Backup Date: none posted

Contiguity Options: contiguous-best-try

Performance Options: none

Reliability Options: none

Journaling Enabled: none

RMS FILFE ATTRIBUTES

File Organization: indexed

Record Format: fixed

Record Attributes: carriage-return
Maximum Record Size: 112

Longest Record: 112

Blocks Allocated: 16, Default Extend Size: 1
Bucket Size: 1

Global Buffer Count: 0

FIXED PROLOG

Number of Areas: 3, VBN of First Descriptor: 3
Prolog Version: 3 .

#:REA DESCRIPTOR $#0 (VBN 3, offset %X'0000')

Bucket Size: 1

Reclaimed Bucket VBN: O

Current Extent Start: 15, Blocks: 2, Used: 2, Next: 17
Default Extend Quantity: 1

Total Allocation: 8

STATISTICS FOR AREA #0
Count of Reclaimed Blocks: 0
AREA DESCRIPTOR #1 (VBN 3, offset %X'0040°')
Bucket Size: 1
Reclaimed Bucket VBN: O
Current Extent Start: 7, Blocks: 6, Used: 3, Next: 10

Default Extend Quantity: 1
Total Allocation: 6

150 Facebook Inc. Ex. 1215

Example 2 (Sheet 2 of 3)

RMS File Statistics 14-NOV-1985 09:19:46.27
DISKSINSTRUCTOR: [WOODS,RMS .DATA] INTER11.DAT;1 Page 2

STATISTICS FOR AREA #1
Count of Reclaimed Blocks: 0
AREA DESCRIPTOR $#2 (VBN 3, offset $X'0080')

Bucket Size: 1

Reclaimed Bucket VBN: 0

Current Extent Start: 13, Blocks: 2, Used: 2, Next: 15
Default Extend Quantity: 2

Total Allocation: 2

STATISTICS FOR AREA #2
Count of Reclaimed Blocks: 0
KEY DESCRIPTOR #0 (VBN 1, offset $X'0000')

Next Key Descriptor VBN: 2, Offset: $X'0000’

Index Area: 1, Level 1 Index Area: 1, Data Area: 0

Root Level: 2

Index Bucket Size: 1, Data Bucket Size: 1

Root VBN: 9 '

Key Flags:
(0) KEYSV_DUPKEYS
(3) KEY$V_IDX_COMPR
(4) KEY$V_INITIDX
(6) KEYSV_KEY_COMPR
(7) REYSV_REC_COMPR

Key Segments: 1

Key Size: 110

Minimum Record Size: 110

Index Fill Quantity: 512, Data Fill OQuantity: 512

Segment Positions: 0

Segment Sizes: 110

Data Type: string

Name: "LAST NAME"

First Data Bucket VBN: 4

00000

STATISTICS FOR KEY #0

Number of Index Levels: 2

Count of Level 1 Records: S

Mean Length of Index Entry: 112

Count of Index Blocks: 3

Mean Index Bucket Fill: 54%

Mean Index Entry Compression: 0s
S5~-61

151 Facebook Inc. Ex. 1215

Example 2 (Sheet 3 of 3)

RMS File Statistics 14-NOV-1985 09:19:46.51
DISKSINSTRUCTOR:[WOODS.RHS.DATA]INTERII.DAT:I Page 3

Count of Data Records: 11

Mean Length of Data Record: 112

Count of Data Blocks: 5

Mean Data Bucket Fill: 56%

Mean Data Key Compression: 0%

Mean Data Record Compression: 0%

Overall Space Efficiency: 15%

KEY DESCRIPTOR #1 (VBN 2, offset $X'0000’)

Index Area: 2, Level 1 Index Area: 2, Data Area: 2
Root Level: 1

Index Bucket Size: 1, Data Bucket Size: 1

Root VBN: 14

Key Flag
KEY$V_DUPKEYS
KEY$V_CHGKEYS
KEYSV_NULKEYS
KEYSV_IDX_COMPR
KEYSV_INITIDX
KEYSV_KEY_COMPR
Key Segments: 1

Key Size: 2

Minimum Record Size: 112
Index Fill Quantity: 512, Data Fill Quantity: 512
Segment Positions: 110

Segment Sizes: 2

pata Type: unsigned word

Name: “SEQ_NO"

First Data Bucket VBN: 13

S:
(0
(1
(2
(3
(4
(6

et e e N
0OO0O0O00O0O

STATISTICS FOR KEY #1

Number of Index Levels: 1
Count of Level 1 Records: 1 .
Mean Length of Index Entry: 4 =
Count of Index Blocks: 1
:Mean Index Bucket Fill: 4%
Mean Index Entry Compression: 0%
Count of Data Records: 11
Mean Duplicates per Data Record: 0
Mean Length of Data Record: 9
Count of Data Blocks: 1
Mean Data Bucket Fill: 22%
Mean Data Key Compression: 0%

The analysis uncovered NO errors.

152 Facebook Inc. Ex. 1215

Primary Index Tree

LEVEL 2

SIMNVA

LEVEL 1

LEVEL 0

SC00M

VBN 16

VBN 013

agoL

AW

-HOM

4 Sanor

HLINS.
——td NIVS
SINWVA
§| rom
HLnS
soxvy :
gl Aw \QM
W At r'm
SONvVH
Lo OAVN
ﬂ 3
SINOP
Hsng
L
F 4
e
sanor
—1 SNVA3
8
NN o m o
U o -9
[=4
m LLL SN
HSNg %
[4
IMSY

BU-2488

5-63

Facebook Inc. Ex. 1215

153

Alternate Index

Tree

VBN #14
D
G 3 LEVEL 1
<
>
¢ VBN #13
112 5 71819 /([10]11
- ~ - l? I G IS T u‘j LEVEL 0 (SIDRs)
4l & bl+ld|blb|e]e
Y
REA's" SEQ-NQ NAME
41 1 RAKOS
4-2 2 ASHE
4-3 3 TODBD
44 4 JONES
5-3 S VAIL
4-5 6 BUSH
6—1 7 EVANS
5—4 8 SACK
5—5 9 MAYO
15—4 10 w0ooDS
15-~5 1 SMITH

*RFA : VBN # — ID #

BU-2469

Facebook Inc. Ex. 1215

MODULE 6
RMS UTILITIES

Major Topics

Part 3. Introduction
- ANALYZE/RMS__FILE utility
- Measuring run-time performance

Part 4. Evaluating/Utilizing
- ANALYZE statistics output
- RTL LIBSSHOW__TIMER output

Source

Guide to VAX/VMS File Applications — Chapter 10 (Section 10.1)
VAX/VMS ANALYZE/RMS-File Utility Reference Manual

155 Facebook Inc. Ex. 1215

156 Facebook Inc. Ex. 1215

PART 3. INTRODUCTION

Analyzing File Structure

ANALYZE/RMS_FILE

Produces a statistical report on the file structure
$ ANALYZE/RMS_FILE/STATISTICS file-spec

Produces a summary report containing file structure
information

$ ANALYZE/RMS_FILE/SUMMARY file-spec

Produces a summary of the file structure and checks its
integrity ‘ :

$ ANALYZE/RMS_FILE/CHECK file-spec

This option will be covered in Module 17, Data Recovery.
Allows you to explore the structure of a file interactively.
For example, in an indexed file you can follow the whole path
from prolog block 1 down to a data record, using any index,
and dumping any buckets you want on the way down.

$ ANALYZE/RMS_FILE/INTERACTIVE file-spec

This option will be covered in Module 16, RMS Utilities (Part

ANALYZE/RMS FILE/FDL can be used to create an FDL file from an
existing data file.
NOTE
Use the following qualifier for output to be
copied to a file rather than to be sent to the
SYSSOUTPUT default.

/OUTPUT=file-spec

157 Facebook Inc. Ex. 1215

Measuring Run-Time Performance

The five available statistics for measuring run-time performance
are listed below.

Shown on line Description

ELAPSED = hhhh:mm:ss.cc Elapsed real time

CPU = hhhh:mm:ss.cc Elapsed CPU time

BUFIO = nnnn Count of buffered I/0 operations
DIRIO = nnnn Count of direct I/O operations
PAGEFAULTS = nnnn Count of page faults

LIBSSHOW_TIMER returns the times and counts accumulated since the
last call to LIBSINIT TIMER. By default, when neither code nor
action-rtn is specified In the call, LIB$SSHOW_TIMER writes to
SYSSOUTPUT a line giving the information listed above.

LIBSSTAT TIMER returns to its caller one of five available
statistics. Unlike LIB$SHOW_TIMER, which formats the values for
output, LIB$SSTAT_TIMER returns the value as an unsigned longword
or quadword.

The elapsed time |is returned ' in the system quadword format.
Therefore, the receiving area should be eight bytes long. All
other returned values are longwords.

The following summary . lustrates the differences between
LIBSSHOW_TIMER and LIBS$S1.T_TIMER.

Format for Format for
Code Statistic LIB$SHOW_TIMER LIBSSTAT_TIMER
1 Elapsed real time hhhh:mm:ss.cc Quadword in system

time format

2 Elapsed CPU time hhhh:mm:ss.cc Longword in
10-millisecond
increments

3 Count of buffered nnnn Longword

I/0 operations

4 Count of direct nnnn Longword
I/0 operations

5 Count of page nnnn Longword
faults

158 Facebook Inc. Ex. 1215

Example 1. Measuring Performance with RTL Routines

This example illustrates the use of Run-Time Library routines to
measure the performance of a program. The routines are used to
collect and display information on the resource usage of the
program.

BASIC

e The call to LIBSINIT TIMER stores the current wvalues of the
program statistics to be measured. Since no storage block was
specified, the values are kept in storage space maintained by
the RTL routines.

e Initializing the array consumes system resources.

e The call to LIBSSHOW_TIMER obtains the accumulated times and
counts since the call to LIBSINIT TIMER. Because no code or
action-routine has been specified, the statistics are output
to the terminal in ASCII format.

Example 1 (Sheet 1 of 5)

LIBTIMER.BAS

!
!
! This program illustrates the use of the RTL
! performance measurement routines.
!

EXTERNAL LONG FUNCTION LIBSINIT_TIHER: LIBSSHOW_TIMER

DECLARE LONG result, j, k

DIMENSION LONG iarray (99%, 99%)
!

result = LIBSINIT TIMER()

CALL LIBSSTOP (result BY VALUE) IP (result AND 1%)=0%
!
! Initialize the array

FOR k = 0% TO 99% STEP 1%

. FOR j = 0% to 99% STEP 1%
iarray (J,k) = 1% ~
NEXT j

NEXT k

!

Pt ok o b b o et o ot ot
VOB W OWONOAWN & WN -

20 result = LIBSSHOW 't IMER()

21 PRINT 'Usage values after array initialization’

22 CALL LIBSSTOP (result BY VALUE) IF (result AND 13%)=0%
23 !

24 END

$ BASIC LIBTIMER
$ LINK LIBTIMER
S RUN LIBTIMER
Elapsed: 00:00:00.36 CPU: 0:00:00.21 BUFIO: 0 DIRIO: 0 FAULTS: 1
Usage values after array initializaton :

159 Facebook Inc. Ex. 1215

COBOL

The call to LIBSINIT TIMER stores the current values of the
program statistics to be measured. Since no storage block was
specified, the values are kept in storage space maintained by
the RTL routines.

Initializing the array consumes system resources. Notice that
many page faults are incurred because the array was not
accessed in the most efficient order. ’

The call to LIBSSHOW_TIMER obtains the accumulated times and
counts since the <call to LIBSINIT TIMER. Since no code or
action-routine has been specified, the statistics are output
to the terminal in ASCII format.

Example 1 (Sheet 2 of 5)

1 * LIBTIMER.COB
2 IDENTIFICATION DIVISION.

3 *

4 EROGRAH-ID. LIRTIMER.

S

6 . This program illustrates the use of the RTL

7 . performance measurement routines.

3 *

9 DATA DIVISION.

10

11 WORK ING-STORAGE SECTION.

12 01 ARRAY.

13 02 DIM] OCCURS 100 TIMES.

14 03 DIM2 OCCURS 100 TIMES.

15 0S5 IARRAY PIC S9(9) COMP.

16 01 1I PIC S9(9) COMP.

17 01 J : PIC S9(9) COMP.

18 01 RESULT PIC S9(9) COMP.

19

20 PROCEDURE DIVISION.
21 BEGIN.

22 *

23 CALL 'LIBSINIT_TIHBR' GIVING RESULT.

24 R IF RESULT IS FAILURE CALL 'LIBSSTOP' USING BY VALUE RESULT.
25
26 . Initialize the table

27 PERFORM VARYING J FROM 1 BY 1 UNTIL I > 100

28 PERFORM VARYING I FROM 1 BY 1 UNTIL I > 100
29 MOVE 0 TO IARRAY(I,J)

30 END-PERFORM

31 END-PERFORM

32 *

33 CALL ‘LIBSSHOW_TIMER' GIVING RESULT.

34 DISPLAY ‘Usage values after table initialization'.
35 IF RESULT IS FAILURE CALL 'LIBSSTOP' USING BY VALUE RESULT.
36 STOP RUN.

$ COBOL LIBTIMER
S LINK LIBTIMER
$ RUN LIBTIMER
ELAPSED: 00:00:00.11 CPU: 0:00:00.06 BUFIO: O DIRIO: 0 FAULTS: 80
Usage values after table initialization
$

160 Facebook Inc. Ex. 1215

P

FORTRAN

The call to LIB$INIT TIMER stores the current values of the
program statistics to be measured. Since no storage block was
specified, the values are kept in storage space maintained by
the RTL routines.

The call to LIB$SHOW_TIMER obtains the accumulated times and
counts since the <call to LIBSINIT TIMER. Since no code or
action-routine has been specified, the statistics "are output
to the terminal in ASCII format.

Initializing the array consumes system resources. Notice that

many page faults are incurred because the array was not
accessed in the most efficient order.

Example 1 (Sheet 3 of 5)

1 C** LIBTIMER.FOR
2 c

3 C This program illustrates the use of the RTL

4 C performance measurement routines.

5 c

6 IMPLICIT INTEGER*4 (A-2)

7 DIMENSION IARRAY (100, 100)

8 c

9 RESULT = LIBSINIT_TIHER()

10 IF (.NOT. RESULT) CALL LIBSSTOP(SVAL(RESULT))
11 (o
12 Cc Initialize the array

13 DO J=1, 100

14 - DO K=1, 100

15 IARRAY(J,K)= 1

16 ENDDO

17 ENDDO

18 c

19 RESULT= LIBSSHOW_TIMER()

20 IF (.NOT. RESULT) CALL LIBSSTOP(SVAL(RESULT))
21 TYPE *, 'Usage values after array initialization’
22 c

23 END

$ FORTRAN LIBTIMER
$ LINK LIBTIMER
$ RUN LIBTIMER

ELAPSED: 00:00:00.21 CPU: 0:00:00.19 BUFIO: O DIRIO: 0 FAULTS: 80

Usage values after array initialization

161 Facebook Inc. Ex. 1215

MACRO

e The call to LIBSINIT TIMER stores the current values of the
program statistics to be measured. Since no storage block was
specified, the values are kept in storage space maintained by
the RTL routines.

e The INDEX and AOBLEQ statements are used to implement two
loops from 1 to 100 to initialize the array.

e The call to LIBSSHOW_TIMER obtains the accumulated times and
counts, since the «call to LIBSINIT TIMER. No code or
action-routine has been specified, so the statistics are
output to the terminal in ASCII format.

Example 1 (Sheet 4 of 5)

1 H LIBTIMER.MAR
2 H . .
3 H This program illustrates the use of the RTL
4 H performance measurement routines.
S H
6 .TITLE LIBTIMER
7 .MACRO LIB_ERROR ?NO_ERROR
8 BLBS RO ,NO_ERROR
9 PUSHL RO
10 CALLS #1,G"LIBSSTOP
11 NO_ERROR:
12 <ENDM LIB_ERROR
13 H
14 .PSECT NOSHARED_DATA PIC, NOEXE, LONG
15 IARRAY: .BLKL 100*100
16 A
17 .PSECT CODE PIC, SHR, NOWRT, LONG
18 .ENTRY BEGIN “M<R2,R3>
19 .
20 CALI 5 #0, GTLIBSINIT_TIMER
21 LIB_ .RROR
22 H
23 H
24 MOVL #1, Rl
25 30S: MOVL #1, R2
26 H
27 : Do IARRAY (J,K)=1; J=1,100; K=1,100
28 40S: INDEX R2, #1, #100, #25, 40, R}
29 INDEX R1, #1, #100, #1, R3, R3’
30 H
31 MOVL #1, IARRAY-104[R3]
32 H :
33 AOBLEQ #100, R2, 40S$
34 AOBLEQ #100, R1l, 30§
35 H
36 CALLG #0, G LIBSSHOW_TIMER
37 LIB_ERROR
38 OUTPUT T=<Usage values after computation:>
39 H
40 MOVL #5SS_NORMAL, RO
41 RET
42 .END BEGIN

$ MACRO LIBTIMER
$ LINK LIBTIMER
$ RUN LIBTIMER
ELAPSED: 00:00:00.56 CPU: 0:00:00.21 BUFIO: O DIRIO: 0O FAULTS: 22
Usage values after computation:

162 Facebook Inc. Ex. 1215

PASCAL

The call to LIBSINIT_TIMER stores the current values of the
program statistics to be measured. Since no storage block was
specified, the values are kept in storage space maintained by
the RTL routines.

Initializing the array consumes system resources. Notice that
many page faults are incurred.

The call to LIB$SHOW_TIMER obtains the accumulated times and
counts since the call to LIB$SINIT_TIMER. Since no code or
action-routine has been specified, the statistics are output
to the terminal in ASCII format.

Example 1 (Sheet 5 of 5)

1 PROGRAM libtimer (INPUT, OUTPUT):

2

3 (* LIBTIMER.PAS

4 (* This program illustrates the use of the RTL

S (* performance measurement routines.

6

7 VAR iarray: ARRAY [1..100, 1..100] OF INTEGER;

8 countl, count2: INTEGER:

9 lib_stat: INTEGER:
10
11 FUNCTION LIBSINIT TIMER{ VAR handle_adr: INTEGER
12 s= {IMMED 0): INTEGER; EXTERN;
13
14 . FUNCTION LIB$SHOW_TIMER(
15 handler_adr: INTEGER := SIMMED 0:

16 code: INTEGER := SIMMED 0; SIMMED [UNBOUND])
17 FUNCTION action_rtn :INTEGER := SIMMED £;
18 SIMMED user_arg: INTEGER := RIMMED 0):

19 INTEGER; EXTERN:

20

21 PROCEDURE LIBS$STOP(SIMMED cond_value: INTEGER) ; EXTERN:
22

23 BEGIN
24 lib_stat:= T 'BSINIT_TIMER;

25 IF NOT ODD(1ib_ﬁtat) THEN LIBSSTOP(lib_stat):
26

27 (* Initialize the array *)
28 FOR countl:= 1 TO 100 DO

29 FOR count2:= 1 TO 100 DO

30 iarray[countl,count2] := 1;

31
32 lib_stat:= LIBSSHOW_TIMER;

33 WRITELN(‘Usage values after array initialization’');
34 IF NOT ODD(lib_stat) THEN LIBSSTOP(lib_stat)
35 END.

S PASCAL LIBTIMER
$ LINK LIBTIMER
$ RUN LIBTIMER
ELAPSED: 00:00:00.15 CPU: 0:00:00.14 BUFI0O: O DIRIO: O FAULTS: 78
Usage values after array initialization

163 Facebook Inc. Ex. 1215

PART 4. EVALUATING/UTILIZING

Example 2.

by RMS_Puts versus FAST_Convert

RMS_PUTS
Initial = 1000
Additional = 0

Not loaded in order of key.

(Sheet

STYPE BACK1.FDL

-

1 of 2)
FAST CONVERT
tnitTal = 1000
Additional = [}

STYPE BACK2.FDL

Comparison of FDL Calculations for Loading Data

TITLE

IDENT " 1-JAN-1986 20:08:21
SYSTEM
SOURCE

FILE
NAME
ORGANIZATION

RECORD
CARRIAGE_CONTROL
FORMAT
SIZE

AREA 0
ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET STZE
EXTENSTON

ARFA 1
ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_STZE
EXTENSTON

KEY 0
CHANGES
DATA_AREA
DATA_FILL
DATA_KEY_COMPRESSION

DATA_RECORD_COMPRESSION

DUPLICATES
INDEX_AREA
INDEX_COMPRESSION
INDEX_FILL
LEVELT_INDEX_AREA
NAME

PROLOG
SEGO_LENGTH
SEGO_POSITION
TYPE

VAX-11 FDL Rditor®
VAX/VMS

" INDXBACK .DAT"
indexed

carriage_return
fixed
50

180
yes
3
45

no
100
no
no
no

no
100

*SEQ_NO®

atring

164

TITLE
IDENT

SYSTEM

FILE

RECORD

AREA 0

AREA 1

KEY O

" 1-JAN-1986 20:12:50

SOURCE

NAME
ORGANIZATION

CARRIAGE_CONTROL
FORMAT
SIZE

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_STZE
EXTENSTON

ALLOCATION
BEST_TRY_CONTIGUOUS
BUCKET_SIZE
EXTENSION

CHANGES

DATA_AREA

DATA_FILL
DATA_KEY_COMPRESSION

DATA RECORD COMPRESSION

pupLYIcATES T
INDEX_AREA
INDEX_COMPRESSION
INDEX_FILL
LEVELT_INDEX_AREA
NAME

PROLOG
SEGO_LENGTH
SEGO_POSITION
TYPE

VAX-11 FDL Editor"”
VAX/VMS

" INDXBACK.DAT"
indexed

carriage_return
fixed
50

123
yes
3
30

no

0
100
no
no
no

1
no
100
1
*SEQ_NO"
3

)
1]
string

Facebook Inc. Ex. 1215

Example 2 (Sheet 2 of 2)

—————— - - > W WS D . S O D D W - N A - - - W D D A Y W D Y W - - -

[X222 22]

File DISKSINSTRUCTOR: [WOODS.RMS.COURSE]BACK1.FDL;1
TITLE "BACKl - INITIAL 1000; O - LOADED RMS_PUTS NOT- IN ORDER"

1
2
3 IDENT * 1-JAN-1986 20:08:21 VAX-11 PDL Editer”
4
*

kR

File DISKSINSTRUCTOR:[WOODS.RMS.COURSE]BACK2.FDL;1
TITLE "BACK2 - INITIAL 1000; 0 - PAST_CONVERT LOAD"

LS N

3 IDENT " 1-JAN-1986 20:12:50 VAX-11 FDL Editor”

AR dhid
[ZEXE2 24222 § 4

File DISK$INSTRUCTOR: [WOODS.RMS.COURSE] BACKl.FDL;1

18 ALLOCATION 180
19 BEST_TRY_CONTIGUOUS yes
20 BUCKET_STZE 3
21 EXTENSION 45
22

AR

File DISKSINSTRUCTOR:[WOODS.RMS.COURSE]BACK2.FDL;1
18 ALLOCATION 123
19 BEST_TRY_CONTIGUOUS yes
20 BUCKET_STZE 3
21 EXTENSION 30

L E2 222 8 2 & 2 4

Number of difference sections found: 2
Number of difference records found: 7

DIFFERENCES /IGNORE=()/MERGED=]-

DISK$ INSTRUCTOR: [WOODS.RMS.COURSE] BACK1.FDL;1-
'_DISKSINSTRUCTOR:[WOODS.RHS.COURSB]BACKZ.FDL:I

165 Facebook Inc. Ex. 1215

Example 3. Loading BACKWARDS Data Using CONVERT

SCONVERT/SORT/STATISTICS/FDL=BACK2 BACKWARDS.DAT INDXBACK.DAT

CONVERT Statistics

Number of Files Processed: 1 -

Total Records Processed: 1000 Buffered I/0 Count: 29
Total Exception Records: 0 Direct 1/0 Count: 221
Total valid Records: 1000 Page Faults: 264
Elapsed Time: 0 00:00:15.90 CPU Time: 0 00:00:04.82

Directory DISKSINSTRUCTOR:[WOODS.RMS.COURSE]

INDXBACK.DAT:1 File ID: (31322,14,0)

Size: 128/128 Owner: [vMS ,WOODS)

Created: 1-JAN-1986 20:35 Revised: 1-JAN-1986 20:35 (1)
Expires: <None specified> Backup: <No backup done>

File organization: 1Indexed, Prolog: 3, Using 1 key
In 2 areas
File attributes: Allocation: 128, Extend: 30, Maximum bucket size: 3,
Global buffer count: 0, No version limit
Contiguous best try

Record format: Fixed length 50 byte records

Record attributes: Carriage return carriage control

File protection: €;3tem:R, Owner:RWED, Group:R, World:
Access Cntrl List: ‘une

Total of 1 file, 128/128 blocks.

- - - o s -

166 Facebook Inc. Ex. 1215

Example 4.

Loading FRONTWARDS Data Using CONVERT

SCONVERT/NOSORT/STATISTICS/FDL=FRONTI1

FRONTWARDS . DAT INDXFRONT.DAT

CONVERT Statistics
Number of Files Processed:
Total Records Processed:
Total Exception Records:
Total valid Records:
Elapsed Time:

0 00:00:03.33

1
1000 Buffered 1/0 Count:
0 Direct I/0 Count:
1000 Page Faults:

CPU Time:

10
72
161

0 00:00:02.20

Directory DISK$INSTRUCTOR: [WOODS.RMS.COURSE] .

INDXFRONT.DAT; 1
Size: 128/128
Created: 1-JAN-1986 20:30

Expires: <None specified>

File organization:

File attributes:

File ID: (31155,15,0)

owner: [VMS , WOODS]

Revised: 1-JAN-1986 20:30 (1)
Backup: <No backup done>

Indexed, Prolog: 3, Using 1 key

In 2 areas

Contiguous best try

Record format:
Record attributes:
File protection:
Access Cntrl List: None

Fixed length 50 byte records
Carriage return carriage control
System:R, Owner:RWED, Group:R, World:

Total of 1 file, 128/128 blocks.

-------------------- - v o -

Allocation: 128, Extend: 30, Maximum bucket size: 3,
Global buffer count: 0, No version limit

167 Facebook Inc. Ex. 1215

Example 5. Loading BACKWARDS Data Using RMS_Puts
in Program Control

. > > - > At o . > P = o D > S D D A - . - - - D > S - S L A T A D A A = = e

$SH STATUS
Status on 1-JAN-1986 20:46:30.46 Elapsed CPU : 0 00:16:36.68
Buff. I/0 : 41497 Cur. ws, : 450 Open files : ’ 2
Dir. I/0 : 36682 Phys. Mem. : 251 Page Faults : 125478

- ——— - —— . > A - P A I G W W T A S D D D D W A P A S S S - . - W W - - - e

SRUN LOADINDX

Enter name of INPUT SEQUENTIAL file: BACKWARDS .DAT } RMS PUTS
Enter name of FDL file for OUTPUT: BACKl.FDL

ELAPSED: 00:01:01.49 CPU: 0:00:13.89 BUFIO: 15 DIRIO: 1868 FAULTS: 110

VS FAST_CONVERT 0:04.82 29 221 264
SSH STATUS
Status on 1-JAN-1986 20:47:34.54 Elapsed CPU : 0 00:16:51.09
Buff. I/0 : 41520 Cur. ws, 300 Open files : . 2
Dir. I/0 : 38573 Phys. Mem. : 243 Page Faults : 125667

Directory DISKSINSTRUCTOR:[WOODS .RMS.COURSE]

INDXBACK.DAT; 2 File ID: (31581,39,0)

Size: 368/368 Owner: (VMS ,WOO0DS])

Created: 1-JAN-1986 20:46 Revised: 1-JAN-1986 20:47 (1)
Expires: <None specified> Backup: <No backup done>

File organization: Indexed, Prolog: 3, Using 1 key
. In 2 areas
File attributes: Allocation: 368, Extend: 45, Maximum bucket size: 3,
Global buffer count: 0, No version limit
Contiguous best try

Record format: Fixed length 50 byte records
Rgcord attributes: Carriage return carriage control
File protection: System:R, Owner:RWED, Group:R, World:

Access Cntrl List: None

- - " i = — o —— 8 " ———— T, - o . VD -~ - =

168 Facebook Inc. Ex. 1215

Example 6. Analyze Statistics for BACKWARDS RMS_Puts Data Load

(Sheet 1 of 2)

SANALYZE/RMS_FILE/STATISTICS/OUT=INDXBACK.ANL INDXBACK.DAT

RMS File Statistics 1-JAN-1986 20:52:05.27
DISKSINSTRUCTOR: [WOODS .RMS .COURSE] INDXBACK.DAT;2 Page 1

FILE HEADER

File Spec: DISKSINSTRUCTOR:{WOODS.RMS.COURSE] INDXBACK.DAT;2
File ID: (31581,39,0)

Owner UIC: [010,007]

Protection: System: R, Owner: RWED, Group: R, World:

Creation Date: 1-JAN-1986 20:46:31.95

Revision Date: 1-JAN-1986 20:47:23.70, Number: 1
Expiration Date: none specified

Backup Date: none posted

Contiguity Options: contiguous-best-try
Performance Options: none
Reliability Options: none
Journaling Enabled: none

RMS FILE ATTRIBUTES

File Organization: indexed

Record Format: fixed

Record Attributes: carriage-return

Maximum Record Size: S0

Longest Record: 50

Blocks Allocated: 368, Default Extend Size: 45
Bucket Size: 3

Global Buffer Count: 0

FIXED PROLOG

Number of Areas: 2, VBN of First Descriptor: 2
Prolog Version: 3

AREA DESCRIPTOR #0 (VBN 2, offset %X'0000')
Bucket Size: 3 '
Reclaimed Bucket \BN: 0
Current Extent Stact: 323, Blocks: 46, Used: 30, Next: 353
Default Extend Quantity: 4S5
Total Allocation: 364
STATISTICS FOR AREA #0
Count of Reclaimed Blocks: 0
AREA DESCRIPTOR #1 (VBN 2, offset %X'0040')
Bucket Size: 3
Reclaimed Bucket VBN: 0
Current Extent Start: 181, Blocks: 4, Used: 3, Next: 184
Default Extend Quantity: 3
Total Allocation: 4

STATISTICS FOR AREA #¥1

169 Facebook Inc. Ex. 1215

Example 6 (Sheet 2 of 2)

RMS File Statistics

1-JAN-1986 20:52:05.41

DISKS INSTRUCTOR: [WOODS . RMS.COURSE] INDXBACK . DAT; 2 Page 2

Count of Reclaimed Blocks:
KEY DESCRIPTOR #0 (VBN 1, offset %X'0000°)

Index Area: 1, Level 1 Index Area:
Root Level: 1

Data Area: 0

Index Bucket Size: 3, Data Bucket Size: 3

Root VBN: 181

Key Flags:
(0) KEYSV_DUPKEYS
(3) KEYSV_IDX_COMPR
(4) KEYSV_INITIDX
(6) KEYSV KEY_COMPR
(7) KEYSV REC COMPR O

Key Segments: 1

Key Size: 5

Minimum Record Size: S

[N eNeNo]

Index Fill Quantity: 1536, Data Fill Quantity: 1536

Segment Positions: 0
Segment Sizes:)
Data Type: string

Name: "SEQ_NO"

First Data Bucket VBN: 3

STATISTICS FOR KEY #0

Number of Index Levels:

Count of Level 1 Records:
Mean "ength of Index Entry:
Cour * of Index Blocks:

Mea:: Index Bucket Fill:

Mean Index Entry Compression:

Count of ‘Data Records:

Mean Length of Data Record:
Count of Data Blocks:

Mean Data Bucket Fill:

Mean Data Key Compression:
Mean Data Record Compression:

Overall Space Efficiency:

The anélysis uncovered NO errors.

1

108

7

3
50%
0%

1000

50

342
39%
0%
0%

26% — Ng '\(,M;/L '# M(Lw\\

7 olud, rbaa, 4

ANALYZE/RMS_FILE/STATISTICS/OUT=INDXBACK.ANL INDXBACK.DAT

Facebook Inc. Ex. 1215

Example 7.

(Ssheet 1 of 2)

RMS File Statistics 1-JAN-1986 20:50:03.56
DISKS INSTRUCTOR: [WOODS . RMS .COURSE] INDXFRONT .DAT: 2 Page 1

FILE HEADER

File Spec: DISKSINSTRUCTOR:[WOODS.RMS.COURSE) INDXFRONT.DAT; 2
File ID: (31365,15,0)

Owner UIC: [010,007)

Protection: System: R, Owner: RWED, Group: R, World:

Creation Date: 1-JAN-1986 20:44:32.52

Revision Date: 1-JAN-1986 20:45:01.50, Number: 1
Expiration Date: none specified

Backup Date: none posted

Contiguity Options: contiguous-best-try
Performance Options: none
Reliability Options: none
Journaling Enabled: none

RMS FILE ATTRIBUTES

File oOorganization: indexed

Record Format: fixed

Record Attributes: carriage~-return

Maximum Record Size: S0

Longest Record: S50

Blocks Allocated: 140, Default Extend Size: 33
Bucket Size: 3

Global Buffer Count: 0

FIXED PROLOG

Number of Areas: 2, VBN of First Descriptor: 2
Prolog Version: 3

AREA DESCRIPTOR #0 (VBN 2, offset $X'0000')

Bucket Size: 3

Reclaimed Bu.“et VBN: O

Current Externt St: t: 1, Blocks: 136, Used: 122, Next: 123
Default Extend Quaniity: 33

Total Allocation: 1.6

STATISTICS POR AREA #0
Count of Reclaimed Blocks: 0
AREA DESCRIPTOR #1 (VBN 2, offset %X'0040°)
Bucket Size: 3
Reclaimed Bucket VBN: 0
Current Extent Start: 137, Blocks: 4, Used: 3, Next: 140

Default Extend Quantity: 3
Total Allocation: 4

STATISTICS FOR AREA #1

Analyze Statistics for FRONTWARDS RMS_Puts Data Load

171 Facebook Inc. Ex. 1215

Example 7 (Sheet 2 of 2)

RMS File Statistics 1-JAN-1986 20:50:03.82
DISKSINSTRUCTOR: [WOODS .RMS .COURSE] INDXFRONT.DAT: 2 Page 2
Count of Reclaimed Blocks: 0

KEY DESCRIPTOR #0 (VBN 1, offset %X'0000')

Index Area: 1, Level 1 Index Area: 1, Data Area: 0

Root Level: 1

Index Bucket Size: 3, Data Bucket Size: 3

Root VBN: 137

Key Flags:
(0) KEYSV_DUPKEYS
(3) KEYSV_IDX_COMPR
(4) KEYSV_INITIDX
(6) KEYSV_KEY_COMPR
(7) KEY$SV_REC_COMPR

Key Segments: 1

Key Size: 5

Minimum Record Size: S

Index Fill Quantity: 1536, Data Fill Quantity: 1536

Segment Positions: 0

Segment Sizes: 5

Data Type: string

Name: "SEQ_NO®

First Data Bucket VBN: 3

O0O0O0O0

STATISTICS FOR KEY #0

Number of Index Levels: 1
Count of Level 1 Records: 40
Mean "ength of Index Entry: 7
Coun’ of Index Blocks: 3
Mean Index Bucket Fill: 19%
Mean Index Entry Compression: 0s
Count of Data Records: 1000
Mean Length of Data Record: 50
Count of Data Blocks: 120
Mean Data Bucket Fill: 97%
Mean Data Key Compression: 0%
Mean Data Record Compression: 0%
Overall Space Efficiency: 69%

The analysis uncovered NO errors.

ANALYZE/RMS_FILE/STATISTICS/OUT=INDXFRONT.ANL INDXFRONT.DAT

172 Facebook Inc. Ex. 1215

Example 8. Comparison of Statistics for RMS_Puts
Data Load -- BACKWARDS versus FRONTWARDS RMS Puts Data Load

ANALYZE STATISTICS FOR KEY %0

INDXBACK.DAT INDXFRONT .DAT
Number of Index Levels: 1 1
Count of Level 1 Records: 108 40
Mean Length of Index Entry: 7 7
Count of Index Blocks: 3 -3
Mean Index Bucket Fill: S0% 19%
Mean Index Entry Compression: 0% 0%
Count of Data Records: 1000 1000
Mean Length of Data Record: 50 S0
Count of Data Blocks: 342 120
Mean Data Bucket Fill: 39% 97%
Mean Data Key Compression: 0% (1]
Mean Data Record Compression: 0% 0%
Overall Space Efficiency: 26% 69%
ANALYZE FILE SUMMARY
Bucket size 3 3
Number blocks allocated 368 140
Default extent 45 33
Area 0 - Number unused 16 14
1 - Number unused 1 1
RTL LIB$SSHOW TIMER STATISTICS for LOADINDX: &
INDXBACK INDXFRONT
No DFW¥ DFW * No DFW ¢ pFw *
Elapsed time 01:01.49 0:46:54 0:30:12 0:22.34
CPU time 0:15.89 0:11.94 0:10.16 0:04.50
Buffered I-0 15 17 7 13
Direct I-0 1868 978 1364 395
Page faults 110 112 112 119

& D#awﬂd .

173 Facebook Inc. Ex. 1215

Percent
Difference = (Poorer way - Better way)/Poorer way * 100.0

Calculation of percent difference in DIO between INDXBACK_DFW and
INDXFRONT_DFW

(978 - 395) -
____________ * 100.0 = }{/.‘35% reduction in DIO

59.61

174 Facebook Inc. Ex. 1215

Example 9. Real-Data ANALYZE/RMS/STAT Output Using
Data Compression Option

(Sheet 1 of 2)

RMS File Statistics
Page 1

FILE HEADER

File Spec: DISKXYZ:[{USERA] REALDATA2.DAT;2

File ID: (31365,15,0)

Owner UIC: [120,007]

Protection: System: R, Owner: RWED, Group: , World:

Creation Date: 1-JAN-1986 20:44:32.52

Revision Date: 31-JAN-1986 20:45:01.50, Number: 161
Expiration Date: none specified

Backup Date: none posted

Contiguity Options: contiguous-best-try
Performance Options: none
Reliability Options: none
Journaling Enabled: none

RMS FILE ATTRIBUTES

File Organization: indexed

Record Format: fixed

Record Attributes: carriage-return

Maximum Record Size: 140

Longest Record: 140

Blocks Allocated: 3003, Default Extend Size: 729
Bucket Size: 3

Global Buffer Count: O

FIXED PROLOG

Number of Areas: 2, VBN of First Descriptor: 2
Prolog Version: 3

AREA DESCRIPTOR #0 (VBN 2, offset $X'0000')

Bucket Size: 3 v

Reclaimed Bucket VBN: O

Current Extent Start: 1, Blocks: 2922, Used: 1010, Next: 1011
Default Extend Quantity: 729

Total Allocation: 2922

STATISTICS FOR AREA #0
Count of Reclaimed Blocks: 0
AREA DESCRIPTOR #1 (VBN 2, offset %X'0040')
Bucket Size: 3
Reclaimed Bucket VBN: O
Current Extent Start: 2923, Blocks: 81, Used: 48, Next: 2971

Default Extend Quantity: 21
Total Allocation: 81

175 Facebook Inc. Ex. 1215

Example 9 (Sheet 2 of 2)

RMS File Statistics
Page 2

STATISTICS FOR AREA #1

Count of Reclaimed Blocks:

KEY DESCRIPTOR #0 (VBN 1, offset 3X'0000’)

Index Area: 1, Level 1 Index Area: 1,
Root Level: 2

Data Area: O

Index Bucket Size: 3, Data Bucket Size: 3

Root VBN: 2089

Key Flags:
(0) KEYSV_DUPKEYS
(3) KEY$V_IDX_COMPR
(4) KEYSV_INITIDX
(6) KEYSV_KEY_COHPR
(7) KEY$SV_REC_COMPR

Key Segments: 1 -

Key Size: 60

Minimum Record Size: 60

Index Fill Quantity: 1536, Data Fill

Segment Positions: 0

Segment Sizes: 60

Data Type: string

Name: "MY_VERY_OWN_KEY"

First Data Bucket VBN: 3

—_—OoO~O

STATISTICS FOR KEY #0

Number of Index Levels:

Count of Level 1 Records:
Mean Length of Index Entry:
Count of Index Blocks:

Mean Index Bucket Fill:

Mean Index Entry Compression:

Count of Data Records:

Mean Length of Data Record:.
Count of Data Blocks:

Mean Data Bucket Fill:

Mean Data Key Compression:
Mean Data Record Compression:

Overall Space Efficiency:

The analysis uncovered NO errors.

Quantity: 1536

336
62
48
75%
16%

8763

140

1008
94%
38%
90%

79%

ANALYZE/RMS_FILE/STATISTICS/OUT=REALDATA2.ANL REALDATA2.DAT

Facebook Inc. Ex. 1215

MODULE 7

FILE SHARING AND RECORD/BUCKET LOCKING:
SEQUENTIAL, RELATIVE, AND INDEXED FILES

Major Topics

- File sharing

~ Record locking

- Alternative record locking controlling options

Source
Guide to VAX/VMS File Applications — Chapter 7 (Sections 7.1-7.2)

177 Facebook Inc. Ex. 1215

178 Facebook Inc. Ex. 1215

FILE SHARING

File sharing for READs (GETs) 1is supported for all RMS file
organizations without restriction.

As of VAX/VMS Version 4.4, WRITE (PUTs, UPDATEs, DELETEs) sharing
is also supported for all RMS file organizations without
restriction. Prior to Version 4.4, write sharing for seguential
files was restricted to fixed-length 512-byte records.

The combination of values specified for file sharing and file
access by the initial accessor of the file determines the type of
file access that will be allowed for subsequent users. In
addition to the comparison of the file access values that
subsequent accessors specify with the file sharing values of the
initial accessor, the values specified for file sharing by
subsequent accessors must be compatible with the values specified
for file access by the initial accessor.

Initial File Access and Subsequent File Sharing

Initial Accessor Access Subsequent Accessor Sharing
ACCESS GET* SHARING GET*

ACCESS DELETE SHARING DELETE

ACCESS PUT . SHARING PUT

ACCESS UPDATE ‘ SHARING UPDATE

ACCESS TRUNCATE** No access allowed

* May be implied by default
** gpecifying ACCESS TRUNCATE disables file sharing

Because the initial accessor can specify multiple access values, a
subsequent accessor whose sharing values match all of the initial
accessor's access values is allowed access; when the subsequent
accessor specifies a sharing value that the initial accessor did
not specify as an access value (an exception is ACCESS GET, which
is implied), access will be denied.

179 Facebook Inc. Ex. 1215

File Access and Sharing Options

File Access File Sharing
Open Keywords Open Keywords
BASIC ACCESS ALLOW
READ READ
WRITE WRITE (locks against
delete or scratch)

MODIFY MODIFY (unlimited
SCRATCH) access)
APPEND (sequential) NONE

DEFAULT - MODIFY DEFAULT

If access READ - READ
and other access - NONE

COBOL ALLOWING
INPUT READERS
OUTPUT WRITERS
EXTEND UPDATERS
I-0 ALL
NO OTHERS
DEFAULT DEFAULT
No default - must If input - READERS
specify one of above all other modes - NO OTHERS
keywords.
FORTRAN READ ONLY SHARED
DEFAULT DEFAULT
If above keyword If above keyword omitted,
not present in OPEN - no sharing

read-write

PASCAL History _ Sharing
OLD READO.ILY
NEW "READWRITE
UNKNOWN ,
READONLY NONE
DEFAULT - NEW DEFAULT
(except if external If History = READONLY ~-
file opened using READONLY
RESET or EXTEND - If History # READONLY -
OLD) NONE
7-2

180 Facebook Inc. Ex. 1215

File Access File Sharing

FABSB_FAC FABSB_SHR
MACRO FABSV FABSV
FABSM _GET FABSM _SHRGET
_PUT _SHRPUT
_DEL _ _SHRDEL
_UPD _SHRUPD
_TRN (sequential) _MSE multi-streaming
_BIO Block I/0 _UPI user-interlock
_BRO Block I/0 _NIL
DEFAULT DEFAULT
sV SV
$M_GET If $B_FAC = FABSM_GET
_SHRGET
$v $V
If $B_FAC = FABSM _PUT then $M_NIL
" DEL
_UPD
_TRN
7-3

181 Facebook Inc. Ex. 1215

RECORD LOCKING

RMS provides a record-locking capability for relative files,
indexed files, and sequential files. This capability affords
control over operations when two or more streams or processes are
accessing the file simultaneously. Record locking ensures that
when a program is adding, deleting, or modifying a record on a
given stream, another stream or process cannot access the same
record.

Shared sequential files have one capability not common to shared
relative or indexed files. This capability is associated with
Append operations. If more than one process is connected to the
end-of-file of a shared sequential file and 1is sequentially
putting records to the end of the file, RMS guarantees the records
will be appended in temporal order, even in a VAXcluster
environment.

To prevent simultaneous updates of the same records, RMS uses the
VAX/VMS 1lock manager to lock a record that has been read and will
be modified later by the same program. :

Whether or not record locking can occur on a file depends on the
file access and file sharing specified by the initial accessor and
whether another user has successfully opened the file for shared
access,

® RMS automatically locks records when one or more of the
processes with SHARED FILE ACCESS has opened the file for
access other than read (for example, WRITE/PUT, MODIFY/UPDATE,
DELETE).

e RMS handles automatic locking of an entire bucket for the
short period of time required to access the record initially.
This automatic locking also occurs later when the contents of
the bucket are modified. 1In the interim, the record remains
locked, but other records in the bucket can be accessed and
modified as required. See Appendix A for a summary of the
specific points in RMS-coded instructions for index flles when
locking is done at record, bucket, or f le level.

@ In the case of shared sequential files, buck it locking is done
on a “virtual' bucket, the size of which is determined by the
first accessor's multiblock count (MBC). A common buffer size
has to be found to be used over all the processes sharing
access to a particular file. Since there is nothing in the
file header for a sequential file which could be used for this
purpose, it is set equal to the first accessor‘'s MBC. The
typical system default for MBC is 16 blocks. When VMS 4.4 and
4.3 act as partners in accessing a shared sequential file on a
VAXcluster, a multiblock count of one will be assumed by RMS.

182 Facebook Inc. Ex. 1215

NOTE

Shared sequential files may not be used in a
VAXcluster environment in which VMS 4.2 or
earlier is being run on any of the nodes.
They may be accessed concurrently from nodes
running VMS 4.3 and any other node running VMS
4.4 on the same cluster, but for this purpose
VMS 4.4 will operate in a 4.3 fallback mode.

The default RMS record locking actions can be modified to
varying extents on a per operation basis, as described in the
next section,

Records can be locked automatically or manually. RMS handles
automatic record locking transparently. The default Iis
automatic record locking, which is appropriate when you are
dealing with a 1lock on a single record at a time. Manual
record locking requires additional effort on the programmer’s
part. Use it when dealing with locks on multiple records at
one time.

Automatic Record Locking (RMS Default)

For a process which opened the file specifying WRITE ACCESS, each

GET

or FIND. operation locks a record. RMS assumes an UPDATE or

DELETE operation may follow. Lock is released when:

9

the next record is accessed (FIND, GET or PUT),
the current record is updated or deleted,

an I/0 error occurs,

the record stream is disconnected,

the file is closed, or

a Free or Release service (or its equivalent) is called.

183 Facebook Inc. Ex. 1215

For a process which opened the file specifying READONLY access but
sharing WRITE, each read (GET or FIND) operation will still incur
some locking activities but to a lesser extent than if the process
had specified WRITE access. A query lock will be used for each
read operation. The query lock is briefly taken out in order to
find out whether the record is locked against the process, and is
then immediately released.* The query 1lock <call to the 1lock
manager requests "concurrent read" access rather than "exclusive”
access.

* The only case in which a readonly process will hold onto a
record lock is if the special locking option RABS$SV_REA was set
in the RABSL _ROP field (see the next section).

Manual Record Unlocking

When enabled, any record that would have automatically been
unlocked will remain locked until:

e a Free or Release service is called,

e the record stream is disconnected, or

e the file is closed.

Some examples of when manual control over unlocking of records may
be useful are as follows:

- Multiple records must be modified in a single transaction.
The programmer does not want any of the updates to be don.
unless all the updates are successfully completed. T! =
programmer is responsible for restoring the original contents
of any record already updated if the wupdate for any other
record within the transaction is unsuccessful.

~ While the updates are being done to several related records,
the programmer does not want a ’ other user to be able to
access any of the records in the relate.. set.

There are three ways manual record unlocking can be enabled.

1. Set option directly in RABSL_ROP.

sV
RABSM_ULK

2. Set FDL CONNECT MANUAL_UNLOCKING and call FDL$SPARSE within the
program before opening the file.

184 Facebook Inc. Ex. 1215

Some higher-level languages have a keyword available in the

OPEN statement to set this option.

BASIC -

COBOL

FORTRAN

PASCAL

MACRO

UNLOCK EXPLICIT

I-O CONTROL
LOCK-HOLDING

N/A

N/A

RABSL_ROP = RABSV_ULK

185

Facebook Inc. Ex. 1215

ALTERNATIVE RECORD LOCKING CONTROLLING OPTIONS

There are several record locking options available that can be set
in the RABSL_RDP field (or its FDL equivalent). These provide the
user with varying degrees of control over the default RMS record
locking actions.

As described above-for the readonly/sharing write case, none of
these special record 1locking options will turn off completely
record locking activities. There is no way to avoid RMS -calls to
the lock manager to request a lock and then release it. The
locking control these options provide is that they can cut down
the 1length of time a 1lock will be held, and the access mode
requested of the lock manager. As described for the readonly
process in the previous section, a query lock will be briefly
taken out and then released for any of these special 1locking
options. Even if the NLK (do not lock records) option is enabled,
a query lock is requested in order to find out whether the record
is locked against the process.

RABSV_NLK

Do not lock record; specifies that the record accessed through a
Get or Find service 1is not to be locked. The RABSV_NLK option
takes precedence over the RAB$V_ULK option.

This option corresponds to the FDL attribute CONNECT NOLOCK.

RABSV_NXR

Nonexistent record processing; specifies that if the record
randomly accessed through a Get or Find service does not exist
(was never inserted into the file or was deleted), the service is
to be performed anyway. This option applies to relative files

only. For a Get service, the previous contents of a deleter

record are returned. The processing of a deleted record returns a
completion status code of RMS$S_OK DEL, and the processing of a
record that never existed returns RMS$_OK_RNF.

This option corresponds to the FDL attribute CONNECT
NONEXISTENT_RECORD.

RABSV_REA

Lock record for read; specifies that the record is to be 1locked
for a read operation for this process, while allowing other
accessors to read (but not to modify) the record. Use this option
only when you do not want the file to be modified by any
subsequent activities. Use the RAB$SV_RLK option to allow possible
subsequent modification of the file.

This option corresponds to the FDL attribute CONNECT LOCK_ON_READ.
RABSV_RLK '

Lock record for write; specifies that a user who 1locks a record
for modification is allowing the locked record to be read by other

accessors. If both RABSV_RLK and RABSV_REA bits are specified,
the RABSV_REA bit is ignored. The RABSV_NLK bit takes precedence

7-8

186 Facebook Inc. Ex. 1215

over all others.

This option corresponds to the FDL ‘attribute CONNECT
LOCK_ON_WRITE.

RABSV RRL

Read regardless of lock; read the record even if another stream
has locked the record. This option allows the reader some control
over access. If a record is locked against all access and if a
Put or Get service is requested, then the record will be returned
anyway (if the RAB$V_RRL option is specified), with the "alternate
status RMSS$S_OK_RRL.

This option corresponds to the FDL attribute CONNECT
READ_REGARDLESS.

RABSV_TMO

Timeout; specifies that if the RAB$V_WAT option was specified, the
RABSB_TMO field contains the maximum time value, in seconds, to be
allowed for a record input wait caused by a locked record. 1If the
timeout period explres and the record is still locked, RMS will
abort the record operatlon with the RMSS_TMO completlon status.
Note that the maximum time allowed for a timeout is 255 seconds.
Other functions of the RABSV_TMO option are listed under
"Miscellaneous Options."

This option corresponds to the FDL attribute CONNECT
TIMEOUT_ENABLE.

This option is not supported for DECnet operations; it is ignored.

RABSV ULK
Manual unlocking; specifies that RMS will not automatically unlock
records. Instead, once locked (through a Get, Find or Put .

service), a record must be specifically unlocked by a Free or
Release service. The RABSV_NLK option. takes precedence over the
RABSV_ULK option. :

This option corresponds to the FDL attribute CONNECT
MANUAL_UNLOCKING.

RABSV_WAT

Wait; if the record is currently locked by another stream, wait
until it is available. This option may be used with the RABSV TMO
option to limit waiting periods to a specified time interval. ~

This option corresponds to the FDL attribute CONNECT
WAIT FOR_RECORD.

187 Facebook Inc. Ex. 1215

188 Facebook Inc. Ex. 1215

MODULE 8

BUFFER MANAGEMENT:
SEQUENTIAL, RELATIVE, AND INDEXED FILES

Major Topics
- Interaction of several RMS options with buffers:
¢ Read-ahead and write-behind
® Deferred write
¢ Synchronous or asynchronous
- Local buffers — indexed file example
- Size and number of buffers
- Global buffers and index caching
¢ Single node
® VAXcluster
- Calculating number of buffers needed to cache index

Source

Guide to VAX/VMS File Applications — Chapter 7 (Section 7.3)
Chapter 3 (Section 3.6)

189

Facebook Inc. Ex. 1215

TNPES - o L@,Qﬁ (m r N"’%wﬂ) — SIZR v w‘/-i:ﬁ/ AL /w
b Clobal Ma/l — Sho RHS /Mumzzwj
cand = f&)

(éb[alb}vj"\ / L) Lt) w mﬁ;g

h) zize

190 Facebook Inc. Ex. 1215

INTERACTION OF RMS OPTIONS WITH BUFFERS

The following RMS options affect buffer flushing.

® Read-ahead/write-behind

® Deferred write

e Asynchronous/synchronous

These options will be explained wusing an example that assumes
eight records can fit into one buffer and a multibuffer count of
two buffers.

RMS Buffers and the User Program

PROCESS VIRTUAL MEMORY

B _us_en iROEHA_M IiAGE _ PO SPACE
r———-‘ USER RECORD BUFFER (Program Region)

~ ~,
RECORDS ~~ ~
] RMS BUFFER '

AREA * P1 SPACE

_________ {Controt Region)
BLOCKS OR SYSTEM CONTROL INFORMATION

BUCKETS

—

ZK-1993.84

* RMS buffers for image-specific files begin in Pl but may
overflow into PO space, unless the user image was linked using
the option IOSEGMENT= NOPOBUFS. This latter option is rarely
used.

191 Facebook Inc. Ex. 1215

Read-Ahead/Write-Behind

e Applies only to nonshared sequential files
e Set with RABSM_RAH and RABSM_WBH bits in RABSL_ROP

® If either or both of these bits are set, RMS will use two
buffers by default

- ® By default provides asynchronous I/0

NOTE

Even if the write-behind option were not enabled,
deferred write 1is always enabled for sequential
files. A buffer is not written back to disk until
it is filled (or the file is closed, or the user
issues a SFLUSH).

Write-Behind

When a process switches from one buffer to another (for example, a
ninth SPUT in a series of sixteen $PUTs), RMS issues an
asynchronous QIO to write the contents of the first buffer out to
disk. The process does not stall while the QIO is completing.
The process is able to continue processing in another buffer while
the operation on the first buffer is completing.

The whole purpose of write-behind is to allow the user to make use
of another RMS buffer at the same time as I/0 is in progress on
another buffer. 1In this example, if write-behind is not enabled
on the ninth $PUT,. which is to go into the second buffer, RMS does
not return control to the user until the first buffer has been
written to disk (therefore, the process stalls).

Read-Ahead

The read-ahead option operates s’ ightly different from
write-behind. When the user does the first SGET, RMS issues the
reads for both buffers at the same time. The process stalls until
the first read is completed. The QIO associated with the second
read completes asynchronously. In this example, on the
seventeenth $GET, when the process turns back to the first buffer,
RMS will again issue the reads for both buffers.

Asynchronous Option with Read-Ahead/Write-Behind Interaction
It is best not to use the asynchronous option at the same time as
the read-ahead/write-behind (RAH/WBH) options. Except for one

special case, when write-behind and read-ahead are enabled,
setting the ASY bit has no effect, since asynchronous I/O takes

8-2

192 Facebook Inc. Ex. 1215

place anyway. The special case is where the write of an 1I/0
buffer is not completed before the buffer needs to be reused.

In this case, if both ASY and WBH were enabled, after eight S$PUTS
the first buffer 1is full. The ninth $SPUT goes into the second
buffer and an asynchronous request is issued to write the first
buffer out to disk. On the sixteenth $PUT, the second buffer is
full; on the seventeenth SPUT, RMS issues an asynchronous QIO to
write the second buffer out to disk.

Because of the speed of the I/0 device or the system load, suppose
the first asynchronous buffer write is not yet completed. The
seventeenth record needs to go into the first buffer. The setting
of the ASY bit affects what action RMS takes in this situation.
If the ASY bit 1is set, RMS returns control to the user
immediately. The burden is on the user to refrain from modifying
the first buffer storage until the asynchronous I/O completes. If
the ASY bit 1is not set, the user does not get control back from
the seventeenth $PUT until it can be successfully moved into the
first buffer.

Deferred Write

e Applies to relative and indexed files and, as of VMS 4.4, to
shared sequential files

e Set by FABSM_DFW bit in FABSL_FOP
e If this bit is set, RMS will use two buffers by default

® The meaning of deferred write 1is slightly different for
nonshared sequential files.

Without deferred write enabled, every SPUT, SUPDATE, or S$SDELETE to
a relative, indexed, or shared sequential file results in at least
one direct I/O operation. For example, $PUTs one through eight to
a relative file buffer would have resulted in eight writes to the
disk and one more direct I/0O to bring the bucket into the buffer
initially. With DFW enabled, the write to the disk is deferred
until a modified buffer is needed. With deferred write turned on,
it 1is possible to perform multiple $PUTs to one buffer and incur
only one direct I/0.

One important difference between deferred write and write-behind
is that control 1is not returned to the user while the write is
being done to the disk. When the user issues the seventeenth
SPUT, RMS will write-back the contents of the first buffer to the
disk. Control will only be returned to the user after the write
has completed.

193 Facebook Inc. Ex. 1215

Wwhile this may suggest that the asynchronous option should be
enabled together with DFW, the same danger described above for
write-behind is inherent. If both ASY and DFW were enabled, then
when the user issues the seventeenth S$SPUT, RMS would return
control immediately to the user. It is possible that the first
buffer local storage area could be modified before the write-back
to disk has completed. Again, as in the asynchronous write-behind
sequential file example, the burden is on the user to refrain from
modifying local buffer storage until the write-back to disk has
been completed. :

In the case of multiple $PUTs which are clustered, deferred write
can result in substantial performance gains. There are other
factors, however, that have to be taken into account:

e In the case of a system crash, data not written back to disk
may be lost. Also, if index buckets are cached, the modified
index buckets may not have been written back to disk.

@ In the case of shared files, there will be some performance
degradation due to blocking AST activity. This will be
discussed in the section on global buffers.

NOTE

Not all operations on indexed files can be
deferred. Any operation that causes a bucket
split will force the write-back of the modified
buckets to disk. This forced write-back decreases
the chances of lost information should a system
failure occur. '

194 Facebook Inc. Ex. 1215

Asynchronous 1/0

e Applies to\all file organizations

e Set by RAB$SM_ASY bit in the RABSL_ROP

Setting this bit allows the user to get control back immediately
from RMS, rather than RMS waiting for 1I/0 completion before
returning control to the user.

Setting the ASY bit gives the user the opportunity to perform some
operations totally unrelated to a particular record stream, such
as computations or I/O to other files, while I/0 on a particular
file is in progress.

195 Facebook Inc. Ex. 1215

LOCAL BUFFERS

Management of local buffers by RMS will be illustrated wusing the
simulated indexed file data example introduced in Part 2 of Module
5, Indexed File Organization. The illustration will involve an
update to an existing indexed file in which new records will be
inserted.

Example 1. Local Buffer Illustration
® Keyed SPUTs on primary key
e Multibuffer count = 3

e Exclusive use of file (or sharing read). Sharing write will
be discussed in the section on global buffers.

® Synchronous, deferred write (assumes some of the insertions
may be clustered)

Primary Index Tree

VBN #9
g |58
3 LEVEL 2
&3
>
VBN §7 VBN 48
" 0 Q
|y z £ 8% LEVEL 1
@{9 = a TX

VBN 44 l VBN 46 L VBN #5 ‘ VEN 415 VEN #15
i s> 218 285> ¥l E > 2] 2|8 LEVEL 0
AEIEHE iz HEIE g312 gl 5|8
RAKQS l JONES SACK VaAIL wOaDs
Tooo
BU-2468
8-6

196 Facebook Inc. Ex. 1215

RMS sets up an internal table for local buffers (local list)
the number of cells equal to the number of local buffers.

Among the information maintained in this table are:
e What VBN # the bucket begins with

e Weighting factor (essentially this is the level in the
structure associated with the bucket)

Local Buffer Internal Table

1 2 3

BU-2470

Update 1. $PUT Record With LAST_NAME = DOG

This S$PUT involves following buckets to be brought into the
buffer from the disk in order listed:

VBN 9 - ROOT index bucket
VBN 7 - VBN that JONES in VBN 9 is pointing to

VBN 6 - VBN that JONES in VBN 7 is pointing to

Internal Table at End of SPUT DOG

VBN 9 | VBN 7 | VBN B

BU-2471

with

tree

local

197 Facebook Inc. Ex. 1215

General Steps for Each Bucket Accessed

1.

2.

Local 1list (internal table) 1is sequentially scanned to
determine if the bucket needed is already in the buffer.

If there is no hit in Step 1, the local 1list 1is scanned to
identify the buffer that will be used to bring in the bucket
from the disk. The search routine used will be described
later in this module.

If the file is write shared, then a request 1is made to the
lock manager for exclusive access to the bucket. Once
granted, the access mode is degraded by the lock manager and
the bucket 1is read in from disk. (Write sharing procedures
will be described in more detail 1in the section on global

buffers.)

Update 2. $PUT Record With LAST_NAME = FOX

This $PUT involves the same VBNs as the $PUT for DOG. In each
case the scan of the local list will lead to a hit.

Internal Table at End of $PUT FOX

1 2 3

VBN @ | VBN 7 | VBN 6

BU-2472

Update 3. $PUT Record with LAST_NAME = PIG

This $PUT involves following buck ts to be brought into 1local
buffer from disk in the following order.

VBN 9 - ROOT index bucket ("hit" already in buffer)

VBN 8 - VBN that high wvalues in VBN 9 is pointing to
{no "hit", has to be brought in) ‘

VBN 5 - VBN that RAKOS in VBN 8 is pointing to (no "hit",
has to be brought in)

198 Facebook Inc. Ex. 1215

The search routine used to identify which local buffer should be
re—used will be illustrated by bringing in VBN 8 and VBN 5 from
disk.

The local list is scanned backwards to identify the first
unused buffer with the lowest weight. In scanning through the
list, a pointer is maintained to the cell with the lowest
weight.

As an optimization feature, if any unused buffer has an
associated weight of zero, the sequential scan stops there,
and the bucket will be brought in from disk to this buffer.

If no unused buffer has an associated weight of =zero, the
total 1local 1list will be sequentially scanned. The bucket
will be brought in from disk to the buffer associated with the
lowest weight (the first one identified in the backwards scan
in case of a tie).

The scan always begins with the last cell in the local list.

Unlike global buffers, no weight decrementing is done.

Internal Table at End of $PUT PIG

VBN 9 | VBN 5 | VBN 8

BU-2473

199 Facebook Inc. Ex. 1215

Update 4. S$PUT record with LAST_NAME = MOUSE

‘This $PUT involves the same VBNsS as the $PUT for PIG. In each
case the scan of the local list will lead to a hit.

This update will involve a bucket split. 1In the case of a bucket
split, . the write-back to the disk of any modified buckets is not
deferred. Modified buckets are immediately written back out to
disk.

Internal Table at End of $PUT MOUSE

1 2 3

VBN 9 | VBN S | VBN 17

BU-2474

200 Facebook Inc. Ex. 1215

SIZE AND NUMBER OF BUFFERS

The size of the buffer is equal to the I/0 unit of transfer from
disk to memory.

Unit of
Transfer
Sequential Multi-blocks
Relative Bucket ;
maximum size = 63 blocks
Indexed Bucket

Sequential

Size

The number of blocks to be transferred to or from the disk can be
varied each time the file is processed. If not specified by the
process, the system default will be used. This is generally 16
blocks (SHOW RMS_DEFAULT).

Buffers

A maximum of two buffers is all that is needed for any sequential
file. If either (or both) the read-ahead or write-behind option
is enabled, RMS defaults to two buffers.

Relative

Size :

whatever the bucket size is set at when the file 1is created (or
reorganized) will be the fixed size of the buffer. FDL uses the
following rules in calculating bucket size for relative files.

Records per

Type of Processing Bucket
Random 4
"Clustered"” access 16

or seqguential

Buffers

The maximum number ever needed for a relative file is two buffers.
If the deferred write option is enabled, RMS will default to two
buffers.

201 Facebook Inc. Ex. 1215

Indexed

Size

Whatever the bucket size is set at when the file is created (or
reorganized) will be the fixed size of the buffer. The size of
each buffer used for a file will be a constant size for all
buffers allocated to an indexed file. If areas were used to
specify different bucket sizes for index and data buckets, the
size of all buffers allocated to that file will be the largest
bucket size. ’

Choosing Data Bucket Size for Indexed Files

® Larger data buckets yield fewer index buckets, which result in
fewer DIOs, but longer search times (CPU) at the data level.

® Smaller data buckets yield more index buckets, which result in
more DIOs, but shorter search times (CPU) at the data level.

For indexed files, it is the bucket size more than anything else
that determines the shape and size of the index. A small bucket
size relative to record size will result in an index with many
levels, while a 1large bucket size relative to record size will
result in a flatter index. Since each level will result in an
additional disk access for each I/0, it is generally desirable to
make the index as flat as practical. The flattest index will, of
course, result when all the key values can fit in one index bucket
(the root bucket). To accomplish this for larger file
applications a very large bucket size (maximum of 63 blocks) may
be required. However, there are five factors that can. tause a
large bucket size to adversely affect performance.

l. Data transfer time

The I/O time required to do one direct I/0 is made up of four
components:

I/0 TIME = SEEK + LATENCY + DAT.. TRANSFER + BUCKET SEARCH

seek time = average time required for the disk
head to be positioned over the desired
track (28 ms for an RA81).

latency = average time required for the desired
record to pass under the disk head after
it has been positioned. This is about
the time required for one half a rotation
of the platter (8.3 ms for an RA81l).

data transfer time required to transfer the number of
bytes in the bucket, which equals the
number of bytes to be transferred (512

times the bucket size) divided by the

8-12

202 Facebook Inc. Ex. 1215

transfer rate (2.2 Mbytes/sec for an
RA81).

bucket search = average time required for the CPU to
search through the bucket for the desired
record once it is in memory.

Most of I/O time is consumed by mechanical motion (seek +
latency). This 1is a property of the hardware and cannot be
changed by the programmers. The four components of I/0 are
present for every I/0 operation (except, in some cases, bucket
search time). A major objective of tuning is to reduce the
number of seeks required, since this is the largest single
component of I/0.

However, the data transfer time can be controlled to some
extent by the programmer since it is directly proportional to
the bucket size. The calculations that follow (based on an
RA81) demonstrate this relationship across a range of bucket
sizes.

Relationship of Bucket Size to Data Transfer Time
Based on RAS81

% Data
Bucket Seek Rotational Data Transfer
Size Time Latency Transfer Total of . Total
1 28 ms 8.3 ms .2 mS 36.5 ms 0.6%
10 28 ms 8.3 ms 2.3 ms* 38.6 ms** 6.08%**
15 28 ms 8.3 ms 3.5 ms 39.8 ms 8.8%
20 28 ms 8.3 ms 4.7 ms 41.0 ms 11.5%
32 28 ms 8.3 ms 7.4 ms 43.7 ms 16.9%
63 28 ms 8.3 ms 14.7 ms 51.0 ms 28 .8%

* pata transfer = (10 x S512)/2200

** Total = 28.0 + 8.3 + 2.3

*** & pData transfer = 2.3/38.6 * 100

Source: VAX Hardware Handbook (Vol. 1, 1986)

The last column of this table reports the percentage of thé
total time which is represented by data transfer. For small
buckets, this is insignificant. However, as the bucket size

is increased, the time spent actually transferring the data
becomes more and more significant. For sequential access, the

8-13

203 Facebook Inc. Ex. 1215

higher data transfer time may be balanced by a smaller number
of direct 1/0s. 1In this case, the high data transfer time per
I/0 1is not important because most of the bytes that are
transferred will be used by the CPU, whether in one large
access or many smaller ones. For random access, only one
record in the bucket will be accessed (unless there are
multiple buffers set up for caching). Therefore, most of the
data transfer work is pure overhead. As a general rule of
thumb, it 1is wise to limit the data transfer time to between
ten and fifteen percent of the total. ’

Data bucket search time

Data bucket search time is only significant in random access
applications. Sequential access will cause every record in
the bucket to be read, while with pseudo-random access, only
the first record in a group of records will have to be located
in the bucket. From that point on, it will 1look 1like
sequential access. For large bucket sizes, decreased I/0
resulting from a flatter index must be balanced against the
time required to search through the buffer for the desired
record. The bucket search time is a function of the CPU type
and the number of records in the bucket. The larger the
number of records, the greater the copy time, on average, to
locate the record sequentially within the data bucket.

Memory constraints

Buffers are pages of memory in your working set. Each block
(S12 bytes) 1is a page of memory. A large bucket size will
require more pages of memory. If more pages are regquired to
support the size and number of buffers allc,ated than the
working set supports, excessive paging can resu &:.

Bucket locking

In a shared file application, an additional consideration
becomes important. s described in the preceding module,
buckets are locked intsrmittently during the period of time a
record 1is locked. Wnile "he period of time during which the
bucket is locked is small, large bucket size means that a
portion of the file could potentially be locked out for some
period of time. If there is a great deal of contention in a
file sharing environment, these bucket locks could adversely
affect performance,

Data loss in case of system crash

If the deferred write option is enabled, consideration must be
given to how much data could potentially be lost. The number
of records that can fit into the bucket 1is the number of
records that potentially can be lost in case of system
failure.

204 Facebook Inc. Ex. 1215

Summary -- Indexed Data Bucket Size

The above considerations yield tradeoffs which must be evaluated
in the context of the application before a choice for bucket size
can be made. If the application is I/O bound, the amount of I/0
can be reduced at the expense of a greater load on the CPU. If
the application is CPU bound, the load on the CPU can be reduced
at the expense of 1I/0. If the application is both I/O and CPU
intensive, the tradeoffs must be carefully studied and a
compromise reached.

General Rule -- The data bucket size chosen should allow at least
five records (near maximum size, if variable~length records) to
fit in a bucket. The size should also be a multiple of the disk
volume cluster size. The worst single thing that can be done to
performance is to use one tightly fitting record per bucket.

In the final analysis, it may be necessary to experiment to
determine the optimal bucket size. Often the hest way to find the
best buffering strategy for a particular application 1is to test
various combinations of the number of buffers and the buffer size.
One approach is to time each combination and measure the number of
1/0 operations that take place, and then choose the one that
improved application performance the most considering the amount
of memory used.

Number of Buffers

The number of buffers (CONNECT MULTIBUFFER_COUNT, RABSB_MBF) is
specified at run-time and recommended values can vary greatly for
different applications when accessing indexed files. The
following suggestions on the use of buffers apply to the type of
record access to be performed. :

e Completely random processing--When records are processed
randomly, the use of as many buffers as your process working
set can support is recommended to cache as many index buckets
as possible. B

e Seqguential processing--when records will be accessed
sequentially, even after locating the first record randowly,
the use of a small multibuffer count, such as the default of
two buffers, is sufficient.

T™wo buffers is the minimum value for indexed files. If vyour
application performs sequential access on your database, two
buffers are sufficient. More than two buffers for seqguential
access could actually degrade performance. During a sequential
access, a given bucket will be accessed as many times in a row as
there are records in the bucket. After RMS has read the records
in that bucket, the bucket will not be referenced again,
Therefore, it is unnecessary to cache extra buckets when accessing
records seqguentially.

205 Facebook Inc. Ex. 1215

When you access indexed files randomly, RMS must read the index
portion of the file to locate the record you want to process. RMS
tries to keep the higher-level buckets of the index in memory; the
buffers for the actual data buckets and the lower-level index
buckets tend to be reused first when other buckets need to be
cached. Therefore, you should use as many buffers as your process
working set can support so you can cache as many buckets as
possible.

NOTE

The general idea of using buffers 1is to wuse a
buffer size and number of buffers that improves
application performance without exhausting the
virtual memory resources of your process or
system. Keep in mind the tradeoffs between file
I/0 performance and exhausting memory resources.
The buffers used by a process are charged against
the process's working set. .y Buffers
are locked in to the process's working set. You
should avoid allocating so many buffers that the
CPU spends excessive processing time paging and
swapping. For performance-critical applications,
consider increasing the size of the process
working set and adding additional memory.

(o]
|

16

206 Facebook Inc. Ex. 1215

GLOBAL BUFFERS AND INDEX CACHING

. Two types of buffer caches are available using RMS: local and
global.

Local buffers reside within process (program) memory space and are
not shared among processes, even if multiple processes are
accessing the same file and reading the same records. Global
buffers, which are designed for applications that access the same
file and may even access the same records, do not reside in
process memory space (but are charged to each process's working
set).

If several processes will share an indexed file, global buffers
should be considered. A global buffer is an I/O buffer that two
or more processes can access in conjunction with file sharing.
This section is divided into two parts:

1. Global buffers on a single node

2. Global buffers on a VAXcluster

Using Global Buffers for a Shared File

SYSTEM VIRTUAL MEMORY

PROCESS PROCESS
A) (o]
o Y '
PROCESS | — GLOBAL BUFFER CACHE : PROCESS
B | | D

)
[S 9

Iy
>

/ * e gpefed

PBUGKETS RMS_ GRLBUF Ques

 Unlhe (ocal boffes e o pageable |

¥ Thwe ae W agam&* a f)mw)")
oo %ma R ma,P,;QA

Te [t

ey frocoos el

o) Tk e J unber of 7@4@[L

1y Sﬁ”‘é a\% I %A
oemd & ;J;ew prowss may uMs—

G\}J%np&. ?(,&J WeT ofs)

W gl oo te B] prowns b e

207 Facebook Inc. Ex. 1215

ZK-1994-84

SINGLE NODE

The greatest benefit of global buffers usually is found with an
indexed file that is shared by multiple readers (file is opened by
all processes read-only) and has a high locality of reference.

e Use of global buffers should be considered only if:

- 8Several processes will be accessing the indexed file
concurrently.

- The processes will be accessing the file randomly, and
there is a good probability of a high 1locality of
reference (at a particular point in time, buckets 1in
memory are being asked for by more than one process). The
probability associated with index buckets is greater than
with data buckets.

e Before implementing the use of global buffers as a general
practice for a particular file, benchmarks should be done with
and without global buffers.

Global buffers not only do not always improve performance but
may also degrade performance.

In conducting benchmarks, the number of buffers specified is
critical. The number of buffers used has been found to have
an important impact on performance through VAX/VMS Version
4.4,

General Guideline

The greatest benefit of global buffers 1is ihk caching index
buckets, not data buckets.

GLOBAL BUFFERS = # buffers needed to cache total index
tree(s) + one data bucket

Read Only

Optimal performance can be obtained when a file will be open by
all processes read only by specifying both of the following file
attributes: -

SHARING GET FABSB_SHR = FABSM_SHRGET
+
SHARING MULTISTREAMING FAB$SM_MSE
8-18

208 Facebook Inc. Ex. 1215

This will improve performance by eliminating certain internal
operations, such as the maintenance of bucket locks in the global

buffers.

Not Restricted to Read Only

The search strategy used by RMS for global buffers will be
illustrated using the simulated data example introduced in Module
5, Part 2 (see the Primary Index Tree and the Alternate Index
Tree) . The following illustration assumes that all processes
sharing this file are on a single node, which may or may not be
true in a VAXcluster.

Example 2. Global Buffer Single Node Illustration

Process A opens the file for shared access write with:

ACCESS WRITE
SHARING WRITE
local buffers = 2
global buffers = 6

Calculation of global buffers:

Primary index 3
Primary level 0 1
Alternate key 1 index 1
Alternate level 0 1

Total global 6

DEFERRED WRITE enabled
NOTE
The deferred write option was enabled in thi--

example for illustration purposes. In general, it
is best not to use deferred write when global

buffers are used. (Tacws acka (och mmqgmmu+ 4 bu?&r ”w%ﬁgﬂNVi}

Key of reference = 0 (primary key)

209 Facebook Inc. Ex. 1215

Process B opens file requesting read-only access for the user but
allowing shared write access by others. Process B does not

specify global buffers (or override global buffers by specifying

in program control FABSW GBC = 0) so it defaults to global buffers

set up by Process A. It also defaults to one local buffer.

Access Read-Only

Sharing " Write

global buffers = 6 (by default)

local buffers = 1 (by default)

key of reference = 1 (Alternate key 1)
8-20

210 Facebook Inc. Ex. 1215

Alternate Index Tree

VBN #14
v
33 LEVEL 1
I«
>
VBN #13
2 4 6|7 9 [10] 11
o~ <+ nlolelo T ul') LEVEL 0 (SIDRs)
Lldlaldld]blbleln
~
REA’'s® SEQ=NO NAME
4-1 1 RAKOS
4-2 2 ASHE -
4-3 3 TODD
4-4 4 JONES
5-3 5 VAIL
4-3 6 BUSH
6-1 7 EVANS
5-4 8 SACK
5-5 9 MAYO
15—-4 10 wooDS
15-5 " SMITH
-
RFA = VBN # — ID #
BU-2469
8-21

211 Facebook Inc. Ex. 1215

RMS sets up an internal table for global buffers (global 1list)
with number of cells equal to the number of global buffers.

Global Buffer Internal Table (Global List)

1 2 3 4 S 6

BU-2475

The following information is maintained in this table.
e What VBN # the bucket begins with

e Weighting factor (essentially this is initially the 1level in
the tree structure associated with the bucket)

® Count of users touching (using) this specific buffer

® Sequence number (essentially the number of times a copy of

VAL us TEL this bucket has been written back to disk)

i e What lock ID the system lock for this buffer resource is held
1eieyanie with (used by distributed lock manager)

212 Facebook Inc. Ex. 1215

Retrieval 1

Process A issues FIND ** JONES ** followed by a GET.

General Steps for Retrieval of VBN 9

1.

2.

Global list (internal table) is locked (Lock Manager) for scan
to determine whether VBN 9 is in global buffer cache.

Sequential scan of list. 1In this case, no hit for VBN 9. If
there were a hit, the "touched-by" count associated with this
buffer is incremented so that if this process goes into wait
state before gaining ownership of this VBN through the lock
manager, another process in the interim cannot reuse this
buffer to bring in another bucket.

Lock on global list is released.
NOTE

If process during list scan ever stalls, the
lock on 1list 1is released so another process
can get in.

List for local buffer is checked. 1In this case, no hit for
VBN 9. TIf there had been a hit in Step 2, this step would be
omitted. .

If no hit in Step 2 or 4, global list is locked for scan to
reserve buffer to which VBN 9 will be written. The search
routine used will be described when all buffers in the global
cache are filled in this illustration. In this case the
global buffer associated with cell 1 will have it's
"touched-by" count incremented.

If no hit in Step 2 or 4, the global list lock is released.

Request is made to the lock manager for exclusive access to
VBN 9. If request is granted, the lock manager will degrade
access mode, and VBN 9 will be written from ditck *» global
buffer.

VBN 9 is searched to find the next VBN in the tree leading to
the data bucket where JONES record is located.

The above steps are repeated for VBN 7, and then again for VBN
6.

The data bucket (VBN 6) is brought into global buffer. This

step will be expanded upon when an actual update is made in
this example.

213 Facebook Inc. Ex. 1215

Internal Table at the End of Retrieval 1 (JONES)

1 2 3 4 5 6

VBN 9 | VBN 7 | VBN 6

BU-2478

Retrieval 2

Process A issues FIND ** woODS ** followed by a GET.

Internal Table at the End of Retrieval 2 (WOODS)

1 2 3 4 S 6

VBN 9 | VBN 7 | VBN 6 | VBN 8 | VBN 16
2 1 0 1 0

BU-2477

Retrieval 3

Process B issues FIND ** SEQ NO = 9 (MAYO) ** followed by GET.

Internal Table After the Root Alternate Key ° Bucket Brought In

1 2 3 4 S 6

VBN 9 | VBN 7 | VBN 6 § VBN 8 | VBN 16 | VBN 14
2 1 0 1 0 1

BU-2478

After VBN 14 has been brought in, VBN 13 is identified as the SIDR
- bucket containing the RFA for SEQ NO = 9. The scan of the global
buffers for VBN 13 and the local buffers had no hit.

214 Facebook Inc. Ex. 1215

Step 5 Expanded

Step 5 in Retrieval 1 will now be expanded upon to describe the
search routine used to identify which buffer should be re-used.

1. The list is locked for search.

2. A total of eight unused cells in any such search is scanned
(this example 1is atypical because it is limited to only six
cells). A pointer is maintained to the last cell scanned in
searching to identify which buffer will be recycled by any
process. This will be the first cell in the next search
performed for any process. ,

3. In scanning through the eight cells, a pointer is maintained
to the cell with the lowest weight. :

4. The last cell in the scan has its weight decremented by one.
If someone uses the bucket in this cell before it is written

over, the original weight (its level in the 1index tree) is
restored.

S. The cell identified has its "touched by" count incremented by
one in order to reserve it.

6. The lock on the list is released.
7. The bucket is brought in to the global buffer associated with
the identified cell.

Internal Table at the End of Retrieval 3 (MAYO)

1 2 3 4 S 6

VBN 9 | VBN 7 | VBN 13| VBN 8 | VBN 16| VBN S
2 1 0 1 -1 0

4 SEARCH
POINTER

BU-2479

215 Facebook Inc. Ex. 1215

Retrieval 4

Process A issues FIND ** BUSH ** followed by UPDATE.
Step 9 Expanded »

Step 9 in Retrieval 1 will now be expanded upon using the update
done to VBN 4 in this example.

In case of no bucket split, the update made by Process A -is made
to the data record in bucket VBN 4 in the global buffer. When the
lock manager is requested to release Process A's ownership of VBN
4, the 1lock manager will see that the deferred write option was
specified. The lock manager must abide by the rule that a bucket
that has not been written back to disk cannot be unowned. The
lock manager will have ISAM copy the bucket in the global buffer
to one of Process A's local buffers and then the lock manager can
release ownership of the global buffer. The 1lock manager still
has a lock on VBN 4 but on the local copy. Note the extra
overhead involved due to the deferred write option being enabled.

At the end of this step, there is a valid copy of VBN 4 in a local
cache and an equally valid copy in the global cache but an invalid
copy out on disk. Process A owns the local copy and no one owns
the global copy. Retrieval 5 describes what happens when someone
wants to access the global copy.

In case of bucket split, an update is made to the bucket 1in the
global cache and the 1local buffer is used for the new bucket

created. The deferred write option becomes inoperative. The
buckets involved are immediately written back out to disk.

Internal Table at End of Retrieval 4 (BUSH)

1 2 3 4 S 6

VBN ¢ | /BN 7 [VBN 13} VBN 8 | VBN 4 | VBN 5
2 0 o] 0 0

BU-2480

Process A's Local Buffers at the End
of Retrieval 4 (No Bucket Split)

1 2

VBN 4

BU-2481

216 Facebook Inc. Ex. 1215

Retrieval 5

Process B issues FIND ** SEQ NO = 2 (ASHE) ** followed by GET.

Step 2 Expanded

In this case, the sequential scan of the internal list will
disclose VBN 4 is in the global cache. The scan of the list only
discloses that it is in the global cache. at this point, the
rtouched by" count is incremented in the 1list so that while
Process B is trying to get ownership, if it goes into a wait
state, no other process will be able to use this buffer for
recycling purposes.

Step 7 Expanded

Wwhen a request for a lock on VBN 4 for Process B is made to the
lock manager, the lock manager will see that a copy of VBN 4 is
owned locally. The lock manager will initiate an AST for the
local copy to be written out to disk. Once it is copied to disk,
the lock manager will release Process A's ownership of it and give
ownership of the copy in the global cache to Process B.

NOTE

If the deferred option had not been enabled, a
local copy would not have been made. and
performance would not be degraded by the extra
load introduced involving the AST activity. It is
for these reasons that performance is wusually
better if deferred write is turned off when global
buffers are used.

Since a valid copy of VBN 4 was already found in the global cache,
it will not have to be recopied from disk.

Internal Table at the End of Retrieval 5 (ASHE)

1 2 3 4 5 6

VBN 9 | VBN 7 | VBN 13| VBN 14| VBN 4 | VBN 5
2 1 0 1 0 0

4 T K
Z WEIGHTS RESTORED

BU-2482

. 217 Facebook Inc. Ex. 1215

Summary - Global Buffer Performance (as of VAX/VMS Version 4.4) — ?“"”bw

1.

wn 7M3
Frfor L ‘H";A

Each time the global list table is scanned, the entire global
list (not buckets) is locked.

The scan of the global list 1is done sequentially. If the
number of global buffers gets too large, the search time to
scan the list may exceed the time it would take to do direct

I/0s.

Some users have run into very poor performance with ‘global
buffers’ when they try to cache a large number of data buckets
and the number of buffers in the global cache becomes very
large.

General recommendation:

For a shared file, if you can use global buffers to cache the
entire index structure (not data buckets), then everybody
wins. '

If you cache the entire index structure locally, then the
process may win at the expense of other processes (using more
memory). This would be an appropriate strategy only for a
nonshared file,

NOTE

The argument for caching all or a lot of the
index structure falls apart for sequential
access, where a small number of " 1ffers (such
as two) is plenty.

It is usually best that the deferred write option be turned

off when global buffers are used, In a high-contention
environment wh: re frequent concurrent updating 1is occurring,
deferred wri-»2 enabled can actually cause performance

degradation becaus. of the use of 1local buffers for the
modified buckets an the extra load introduced by the blocking
AST activity.

In general, the performance degradation will usually outweigh
any performance gain due to reaccessing buckets that have been
modified before the global buffers they are in have been
written over.

218 Facebook Inc. Ex. 1215

VAXCLUSTERS

One

Global buffers reside in physical memory so each VAX node in a
cluster has 1its own global buffer cache. There 1is no
performance difference between a single-node system and a
vAXcluster if the file sharing takes place on a single node of
the cluster.

There is no performance difference between a single-mode
system and a VAXcluster if the file sharing allows read-only.

Once a file is opened on more than a single node in a
VAXcluster with sharing allowing write, the distributed lock
manager is invoked.

Example 3. Global Buffers VAXcluster Illustration

Process A opens PERSONNEL.DAT on NODE ALPHA with a global
buffer count (GBC) of 50.

Process B opens PERSONNEL.DAT on NODE BETA with a GBC of 35.
There will be two separate global caches in physical memory

for PERSONNEL.DAT -- a 50-bucket one on NODE ALPHA and a
35-bucket one on NODE BETA.

concrete illustration of the overhead added on to the.

vAXcluster shared file write case:

Process A updates VBN 4. It doesn't matter whether Process A
specified the deferred write option or not.

The global cache in NODE BETA happens to already have a copy
of VBN 4 in its cache from some previous read operation.
Process B then asks for VBN 4.

The scan of the global list on NODE BETA will disclose that
VBN 4 is in the global cache.

If it were to give Process B access to that copy, Process B
would be using a stale copy of VBN 4.

A lot of distributed lock manager overhead 1is added on to
detect when a copy in one of the global caches on the
vaXcluster is no longer valid and a new copy must be brought
in from the disk.

This is essentially accomplished through a lock value block

maintained by the distributed lock manager for each bucket in
a global buffer.

219 Facebook Inc. Ex. 1215

Lock Value Block

e For all bucket locks, the lock value block contains a sequence
number, which 1is the number of times the bucket has been
written out to disk. Every time a bucket is written out to
disk, the sequence number is bumped and the lock value block
written back to the lock manager.

e When the first bucket gets 1locked, one of the pieces of
information gathered about the bucket is its sequence number.
Every bucket on the system, in local or global cache, has a
sequence number associated with it. The sequence number is
also among the pieces of information kept by RMS 1in the
internal tables maintained for global buffers and 1local
buffers.

When a request is made to the lock manager for a VBN which is
already in memory in a global or 1local buffer, the lock
manager checks to see whether the sequence number in the lock
value block for that VBN resource matches the sequence number
in the internal table. If they don’'t match, the bucket is
read in again from the disk.

When a bucket in the global buffer is updated and written back
to disk, the sequence number maintained for it in the internal
global 1list table is also updated.

® Unfortunately, if no one owns the bucket in the global buffer
(no one has a lock on the bucket), the resource managed by the
lock manager would go away. Normally no one owns global
buffers.) :

In order to know whether the bucket ia a global buffer is
being used by anyone currently, or is still wvalid, the
resource must remain so that the lock value block associated
with it is still available.

In order to a.complish this, there is a system lock maintained
on each globa. bu"fer. The entire reason for this system lock
is to make sure tP resource associated with the VBN stays
around with its accompanying lock value block. Behind every
global buffer there is an invisible system lock.

Performance Recommendations for VAXcluster Global Buffers

The following alternatives to write sharing a large data file on a
VAXcluster should be considered.

e File sharing on more than one node of a VAXcluster should be
restricted to READ ONLY SHARING if at all possible.

220 Facebook Inc. Ex. 1215

Processing a file with exclusive access gives better
performance than with shared write access on more than one

node of a VAXcluster.

If your application requires write sharing, if possible
confine the activity to a single CPU. If sufficient CPU
resources and I/0 capacity are available, your application
will perform faster than if it were spread over many nodes.

221 Facebook Inc. Ex. 1215

CALCULATING THE NUMBER OF BUFFERS NEEDED TO CACHE INDEX

Example 4. Real-Data ANALYZE/RMS/STAT Output

(Sheet 1 of 2)

RMS File Statistics
Page 1

FILE HEADER

File Spec: DISKXYZ:[USERA]REALDATAl.DAT;2
File ID: (31365,15,0)
Owner UIC: (120,007]

Protection: System: R, Owner: RWED, Group: R, World:

Creation Date: 1-JAN-1986 20:44:32.52

Revision Date: 31-JAN-1986 20:45:01.50, Number: 170

Expiration Date: none specified

Backup Date: none posted

Contiguity Options: contiguous-best-try
Performance Options: none

Reliability Options: none

Journaling Enabled: none

RMS FILE ATTRIBUTES

File Organization: indexed

Record Format: fixed

Record Attributes: carriage-return
Maximum Record Size: 64

Longest Record: 64

Blocks Allocated: 2148, Default Extend Size:
Bucket Size: 3

Global Buffer Count: 0

FIXED PROLOG

Number of Areas: 2, VBN of First Descriptor:
Prolog Version: 3

AREA DESCRIPTOR #0 (VBN 2, offset $X'0000')

Bucket iize 3

Reclaimed Bu¢ <et VBN: O

Current Exten. Start: 1, Blocks: 2085, Used:
Default Extend Quantity: 522

Total Allocation: 2085

STATISTICS FOR AREA #0
Count of Reclaimed Blocks: 0
AREA DESCRIPTOR #1 (VBN 2, offset %Xx'0040')
Bucket Size: 3
Reclaimed Bucket VBN: O
Current Extent Start: 2086, Blocks: 63, Used:

Default Extend Quantity: 15
Total Allocation: 63

522

2

1025, Next: 1026

48, Next: 2134

222 Facebook Inc. Ex. 1215

Example 4 (Sheet 2 of 2)

RMS File Statistics
Page 2

STATISTICS FOR AREA #1

Count of Reclaimed Blocks:

KEY DESCRIPTOR #0 (VBN 1, offset %X'0000')

Index Area: 1,

Level 1 Index Area:

Data Area: 0

Root Level: 2
Index Bucket Size:
Root VBN: 2089
Key Flags:
(0) KEYSV_DUPKE!S 0
(3) KEYSV_IDX_COMPR 1
(4) KBYSV_INITIDX 0
1
1

T Buch

(6) KEYSV_KEY_COMPR
(7) KEY$V_REC_COMPR
Key Segments: 1
Key Size: 58
Minimum Record Size: 58
Index Fill Quantity:
Segment Positions: 0
Segment Sizes: 58
Data Type: string
Name: “SPECIAL KEY"
First Data Bucket VBN: 3

STATISTICS FOR KEY #0

Number of Index Levels:

Count of Level 1 Records:
Mean Length of Index Entry:
Count of Index Blocks:

Mean Index Bucket Fill:

Mean Index Entry Compression:

Count of Data Records:

Mean Length of Data Record:
Count of Data Blocks:

Mean Data Bucket Fill:

Mean Data Key Compression:
Mean Data Record Compression:

Overall Space Efficiency:

The analysis uncovered NO errors.

ANALYZE/RHS_FILE/STATISTICS/OUT=REALDATA1.ANL

1536, Data Fill Quantity:

3/ pata Bucket Size: 3

1536

341
0
g 45
T4%
15%

8944

64

1023
92%
37%
03

52%

REALDATA . DAT

\
1 _r%/: 13 b#m b cw,le enhoe inda /”'f promecy feay

f
allois § duba

bucket

Facebook Inc. Ex. 1215

Example 5. Run-Time Statistics for REALDATAl.DAT
varying the Number of Buffers

BUFFERS ELAPSED CPU BIO DIO PG FAULTS
1 7:13.23 4:20.67 3 2742 2
3 4:49.64 4.11.32 3 1637 20
23
6 4:40.88 4.%9.60 3 1397 26
9 4:31.11 4.03.99 3 582 25
Bread - ovon
,« 20 4:18.30 4:02.27 3 138 30
;bn»eaiwemw@l
hose « (ﬂ““’*‘lf”‘J’ 30 4:06.69 4:00.21 3 137 49
b irekuoh eaJLuf@ld
(L?m{ 17 40 4:05.36 4:00.76 3 137 95

Reduction in Direct I/0 between buffer = 1 and buffer = 20
(2742 - 138)
------------ = 95,0% DIO reduction

Reduction in Elapsed Time between buffer = 1 and buffer = 20

(433.23 - 258.30)
----------------- = 40.4% reduction in Elapsed Time

224 Facebook Inc. Ex. 1215

Major Topics

Part 5. Optimizing and reorganizing files
- FDL Optimizing function
- Reorganizing files

e CONVERT

e CONVERT/RECLAIM

Source

Guide to VAX/VMS File Applications — Chapter 10

225

MODULE 9
RMS UTILITIES

Facebook Inc. Ex. 1215

226

Facebook Inc. Ex. 1215

PART 5. OPTIMIZING AND REDESIGNING FILES

To maintain files properly, you must occasionally tune them.
Tuning involves adjusting and readjusting the characteristics of
the file, generally to make the file run faster or more
efficiently, and then reorganizing the file to reflect those
changes.

There are basically two ways to tune files. You can redesign your
FDL file to change file characteristics or parameters, You can
change these characteristics either interactively with EDIT/FDL
(the preferred method) or by using a text editor. With the
redesigned FDL file you can create a new data file.

You can also optimize your data file by wusing ANALYZE/RMS_FILE
with the /FDL qualifier. This method, rather than actually
redesigning your FDL file, produces an FDL file containing certain

statistics about the file‘'s use that you can then use to tune your
existing data file.

The RMS Tuning Cycle

indexed
Data File

Y

ANALYZE/RMS_FILE

FOL File
(with ANALYSIS
Sections)

)

Qriginal
FoL File EDIT/FOL

!

FDL File
{Revised)

!

CONVERT

\

Tuned indexed
Data File

ZK-952-82

227 Facebook Inc. Ex. 1215

FDL Optimizing Function

To periodically optimize an indexed file, use the following steps:

l.

SANALYZE/RMS/FDL current_indexed.DAT

Creates current_indexed.FDL which includes both a regular FDL
specification and an analysis section.

SEDIT/FDL/ANALYSIS=current_indexed.FDL fdl_indexed.FDL

Invokes FDL interactively. Choose the OPTIMIZE option* within
the INVOKE menu. The default values provided for the
interactive session will be taken from fdl_indexed file.
Changes in bucket size, allocation size, etc. will Dbe
suggested by FDL on the basis of the analysis sections
provided in the current indexed file. A revised FDL file will
be output with the name of the fdl_indexed file-spec.

or

SEDIT/FDL/ANALYSIS=current_indexed .FDL/NOINTERACTIVE -
$_£fdl_indexed.FDL

$CONVERT/NOSORT/FDL=£fdl_indexed/STAT current_indexed.DAT -
$_newindexed.DAT

Creates a new version of current_indexed.DAT using the
optimized f£dl_indexed.FDL.

* To use the INVOKE/OPTIMIZE function in FDL,
two FDL files must be input:

1.

The FDL file~spec provided for the gualifier ANALYSIS
whicn must have analysis sections at the end of it.

The fdl_ind xed file-spec. This FDL file may be an

old FDL fil. for this particular file or it may be

the same FDL file specified as the file-spec for the
ANALYSIS qualifier. It may even include analysis
sections at the end of it, though FDL will not use them.

228 Facebook Inc. Ex. 1215

Reorganizing Files

CONVERT

Bucket splits/RRVs disappear
Buckets of deleted records are reclaimed
RFAs are not preserved

$ CONVERT/FDL=fdl-file-spec input~file-spec output-file-spec

CONVERT/RECLAIM (Prolog 3 files only)

CONVERT/RECLAIM makes available for reuse those buckets that

have

been completely emptied by record deletions. The

reclaiming is done in place, so no additional space is
necessary. if there are severe space and time constraints,
this is a useful feature, since the file size 1is kept to
manageable levels. However, this results 1in negligible
performance improvement, since bucket splits are not cleaned

up.

If performance is a critical issue, then a full CONVERT

should be performed as often as possible.

Records will retain their original RFAs
Reclaims data buckets completely emptied by deletions

$ CONVERT/RECLAIM file-spec

Other CONVERT options:

/EXCEPTIONS_FILE=file-spec

/PAD=value

© /TRUNCATE

/STATISTICS

/MERGE=file-spec

229 Facebook Inc. Ex. 1215

230

Facebook Inc. Ex. 1215

MODULE 10
OPTIMIZING FILE PERFORMANCE:
DESIGN AND TUNING SUMMARY

Major Topics
- Design: file creation parameters

- Tuning: run-time parameters

Source
Guide to VAX/VMS File Applications — Chapter 4 (Sections 4.1-4.5)

231 Facebook Inc. Ex. 1215

232

Facebook Inc. Ex. 1215

DESIGN -- FILE CREATION PARAMETERS

- SEQ REL INCX
X X X 1. Contiguous disk allocation
-~ -- 1Initial file allccation
-~ Extend size
_—
X 2. Block spanning (sequential files)
[3
X X 3. Bucketsize
——
X 4., Primary Key
-~ -- Unique value
-- Position O
L]
X 5. Number of alternate keys
——
X 6. Multiple areas
— .
: X 7. Bucket fill factor

- g - Céﬂ/("-eé‘t&’\ - L/ldl% (more mfoibl\})
~ dah

10-1

233 Facebook Inc. Ex. 1215

TUNING -- RUN-TIME PARAMETERS

SEQ REL INDX

X 1. Buffer size (sequential only)
X X X 2. Number of buffers .
X 3. READ-AHEAD or WRITE-BEHIND (sequential only)
X X 4. DEFERRED WRITE mﬁu'ddbm4- } LL
s L»WM eol
2. Ve image
X X X 5. Window size U%wi;df,
| .. Le & dush mwmj
X X 6. Global buffers
e avoid ﬁvgm&ﬁﬁdwn

7. EiLanl LScbﬁﬁ offtmu = Le%”*té
@..?iw}’ a&leti

SDAYY 2how fmw:s /F"ﬂ‘i

chific aluf[w] C thow loed 4 7W Isu/”ms

234 Facebook Inc. Ex. 1215

*X4IQOW 10 JLIYM o031 1enba jou MOTIV 31 P3[QRUT .,

*I11J %001 $9Sn as[® UOTIeLaId 8flj 3@ parjidads a8zIs [[T] asn 03 31 sS8sSNE)

(xaput
- (dvd patqeua) (dvd paiqeua) 31I1dM-a3¥43330 O-1 »» (9Vd paTQRUI) ‘aarie(21) 331am paaaajad
- {avy pafqeud) (dvyd pafqeus) - -- (Tetyuanbas) putyaq-3ITIM
- (dvd paiqeud) {dvy patqeua) - - (1etauenbas) peaye-peay
- - - U MOONIM O-1 U JZISMOUNIM 921S MODUTM
- u JANISIY

110vd3d SWH 13S - u=LNNOJY¥3adngd {oajuo) d11a u 43idang siajjng 1aquni
+ 3714 13aS - - - - si1ajjng (eqord

-- - - +3215-1114 - 1039%e3] 1114

(ueds jinejap)
- - SAIO0TANVASON -

1Inv33aa Swe 13s - u=421530014 -
130vd3a SWY 1dS

4114 13s - u=34215aN3LXI u NOISN31X3 O-1

- - u=32ISIVILINI U NOILVDOTIV3add 0-I

snonb1uo0)
- -— - A13-3saq-snonbiiuo)
1013U0) O-1

124 IVOSVd NVILYOd 10800

soanjeag bBuizywyido HBuyjuswaydu]

- seaie ardrii[nuW

NVdS ‘NVJASON (1eriuanbas) uedsyoolg

u 3ZISLINONG (xXpul ‘°18a) azys 193ond
- (1erjuanbas) s} O0TqQIITNH
- azt1s 19ajjng

u JZISANILXI puaixjl
u 32153114 *oofre Tetitul
snonbt1juo)
snonbtijuo) snonbrjuod-A13-31sag
*20T11V
J1svd seinjead burzrwiado
0]

sobenbue] [oAdT-19YbBIH ul arqerteay spaomiay bBurysixd

{ t S S S S SR .

{ « L S S

Facebook Inc. Ex. 1215

235

236

Facebook Inc. Ex. 1215

MODULE 11

PERMANENT FILE ATTRIBUTES VERSUS
RUN-TIME FILE CHARACTERISTICS

Major Topics
—~ Permanent file attributes
- Run-time file characteristics

- Default settings for RMS control blocks for higher-level language OPENs

- DCL commands for implementing run-time features
e SET FILE
e SET RMS_DEFAULT

- Specifying run-time options

Source

Guide to VAX/VMS File Applications — Chapter 9
RMS Reference — Chapter 5 (FAB), Chapter 7 (RAB)
VAX/VMS File Definition Language Utility Reference

237

Facebook Inc. Ex. 1215

238 Facebook Inc. Ex. 1215

PERMANENT FILE ATTRIBUTES

Certain attributes are assigned to a file at file creation time
and cannot be changed without creating a new file and transferring
the records to it. Use the DCL commands ANALYZE/RMS, EDIT/FDL,
CREATE/FDL, and CONVERT to do this.

File organization

- Sequential

- Relative

- Indexed sequential-

Record type

- Fixed-length

- Variable-length

- variable with fixed control (VFC)
- Stream

Maximum record length

Area definitions

- Bucket size

- Fill size

- Contiguity options

- 1Initial allocation of disk space

Key attributes

- Key number

- Key name

- Data type for key field A

- Position of key field (can be up to eight segments)

- Lengths of key segments

- Duplicates allowed?

- Changes allowed to (alternate) key fields on updates?
- Null key character (alternate string keys only)

Prolog version number
Compression options for Prolog V3 files:

- Data record compression (except primary key) -
- Primary key compression in data records

- Key compressions in index records

Block-spanning for sequential files

Carriage-control record attributes

11-1

239 Facebook Inc. Ex. 1215

The following attributes are assigned at file creation time and

can

be changed at any time without making a new copy of the file.

The following attributes may be changed with the DCL command SET
FILE (or within program control by modifying RMS control blocks).

Access control list

Backup action

Reliability options (read-check and/or write-check)
Delete action

Expiration date

File extend quantity

Global buffer count

Owner UIC |

Protection code

vVersion limit

11-2

240 Facebook Inc. Ex. 1215

RUN-TIME FILE CHARACTERISTICS

Some of the options concerning file use can be dynamically
specified at run time. This is usually done when opening the file
or by changing the record stream context within the program.

File Open Options

e Global buffer count # cen L S’ej‘ ad ‘Zeﬂa. aﬂnzujz

. J ‘
e Number of local buffers # aof ‘Iu‘--of“" ofﬁo« bt CoNNELT of?‘io—\

e Retrieval window size \, # s Do
e File sharing options N # volune @Hn$;ti

e File processing options which can be set in FABSL FOP (for
example, deferred write) '

e Default extension quantities

Record Connect Options

e Access mode (sequential, keyed, or RFA)

e Record locking and processing options that can be set in
RABSL_ROP (for example, fast delete)

11-3

241 Facebook Inc. Ex. 1215

Run-time file open and record connection options that apply to
file performance are summarized below.

Option

Asynchronous record
processing*

Deferred write*

Default extension

quantity

Fast delete*

-Global buffer
count

Locate mode*

Description

Specifies that record I/0 for this record

stream will be done asynchronously.

FDL: CONNECT ASYNCHRONOUS
RMS: RABSL_ROP RABSV_ASY

Allows records to be accumulated in a
buffer and written only when the buffer
is needed or when the file is closed.

FDL: FILE DEFERRED_WRITE
RMS: FABSL_FOP FABSV_DFW

Specifies the number of blocks to be
allocated to a file when more space is
needed.

FDL: FILE EXTENSION
RMS: RABSW_DEQ

Postpones certain internal operations
associated with deleting indexed file
records until the record is accessed
again. This allows records to be
deleted rapidly, but may affect the
performance of subsequent accessors
reading the file until its
next-scheduled convert,

FDL: CONNECT FAST_DELETE
RMS: RABSL_ROP RABSV_FDL

Specifies whether global buffers will be
used and the i .mbex to be used if the

record stream is ti 2 first to connect to
the file.

FDL: CONNECT GLOBAL_BUFFER_COUNT
RMS: FABSW_GBC

Allows the use of locate mode, not
move mode, when reading records.

FDL: CONNECT LOCATE_MODE
RMS: RABSL_ROP RABSV_LOC

11-4

242 Facebook Inc. Ex. 1215

Multiblock count

Number of buffers

Read-ahead*

Retrieval window
size

Sequential access
only

Write-behind?*

Allows multiple blocks to be

transferred into memory during a

single I/0 operation; for sequential files
only.

FDL: CONNECT MULTIBLOCK_COUNT
RMS: RABSB_MBC

Enables the use of multiple buffers.

FDL: CONNECT MULTIBUFFER_COUNT
RMS: RAB$B_MBF

Alternates buffer use between two
buffers;: as of VMS 4.4 for nonshared
sequential files only.

FDL: CONNECT READ_AHEAD
RMS: RABSL_ROP RABSV_RAH

Specifies the number of entries in-
memory for retrieval windows, which
corresponds to the number of extents
for a file.

FDL: FILE WINDOW_SIZE
RMS: RAB$B_RTV

Indicates that the file will be accessed
sequentially only; for sequential files
only.

FDL: FILE SEQUENTIAL_ONLY
RMS : FABSL_FOP FABS$V_SQO

Alternates buffer use between two
buffers; as of VMS 4.4 for nonshared
sequential files only.

FDL: CONNECT WRITE_BEHIND

'RMS: RABSL_ROP RABSV_WBH

* Indicates on option that can be specified for each record-

processing operation.

11-5

243 Facebook Inc. Ex. 1215

- (avd patqeus)

-- (avd pearqeua)

-- (avd perqueua)
110v33a sWd 13s -
3714 13s —

110V43Q sWd 138 --

110V33a SWY 13s
3714 138 --

1040 TYOSvd

9-Tt1

‘AJIQOW 30 JLIYM 03

*TT13 %3001 S@sn 88[@ uOI3ILa1Id ATYJ IV vcuu_uoaw

(avd patqueua)
(avd patqeud)
(dvd patqeua)

u=INAOJY¥IJAnd

AL I¥M-GIYYII3Q O-1

u MOANIM O-1
u IANASIY
1013u0) 2714

»» (8V4 P3TqRU3)

u FZISMOANIM

u ¥3ddng

(ueds jnejap)

SADO0TANVASON

U=3Z21S40014

U=3ZISANILX3

u=3ZISTVILINI

NYHLI043

U NOISN3lX3d 0-1
U NOILYD011V3dd O-1

snonBit3uo)
A13-383q-snonbtrjuo)
{oajuo) o0-1

10602

NVdS ‘NV4SON

U 3Z71S13x3ong

u IZISANILX3I
u 3721531143

snonb13uo)

J1S5vd

soanjesad DButzrwrjldo HBujjusweidwl I03 arqelreAY
sabenbue] TaA9T-a9ybIH uTl ayqerieaV spaomha) Hurjzsixd

Tenba j0u MOT1V 3T pafqeuld .,
9Z1s [T1J asn o} 31 sasne)
(xapur

‘aAaTie(aa) a3ram paixajad
(Te13uanbas) putyaq-a3Tam
(1etjuanbas) peaye-peay

9ZT1S MOpUTM

§19@3j3Jnq aaqump

§81333Nnq [eQOTD

X030e3] T1Wd

seaae ardi3gnu

(terjuanbas) uedsysogg

(xpur ‘*t1ax) azys 3axong
(Ter3Uuanbas) sy20(qQII{NH
921s 133j3ng

puaixl
*soffe ferjrug
snonb13IU0)

snonbriuos-£13-3sag
*201 1Y

sainjead burzruwraido

Facebook Inc. Ex. 1215

244

1

013z 03 pazy(eiitul
NMONNNN=:XHOLSIH 3V 1
o013z 03 pazy(elIjul

buyais auweu
af13 jo yibuay o3 I8S

019z OB[® '®11j [vuU1IdIXd
J1 @[qeiiea 2[f) jo sweu
esye ‘poyjioads J1 IAWVH " 3114

ATNOGVIN =21 AHOLSIH 30U JY 1
AINOQVIY=2 AYOLSIH 20U 31 1

AINOQVIU=1 RAHOLSIH 30U JT 1
1
ATNOGV3N¥=: AMOLSIH 30U 3% 1

fuyils ewwu a8y}
j(nejep 3jo yibuey 03 3Jes

,J1vac,
Swy Aq pauaniay

010z 03 pezyieyItul
o1ez 03 pezyreyitul
oiaz 03 pezjtelitul

ol1az 0) pazy(eritul
018z 0) pazyIeyiItul

angea pue siejeweied
N4dO ‘IVISVd

1

0102 03 peBy(elItvI
NMONJNN = SOLVLS 3V 1
u = JZISTVILINI 3V 1

6uj13s uojIwdyjJyoeds
9[13 jJo yibusy 03 18§

INdLNOSSAS

10 'LNANI$SAS ‘INTddSHOd
*34X1$404 *14300V540d
'Qv3d$¥od ‘uuudod o3 3ste
juesead 31714 Iy weulll =» 3ITId

AINOAV3IY 0u 3§ 1
AINOQV3Y 30U JY 1

AINOQV3I¥ 30U 3F 1

t
AINOaVEY J0v JY

bujiys uojedyjideds o1y}
jinejep jo yibuay o3 0§

3114110v43Q 10
1va°1NI¥d¥0a 10
#1N¥Q"3dALE03 ‘ING*1d3DIVYO
‘1¥a°Qvadyod 1o

1Vd°uuuyod o3 les
uyu = LINN

swd Aq peuaniey

U = JZISAON3LXE)} U
010z 03} pezjieyIful
u = A2ISND0'14 JY v
(AZ18N0018
‘pZ + TIAU)AVH = X aaoym
(ZE(ZIS/(T1S + X)) ININW
u = JZISTIVILINLI 3} U

an{eA pue paomAoy
N4dO NVYLl¥0d

N3do 3114 3e 3rnegaa Aq saerrdwod

L-11
0 #8(® AJIQOW 10
u._.:.: ::uo jou MOITV 3% 1
ole% 03 pazireliyul
1nd1no/indNl 404 ou 3% 1
SAONDIINOD 3V 1

eweu o(13 3o yibuey o3 38s

or.

sucu a1td

jnejed

HOLVYDS ‘AJIAOW SSIDIV IV I
HOLVY¥OS SS3IJOIV 31 (1

Jhezeq ‘GNAddV ‘HOLVHOS
*x4I00W ‘ILIMM SS3OV 3V 1
finejed ‘HOLVHOS

sxAI00W ‘AV3d SSIOOV 31 1
Jrnejad ‘AJIQGOW SS3ADDV I ¢

az§s uojjedyjyoeds
a1¥3 AWVNLINVIIA

s880appe UOTIVDYjIdads
o117 INVNLINVIAA
SWd £q peuaniey

a21SAN3LX3 Aq peyjyoeds sv
olez 03 pezjrellIjul
321S%001d adeyben

{1 230uj004 33%)
32183114 Aq payjyodeds sy

angeA pue piomiajy
N340 JIsve

9311am pai1zajag
uoyjedo(fe snonbijuo)
jualsIxX3uou 3ji djeaid
A1y 31seq snonbrjuo)
suotido buyssadoxd afid

az1s burals
uogjedyjidads aftd

ssaappe butias
uoyjedtjroads aftd

sajepdn moy(v
gajeduniy mollv

g8231am mO[(Y

speaa mo[[v
SuO}3I8[op MOV
suojydo sssdor afld

az18 bBurals
uoyjeafjioeds aft1y 3I(nejad

ssaappe butrils
uogjedrjydads arrj gnejad
80138]1030r10RYD 3DTA3]
K3tjuenb uogsuajlxad
113 Inejaq
I1X33u0)
az1s %0014

(sxo01q #) 9z1s Iayond
Ajrjuendb uotrledofv

aweN

obenbue] Toad1-10ybTH AQ SpTatd dVd SWY XVA JO sbutiylas

MJa ASHYd
91)_AsEvd
d12_ASAYd
L4 ASHYd
dud 184v 4

SN~ dsavd

YNJd 154V
adn_Asdvd
NYL ASEYd
Lid Asavd
L49_Asavd

140 A$avd
Jvd gs8vd

SN usavd

VNU_TSHVd
A3G 138V

030 _Msav4

X12_ 1844
S1d MsHYd

mx: mmz<*
O'I¥ 184V

pratd

s3un)es Nnejaq 9V

SAOVNINYT TIAAT-YIHOIH Y04 SHI0T4 TOULNOD SN 404 SONILLLAS L'INVAdd

t b

S {

Facebook Inc. Ex. 1215

245

a{1j uogjezjuebio
{eyjuenbes ¢ jo ILVONNIL
20 JLIUMIY 193j¢ | O3
108 ‘o198z 03 pozITeIIIUI

019z 03 pezjieilIjul

0182 03 pazjieIIIvl

0192 03} pezyieIIjuUI

NOI1LIS0dSIA uo Buypuadep
'pasolo 8] O11J ueym 3es

0182 03 pezjrejljvl
0lez 0} pazytelIIVvI
0132 03 pezjrelIjul

0102 03 pezy(elIul

0182 03 pezj(eiIIUI
0182 03} pazjielljul

0182 03 pezyreiltul

0132 03 pezy(eIIfVI
Buyidwoid ejqeue 03
peuadosa @113 [eujwiey J§ 1
0132 03 pazjteIITul

013Z 03} pazyrelijul

019z 03 pezj[e}IIuI

013z 03} pazjieljul

NO1IL1S04S1a0 uo Bujpuedep
‘paso[d 8] #[1J uaym 3as

019z 03 pezjyielItul

0102 03 pezI(elIIv]
0 es(e

‘AN3ddVY 10 IVIINANO3AS 371 1
(35010)
SNLIVLS 10 (JS01D 10 N34O)
ds1a spaomkay uo Bujpusadep

350710 NVYl¥0d @ 3188
(3sS01d)
SNLVlS 210 (3S01D 20 NIdO)
4810 spaomkay uo Bujpuedep

350710 NVHld03 v 3188

0192 03 peTjTeiIful

0192 0) PeTITelItUI

o182 03} pazyteIIful

0192 03} pITyIvIIIvUI

0102 03} peTi{e}Ijul
0132 03 pezy(ey3jul

0192 03 pezyeIITUL

1 810 GN3ddV 31 0
0192 03 pezyIeiItul
013z 03 pezy(elIJuI
oiez 03 pezireliful

018z 03 pezireIINUI

018z 03 pezjeIIjul

(380710} 8NIvVlS

20 (3S01Q a0 N3dO) dSI1q
spaoakay uodn Bujpuadep
350710 NWMl¥0d 1% 395

8-11

0102 03 pezj(elIjul

indino ¥oa 3y 1

o113 Ivwioj Teupmael 31 1

0102 03 pazj(e}Ijul

0102 03 pezi(vIIjul
1 es1e ANIM3™ON 3§ 0O
02192 0} pezyeiIul
o182 03 pezjreiIjur’’

018z 03 pezjeiijul

0102 O3 pPOzITRIIIVI
0302 0) pozytvlITul

0192 0) pezjIeIIful

1 @8[9 GN3ddV S53J0V J1 O
018z 03} PpazIIRiIfUL
o192 03 pezy(eyltul
018z 03 pezjie}ijul

0182 03 pezjieIIJul

0192 03 pezyIeIIUI

0192 0) pazjreyIIuI

8113~jo-pua 3w 8IRDUNIL

eposiadng

Afuo tetrjuanbag

as3uyad o3 roods

(pa8O[> ueym) a1}
purwwod 3Ijwqns

‘@oyaies uado uo pujimay
821A188 8SO[O UO Puimay

¥o8yo> peay
811J veurwiad sseds0ad

(o113 pasold>
1933j@) uoyljsod Jvesan)

asied o113 Indino
paan3doniys 81}j 3ION

2113 3o
pus 32 pauvollfsod 0N

sandut }o01q auweN

13quNU UOTS13A JZJW]XeW
uado 2113 umouy

INdNISSAS styl ayew ‘3nduj

bBbuyssaooad
piepueisuou ‘adeds3

3>7A128 9SO[2 UO 3313[ad

(*3u0)) NIdO 3114 3Ie 3[neyad Aq saaridwo)d
abenbue] [aAd1-a10ybIH Aq sproafd dVd SWH XVA jJo sburijzes

431 asavd

dns Asavd

00S Asavd

145 A$HYd

405 as8vd
oMd Agavd
oMd asavd
Ad Asavd

add”asavd

sod_ Asdvd
dd0 AsHYJ

SAN AsAVY

43N Asavd
WYN A$avd
AXW ASHVY

044 Asavd
dNI AsAvY

s34 asavd

110 Asavd

Facebook Inc. Ex. 1215

246

buyidwoad 2103

porqeua a[}j Teutwael JI DA D$EVd
1X3l 10_DNIAJVA 8} 3}y 10
379VINVA=t3IAAL Q¥0D3Y¥ 3JV ¥VA Ds6Evd

azys pexyj jo sy adA) jueuodmod ef1) 10
Q3X1d=73dAL A¥0IAY JT X1d D89vd

bujydwoad 103
pelqeue ayfj [eupmzel 3y (

(99113 IX@1_303 ITNRJP)
1S17=37081N0D FOVINEVD J1 1

NVALHOd=1TOMINOD ADVINWAVD JT 1

*03s 0savs es(e
Q3IXAANI=3NOIIVZINVOHO JT XQI_D$avd
FALLVIAY =1 NOILVEZINVINO 3§ 138 D%4vd

(jou s} Duyays eweu

o11) pele(ea syl INQ

‘dn j08 dsae sveav Bujils
juel(Nsea pue pspuedxs oy3) -
1201Qq SWRU JO SSRIPP® O 310§

IVIINEN03S

0U 8] HOIIVZINVOWO

Jy ozys uc.cO&lﬁD OWuu ao
‘peyjyoeds 3T HIONZT AYODIAY
03192 03 pezI(eIITUI
swd Aq ‘peuanied

buyidwoad 103 co—ra:o
9113 (eujwae) 3§ ¢

o012z 03} pazyIelIful

018z 03 pazy(viijul

o019z 03 pazi(vIIful

019z 03 pezy(RIITUI

paj(dwy 10 payjyoeds
313730=:NOILISO4SIQ pue
patjyoeds IWVN 3114 ou
yiym af1j [ruielxsuou ji |

6-11

(*Z 830uU3004 098),
a3dLNIHO3S
10 J1GVINVA JT ¥VA D$dvd

a3axid J1 X1d osavd

o182 03 poziIRIITUI

‘msuOJQZCLmOz It

1511 3% 1

NVd14¥03 3T 1

peIIfwo 10
IVIlNAN03S 31 038_JsHVa
Q3X3IANI 3} xamiu»ath
AALLVIAY JT 134 J%AVd

(j0u sy Bujale ewvu
11) PsIv(ea sUd INq
*dn 308 oim svsre bBujals

jueIInsea pue papuedxa 8y3l)
4001Qq sWeu JO SELIPPR ‘0] 10§

0 983 fu uweyy

JALIVI3Y = NOILVZINVOIO
30 (axia = 3dAlQ¥003¥ J1
U = JIYXVH JT U
gNd Aq psuanjey

o1z 03} pazyreyljul

0182 <y pezy(ePIITUI

0102 03 pazyTRIITUI

018z 03 pazyreyITuUl

0192 03 pozj[eIITUI

0 @818 HOLVYDS = SNLVIS 3JT 1

J4A 31 J4A_D%Vd
NV3YLS JT WIS D88V

pe33jmo

20 ATEVINVA JT ¥VA D$avd
IVOLYIA NOIIVZINVONO
30 Q3XI4 F¥ XId DAY

edjAep TeuUmIaY JT I

NVdSON 3T T

1SI7 30 ANV ‘3Tne3ep 37 1

NV31404 3JALO¥OD3Y IT 1

pellfwo 10 ‘UIANIJIANN ‘TVOIMIA
IVILN3NO3S T 03S_J38Vvd
d3X3agNI 3§ Xal Dgavd

FALLVIZY J¥ 134 Dsavd

(3ou sy Buyays ewweu

o113 peaRiea oya Inq

‘dn 1% eaw sweav Bujals
juejinsel pue pspuedxa ayl)
1o0[q eweu JO S881ppE 03 IS

IVALYIA HOILVZINVOWO JT C1S
IVIINANOAS NOLIVE INVOMO 10
o11) Ivmioj-jeujmiay Ji Z€l
to81® ‘uoalb 3¢
dVN/321SA40034 JO onfeA

0192 03
SN

0192 0)

o192z 03

o182 03

0102 03

018z 03

pezyieiajul
Aq peuanijey

pazyteiltvl
poziretaIful

pazyreiItULl

pazirelljul

pazyIeiItul

A4VHOdWAL JT 1

(*3u0)) NIdO I1Id 3Ie 3[nejad Aq saagydwo)

jeuwaoj piodady

jeuroj 313 wiid

syoo1q ueds j0u oq

¥) pue 41 pov
1023U09 obeiiied NVHLYO4

$93INQI131R PI0IBY

uotjezjueblo afyd

ssaappe ¥o0[q Swen

‘@zys pi10da1 WNUYXeW
l1aqunu p10231 WNWIXeH
1273y3uapy 8{13 [PU1aIUl
921S B@l1R [011U0D paXiJ
%23yd> 211iM

Afuo aytly ajeaad
10 uado att1j) 1asn

opow o[1]) 1as(

(Aajua Kao3d3atp
ou yjia 2113) Aieiodusy

(uotaayap
103 pajyaew) Aaeaodwal

abenbue] toaa1-a19YybTH Aq sSprotd 8¥d SWI XVA jJo sbutijes

(

(1

Lt U (

Wiy 4s4vd

Ndd ASHVI

119 AsAYI

40 Asavd
NLJd AsAVd

1¥y gsavd

940 d38vd

WYN 158Vd

SUN_MSHVYd
NYW 188V
141 M$uvd
254 4sAvVd

AM ASUYS

040 ASAYJ

WIN ASUVJ

dHL ASEVJ

WL ASAYdS

Facebook Inc. Ex. 1215

247

(1epvey poxapuy

‘peyjsiivs aaw bujaepio

dvx Duipaebea Swy jo
sjuswaaynbea eyy se Buoy ew
ufeyd eyl uy eieymfue .

_ SAVX 1aesuj ued eujInoa
NOILOV ¥3Sn anox ‘*aanjnj eyl ug
sAvX ppe Ava JVLIDIQ °Iuesvad
aq OB[P [[}M 8gVX elow 10

auo ‘si1ayjideds 9#INqli1lIW

A3N SUTEIUOI uojjeavydep
paodea 2113 eyl 31

‘8a(1j 11w 203 uy pejuyy

savx (WNg) Aizewwmns pue

(OH4) sO13I911930vIRYD 10pRSH
2114 ¢ sey ujeyd> gvx syl

SWi Aq pauanyay
0132z 0) pazitelaijul

IVILNINO3AS=2: NOIIVZ INVDEO
Pue JLIUMOVIU=IONIUVHS 3T 1

AINOGVIM =t AMOLSIH F0u I}
I[NeJap ‘INON=3ONI4VHS 3T 1

20 ‘234q (013U0D 2A}IV(Oa ‘IPWIO] O[QP]IeA) PIODO1 10) opew oduemo[le 23Aq Auv sjussaidar x aiaym
21S/(X + (X + oZy8paoOdOl1 , ©2183133ONqQ) + [1G)

‘peijejies

aae Bujaopao gvx bBug

-paeboa SWY jo sjuswazynbea
9yl se¢ Buol se ujwyo

ayy uy oasymAuw sgvx I1i1esuj
ued aanpedsoad NIJO¥ESN N0}
*8an3Inj 8yl uy savy ppe

Aew 1¥1I91Q ‘3jvesaad aq (A
8)001qQ WOIIjUTJep Xapuy X3
‘patjioeds sg_piomdey = Xa@A
8yl 3I {747 M$aVX) yibuoy
paodcaa 3sabuoy eyy jeb

03 %901q 23NQ1I33I¢ popuelIxe
(OHd) sdoyisjaelowavy) ispesH
3114 © sUY ujeyd gVvx oyl

sWy Aq peuiniey

019z 03 pazyferTul

TYILNZNO3IS pue QIIVHS 3T |

013z 03 pazjiejitul

ALIIMAVIU=IDONIUVYHS JT 1 QIUVHS 3T 1

JALIUMAVAA=ONIUVHS 3T 1 a3UVHS 31 1
ATNOQV3IY

30 JLIUMAVIU=IONIUVHS JT 1 a3ygvHs 37 1

ILIIMAVIU=ONINVHS 3T 1 aAAVHS 3T 1

sWy Aq peuanjey SHY Aq pauanjen

013z 03} pazjrelijul 012z 031 pazirelIjul

o1-11

Z°PA SHA ©) paiepdn
‘1enuel 8oua13jay jroddns abenbue] Q°EA SWA :321Nn0OS

A1_WV3IELS, = 34ALAHODAY I JTWLS_D4uvd
(4D WVAULS, = JJXLAYOIIY JI YOWLS J$Hvd

JHVINLS, = 3JA1AY4003d J1 WLS D4dvd

*a113 paxapu] 3} ©3Aq [013u0d 1epeay 3183onq sjuasaidaa

‘payjsiies oawv Bujaepao gvx
6uipaebaa SWM jo sjuewaiynbaa
ayy se Ouol se ujeyd ayjy

uy eaoymAuw 8@VX JISSUY URD
aanpedoad NIJOWISN Inox ‘@VX
JHJd eyl a1e3je saVX ppe Aewm
IVLIDIQ “JHJAVX 03 sjujod.
Koy Isey ayjy puw .uuMan:.

ayy o3 syujod Qv $9 .
‘pey31oeds aae shey 31
‘yarbuat piosaa 3Isebuol ey3
30b 031 sseappe Yodore . ']
~1131% papuaixs (JHJ) $OF48T
-1930RaRY) 18pRAH 8[JJ O3 IS

SWd Aq pauanijay

0 @812 Q3IX3ANI 31 1

013z 03 pazjyieyljul

HOLVM)S 10 3INON
KJIQOW 31 1

K3IQOW 3§ 1

avay 10 XJ1Q0W I§ 1
3LI¥YM 10 XJIAOMW 3T 1

MOTIV Aq pojjioeds sy

SHY Aq pauvaniay

JZISMOQNIM O3 325

SSa1ppy
1501d 2INQTIIIV papuaixy

?apo) snjels uoljafduwo)

pamolle wWeai3syI[nK
yd0[183Ul papraoad-iasn

suo}iIviado 13Yyjo ou mOT(Y
831Vadn 1sYyjo mof (¥
8313130 19430 MO [V

8139 13Y30 MOT TV

SlNd 13430 moqv

butieys agid

8ofIstaajoereyd

ad1aap Buyjoods

8Z1S MOPUIM [RADT1I13Y

(*3uo)) N3dO dT1I4 3Ie 3Tnejad Aq sasyidwo)
abenbue] (oad7-19YybTH AQ SpTatd gVd SWM XVYA 3Jo sbBuiiaes

NYYLY0d °¢

= SNd da3ym
(SAY‘GG2Z) NIW

Jisvea 1

ts3j0U00d

avx is4vd
SLS 189v4

ASH ASUVd

140" Asdvd

TIN ASEVY
adn Asavd
130 A48V
L3I0 Asavy
Lnd Asavd

4HS dsava

205 188vy

ALY 98dvJ

Facebook Inc. Ex. 1215

248

6uyidwoad

10) perqeud soy}j
[eujmia) JO) vOjITWIOJUY
{oajuod-abeyaied 834q
-OoM) jJO Sseiappe 03 18S

pauado 8y o113 oYI

193)% suojieasdo o113
1enpIATpUl 103 PeYjjpom oq 4w

pouado s} o113 oyl

1233e suvoyjeviedo o1})
[enpiajput 103 peyjjpom oq Aew
olez 03} pezjlelIjuUl

o109z 03 pezyteIITUL

o013z 0) pozy(eIITUl

0182 03} pazyreyITuUl
povedo 8y o113
ay) 183j% suojiviado o(}}
TenpiAfput 103 pejjipom aq Aen
peuedo s8] o1}

ayy 193je suotpiviedo o1}
Tenpyafpuy 103 pejjipow eq Aew

peuedo s} 8[}1) 8y)l 1833°@
suojjeiedo ayy}
1enpyAatpuy 103 pejjipow oq Auw
sWy £q pauaniay
9vd jo saippe 03 33§
o013z 03} paziterijul

o1ez 03 pezyreiItul

anfeA pue iejeweied
N3dOo 1VOSvd

013z 03 pazyIviIul

1930y 108
pel33IwWo §SIDOV 10 ‘aN3IddV
JVIINANOES I O3S Nsavd
aaxai

1o 1D3d1d JF¥ X3 Asevd
o182 03 pazileyITUI

019z 03 pezjreIIfuI

U = LNOODH¥AA4dNG j1 U

TIS/(T1S + u)
88N u = BZIBYJ0(q 3II

0192 03 pozZy[eIIIUI

0102 03 pezjiejItul

(12341Ia, = S53DIV

37 1 © bBujuyiejuod
paombuo] jJo 8821PPY
sud Aq peuanjay
4v4d jJo sseappe 03 13§
o018z 0) pazifetijul

o182 0) pazjreyjul

anTeA pue paomAay
N3dO NVILYOd

TT1-11

o109z 03 pazileiijul

o013z 0) pazjreiItvl

0102 03 pozyteIItVI
0192 03 pozyIvIITUI
0102 03 pozyIeYITUI

¥3addnd Aq payjyoeds s¥

o102 ow.vou«~q«u«:n

(*X3aNl 103 pebueyd) »

0102 03 pazylelIful
so11J pejuvawbos ssedoe
tejjuenbes 103) aeqanu
paodea (edyboy Ix8u
10 u8aand Dujujejuod
uojIeds0l jo seeippy
swy Aq peuanioy
gvd jJo sseippe 03 13§
0192 03 pIzyrerItul

013z 03 pazyelItul

anyeA pue paomiay
. N3dO J1Svd

suo1jdo HBurssadsoad paoday

1233nq aspeay pirodad

ssoappe paoday

apow SS220® pl10dAY
azys 1833nq Idwoad
ssaippe 193j3nq 3dwoid

JUNOD 133 INGEIITNH

UN03 Y201qIITNH

az1s Aay

@s5ua13)a1 jo Aa)

ssoippe 1ajjng Aaj
19131IU3P] WE31s [euldJul
ssaappe @vd

3IX23u0)

apod 3jajong

aweN

N3O d1I4 3e 3Tnejed Aq siagtdwo)
abenbue [9a91-19YyBIH Aq spratd VM SWI XVA Jo bBuiljss

404 "15av4

and 1savy

494 148vd

vy déuvy
7Sd 4savd
444 1s9vd

JOW 4savy

JHW 858vd

ZSH gsavi

Juy asavd

493 139vY
IS1 Msavd
avd 1$4vy
XLD 156VY
Id8 154V

pratd

s3umas N vy

Facebook Inc. Ex. 1215

249

peuedo 8y 91713 oyl
1833w suojivaedo o1y}
1enpiAJpUY 10) pojjpow oq AeN

1

0192 03 pezyIeIIJUI

173410=2QORLAN SSAIIV IV 1

pausdo 87 O171) oYy
ae33e suojjeaedo o1t}
1enpiATpUY 10) peyjipow eq Aew

o192

oa108

o102

o103

oxex

(o2 1: 1

olez

o3

0}

o3

(23]

03
o3

03

pazyreyajul
pazyreIltuUl
pazy(ey3jul
pazyTeIIjuUl

1
pezyreIajul
pezy(eyltul

pezyyeyljul

peuedo 8y ayy}
oY) 183j@ wuojeiado oyf}3
1enpyAypuy 103 pajjipow aq Avy

0102

[« -1 4

0102

oxez

0122

[s B -} §

o193z

oaaz

o102

oaaz

(o2}

(23]

03

(23]

03

[k}

o3

03

03

03

pezyIeIIUI
pezyrerljul
pezyreyajul
pazyreajul
pezyrerajul
poezytey3jul
pazyreyayul
pezyreyajul
pazy(eIljuUl

pezyeIltUl

o102

o103

»1J3d14a,

0102
0103
0102

oaxe3

oot
oxez

o102z

oxez

0103
0102
o193z

oaaz

o102
[o -} §
o102

[sB1-}

o3

03}

03

0}

0}

03}

03

03

03

03

[+2}

2]

0l

o3

0l

03

03

03

PazZIIRIITUI

1
pezyIvIIIUL
§8300V¥ 31 1

!
pezyreratul
pezjreiljul
pezyIRIIUL
pezyIeIuUI

1
pazyrerljuUl
pazyreyaIyul

pezyyerayul

pezyreyljul

pazyeIayUl
pezyteyajul
pazyrellul
peziyeyyul
aN3dav J1 1
pazytelayul
pezyrerljul
pazyteyayul

pezireratul

¢I-11

03 - 0) pezy(eRiITUI

0103 03 POZJLeIITUI

o1ez 03 pezytelaIjul

TVNIVIA NOILVZINVOHO 37 1

0103
o110z
oxez
oa9z
oxez
olez

oadz

2]

03

03

(23]

03

03

2]

pesjrefIyuUI
pazjrerljul
pezyieiajul
pezyreljuUl
pezireIayuUl
pazyreyljul

pezyrelajul

edyAep TRUTEmIEY JY |

o019z 03 pezy[eRIITUL

o1z 03
oaez 03
o013z 03
018z 03
o1ez 03
013z 03
an3iday
018z 03
oiasz 03
013z 03
018z 03

pazireyajul
pazyiyeyljul
pazyreIltul
pazitelajul
PozZiTeIITUL
pazyrerytul
SS3IO0V J1 {
pazrerjtug
pezyreiatul
pezyrelltul

pazyreyayul

az1s pioday
putyeq-al 1M
Bbutyootun fenuel

s31syxe paodexa jt ayepdn

1lNd 1e33@ af1j 23eounal
Inoswtry

123113 ou pead

oysa ou peay

pemoy (e Pi0d231 payxdo[peay
peaye-peay

peaye-ad&y aband

ydwoigd

P102591 JUSISIXIUON

%201 ON
apow 33e001]

]

< Kax

= 30 ¢ Aay

ajatap ummu
?{t3-jo-pul
asesiaddn 031 3119AU0)
0/741LD 132ue)

0/1 yoo1d

SNOUCIYIUASY

(*3u0D) NIJO FTId e 3ITnejag Aq siaer1dwo)
abenbue] (esaaT-19ybTH Aq sprotd VM SWM XVYA Jo Buiiizes

258 A$dYY

HEM ASEVY
AIN AsavY

JdIn AsEvH

1dl Asavy
OHL A$HVY
ANY ASEVY
aNd AsavY
14 AsavY
HYY ASEVY

vid A$EVY

1Wd Asavd

XN AsavY

FIN ASEVY
201 ASEVY
WIT ASEYY
LOX A$HVY
3938 ASEVY
194 A$4VH
403 AsHvY
LAY ASdvH
032 AsAvVY
018 Asavy

ASY ASHVY

Facebook Inc. Ex. 1215

250

psuado sy a[}3 1a3jv
1933nq jJO 8z18 0} 335

pauado 81 a[}3 1931}@
sgaippe 1833Nnq 03 38§

013z 03 pazyieyltul

sWd Aq pauaniad

eE1-11

o018z 03 pazyieiITuUl SHW M$EYd se awes 82}s valie pi10oo31 J13sn
0192 03} pazjrelIjul 1833nq JO Sseiappe 03 13§ g831ppe eaie piodal 13sn
0192 073 pazyeiItuI 018z 0} pezI(RIITUI poyaad jnoaut}

sWy Aq pauanisy SWd 4q pauianjyay apoo sniels uoriajduo)

(*3uo)) NIJO F1IJd e 3tnezag Aq sasrrdwo)d
abenbue] 1ona1-aaybIH Aq SproTd W SWM XVA Jo sburtilss

Y4
{ l t { ({ l { t (

230 1$4vY

Jan ‘1savy
OWL 8sdvH

SIS 144V

Facebook Inc. Ex. 1215

251

XAB Defaults

Setting

Field
XABKEY
XABSB_DTP
XABSB_FLG
XABSV_CHG
XABSV_DUP

XABSW_POS0

XABSB_REF

XABSB_SIZ0
XABFHC
XABSUM

NAM block

of VAX-11 RMS Extended Attribute Block (XAB) Fields

Data type of the key

Key options flag
Changes allowed
Duplicates allowed

Key position

Key of reference

Key size

BASIC OPEN
Keyword and Value

Set to data type of the key

As specified by CHANGES
As specified by DUPLICATES

Position of key in indexed
file record

Primary key is zero,
first alternate key is one,
second alternate key is two,
and S0 on...
Size of key
Initialized
Initializead

Initialized

11-14

252

FORTRAN and PASCAL OPEN
Keyword and Value

Set to data type of the key

0 if key is 0, else 1
0 if key is 0, else 1

Position of key in indexed
file record

Primary key is zero,

first alternate key is one,
second alternate key is two,
and so on...
Size of key

Initialized

Initialized

Initialized

Facebook Inc. Ex. 1215

lost clygter

DCL COMMANDS FOR IMPLEMENTING RUN-TIME FEATURES AD SERZ —
PEprapt JE T ATTRIBRUTES

SET FILE

The SET FILE command allows various capabilities for changing the
semi-permanent attributes of a file. The following commands are
of particular interest.

e SET FILE/ACL allows modification of the access control 1list
associated with a file.,

e SET FILE/BACKUP determines whether the data in a file will be
copied by the BACKUP utility.

e SET FILE/DATA_CHECK specifies the reliability options (read
check and/or write check).

e SET FILE/ERASE ON_DELETE ensures erasure of confidential data
when a file is deleted.

e SET FILE/EXPIRATION_DATE changes the expiration date of a file
(if any).

@ SET FILE/EXTENSION specifies the extend guantity, or allows a
change to the exlstlng one. This can save recreating a file
if you have made a minor error of judgment. Note that this
figure is only used for areas which do not have an explicit
extend guantity.

e SET FILE/GLOBAL_BUFFER specifies the number of global buffers
to be associated with a file.

e SET FILE/OWNER UIC changes file ownership.
e SET FILE/PROTECTION changes the protection code of a file.

e SET FILE/TRUNCATE truncates a sequential file at the
end—of-£file-marker. This enables you to re-:laim disk space if
too many blocks have been allocated and the fil< content has
become static.

e SET FILE/VERSION_LIMIT changes the number of versions to be
retained.

@ SET FILE/ENTER=new-file-spec assigns an additional name to a
file. The file now has a second name, or alias, but both the
original name and the alias reference the same file. For this
reason, care should be taken when deleting files which have an

alias., 1In order to keep the file but remove one of its names,
use the /REMOVE qualifier with the SET FILE command.

NB ,iwfg o cdobve on w{:? o f\ﬁe a,é;{mlouﬁ.:
'g)m}w Jma;;; M cofies fd;hxé es

253 Facebook Inc. Ex. 1215

RMS uses a number of defaults which can either be set system-wide
or for each process. Use the SHOW RMS_DEFAULT command to find out
the current defaults, and then use the SET RMS_DEFAULT command to

change them.

SHOW RMS__DEFAULT

S SHOW RMS_DEFAULT

MULTI- | , MULTIBUFFER COUNTS ' NETWORK
BLOCK Indexed Relative Sequential BLOCK
COUNT Disk Magtape Unit Record COUNT
Process 0 0 0 0 0 0 0
System 16 0 0 0 0 0 8
Prolog Extend Quantity
Process 0 ‘ 0
System 0 0

The SHOW RMS_DEFAULT command displays the current process and
system default multiblock and multibuffer counts for all types of
files. It also displays the current process and system prolog
level, extend quantity, and network transfer size.

Note that all of these are defaults. They are overridden by what
is specified in the file attributes, or by what is specified at
file open time (or later, where possible) in a program. The
"default defaults"” are taken from the RMS system parameters. They
may be overridden for the whole system by using the SET
RMS_DEFAULT/SYSTEM command (CMKRNL privilege required).

11-16

254 Facebook Inc. Ex. 1215

SET RMS__DEFAULT

SET RMS_DEFAULT/BLOCK_COUNT specifies the number of blocks
transferred to or from a sequential file in one I/O operation.
The specified count, representing the number of blocks to be
allocated for each I/0 buffer, can range from 0 through 127.

If you spec1fy 0, RMS uses the process default value. If this
value is 0, RMS then uses the system default value. If the
system default value is also 0, then RMS uses a value of 1.

The /BLOCK_COUNT qualifier applies only to record I/0
operations, not to block I/O operations.

SET RMS_DEFAULT/BUFFER_COUNT specifies the number of buffers
to be used for files of the organization and device type
indicated using additional qualifiers. The specified count,
representing the number of buffers to be allocated, can range
from ﬁﬂ%ﬁ?ﬁhrough 127.

A-positive—value—indicates—that—=the
specified’ number of huffers-must—be-leeked—in-the-precess.&
i . l e £1

A negative value indicates
that the specified number of buffers must be allocated but do
not have to be locked. If you spec1fy 0, RMS uses the process
default value. If this value is 0, RMS then uses the system
default value. 1If .the system default value is also 0, then
RMS uses a value of 1.

/INDEXED qualifier indicates that the specified
multibuffer default is to be applied to indexed file
operations. '

/RELATIVE qua11f1er indicates that the specified
multibuffer default is to be applied to file operations on
relative files.

/SEQUENTIAL qualifier indicates that the specified
multibuffer default 1is to Dbe app]ied to all sequential
file operations, including operat1on'_ on disk, magnetic
tape, and unit record devices. -

/SEQUENTIAL qualifier is the default if you do not specify
either /RELATIVE or /INDEXED.

SET RMS_DEFAULT/EXTEND_QUANTITY specifies the number of blocks
(0 to 65535) by which files should be extended, if not already
specified.

SET RMS_DEFAULT/NETWORK_BLOCK_COUNT specifies a maximum Dblock
count for network operations on all file organizations.

SET RMS_DEFAULT/PROLOGUE specifies the prolog version number
for file creation.

11-17
255 Facebook Inc. Ex. 1215

Examples

$§ SET RMS_DEFAULT/BLOCK_COUNT=24

$ SHOW RMS
MULTI- MULTIBUFFER COUNTS NETWORK
BLOCK Indexed Relative Sequential BLOCK
COUNT Disk Magtape Unit Record COUNT

Process 24 0 0 0 0 0 0

System 16 0 0 0 0 0 8
Prolog Extend Quantity

Process 0 0

System 0 0

$ SET RMS_DEFAULT/EXTEND=50/INDEXED/BUFFER_COUNT=24
$§ SHOW RMS_DEFAULT

MULTI- MULTIBUFFER COUNTS NETWORK
BLOCK Indexed Relative . Sequential ' BLOCK
COUNT Disk Magtape Unit Record COUNT
Process 24 $2y 0 0 0 0 0
System 16 0 0 0 0 0 0
Prolog Extend Quantity
Process 0 S0
System 0 0

11-18
256 Facebook Inc. Ex. 1215

SPECIFYING RUN-TIME OPTIONS

All RMS options are set within the RMS control blocks that are
maintained in the user PO space. There are at least three
alternative ways these options can be set from higher-level
languages.

1. Some run-time options can be preset using keyword values (or
defaults) available in their language OPEN statement.

2. For options not set by default by their language compiler, and
not available using the OPEN keywords, languages that have a
USEROPEN function in their language OPEN statement are able to
directly access the VMS control blocks and set any options as
part of the OPEN performed by RMS.

3. Many of the RMS run-time options are available in EDIT/FDL and
can be added to an FDL file. The FDL run-time options can be
implemented within program control at run time by calling the
FDLSPARSE routine. This routine also returns to higher-level
languages the address of the record access block (RAB) to
allow a program to subsequently change RAB values. Certain
RAB options are not available in FDL and can be set only by
direct manipulation of RAB fields and subfields at run time.

11-19

257 Facebook Inc. Ex. 1215

RMS RUN-TIME OPTIONS AVAILABLE THROUGH THE FDL ADD FUNCTION

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) [Help] : ?

VAX~-11] FDL Editor

Add to insert one or more lines into the FDL definition
Delete to remove one or more lines from the FDL definition
Exit to leave the FDL Editor after creating the FDL file
Help to obtain information about the FDL Editor

Invoke to initiate a script of related questions
Modify to change existing line(s) in the FDL definition

Quit to abort the FDL Editor with no FDL file creation
Set to specify FDL Editor characteristics

View to display the current FDL Definition

Main Editor Function (Keyword) [Help] : ADD

(ACCESS AREA CONNECT DATE FILE JOURNAL
KEY RECORD SHARING SYSTEM TITLE)
Enter Desired Primary (Keyword) [FILE] : ACC

(Type "?" for list of Keywords)

Enter ACCESS Attribute (Keyword) [-] ?

Legal ACCESS Secondary Attributes

BLOCK_IO yes/no
DELETE yes/no
. GET yes/no
PUT yes/no
RECORD_IO yes/no
TRUNCATE yes/no
UPDATE yes/no

(ACCESS AREA CONNECT DATE F* LE JOURNAL
KEY RECORD SHARING SYSTEM LITE™)

Enter Desired Primary Keyword) [ACCESS] : AREA 0

(Type "?" for list of Keywords)

Enter AREA 0 Attribute (Keyword) [-] : ?
11-20

258 Facebook Inc. Ex. 1215

Legal AREA 0 Secondary Attributes

ALLOCATION number
BEST_TRY_CONTIGUOUS yes/no
BUCKET SIZE number
CONTIGUOUS yes/no
EXACT_POSITIONING yes/no
EXTENSION number
POSITION qualifier number
VOLUME number

(ACCESS AREA CONNECT DATE FILE

e o woldkh cosidonrg —a wL&L—VOLun bk
mas] le uqui iéf axﬂjai JT““H

JOURNAL

KEY RECORD SHARING SYSTEM TITLE)
(Keyword) [AREA 0] : CONNECT

Enter Desired Primary

(Type "?" for list of Keywords)

Enter CONNECT Attribute

Legal CONNECT

ASYNCHRONOUS yes/no
BLOCK_IO yes/no
BUCKET_CODE number
CONTEXT number
END_OF_FILE yes/no
FAST DELETE yes/no
FILL_BUCKETS yes/no
KEY_GREATER_EQUAL yes/no
KEY_GREATER_ " THAN yes/no
KEY LIMIT .yes/no
KEY_OF_REFERENCE number
LOCATE_MODE yes/no
LOCK_ON_READ yes/no
LOCK_ON_WRITE yes/no
MANUAL_UNLOCKING yes/no
MULTIBLOCK_COUNT number
MULTIBUFFER_COUNT number

(ACCESS AREA CONNECT DATE FILE

(Keyword)[?]

s ?

Secondary Attributes

KEY RECORD SHARING SYSTEM TITLE)

Enter Desired Primary

NOLOCK yes/no
NONEXISTENT_ RECORD yes/no
READ_AHEAD yes/no
READ_REGARDLESS yes/no
TIMEOUT_ENABLE yes/no
TIMEOUT_PERIOD number
TRUNCATE ON_PUT yes/no
TT_! CANCEL CONTROL_O yes/no
TT_ “PROMPT yes/no
TT PURGE_TYPE AHEAD yes/no
TT_ READ NOECHO yes/no
TT_ READ . NOFILTER yes/no
TT_ UPCASE INPUT yes/no
UPDATE IF yes/no
WAIT_FOR_RECORD yes/no
WRITE_BEHIND yes/no
JOURNAL .

(Keyword)[COthCT] : DATE

(Type "?" for list of Keywords)

Enter DATE Attribute

(Keyword) [-]

11-21

259

?

Facebook Inc. Ex. 1215

Legal DATE Secondary Attributes

BACKUP string
CREATION string
EXPIRATION string
REVISION string

(ACCESS AREA CONNECT DATE FILE JOURNAL
KEY RECORD SHARING SYSTEM TITLE)
Enter Desired Primary (Keyword) [DATE] : FILE

(Type "?" for list of Keywords)
Enter FILE Attribute (Keyword) [~]

.
")

Legal FILE Secondary Attributes

ALLOCATION number MT_PROTECTION : char/num
BEST_TRY_CONTIGUOUS yes/no NAME string
BUCKET_SIZE number NOBACKUP yes/no
CLUSTER_SIZE number NON_FILE_STRUCTURED yes/no
CONTEXT number ORGANIZATION keyword
CONTIGUOUS yes/no OUTPUT_FILE_PARSE yes/no
CREATE_IF yes/no OWNER uic
DEFAULT_NAME string PRINT_ON_CLOSE yes/no
DEFERRED_WRITE yes/no PROTECTION yes/no
DELETE_ON_CLOSE yes/no READ_CHECK yes/no
DIRECTORY_ ENTRY yes/no REVISION number
EXTENSION number SEQUENTIAL_ONLY yes/no
GLOBAL_BUFFER_COUNT number SUBMIT_ON__ CLOSE yes/no
MAX RECORD NUMBER number SUPERSEDE yes/no
MAXIMIZE_VERSION i yes/no TEMPORARY yes/no
MT BLOCK SIZE number TRUNCATE ON CLOSE yes/no
MT_CLOSE_REWIND yes/no USER_FILE_OPEN ' yes/no
MT_CURRENT_POSITION yes/no WINDOW SIZE number
MT_NOT_EOF yes/no WRITE_CHECK yes/no
Enter Desired Primary (Keyword) [FILE] : KEY O
(Type "?" for list of Keywe ds\
Enter KEY O Attribute (Keyword) [-] : ?

11-22

260 ’ Facebook Inc. Ex. 1215

eJijs ﬁqd awf')UD fg G an. a%.aﬁ“{&

Legal KE 0 Secondary Attributes

| CHANGES _yes/nd LEVEL1_INDEX_AREA number
DATA_AREA number NAME string
DATA_FILL number NULL_KEY yes/no
DATA_KEY COMPRESSION yes/no NULL_VALUE char/num
DATA_ RECORD_COMPRESSION yes/no POSITION number
DUPLICATES yes/no PROLOG number
INDEX_ AREA number TYPE keyword
INDEX_COMPRESSION yes/no SEGn_LENGTH number
INDEX_FILL number SEGn_POSITION number
LENGTH number

(ACCESS AREA CONNECT DATE FILE JOURNAL
KEY RECORD SHARING SYSTEM TITLE)

Enter Desired Primary (Keyword) [KEY 0] : REC

(Type "?" for list of Keywords)
Enter RECORD Attribute (Keyword) [~]

?

Legal RECORD Secondary Attributes

BLOCK_SPAN yes/no
CARRIAGE_CONTROL keyword
CONTROL FIELD SIZE number
FORMAT - keyword
SIZE . number

(ACCESS AREA CONNECT DATE FILE JOURNAL
KEY RECORD SHARING SYSTEM TITLE)

Enter Desired Primary (Keyword) [RECORD] : SH

(Type "?" for list of Keywords)

Enter SHARING Attribute (Keyword) [-] s ?
11-23

261 Facebook Inc. Ex. 1215

Legal SHARING Secondary Attributes

DELETE yes/no
GET yes/no
MULTISTREAM yes/no
PROHIBIT yes/no
PUT yes/no
UPDATE yes/no
USER_INTERLOCK yes/no

(ACCESS AREA CONNECT DATE FILE JOURNAL
KEY RECORD SHARING SYSTEM TITLE)
Enter Desired Primary (Keyword) [SHARING] : SY

(Type "?" for list of Keywords)
Enter SYSTEM Attribute (Keyword) [-] : ?

Legal SYSTEM Secondary Attributes

DEVICE string
SOURCE keyword
TARGET keyword

(ACCESS AREA CONNECT DATE FILE JOURNAL
KEY RECORD SHARING SYSTEM TITLE)

Enter Desired Primary (Keyword) [SYSTEM] : TI

TITLE ""

Replace this existing secondary (Yes/No) [No] :
11-24

262 . Facebook Inc. Ex. 1215

FDL Session Adding Connect Run-Time Option

insert one or more lines into the FDL definition
remove one or more lines from the FDL definition
leave the FDL Editor after creating the FDL file
obtain information about the FPL Editor

in the FDL definition

abort the FDL Editor with no FDL file creation

Example 1.
VAX-~11 FDL Editor
Add to
Delete to
Exit to
Help to
Invoke to initiate a script of related questions
Modify to change existing line(s)
Quit to
Set to specify FDL Editor characteristics
View to

display the current FDL Definition

Main Editor Function

ACCESS
AREA x
CONNECT
DATE
FILE
JOURNAL
KEY y
RECORD
SHARING
SYSTEM
TITLE

attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes

Legal Primary

(Keyword) [Help] : ADD

Attributes

is the header line for the FDL file

Enter Desired Primary

(Type ? for list of keywords)
Enter CONNECT Attribute

Legal CONNECT

set_the run-time access mode of the file
define the characteristics of file area x
set various RMS run-time options

set the data parameters of the file
affect the entire RMS data file

set the journaling parameters of the file
define the characteristics of key y

set the non-key aspects of each record
set the run-time sharing mode of the file
document operating system-specific items

(Reyword) [FILE] : CO

(Keyword) [~]:

?

Secondar«s Attributes

ASYNCHRONOUS yes/no NOLOCK - yes/no
BLOCK_IO yes/no NONEXISTENT_ 'RECORD yes/no
BUCKET_CODE number READ_AHEAD yes/no
CONTEXT number READ_REGARDLESS yes/no
END_OF_FILE yes/no TIMEOUT_ENABLE yes/no
FAST_DELETE yes/no TIMEOUT_PERIOD - number
FILL_BUCKETS yes/no TRUNCATE _ON_PUT yes/no
KEY_ GREATER_ EQUAL yes/no TT CANCEL CONTROL O yes/no
KEY GREATER_THAN yes/no TT PROMPT yes/no
KEY LIMIT yes/no TT_PURGE_TYPE_AHEAD yes/no
KEY OF_REFERENCE number TT_ READ NOECHO yes/no
LOCATE_MODE yes/no TT READ NOFILTER yes/no
LOCK_ON_READ yes/no TT_UPCASE_ INPUT yes/no
LOCK_ON_WRITE yes/no UPDATE_IF yes/no
MANUAL UNLOCKING yes/no WAIT_FOR_RECORD yes/no
11-25
263 Facebook Inc. Ex.-1215

MULTIBLOCK_COUNT number WRITE_BEHIND - yes/no

MULTIBUFFER_COUNT number
Enter CONNECT Attribute (Keyword) { -} : LOCK_ON_W
CONNECT

LOCK _ON_WRITE
Enter value for this Secondary (Yes/No) [~] I 4

Resulting Primary Section

CONNECT

LOCK_ON_WRITE yes
Press RETURN to continue (~Z for Main Menu)
(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keyword) ([Help] : ADD
(Access Area x Connect Date File Journal
Key y Record Sharing System Title)
Enter Desired Primary (Keyword) [CONNECT] : CO
(Type ? for list of keywords)
Enter CONNECT Attribute (Keyword) [-] : FAST
CONNECT

FAST_DELETE
Enter value for this Secondary (yes/no) (-] : Y

Resulting Priméry Section

CONNECT

FAST DELETE yes
LOCK_ON_WRITE yes
Press RETURN to continue (~Z for Main Menu)

(Add Delete Exit Help Invoke Modify Quit Set View)
Main Editor Function (Keywdrd) [Help] : EX

11-26
264 Facebook Inc. Ex. 1215

MODULE 12

CALLING RMS SERVICES DIRECTLY
- FROM MACRO AND HIGHER-LEVEL LANGUAGES

Al

Major Topics
- VAX/VMS procedure calling standard
- Reporting success or failure of call
e Calling as a function
e RMS completion status codes
® Testing completion status
- Passing arguments to RMS procedures

Source

BASIC — User’s Guide, Chapter 9

COBOL — User’s Guide, Part IV

FORTRAN — User’s Guide, Chapter 4
PASCAL — User’s Guide, Chapter 4

MACRO — RMS Reference, Chapters 3 and 4

265

Facebook Inc. Ex. 1215

266 | Facebook Inc. Ex. 1215

THE VAX/VMS PROCEDURE CALLING STANDARD

To eliminate duplication of programming and debugging, VAX/VMS
provides a set of rules specifying the interface between a calling
program and a called procedure. These rules are known as the
VAX/VMS Procedure Calling Standard. If this standard is followed,
a procedure written in any VAX/VMS native-mode language can be
called from a program written in any other native-mode language.
These languages include FORTRAN, MACRO, BASIC, COBOL, and PASCAL.

The VAX/VMS Procedure Calling Standard is followed by all VAX
high-level languages. It permits interlanguage calls among all
VAX languages. The VAX/VMS Procedure Calling Standard specifies:

1. how to save the state of the <calling program and transfer
control to the called procedure,

2. how to restore the state of the calling program and return
control to it,

3. how to pass arguments between the calling program and the
called procedure,

4. how to report the success or failure of the called procedure
to the calling program.

12-1
267 Facebook Inc. Ex. 1215

REPORTING SUCCESS OR FAILURE -OF A CALL
Calling as a Function

@ The VAX/VMS Procedure Calling Standard requires that a
procedure report success or failure to the calling program in
a status longword.

@ For most system-supplied procedures, the program must test the
status longword to detect an error. The status longword is
returned to the program in two ways.

1. As the function result in high-level 1languages, if the
procedure is called as a function,

2. In RO in MACRO.

e When calling RMS procedures (or any system service), even if a
fatal error is encountered, it will return by default to the
next instruction in the user code.

® Before returning to user program from a file or record
operation, RMS also writes the condition wvalue 1in the
completion status code field (_STS) of the associated control
block (FAB or RAB). For certain completion values, RMS
returns additional information in the status wvalue field
(_SsTV) of the control block. The description of the RMS
completion status codes in Appendix A of the RMS Reference
Manual indicates which codes return ir.“ormation in the STV
field.

RMS Completion Status Codes

The following symboli¢ names are associated with the numeric
constant:

RMSS £E£[...f]

Refer to the RMS Reference Manual for more information. Appendix
A, Table A-2 1lists the symbolic names for the completion codes
alphabetically. Appendix A, Table A-1 lists the completion codes
by number.

Example

RMS$_EOF 0001827A (Hex)
98938 (Decimal)

The symbolic names and associated numeric values are defined in an
SRMSDEF module, the location of which varies among the programming
languages.

12-2

268 Facebook Inc. Ex. 1215

Location $RMSDEF Module

External Reference
to Symbolic Name

Language SYSSLIBRARY: Resolved at
BASIC STARLET.OLB(1) Link — (;,, V3-0 sl above we:
‘ ChF L IBrae . BsIegsTROLET. L2
COBOL STARLET.OLB(1) Link
FORTRAN FORSYSDEF.TLB(2) Compile
PASCAL " STARLET.PEN(3) Compile
MACRO STARLET.MLB(1) Assemble

Use the following DCL library utilities to extract a listing from
one of these libraries.

(1) SLIBRARY/EXTRACT = $RMSDEF/OUT=filespec -
SYSSLIBRARY:STARLET.MLB

(2) SLIBRARY/EXTRACT=$RMSDEF/OUT=filespec -
SYSSLIBRARY;FORSYSDEF.TLB

(3) The source for the PASCAL environment file is in

SYSSLIBRARY:STARLET.PAS. This 1is not a library output file.
Use EDIT to locate and extract module S$RMSDEF.

12-3

269 Facebook Inc. Ex. 1215

SLIBRARY/EXTRACT=$RMSDEF/OUT=RMSDEF .DEF

-
’

SEQU
SEQU
S$EQU
SEQU
SEQU
SEQU
$SEQU
S$EQU
$BQU
S$EQU
; OK_RRV
SEQU
$EQU
$EQU
$EQU
$EQU
SEQU
SEQU
SEQU
$EQU
$EQU
$SEQU
SEQU
SEQU
$EQU
SEQU
SEQU
SEQU
$SEQU
$EQU
$EQU
$EQU
SEQU
SEQU
S$EQU
$EQU
SEQU
$EQU
$EQU
$EQU
$EQU
S$EQU
$EQU
$SEQU
$SEQU
$SEQU
$EQU

.MACRO S$RMSDEF,SGBL

SDEFINI RMS,S$GBL

ADD RMS$_BUSY

RMSS FACILITY

RMSSV_STVSTATUS

RMSS$_SuC
RMS$_NORMAL
RMSS_STALL
RMSS_PENDING
RMSS_OK_DUP
RMS$_OK_1IDX
RMSS_OK_RLK
RSM$_OK_RRL

RMS$_KFF
RMS$_OK_ALK
RMSS_OK_DEL
RMS$_OK_RNF
RMS$_OK_LIM
RMSS$_OK_NOP
RMSS_OK_WAT
RMSS$_CRE_STM
RMS$_OK_RULK
RMS$_CONTROLC
RMSS_CONTROLO
RMS$_CONTROLY
RMS$_CREATED
RMSS_SUPERSEDE

RMS$ _OVRDSKQUOTA
RMSS_FILEPURGED

RMS$_BOF
RMSS_RNL
RMS$_RTB
RMS$_TMO
RMS$_TNS
RMS$_BES
RMSS_PES
RMS$_ACT
RMSS_DEL
RM 'S_INCOMPSHR
RM .§_D*R
RMSS_Eu
RMS$_FE
RMSS$_FLK
RMS$_FNF
RMS$_PRV
RMS$_REX
RMSS _RLK
RMSS_RNF
RMS$_WLK

12-4

270

ADD RMS$_FILEPURGED

1

14
65537
65537
98305
98313
98321
98329
98337
98345

98353
98361
98369
98377
98385
98393
98401
98409
98417
67153
67081
67089
67097
67121
67177
67193
98712
98720
98728
98736
98744
98752
98760
98906
98914
98922
98930
98938
98946
98954
98962
98970
98978
98986
98994
99002

SYSSLIBRARY:STARLET.MLB

Comm——

Facebook Inc. Ex. 1215

SLIBRARY/EXTRACT=$RMSDEF/OUT=RMSDEF .DEF SYS$LIBRARY:FORSYSDEF.TLe

*** MODULE SRMSDEF ***
This SDL File Generated by VAX-11 Message V04-00 on 15-SEP-1984 22:53:50.83
.TITLE RMSDEF -RMS COMPLETION CODES
COPYRIGHT (C) 1978, 1980, 1982, 1984 BY

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

* % % % ¥
* % * % ¥

!
!
!
!
!
|
{
!
!
!
!
!

PARAMETER RMSS_FACILITY = '00000001'X

PARAMETER RMS$V_STVSTATUS = '0000000E'X ! MOVE TO BIT 14 OF THE
! STATUS CODE IT INDICATES
! THAT STV CONTAINS A SECONDARY
! STATUS CODE.

PARAMETER RMS$_SUC = '00010001'X

PARAMETER RMSS_NORMAL = '00010001°X

SUCCESS CODES

BIT 16 = BIT 15 = 1

PARAMETER RMSS_STALL = '00018001'X
! (NOTE: USER NEVER RECEIVES THIS CODE)
PARAMETER RMSS_PENDING = '00018009°'X
PARAMETER RMSS_OK_DUP = '00018011°‘X
PARAMETER RMSS_OK_IDX = '00018019°'X

ERROR CODES - WITHOUT STV

BIT 16 = BIT 15 = 1, BIT 14 = 0
PARAMETER RMSS_ACT = '0001825A' %"
PARAMETER RMS$_DEL = '00018262°'X o
PARAMETER RMSS_INCOMPSHR = ‘0001826A" %
PARAMETER RMS$ DNR = '00018272'X

PARAMETER RMSS_EOF = '0001827A'X (mmm——
PARAMETER RMS$_FEX = '00018282°'X
PARAMETER RMS$_FLK = '0001828A'X
PARAMETER RMS$_FNF = '00018292'X
PARAMETER RMS$_PRV = '0001829A'X
PARAMETER RMS$_REX = '000182A2'X
PARAMETER RMS$_RLK = '000182AA'X
PARAMETER RMS$_RNF = '000182B2'X

! (RECORD NEVER WAS IN FILE, OR HAS BEEN DELETED.)
PARAMETER RMS$_WLK = '000182BA’'X

12-5

271 Facebook Inc. Ex. 1215

Excerpt Extracted From SYSSLIBRARY:STARLET.PAS Using EDIT

(*** MODULE SRMSDEF ***)

(* *)
(* This SDL File Generated by VAX-1l1 Message V04-00 on 15-SEP-1984 22:53:50.83
(* - *)
(* .TITLE RMSDEF -RMS COMPLETION CODES *)
(ttttttt*t*t**t*t**t**tt*iit*iitt**t*iiiitttﬁt*tiiiiiiitii...titttiitti**t**t)
(ﬁt tt)
(** COPYRIGHT (C) 1978, 1980, 1982, 1984 BY *e)
(** DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. . *r)
(** ALL RIGHTS RESERVED. *)

(tﬁ *®

CONST RMSS _FACILITY = 1;

)

RMSSV_STVSTATUS = 14; (* MOVE TO BIT 14 OF THE *)
(* STATUS CODE IT INDICATES *)
(* THAT STV CONTAINS A SECONDARY *)
(* STATUS CODE. *)
CONST RMSS_SUC = 65537;

RMSS_NORMAL = 65537;
(t+ i)
(* *)
(* SUCCESS CODES *)
(* *)
(*- *)
(* BIT 16 = BIT 15 = 1 . *)
CONST RMSS_STALL = 98305;
(* (NOTE: USER NEVER RECEIVES THIS CODE . *)
CONST RMSS_PENDING = 98313;

RMS_OK_DUP = 98321;

RMS_OK_IDX = 98329;
(* ERROR CODES - W1 HOU™ STV *)
* *)

(*- *)

(* BIT 16 = BIT 15 = 1, BIT 14 = 0

CONST RMSS_ACT = 98906;
RMSS_DEL = 98914;
RMSS_INCOMPSHR = 98922;
RMSS_DNR = 98930;

RMSS_EOF = 98938; {mmmmm
RMSS_FEX = 98946;
RMSS_FLK = 98954;
RMSS_FNF = 98962;
RMSS_PRV = 98970;
RMSS_REX = 98978;
RMSS_RLK = 98986
RMSS_RNF = 98994;

(* (RECORD NEVER WAS IN FILE, OR HAS BEEN DELETED.)

12-6
272 Facebook Inc. Ex. 1215

*)

{(,13T8VIS: XUVEAITSSAS,) LI¥3HNI]

1393931NI t 1IVLS

{(,1374V1S: AYVEEITSSAS,) LIY3AHNI])
uojdund

T¥ISVd

s91npad50id SWY BurTred -- sniels uoriafdwo) builsal

., (33aSW¥$) . 30NTONI

IVLS ¥4,¥3D3LNI

oweu p,¥IDIINI

uoyaIdung .

NY31¥04

L-21

oweu roquAs TVNNALXI

S1 3ANIVA dWOD
{6)6s JI1d
suweu (oquis 10

(6)6s 214

dWOD 1Vl1S 10

uoyidung

30600

eweu poquis
INVLISNOD
ONOT TVNY3LX3

1V1S 9NO1

sweu uoyjduny
ONOT TVN¥3LX3

uoidung

JIsva

\

(1evotido)
apod> sniels d1jtdads
10J 315933 03 ysim nok 3JI

1INsSaa uot3idung

se apO2 SNIeIS 3A}3daAA
03 3afqetaea aieldad
aweu uorjdunj aierdaq

se aanpadoad [red

sme)s uonajdwo)) 3unsay

Facebook Inc. Ex. 1215

273

A programmer can test for:
1. Success or failure <--- overall test -- binomial evaluation

2. Specific conditions <--- test of specific condition codes
(symbolic names)

Format of Status Value

3 27 16 15 03 02 00
CONTROL FACILITY NUMBER MESSAGE NUMBER severiTy | ‘RO
BU-2483

Severity Codes
Severity Meaning

Warning

Success

Error

Information

Severe Error

Reserved for Future Use

NEewWwNh-O

12-8

274 Facebook Inc. Ex. 1215

Example 1. Testing Sspecific Condition Codes

(Ssheet 1 of 2)

BASIC

S22 X222 24
01 EXTERNAL LONG FUNCTION SYSSGET
02 EXTERNAL LONG CONSTANT RMSS$_EOF
03 DECLARE LONG STAT
04 .
05 .
06 STAT = SYSSGET(...)
07 handle error IF (STAT = RMSS_EOF)
08 .
09 .

COBOL

'YS222%X 222222 2]
10 DATA DIVISION.
11 WORKING_STORAGE SECTION.
12 01 STAT PIC S9(9) COMP.
13 01 RMS$_EOF PIC S9(9) COMP VALUE EXTERNAL RMSS$_ EOF.
14 PROCEDURE DIVISION. -
15 BEGIN.
16 .
17 .
18 CALL 'SYSSGET' USING ... GIVING STAT.
19 IF STAT IS EQUAL TO RMS$_EOF THEN handle error.
20 .o

FORTERAN

Y2 22283 XXX2 X 2]
21 INTEGER*4 SYSSGET, STAT
22 INCLUDE ' (SRMSDEF) '
23 .
24 .
25 STAT = SYSSGET(...)
26 IF (STAT .EQ. RMS$_EOF) THEN
27 handle error
28 END IF
29 .
30 .

12-9

275 Facebook Inc. Ex. 1215

Example 1 (Sheet 2 of 2)

PASCAL
IR IT

{INHERIT (’'SYSSLIBRARY:STARLET')] PROGRAM GO_GET_IT;
YARstar INTEGER;

BEGIN

STAT := SGET(...):

IF (STAT = RMSS_EOF) THEN handle error;

END.

MACRO

(2222222 R

S$GET cee
CMPL #RMS$_EOF, RO
BEQLU handle_error

12-10
276 Facebook Inc. Ex. 1215

Example 2. Testing Overall Error -- Test.of Low-Order
Bit in STATUS Returned

(Sheet 1 of 2)

BASIC

'S X232 222 X
01 EXTERNAL LONG FUNCTION SYSSGET
02 .
03 DECLARE LONG STAT
04 L]
05 .
06 STAT = SYSSGET(...)
07 handle error IF (STAT AND 1%) = 0s
08 .
09 .

COBOL

'Y 22222222 2% 3 J
10 DATA DIVISION.
11 WORKING_STORAGE SECTION.
12 01 STAT PIC S9(9) COMP.
13 .
14 PROCEDURE DIVISION.
15 BEGIN.
16 .
17 .
18 CALL 'SYSSGET' USING ... GIVING STAT.
19 IF STAT IS PAILURE THEN handle error.
20 cee

FORTRAN

'T22223222222322 2]
21 INTEGERY4 SYSSGET, STAT
22 .
23 .
24 .
25 STAT = SYSSGET(...)
26 IF (.NOT.STAT) THEN
27 handle error
28 END IF
29 .
30 .

12-11

277 Facebook Inc. Ex. 1215

31
32
33
34
35
36
37
38
39
40

Example 2 (Sheet 2 of 2)

PASCAL
ARARDSB AR NNN NN

(INHERIT ('SYSSLIBRARY:STARLET')] PROGRAM GO_GET_IT;
VARsrAr : INTEGER;

BEGIN

STAT := SGET(...):

IF NOT ODD (STAT) THEN handle error:

END.

MACRO

LA A2 222222222 XX

$GET o .
BLBC RO, handle_error

12-12

278 Facebook Inc. Ex. 1215

RMS services are considered system services for the purpose of
generating system service exceptions on errors. You can choose
whether to test and handle errors in your program oOr set the
system service failure exception mode (using the Set System
Failure Exception Mode system service, SYSSSETSFM) to have
failures automatically signaled. For most applications,
especially if a high-level language is used, testing and handling
errors in your program are the preferred method. 1If you test for
error conditions in your program, be sure to disable any unwanted

system service exception generation.

Three general SS$_ condition codes may be encountered.

SSS_INSFARG Insufficient # arguments in call
SS$_ILLSER Nonexistent service called
SS$_ACCVIO Argument list cannot be read

Note that if the FAB or RAB is invalid or inaccessible, then the
error completion routine will not attempt to store the error code
in the STS field of an invalid control block structure. The
following errors can be detected only by testing the completion
code returned by the function call (or by enabling system service
failure exception mode), following the completion of an RMS
operation (even if an error completion AST has been specified):

RMS$_BLN Invalid block length field (either FAB or RAB)
RMS$_BUSY User structure (FAB/RAB) still in use

RMS$_FAB FAB not writeable or invalid block ID field
RMS$_RAB RAB not writeable or invalid block ID field
RMSS_STR User structure (FAB/RAB) became invalid during
‘ operation

These completion codes indicate that the FAB or RAB is invalid or
inaccessible. These completion codes are usually rare and, if
they occur at all, would most likely occur during initial program
debugging and testing. Examine the completion value in RO or
returned by the function cali- (instead of the STS field of the FAB
or RAB) for the completion codes.liisted above.

When signaling RMS errors, both the STS and STV fields of the
appropriate structure (FAB or RAB) should be supplied. This will
cause all relevant information to be displayed in the error
message text, including additional information regarding the error
status in the STV field. For the file processing and file naming
services, use the STS and STV fields of the specified FAB (use the
old FAB for the Rename service). For record processing and block
1/0 processing services, use the STS and STV fields of the
corresponding RAB.

12-13

279 Facebook Inc. Ex. 1215

The recommended way to signal RMS errors is to provide both the
STS and STV fields of the RAB or FAB as arguments to the Run-Time
Library (RTL) routine LIBSSIGNAL (or LIB$STOP). Certain VAX
languages provide a built-in means of signaling errors) such as by
providing a system-defined function. For a more detailed
explanation of condition signaling and invoking RTL routines, see
the VAX/VMS Run-Time Library Routines Reference Manual.

12-14

280 Facebook Inc. Ex. 1215

PASSING ARGUMENTS TO PROCEDURES

e Arguments are passed to procedures by an argument list.

e The VAX/VMS Procedure Calling Standard requires all arguments
to be passed as longwords.

e Arguments may be passed by:

value -- the actual data is placed in the argument list.
Reference -- passing the address of the argument.
Descriptor -- passing the address of a descriptor

containing information about the data and a pointer to the
data.

e The format of passed arguments must match the format expected
by the called procedure.

3

In calls to user-written procedures, arguments should
match the default for the language in which the procedure
is written.

In calls to system-supplied procedures, arguments should
match the format specified by the VAX/VMS documentation.

Layout of the String Descriptor for ABC

23 : 15 00

CLASS TYPE LENGTH OF STRING :ABC

ADDRESRS OF STRING

BU-2484

12-15
281 Facebook Inc. Ex. 1215

DATA

Language
BASIC
COBOL
FORTRAN
MACRO

PASCAL

Format of an Argument List

I N
ARG 1
13
ARG 3 ! ARRAY
DESCRIPTOR :
| | LENGTH |—-te ARG N
—e POINTER
BU-2488
Default Argument Passing and Receiving Mechanisms
Numeric Character Array
Reference Descriptor Descriptor
Reference Reference N/A
Reference Descriptor Reference
No Default No Default No Default
Reference Reference Reference*
* Except conformant arrays
12-16
282 Facebook Inc. Ex. 1215

Argument Passing Specifiers

Mechanism Specifier

Description BASIC COBOL FORTRAN PASCAL
Passed by Value BY VALUE BY VALUE $VAL $IMMED
Passed by BY REF BY REFERENCE SREF SREF
Reference or
BY CONTENT

passed by BY DESC BY DESCRIPTOR $DESCR $DESCR
Descriptor .
passed by String BY DESC BY DESCRIPTOR SDESCR $STDESCR
Descriptor

12-17

283 ' Facebook Inc. Ex. 1215

BASIC:

COBOL:

-FORTRAN:

PASCAL:

MACRO:

Example 3. Passing BY VALUE

DECLARE LONG abc

stat = SUBl (abc BY VALUE)

01 abc PIC 9(5) VALUE is 35.

CALL SUBl1 USING BY VALUE abc
GIVING STAT.

INTEGER*4 abc/35/

stat = SUBl1 (8VAL(abc))

VAR :
abc : INTEGER := 35;

FUNCTION SUBl1 (%IMMED xyz:INTEGER):
INTEGER; EXTERM:

SiAT := SUBl (abc);

ahbc: .LONG 35

PUSHL abc
CALLS #1, suBl

12-18

284

Facebook Inc. Ex. 1215

Example 4. Passing BY REFERENCE

BASIC: DECLARE LONG abc
abec = 35
stat = SUBl (abc BY REF)
or
(abc)
COBOL: 01 abc PIC 9(5) VALUE is 35.

CALL SUB1 USING BY REFERENCE abc
or
abc
GIVING STAT.

FORTRAN: INTEGER *4 abc/35/

STAT = SUBl1 (SREF(abc))
or
(abc)

PASCAL: VAR
: ab¢c : INTEGER := 35;
FUNCTION SUBl (SREF xyz: INTEGER) : INTEGER;
EXTERN;
or
(xyz : INTEGER);

STAT := SUBl (abc);

MACRO: abc: .LONG 35

PUSHAL abc
CALLS #1, SUB1l

12-19
285 Facebook Inc. Ex. 1215

Example 5. Passing BY DESCRIPTOR

BASIC: DECLARE STRING abc

STAT = SUBl1 (abc BY DESC)
or
{abc)

COBOL: 01 abc PIC x(2) VALUE is '35°’.

CALL SUBl USING BY DESCRIPTOR abc
GIVING STAT.

FORTRAN CHARACTER*2 abc /'35'/

SéAT = SUBl1 ($DESCR(abc))
or
(abe)

PASCAL: VAR
abc : PACKED ARRAY ([1..2] OF CHAR:

FUNCTION SUBl (xyz:[CLASS_S] PACKED ARRAY [l..u:
INTEGER] of CHAR): INTEGER; EXTERN;

abc = '35';
STAT. = SUB1 (abc):
MACRO: abc: .ASCID /35/
PUSHAQ abc
CALLS #1, SUBl
12-20

286 Facebook Inc. Ex. 1215

RMS routines --
sentence of the

Passing Method

Immediate Value

Reference

Descriptor

Example 6.
Arguments
new_dir_ addr
length_addr

cur_dir_addr

The passing mechanism is iden
argument description.

Description

tified in the second

"The value of" or omission of the word

"address"
"address of"

naddress of a descriptor”

Passing Mechanism for SYS$SETDDIR Arguments

Passing Mechanism

12-21
287

Facebook Inc. Ex. 1215

Trailing Optional Arguments -- RMS Services

BASIC Include commas as placeholders for each omitted
.argument.

COBOL BY VALUE 0 for each omitted argument.

FORTRAN Include commas as placeholders for each omitted
argument. ‘

PASCAL Positional syntax: 1If default value is declared

in formal declaration, then commas are not needed.
Keyword syntax is allowed for PASCAL.

MACRO For most RMS calls, MACROS exists to assist in the
construction of the argument list. However, in a
few cases (for example, SYS$SETDDIR), RMS
procedures are called without an RMS MACRO and a zero
should be passed for the optional argument.

Keyword syntax is allowed for MACRO.

12-22

288 Facebook Inc. Ex. 1215

Example 7. Program calling RMS Procedure SYS$SETDDIR
(sheet 1 of 2)

BASIC
1 10 | SETDDIR.BAS
2 |
3 | This program calls the RMS procedure $SETDDIR to
4 change the default directory for the process.
5
6 EXTERNAL INTEGER FUNCTION SYSSSETDDIR
7 DECLARE LONG stat,s
8 STRING dir
9 dirs=' [course.vdprog.bas]’
10 stat=SYSSSETDDIR(dir,,)
11 PRINT "Error” IF (stat AND 1%)=0%
12 END
COBOL
1 * SETDDIR.COB
2 IDENTIFICATION DIVISION.
3
4 BROGRAH-ID. SETDDIR.
5
6 * This program calls the RMS procedure $SETDDIR to change
7 * the default directory for the process.
8 *
9 DATA DIVISION.
10 WORKING-STORAGE SECTION.
11
12 01 DIRECTORY PIC X(17) . VALUE
13 * [COURSE .PROG.COB] ' .
14 01 STAT PIC S9(9) COMP. . -
15
16 PROCEDURE DIVISION.
17 BEGIN.
18 CALL 'SYSSSETDDIR’ USING BY DESCRIPTOR DIRECTORY
19 BY VALUE O
20 BY VALUE O
21 GIVING STAT.
22 IF STAT 1S FAILURE DISPLAY ‘ERROR' .
23 STOP RUN.
FORTRAN
1 C SETDDIR.FOR -
2 c
3 Cc This program calls the RMS procedure $SETDDIR to change
4 c the default directory for the process.
5 C
6 IMPLICIT INTEGER (A - 2Z) or INTEGER SYSSSETDDIR, STAT
7 CHARACTER*17 DIR /' [COURSE.PROG.FDR] '/
8 STAT = SYSSSETDDIR (DIR,,)
9 IF (.NOT. STAT) TYPE *, 'ERROR’
10 END

289 Facebook Inc. Ex. 1215

VRdAMTNE W —~

Example 7 (Sheet 2 of 2)
PASCAL

PROGRAM setddir(OUTPUT):

*)
*)

(* *SETDDIR.PAS
(* This program calls the RMS procedure S$SETDDIR to
(* change the default directory for the process. *)

TYPE word_integer = [WORD] 0..65535;
VAR dir_status: INTEGER;

FUNCTION SYSSSETDDIR(
new_dir: [CLASS_S] PACKED ARRAY [l..u:INTEGER] of CHAR;:
old _dir_len: word integer := SIMMED O0;
old"dir: VARYING Tline2] OF CHAR := RIMMED 0):
INTEGER; EXTERN;

BEGIN
di;_status:- SYSSSETDDIR(('[COURSE.V4PROG.PAS]')7
IF NOT ODD(dir status)
THEN WRITELNT 'Error in SYSSSETDDIR call.')

END.

MACRO

s ~e

.TITLE SETDDIR

the default directory for the process.

we wo we ~e

.PSECT NONSHARED_DATA PIC,NOEXE,LONG
DIR: .ASCID /TCOUR'.=.PROG.MAC]/
.PSECT CODE " PIC,SHR,NOWRT,LONG
.ENTRY START, M<>
PUSHL #0
PUSHL #0
PUSHAQ DIR
CALLS #3,SYSSSETDDIR
MOVL #SS$_NORMAL,RO or SEXIT_S
RET
.END START

12-24

290 Facebook Inc. Ex. 1215

SETDDIR.MAR

This program calls the RMS procedure SSETDDIR to change

MODULE 13

ALTERNATE APPROACHES TO ACCESSING RMS
CONTROL BLOCKS DIRECTLY — LANGUAGE
EXAMPLES

Major Topics
- USEROPEN function supported by some higher-level languages
— Call FDLSPARSE to set up and initialize control blocks

Source :
RMS Reference Manual — Chapter 5 (FAB), Chapter 7 (RAB)

291 Facebook Inc. Ex. 1215

292

Facebook Inc. Ex. 1215

USEROPEN FUNCTION OR REGULAR I/0

The USEROPEN function is an alternative approach to accessing RMS
control blocks directly. The USEROPEN function is called as part
of the OPEN command. Thereafter, regular language I/0 is used.

Open Language Function
Language Keyword Value May Be Written In
BASIC USEROPEN function-name BASIC
COBOL not available - -
FORTRAN USEROPEN function-name FORTRAN
PASCAL USER_ACTION function-name PASCAL

The USEROPEN function has three arguments:

1. Arg 1 -- FAB address
passed to user by RMS
2. Arg 2 -- RAB address

3. Arg 3 -- File # - BASIC
Unit 4# - FORTRAN user defined
Filename identifier - PASCAL

The Run-Time Library sets up the following VAX-11 RMS. control
structures before calling the USEROPEN function:

FAB File Access Block

RAB Record Access Block

NAM Name Block

XAB FHC Extended Attributes Block

. Any key XABs specified for index files

For BASIC and FORTRAN USERC-EN functions, only the RAB structure
remains allocated after the OPEN. Therefore, do not store the
addresses of the FAB, XAB, or NAM blocks for later use.

The PASCAL USER_ACTION parameter differs from the BASIC/FORTRAN
USEROPEN keyword in that you may include user-written procedures
with either OPEN or CLOSE or both, while USEROPEN is 1limited to
OPEN. Further, the USER ACTION function may be written in PASCAL
and is allowed to up-level address. The RMS RAB, FAB, and NAM
blocks are allocated dynamically and remain defined as long as the
file is opened. Therefore, your program may store the addresses
of these structures for later use.

To assign values to a field or read values in a field in the RMS

control block (FAB, RAB), the user needs to be able to declare a
structure in the programming language to match that of RMS.

13-1
293 Facebook Inc. Ex. 1215

INCLUDE ' (SRABDEF)’

BASIC
None provided in system library.

in the source file,

$INCLUDE 'FABRABDEF.BAS'

——

—

FABSTYPE
_ RABSTYPE

Set up your own and '‘include’ it

S

. e e e
FORTRAN N ——

INCLUDE ' (SFABDEF)'

PASCAL

[INHERIT ('SYSSLIBRARY: STARLET')]

—— s’
FABSTYPE
RABSTYPE

SYSSLIBRARY: FORSYSDEF.TLB

7 cidod . 2ae I AoTACTLET - TLB

13-2

294

Facebook Inc. Ex. 1215

Example 1. USEROPEN Alternative (if available) or Regular I/0

BASIC (Sheet 1 of 5)

1 10 OPTION TYPE = EXPLICIT

2 ! BASOPEN_INDX.BAS
3 ! This BASIC program uses USEROPEN function to open
4 ! an indexed file. Thereafter, all access to the file is
5 t done using regular BASIC I/O. User is prompted for
6 ! SEQ_NO of record to be retrieved randomly and given
7 ! the option of deleting any record retrieved.-

8 !]

9 ! Program assumes FILE SHARING and RECORD LOCKING
10 !

11 ON ERROR GO TO err_check

12

13 DECLARE SINGLE CONSTANT ; TIME_WAIT=10.0

14 DECLARE STRING CONSTANT RIGHT_JUSTIFY = "3898
15

l6 RECORD ACCOUNTSTYPE

17 STRING SEQ_NO=7

18 STRING LAST_NAHB'IS

19 STRING FIRST_NAME'IO

20 STRING SOC_SEC=9

21 STRING STREET=18

22 STRING CITY=14

23 STRING STATE=2

24 STRING 2IP CODE=5

25 END RECORD ACCOUNTSTYPE

26

27 MAP (INREC) ACCOUNTSTYPE IN_REC

28

29 MAP (FILE_NAME) STRING FILENAME=80

30 ‘

31 MAP (KEYVALUE) STRING KEY_VALUB-?

32 MAP (DELFLAG) STRING DELETE_FLAG=1

33

34 DECLARE LONG KEY_IN

35

36 EXTERNAL SUB LIBSINIT TIMER,&

37 LIB$SHOW_TIMER,&

38 LIRSWAIT

39 '

40 start:

41

42 CALL LIBSINIT_TIMER()

43

44 INPUT 'Enter filename'’;filename

45

46 OPEN filename FOR INPUT AS FILE #1%, &

47 ORGANIZATION INDEXED, &

48 MAP INREC, &

49 ACCESS MODIFY, &

50 ALLOW MODIFY, &

51 USEROPEN OPENFILE

13-3
295 Facebook Inc. Ex. 1215

BASIC (Sheet 2 of 5)

PRINT Hitiittttitittttﬁttitttt‘tiiiiiitttitittttiI

PRINT " Hit <CR> or enter zero to stop run"”
PRINT ([EZX 222 XXX XXX2RREXZ2R2RA22AR2AR: R 222222222 2 N

INPUT 'Enter SEQ_NO':KEY_IN
WHILE (KEY_IN > 0)
KEY VALUE = FORMATS (REY_IN,RIGHT_JUSTIFY)
100 GET #1%, KEY #0% EQ KEY_VALUE

PRINT IN_REC::SEQ_NO;TAB(9);IN_REC::SOC_SEC;TAB(20):&
IN_REC: :LAST_NAME

INPUT 'Do you wish to delete this record? (Y/<CR>)': &
DELETE_FLAG
IF (DELETE_FLAG = 'Y' OR DELETE_FLAG = 'y’') THEN

DELETE #1%
150 INPUT 'Enter SEQ_NO':;KEY_IN
NEXT
cleanup:
CLOSE #1%
CALL LIBSSHOW_TIMER()
GOTO done
err_check:
! .
! ERR = 155 <«--- record not found on random get B
! ERR = 154 <--- record/bu<ket locked
! .
SELECT ERR «
CASE 155
PRINT "Record NOT FOUND with SEQ NO = ";:;KEY_VALUE
RESUME 150
CASE 154

PRINT "Record currently LOCKED - ", &
"will try again shortly"”
CALL LIBSWAIT (TIME_WAIT)
RESUME 100
CASE ELSE
ON ERROR GO TO O
END SELECT

done: END -

13-4 -
296 Facebook Inc. Ex. 1215

BASIC (Sheet 3 of 5)

102 175 FUNCTION LONG OPENFILE (FABStype FAB,&
103 RABStype RAB,&

104 LONG channel)

105

106 EXTERNAL LONG FUNCTION SYSSOPEN

107 EXTERNAL LONG FUNCTION SYSSCONNECT

108

109 i Include record definitions of FABStype and RABStype
110 ! and external constants

111

112 $INCLUDE 'FABRABDEF.BAS'

113

114 DECLARE LONG ret_stat

115

116 | Extension # blocks if file is extended

117 FAB::FABSW_DEQ = 10

118

! File access desired for USER
120 ! FAB::FABSB FAC = (FAB::FABSB FAC OR FABSM_DEL OR FABSM_GET &
]

121 OR FABSM_PUT OR FABSM_UPD)
122 :
123 | File options desired

124 FAB: :FABSL_FOP = HH I FOP OR FABSM_DFW) ! deferred write

! §# global buffers if wish to use them or set to zero if wish to
! override global and use local buffers if someone already
L has £ ile_WmM

{ The following s emant must be inserted in source after ﬂ

| SYSSOPEN call but prior to SYSSCONNECT call.

B: : FABSW ' ,_J

sharing attributes - what others can do or set TO FABSM SHRNIL

!
134 ! FAB: :FAB$B_SHR = (FAB::PABSB_SHR OR FABSM_SHRPUT B
135 ! OR FABSM_SHRGET OR FABSM_SHRDEL &
136 ! OR FAB$M_SHRUPD) & '
137 .
138 ret_stat = SYSSOPEN(FAB,,)
39 CALL LIB$STOP(ret_stat BY VALUE) IF (ret_stat AND 1%)=0%
140
141
142 | Specify number of local buffers you want RMS to allocate on CONNECT
143 RAB::RAB$B_MBF .= 3 ‘
144
145 ! Enable any record processing options to be used for entire run
146 RAB::RABSL_ROP = (RAB::RABSL_ROP OR RABSM_FDL) | fast delete
147
148
149 ret_stat = SYSSCONNECT(RAB,,)
150 CALL LIB$STOP(ret_stat BY VALUE) IF (ret_stat AND 13%)=0%
151
152 OPENFILE = ret_stat
153
154 END FUNCTION

13-5
297 Facebook Inc. Ex. 1215

VORIV & W N~

L+
!
!
!
!

+

RECORD fab$STYPE

BYTE
BYTE
WORD
LONG
LONG
LONG
LONG
WORD
BYTE
BYTE
LONG
BYTE
BYTE
BYTE
BYTE
LONG
LONG
LONG
LONG
LONG
BYTE
BYTE
WORD
LONG
WORD
BYTE
BYTE
LONG
LONG
WORD
BYTE
BYTE
BYTE

END

RECORD rabS$TYPE

BYTE
BYTE
WORD
LONG
LONG

BASIC (Sheet 4 of S)

FABRABDEF .BAS

RMS Data Structures Definitions

fabsb_bid
fabsb_bln
fabSw_ifi
fabsl fop
fab$Sl sts
fab$l stv
fabsl_alq
fab$w_deq
fab$b fac
fab$b shr
fab$l ctx
fab$b rtv
fab$b org
fab$b rat
fab$b_rfm
fab$l jnl
fab$l xab
fab$1l nam
fab$l fna
fab$1l dna
fab$b fns
fab$b dns
fab$w mrs
fab$l mrn
fabSw bls
fab$b bks
fab$Sb fsz
fab$l dev
fabs$l sdc
fabsw gbc
fabsb_acm
fab$b_rcf
£ill(4)

RECORD

rab$b bid
rab$b_bln
rab$b_isi
rab$l_rop
rab$l_sts

13-6

298

Facebook Inc.

Ex. 1215

LONG rab$§l_stv
RFA rab$w_rfa

WORD fill

LONG rab$l_ctx

WORD fill

BYTE rab$b rac

BYTE rab$

b tmo

WORD rab$w _usz
WORD rab$w rsz
LONG rab$l ubf

LONG rabsl
LONG rab$l

VARIANT

BYTE

rhf
rhb

Ll

rabsl_kbf
rab$b_ksz

rab$l_pbf
rab$b_psz

END VARIANT

BYTE rab$b_krf
BYTE rab$b_mbf
BYTE rab$b_mbc

VARIANT
CASE

LONG rab$1l_bkt

CASE

LONG rabsl_dct

END VARIANT
LONG rab$l_fab
LONG rab$1l_xab
END RECORD

+

BASIC (Sheet 5 of S)

! 6 bytes

declarations of FAB and RAB CONSTANTS

+

EXTERNAL BYTE CONSTANT FABSM_DEL,&

EXTERNAL BYTE CONSTANT

FABSM_GET,&
FABSM_PUT,&
FABSM_UPD,&
FABSM_DFW,&
FABSM_SHRPUT,&
FABSM_SHRGET,&
FABSM_SHRDEL,&
FABSM_SHRUPD,&
FABSM_MSE

RABSC_KEY, &
RABSC_SEQ,&

RABSC_RFA,&
RAB$M_FDL

13-7
299

Facebook Inc. Ex. 1215

WOJRAWUND WN -

COBOL (Sheet 1 of 3)

COBOL PROGRAM which opens
to the file is done using
is prompted for SEQ_NO of
randomly and given option
retrieved.

from its language.

LR 2R BE IR AR R 2N BN B N Y

»

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOPEN_INDX.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

COBOPEN_INDX.COB

an indexed file.

regular COBOL I-O.
record to be retrieved
of deleting any record

COBOL currently does not support a USEROPEN function call

Program assumes FILE SHARING and RECORD LOCKING

All access
User

SELECT INDX1

ASSIGN FILENAME
ORGANIZATION IS INDEXED

ACCESS MODE IS RANDOM RESERVE 3

RECORD KEY I

S SEQ_NO

ALTERNATE RECORD KEY IS LAST NAME

I-O-CONTROL.

APPLY

DEFERRED-WRI
EXTENSION 10
WINDOW 7

DATA DIVISION.
FILE SECTION.

TE

WITH DUPLICATES.

ON INDX!1.

FD INDX1 VALUE OF ID IS FILENAME.
01 IN_REC.

02" SEQ_NO PIC X(7).

02 LAST_NAME PIC X(15).

02 FIRST NAME PIC X(10).

02 socC_sEc T fPIC X(9).

02 STREET PIC X(18).

02 cCITY PIC X(14).

02 STATE PIC XX.

02 2IP_CODE PIC X(5).

WORKING-STORAGE SECTION.
* CONSTANTS

0] TIME WAIT

USAGE COMP-1

VALUE IS 10.0.

*VARIABLES
01 KEY_VALUE PIC X(7) JUSTIFIED RIGHT.
01l DELETE_FLAG PIC X VALUE IS °'N°'.
01 RET_STATUS PIC S9(9) cCOMP.
01 PROG_STAT PIC 9,
88 NO_ERROR VALUE 1.
88 SOME_ERROR VALUE 2.
88 WAIT_READ_AGAIN VALUE 3.
88 END_OF_INPUT VALUE 4.
01 FILENAME PIC X(80) VALUE 'XXXX'.
01 RMSS$_RNF PIC 9(9) COMP VALUE EXTERNAL RMSS$_RNF.
13-8

300

Facebook Inc. Ex. 1215

COBOL (Sheet 2 of 3)

01 RMSS_RLK PIC 9(9) COMP VALUE EXTERNAL RMSS_RLK.

PROCEDURE DIVISION.
Q00BEGIN.
DISPLAY 'ENTER FILENAME: ' WITH NO ADVANCING.
ACCEPT FILENAME.
CALL 'LIBSINIT_TIMER’'.
OPEN I-O INDX1 ALLOWING ALL.
DISPLAY g N Y T2 2 T 2R 2R R LA L LI

DISPLAY " Hit CNTL+Z to STOP RUN".

DISPLAY l.tttttt.tiii..iiiiiiiii.ttiit.iti- .
MOVE 0 to PROG_STAT.

PERFORM 100-CHOOSE-RECORD UNTIL END_OF_INPUT.
PERFORM 250-CLEANUP.

100-CHOOSE~RECORD.
IF PROG_STAT NOT = 3 THEN
DISPLAY "Enter SEQ _NO: " WITH NO ADVANCING
ACCEPT KEY_VALUE WITH CONVERSION AT END
MOVE 4 TO PROG_STAT
END-IF.

IF PROG_STAT LESS THAN 4 THEN
MOVE KEY_VALUE TO SEQ_NO
PERFORM 150-READ-BY-PRIMARY-KEY
END-IF.

150-READ-BY-PRIMARY~-KEY.
MOVE 1 TO PROG_STAT.

READ INDX1
KEY IS SEQ_NO
INVALID KEY

MOVE 2 TO PROG_STAT .
MOVE RMS-STS OF INDX1 TO RET_STATUS

EVALUATE RET_STATUS

WHEN RMSS_RNF
DISPLAY "NO RECORD WITH SEQ_NO = ",
KEY_VALUE

WHEN RMSS_RLK
- DISPLAY "RECORD CURRENTLY LOCKED - ",
"WILL TRY AGAIN SHORTLY"
CALL 'LIBSWAIT' USING
BY REFERENCE TIME_WAIT
MOVE 3 TO PROG_STAT

WHEN OTHER
CALL 'LIBSSTOP' USING BY VALUE RMS-STS

END-EVALUATE.

13-9
301 Facebook Inc. Ex. 1215

107
108
109
110
111
112
113
114
115
116
117
118
119

121
122
123

COBOL (Sheet 3 of 3)

IF PROG_STAT IS EQUAL TO 1 THEN -
DISPLAY SEQ_NO," ",SOC_SEC," *",LAST_NAME
PERFORM 200-DELETE-RECORD

END-IF. :

200-DELETE-RECORD.
DISPLAY "Do you wish to delete this record? (Y/<CR>): "
WITH NO ADVANCING.
ACCEPT DELETE_FLAG.
IF DELETE_| FLAG = "Y" OR DELETE_FLAG = 'y'
DELETE INDX1 INVALID KEY
DISPLAY "Bad DELETE".
250-CLEANUP.
CLOSE INDX1.
CALL LIB$SHOW TIMER'.
STOP RUN.

13-10

302 Facebook Inc. Ex. 1215

P
OWONOUVEE WN -

Y
NAaAUEWN

18

= g g G Sem g tew S fee P e

FORTRAN (Sheet 1 of 4)

FOROPEN INDX.FOR

FORTRAN program using USEROPEN function to open an indexed

file.

Thereafter, all ac

regular FORTRAN 1-0.

User is prompted for SEQ_NO of record to be

cess to the file is done using

retrieved randomly and gTvenAoption of deleting

any record retrieved.

Program assumes FILE SHARING and RECORD LOCKING

PROGRAM FOROPEN_INDX

IMPLICIT NONE
REAL TIME_WAIT
PARAMETER (TIME_WAIT = 10.0)
STRUCTURE /ACCOUNT_STRUC/
CHARACTER*7 SEQ_NO 1 KEY 0
CHARACTER*15 LAST_NAME ! KEY 1
CHARACTER*10 FIRST NAME
CHARACTER*9 SOC_SEC
CHARACTER*18 STREET
CHARACTER*14 CITY
CHARACTER*2 STATE
CHARACTER*S ZIP_CODE
END STRUCTURE
RECORD /ACCOUNT_STRUC/ IN_REC
INTEGER IUNIT/1/,
1 RET_STATUS,
2 RMS_STS,
3 RMS_STV, .
4 OPENFILE,
5 LEN_FILENAME,
6 KEY_IN
CHARACTER*80 FILENAME
CHARACTER*7 KEY_VALUE
CHARACTER"® DELETE_FLAG
INTEGER “ROG_STAT/0/ | VALUE 1 = no error
f{ VALUE 2 = some error
! VALUE 3 = wait-read-again
EXTERNAL OPENFILE
INCLUDE ' ($RMSDEF) '

CALL LIBSINIT_TIMER()

13-11
303

Facebook Inc. Ex. 1215

FORTRAN (Sheet 2 of 4)

WRITE (6,1)
READ (5,2) len_filename,FILENAME

OPEN (UNIT=IUNIT,: .
1 FILE=FILENAME{(l:len_ filename),

STATUS='OLD’,

ORGANIZATION=' INDEXED',

ACCESS='KEYED',

FORM='UNFORMATTED' ,

RECORDTYPE='FIXED',

SHARED,

USEROPEN=OPENFILE)

NNV AW

WRITE (6,6)
WRITE (6,5) ! directions to stop run

WRITE (6,6)

WRITE (6,3)
READ (5,4) KEY_IN

DO WHILE (KEY_IN .GT. 0)

Convert integer KEY_IN to right justified character string KEY_VALUE
using internal read

IF (PROG_STAT .NE. 3)
1 WRITE (UNIT=KEY_VALUE,FMT='(I7)') KEY_IN

READ (IUNIT,KEY’KEY_VALUE.KEYID’O,IOSTAT=RET_STATUS) IN_REC

IF (RET_STATUS .GT. 0) THEN
PROG_STAT = 2
CALL ERRSNS(,RMS_STS,RMS_STV, IUNIT,)

IF (RMS_STS .E . RMSS_RNF) THEN
WRITE (6,11) KEY_VALUE
ELSE

IF (RMS_STS .EQ. RMSS_RLK) THEN
WRITE (6,12)
CALL LIBSWAIT (TIME_WAIT)
PROG_STAT = 3

ELSE

CALL LIBSSTOP($VAL(RMS_STS),8VAL(RMS_STV))

END IF

END IF
ELSE
PROG_STAT = 1

END IF

13-12

304 Facebook Inc. Ex. 1215

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

RN ndWwN -

P
vl

FORTRAN (Sheet

1F (PROG_STAT .EQ. 1) THEN

3 of 4)

WRITE (6,%) IN_REC.SEQ_NO,' ',IN_REC.SOC_SEC.,' .

1 IN_REC.LAST_NAME

WRITE (6,14)

READ (S5,15) DELETE_FLAG

IF (DELETE_FLAG .EO. 'Y’ .OR.
1 DELETE_FLAG .EQ. 'y*) THEN

DELETE (UNIT=IUNIT)
END IF
END IF ! prog_stat = 1

1IF (PROG_STAT .NE. 3) THEN

WRITE (6,3)
READ (5,4) KEY_IN

END IF | prog_stat .ne. 3
END DO
CLOSE (IUNIT)
CALL LIBSSHOﬂ_TIHBR()
CALL EXIT

FORMAT ('SEnter filename: ')
FORMAT (Q,A)

FORMAT ('SEnter SEQ_NO: ')
FORMAT (1)
FORMAT (
FORMAT (
FORMAT (
FORMAT (' Record currently LOCKED
1 ' -~ will try again
FORMAT ('$Do you wish to delete th
FORMAT (A)

END

Hit <CR> or enter zero ko stop run')
ti't'ii'iititiiiiiii'titiﬂﬁfﬁiﬁtttttﬁtttitt])

* Record NOT FOUND with SEQ_NO = 'L,A)

shortly')
is record? (Y/<CR>): ')

Facebook Inc. Ex. 1215

FORTRAN (Sheet 4 of 4)

147 INTEGER FUNCTION OPENFILE (FAB,RAB,IUNIT)
148
149 IMPLICIT NONE
150
151 INCLUDE ‘' (SFABDEF) '
152 INCLUDE ' (SRABDEF) '
153 INCLUDE ' ($SRMSDEF) '’
154
155 RECORD /FABDEF/ FAB
156 RECORD /RABDEF/ RAB
157
158 INTEGER IUNIT,
159 1 RET STATUS,
160 2 SYSSOPEN,
161 3 SYSSCONNECT
162)
163 | Extension § blocks if file is extended
164 FAB.FABSW_DEQ = 10
165
166 ! File access desired for USER
167 FAB.FABSB_FAC = FAB. FABSB_FAC .OR. FABSM_DEL .OR. FABSM_GET
168 1 .OR. PABSM_PUT .OR. FABSM_UPD
169
170 t File options desired
171 FAB.FABSL_FOP = FAB.FABSL_FOP .OR. FABSM_DFW ! deferred write
172 ‘ V o
$73°1 ¥ global buffers if wish to use them or set to zero if wish to)
174 ! override global and use local buffers if someone already has J
175 1 file opened ith global buffers enabled i
71176 | The following statement must be inserted in source after H
< 1177 1 SYSSOPEN call but prior to SYS$SCONNECT call. /
/ 178 | FAB.FABSW_GBC = ? /
/ 11D W 1: N S R T B e
/ 180 ! Sharing attributes -y hat others can do or set To FABSH SHRNIL
{ 181 FAB.FAB$SB_SHR = FAB. ABSB_SHR .OR. FABSM_SHRPUT
182 1 .OR. FABSM_ SHRGET .OR. FABSM_ SHRDEL
\\\\wh183 2 .OR. FAB$H SHRUPD
184
/185 RET_STATUS = SYSSOPEN(FAB,,)
86
.37 1 Specify number of local buffers you want RMS to allocate on CONNECT
.88 RAB.RABSB_MBF = 3
189 ,
190 . Enable any record processing options to be used for entire run
191 RAB.RABSL_ROP = RAB.RABSL_ROP .OR. RABSM_FDL ! fast delete
192
193 IF (RET_STATUS) RET_STATUS = SYSSCONNECT(RAB,,)
194 '
195 IF (.NOT.RET_STATUS) CALL LIBSSTOP($VAL(RET_STATUS))
196 OPENFILE = RET_STATUS
197
198 RETURN
199 END
200

13-14
306 Facebook Inc. Ex. 1215

ot ot
WNHFOWVONAWUNH WM -

-
[V, S

MACRO (Sheet 1 of 6)
MAROPEN_INDX.MAR

MACRO program using RMS services to open an INDEX file
and terminal INPUT and OUTPUT files.

All I-0 is done using RMS services,

user is prompted for SEQ_NO of a record to be
retrieved randomly and given option of deleting
any record retrieved.

Program assumes FILE SHARING and RECORD LOCKING

8 wE w8 SE SA WE We e N4 We Ve we Ve we

.TITLE MAROPEN

.MACRO ' LIB_ERROR ?NO_ERROR
BLBS RO,NO_ERROR

PUSHL RO

CALLS #1,G"LIBSSTOP
NO_ERROR:

.ENDM LIB_ERROR

«MACRO RMS_ERROR device, prefix,?NO_ERROR
BLBS RO ,NO_ERROR

MOVAL device, R6

PUSHL prefix'$L_STV(R6)
PUSHL prefix’'$L_STS(R6)
PUSHL RO

CALLS #3,G"LIBSSTOP
NO_ERROR:

. ENDM RMS_ERROR

.PSECT NONSHARED_DATA NOEXE ,WRT

TIME_WAIT: .F_FLOATING 10.0 ; & seconds wait if record locked
IN_REC: j

SEQ_NO: " .BLKB 7

LAST _NAME: .BLKB 15

FIRST_NAME: .BLKB 10

SOC_SE(.BLKB 9

STREET: ‘ .BLKB 18

CITY: .BLKB 14

STATE: .BLKB 2

2IP_CODE: .BLKB 5
INREC_LENGTH = . - IN_REC
INREC_BUFF: .BLKB 80)
KEY_VALUE: .BLKB 7
KEY LENGTH = . - KEY_VALUE

13-15

307 Facebook Inc. Ex. 1215

IN_PROMPTI:
IN_PMTSIZE] =

IN_PROMPT2:
IN_PMTSIZE2 = ., -
IN_PROMPT3:
IN_PMTSIZE3

DIRECTIONS:
DIRECTIONS LENGTH =

HIGHLIGHT:
HIGHLIGHT_LENGTH =
OUT_BUFF:
OUTBUFF_LENGTH =
IN_BUFF:
INBUFF_LENGTH =
MSG_RNF: .ASCII /

MSGRNF_LENGTH = . -

MSG_RLK:
MSGRLK_LENGTH = . =

.PSECT

INDX_ INFAB:

SFAB

INDX_INRAB:
$RAB

SHARED_DATA

MACRO (Sheet 2 of 6)

+-ASCII /Enter filename: /

. = IN_PROMPT1

+ASCII /Enter SEQ _NO: /

IN_PROMPT2

-ASCII /Do you wish to DELETE this record? (Y or <CR>): /

. - IN_PROMPT3

.ASCII / AT SEQ_NO PROMPT -

- = DIRECTIONS

+» = HIGHLIGHT

.BLKB 80
. - OUT_BUFF

.BLKB 80
. - IN_BUFF

RECORD NOT FOUND/

MSG_RNF

MSG_RLK

PIC,

FAC=<GET,DEL> ,~-
FOP=<DFW> , -
ORG=<IDX>,~
RAT=<CR>,~-

RFM <FIX>,-

NOEXE, LONG

+ASCII /RECORD CURRENTLY LOCKED - WILL T

.
’

.ASCII /tttiiiﬁtttt't*ttt*t****ttitt*t*tt*iiititiiit*i*

deferred write

SH’ * <SHRGET,SHRPUT,SHRDEL,SHRUPD>

FAB=INDX_INFAB,-
KBF=KEY VALUE,-
KSZ=KEY_LENGTH,-
KRFSO 2

MBF=3 2nd
RAC=<KEY>,-
ROP=<FDL>,-
RBF=INREC_BUFF,-
RSZ=INREC_LENGTH, -
UBF=INREC_BUFF ,-
USZ=INREC_LENGTH

13-16

308

primary key of reference .

multibuffer count

fast delete

Facebook Inc. Ex. 1215

HIT <CR> TO STOP RUN/

RY AGAIN SHORTLY/

MACRO (Sheet 3 of 6)

103 TTIN_FAB:

104 SFAB FNM=<SYS$ INPUT> ,-
105 RAT=CR,-

106 FAC=<GET>

107 TTIN RAB: -

108 $RAB FAB=TTIN_FAB,-

109 UBF=IN_BUFF,-

110 Usz2=80,-

111 ROP=PMT, -

112 PBF=IN_PROMPTI ,-
113 PSZ=IN_PMTSIZEl
114

115 TTOUT_FAB:

116 SFAB FNM=<SYSSOUTPUT> , -
117 RAT=CR,-

118 FAC=<PUT>

119 TTOUT_RAB:

120 SRAB FAB=TTOUT_FAB,-
121 RBF=0UT_BUFF,-

122 RSZ=80

123

124 .PSECT CODE SHR, NOWRT, EXE
igg ;tiititiitiiiititiiiiitiiitttiitiiiiiiiiiitiiiiiiiiiiitiiiiiiiiiiiitiii
127

128 .ENTRY MAROPEN_INDX “M<O

129

130 CALLS #0, G LIBSINIT_TIMER
131 LIB_ERROR

132

133 ; open SYSSINPUT

134

135 SOPEN FAB=TTIN_FAB

136 RMS_ERROR TTIN_FAB, FAB

137 SCONNECT RAB=TTIN_ RAB we
138 RMS_ERROR TTIN_RAB, RAB

139

140 ; input name of indexed file

141

142 $GET RAB=TTIN_RAB

143 RMS_EFROR TTIN_RAB, RAB

144

145 ; open indexe : file

146

147 $FAB_STORE FAB=INDX_INFAB,~
148 FNA=IN_BUFF,- ; filename
129 FNS=TTIN_RAB+RAB$W_RS2Z 7+ filename length
150

151 SOPEN FAB=INDX_INFAB

152 RMS_ERROR’ INDX_INFAB, FAB
153 $CONNECT RAB=INDX_INRAB

154 RMS_ERROR INDX_INRAB, RAB
155

13-17
309 Facebook Inc. Ex. 1215

156
157
158
159
160

MACRO (Sheet 4 of 6)

: open SYSSOUTPUT

SOPEN FAB=TTOUT_FAB
RMS_ERROR TTOUT_FAB, FAB
$CONNECT RAB=TTOUT_RAB
RMS_ERROR TTOUT_RAB, RAB

; display directions to stop run and prompt for first key value

MOVCS $HIGHLIGHT_LENGTH,HIGHLIGHT,#"A/ /,#80,0UT_BUFF
$PUT RAB=TTOUT_RAB

RMS_ERROR TTOUT_RAB,, RAB

MOVCS5 $DIRECTIONS_LENGTH,DIRECTIONS,#"A/ /,#80,0UT_BUFF
$PUT RAB=TTOUT_RAB ‘

RMS_ERROR TTOUT_RAB, RAB

MOVCS5 $HIGHLIGHT_LENGTH,HIGHLIGHT,#"A/ /,#80,0UT_BUFF
$PUT RAB=TTOUT_RAB

RMS_ERROR TTOUT_RAB, RAB

: input key value

KEY_IN:
SRAB_STORE RAB=TTIN_RAB,-
PBF=IN_PROMPT2,-
PSZ=#IN_PMTSIZE2
SGET RAB=TTIN_RAB

RMS_ERROR TTIN_RAB, RAB

STOP_RUN_CHK:

TSTW TTIN_RAB+RABSW_RSZ ; <cr> so # bytes = 0
BNEQ CONV_KEY ; NO
JMP D. 'E ; YES, STOP
: right justify key value
CONV_KEY:
MOVCS5 #0,KEY_VALUE,#"A/ /,#KEY_LENGTH,KEY_VALUE
~ CVTWL TTIN_RAB+RAB$W_RSZ,R6
SUBL3 R6 ,#KEY_LENGTH,R6
ADDL #KEY_VALUE,R6
MOVC3 TTIN_RAB+RABSW_RSZ,IN_BUFF,(R6)

13-18

310 Facebook Inc. Ex. 1215

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249

MACRO (Sheet 5 of 6)

; do indexed keyed retrieval of record

READ_REC:
$GET RAB=INDX_ INRAB
BLBS RO, SUCCESSFUL_READ ;: record found
CMPL RO, #RMSS _RNF : record NOT found
BEQL RNF
CMPL RO, #RMSS_RLK ; record LOCKED
BEOQL RLK
RMS_ERROR INDX_INRAB,RAB
SUCCESSFUL_READ:
JMP TYPEOUT_REC
; record not found - print out message and input new key value
RNF 2
MOVCS $MSGRNF_LENGTH ,MSG_RNF ,$~A/ /,#80,0UT_BUFF
S$PUT RAB=TTOUT_RAB
RMS_ERROR TTOUT_RAB, RAB
JMP KEY_IN
; record LOCKED - print out message, wait 10 seconds and try again
RLK:
MOVCS : #$MSGRLK_LENGTH ,MSG_RLK,#~A/ /,#80,0UT_BUFF
S$PUT RAB=TTOUT_RAB
RMS_ERROR TTOUT_RAB, RAB
PUSHAL TIME WAIT
CALLS #1,GTLIBSWAILT
LIB_ERROR
WAIT_OVER:
JMP READ_REC +
; record found - type out record on terminal
TYPEOUT_REC:
MOVC3 QINREC_LENGTH,INREC_BUFF,OUT_BUFF
S$PUT RAB=TTOUT_RAB
RMS_FRROR TTOUT_RAB, RAB

; ask user w.ether he or she wishes to DELETE record displayed
DELETE_FLAG:
SRAB_STORE RAB=TTIN_RAB,-

PBF=IN_PROMPT3,-
PSZ=#IN_PMTSIZE3]

13-19
311 Facebook Inc. Ex. 1215

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281
282
283

S$GET
TSTW
BNEQ

JMP

CHECK_FLAG_UC:
CMFB
BNEQ
JMP

CHECK_FLAG_LC:
CMPB
BNEQ
JMP

FLAG_NE:
JMP

s delete record

DELETE_REC:
SDELETE
RMS_ERROR

GET_ANOTHER_KEY:
JMP

DONE:
CALLS
LIB_ERROR
SEXIT S

MACRO (Sheet 6 of 6)

RAB=TTIN_RAB
TTIN_RAB+RABSW_RSZ
CHECK_FLAG_UC

KEY _IN

IN_BUFF,#"A/Y/ "
CHECK_FLAG_LC
DELETE_REC

IN_BUFF,#"A/y/
FLAG_NE
DELETE_REC

KEY_IN

RAB=INDX_INRAB
INDX_INRAB, RAB

KEY_IN

#0, G LIBSSHOW_TIMER

.END = MAROPEN_INDX

13-20

312

w8 %o we wp we

- -

e we

<CR> =~ don't delete

not equal 0 so check whether
equal to ‘Y’ or 'y’

equal to 0 so don’'t delete
record - read another key

equal to upper case ‘'Y’

equal to lower case 'y’

not equal to 'Y' or 'y' -
read in another key value

EXIT to VMS

Facebook Inc. Ex. 1215

WO~ WN -

PASCAL (Sheet 1 of 6)

PASOPEN_INDX.PAS

PASCAL program using USERACTION function to open an INDEXED
file. Thereafter, all access to the file is done
using regular PASCAL I/0.

User is prompted for seqg_no of record to be
retrieved randomly and given option of
deleting any record retrieved.

Program assumes FILE SHARING and RECORD LOCKING

{INHERIT (‘'SYSSLIBRARY: STARLET')]

PROGRAM PASOPEN_INDX(INPUT,OUTPUT,INDXI):

CONST :

TIME_WAIT = 10.0; { Number of seconds wait
if record locked }

TYPE

ACCOUNT_STRUC = RECORD

SEQ_NO : [KEY(0)] PACKED ARRAY ([l1..7] OF CHAR;
LAST NAME : [KEY(1)) PACKED ARRAY [1..15] OF CHAR;
FIRST NAME : PACKED ARRAY [1..10] OF CHAR;

SOC_SEC : PACKED ARRAY ([1..9]) OF CHAR;

STREET : PACKED ARRAY [1..18] OF CHAR;

CITY : PACKED ARRAY ([l..14) OF CHAR:

STATE : PACKED ARRAY [l..2] OF CHAR:

ZIP_CODE : PACKED ARRAY [l1..5) OF CHAR:;

END;

ACCOUNT_REC

| FILE OF ACCOUNT_STRUC;
UNSAFE_FILE

[UNSAFE] FILE OF CHAR;

RAB_PTR = “RABSTYPE;
VAR

INDX1 :+ ACCOUNT_REC;

IN_REC : ACCOUNT_STRUC;

RMS_STS : UNSIGNED:;

RET_STATUS,

L& :_FILENAME, =

KEY_IN.

KEYLEN : INTEGER;

FILENAME : [VOLATILE] VARYING ([80] OF CHAR;

KEY_VALUE : VARYING [7] OF CHAR;

RAB_START : RAB_PTR;

DELETE_FLAG : CHAR;

PROG_STAT : INTEGER:=0; [VALUE 1 = no error
VALUE 2 = some error
VALUE 3 = wait-read-again

13-21

313 Facebook Inc. Ex. 1215

PASCAL (Sheet 2 of 6)

FUNCTION PASSRAB (VAR anyname : Unsafe_file):
RAB_PTR; EXTERN;

PROCEDURE LIBSWAIT (-
num_secs : REAL); EXTERN:

PROCEDURE LIBSSTOP (
$IMMED cond_value : INTEGER); EXTERN;

PROCEDURE LIBSINIT_TIMER (
VAR HANDLER_ADR : INTEGER:= SIMMED 0); EXTERN:

PROCEDURE LIBSSHOW_TIMER (
HANDLER_ADR : INTEGER := SIMMED O;
CODE : INTEGER := SIMMED 0;
[IMMEDIATE,UNBOUND] PROCEDURE ACTION RTN (OUT_STR :
[CLASS S] PACKED ARRAY (L..U:INTEGER]
OF CHAR):= RIMMED 0:
RIMMED USER_ARG : INTEGER := %IMMED 0); EXTERN;

FUNCTION OPENFILE (
VAR FAB FABSTYPE;
VAR RAB RABSTYPE;
VAR FNAME : ACCOUNT_REC): INTEGER:

BEGIN [openfile function }

Extension # blocks if file is extended }
FAB.FABSW_DEQ t= 10;

File access desired for USER }
FAB.FABSB_FAC := FABSM_DEL + FABSM_GET + FABSM_PUT + FABSM_UPD;

File options der ‘red |
FAB.FABSL_FOP :~ FABSM_DFW; [deferred write }

global buffers if wish to use them or set to zero if wish
to override global and use local buffers if someone

already has file opened with global buffers enabled.

The following statement must be .inserted in source after
SYSSOPEN call but prior to SYSSCONNECT call. !
FAB.FAB$W_GBC = §; i

Sharing attributes - what others can do or set TO FABSM_SHRNIL |
FAB.FABSB_SHR := FABSM_SHRPUT + FABSM_SHRGET + FABSM_. SHRDEL
+ FABSM SHRUPD;

RET_STATUS := SOPEN (FAB,,);

Specify number of local buffers you want RMS to allocate on CONNECT 1
RAB. RABSB MBF := 33

13-22

314 Facebook Inc. Ex. 1215

PASCAL (Sheet 3 of 6)

107

108 | Enable any record processing options to be used for entire run |
109 RAB.RABSL_ROP := RABSM_FDL:; { fast delete]
110

111 IF ODD(RET_STATUS) THEN

112 . RET_STATUS := SCONNECT(RAB, ,)

113 ELSE "

114 LIBSSTOP(RET_STATUS):

115

116 OPENFILE := RET_STATUS:

117

118 END; ! function openfile |

119

120

121 BEGIN [MAIN |}

122

123 LIBSINIT_TIMER:

124

125 . WRITE ('Enter filename: ');

126 READLN (filename);

127

128 OPEN (file_variable := INDX1,

129 file name := filename,

130 organization := INDEXED,

131 access_method := KEYED,

132 history :+= OLD,

133 user_action := OPENFILE);

134

135 RAB_START := PASSRAB (INDX1):

136 RESETK (INDX1,0);: { Retrieval by primary key !
ig; WRITELN ([iiiitﬁttt*iiiittit'titiiiitﬁtitiititl) :
139 WRITELN (' Enter ZERO to stop run'); ,
140 WRITELN ([] tiiitiiiiiiiiiiitiiifiiiiititititiii ’) :
141 :

142 WRITE ('Enter SEQ_NO: .

143 READLN (KEY_IN):

144

145 WHILE (KEY_IN > 0) DO

146 BEGIN [while loop !

147

148 | Cc.vert integer KEY_IN to right justified character string KEY VALUE 1}
149 -

150 IF (+ROG_STAT <> 3) THEN X
151 WRITEV (KEY_VALUE.KEY_IN:7)?
152
153 FINDK (INDXI,O,KEY_VALUE,EOL.ERROR:'CONTINUE):
154
13-23

315 Facebook Inc. Ex. 1215

155
156
157
158
159
160
lel
162
163
164
165
166
167
l68
169
170
171
172
173
174
175
176
177
178
179
180

PASCAL (Sheet 4 of 6)

NOTE: PASCAL FINDK does not return status code RMSS _RNF to RABSL _STS
Can test for this condition with UFB functon }

IF (STATUS(INDXI) > 0) OR UFB(INDX1) THEN

BEGIN
PROG_STAT := 2;

RMS_STS := RAB_START"

IF UFB(INDX1) THEN

.RABSL_STS;

WRITELN (' Record NOT FOUND with SEQ _NO = ',KEY_VALUE)

ELSE

IF (RMS_STS = RMSS_RLK) THEN

BEGIN

WRITELN (' Record currently LOCKED ',
' = will try again shortly’);

LIBSWAIT (TIME_WAIT);

PROG_STAT := 37
FND
ELSE

LIBSSTOP (SIMMED RMS_STS);

END
ELSE PROG_STAT :=];

IF (PROG_STAT = 1) THEN
BEGIN

IN_REC := INDX1"

WRITELN (IN_REC. SEQ NO,*

' IN_REC.SOC_SEC,"'
IN REC.LAST NAHE);

L4
’

WRITE ('Do you wish to delete this record?’,

' (Y/any char):

READLN (DELETE_FLAG):

IF ((DEL' rE_FLAG = 'Y) OR (DELETE_FLAG =

DELETE (INDX1);

END; { if prog_stat = 1 }

IF (PROG_STAT <> 3) THEN
BEGIN

WRITE ('Enter SEQ_NO:
READLN (KEY IN);

END [if prog_stat <> 3 |}
END; [while loop 1
CLOSE (INDX1);:
LIBSSHOW_TIMER;

END. | Main program 1}

13-24

')

.
’

316

'y’)) THEN

Facebook Inc. Ex. 1215

PASCAL (Sheet 5 of 6)

Entry Points to PASCAL Utilities

This section describes the entry points to utilities in the VAX
Run-Time Library that can be called as external routines by a VAX
PASCAL program. These utilities access VAX PASCAL extensions that
are not directly provided by the language.

l.

PASSFAB(f)

The PASSFAB function returns a pointer to the RMS File Access
Block (FAB) of file f£. After this function has been called,
the FAB can be used to get information about the file and to
access RMS facilities not explicitly available in the PASCAL
language.

The component type of file £ can be any type; the file must be
open.

PASSFAB is an external function that must be explicitly
declared by a declaration such as the following:

TYPE
Unsafe_File = [UNSAFE] FILE OF CHAR;
Ptr_to FAB = “FABSTYPE;

FUNCTION PASSFAB
(VAR F : Unsafe_File) : Ptr_to_ FAB;
EXTERN;

This declaration allows a file of any type to be wused as an
actual parameter to PASSFAB. The type FABSTYPE is defined in
the VAX PASCAL environment file STARLET.PEN, which your
program or module can inherit.

PASSRAB(f).

The PASSRAB function returns a pointer to the RMS Record
Access Block (RAB) of file £. After this function has been
called, the RAB can be used to get information about the file
and to access RMS facilities not explicitly available in the
PASCAL language.

The component type of file f can be any type:; the file must be
open.

13-25

317 Facebook Inc. Ex. 1215

PASCAL (Sheet 6 of 6)

PASSRAB is an external function that must be explicitly
declared by a declaration such as the following:

TYPE
Unsafe_File = [UNSAFE] FILE OF CHAR;

Ptr_to_RAB = “RABSTYPE:

FUNCTION PAS$RAB
(VAX F : Unsafe File) : Ptr_to_RAB;
EXTERN ; :

This declaration allows a file of any type to be used as an
actual parameter to PASSRAB. The type RABSTYPE is defined in
the VAX PASCAL environment file STARLET.PEN, which vyour
program or module can inherit.

You should take care that your use of the RMS RAB does not
interfer with the normal operations of the Run-Time Library.
Future changes to the Run-Time Library may change the way in
which the RAB is used, which may in turn require you to change
your program,

13-26

318 Facebook Inc. Ex. 1215

FDLSPARSE ALTERNATIVE

call FDLSPARSE to set up and initialize RMS control blocks and
thereafter direct calls to RMS services must be used.

1.
2.

Opens up FDL file (specified as arg 1 in call).

Allocates necessary RMS control blocks and initializes
permanent file attributes set in FDL file and any run-time
characteristics indicated in the FDL file.

Returns address of FAB (arg 2) and address of RAB (arg 3) to
the calling program. Subsequently, can be used by the calling
program to access and change settings in FAB and RAB.

_ NOTE ‘

e FDLSPARSE may be called from all higher-level languages
including COBOL (and DIBOL).

@ Once FDLSPARSE is called the rest of the I/0 must be done
by calling RMS services directly. There is no way to
connect the file channel in the FAB obtained by FDLSPARSE
with the regular higher-level language I/O. Note that
this channel could be used in QIOs.

e The following warning applies to programmers used to
accessing the RMS control blocks using a USEROPEN routine
supported by their higher-level language.

WARNING

When you call FDL$PARSE you are responsible
for enabling any file or record options you
wish to use. They must be either explicitly
specified in the FDL or directly set in the
program. The defaults usually enabled by your
compiler will not be set. Thus, if your
compiler had usually enabled DEFERRED WRITE,
rou will now have to do it.

To access RMS control blocks and set them, most higher-level
languages have to pass the FAB or RAB pointer to a routine.
In the routine the FAB or RAB RECORD is specified as the
receiving parameter.

IMPORTANT

The calling routine must pass the FAB or RAB
pointer BY VALUE (even though the called routine
expects to receive it by reference). We are
deliberately tricking the compiler.

13-27
319 Facebook Inc. Ex. 1215

FDLSPARSE Routine

The FLDSPARSE routine parses an FDL specification, allocates RMS
control blocks (FABs, RABs, or XABs), and fills in the relevant
fields.

Format

FDLSPARSE fld_spec, fdl_fab pointer
,£d1_rab_pointer T,flags]
[,dfIt_£dl_spc]l [,stmnt_num]

Arguments
fd1l_spec

The £d1_spec argument is the name of the FDL file or the actual
FDL specification to be parsed. It is the address of a character
string descriptor pointing to either the name of the FDL file or
the actual FDL spec1fication to be parsed. If the
FDLSV_FDL_STRING flag is set in the flags argument, FDL$SPARSE
interprets this argument as an FDL specification in string form.
Otherwise, FDLSPARSE interprets this argument as a file name of an
FDL file.

fdl_fab pointer

Address of an RMS file access block (FAB). The £dl_fab pointer
argument is the address of a longword which receives the address
of an RMS file access block (FAB). FDLSPARSE both allocates the
FAB and fills in its relevant fields,

fdl_rab pointer

Address of an RMS record access block (RAB). The £fdl_rab pointer
argument is the address of a longword which receives the address

of an RMS record access block (RAB). FDLSPARSE both allocates the
RAB and fills in its relevant fields.

13-28

320 Facebook Inc. Ex. 1215

flags

The flags (or masks) argument controls how the dflt fdl spc
argument is interpreted and how errors are signaled. It is the
address of a longword containing the control flags. If this
argument is omitted or is specified as zero, no flags are set.
The flags and their meanings are described below.

Flag Description

FDL$SV_DEFAULT_STRING Interprets the dflt_fdl spc argument as an
FDL specification in string form. By
default, the dflt_ fdl_ spc argument is
interpreted as a file name of an FDL file.

FDL$V_FDL_STRING Interprets the fdl_spec argument as an FDL
specification in string form. By default,
the fdl_spec argument is interpreted as a
file name of an FDL file.

FDLSV_SIGNAL Signals any error. By default, the status
code is returned to the calling image.

This argument is optional. By default, an error status |is
returned rather than signaled.

dflt_£fdl_spc

The dflt_fdl_spc argument is the name of the default FDL file or
specification. It is the address of a character string descriptor
pointing to either the default FDL file or the default FDL
specification. If the FDL$V.DEFAULT_STRING flag is set in the
flags argument, FDLSPARSE interprets this argument as an FDL
specification in string form. Otherwise, FDLSPARSE interprets
this argument as a file name of an FDL file, -

This arqument allows you to specify default FDL attributes. In
other +ords, FDL$PARSE processes the attributes specified in this
argument, i\less you override them with the attributes you specify
in the fdl_spec argument.

The FDL defaults can be coded directly into your program,
typically with an FDL specification in string form.

This argument is optional.

13-29
321 Facebook Inc. Ex. 1215

stmnt_num

The FDL statement number. The stmnt_num argument is the address
of a 1longword that receives the FDL statement number. If the
routine completes successfully, the stmnt_num argument is the
number of statements in the FDL specification. If the routine
does not complete successfully, the stmnt num argument receives
the number of the statement that caused the error. 1In general,
however, line numbers and statement numbers are not the same.

This argument is optional.

Condition Values Returned

SS$_NORMAL Normal successful completion.

LIBS_BADBLOADR ~ Bad block address.

LIBS_BADBLOSIZ Bad block size.

LIBS_INSVIRMEM Insufficient virtual memory.

RMS$_DNF Directory not found.

RMSS$™ DNR Device not ready or mounted.

RMS$_WCC Invalid wildcard context (WCC) value.
13-30

322 Facebook Inc. Ex. 1215

Typical Sequence of RMS calls Initiated by FDLSPARSE

FDOL$PARSE

13-31
323 Facebook Inc. Ex. 1215

RMS services typically have three arguments:
1. RMS control block address (FAB or RAB)
2. Error completion AST routine

3. Success completion AST routine

Fields in RAB Defining User Record Buffers

Input Buffers

RABSL_UBF The user-specified address of a buffer in the
program to hold the record (or block) as a
result of a $GET or SREAD operation (block-10).

RABSW_USZ The user-specified length in bytes of
record/block to be transferred to the input
buffer,

NOTE

RMS on a $GET or $READ operation does not return
the number of bytes written into the UBF buffer in
this field. Instead, the number of bytes
transferred on a S$SPUT or S$SREAD operation is
returned to the RAB$SW_RSZ field.

Output Buffers

RABSL_RBF " The user-specified address of a buffer in the
program that contains the record/block to be
written to the file.
When the user issues a $SPUT or $WRITE operation
(block-I10), this field must contain the address
of the record/block to be written to the file.

NOTE
Supplementary use of this field for locate mode:

RMS returns RMS buffer address of record just read
at the end of a SGET operation. :

13-32

324 Facebook Inc. Ex. 1215

RABSW_RSZ The user-specified length, in bytes, of the
output buffer.

NOTE

Supplementary use of this field for
variable-length fields. RMS returns the length of
the record/block transferred by a SGET or SREAD
operation. In the case of VFC records, RMS
returns the length of the variable portion.

13-33
325 Facebook Inc. Ex. 1215

Specification of Internal Address

BASIC

DECLARE LONG X-ptr

X-ptr = LOC ()
COBOL
01 x-ptr USAGE IS POINTER

VALUE REFERENCE .
variable-name

FORTRAN
INTEGER*4 x-ptr
X-ptr = $LOC ()
PASCAL

Alternative 1 (New Pascal Vv3.0)

VAX
x-ptr : INTEGER;

Xx-ptr : = IADDRESS ():

Alternative 2 .

TYPE {real }
ptr-type =)linteger;
VAR

x-ptr : “ptr-type;

X-ptr : = ADDRESS ():
MACRO

label:

MOVAL label

13-34

326 Facebook Inc. Ex. 1215

VAX Language 1/0 Operations and RMS Services

This section

consists of tables showing how each language's

statements relate to RMS services.

BASIC Statement

BASIC I/0 Statements and RMS Routines

RMS Routines

GET $GET

PUT $PUT
FIND SFIND
DELETE S$DELETE
UPDATE SUPDATE
RESTORE SREWIND
SCRATCH STRUNCATE
FREE SFREE
UNLOCK SRELEASE

COBOL Statement

ACCEPT
CLOSE
DEY ETE
OPEN
READ
REWRITE
WRITE
DISPLAY
START
UNLOCK

NOTE

1. The first PRINT or INPUT statement to channel 0
causes an SOPEN and $CONNECT operation to SYSSINPUT
and SYSSOUTPUT.

2. If a $SDELETE, SFIND, SFREE, S$SGET, $PUT, or SUPDATE
operation fails because the record stream is active,
the function is retried after a SWAIT.

COBOL I/O Staiements and RMS Routines
RMS Routine

SGET :

SCLOSE, SDISCONNECT, $NXTVOL

SFIND, $DELETE (See Note)
SOPEN or S$CREATE, SCONNECT

$GET
SFIND, SUPDATE (See Note)
$PUT
$PUT
SFIND
SRELEASE, $FREE
NOTE

SFIND is done only when the DELETE or REWRITE is

being performed during random access.

13-35

327 Facebook Inc. Ex. 1215

FORTRAN I/0 Statements and RMS Routines

FORTRAN Statement
ACCEPT

BACKSPACE

CLOSE
DEFINE FILE

' DELETE(u)

DELETE(u, REC = r)
ENDFILE

FIND

INQUIRE (by file)
INQUIRE (by unit)
OPEN

OPEN (with USEROPEN)

OPEN (on conr,: cted
unit)

PRINT

READ

READ (internal file)
REWIND

REWRITE

TYPE

UNLOCK

WRITE

WRITE (internal file)

) See Note

RMS Routine Number:
$GET 5
SREWIND, followed by one or
more SGET operations if target
record is not the first record
$CLOSE
None
SDELETE 5
SFIND, SDELETE 5
$PUT 2,5
SFIND 1,5
SPARSE, $SEARCH, SOPEN, $CLOSE
None
SOPEN or SCREATE, SCONNECT
None
SPARSE, $SEARCH, $CLOSE, 8
SOPEN or $CREATE, $CONNECT
$PUT 4,5
$GET 1,5,7
None
$REWIND
SUPDATE 5
$PUT 4,5 -
SFREE 5
$PUT 2,5,7)
None

13-36 -

328 Facebook Inc. Ex. 1215

NOTES

If the unit is not already open, the first READ
or FIND statement on a logical unit invokes an
SOPEN and a $CONNECT.

If the unit is not already open, the first
WRITE or ENDFILE statement on a logical wunit
causes a SCREATE and S$CONNECT.

The first ACCEPT statement in a program causes
an SOPEN and SCONNECT.

The first PRINT statement in a program and the
first TYPE statement in a program each cause a
SCREATE and S$CONNECT.

If a SDELETE, SFIND, SFREE, SGET,Y SPUT, or
SUPDATE fails because the record stream is
active, the function is retried after a $WAIT.

If RECORDTYPE is explicitly or implicitly
'SEGMENTED', an unformatted sequential READ
statement can cause more than one S$GET.

If RECORDTYPE 1is explicitly or implicitly
'"SEGMENTED', an unformatted sequential WRITE
statement can cause more than one S$PUT.

If the specifiéd file name is the same as the

name of the currently open file, only the
BLANK= paramater is changed; otherwise, the
current file 'is closed and the new file opened.

PASCAL I/O Statements and RMS Routines

See Note

»ASCAL Statement RMS Routine Number:
CLOSE SCLOSE 1,3
DELETE S$DELETE 1

EOF None 1,2

EOLN None 1,2

FIND $GET 1

FINDK SGET 1

GET $GET 1,2
LINELIMIT None ‘ 1,2

13-37

329 Facebook Inc. Ex. 1215

LOCATE
OPEN
PAGE
PUT
READ
READLN
RESET
RESETK
REWRITE
STATUS
TRUNCATE
UFB
UNLOCK
UPDATE
WRITE

WRITELN

None 1l

SOPEN or $SCREATE, S$CONNECT 4
S$PUT 1,2
SPUT 1,2
$GET 1,2
S$SGET , 1,2
SREWIND, S$GET 4,5
SREWIND, S$GET 1
sREWIND, GET, SSTRUNCATE 4,5
None 1,2
S$TRUNCATE 1,2
None 1,2
SRELEASE 1
SUPDATE 1
$PUT 1,2
$PUT 1,2
NOTES

May implicitly open file INPUT or OUTPUT. See
OPEN for RMS operations.

If delayed device access (lazy lookahead) is in
progress on the file, a $GET will be done, and
all open text files for which prompting is
enabled may have a $PUT performed for them.

If the file is in Generation mode, a $PUT may
also be performed.

If the file is a text file opened on a
terminal, and if the carriage control is LIST
and no USER-ACTION procedure was specified, the
file is closed and reopened with two-byte VFC
record type and PRN carriage control to allow
prompting.

Opens file if it is not already open. See OPEN
for RMS operations.

13-38

330 Facebook Inc. Ex. 1215

ssaippe
yo01q @3Inqyille pepuaixly

(Aue 37) enfeAa sniels

apod> snje3s uojjstduwod
bujaeys o114
801318 119300IRVYD
9d1aap bBuyroods
9Z18 MOpPUIM TeAdT138Y
jew103j paodaY
sayaepunoq
3¥001q 880195 30U Od
¥D pue 31 ujad
10ajuoo abetriaed NVILIOL
§93INQJA3II¢ paodey
uojjeziuebao o114
8801PpPY NOO0Tq dSweN
9218 PA0O9a HWINW]XUH
Jsqunu pP10D81 wWNWXEH
a9F3JTIuepy B11F Teuaslul
junod 193jjngq [evqord
9Z§8 ®veI® [OAJUOD POXTJ
Yoayd 831IM
Atuo o113
93v810 10 uado a(y3 188N
(Aajue Ka10300a1Pp
ou yiim o113) Lavaodusy
ejo1ep 103 peyiem ‘Aaviodwel
9113-JO-pus v 93IVOUNIL
apesaadng
Atuo tejjusnbes
ae3jutad o3 toods
puewwod 3jjuqns

6t-t1

avx_14avd
ALS_1$6Vd
S1S_1$8vd
¥HS g3avd

Jas_1$8vd
ALY_8$avd
Ha¥ g$avd

¥18_A$EVd

¥D_A$AVd

NLd A$EVd

Ivd_d$avd
940_asavd
NVN_1$8V4
SYW_M$avd
NIW_1$8Vd

141_M$ava

049_M$avVd
254 €sava

AIM ASEAVd
0dn A$Evd

dnl_Asavd
aNl_Asavd
431_Asava
dns_asavd
00s_Asavd
1dS_A$avd
40S™A$EVd

(*3u0)) dod 1$avd

PIatd

(edwe3l)

edja10e8 uado uo puimay
(ade))

207AJ08 9SOTO UO puIMdY
yoayo peasd

(ede3y) (o113 PesOTD
1933je) uogyysod juaaan)
asaewd o113 Indano
peanioniis 9113 ION
(ede3l) o113 3O
pue 3@ uojiysod 3ION
sanduy Ydo1q oweN
Joqunu UOJBIdA OZJUIXEeW
90JA198 9SOTO uo 83arad
937am pai11djad
uojjewdoTTe snonbjjuo)
JU9ISTXBUOU JT 8IeBID
K13 3seq snonbByjuod

suoyido Buisseooiad aTyd

9218 uojledIJIoeds oTfd

gseappe

Huyays uoyiIwdoyjioeds oytd

gsaooe o114

2z18 burays

uotjedfjfoeds o113 Iynejad

ssaappe butaas

uotjeo3Foeds o113 3ITnezed

§071318719300aRYD 3d143(Q

£3fauend

uoisu@lxe 3[yJ rnejed

IX33U0)

adey 103 3z§s)Yootd

8218 33j%ongd

K313uendb uotjedsoriv

dueN

suor3do pue sprotd 9¥d Jo Aaewung

oMY A$EVd

oMY_A$EVd
AAASEVd

S0d_A$8avd
ddo_A$Eva
SAN A$HVYd

JAN_A$8VJ
WVN_ASEVS
AXW_A$8V
110_A$av4a
MJa_A$8Yd
910_A$8Y4
dID_AsEvd
19D A$HVA

dod_148va
SNd 1$avd

VNJ_1$6Yd
Jva asavd

SNa 1$4vd

¥Na_1$avd
A3a 146V

03a_Msavd
X1D_1$4vd
S79_M$EVd
syg_g$E€va
0¥ 1$8vd

pratd

Facebook Inc. Ex. 1215

331

8831ppe 4VvX 3IXON
8218 e8ae plod3aa 19S8()
S§31ppe eaae piod3aa a3Isn
poraad jnoawil
(Aue 31) entea snie3s
8pod snje3s uoylatdwo)
8z1s8 paooay
PUTY3qQ~33TIM
paydol Arjuaaand
PI0J3ax JT ITeM
Hbuiyootun jenuey
31 e3epdn
and @jeounay
Jnosuwyl
103113 ou peey
¥o01
jo ssefpaeboea peol
oyoa ou peay
(peax ued sieyjlo)
231aM 103 paodal Y207
(peax ued sa0Yl0)
peal 103 pi10d3aa 32017

peaye-peay
preye-adiy obang
3dwoad

PI10231 JUIISTXIUON
Y201 ON

apow 83jed017]

10303 1113

03 bBuipaoooe peo]
BAL Y

ueyy i1ajvaab Kay

03 tenbe

10 ueyy a93jeaab Aa)y

avx_1savy
Zsn_Msavy
adn_1$avy
ON1_ 844w
ALS_1$9vy
S1S_158vd
ZS4 M$avd

HEM ASEVY

LVM_ASaVY
WIn_Asavy
dIn_Asavy
1d1_Asavy
ONI_As$avy
ANY A$EVY

THY_A$aVY
AN A$EVY

AT Agavyd

vay_Asavy
HVY_Agavy
Vid_Asavy
INd_AsavY
UXN_ASAVY
WIN_A$avY
207 Asavy

VO'I_A$avy
WIT_A$avy
19¥ Asavy

398 Asavy

(*3u0)) doy Tsavy

SweN

pIatd

ov-t1l

?j1atap 3Ised
uoyieaado
Teutwaa) papuaixd
3113~-3o0-pua
aseosaddn o3 3a8Au0)
"0/T¥1L) 19due)
0/1 %ootd
snouoayouldsy
suoyjdo Buyssaosoad paooey
a933jng aapeey piooay
§ dI 10 388330 9344
NEA
ssoappe o113 s,pioday
§891ppe pI0dAY

apouw 88370 pPa0J9Y
9218 a933inq 3jdwoad
ssaappe aajjng 33duwoad
JUNOD 1933INQTITNN
3uUNod }O0TqII[NKW

?zys Aoy

aouaaajaa jo Koy
ssaappe aajzjinq Aajy

dl wealls [euasul
ssaappe gvd

IX93U0)

2pod j3ayong

oweN

suot3do pue spratd 4vyd jJo Axeuwung

104 A$AvVd

013_A$avy
Joa_Asavy
LAD_AsavY
002_A$avY
OId_AsavY
ASV AgAVY

doy_"1$8vy
gHY T1$avY

PVI_M$avY
ovay 1savy

vdd_M$avy
gy 18avy

vJd_0savy
A3N_o$avy
03s” 2$avy

OVY_dsavy
25d_dsavy
ddd_139vy
JaN_asavy
JgN_dsavy
ZS)_asavy
JuN_dsavy
dax_1savy
ISI_M$aW
avd_1$avy
X1D_1$avy
139 1savy

pratd

Facebook Inc. Ex. 1215

332

Current Record Context

For each RAB connected to a FAB,
information, identifying where each RAB is positioned at any given
RMS modifies the current context as your program performs

moment.,
record operations.

At any point, the current record context
the current record or the next record.

most, two records:

The context of these two records is internal to RMS; you have no
you should know what the
RMS

direct

record service.

contact with them.
context is to access the desired record using the appropriate

However,

RMS maintains

is represented by,

Record Access Stream Context

Record
Operation

Connect
Connect with RABSL_ROP
RABSV_EOF bit set

Get, when last service
was not a Find

Get, when last service
was a Find

Get

Put, sequential file

Pu. . relative file

Put, indexed file
Put

Find

Find

Update

Delete

Record
Access
Mode

Does not
apply

Does not
apply

Sequential

Sequential

Random

Sequential

Sequential

Sequential
Random

Sequential

Random

Does not
apply

Does not

apply
13-41
333

Current
Record

None
None
0l1ld next

record

Unchanged
New

None

None

None
None

0ld next
record

New

None

None

current

Next
Record

First record
End of file
New current

record+1l

Current
record+1l

New current
record+1l

End of file

Next record
position

Undefined
Unchanged

New current
record+1l

Unchanged

Unchanged

Unchanged

Facebook Inc. Ex. 1215

context

at

Record
Operation
Truncate
Rewind

Free

Release

Record Access Stream Context (Cont.)

Record
Access Current Next
Mode Record Record
Does not None End of file
apply
Does not None First record
apply
Does not None Unchanged
apply
Does not None -Unchanged
apply
NOTES
Except for the Truncate service, RMS establishes
the current record before establishing the

identity of the next record.

The
record as

notation +1 indicates the next sequential
determined by the file organization.

For indexed files, the current key of reference
is part of this determination.

The Connect service on an indexed file
establishes the next record to be the first

record in the index represented by the RAB key
of reference (RAB$B__KRF) field.

the next record as
a magnetic tape file opened
the FABSV__NEF option

The Connect service leaves
the end of file for
for Put services (unless

in the FABSL__FOP is set).

13-42

334

Facebook Inc. Ex. 1215

e
WNHOVOIAUL & WHN -

[
-

Example 2. FDLSPARSE Alternative

BASIC (Sheet 1 of 7)

10 OPTION TYPE = EXPLICIT

!
!
{
{
{
l
{
l
!
!
!
!
l
l
!
!
!

!

BASPARSE_INDX.BAS

NOTE: SLINK BASPARSE_INDX,BAS_SETRMS

BAS_SETRMS.BAS contains two external routines:

SETFAB
SETRAB

This BASIC program uses FDLSPARSE to set up RMS structures
for accessing an indexed file rather than using a USEROPEN

function.

In addition, all access to the INDEXED file is done

using RMS services rather than regular BASIC 1/0.
User is prompted for key value for random retrieval of
records and given option to delete any record retrieved.

Program assumes FILE SHARING and RECORD LOCKING

ON ERROR GO TO err_check

DECLARE SINGLE CONSTANT TIME_WAIT=10.0

DECLARE STRING CONSTANT RIGHT_JUSTIFY = i ili111 0
DECLARE WORD
DECLARE WORD

CONSTANT INREC_LENGTH=80
CONSTANT KEY_VALUE_LENGTH=7

RECORD ACCOUNTSTYPE

END
MAP
MAP

MAP
MAP

STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING

SEQ_NO=7
LAST_NAME=15
FIRST_NAME=10
SOC SEC=9
STREET=18
CITY=14
STATE=2

2IP CODE=S

RECORD ACCOUNTSTYPE

(IN_REC)

(FILE_NAME)
(XEYVALUE)
(DELFLAG)

DECLARE LONG

DECLARE LONG

ACCOUNTSTYPE INREC

STRING FDL_FILE=80
STRING KEY_VALUE=?7
STRING DELETE_FLAG=1

FAB_PTR, &
RAB_PTR, &
RET_STATUS, &
INREC_PTR, &
KEY_IN, &
KEY_VALUE_PTR

PROG_STAT ! VALUE 1 = no error in GET
{ VALUE 2 = some error
1 VALUE 3 = wait-read-again
13-43

335 Facebook Inc. Ex. 1215

BASIC (Sheet 2 of 7)

EXTERNAL SUB LIBSINIT TIMER, &
: LIBSSHOW_TIMER, &
LIBSWAIT

EXTERNAL LONG FUNCTION FDLS$SPARSE, &
SYSSOPEN, &
SYSSCONNECT, &
SYSSGET, &
SYSSDELETE, &
SYSSCLOSE

EXTERNAL LONG CONSTANT RMS$ RNF, &

RMSS_RLK

start:

!

CALL LIBSINIT_TIMER()
INPUT 'Enter name of FDL file ';FDL_FILE
RET_STATUS = FDLSPARSE(FDL_FILE,&
FAB_PTR, ! PTR to FAB returned by FDL &
RAB_PTR,,,) ! PTR to RAB returned by FDL
CALL LIBSSTOP(RET_STATUS BY VALUE) IF (RET_STATUS AND 1%)=0%
CALL SETFAB(FAB_PTR BY VALUE)

RET_STATUS = SYSSOPEN(FAB_PTR BY VALUE,,)
CALL LIBSSTOP(RET_STATUS BY VALUE) IF (RET_STATUS AND 1%)=0%

INREC_PTR = LOC(INREC) | internal ADDR input rec buff
KEY_VALUE_PTR = LOC(KEY_VALUE) ! internal ADDR key value

CALL SETRAB(&

RAB_PTR BY VALUE, ! PTR to RAB &
INREC_PTR, ! internal ADDR rec buff &
INREC_LENGTH, . - | length record buffer &
KEY_VALUE_PTR, ! internal ADDR key value &
KEY_VALUE_LENGTH) ! length key value

RET_STATUS = SYSSCONNECT(RAB_PTR BY VALUE,,)
CALL LIBSSTOP(RET_STATUS BY VALUE) IF (RET_STATUS AND 1%)=0%

PRINT PRRRRRARRRARRRRARRNR AR AR AR RN R

PRINT * Hit <CR> or enter zeroc to stop run”
PRINT LR AR X2 2R AR EE R R R R R Y Y R

INPUT 'Enter SEQ_NO';KEY_IN

PROG_STAT = 0

. 13-44

336 Facebook Inc. Ex. 1215

BASIC (Sheet 3 of 7)

106 WHILE (KEY_IN > 0)

107

108 IF (PROG_STAT <> 3) THEN

109 KEY_VALUE = FORMATS (KEY IN,RIGHT_JUSTIFY) ! Convert key-in
110 | to right justified character string key_value
111 END IF

112

113 RET_STATUS = SYSSGET(RAB_PTR BY VALUE,,)

114

115 IF (RET_STATUS AND 1s) = 0% THEN

116 PROG_STAT = 2

117 SELECT RET_STATUS

118 .

119 CASE RMSS_RNF

120 PRINT "Record not found with SEQ NO = ®;KEY_VALUE
121

122 CASE RMS$_RLK

123 PRINT "Record currently locked - will try again®
124 CALL LIB$WAIT(TIHB_WAIT)

125 PROG_STAT = 3

126 CASE ELSE

127 CALL LIBSSTOP(RET_STATUS BY VALUE)

128 END SELECT

129 ELSE

130 PROG_STAT = 1

131 END IF

132

133 IF (PROG_STAT = 1) THEN

134 PRINT INREC::SEQ NO;TAB(9);INREC::SOC_SEC;TAB(20);&
135 INREC: :LAST NAME

136 ’

137 INPUT 'Do you wish to delete this record? (Y/<CR>) ':&
138 DELETE_FLAG

139 -

140 IF (DELETE_FLAG = 'Y' OR DELETE_FLAG = 'y’) THEN
141 RET_STATUS = SYS$DELETE(RAB_PTR BY VALUE,,)
142 CALL LIB$STOP(RET_STATUS BY VALUE) &

143 IF (RET_STATUS AND 1%)=0%

144 END IF

145 END IF

146

147 INPUT 'Enter SEQ_NO';KEY_IN IF PROG_STAT <> 3

148

1/9 NEXT

150 cleanup:

151 CALL SYSSCLOSE(FAB_PTR BY VALUE,,)

152 CALL LIBSSHOW_IIHER()

153 GOTO done

154 err_check:

155

156 ON ERROR GO TO 0

157

158 done: END

13-45
337 Facebook Inc. Ex. 1215

WEOIAWU & W~

200

400

tm b pem fem few b= gun

BASIC (Sheet 4 of 7)

SUB SETFAB (FABSTYPE FAB)
BAS_SETRMS . BAS

EXTERNAL BASIC routines called by COBPARSE_INDX.COB or
by BASPARSE_INDX.BAS

-ttt oem

OPTION TYPE = EXPLICIT
$INCLUDE ' FABRABDEF .BAS *

Extension # blocks if file is extended
FAB::FABSW_DEQ = 10

File access desired for USER
FAB: FAB$B FAC = (FAB: FAB$B FAC OR FAB$M DEL OR FABSH GET &
OR FABSM_PUT OR FABSM |_UPD)

File options desired
FAB::FABsL_FOP = (FAB::FABSL_FOP OR FABSH_DFW) ! deferred write

global buffers if wish to use them or set to zero if wish to
override global and use local buffers if someone already
has file opened with global buffers enabled

The following statement must be moved to SETRAB routine

prior to SYSSCONNECT call,

FAB::FABSW_GBC = ?

Sharing attributes - what others can do or set TO FABSM_SHRNIL
FAB::FABSB_SHR = (FAB::FABSB_SHR OR FAB$SM_SHRPUT &
OR FABSH SHRGET OR FABSH SHRDEL &
OR FABSM | _SHRUPD)

END SUB
.SUB SETRAB (RABSTYPE RAB,&
LONG REC_PTR, &
WORD REC_LENGTH,&
LONG KEY_PTR, &
WORD KEY_LENGTH)
OPTION TYPE = EXPLICIT
S INCLUDE ‘' FABRABDEF .BAS'
Provide address of key_value if keyed retrieval to be used
and size of key

RAB::RABSL_KBF = KEY PTR
RAB: :RABSB_KSZ = KEY_LENGTH

13-46

338 . Facebook Inc. Ex. 1215

'BASIC (Sheet 5 of 7)

Specify key of reference]
RAB::RABSB_KRF = 0 ! primary key

Specify number of local buffers you want RMS to allocate on CONNECT

RAB::RAB$B_MBF = 3

Specify type of mode to use for record access

RAB::RABSB_RAC = RABSC_KEY ! RABSC_SEQ or RABSC_RFA

Provide address and length of output record buffer
RAB::RABSL_RBF = REC_PTR
RAB::RABSW_RSZ = REC_LENGTH

provide address and length of input record buffer
RAB: :RABSL_UBF = REC_PTR
RAB: :RABSW_USZ = REC_LENGTH

Enable any record processing options to be used for
RAB: :RABSL_ROP = (RAB: :RABSL_ROP OR RABSH_FDL) 1

END SUB

13-47

339 Facebook Inc. Ex. 1215

entire run
fast delete

—
QOO IR & WD)

-
mt

=
N WN

BASIC (Sheet 6 of 7)

+

FABRABDEF .BAS

RMS Data Structures Definitions

o s st g

+

RECORD fab$TYPE

BYTE fab$b bid
BYTE fab$b bln
WORD fab$w ifi
LONG fab$l fop
LONG fab$l sts
LONG fab$l stv
LONG fab$l alqg
WORD fab$w_deq
BYTE fab$b fac
BYTE fab$b_shr
LONG fab$l ctx
BYTE fab$b_rtv
BYTE fabSb_org
BYTE fab$b_rat
BYTE fab$b rfm
LONG fab$1l_jnl
LONG fab$§l xab
LONG fab$l nam
LONG fab$l fna
LONG fab$l dna
BYTE fab$b fns
BYTE fab$b dns
WORD fabSw mrs
LONG fab$l mrn
WORD fab$w bls
BYTE fab$b bks
BYTE fab$b fsz
LONG fab$l dev
LONG fab$l sdc
WORD fab$w gbc
BYTE fab$b acm
BYTE fab$b_rcf
BYTE £ill(4)

END RECORD

RECORD rab$TYPE
BYTE rab$b_bid
BYTE rab$b bln

WORD rab$b_isi
LONG rab$l rop

13-48

340

Facebook Inc. Ex. 1215

LONG
LONG
RFA

WORD
LONG
WORD
BYTE
BYTE
WORD
WORD
LONG
LONG

LONG’

rab$l_sts
rab§l_stv
rab$w_rfa
fill
rabSl ctx
£ill —
rab$b rac
rab$b tmo
rab$w usz
rabSw rsz
rab$l_ubf
rab$l_rbf
rabsl_rhb

VARIANT

CASE
LONG
BYTE

CASE
LONG
BYTE

rabsl_kbf
rab$b_ksz

rabsl_pbf
rab$b_psz

END VARIANT

BYTE rab$b_krf
BYTE rab$b_mbf
BYTE rab$b_mbc

VARIANT

CASE
LONG

CASE
LONG

rab$1l_bkt
rab$l_dct

END VARIANT
LONG rabs$l_fab
LONG rab$l_xab
END RECORD

+

declarations o: FAB and RAB CONSTANTS

+

BASIC (Sheet 7 of 7)

! 6 bytes

EXTERNAL BYTE CONSTANT FABSM_DEL,&

EXTERNAL BYTE CONSTANT

FABSM_GET,&
FABSM_PUT,&
FABSM_UPD.,&
FABSM_DFW,&

FABSM_SHRPUT,&
FABSM_SHRGET,&
FABSM_SHRDEL,&
FAB$SM_SHRUPD,&

FABSM_MSE

RABSC_KEY,&
RABSC_SEQ,&
RABSC_RFA,&
RABSM_FDL

13-49
341

Facebook Inc. Ex. 1215

-l - JENN. WV, BT W S

COBOL

external routines:

LR Bk BN Bk BE I B BRI A R

IDENTIFICATION DIVISION.

»

PROGRAM-ID. COBPARSE_INDX.
*

*
ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING~-STORAGE SECTION,

1 (Sheet 1 of 10)

COBPARSE_INDX.COB

COBOL PROGRAM which sets up RMS structures using FDL$PARSE
and calls TWO external non-COBOL routines to SET values in
FAB & RAB. The program retrieves records randomly by key value
entered by USER and gives user option to DELETE record.

This version is appropriate for linking in the following SETRMS
$ LINK COBPARSE_INDX,BAS_SETRMS
$ LINK COBPARSE_INDX,FOR_SETRMS
$ LINK COBPARSE_INDX,PAS_SETRMS

Program assumes FILE SHARING and RECORD LOCKING

PIC X(7).

01 IN_REC.
02~ SEQ_NO
02 LAST_NAME PIC X(15).

02 FIRST_NAME PIC X(10).

02 SOC_SEC PIC X(9).

02 STREET PIC X(18).
02 CITY PIC X(14).
02 STATE PIC XX.

02 ZIP_CODE PIC X(5).

* CONSTANTS

01 INREC_LENGTH
01 KEY_VALUE_LENGTH
01 TIME_WAIT
* VARIABLES
01 FAB_PTR
01 RAB_PTR
01 INREC_PTR
01 KEY_VALUE
01 KEY VALUE_PTR POINTER
01 FDL_FILE
01 RET_STATUS
01 DELETE_FLAG
01 PROG_STAT
88 NO_ERROR
88 SOME_ERROR

PIC 9(5) comp

VALUE IS 80.
VALUE IS 7.
VALUE IS 10.0.

PIC 9(5) CoMmP
USAGE COMP-1

USAGE IS POINTER.
USAGE IS POINTER.

POINTER VALUE REFERENCE IN_REC.
PIC X(7) JUSTIFIED RIGHT.
VALUE REFERENCE KEY_VALUE.
PIC Xx(80).
PIC S9(9) COMP.
PIC X VALUE IS "N".
PIC 9.
VALUE 1.
VALUE 2.
13-50

342 Facebook Inc. Ex. 1215

0l
01

COBOL 1 (Sheet 2 of 10)

88 WAIT_READ_AGAIN VALUE 3.
88 END_OF_INPUT VALUE 4.
RMSS_RNF PIC 9(9) COMP VALUE EXTERNAL RMSS_RNF.
RMSS_RLK PIC 9(9) COMP VALUE EXTERNAL RMSS$_RLK.

PROCEDURE DIVISION.
000-BEGIN.

* % » %

* ®

* 2 % B % B E R

CALL 'LIBSINIT_TIMER'.

DISPLAY 'Enter FDL file name: ' WITH NO ADVANCING.
ACCEPT FDL_FILE.

call FDLSPARSE to set up RMS structures (FAB, RAB)
CALL 'FDLSPARSE' USING BY DESCRIPTOR FDL_FILE
BY REFERENCE FAB_PTR RAB_PTR
BY VALUE 0 0 O
GIVING RET_STATUS.
IF RBT_STATUS IS FAILURE CALL 'LIBSSTOP'.

call external routine SETFAB in a non_COBOL language
that supports FAB structure to set any fields

needed which were not set in FDL file
CALL ‘SETFAB' USING BY VALUE FAB_PTR.

Open input data file

CALL 'SYSSOPEN' USING BY VALUE FAB_PTR 00
GIVING RET_STATUS.

IF RET_STATUS 1S FAILURE CALL 'LIBSSTOP'’
USING BY VALUE RET_STATUS.

call external routine SETRAB WRITTEN IN BASIC,
FORTRAN or PASCAL or some higher-level language
that supports*RAB structure and at a minimum
initialize addresses of record and keyvalue buffers
and their sizes ,

NOTE: If the external routine were written in MACRO
all the PTR arguments HAVE TO BE PASSED BY VALUE
and only the lengths BY REFERENCE.

CALL 'SETRAB' USING BY VALUE RAB_PTR
BY REFERENCE INREC_PTR
BY REFERENCE INREC_LENGTH
BY REFERENCE KEY_VALUE_PTR
BY REFERENCE KEY VALUE_LENGTH.

13-51
343 Facebook Inc. Ex

1215

102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
13,

138
139

141
142
143
144
145
146
147
148
149
150
151
152
153

COBOL 1 (Sheet 3 of 10)

* Connect record
CALL 'SYSSCONNECT' USING BY VALUE RAB_PTR 00
GIVING RET_STATUS.
IF RET_STATUS IS FAILURE CALL 'LIB$STOP’
USING BY VALUE RET_STATUS.

L]
DISPLAY "*ﬁ*i'.'i'i**'.ii.*'*'*.i'i'.ii'i-.

DISPLAY " HIT CNTL+Z TO STOP RUN"
DISPLAY "" AN AR A d A A AN AN AN RN RN RN AR AR RN RN RS

MOVE 0 TO PROG_STAT.
PERFORM 100-CHOOSE-RECORD UNTIL END_OF_INPUT.
PERFORM 250-CLEANUP.

100-CHOOSE-RECORD.
*

* Prompt user for key value
IF PROG_STAT NOT EQUAL TO 3 THEN
DISPLAY “Enter SEQ_NO: " WITH NO ADVANCING
ACCEPT KEY_VALUE WITH CONVERSION AT END
MOVE 4 TO PROG_STAT
END-IF.

IF PROG_STAT NOT EQUAL TO 4 THEN
PERFORM 150-READ-BY-PRIMARY~KEY.

150-READ-BY-PRIMARY-KEY.

CALL 'SYSSGET' USING BY VALUE RAB_PTR 0 0
GIVING RET_STATUS.

IF RET_STATUS IS FAILURE THEN
MOVE 2 TO PROG_STAT
EVALUATE RET_STATUS

WHEN RMSS$_RNF
DISPLAY "NO RECORD WITH SEQ_NO = *,KEY_VALUE

WHEN RMS$_RLK
DISPLAY "RECORD CURRENTLY LOCKED - ",
“"WILL TRY AGAIN SHORTLY"
CALL 'LIBSWAIT' USING
BY REFERENCE TIME_WAIT
MOVE 3 TO PROG_STAT

WHEN OTHER
CALL 'LIBSSTOP' USING BY VALUE RET_STATUS
END-EVALUATE
ELSE
MOVE 1 TO PROG_STAT
END-~IF.

13-52

344 Facebook Inc. Ex

1215

154
155
156
157
158
159
160
le6l

163
164
165
166
167
168
169
170
171
172
173
174
175

COBOL 1 (Sheet 4 of 10)

IF PROG_STAT IS EQUAL TO 1 THEN
DISPLAY SEQ_NO," *,SOC_SEC," ",LAST_NAME
PERFORM 200-DELETE-RECORD

END-IF.

200-DELETE~-RECORD.
DISPLAY "Do you wish to delete this record? (Y/<CR>):
WITH NO ADVANCING.
ACCEPT DELETE_FLAG.
IF DELETE FLAG = "Y" OR DELETE FLAG = "y"
CALL 'SYSSDELETE‘ USING BY VALUE RAB_PTR 0 0
GIVING RET_STATUS
IF RET_STATUS 1S FAILURE CALL 'LIBSSTOP’
USING BY VALUE RET_STATUS

END-IF.

250-CLEANUP.
CALL 'SYSSCLOSE' USING BY VALUE FAB_PTR 0 0
° GIVING RET_STATUS.
CALL °'LIBSSHOW_TIMER'.
STOP RUN.

13-53
345 Facebook Inc. Ex. 1215

W OJoOU bW =~

200

400

PYPRr.

G S f 4o fen S g

COBOL 1 (Sheet 5 of 10)

BASIC External Routines (1 of 2)

SUB SETFAB (FABSTYPE FAB)

!
!
! EXTERNAL BASIC routines called by COBPARSE_INDX.COB or
i
1

OPTION TYPE =

SINCLUDE

BAS_SETRMS.BAS

by BASPARSE_INDX.BAS

EXPLICIT

' FABRABDEF .BAS'

Extension # blocks if file is extended
FAB::FABSW_DEQ = 10

File access desired for USER
FAB::FABSB_FAC = (FAB::FABSB_FAC OR FABSM_DEL OR FABSM_GET &
OR FABSM_PUT OR FABSM_UPD)

File options desired

FAB: :FABSL_FOP = (FAB::FABSL_FOP OR FAB$M_DFW)

! deferred write

global buffers if wish to use them or set to zero if wish to
. override global and use local buffers if someone already
has file opened with global buffers enabled
The following statement must be moved to SETRAB routine
prior to SYSSCONNECT call.

FAB: :FABSW _GBC = ?

Sharing attributes - what others can do or set TO FABSM_SHRNIL
FAB::FABSB_SHR = (FAB::FABSB_SHR OR FABSM_SHRPUT & -
OR FABSM_SHRGET OR FABSH_SHRDEL
OR FABSM_SHRUPD)

END SUB

SUB SETRAB (RABSTYPE RAB,&

OPTION TYPE =

SINCLUDE

LONG REC_PTR, &
WORD REC_LENGTH, &
LONG KEY_PTR,&
WORD KEY_LENGTH)

EXPLICIT

' FABRABDEF .BAS'

&

Provide address of key_value if keyed retrieval to be used

and size of key
RAB: :RABSL_KBF
RAB::RABSB_KSZ

= KEY_PTR
= KEY_LENGTH

13-54

346

Facebook Inc. Ex. 1215

COBOL 1 (Sheet 6 of 10)

BASIC External Routines (2 of 2)

Specify key of reference
RAB: :RAB$SB_KRF = 0 ! primary key

Specify number of local buffers you want RMS to allocate on CONNECT

RAB: :RABSB_MBF = 3

Specify type of mode to use for record access
RAB::RABSB_RAC = RABSC_KEY ! RABSC_SEQ or RABSC_RFA

Provide address and length of output record buffer
RAB: :RABSL_RBF = REC_PTR
RAB::RABSW_RSZ = REC_LENGTH

Provide address and length of input record buffér
RAB::RABSL_UBF = REC_PTR
RAB: :RABSW_USZ = REC_LENGTH

Enable any record processing options to be used for entire run
RAB::RABSL_ROP = (RAB::RABSL_ROP OR RABSM_FDL) | fast delete

END SUB

13-55

347 Facebook Inc. Ex. 1215

VO~ & W+

- v b e e

G e b o b= g

- g

COBOL 1 (Sheet 7 of 10)
FORTRAN External Routines (1 of 2)

FOR_SETRMS.FOR

EXTERNAL FORTRAN routines called by COBPARSE_INDX.COB or
by FORPARSE_INDX.FOR

SUBROUTINE SETFAB (FAB)
IMPLICIT NONE

INCLUDE ' (SFABDEF) '
RECORD /FABDEF/ FAB

Extension # blocks if file is extended ’
FAB.FABSW_DEQ = 10

File acceés desired for USER
FAB.FABSB_FAC = FAB.FABSB_FAC .OR. FABSM_DEL .OR. FABSM_GET
1 .OR. FABSM_PUT .OR. FABSM_UPD

File options desired

FAB.FABSL_FOP = FAB.FABSL_FOP .OR. FABSM_DFW ! deferred write

global buffers if wish to use them or set to zero if wish to
override global and use local buffers if someone already

has file opened with global buffers enabled

The following statement must be moved to SETRAB routine

prior to SYSSCONNECT call.

FAB.FABSW_GBC = ?

Sharing attributes - what others can do or set TO FABSM_SHRNIL
FAB.FABSB SHR = FAB.FABSB_SHR .OR. FABSM_SHRPUT

1 .OR. FABSM_SHRGET .OR. FABSM_SHRDEL
2 .OR. FAB$M_SHRUPD

RETURN

END

SUBROUTINE SETRAB (RAB,REC_PTR,REC_LBNGTH,KEY_PTR,KEY_LBNGTH)
IMPLICIT NONE

INTEGER*4 REC_PTR,KEY_PTR
INTEGER*2 REC_LENGTH ,KEY_LENGTH
INCLUDE ' {($RABDEF) '

RECORD /RABDEF/ RAB

Provide address of key_ value if keyed retrieval to be used
and size of key

RAB .RABSL_KBF = KEY_PTR

RAB.RABSB_KSZ = KEY_LENGTH

specify key of reference
RAB.RABSB_KRF = 0 { primary key

13-56

348 Facebook Inc. Ex. 1215

COBOL 1 (Sheet 8 of 10)

FORTRAN External Routines (2 of 2)

Specify number of local buffers you want RMS to allocate on CONNECT

RAB.RABSB_MBF = 3

Specify type of mode to use for record access
RAB.RABSB_RAC = RABSC_KEY ! RABSC_SEQ or RABSC_RFA

Provide address and length of output record buffer
RAB.RABSL_RBF = REC_PTR
RAB.RABSW _RSZ = REC_LENGTH

Provide address and length of input record buffer
RAB.RABSL_UBF = REC_PTR
RAB.RABSW_USZ = REC_LENGTH

Enable any record processing options to be used for entire run
RAB.RABSL_ROP = RAB.RABSL_ROP +OR. RABSM_FDL ! fast delete

RETURN
END

13-57

349 Facebook Inc. Ex. 1215

N = bt bt = b b b el
OCWVWDIOANHBWNHOWOD-IAUN S W

N
b

NN
AN HWN

27

COBOL 1 (Sheet 9 of 10)

PASCAL External Routines (1 of 2)

PAS_SETRMS.PAS

EXTERNAL PASCAL routines called by COBPARSE_INDX.COB
by PASPARSE_INDX.PAS

and

(INHERIT ('SYSSLIBRARY: STARLET')] MODULE RMS_SETTINGS;

TYPE

WORD_INTEGER = {WORD] 0..64534;

(GLOBAL] PROCEDURE SETFAB (VAR FAB : FABSTYPE) ;

BEGIN

Extension % blocks
FAB.FABSW_DEQ := 10

if file is extended 1

L]
’

File access desired for USER 1}
FAB.FABSB_FAC := FABSM_DEL + FABSM_GET + FABSM_PUT + FABSM_UPD:

File options desired 1
FAB.FABSL_FOP := FABSM_DFW; | deferred write |

global buffers if wish to use them or set to zero if wish
to override global and use local buffers if someone already
has file opened with global buffers enabled
The following statement must be moved to SETRAB routine
prior to SYSSCONNECT call. §

FAB.FABSW_GBC := #;

Sharing attributes - what others c
FAB.FABSB SHR := FABSM SHRPUT + FA

+ FABSM_SHRUPD;

END; { SETFAB |}

[{GLOBAL) PROCEDURE
REC_PTR
REC_LENGTH
KEY_PTR
KEY_LENGTH

BEGIN

pProvide address of
and size of key |
RAB.RABSL_KBF :=
RAB.RABSB_KSZ :=

SETRAB (VAR RAB : RABSTYPE;
INTEGER;
WORD_INTEGER;
INTEGER;
WORD_INTEGER) ;

an do or set TO FABSM_SHRNIL }
BSM_SHRGET + FABSM_SHRDEL

key_value if keyed retrieval to be used

KEY_PTR;
KEY_LENGTH;

13-58

350

Facebook Inc. Ex. 1215

COBOL 1 (Sheet 10 of 10)
PASCAL External Routines (2 of 2)

Specify key of reference |}
RAB.RABSB_KRF := 0; ! primary key |

Specify number of local buffers you want RMS to allocate on CONNECT }
RAB.RABSB_MBF := 3;

Specify type of mode to use for record access |}
RAB.RABSB_RAC := RABSC_KEY; ! RABSC_SEQ or RABSC_RFA |

Provide address and length of output record buffer 1}
RAB.RABSL_RBF := REC_PTR;

RAB.RABSW_RSZ := REC_LENGTH;

Provide address and length of input record buffer }
RAB.RABSL_UBF := REC_PTR;

RAB.RABSW_USZ := REC_LENGTH;

Enable any record processing options to be used for entire run }
RAB.RABSL_ROP := RABSM_FDL; [fast delete]

END; | SETRAB 1}
END. [MODULE RMS_SETTINGS }

13-59
351 Facebook Inc. Ex. 1215

WoJoOhwunb& whk-

COBOL

written in MACRO:

DENTIFICATION DIVISION.

® #QY B B % % % % % * * ¥ RN

ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.

2 (Sheet 1 of 5)

COBMAR_PARSE_INDX.COB

COBOL PROGRAM which sets up RMS structures using FDLSPARSE
and calls TWO external non-COBOL routines to SET values in
FAB & RAB. The program retrieves records randomly by key value
entered by USER and gives user option to DELETE record.

This version is appropriate for linking in the external routines

$ LINK COBPARSE_iNDX,COBMAR_SETRHS

See COB_PARSE_INDX.COB.fOt BASIC, FORTRAN and PASCAL versions.

ROGRAM-ID. COBMAR_PARSE_INDX.

01 IN_REC.
02~ SEQ_NO PIC X(7).
02 LAST NAME PIC X(15).
02 FIRST NAME PIC X(10).
02 SOC_SEC PIC X(9).
02 STREET PIC X(18).
02 CITY PIC X(14).
02 STATE PIC XX.
02 ZIP_CODE PIC X(5).

* CONSTANTS

01 INREC_LENGTH
01 KEY_VALUE_LENGTH
01 TIME_WAIT
* VARIABLES
01 FAB_PTR
01 RAB_PTR
01 INREC_PTR
01 KEY_VALUE
01 KEY VALUE_PTR POINTER
01 FDL_FILE
01 RET_STATUS
01 DELETE_FLAG
01 PROG_STAT
88 NO_ERROR
88 SOME_ERROR

PIC 9(5) COMP

VALUE IS 80.
VALUE 1S 7.
VALUE IS 10.0.

PIC 9(5) COMP
USAGE COMP-1

USAGE IS POINTER.
USAGE IS POINTER.
POINTER
PIC X(7) JUSTIFIED RIGHT.
VALUE REFERENCE KEY_VALUE.
PIC X(80).
PIC S9(9) COMP.
PIC X VALUE IS "N".
PIC 9.

VALUE 1.

VALUE 2.

13-60

352

VALUE REFERENCE IN_REC.

Facebook Inc. Ex. 1215

01
01

COBOL

88 WAIT READ AGAIN
88 END_ OF INPUT

RMS$_RNF
RMS$_RLK

PROCEDURE DIVISION.
000-BEGIN.

L 2R 2 B

»

L N BN B BB BE BN B % J

CALL 'LIBSINIT_TIMER'.

2 (Sheet 2 of 5)

DISPLAY 'Enter FDL file name: '

ACCEPT FDL_FILE.

VALUE 3.
VALUE 4.

PIC 9{(9) COMP VALUE EXTERNAL RMSS_RNF.
PIC 9(9) COMP VALUE EXTERNAL RMSS_RLK.

WITH NO ADVANCING.

Call FDLSPARSE to set up RMS structures (FAB, RAB)

CALL 'FDLSPARSE' USING BY DESCRIPTOR FDL_FILE

BY REFERENCE FAB PTR RAB_PTR

BY VALUE 0 0 0
GIVING RET_STATUS.
IF RET_STATUS IS FAILURE CALL 'LIBSSTOP'.

call external routine SETFAB in a non_COBOL language

that supports FAB structure to set any fields
needed which were not set in FDL file
CALL 'SETFAB' USING BY VALUE FAB_PTR.

open input data file

CALL "SYSSOPEN’ USING BY VALUE FAB_PTR 0 0
GIVING RET_STATUS.

IF RET_STATUS 1S FAILURE CALL 'LIBSSTOP'
USING BY VALUE

RET_STATUS.

call external routine SETRAB WRITTEN IN MACRO and at
a minimum initialize addresses of record and keyvalue

buffers and their sizes

NOTE: 1If the external routine were written in BASIC,
FORTRAN or PASCAL, ONLY the RAB_PTR would be passed
BY VALUE and all other arguments BY REFERENCE.

CALL 'SETRAB’' USING BY VALUE RAB_PTR

BY VALUE

BY REFERENCE

BY VALUE

BY REFERENCE

Connect record

CALL °'SYSSCONNECT' USING BY VALUE RAB_PTR 0 O
GIVING RET_STATUS.
IF RET_STATUS IS FAILURE CALL ‘'LIBSSTOP’
USING BY VALUE RET_STATUS.

13-61
353

INREC_PTR
INREC_LENGTH
KEY_VALUE_PTR
KEY_VALUE_LENGTH.

Facebook Inc. Ex. 1215

105
106
107
108
109
110
111
112
113
114

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

155

COBOL 2 (Sheet 3 of 5)

DISPLAY niiitiiiiiiiitiitiiitttiitiiittiittﬂ.

DISPLAY

" HIT CNTL+2Z TO STOP RUN"

DISPLAY (FXZX22ESEZE SRR EZRRR SR R AR R AR AR AR LA A .

MOVE 0

TO PROG_STAT.

PERFORM 100-CHOOSE-RECORD UNTIL END_OF_INPUT.

PERFORM

250-CLEANUP.

100-CHOOSE-RECORD.
*

user for key value
STAT NOT EQUAL TO 3 THEN

DISPLAY "Enter SEQ NO: " WITH NO ADVANCING

ACCEPT KEY_VALUE WITH CONVERSION AT END

MOVE 4 TO PROG_STAT

STAT NOT EQUAL TO 4 THEN

T“PERFORM 150-READ-BY-PRIMARY~-KEY.

* Prompt
IF PROG
END-IF.
IF PROG

150~-READ-B

CALL 'S

Y-PRIMARY-KEY.

YSSGET' USING BY VALUE RAB_PTR 0 0

GIVING RET_STATUS.

IF RET_STATUS IS FAILURE THEN

MOVE
EVAL

WH

WH

WH

END-
ELSE

MOVE
END-IF.

2 TO PROG_STAT
UATE RET_STATUS

EN RMS$_RNF

DISPLAY "NO RECORD WITH SEQ _NO = *,KBY_VALUE

EN RMS$S_RLK

DISPLAY "RECORD CURRENTLY LOCKED - ",
"WILL TRY AGAIN SHORTLY"

CALL 'LIBSWAIT' USING

BY REFERENCE TIME_WAIT

MOVE 3 TO PROG_STAT

EN OTHER

CALL 'LIBSSTOP' USiNG BY VALUE RET_STATUS

EVALUATE

1 TO PROG_STAT

IF PROG STAT IS EQUAL TO 1 THEN

END-IF.

TDISPLAY SEQ_NO,"” ",SQC_SEC,”
PERFORM 200-DELETE-RECORD

13-62

354

" ,LAST_NAME

Facebook Inc. Ex. 1215

COBOL 2 (Sheet 4 of §5)

156

157 200-DELETE-RECORD.

158 DISPLAY "Do you wish to delete this record? (Y/<CR>): *
159 R WITH NO ADVANCING.

160 ACCEPT DELETE_FLAG.

161 IF DELETE_FLAG = "Y" OR DELETE_FLAG = “y"

162 CALL °'SYSSDELETE' USING BY VALUE RAB_PTR 00
163 GIVING RET_STATUS

164 IF RET_STATUS IS FAILURE CALL ' LIBSSTOP’

165 USING BY VALUE RET_STATUS

166 END-IF.

167

168 250~CLEANUP.

169 CALL 'SYSSCLOSE' USING BY VALUE FAB_PTR 0 0

170 GIVING RET_STATUS.

171 CALL 'LIB$SHOW_TIHER'.

172 STOP RUN.

13-63
355 Facebook Inc. Ex. 1215

WO bo Wk

e wmp ws we

COBOL 2 (Sheet 5 of 5)

MACRO External Routines (1 of 1)

COBMAR_SETRMS . MAR

EXTERNAL MACRO ROUTINES CALLED BY COBPARSE_INDX.COB

.ENTRY SETFAB, "M<>

$FAB_STORE

RET

FAB=@L"4(AP) ,~-

DEQ=#10,~- : extension # blocks if file extended
FAC=<DEL,GET,PUT,UPD>,- ; what you can do

FOP=DFW,~ : file options - deferred write
SHR=<PUT,GET,DEL,UPD> :+ what others can do

.ENTRY SETRAB,"M<>

$RAB_STORE

RET

.END

* RBF=@L"8(AP) ,-

RAB address
output record buffer

RAB=@L"4(AP) ,-

RSZ=@W"12(AP) ,~
UBF=@L"8(AP) ,~
USZ=@W 12(AP) ,~
KBF=@L"16 (AP) ,~
KSZ=8w 20(AP) ,~

input record buffer

-

input KEY buffer

KRF=40,~- ; primary key

MBF=$3 ,- : number of local buffers
RAC=KEY,- ; type of record access SEQ or RFA
ROP=FDL : record options for whole run -

fast delete

13-64

356 Facebook Inc. Ex. 1215

VOOV & WN =~

S g tmm 4 G g G G G sum G S pem b ey e b gun

FORTRAN (Sheet 1 of 6)

NOTE: SLINK FORPARSE_IN

DX ,FOR_SETRMS

FORPARSE_INDX.FOR

FOR_SETRMS.FOR contains two external subroutines:

SETFAB
SETRAB

FORTRAN program using FDLSPARSE to set up RMS structures
for accessing an INDEXED file rather than using
USEROPEN function. In addition, all access to the
file is done using RMS services rather than regular
FORTRAN I/0. User is prompted for key value for
random retrieval of records and given option to

delete any record retr

ieved.

Program assumes FILE SHARING and RECORD LOCKING

PROGRAM FORPARSE_INDX
IMPLICIT

REAL
PARAMETER

INTEGER*2
INTEGER*2

NONE

TIME_WAIT
(TIME_WAIT=10.0)

INREC_LENGTH/80/

! No. seconds wait
! if record locked

KEY_VALUE_LENGTH/7/

STRUCTURE /ACCOUNT STRUC/

CHARACTER*7
CHARACTER*15
CHARACTER*10
CHARACTER*9
CHARACTER*18
CHARACTER™14
CHARACTER*2
CHARACTER*S
END STRUCTURE

RECORD /ACCOUNT_STRUC/

INTEGER

AW A WN -

CHARACTER*80
CHARACTER*?7
CHARACTER*1

SEQ_NO
LAST_NAME
FIRST NAME
soc_sEC
STREET
CITY

STATE

ZIP_CODE

IN_REC

FAB_PTR,
RAB_PTR,
RET_STATUS,
LENGTH_FDLFILE,
KEY_IN,
INREC_PTR,
KEY_VALUE_PTR
FDL_FILE
KEY_VALUE
DELETE_FLAG

13-65
357

| KEY O
| REY 1

Facebook Inc. Ex. 1215

FORTRAN (Sheet 2 of 6)

! VALUE 1 = no error
{ VALUE 2 = some error
! VALUE 3 = wait-read-again

INTEGER ' PROG_STAT/0/

INTEGER FDLSPARSE,
SYSSOPEN,
SYSSCONNECT,
SYSSGET,
SYSSDELETE,
SYSSCLOSE

Voo WwN -~

INCLUDE '($SRMSDEF)'
CALL LIBSINIT_TIMER()

WRITE (6,1)
READ (5,2) length FDLFILE,FDL_FILE

RET_STATUS = FDLSPARSE(

1 FDL_FILE(l:length_FDLFILE),
2 FAB | _PTR, ! Ptr to FAB returned byFDL
3 RAB_PTR,,,) ! Ptr to RAB returned by FDL

IF (.NOT.RET_STATUS) CALL LIB$STOP(SVAL(RET_STATUS))
CALL SETFAB(SVAL(FAB_PTR))

RET_STATUS = SYSSOPEN(SVAL(FAB_PTR),,)
IF (.NOT.RET_STATUS) CALL LIBSSTOP($VAL(RET_STATUS))

INREC_PTR = $LOC(IN_REC) { internal addr input rec buff
KEY_VALUE_PTR = SLOC(KEY_VALUE) ! internal addr key value

CALL SETRAB(
SVAL(RAB_PTR),
INREC_PTR,
INREC_LENGTH,
KEY_VALUE_PTR,
KEY_VALUE_LENGTH)

Ptr to RAB

Internal addr record buffer
Length record buffer
Internal addr key value
Length key value

Nd W =
- o m e g

RET_STATUS = SYSSCONNECT(SVAL(RAB_PTR),,)
IF (.NOT.RET_STATUS) CALL LIBSSTOP(!VAL(RBT STATUS))

WRITE (6,6)
WRITE (6,5) ! directions to stop run
WRITE (6,6)

WRITE (6,3)
READ (5,4) KEY_IN

13-66

358 Facebook Inc. Ex. 1215

FORTRAN (Sheet 3 of 6)

102 DO WHILE (KEY_IN .GT. 0)

103 !

104 ¢ Convert integer KEY_IN to right justified character string KEY_VALUE
105

106 IF (PROG_STAT .NE. 3)

107 1 WRITE (UNIT=KEY_VALUE, FMT='(17)"') KEY_IN

108

109 RET_STATUS = SYSSGET (‘VAL(RAB_PTR),,)

110

111 IF (.NOT.RET STATUS) THEN

112 PROG_ STAT = 2

113

114 IF (RET_STATUS. .EQ. RMS$ RNF) THEN

115 WRITE (6,11) KEY_VALUE

116 ELSE

117 »

118 IF (RET_STATUS .EQ. RMSS_RLK) THEN

119 WRITE (6,12)

120 CALL LIBSWAIT (TIME_WAIT)

121 PROG_STAT = 3

122 ELSE

123 CALL LIB$STOP(\VAL(RBT STATUS))

124 END IF

125 END IF

126 ELSE

127 PROG_STAT = 1

128 END IF

129

130 IF (PROG_STAT .EOQ. 1) THEN

131

132 WRITE (6,*) IN_REC.SEQ_NO,' ' ,IN_REC.SOC_SEC,’ '
133 1 IN REC. LAST NAME

134

135 WRITE (6,14)

lgg : READ (5,15) DELETE_FLAG

1

138 ’ IF (DELETE_FLAG .EQ. 'Y'

139 1 .OR. DELETE_FLAG .EQ. 'y ') THEN .
140 RET_STATUS = SYS$DBLETE(%VAL(RAB PTR),,)
141 IP (.NOT. RET_ STATUS) CALL LIB$STOP(§VAL(RBT STATUS))
142 END IF

143 END IF ! prog_stat =1

144

145 IF (PROG_STAT .NE. 3) THEN

146

147 WRITE (6,3)

148 READ (5,4) KEY_IN

149 END IF ! prog_stat .ne. 3

150 -

151 END DO

13-67
359 Facebook Inc. Ex. 1215

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

TN WA =
[V

b
(VU

FORTRAN (Sheet 4 of 6)

CALL SYSSCLOSE(SVAL(FAB_PTR),,)
CALL LIBSSHOW_TIMER()

CALL EXIT

FORMAT ('S$SEnter name of FDL file: ')
FORMAT (Q,A)

FORMAT ('SEnter SEO_NO: ')

FORMAT (1)

FORMAT (XXXTXXZXTEXXEEXTIEEXRZS R 2R R2R2 2222 R R 2 R 22 220)

FORMAT (' Hit <CR> or enter zero to stop run')

FORMAT (' Record NOT FOUND with SEQ NO = ',A)

FORMAT (' Record currently LOCKED ',

1 ' - will try again shortly')

FORMAT (‘'$Do you wish to delete this record? (Y/<CR>): ')
FORMAT (A)

END

13-68

360

Facebook Inc. Ex. 1215

—
COWDLANE WN -

Pt b ot b ot et
AU bW N

XY Y Y Y Ty eyen
BWNHOW®O

[SH S
A wn

ten b= b b g

= o= o

FORTRAN (Sheet 5 of 6)
FOR_SETRMS .FOR

EXTERNAL FORTRAN routines called by COBPARSE_INDX.COB or
by FORPARSE_ INDX. FOR

SUBROUTINE SETFAB (FAB)
IMPLICIT NONE

INCLUDE "' ($FABDEF) '
RECORD /FABDEF/ FAB

Extension # blocks if file is extended
FAB.FABSW_DEQ = 10

File access desired for USER
FAB.FAB$B_FAC = FAB. FAB$B FAC .OR. FAB$H DEL .OR. FABSH GET
1 .OR. FAB$H PUT .OR. FAB$H UPD

File options desired
FAB.FABSL_FOP = FAB. PABSL FOP .OR. FABSM_DPW ! deferred write

$ global buffers if wish to use them or set to zero if wish to
override global and use local buffers if someone already

has file opened with global buffers enabled

The following statement must be moved to SETRAB routine

prior to SYSSCONNECT call.

FAB.FABSW_GBC = ?

Sharing attributes - what others can do or set TO FABSM_SHRNIL
FAB.FAB$SB_SHR = FAB. PABSB SHR .OR. FABS$M_SHRPUT

1 - «OR. FABSM_ SHRGET .OR. FABSM_ SHRDEL
2 .OR. PABSH_SHRUPD

RETURN

END

SUBROUTINE SETRAB (RAB,REC_PTR,REC_LENGTH,KEY PTR,KEY_LENGTH)
IMPLICIT NONE

INTEGER* 4 REC_PTR,KEY_PTR
INTEGER*2 REC LENGTH,KEY_LENGTH
INCLUDE ' ($RABDEF) '

RECORD /RABDEF/ RAB

Provide address of key_value if keyed retrieval to be used
and size of key

RAB.RABSL_KBF = KEY_PTR

RAB.RABSB_KSZ = KEY_LENGTH

13-69
361 Facebook Inc. Ex. 1215

-

FORTRAN (Sheet 6 of 6)

Specify key of reference
RAB.RABSB_KRF = 0 . ! primary key

Specify number of local buffers you want RMS to allocate on CONNECT
RAB.RAB$SB_MBF = 3

Specify type of mode to use for record access
RAB.RAB$SB_RAC = RABSC_KEY | RAB$SC_SEQ or RABSC_RFA

Provide address and length of output record buffer
RAB.RABSL RBF = REC_PTR
RAB.RABSW_RSZ = REC_LENGTH

Provide address and length of input record buffer
RAB.RABSL_UBF = REC_PTR
RAB.RABSW_USZ = REC_LENGTH

Enable any record processing options to be used for entire run
RAB.RABSL_ROP = RAB.RABSL_ROP .OR. RABSM_FDL ! fast delete

RETURN .
END

13-70

362 Facebook Inc. Ex. 1215

N = =t = st b et =t et e
OWVWRO~NAOANEWNHOWOWRINMMN & WN -

NN
RS - WV N N S

WWKN
k=]

PASCAL (Sheet 1 of 6)

PASPARSE_INDX.PAS
SLINK PASPARSE_INDX,PAS_SETRMS
PAS_SETRMS is EXTERNAL module containing two routines:

SETFAB
SETRAB

PASCAL program using FDLSPARSE to set RMS control blocks for
an indexed file. Thereafter, all access is done using

calls to RMS directly. User is prompted for SEQ NO

of record to be retrieved randomly and given option

of deleting any records retrieved.

Program assumes FILE SHARING and RECORD LOCKING

{INHERIT ('’'SYSSLIBRARY: STARLET')]
PROGRAM PASPARSE_INDX(INPUT,OUTPUT);

CONST
TIME_WAIT = 10.0; { Number of seconds wait
1f record locked |}
TYPE

ACCOUNT_STRUC = RECORD

SEQ_NO : [KEY(0)] PACKED ARRAY [1..7] OF CHAR;
LAST_NAME : [KEY(1)] PACKED ARRAY [1..15] OF CHAR;
FIRST NAME : PACKED ARRAY [1..10] OF CHAR;

soc_sEc : PACKED ARRAY [1..9] OF CHAR;

STREET : PACKED ARRAY (1..18] OF CHAR;

CITY : PACKED ARRAY [1..14] OF CHAR;

STATE : PACKED ARRAY [1..2] OF CHAR;

ZIP_CODE : PACKED ARRAY [1..5] OF CHAR;

END;
ACCOUNT_-REC = FILE OF ACCOUNT_STRUC;
WORD_INTEGER = [WORD] 0..64534;

PTR_TO_FAB = “FABS$TYPE;
PTR_TO_RAB = “RABSTYPE;

VAR
FAB_PTR : PTR_TO_FAB;
RAB_PTR : PTR_TO_RAB;
IN_REC : ACCOUNT_STRUC;
INREC_LENGTH : WORD_INTEGER := 80;
RET_STATUS : INTEGER;
FDL_FILENAME : [VOLATILE] PACKED ARRAY [1..80] OF CHAR;
KEY_IN : INTEGER;
13-71

363 . Facebook Inc. Ex. 1215

PASCAL (Sheet 2 of 6)

KEY_VALUE : VARYING [7] OF CHAR:

KEY_LENGTH : WORD_INTEGER := 7:

INREC_PTR,

KEY_VALUE_PTR : INTEGER;

DELETE_FLAG : CHAR:;

PROG_STAT : INTEGER:=0; { VALUE 1 = no error

VALUE 2 = some error
VALUE 3 = wait-read-again

PROCEDURE LIBSWAIT (
num_secs : REAL); EXTERN:

PROCEDURE LIBSSTOP (
SIMMED cond_value : INTEGER); EXTERN;

FUNCTION FDL$SPARSE (FDLFILE : [CLASS_S) PACKED ARRAY
(L..U:INTEGER] OF CHAR;
VAR FAB_PTR : PTR_TO_FAB;
VAR RAB_PTR.: PTR_TO_RAB): INTEGER; EXTERN;

PROCEDURE SETFAB (VAR FAB : FABSTYPE); EXTERN;

PROCEDURE SETRAB (VAR RAB : RABSTYPE;
INREC_PTR : INTEGER:
INREC_LENGTH : WORD_INTEGER;
KEY_VALUE_PTR : INTEGER;
KEY_LENGTH : WORD_INTEGER): EXTERN;

PROCEDURE LIBSINIT_TIMER (
VAR HANDLER_ADR : INTEGER:= SIMMED 0); EXTERN;

PROCEDURE LIBSSHOW_TIMER (
HANDLER_ADR : INTEGER := SIMMED O;
CODE : INTEGER := SIMMED 0;
[IMMEDIATE,UNBOUND] PROCEDURE ACTION_RTN (OUT_STR :
[CLASS_S] PACKED ARRAY {L..U:INTEGER]

OF CHAR) := SIMMED 0;
SIMMED USER_ARG : INTEGER := SIMMED 0); EXTERN;

BEGIN [MAIN 1|
LIBSINIT_TIMER;

WRITE ('Enter FDL filename: ')
READLN (FDL_FILENAME):

RET_STATUS := FDLSPARSE (FDL_FILENAME,FAB_PTR,RAB_PTR);

IF NOT ODD(RET_STATUS) THEN LIBSSTOP (RET_STATUS);

13-72

364 Facebook Inc. Ex. 1215

PASCAL (Sheet 3 of 6)

104 SETFAB (3%IMMED FAB_PTR):

105

106 RET_STATUS := SOPEN(GIMMED FAB_PTR,:);

107 IF NOT ODD(RET_STATUS) THEN LIBSSTOP (RET_STATUS)?
108

109 INREC_PTR = IADDRESS(IN_REC)?

110 KEY_VALUE_PTR := IADDRESS(KEY_YALUE.BODY)?

111

112 SETRAB (3%IMMED RAB PTR,

113 INREC_PTR,

114 INREC_LENGTH,

115 KEY_VALUE_PTR,

116 KEY_LENGTH) ;

117 .

118 REI_STATUS := SCONNECT (SIMMED RAB_PTR;;)?

119 .

120 WRITELN (EZZZ2X2 X2 XXX X N) s
121 WRITELN (' Enter ZERO to stop run'):

122 WRITELN (IE2ZZZZZZ2ZX2ZXXZ2XXXXEZEZXZREZEEZXZ X N) :
123

124 WRITE ('Enter SEQ_NO: ');

125 READLN (KEY_IN)7

126

127 WHILE (KEY IN > 0) DO

128 BEGIN { while loop }

129

130 [Convert integer KEY_IN to right justified character string KEY_VALUE 1}
131 IF (PROG_STAT <> 3) THEN

132 WRITEV (KEY_VALUE,KEY_IN:7):
133
134 RET_STATUS := SGET(*IMMED RAB_PTR,,);
135
136 IF NOT QDD (RET_STATUS) THEN
137 BEGIN
138)
139 PROG_STAT := 2;
140
141 CASE RET_STATUS OF
142
143 RMS$_RNF : BEGIN
144 WRITELN (' Record NOT FOUND with',
145 ' SEQ_NO = ',KEY_VALUE):
146 END;
147
148 RMS$_RLK : BEGIN
149 WRITELN (' Record currently LOCKED ',
150 ' - will try again shortly’');
151 LIBSWAIT (TIME_WAIT):
152 : PROG_STAT := 33
153 END
154
155 OTHERWISE
13-73

365) Facebook Inc. Ex. 1215

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

PASCAL (Sheet 4 of 6)

LIB$SSTOP (%IMMED RET_STATUS);
END { CASE 1}

END { IF NOT ODD |}
ELSE PROG_STAT := i;

IF (PROG_STAT = 1) THEN
BEGIN

WRITELN (IN_REC.SEQ_NO,' ',IN_REC.SOC_SEC,' ',
IN_REC.LAST NAME);

WRITE (’'Do you wish to delete this record?’,
* (Y/any char): ‘);
READLN (DELETE_FLAG);

IF ((DELETE_FLAG = 'Y') OR (DELETE_FLAG = ‘'y')) THEN

BEGIN
RET_STATUS := $DELETE(SIMMED RAB_PTR,,):
IF NOT ODD(RET_STATUS) THEN
LIB$STOP(RET_STATUS) ;
END;

END; [prog_stat = 1}

IF (PROG_STAT <> 3) THEN
BEGIN

WRITE ('Enter SEQ_NO: '):
READLN(KEY_IN);

END; [prog_stat <> 3 |}
END; [while loop 1}
$CLOSE(%IMMED FAB_PTR,,):
LIBSSHOW_TIMER;

END. | Main program |}

13-74

366 Facebook Inc. Ex. 1215

P
NHOW® AU & WK

PASCAL (Sheet S5 of 6)

PAS_SETRMS.PAS
EXTERNAL PASCAL routines called by COBPARSE_INDX.COB
and by PASPARSE_INDX.PAS
[INHERIT ('SYSSLIBRARY: STARLET')] MODULE RMS_SETTINGS;

TYPE
WORD_INTEGER = [WORD] 0..64534;

[GLOBAL] PROCEDURE SETFAB (VAR FAB : FABSTYPE);
BEGIN

Extension # blocks if file is extended 1
FAB.PAB$W_DEQ t= 10;

File access desired for USER 1}
FAB.FABSB_FAC = FAB$H_DBL + FAB$H_GBT + FABSH_PUT + PAB$M_UPD:

File options desired 1
FAB.FABSL_FOP := FABSM_DFW; | deferred write |}

global buffers if wish to use them or set to zero if wish
to override global and use local buffers if someone already
has file opened with global buffers enabled

The following statement must be moved to SETRAB routine
prior to SYSSCONNECT call. |

FAB.FABSW_GBC := §; |}

Sharing attributes - what others can do or set TO FABSM_SHRNIL 1]
FAB.FABSB_SHR := FABSM_SHRPUT + FABSM_SHRGET + FABSM_SHRDEL
+ FABSM_SHRUPD;

END; [SETFAB 1}

[GLOBAL] PROCEDURE SETRAB (VAR RAB : RABSTYPE;

REC_PTR : INTEGER;
REC_LENGTH : WORD_INTEGER;
KEY_PTR : INTEGER;
KEY_LENGTH : WORD_INTEGER);

BEGIN

Provide address of key_value if keyed retrieval to be used
and size of key 1}
RAB.RABSL KBF

_ : KEY_PTR;
RAB.RABSB_KSZ :

KEY_LENGTH:

13-75
367 Facebook Inc. Ex. 1215

PASCAL (Sheet 6 of 6)

Specify key of reference 1}
RAB.RAB$B_KRF := 0; { primary key |}

Specify number of local buffers you want RMS to allocate on CONNECT }
RAB.RAB$SB_MBF := 3;

Specify type of mode to use for record access |
RAB.RABSB_RAC := RABSC_KEY; { RABSC_SEQ or RABSC_RFA }

Provide address and length of output record buffer }
RAB.RABSL_RBF := REC_PTR;

RAB.RABSW_RSZ := REC_LENGTH;

Provide address and length of input record buffer }
RAB.RABSL_UBF := REC_PTR;

RAB.RABSW _USZ := REC_LENGTH;

Enable any record processing options to be used for entire run |
RAB.RABSL_ROP := RABSM_FDL; { fast delete}

END; { SETRAB |
END. { MODULE RMS_SETTINGS |}

13-76

368 Facebook Inc. Ex. 1215

MODULE 14
ADVANCED USE OF FILE SPECIFICATIONS

Major Topics
— Search lists and wildcards
- RMS procedures — $PARSE and $SEARCH

Source
Guide to VAX/VMS File Applications — Chapter 5

369 Facebook Inc. Ex. 1215

370 Facebook Inc. Ex. 1215

SEARCH LISTS AND WILDCARDS

Full file specification:

NODE : : DEVICE: [root.] [DIRECTORY] filename.type; verse?-1¢
NOTE

Node and root are optional in the full file
specification.

Defaults or Logical Names

Only node, device, or, if only a file name is specified, filename,
may be a logical name. The translation may contain any filename
element.

In addition to applying the process-default device and directory,
RMS allows an application program to specify defaults for the
device and directory components, as well as other components, of a
file specification. The method that RMS uses to apply defaults
and translate any logical names present is called file parsing.
In effect, RMS merges the various default strings (after
translating any logical names) to generate the file specification
used to locate the file.

Search List

A search list is a logical name that contains more than one file
spe=ification.

Example

$ASSIGN [SMITH]Testl.DAT,
[SMITH] DATA2.DAT SEARCH

A search list should be used when a predefined group of files is
processed by a program that is not intended to be interactive.
Using a search list is particularly desirable if the files have
unrelated file names or if they are 1located on different
directories or devices. A search list also minimizes processing
time by searching for a definite group of files. If the search
line does not contain any wildcards and the user wishes to process
only the first match found, no special processing is required.

14-1
371 Facebook Inc. Ex. 1215

Wildcards

The following wildcards can be used with search lists or file
specifications:

* %, or ellipsis (...)
Example

SAssign [WOODS]TEST*.DAT WILD

RMS DEFAULT FILE-PARSING ACTIVITIES

An RMS file service that operates on an unopened file (such as the
Create and Open services) will perform the following file-parsing
activity by default:

e Examine a file specification for validity
e Translate any logical names present

e Apply defaults

e Attempt to locate the file

If a name block is present, additional file-parsing activities can
occur by default.

e Return the actual complete file specification used to access
the file and its associated file identifier.

e Return the length of each component of a file specification,
as well as other information about the file specification.

14-2

372 Facebook Inc. Ex. 1215

RMS FILE-PARSING ACTIVITIES NOT DONE BY DEFAULT

Certain RMS file services, including the Open and Create services,
cannot process a file specification that contains a wildcard
character. Therefore, these RMS file services must be preceded by
another RMS file service called the Parse service. (If a search
list with no wildcards is present, the Parse service 1is usually
not needed.) The Parse service can be used to determine whether
wildcards or search 1lists are present. It also initializes
control block fields that are necessary to search for multiple
files using the RMS Search service. To use the Search service, a
name block must be present when the Parse service is invoked.

If a file specification contains one or more wildcards, it must be
preprocessed using the Parse and Search services before the file
can be located. The Parse service sets certain bit values in a
name block field called the file name status bits field
(NAMSL FNB) that can be tested to determine whether a wildcard or
a search list logical name is present. The Search service locates
a file and specifies its name (without wildcards). If wildcards
are present, you must first invoke the Search service before
processing (opening or creating) the file. 1If wildcards are not
present, the file can be processed without invoking the Search
service, with one exception. If the user wishes more than one
file in a search list to be processed, the Search service must be
invoked as many times as needed to return the next file
specification to be processed.

The sequence of special file processing steps required involves
one call to the Parse service followed by one or more calls to the
Search service prior to each file open. To process a single file,
invnke the Search service only once; to process many files, invoke
tkre Search service as many times as needed to return the next
qualified file specification to be processed. When no more files
match the file specification, the Search service returns a

"no-more-files-found” message (RMSS_NMF). Two Run-Time Library
routines, LIBSFIND FILE and LIBSFILE SCAN, perform functions that
are similar to the Parse and Search services.

For general-purpose applications, the programmer may test for
wildcards and/or search 1lists by invoking the Parse service and
testing the appropriate bits in the NAMSL FNB field. In cases
where the program assumes only a single file, the results of this
test may be used to explicitly disallow wildcards or search lists.

14-3

373 Facebook Inc. Ex. 1215

Field Offset
NAMSV_CNCL_DEV

NAM$V_DIR_LVLS

NAMSV_EXP_DEV
NAMSV_EXP_DIR
NAMSV_EXP_NAME
NAMSV_EXP_TYPE
NAMSV_EXP_VER

NAMSV_GRP_MBR

NAMSV_HIGHVER

NAMSV_LOWVER

NAMSV_NODE

NAMSV_PPF

NAMSV_QUOTED

NAMSV_ROOT_DIR

NAMSL_FNB Status Bits

Description
Device name is a concealed device.

Number of subdirectory levels (value is 0 if
there is a user file directory only), a 3-bit field.

Device name is explicit.

Directory specification is explicit.
File name is explicit.

File type is explicit.

Version number is explicit.

Directory specification is in the group/member
number format.

A higher-numbered version(s) of the file
exists (output from Create and Enter
services).

A lower-numbered version(s) of the file
exists (output from Create and Enter
services).

File specification includes a node name.

File is indirectly accessed process permanent
file.

File specification includes a quoted string;
indicates that the file name length and
address field contains a quoted string

file specification. Applies to network
operations or magnetic tape devices

only.*

Device name incorporates a root directory.

* To distinguish network quoted string file specifications from
quoted strings containing ASCII "a" file names (supported for
ANSI-labeled magnetic tapes), both the NAMSV QUOTED and
NAM$SV_NODE bits will be set. -

14-4

374 . Facebook Inc. Ex. 1215

NAMSL_FNB Status Bits (Cont.)

Field Offset Description

NAMSV_SEARCH_LIST A search list logical name is present in
the file specification.

NAMSV_WILDCARD File specification string includes a
wildcard; returned whenever any of the
other wildcard bits are set.

NAMSV_WILD_DIR Directory specification includes a wildcard
character(s).

NAMSV_WILD_ GRP Group number contains a wildcard character(s).

NAMSV_WILD_MBR Member number contains a wildcard character(s).

NAMSV_WILD_NAME File name contains a wildcard character(s).

NAMSV_WILD_SFDl Subdirectory 1 through 7 specification

to includes a wildcard character(s).

NAMSV_WILD_SFD7

NAMSV_WILD_ TYPE File type contains a wildcard character(s).

NAMSV_WILD_UFD User file directory specification includes a
wildcard character(s).

NAMSV_WILD_VER Version number contains a wildcard character(s).

14-5

375 Facebook Inc. Ex. 1215

Y
QWIS W -

[
—

=
AU b WN

17

s G4m g uw sem Gew g fee G G Due

100

Example 1. Processing Filename(s) With Wildcards
Using LIBSFIND_FILE

(Sheet 1 of 2)

FORFIND1.FOR

NOTE: TEST data for this program —---=> INTER* .DAT

FORTRAN program which opens a sequential

file. It calls LIBSFIND_FILE

and recalls OPEN if the file spec. parses
to more than one file spec through use of
WILDCARDS

PROGRAM FORSEARCH

IMPLICIT NONE

INTEGER IUNIT/1/

INTEGER RET_STATUS,

1 OPENFILE,

2 RMS_STS,

3 RMS_STV

CHARACTER*255 FILENAME,

1 RESULT_SPEC,

1 RELATED_SPEC

INTEGER LEN_FILENAME,

1 USER_FLAGS/0/,

2 CONTEXT/0/

STRUCTURE /EMPLOYEE_STRUC/
CHARACTER*10 last_name
CHARACTER*100 fill
CHARACTER*2 seq_no

END STRUCTURE
RECORD /EMPLOYEE_STRUC/ IN_REC

INTEGER LIBSSTOP,

1 LIBSFIND FILE
EXTERNAL OPENFILE
INCLUDE ' (SRMSDEF) '

WRITE (6,1)

FORMAT ('S','Enter filename: ')
READ (5,2) len_filename,FILENAME
FORMAT (Q,A)

RET_STATUS = LIBSFIND_FILE (FILENAME,

RESULT_SPEC,

CONTEXT,
. ! default file spec.
RELATED_SPEC,
! stv_addr

AV & WN -

r
USER_FLAGS)

IF (RET_STATUS .EQ. RMS$_NMF) GO TO 300
14-6

376 Facebook Inc. Ex. 1215

Example 1 (Sheet 2 of 2)

OPEN (UNIT=IUNIT,FILE=RESULT_SPEC,STATUS='OLD’',
1 FORM='UNFORMATTED' ,RECORDTYPE='FIXED',
2 ORGANIZATION=' INDEXED’ ,ACCESS='SEQUENTIAL')

READ (IUNIT,END=200,I0STAT=RET_STATUS) IN_REC

ADO WHILE (RET_STATUS .EQ. 0)

200

300

WRITE (6,*) IN_REC.LAST_NAME,' ',IN_REC.SEQ_NO

READ (IUNIT,IOSTAT=RET_STATUS) IN_REC
IF (RET_STATUS .EQ. -1 GOTO 200

END DO

CALL ERRSNS(,RMS_STS,RMS_STV,IUNIT,)
CALL LIBSSTOP(SVAL(RMS_STS) ,SVAL(RMS_STV))

CLOSE (IUNIT)
GO TO 100

CALL EXIT
END

14-7

377 Facebook Inc. Ex. 1215

LIBSFIND_FILE -- FIND FILE

LIBSFIND FILE is called with a wildcard file specification for
which it searches. LIBSFIND FILE returns all file specifications
that satisfy that wildcard file specification.
Format
LIBSFIND _FILE file-spec,result-spec,context
[,default-spec] [,related-spec]
[,stv-addr] [,user~-flags])
Arguments

File-spec

type: character string
access: read only
mechanism: by descriptor

The file specification may contain wildcards that LIBSFIND FILE
uses to search for the desired file. The file-spec argument is
the address of a descriptor pointing to the file specification.
The maximum length of a file specification is 255 bytes.

The file specification used may also contain a search list logical
name. If present, the search list logical name elements can be
used as accumulative to related file specifications, so that
unspecified portions of file specifications will be inherited from
previous file specifications. '

result-spec

type: character string
access: modify
mechanism: by descriptor, dynamic string

The result-spec argument is the address of the rerfultant file
specification that LIBSFIND_FILE returns when it find. a file that
matches the specification.

context

type: longword integer (signed)
access: modify

mechanism: by reference

The context argument is a zero or an address of an internal
FAB/NAM buffer from a previous call to LIBSFIND FILE. It is a
signed longword integer containing the address of the context.
LIBSFIND FILE uses this argument to retain the context when
processing multiple input files. Unspecified portions of file
specifications are inherited from the last files processed because
the file contexts are retained in this argument.

-

378 Facebook Inc. Ex. 1215

default-spec

type: character string
access: read only
mechanism: by descriptor

The default-spec argument is the default file specification. It.
is the address of a descriptor pointing to the default file
specification.

related-spec
type: character string
access: read only

mechanism: by descriptor

The related-spec argument is the related file specification
containing the context of the 1last file processed. It is the
address of a descriptor pointing to the related file
specification.

stv-addr
type: longword integer (signed)
access: write only

mechanism: by reference

The stv-addr argument is the RMS secondary status value from a
failing RMS operation. It is a signed longword integer containing
the address of a longword-length buffer to receive the RMS
secondary status value (usually returned in the file access block
field, FABSL_STV). ,

user-flags

type: longword (unsigned)
access: read only
mechanism: by reference

The user-flags argument is the address of an unsigned 1longword
containing the user flags.

14-9
379 Facebook Inc. Ex. 1215

The flag bits, their corresponding symbols, and descriptions are

described below.

Bit symbol
0 NOWILD
1 MULTIPLE

Description

If set, LIBSFIND FILE returns an error if a
wildcard is input.

If set, this performs temporary defaulting for
multiple input files and the related-spec
argument is ignored. See the description of
context in LIBSFILE_SCAN. Each time

LIBSFIND FILE is called with a different file
specification, the specification from the
previous call is automatically used as a
related file specification. This allows
parsing of the elements of a search list
logical name such as DISK2:[SMITH]
FIL1.TYP,FIL*2.TYP, and so on. Use of this
feature is required to get the desired
defaulting with search list logical name.
LIBSFIND FILE_END must be called between each
command line in interactive use or the defaults
from the previous command line will affect the
current file specification.

Condition values Returned

RMS$_NORMAL

SHRS_NOWILD

Routine completed successfully.

LIB facility code. A wildcard was present in

" the file specification parsed and the wildcarad

flag bit was set to "no wildcard."

Any condition value returned by RMS Parse and Search services,
LIBGET_VM, LIBFREE_VM, or LIB$SCORY_RdDX.

14-10

380 Facebook Inc. Ex. 1215

N NI b b bt et et bt et et et ot
NHOWVWOBNAUMEWNHOWOJIOW & WK -

~N
w

24

Example 2. Processing Filename(s) With Wildcards
or Search Lists Using RMS S$SPARSE and $SEARCH

(Sheet 1 of 4)

PASSEARCH.PAS
NOTE: Test data for this program =-----> INTER".DAT

In PASCAL you do not have to call FDL$SPARSE to set up
RMS structures. You are able to set them up and
initialize them directly in PASCAL.

This PASCAL program sets up the RMS structures and does
all access to a sequential file using RMS services
rather than using any regular PASCAL I/0.

It also checks whether a wild card is used in the file
spec. or a logical name search list by calling $PARSE.

If either is used then $SEARCH is called repeatedly until
there are no further file name. translations. }

[INHERIT('SYSSLIBRARY:STARLET')]
PROGRAM PASSEARCH(INPUT,OUTPUT):;

CONST
STR_LEN = 255;
NAMSV_WILD_VER = 3;
NAM$V_WILD_TYPE = 4;
NAMSV_WILD_NAME = S;
NAMSV_WILDCARD = 8;
NAMSV_SEARCH_LIST = 11;
NAMSV_WILD_DIR = 20;

TYPE
EMPLOYEE_STRUC = RECORD:
LASTNAME : PACKED ARRAY [1..10) OF CHAR;

FILLER s+ PACKED ARRAY [1..100] OF CHAR;
SEQNO t PACKED ARRAY [1..2] OF CHAR:
END;
BIT_VALUE = 0..17
BIT_TYPE = PACKED RECORD
BIT_ARRAY : [BIT(32),POS(0)] PACKED ARRAY
[0..31] OF BIT_VALUE;
ENIY;
VAR
IN_REC : EMPLOYEE_STRUC:
FAB : FABSTYPE;
RAB : RABSTYPE;
NAM : NAMSTYPE;
RET_STATUS : INTEGER;
MOREFILES ¢+ INTEGER := 1;
FNM_STR : PACKED ARRAY [1..255] OF CHAR;
RES_STR : PACKED ARRAY [1..255] OF CHAR:
EXP STR : PACKED ARRAY [1..255) OF CHAR;
BIT SET : UNSIGNED := 0;
INDEX : 0..255;
PARSE_CHK : ARRAY [l1..6] OF INTEGER :=
(NAMSV_WILD_VER,NAMSV_WILD_TYPE,
NAMSV_WILD_NAME,NAMSV_WILDCARD,
NAMSV_SEARCH_LIST,NAMSV_WILD DIR);
:+ UNSIGNED := 0;

BIT_SUM

14-11

381 Facebook Inc. Ex. 1215

1

117
118
119
120

Example 2 (Sheet 2 of 4)

PROCEDURE LIBSSTOP (
SIMMED cond_value : INTEGER); EXTERN;

PROCEDURE SEARCHFILE:
BEGIN

RET_STATUS := SSEARCH(FAB)
IF (RET STATUS = RMSS_NMF) THEN MOREFILES := 0;

FOR INDEX := 1 TO NAM.NAM$B_RSL DO
WRITE (RES_: STR[INDEX]),
WRITELN;
END; | searchfile procedure]

PROCEDURE PARSEFILE;

FABSM_GET;
IADDRESS (NAM) ;

FAB.FABSB_FAC
FAB.FABSL_NAM

BEGIN
FAB t= ZERO;
FAB.FABSB_BID := FABSC_BID;
FAB.FABSB_BLN := FABSC_BLN;
FAB.FABSL_FNA := IADDRESS(FNM_STR);
FAB.FABSB_FNS := STR_LEN;
FAB.FABSB_ORG := FABSC_SEQ;
FAB.FABSL_FOP := FABSM_NAM;
NAM := ZERO;
NAM.NAMSB_BID := NAMSC_BID;
NAM.NAMSB_BLN := NAMSC_BLN;
NAM.NAMSL_RSA := IADDRESS(RES_STR);
Mo 1.NAMSB_RSS := STR_LEN;
' aM.NAMSL_ESA := IADDRESS(EXP_STR):
NAM.NAMSB_ESS := STR_LEN;
RAB := ZERO;
RAB.RABSB_BID := RABSC_BID;
RAB.RABSB_BLN := RABSC_BLN:
RAB.RABSL_FAB := IADDRESS(FAB):
RAB.RABSB_RAC := RABSC_SEQ:

RET_STATUS := SPARSE(FAB);

FOR INDEX := 1 TO 6 DO

BEGIN
BIT_SET := NAM.NAMSL_FNB::BIT_TYPE.BIT ARRAY
[PARSE_CHK[INDEX]];
BIT_SUM := BIT_SUM + BIT_SET;
END;

IF (BIT_SUM > 0) THEN SEARCHFILE:;
END; | parsefile procedure }

PROCEDURE OPENFILE;
BEGIN

14-12

382 Facebook Inc. Ex.

1215

121
122
123
124
125
126
127

129
130
131
132
133
134
135
136
137
138
139
140
141

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

166
le7
168
169
170
171
172
173
174
175
176
177
178

Example 2 (Sheet 3 of 4)

RET_STATUS := SOPEN(FAB);
IF ODD(RBT_STATUS) THEN]
RET_STATUS := SCONNECT(RAB)
ELSE
LIBSSTOP(RET_STATUS);
END; | useropen procedure |}
PROCEDURE GETFILE;
BEGIN

RAB.RABSL_UBF := IADDRESS(IN REC):
RAB1RABSW_USZ := SIZE(IN_RECT?

RET_STATUS = SGET(RAB):;

WHILE ODD(RET_STATUS) DO
BEGIN

WRITELN (IN_REC.LASTNAME,' ', IN_REC.SEQNO):;

RET_STATUS := $GET(RAB);
END;

IF (RET_STATUS <> RMSS_EOF) THEN
LIBSSTOP (RET_STATUS);

END; | getfile 1
BEGIN [MAIN 1

WRITE ('Enter filensmme: ');
READLN (FNH_STR):G'

PARSEFILE;
OPENFILE;
GETFILE;
$CLOSE(FAB);

WHILE (MOREFILES > 0) DO

BEGTN
SEARCHFILE:;
IF (MOREFILES > 0) THEN
BEGIN
OPENFILE;
GETFILE;
SCLOSE(FAB);
END;
END;
END. [MAIN]

14-13

383 Facebook Inc. Ex

1215

Example

S RUN PASSEARCH
Enter filename:

2 (Sheet 4 of 4)

INTERS . DAT

DISKS INSTRUCTOR: [WOODS . RMS .DATA] INTER1.DAT: 1

RAKOS

DISKS INSTRUCTOR: [WOODS .RMS.DATA) INTER2.DAT;1

ASHE
RAKOS

DISKSINSTRUCTOR:[WOODS.RHS.DATA]INTER3.DAT;1

ASHE
RAKOS
TODD

DISKS INSTRUCTOR: [WOODS . RMS .DATA] INTER4 .DAT;1

ASHE
JONES
RAKOS
TODD

DISKSINSTRUCTOR: [WOODS .RMS.DATA] INTERS . DAT; 1

ASHE
JONES
RAKOS
TODD
VAIL

DISKS INSTRUCTOR: [WOODS . RMS . DATA] INTER6 . DAT; 1

ASHE
BUSH
JONES
RAKOS
TODD
VAIL

DISKS INSTRUCTOR: [WOODS . RMS.DATA) INTER7 . DAT;1

ASHE
BUSH
EVANS
JONES
RAF 'S
TG W
VAILL

DISKS INSTRUCTOR: [WOODS . RMS . DATA] INTERS . DAT; 1

ASHE
BUSH
EVANS
JONES
RAKOS
SACK
TODD
VAIL

DISKS INSTRUCTOR: [WOODS .RMS .DATA] INTER9.DAT;1

ASHE
BUSH
EVANS
JONES
MAYO
RAKOS
SACK
TODD
VAIL

DISKS INSTRUCTOR: [WOODS .RMS .DATA] INTERS . DAT;

14-14
384

Facebook Inc.

Ex. 1215

MODULE 15
- PROCESS QUOTAS AND LIMITS

Source
Guide to VAX/VMS File Applications — Chapter 1 (Sections 1.6-1.7)

385 Facebook Inc. Ex. 1215

386 Facebook Inc. Ex. 1215

PROCESS AND SYSTEM RESOURCES FOR FILE APPLICATIONS

To use RMS files efficiently, your application requires certain
resources that are defined for the system or each process.
Specific resources and quotas may need to be adjusted for the
process running a file application. Coordinate process and system
requirements with your system manager during the application
design (or redesign) procedure before implementing the RMS options
that require the additional resources for the application. In
some cases, the system manager may want to order additional memory
or disk drives to ensure that sufficient system resources are
available.

Memory Requirements

One of the most important ways to improve application performance
is to allocate larger buffer areas or more buffers for an
application. The number of buffers and the size of buckets can be
fine tuned on the basis of the way the file will be accessed (for
indexed files, the index structure and other factors must also be
considered).

RMS maintains not only the specified buffers when a file is opened
(or created), but also control structures that are charged against
process memory use. Memory use generally increases with the
number of files to be processed at the same time. The amount of
memory needed for I/O buffers can vary greatly for each file; the
amount of memory needed for control structures is fairly constant
for each file.

The memory use (working set) Q£ a process 1is governed by three
SYSGEN parameters. (Proesis

1. Working set default (WSDEFAULT) specifies the initial size of
the working set, in pages (512 bytes).

2. Wecrking set quota (WSQUOTA) specifies the maximum size, in
pages, that the working set can grow to (unless physical
memory pages are available and a larger working set extent
value is specified).

3. Working set extent (WSEXTENT) specifies the maximum size, 1in
pages, that the working set can grow to, including the use of
free pages of physical memory.

These values can ensure that the process will have sufficient

memory to perform the application with a minimum of paging.

Process Record-Locking Quota
When an application will access a shared file for which record
modifications or additions are allowed, the process enqueue guota
should be examined. The need to increase the process engueue
15-1
387 Facebook Inc. Ex. 1215

guota (ENQLM) varies with the number of records that may be
simultaneously locked, multiplied by the number of open files.

The enqueue quota (ENQLM) limits the number of 1locks a process
(and its subprocesses) can own. VAX RMS uses the Lock Management
Facility to synchronize shared file access, global buffers, and
record locks. Because VAX RMS takes out one lock for every shared
file, local buffer, global buffer section, and outstanding record
lock, users who expect to perform large amounts of VAX RMS file
sharing should have ENQLM set to a large value.

If your process performs extensive VAX RMS file sharing without a
sufficient enqueue quota, you could receive the SS$_EXENQLM error
message.

If your system performs extensive VAX RMS file sharing and the
value of the LOCKIDTBL system parameter is too low, you could
receive the SS$_NOLOCKID error message. Your system manager would
need to increase both the value of LOCKIDTBL and the value of
RESHASHTBL.

Estimate the number of locks per process per file as one per file,
plus the multibuffer count for that file, plus the number of
records locked (which is usually one unless manual locking is

enabled). Use the DCL command SHOW RMS_DEFAULT to display the
default multibuffer counts.

Other Limits
Other limits that should be examined are:

1. Process Ope- File Limit

The number of files that a process will have open
simultaneously is governed by the open file limit (FILLM).

2. Process Asynchronous I/O Limit

If asynchronous record I/O will occur, the following 1limits
should be examined.

e Asynchronous system trap limit (ASTLM)
e Buffered I/0 limit (BIOLM)
‘e Direct I/O limit (DIOLM)
The values suggested to the system manager for these and other

limits are provided in the table below. For a complete
escription of these limits, see the Guide to VAX/VMS System

2200 % Hunages rlanice. masud

-t

Do
b 4 7aii) 21 STy)

15-2

388 ’ Facebook Inc. Ex. 1215

Process Resource Limits, Suggested Values,
Types, and Descriptions

Limit Value Type* Description
ASTLM 24 N AST queue limit
BIOLM 18 N Buffered I/O count limit
BYTLM 8192 P I/0 byte count limit
CPU 0 D CPU time limit (0 = no limit)
DIOLM 18 N Direct I/0 count limit
ENQLM 30 P Enqueue quota
FILLM 20 P Open file limit
JTQUOTA 1024 P Initial byte quota for job-
wide logical name table
MAXACCTJOBS 0] Maximum active processes
for a single wessIRuRe a..e,cawvj—
(0 = no limit)
MAXDETACH 0 S Maximum detached
processes for a single
username (0 = no limit)
MAXJOBS 0 S Maximum active processes
for a single username
(0.= no limit) ‘
PGFLQUO 12800 P Paging file limit
PRCLM 2 P Subprocess creation limit
SHRFIL™M 0 P Maximum number open
shared files (0 = no limit)
TQELM 10 P Timer queue entry limit

15-3
389 Facebook Inc. Ex. 1215

Process Resource Limits, Suggested Values,
Types, and Descriptions (Cont.)

Limit value Type™* Description
WSDEF 300 N Default working set size
WSEXTENT 700 N Working set extent
WSQUO 350 N Working set quota
* D = Deductible
N = Nondeductible,
P = Pooled
S = System-wide

Source: VMS V4.0 System Management and Daily Operations
(September 1984)

In addition to process requirements, a shared file may want to use
the capabilities of global buffers to avoid needless I/0 when the
desired block is already in memory. The memory use of global
buffers is governed by the following SYSGEN parameters.

1. The number of RMS global buffers (RMS_GBLBUFQUO) specifies the
maximum number of RMS global buffers 1in use on a system
simultaneously, regardless of the number of users or files.

2. The number of global sections (GBLSECTIONS) specifies the
maximum number of global sections in use simultaneously on the
system.

3. The number of global page table entries (GBLPAGES) specifies
the number of global page table éntries in use simultaneously
on the system.

4. The number of system-wide pages allowed for global page-file
sections or scratch global sections (GBLPAGFIL) specifies the
number of system-wide pages allowed for global page-file
sections, or scratch global sections, in use simultaneously on
the system.

When DCL opens a file (a process-permanent file), RMS places
internal structures for this file in a special portion of Pl space
called the Process I/0O Segment. The size of this segment |is
determined by the SYSGEN parameter PIOPAGES and cannot be expanded
dynamically. If DCL tries to open a file and there is not enough
space in the Process I/O Segment for the internal structures, you
will receive an error message and the file will not be opened.

For a complete description of these parameters, see the
description of the System Generation Utility (SYSGEN) in the
VAX/VMS Utilities Reference Volume.

Moo <oz [T TS VR N ¢ LY /9mm§rus

15-4

390 . Facebook Inc. Ex. 1215

Major Topics

PART 6. ANALYZE/RMS/INTERACTIVE
- INTERACTIVE commands
- Sample interactive sessions
o Exploring indexed file structures
® Tracking a record from key value to data record

Source
Guide to VAX/VMS File Applications — Chapter § 1¢

391

MODULE 16
RMS Utilities

Facebook Inc. Ex. 1215

392 Facebook Inc. Ex. 1215

PART 6. ANALYZE/RMS/INTERACTIVE

ANALYZE/RMS__FILE Interactive Commands

Command
AGAIN
DOWN [branch]
DOWN AREA
DOWN KEY
DOWN DATA
DOWN BYTES

DOWN RRV
DOWN SIDRS

DUMP n

EXIT

FIRST

HELP [keyword...]

NEXT

REST

TOP

up

Function
Displays the current structure again.

Move the structure pointer down to the
next level. 1If the current node has
more than one branch, the branch
keyword must be specified.

If a branch keyword is required but not
specified, the utility will display a list
of possibilities to prompt you. You can also
display the list by specifying "DOWN 2."

Displays a hexadecimal dump of the
specified block.

End the interactive session,

Moves the structure pointer to the first
structure on the current level. The structure
is displayed. For example, if you are
examining data buckets and want to examine the
first bucket, this command will put you there
and display the first bucket's header.

Displays help messages about the
interactive commands.

Moves the structure pointer to the next
structure on the current level. The
structure is displayed.

Pressing the RETURN key is equivalent
to a NEXT command.

Moves the structure pointer along the
rest of the structures on the current
level, and each is displayed in turn.

Moves the structure pointer up to the file
header. The file header is displayed.

Moves the structure pointer up to the next

level. The structure at that level is
displayed.

l16-1
393 Facebook Inc. Ex. 1215

New ANALYZE/RMS_FILE Interactive Commands
as of VAX/VMS Version 4.4

Command Function

BACK Moves the structure pointer'to the
previous node if one exists within the
current level, and displays that node.
The number of structures that the
pointer is to be moved can also be
specified by using the optional parameter
BACK n, where n is an integer.

NEXT As of 4.4, will accept the optional
parameter n (NEXT n) to specify the
number of structures that the pointer is
to be moved forward.

POSITION/BUCKET Positions the pointer to a specific
bucket of the file. This command can be
used to bypass step-by-step positioning,
and also to position the pointer at a
bucket that would otherwise be
inaccessible due to structural errors in
the file.

POSITION/RECORD Positions the pointer at a specific record
in the current bucket, allowing subsequent
structures to be accessed easier.

16-2

394 Facebook Inc. Ex. 1215

ANALYZE> DOWN BYTES

ANALYZE> DOWN KEY 7 6 5 4 3 2 1 0 01234567
BUCKET HEADER (VBN 4) - —— = eemecass
Check Character: $X°'00°’ 31 30 30 30 30 30 00 49 0000 1.000001 |
Area Number: O 20 4C 41 54 49 47 49 44 0008 DIGITAL
VBN Sample: 4 4E 45 4D 50 49 55 51 4S5 0010 EQUIPMEN
Free Space Offset: $X'0104° 52 4F SO0 52 4F 43 20 54 0018 T CORPOR
Free Record ID Range: 4- 255 31 31 20 4E 4F 49 54 41 0020 ATION 11
Next Bucket VBN: 4 42 20 54 49 50 53 20 30: 0028 0 SPIT B
Level: 0 41 4F 52 20 4B 4F 4F 52 0030 ROOK ROA
Bucket Header Flags: 41 55 48 53 41 4E 20 44 0038 D NASHUA
(0) BKTSV_LASTBKT 1 33 30 48 4E 20 20 20 20 0040 NHO3
(1) BKT$V_ROOTBKT 0 31 36 30 0048 061
16-3

395 Facebook Inc. Ex. 1215

Sample Interactive Sessions

Example 1. Exploring Indexed File Structure
(Sheet 1 of 15)

S ANALYZE/RMS/INTERACTIVE INTER11.DAT
FILE HEADER

/ File Spec: DISKS INSTRUCTOR : [WOODS . RMS . COURSE] INTER11.DAT; 1
{ File ID: (2068,41,0)

! owner UIC: (010,007)

S Protection: System: RWED, Owner: RWED, Group: RE, World:
\

|

Y Creation Date: 1-JAN-1986 20:55:59.74
4%%@;’ Revision Date: 3-FEB-1986 20:22:59.60, Number: 5
s Expiration Date: none specified

Backup Date: none posted

}hw~ﬂb
ﬂ;hg&, Contiguity Options: contiguous~best~-try
. performance Options: none
\ Reliability Options: none

\Journaling Enabled: none

ANALYZE> DOWN
RMS FILE ATTRIBUTES

[File organization: indexed
Record Format: fixed
Record Attributes: carriage-return
Maximum Record Size: 112
Longest Record: 112
Blocks Allocated: 16, Default Extend Size: 1
Bucket Size: 1
Global Buffer Count: 0

ANALYZE> DOWN
FIXED PROLOG

Number o Areas: 3, VBN of First Descriptor: 3
Prolog .ersion: 3

ANALYZE> DOWN ?
SANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:

SANLRMS-I-DOWNPATH, AREAS Area descriptors
SANLRMS-I-DOWNPATH, KEYS Key descriptors

ANALYZE> DOWN KEYS

16-4

396 Facebook Inc. Ex. 1215

Example 1 (Sheet 2 of 15)

KEY DESCRIPTOR #0 (VBN 1, offset %X'0000’)

Next Key Descriptor VBN: 2, Offset: 3$X'0000°’

Index Area: 1, Level 1 Index Area: 1, Data Area: 0

Root Level: 2

Index Bucket Size: 1, Data Bucket Size: 1

Root VBN: 9

Key Flags:
(0) KEYSV_DUPKEYS
(3) KEYSV_IDX_ COMPR
(4) KEYSV_INITIDX
(6) KEYSV_KEY_COMPR
(7) KEYSV_REC_COMPR

Key Segments: 1

Key Size: 110

Minimum Record Size: 110

Index Fill Quantity: 512, Data Pill Quantity: 512

Segment Positions: 0

Segment Sizes: 110

Data Type: string

Name: "LAST_ NAME"

First Data Bucket VBN: 4

[~ XX NoN-]

ANALYZE> DOWN ?
SANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:

SANLRMS-I-DOWNPATH, INDEX Root index bucket
SANLRMS-I-DOWNPATH, DATA Data buckets

ANALYZE> DOWN INDEX
BUCKET HEADER (VBN 9)

Check Character: $X°‘01"’
Key of Reference: 0
VBN Sample: 9
Free Space Offset: %X'00EA’
Free Record ID: 1
Next Bucket VBN: 9 .
Level: 2 b
Bucket Header Flags:
(0) BKTSV_LASTBKT 1
(1) BKTSV_ROOTBKT 1
Bu-ket Pointer Size: 2

VBN Free Space Offset: $X'01F7'
ANALYZE> DOWN ?

SANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:
SANLRMS-I1-DOWNPATH, RECORDS Index records

16-5
397 Facebook Inc. Ex. 1215

Example 1 (Sheet 3 of 15)

ANALYZE> DOWN RECORDS
INDEX RECORD (VBN 9, offset %X'000E’)

2-Byte Bucket Pointer: 7
Key:
7 6 5 4 3 2 1 0 01234567
20 20 20 53 45 4E 4F 4A 0000 JONES
20 20 20 20 20 20 20 20 0008
20 20 20 20 20 20 20 20 0010
20 20 20 20 20 20 20 20 0018
20 20 20 20 20 20 20 20 0020
20 20 20 20 20 20 20 20 0028
20 20 20 20 20 20 20 20 0030
20 20 20 20 20 20 20 20 0038
20 20 20 20 20 20 20 20 0040
20 20 20 20 20 20 20 20 0048
20 20 20 20 20 20 20 20 0050
20 20 20 20 20 20 20 20 0058
20 20 20 20 20 20 20 20 0060

ANALYZE> NEXT
INDEX RECORD (VBN 9, offset %X'007C')

2-Byte Bucket Pointer: 8

Key:
7 6 5 4 3 2 1 O 01234567
FF FF FF FF FF FF FF FF| 0000 cecesene
FF FF FF FF FF FF FF FF| 0008 coesasase
FF FF FF FF FF FF FF FF| 0010 cessssss
FF FF FF FF FF FF FF FF| 0018 teseseas
FF FF FF FF FF FF FF FF| 0020 sesesnne
FF FF FF FF FF FF FF FF| 0028 cececann
FF FF FF FF FF FF FF FF| 0030 cecasses
FF FF FF FF FF FF FF FF| 0038 cecssens
FF FF FF FF FF FF FF FF| 0040 creesans
FF FF FF FF FF FF FF FF| 0048 cosesacn
FF FF FF FF FF FF FF FF| 0050 ceaseense
FF FF FF FF FF FF FF FF| 0058 cessenns
FF FF FF FF FF FF FF FF| 0060 cesaseas
FF FF FF FF FF FF| 0068 |......

ANALYZE> DOWN ?

$ANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:
SANLRMS~-I-DOWNPATH, DEEPER Index or data buckets

" ANALYZE> DOWN DEEPER

BUCKET HEADER (VBN 8)

16-6

398 Facebook Inc. Ex. 1215

Freesfae NAdors soople = VBN
Voct reced 20

Example 1 Sheet 4 of 15)

uMp 7

ANALYZE>

QUMP OF VIRTUAL BLOCK 7:

0000 feceejen.
A —0008—|rrrrrrBU Nae F Eul%b»-

JONE

L e spoee sk
— hare
RAKOS (;Aééig 2 £A

Ajo reaj%;

a Feeerd

& TREEQPARCE

FF FF FF FF| (0188 |......cn| /:HAO reEes PACE
FF FF FF FF 0190 casvrsscs

PF FF FF FF| (0198 [........

FF FF FF FF| |O01AQ |.o.coens

FF FF FF FF| [O1AB [.cccneces

FF FF FF FF 01RO cesnsssnse

FF FF FF FF OlB8 |.ecocscen

TT*kaj!;ij 01CO0 [evenenns

00 00 01C8 |evvevnnn

50 09 90 00| o100 |.iiiiill -
00 00 00 00| O1D8 [..eeo... (o poed#

00 A r

Example 1 (sheet 5 of 15)

ANALYZFE> DUMP 8

DUMP OF VIRTUAL BLOCK 8:

7 6 5 4 3 2 1 0 01234567
00 01 01 58 00 08 00 01 0000 cereXonn
41 52 01 01 00 00 00 07 0008 seessoRA

20 20 20 20 20 53 4F 4B 0010 KOS
20 20 20 20 20 20 20 20 0018
20 20 20 20 20 20 20 20 0020
20 20 20 20 20 20 20 20 0028
20 20 20 20 20 20 20 20 0030
20 20 20 20 20 20 20 20 0038
20 20 20 20 20 20 20 20 0040
20 20 20 20 20 20 20 20 oo4s
20 20 20 20 20 20 20 20 0050
20 20 20 20 20 20 20 20 0058
20 20 20 20 20 20 20 20 0060
20 20 20 20 20 20 20 20 0068
20 20 20 20 20 20 20 20 0070
54 49 4D 53 20 20 20 20 0078 SMIT
20 20 20 20 20 20 20 48 0080 H

20 20 20 20 20 20 20 20 o088
20 20 20 20 20 20 20 20 0090
20 20 20 20 20 20 20 20 0098
20 20 20 20 20 20 20 20 00a0
20 20 20 20 20 20 20 20 00A8
20 20 20 20 20 20 20 20 00BO
20 20 20 20 20 20 20 20 ooes
20 20 20 20 20 20 20 20 00cCo
20 20 20 20 20 20 20 20 oocs
20 20 20 20 20 20 20 20 00DO0
20 20 20 20 20 20 20 20 oops8
20 20 20 20 20 20 20 20 00EO
FF FF FF FF FF FF 20 20 OOES8 teeosae
FFP FF FF FF FF FF FF FF O00F0 cesesnse
FF FP FF FF FF FF FF FF OOF8 sesenaae
FFP PF FF FF FF FF FP FFP 0100 cesseans
FFP PF FF FF FF FF FF FF olos ceessnsase
FF FF FF FF FF FF FF FF 0l1o0 cevessae
FF FF FF FF FF FF FF FF 0118 ccecsnss
FF FF FF FF FF FF FFP FF 0120 cesescen
FF FF FF FF FF FF PF FF 0128 erescenn
FF FF FF FF FF FF PF FF 0130 csescven
FF FF FF FF FF FF FF FF 0138 seecsnen
FF FF FF FF FF FF FF FP 0140 escssese
FP FF FF FF FF FF FF FF 0148 cevesans
FF FF FF FF FF FF FF FF 0150 cecesann
00 00 00 00 00 00 00 00 0158 sessnens
00 00 00 00 00 00 00 00 0160 cesesnas
00 00 00 00 00 00 00 00 0168 cesccane
00 00 00 00 00 00 00 00 0170 cecesane

00 00 00 00 00 00 00 OO 0178 |..... .
00 00 00 00 00 00 00 0O 0180 cecensas
00 00 00 00 00 00 00 0O 0188 cecsacen
00 00 00 00 00 00 00 00 0190 (...... o
00 00 00 00 00 00 00 00 0198 ceersene
00 00 00 00 00 00 00 00 01A0 tesersen
00 00 00 00 00 00 00 00 01A8 veseecan
00 00 00 00 00 00 00 00 01BO ceesanna
00 00 00 00 00 00 00 00 0l1B8 vecsanne
00 00 00 .00 00 00 00 0O 0l1co csevsans
00 00 00 00 00 00 00 0O o1c8 l....... .
00 00 00 00 00 00 00 0O 01D0 seseansa
00 00 00 00 00 00 00 0O 01lp8 ceesenns
00 00 00 00 00 00 00 OO 0lE0 {........
00 00 00 00 00 00 00 00 0les [...... .o
00 10 00 00 Q0 00 00 0O 0lF0 ceceeocnn
01 00 01 F5 00 05 00 OF O1F8 cecelenn
16-8

400 Facebook Inc. Ex. 1215

Example 1 (Sheet 6 of 15)

ANALYZE> UP
KEY DESCRIPTOR #0 (VBN 1, offset $X'0000')

ANALYZE> DOWN ?

SANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:
RANLRMS~I-DOWNPATH, INDEX Root index bucket

SANLRMS-I-DOWNPATH, DATA Data buckets

ANALYZE> DOWN DATA
BUCKET HEADER (VBN 4)

Check Character: $x'09’
Key of Reference: 0
VBN Sample: 4
Free Space Offset: $X'011B’
Free Record 1ID: 6
Next Bucket VBN: 6
Level: 0
Bucket Header Flags:
(0) BKTSV_LASTBKT 0

ANALYZE> DOWN ?
SANLRMS~I-DOWNHELP, The following is a list of paths down from this structure:
SANLRMS-I-DOWNPATH, RECORDS Primary data records

ANALYZE> DOWN RECORDS
PRIMARY DATA RECORD (VBN 4, offset 8X'000E’)

Record Control Flags:

(2) IRCSV_DELETED 0

(3) IRCSV_RRV 0

(4) IRCSV_NOPTRSZ 0

(5) IRCSV_RU_DELETE O

(6) IRCSV_RU_UPDATE 0
Record ID: 2
RRV ID: 2, 4-Byte Bucket Pointer: 4

Key:
7 6 5 4 3 2 1 0 01234567

20 20 20 20 45 48 53 41 0000 ASHE
20 20 20 20 20 20 20 20 ooos
20 20 20 20 20 20 20 20 0010
20 20 20 20 20 20 20 20 0018
20 20 20 20 20 20 20 20 0020
20 20 20 20 20 20 20 20 0028
20 20 20 20 20 20 20 20 0030
20 20 20 20 20 20 20 20 0038
20 20 20 20 20 20 20 20 0040
20 20 20 20 20 20 20 20 0048
20 20 20 20 20 20 20 20 0050
20 20 20 20 20 20 20 20 0058
20 20 20 20 20 20 20 20 0060

20 20 20 20 20 20 0068

16-9
401 Facebook Inc. Ex. 1215

Example 1 (Sheet 7 of 15)

ANALYZE> NEXT

PRIMARY DATA RECORD (VBN 4, offset $X°'0087°')

Record Control Flags:

(2) IRCSV_DELETED

(3) 1IRCSV RRV

(4) IRCSV NOPTRSZ

(5) IRCSV_RU_DELETE
(6) IRCSV_RU_UPDATE

Record 1ID: 5

RRV ID: 5, 4-Byte Bucket Pointer: 4

Key:
7 6 5 4 3

2

0
0
0
0
0

1 0

20 20 20 20 48
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20
20 20 20 20 20

20 20 20

ANALYZE> NEXT

#*%* VyBN 4: Key and/or data bytes

53
20
20
20
20
20
20
20
20
20
20
20
20
20

do

PRIMARY DATA RECORD (VBN 4, offset

Record Control Flags:

(2) IRCSV_DELETED

(3) IRCSV RRV

(4) IRCSV NOPTRSZ

(5) IRCSV_RU_DELETE
(6) IRCSV_RU_UPDATE

Record ID: 1

RRV ID: 1, 4-Byte Bucket Pointer: 5

16-10

402

0000
0008
0010
0018
0020
0028
0030
0038
0040
0048
0050
0058
0060
0068

01234567

not fit in primary data record.
$X'0100°') .

00O O

Facebook Inc. Ex. 1215

Example 1

ANALYZE> NEXT

*** VBN 4:

(Sheet 8 of 15)

Key and/or data bytes do not fit in primary data record.

PRIMARY DATA RECORD (VBN 4, offset 3X’'0109')

Record Control Flags:

(2)
(3)
(4)
(5)
(6)
Record ID: 3

IRCSV_DELETED 0
1

IRCSV_RRV
IRCSV_NOPTRS2 0

IRCSV RU_DELETE O
IRCSV RU_ “UPDATE O

RRV ID: 1, 4-Byte Bucket Pointer: 16

ANALYZE> BopN NExT o <EET>

*** VBN 4:
PRIMARY DATA RECORD (VBN 4, offset $x°'0112')

Record Control Flags:
(2) IRCSV_DELETED 0
{3) IRCSV_RRV 1

(4) IRCSV NOPTRSZ ozr—~£/P”

(5) IRC$V_RU_DELETE
(6) IRCSV_RU_UPDATE
Record 1ID: 4
RRV ID: 2, 4-Byte Bucket Pointer: 6

ANALYZE> NEXT

- U R—

Key and/or data bytes do not fit in primary data record.

_‘__’m,«.- -

udx{ ;:ac-—/ﬂé* 3?“

e R

Ay o il

SANLRMS-I-NONEXT, There is no structure following the current one.

ANALYZE> UP
BUCKET HEADER (VBN 4)

Check Character: %X'09’'
‘Key of Reference: 0
VBN Sample: 4
Free Space Offset: $X'01l1B'
Free Record ID: 6
Next Bucket VBN: 6
Level: 0
Bucket Header Flags:
(0) BKTSV_LASTBKT 0

16-11
403

Facebook Inc. Ex. 1215

Jes- o
A gne

)ﬁ’bﬁ 2

et

Example 1 (Sheet 9 of 15)

ANALYZE> REST
BUCKET HEADER (VBN 6)

Check Character: $X'01’
Key of Reference: 0
VBN Sample: 6
Free Space Offset: $X'0100'
Free Record ID: 3
Next Bucket VBN: S
Level: O
Bucket Header Flags:
(0) BKTSV_LASTBKT 0

BUCKET HEADER (VBN 5)

Check Character: $X'04°’
Key of Reference: 0
VBN Sample: S
Free Space Offset: $X'0112’
Free Record ID: 6
Next Bucket VBN: 15
Level: O
Bucket Header Flags:
(0) BKTSV_LASTBKT 0

BUCKET HEADER (VBN 15)

Check Character: %X'03’

Key of Reference: 0 s
VBN Sample: 15

Free Space Offset: %x'0109'

Free Record ID: 6

Next Bucket VBN: 16

Level: 0

Bucket Header Flags:

(0) BKTSV_LASTBKT 0

BUCKET HEADER (VBN 16)

Check Character: $X'01l’
Key of Reference: 0
VBN Sample: 16
Free Space Offset: %X'0179'
Free Record ID: 4
Next Bucket VBN: 4
Level: 0
Bucket Header Flags:
(0) BKT$V_LASTBKT 1

SANLRMS-I-RESTDONE, All structures at this level have been displayed.

16-12

404 Facebook Inc. Ex. 1215

W

-

- Pjéﬂff—ﬁZAL’ni‘ éz?

?:%Ge g)roOL PO
Ve
Example ,,1" (Sheet 10 of 15)
ANALYZE> Duupf4 QLDJ& L2

DUMP OF VIRTUAL BLOCK 4:

20
20
20
20
20
20
20
20
20
20
20
00
03
oA
00
20
20
20
20

0OA 00 00

00|
0 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
01 OA 00
OA 00 00
00 00 00
00 00 06
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
0A 00 03
00 00 00

s

0110
0118
0120
0128
0130
0138
0140
0148
0150
0158
0160
0168
0170
0178
0180
0188
0190
0198
01A0
01A8
01BO
0188
01co
01cs
01D0
01D8
01F0
0lE8
01F0
O1F8

16-13

405

cesasedh

BUSH

e
eveoesosase
ees 000

.

P‘“‘-~NNA@@pLj'fubh%! biZ

| Zhet o RRV —
@Iwagziﬁﬁ

e Shi ./

e pace

Facebook Inc. Ex. 1215

Example 1 (Sheet 11 of 15)

ANALYZE> UP [UPsS...to Key Descriptor 0 or TOP and DOWNS...]

KEY DESCRIPTOR #0 (VBN 1, offset $X'0000°')

ANALYZE> NEXT
KEY DESCRIPTOR #1 (VBN 2, offset $X’'0000°)

Index Area: 2, Level 1 Index Area: 2, Data Area: 2
Root Level: 1

Index Bucket Size: 1, Data Bucket Size: 1

Root VBN: 14

Key Flags:
KEY$V_DUPKEYS
KEYSV_CHGKEYS
KEYSV_NULKEYS
KEYSV_IDX_COHPR
KEYSV_INITIDX
KEY$V_KBY_COHPR
Key Segments: 1

Key Size: 2

Minimum Record Size: 112
Index Fill Quantity: 512, Data Fill Quantity: 512
Segment Positions: 110

Segment Sizes: 2

Data Type: unsigned word

Name: “SEQ_NO"

First Data Bucket VBN: 13

A WN -~ O
e St e N St
000000

P e

ANALYZE> DOWN ?
SANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:

3ANLRMS-I~-DOWNPATH, INDEX Root index bucket
SANLRMS-I-DOWNPATH, DATA Data buckets
16-14

406 Facebook Inc. Ex. 1215

0

Example 1 (Sheet 12 of 15)

ANALYZE> DOWN INDEX
BUCKET HEADER (VBN 14)

Check Character: $X°'00’
Key of Reference: 1
VBN Sample: 14
Free Space Offset: $X'0010’
Free Record ID: 1
Next Bucket VBN: 14
Level: 1
Bucket Header Flags:
(0) BKT$V_LASTBKT 1
(1) BKT$V_ROOTBKT 1
Bucket Pointer Size: 2

VBN Free Space Offset: $X'O0O1lF9’

ANALYZE> DOWN ?
SANLRMS-I~DOWNHELP, The following is a list of paths down from this structure:

SANLRMS~-I-DOWNPATH, RECORDS Index records

ANALYZE> DOWN RECORDS
INDEX RECORD (VBN 14, offset $X'000E')
2-Byte Bucket Pointer: 13
Key: :
7 6 5 4 3 2 1 0 01234567

FF FF| 0000 |.. |

16-15
407 Facebook Inc. Ex. 1215

Example 1 (Sheet 13 of 15)

ANALYZE> UP { ... Up]

KEY DESCRIPTOR #1 (VBN 2, offset %X'0000')

ANALYZE> DOWN DATA
BUCKET HEADER (VBN 13)

Check Character: $X'0OB’

Key of Reference: 1

VBN Sample: 13

Free Space Offset: $X'0071'

Free Record ID: 1

Next Bucket VBN: 13

Level: O

Bucket Header Flags: ' .
(0) BKTSV_LASTBKT 1

ANALYZE> DOWN ? .
SANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:
SANLRMS-I-DOWNPATH, SIDRS SIDR record

ANALYZE> DOWN SIDRS
SIDR RECORD (VBN 13, offset 3X'000E’)

Key:
7 6 5 4 3 2 1 0 01234567
00 01] 0000 .. |
ANALYZE> REST .

SIDR RECORD (VBN 13, offset %x'0017°)

Key:
7 6 5 4 3 2 1 0 01234567

00 02{ o000 |.. |

SIDR RECORD (VBN 13, offset $X'0020°')
‘ Key:

00 03] 0000 |.. |

Key:

00 04| 0000 .. |

16-16

408 Facebook Inc. Ex. 1215

SIDR

SIDR

SIDR

SIDR

SIDR

SIDR

SIDR

RSANLRMS-I-RESTDONE,

Example 1

RECORD (VBN 13,

Key:

RECORD (VBN 13,

Key:

RECORD (VBN 13,

Key:

RECORD (VBN 13,

Key:

offset $X°'0032°')

offset 3X°004D’)

6 5 4 3 2 1 0

RECORD (VBN 13,

Key:

00 08}
offset $X'0056')

RECORD (VBN 13,

Key:

RECORD (VBN 13,

Key:

All

00 08|

(Sheet 14 of 15)

01234567
0000 |.. |
01234567

0000 |.. |
01234567

0000 |.. |
01234567

0000 |.. |
. 01234567

0000 |.. |
01234567

0000 |.. |
01234567

0000 |.. 1

structures at this level have been displayed.

16-17
409

Facebook Inc. Ex. 1215

Example 1

ANALYZE>

DUMP 13

DUMP OF VIRTUAL BLOCK 13:

7 6

ANALYZE>

5 4 3 2 1 0

0000
0008
0010
0018
0020
0028
0030
0038
0040
0048
0050
0058
0060
0068
0070
0078
0080
0088
0090
0098
00Aa0
00A8
00BO
0oBs
00CO
00cCs
00D0
00D8
00EO
00ES
00F0
0OF8
0100
0108
0110
0118
0120
0128
0130
0138
0140
0148
0150
0158
0160
0168
0170
0178
0180
0188
0190
0198
01A0
01A8
01B0O
0188
01co
0l1cs
01D0
o1ps
01E0
OlES
01F0
O1F8

(Sheet 15 of 15)

01234567

ceseaeas

Facebook Inc. Ex. 1215

Example 2. Tracking a Record from Key Value to Data Record
(Sheet 1 of 4)

$ ANALYZE/RMS/INTER INTER11.DAT

FILE HEADER

ANALYZE> DOWN

RMS FILE ATTRIBUTES

ANALYZE> DOWN
FIXED PROLOG

"Number of Areas: 3, VBN of First Descriptor: 3
Prolog Version: 3

ANALYZE> DOWN KEYS
KEY DESCRIPTOR #0 (VBN 1, offset $X°'0000°')

Next Key Descriptor VBN: 2, Offset: %X°'0000’

Index Area: 1, Level 1 Index Area: 1, Data Area: 0

Root Level: 2 *

Index Bucket Size: 1, Data Bucket Size: 1

Roat VBN: 9

Key Flags:
(0) KEYSV_DUPKEYS
(3) KEY$V_IDX_COMPR
(4) KREYSV_INITIDX
(6) KEYSV_KEY_COMPR
(7) KEYSV_REC_COMPR

Key Segments: 1

Key Size: 110

Minimum Record Size: 110

Index Fill Quantity: S12, Data Fill Quantity: 512

Segment Positions: 0

Segment Sizes: 110

Data Type: string

Name: “"LAST_NAME"

First Data Bucket VBN: 4

0O0O0OO0Oo
.

16-19
411 Facebook Inc. Ex. 1215

Example 2 (Sheet 2 of 4)

ANALYZE> DOWN INDEX
BUCKET HEADER (VBN 9)

Check Character: %Xx'01’
Key of Reference: 0
VBN Sample: 9
Free Space Offset: $X'00EA'
Free Record ID: 1
Next Bucket VBN: 9
Level: 2
Bucket Header Flags:
(0) BKT$V_LASTBKT 1
(1) BKTSV_ROCOTBKT 1
Bucket Pointer Size: 2

VBN Free Space Offset: %X'01F7'

ANALYZE> DOWN RECORDS
INDEX RECORD (VBN 9, offset $X'000E’)

2-Byte Bucket Pointer: 7
Key:
7 6 5 4 3 2 1 0 01234567
20 20 20 53 45 4E 4F 4A 0000 JONES
20 20 20 20 20 20 20 20 ooo08 -
20 20 20 20 20 20 20 20 0010
20 20 20 20 20 20 20 20 oo1is
20 20 20 20 20 20 20 20 0020
20 20 20 20 20 20 20 20 0028
20 20 20 20 20 20 20 20 0030
20 20 20 20 20 20 20 20 0038
20 20 20 20 20 20 20 20 0040
20 20 20 20 20 20 20 20 0048
20 20 20 20 20 20 20 20 0050
20 20 20 20 20 20 20 20 0058
20 20 20 20 20 20 20 20 0060
20 20 20 20 20 20 0068

ANALYZE> DOWN DEEPER
BUCKET HEADER (VBN 7)

Check Character: $X'04’
Key of Reference: 0
VBN Sample: 7
Free Space Offset: %X'O0OEA’
Free Record ID: 1
Next Bucket VBN: 8
Level: 1
Bucket Header Flags:
(0) BKTSV_LASTBKT 0
(1) BKT$SV_ROOTBKT 0
Bucket Pointer Size: 2
VBN Free Space Offset: %X'01lF7'

16-20

412 Facebook Inc. Ex. 1215

Example 2

ANALYZE> DOWN RECORDS

(Sheet 3 of 4)

INDEX RECORD (VBN 7, offset $X'000E’)

2-Byte Bucket Pointer: 4

Key:
7 6 S 4 3 2
20 20 20 20 48 S3
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20
ANALYZE> DOWN DEEPER
BUCKET HEADER (VBN 4)
Check Character: %X'09'
Key of Reference: O
VBN Sample: 4
Free Space Offset: ¥X'01l1B’
Free Record ID: 6
Next Bucket VBN: 6
Level: 0
Bucke. Header Flags:
(0) BKTS$SV_LASTBKT 0
16-21
413

01234567
0000 BUSH
0008
0010
0018
0020
0028
0030
0038
0040
0048
0050
0058
0060
0068

Facebook Inc. Ex. 1215

ANALYZE>

Example 2

DOWN RECORDS

(Sheet 4 of 4)

PRIMARY DATA RECORD (VBN 4, offset %X‘'000E’)

ANALYZE>

Record Control Flags:

(2)
(3)
(4)
(5)
(6)
Record ID:

RRV ID: 2, 4-Byte Bucket Pointer:

Key:

2

IRCSV DELETED

IRC$V_RRV

TRCSV_NOPTRSZ
IRCS$V_RU_DELETE
IRC$V_RU_UPDATE

7 6

5

4

3

2

1

0
0
0
0
0

0

20

EXIT

20
20
20
20
20
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20
20
20
20
20

16-22

414

0000
0008
0010
0018
0020
0028
0030
0038
0040
0048
0050
0058
0060
0068

01234567

Facebook Inc. Ex. 1215

MODULE 17
DATA RECOVERY FOR
CORRUPTED INDEXED FILES

Major Topics
~ Detecting problems
¢ ANALYZE/RMS_FILE/CHECK

o DUMP utility
- Guidelines for recovering data from corrupted indexed files

- Introduction to PATCH utility
- Data recovery examples

Source -
Guide to VAX/VMS. File Applications — Chapter 10 (Section 10.1)

415 - Facebook Inc. Ex. 1215

416 Facebook Inc. Ex. 1215

DETECTING PROBLEMS

Corrupted files are seldom encountered in a VAX environment.
Programmers who work with indexed files on a daily basis month
after month may eventually encounter a corrupted file due to a
hardware problem, such as a power failure or disk head failure.
In the event that a recent backup copy of the file does not
provide a satisfactory solution, this module provides some tools
for trying to salvage the data yourself. In some cases,
particularly with serious hardware problems, the file may not be
able to be recovered.

Some indicators of a possible data corruption problem are:

e Error meésage -- Bucket format check failed for VBN = #

e The file doesn't have as many records as it should

If the error was immediately preceded by a series of hardware
errors, it may be best to restore a backup copy of the file, since

there may be other problems that have not been encountered as yet.

The following utilities are tools for detecting problems and
recovering data.

e COPY or BACKUP utility

e ANALYZE/RMS/CHECK utility
e DUMP utility

e CONVERT.utility

e PATCH utility (in extreme cases)

17-1
417 Facebook Inc. Ex. 1215

Example 1. ANALYZE/RMS/CHECK Output For Corrupted File
(Sheet 1 of 2)

$ANALYZE/RMS/CHECK/OUT=CORRUPTI .CHECK CORRUPT1.DAT

Check RMS File Integrity 6-DEC-1985 21:47:04.38
DISKSINSTRUCTOR: [WOODS .RMS . COURSE) CORRUPT1.DAT;1 Page 1

FILE HEADER

File Spec: DISKS INSTRUCTOR: [WOODS .RMS . COURSE] CORRUPT1 .DAT; 1
File ID: (15352,46,0)

Owner UIC: {010,007]

Protection: System: RWED, Owner: RWED, Group: RWED, World: RWED
Creation Date: 15-NOV-~1985 14:46:57.24

Revision Date: 18-NOV-1985 12:31:35.53, Number: 3
Expiration Date: none specified

Backup Date: none posted

Contiguity Options: contiguous-best-try

Performance Options: none

Reliability Options:. none

Journaling Enabled: none

RMS FILE ATTRIBUTES

File Organization: indexed

Record Format: fixed

Record Attributes: carriage-return
Maximum Record Size: 112

Longest Record: 112

Blocks Allocated: 16, Default Extend Size: 1
Bucket Size: 1

Global Buffer Count: 0

FIXED PROLOG

Number of Areas: 3, VBN of First Descriétor: 3
Prolog Version: 3

AREA DESCRIPTOR #0 (VBN 3, offset $X'0000’')

Bucket Size: 1

Reclaimed Bucket VBN: O

Current Extent Start: 15, Blocks: 2, Used: 2, Next: 17
Default Extend Quantity: 1

Total Allocation: 8

AREA DESCRIPTOR #1 (VBN 3, offset %X'0040°')
Bucket Size: 1
Reclaimed Bucket VBN: 0
Current Extent Start: 7, Blocks: 6, Used: 3, Next: 10

Default Extend Quantity: 1
Total Allocation: 6

17-2

418 Facebook Inc. Ex. 1215

Example 1 (Sheet 2 of- 2)

Check RMS File Integrity 6-DEC-1985 21:47:04.54
DISKS$ INSTRUCTOR: [WOODS .RMS .COURSE) CORRUPTI ..DAT; 1 Page 2

AREA DESCRIPTOR #2 (VBN 3, offset 3Xx°'0080')

Bucket Size: 1

Reclaimed Bucket VBN: 0 .
Current Extent Start: 13, Blocks: 2, Used: 2, Next: 15
Default Extend Quantity: 2

Total Allocation: 2

KEY DESCRIPTOR #0 (VBN 1, offset $X'0000')

Next Key Descriptor VBN: 2, Offset: 3X°0000’
Index Area: 1, Level 1 Index Area: 1, Data Area: 0
Root Level: 2
Index Bucket Size: 1, Data Bucket Size: 1
Root VBN: 9 ‘
Key Plags:
(KEY$V_DUPKEYS
(3) KEYS$SV_IDX_COMPR
(4) KEYSV_INITIDX
(6) KEY$V_KEY_ COMPR
(7) KEYSV_REC_COMPR
Key Segments: 1
Key Size: 110
Minimum Record Size: 110 ,
Index Pill Quantity: 512, Data Fill Quantity: 512
Segment Positions: 0
Segment Sizes: 110
Data Type: string
Name: "LAST NAME®
First Data Bucket VBN: 4
*** yRN 8: Index bucket referaences missing data bucket with VBN 200.
*** prastic structure error precludes further analysis.

00000

The analysis uncovered 2 errors.

ANALYZE/RMS/CHECK/OUT=CORRUPT1 .CHECK CORRUPT].DAT

17-3
419 Facebook Inc. Ex. 1215

DUMP Utility
The DUMP command offers you various capabilities.

e DUMP/HEADER gives you a formatted printout of all the fields
in the file header.

e DUMP/RECORDS dumps just the data records. This is very useful
with files that contain a 1lot of overhead that does not
interest you (such as indexes).

e DUMP can print your file (or its records) in a wide variety of
formats: per byte, per word, or per longword; in octal,
decimal, or hexadecimal.

® /BLOCKS[=(option[,...])]

Specifies that the input medium be dumped one block at a time.
This is the default for all devices except network devices.
You cannot specify /BLOCKS for network devices.

You can use one or more of the following options to select a
range of blocks to be dumped:

START :n Specifies the number of the first block to be
dumped. By default, the dump begins with the
first block of the file or device.

END:n Specifies the number of the last block to be
dumped. By default, the dump ends with the last
block of the file or device. If the input is a
disk file, the /ALLOCATED qualifier determines
whether the last block is the end of file block or
the last allocated block.

COUNT:n Specifies the number of blocks to be dumped. This
option provides an alternate way to specify the last
block to be dumped.

1f you specify only one option, you can omit the parentheses.
You cannot specify both END and COUNT.

Blocks are usually numbered beginning with 1. However, for a
disk device that 1is mounted with the /FOREIGN qualifier,
blocks are numbered beginning with 0.

If you specify /BLOCKS, you cannot specify /RECORDS.

e /OUTPUTI[=file-spec]

Specifies that the DUMP output be written to the specified
file. By default, the DUMP command writes output to
SYSSOUTPUT. If you specify /OUTPUT without a file

specification, the DUMP command writes output to a file with
the same file name as the input file and the file type DMP.

17-4

420 Facebook Inc. Ex. 1215

S-L1

041000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000L61V
00[0Q0 ‘" Ccctrttersrroerenesseerrit 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
ovi000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
081000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
091000 *°*ccccec sttt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OPIQOO “°Cccccteterser et 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0ZTQOQ ***ctccrecerersse ettt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
001000 °" " ctcertrterrrere e eneet 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
040000 ° ottty 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000000 **-cccceteccrere oottt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OV0Q00 °*° oo nenins 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
080000 ""*CcctTocereresess ey 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
090000 ettt noneseseeers 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0%0000 """t 92020202 02020Z0Z 0TOTOTOZ 0ZOZOTOZ 0z0Z0Z0Z 10000000 70000000 00000000
0z0000 ON 03§ et rrrr ettt 00000000 00000000 00000000 20000000 00000000 ESSPIS3S ardrozoT 0T0Z0ZOT
000000 "°cucccccdeso oo erreenens 00000000 0000Z0ZO0 TO10T010 20000000 00Z01000 ZO100L00 00200020 39000000

se3Aq (00Z0) Z1s ‘(Z0000000) T 1equnu ¥201q fenaiga

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

91 peIedorIV / 91 ¥001q e1f3 jJo pud (0 TT°LPZEE) AT OT1d
SE°OPITSIN
9861 -NVL-S1 UO -.h‘d.a—ﬂﬂhzn—umcaou.mtd.mnaal_.ﬁOhQ:ﬁhuzmaxmua o113 jo dung

031000 2a°-cccresro et 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00009vdd
021000 "t cerrsesrer ettt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OVIO0Q **°tcrecc oo eet 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
081000 **ccccerrc e secerereetetttt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
09100Q *" ettt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
ORIOQQ "ottt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0ZIOQQ *°terersrrec ettt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
001000 °** cccrrtrorere ettt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
030000 ‘et st 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000000 * e ereres st 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OV000Q “°°*reccs et sr s es oottt 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
080000 """ccccrrrr e essececer et 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
090000 *-*cTrcccT ettt 00000000 0000€0€0 00000000 00000000 00000000 €0000000 00000000 00000000
0¥0000 """t ” 02020202 0ZOTOTOL 0ZOTOZOT 0Z0Z0Z0Z 0Z0TOTOZ 0000000 00000000 00000000
0Z0000 GWYN LSYI " °rcucccec e o 00000000 00000000 00000000 29000000 00000000 JPT¥ESPS AS3APTHAN S$9070202
000000 °°°*°"°Ccututcceccsececccsitettt 70000000 00001010 00ZOT010 60000000 00001000 39003900 00200020 00000000

se14q (00T0) ZIS ‘(10000000) 1 1equnu ¥201q 1en3IfA
91 PeIEIOTIV / 91 X201q o171} 30 pua (0’TT‘L¥ZEE) GI O11d

SEO¥ITSINT LT
9861-NVLC-S1 vO 141Va° 1 TaLAN]T [3SM00D° SHY * STO0M) tHOLINYLSNISASIA dTFF jO dunq

- = = —— 2 D O P B e S B R S S O 8 O 4 S S S S S

Iva° 1TH31IN] m-a.-mma:-lutannhzmh30\avnazm.—.hzchm.nm:UOQm\mtanm
(z 30 T 383ySs)
andano S$XD014/dWnd °Z atduexdy

Facebook Inc. Ex. 1215

421

031000
001000
ov1000
081000
091000
0r1000
021000
001000
030000
030000
0v0000
080000
090000
0¥0000
020000
000000

031000
001000
ov1000
08to00
091000
ovtooo
01000
00t000
030000
020000
0v0000
080000
090000
0v0000
020000
000000

"o s e rees0sec0

JHSY* *°

Hsna*

0Zocozoz
0zozocoz
0c0co0z0e
ettt 0000¥0€E0
02020202
0zocozoz
02020202
ttt ¥0100010
0zozozoz
0z0Zo0coz
0z0Z0co0z
t 0cozozoz
02020202
0zo0cozoz
0z0zozoT
*ttttT 6000¥000

SETOV:CSENT
986 T1-NVL-S1T

T* 00000000
*T**** 00000000
***°°* 00000000
t* 00000000
* 00000000
* 00000000
* 00000000
*T**** 00000000
“t*°** 00000000
Tttc 00000000
****** 00000000
Tttt 00002010
Tttt 00000000
Tttt 00001010
****°° 00000000
*tttt° 000000710

IR AXALE A |
986 -NYL-G1

(T 30 z 399ys)

9-L1

0cozococ
0z0ZozZoz
0c0co0T0C
00200050
0Z02020¢
0zZozozoz
0zozozoz

00500000

0z0co0zZ02
0c0zZo07o0z
0zozozoe
02200020
0Z020Z02
0z0cozZoe
0Zocozoz
41109000

0zo0zozoe
0zocozoz
02020202
600000Y0
02020202
0zocozoz
02020202
00v0€000
0zo0cozoC
0Zozozoc
114114114114
$0005000
02020202
0Z0co0zo0z
0co0cozoz
90000000

se3éq

91 pejedOI1Y

6zococoz
0zZozozoe
0Z02020¢
¥0002000
0Zozozoe
0cozocoz
0z0¢0Z0e
10000100
0zocozoz
0zo0cozoe
0Zocozoe
¥0000000
0zocozoz
0zozozoz
0zocozoe
00002020

- (00Z0) 215 ‘(¥0000000) ¥ Joqunu x501q [en3atA
/ 91 ¥001q 2113 jo pujl

tE000vo10
0zZo0cozoz
0Zozozoe
90000000
0202020¢
0cozozoz
o0Zocozoz
0000%0%0
0¢02020¢
0c0c0z02
0¢02020¢
crssesed
0zoczozoc
0zozozoc
0cozozoz
002000%0

00100050
02020202
02020202
02020202
02020Z¥0
02020202
02020202
00200090
02020202
02020202
02020202
02020202
02020202
02020202
02020202
000000T¥

00000000
0Z0zo0coe
0cozozoe
0Zozococ
0ovot1000
ozozozoe
0cozocoe
00000002
114114114114
0Z0¢0c0¢
0Z0zZ0zZ0C
0Z0c0c0z
0c0c0z02
0Zo0cococ
0tococoe
13-1:1 24] 14

00000060
ococozoe
0cocococ
0cocozoe
10005000
0cocozoe
0Z0cozoC
ozozocoe
02029000
ozocozoe
o0zozozoe-
0Zo0zocoT
0zo0cCococ
0cocZococ
0zozozoe
0zozozoc

(0'T1’LpzeE) Al o114

uo ~“H<n.-mmhz~—ummzou.mzm.mnooz_um090=¢hmz~mzmua 2113 30 dung

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000

20000000
00000002
10000000
00000002
10000000
00000002

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

uauxa

91 pPajedoriV

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000
a0000000
00000000
L0000000
00000000
40000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00002000
20000000
00009000
90000000
00008000
0000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
20000000
00000000
€0000000
00000000
20000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
40000000
00000000
¥0000000
00000000

11000000

00005L€E9
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000

(0020) Z1S ‘(€0000000) € Iaqunu 1201q fenjara

/ 91 ¥201q 8113 3o pug

(0’ TT°LVvZEE) Al o114

uo ~a9<a.~—mmsz—mmzbou.mtz.mQOOB_"ZOBUDmBmszzmmo 113 3o dung

¢ 91duwexg

Facebook Inc. Ex. 1215

422

0v0000
070000
000000

000000
020000
000000

000000
020000
000000

000000
020000
000000

000000
020000
000000

000000
020000
000000

crrrsssssecieccogizREld 211IA3
IVHONOU1D ANVHHOO0D 90T9TTETLIO9E
*N d'IVNOQ nvNe

“reresssiseese 720602 IAHONOUOGLN
v1IvY AVM XVZ 00S9SETPILTLE
*S VNNV JHSYL

-ooo.o-.-o-o-.-o~°~OFgJJ~Eu-

IMHIS QVOY LINVTIIVO 1€SBPOPOELELS
W YANILYON NOLINAY

cesescatsessnes oo 16¥DTTIALEANT
IMHIS ATJM1D RODIH 0SSSEETIOP08EO
‘C VHLAVH NOLINAS

eessssccscceccsegooozla NOl3
IVUON OVOM ATVHON PSOTLSOE9SSIL
‘n 11180 N3 1DV

l....l'l.llll..l‘°°°N~° “Q-Q->
dIAVEINID INVEHIO0D 6E09T006Z91V9
*1 A4VO awvsIaa1LL

R R R Y YR (3 1) FT1IA
NaMoue AVM ¥AXAVE T1O0E9P89L980E
*J quve NOLINAT

teesescscssseccirnchZIA WONVM
RODIH QATE 3TdVN Z61SE66100182
AN1QIVE3D Wl

8P T1tC0tSt

SP956900
(14 141944
ozozotot

aresiray
cELEtELE
ototozoz

609PSITS
StLESELE
ototozot

(14141247
0cLeotoe
ozotozot

SYISaray
LEPESESE
otozotoL

95692900
131438171
otozozot

956929700
6EPEBEIE
ozotozor

0zayieay
reaticoe
oTotozol

L-L1

0500202
LETEECETE
0zozeear

TSANSSLY
Tepeeeee
ozoTLETLY

5956900
teocrcoe
(1414 /% 1/

1433112014
Yeotlece
[1411413 1]

otorozot
9EECBESE
ozoTrELY

11411414 14
(411111 14
0zoTEEYS

$P0TOT0Z
Legeecre
11141443 1/

aresorot
otlceest
0zOTIEVS

0TININEE
(43454111
(84311414

1121171743
SE9ESEOC
€sersrol

I00SSLE
PEBESCEE
§SI00S4Y

vErTNEE
(13937313
SSINNSAY

ozvreNze
LETEDESE
rarsezs

114241243
1€9¢0¢€ee
(312124414

0zTEVINGE
scecocat
§SI0054aY

114411241
€esetese
travozoz

TETEIE9E
9c0ZEVAY EVPBIISTY
ozozozot orozozot

se3Aq (0500) 08
reScOC2E
0€OZVSTY 9Y0ZLSIY
070Z0Z0Z 02020202
se314q (0500) 08
6ET1E0CTE
TEOZLYTY DPD01VEY
arozozot 0z0Z0zZol
se34q (0500) 08
T1ELEGEOE
0EOTBYEY LVLYESOZ
ayoT0ToT 070T0ZOZ
se34q (0$00) 08
0€0€0€9¢C
EOZAVEY 9P TPOVSY
arirarp? 0TozozTol
se34q (0S00) o8
0€0€0€9¢
6EOTENAY CPOYISIY
€STPZSOT 0ZOZOZOT
se34q (0500) 09
TELEGEOE
T1E0EZYIY Q¥SPTSOT
arozoTor 00Toror
se34q (0500) 08
PESEOETE
TEOZANTY 0SOVSYOT
0Z0TO0ZOZ 0Z0Z0ZOZ

se34q (0500) 08

IPSHOTEY 60TSEVAY E£9BRINDY
0TOZYYAY IVUINOPYY 0Z3V3TOL

*{80000000) 8 19qunu pIOI3Y
65020Z0T 0ZOZOTLY T¥OPOYTD
0ZOoT TIP3V INIVOZES FToTOZOZ
(L0000000) (1agqunu pioddY
PS0ZTSAY TPPPOZES €¥BYLSSY
0TOoZaArAY TSHSGYAY SHZSOZAY
*{90000000) 9 1oqunu p1oOddY
CPERTSEY DPSPOZES EVBRLSSY
0ZOTAYIY ZSH¥SBYLY OZVe3Zol
*($0000000) S 1eqwnu pi10ddY
0TTSAYTIY PPOZOZAY C¥BYINOY
0TOTTYEY O¥IP0TSS 3TOZOTOZ
*(v¥0000000) » 1equnu piodeY
IPSYOTEY GITSENTY 10EPSHIS
0TOTLYIY TS6SOTOY 3ZOZOZOZ
‘(€0000000) € 1squnu piodey
LSTPGSOT 0TOTOZTY TSANLSIY
0TOZZYIY 2SZYOZEP 3ZOTOZOT
4(20000000) T 19gunu pi10d>AY
TPOVISHY OTOTOTBY 6YLYLVES
0TOTLYISY ZSTPOPIY 69395000
‘(10000000) 1 1equnu pioday

991 POIWILTIV / 991 ¥%201q (1] jo pua (0°sz’959te) a1 °1va

9861-NVL~-S{ U0 TI{LVA"ZXIANI [ASHNOD° SHY° SA0OM] 1 HOLONYISNISASIO @11) jo dung

1vQ° ZX3IANT m—a.NﬂﬂﬁanM::nlhlhh=O\.ounzu.—.hz<hw_umnxouuz\m:=cm

Ind3in0 SAI0DAY/dKHNd

*¢ ardwexy

Facebook Inc. Ex. 1215

423

GUIDELINES FOR RECOVERING DATA FROM CORRUPTED INDEXED FILES

1.

Make a backup copy of the file immediately. 1In attempting to
recover the data, use the backup copy.

verify that the data file that may be corrupted is the correct
data file. Use ANALYZE/RMS/INTERACTIVE or DUMP to check the
file header, prologue, and key descriptors to make sure that
there has not been a mixup in files. Possible areas to check
out:

e A logical name may be causing the program to use the wrong
file.

e If users are sharing an account, they sometimes decide to
"~ use the same file name for different data files.

e Incorrect usage of DCL commands can make a copy of a file
with different attributes from the original file. (For
example, an indexed file input to EDIT/EDT is output as a
sequential file.)

Determine whether the file is really corrupt using
ANALYZE/RMS/CHECK. The /CHECK qualifier does not find all
types of corruption.

I1f the /CHECK qualifier detects any errors, the file has been

corrupted. If you have had a hardware problem, such as a
power failure or a disk head failure, then the hardware
probably caused the corruption. If you have not had any

hardware problems, then a software error may have caused the
corruption.

If the /CHECK qualifier indicates a number of severe errors,
you should probably stop at this step and go back to the most
recent backup copy that is uncorrupted.

If some particular virtual block is identified as having a
problem by the /CHECK qualifier, get a dump of all the blocks
in the index bucket or data bucket that begins with that
virtual block.

Before checking it against the internal layouts provided in
Module 5, do the next step.

17-8

424 Facebook Inc. Ex. 1215

'ﬁ§

5.

Use the CONVERT utility to try to restore the data.

I1f none of the primary level 0 data buckets are corrupted,
you will generally be able to recover the data as follows:

$CONVERT/STAT

corrupted_index_file new_index_file

In general, if the corruption is associated with a primary
index bucket or with any of the secondary index buckets
then the convert in step (a.) should be successful. There
is one exception to this: when the corruption involves
one of the primary index buckets in the initial pathway
down to the first level 0 data bucket, the CONVERT utility
is not able to recover the data from the primary key. If
you have at least one alternate key, attempt to convert
the data by outputting a sequential version based on the
alternate key sorted order as a first step and then
convert the sequential file to an indexed one as a second
step.

Step 1.

If you do not have an FDL file for the indexéd file, you
can obtain one from the corrupted file.

S$ANAL/RMS/FDL

corrupted_index_file
The FDL file produced by ANALYZE will have to be edited.
$EDIT new_index.FDL

- Delete the version number in the filename.

Step 2.
Produce an FDL file for the sequential file.

SEDIT/FDL seq.FDL

17-9
425 Facebook Inc. Ex. 1215

Step 3.

SCONVERT/KEY=1/FDL=seq.FDL/STAT

corrupted_index_file
good_sequential_file output
Step 4.

SCONVERT/FDL=new_index.FDL/STAT

good_sequential new_index

If you do not have an alternate key or the CONVERT utility
using an alternate key is not successful, see Step 7.

If the CONVERT utility is not able to restore the data file,
or is not able to restore all the data, examine the dump you
obtained in Step 4.

Are you able to identify what the problem is? For example, is
the check byte at the beginning of the bucket equal to the one
at the end of the bucket?

If you were able to identify what the problem is in Step 6, or
if the corruption involves the initial pathway down through
the primary index bucket and you have no alternate key, you
may wish to try to patch the file.

CAUTION

Patching a corrupted data file is not
encouraged. The recommended procedure is to
use the CONVERT utility, or go to a backup
copy. Patching 1is undertaken by users at
"their own risk. The ISAM structures are
extremely fragile. If in patching a file, a
byte or even a bit 1is misplaced, subsequent
processing of the file may crash the system.

You can attempt to patch the file if you are able to detect:
- what the source of the corruption is

- what value in a particular byte location is not what ISAM
expects

- what the value should be

17-10

426 Facebook Inc. Ex. 1215

10.

11.

Before undertaking this step, be sure you have a backup copy
of the corrupted file as directed in Step 1. Also be sure you
have a file copy in your directory of the DUMP (see Step 4) of
the bucket in question. :

You should not think of using the PATCH utility if there are a
number of errors. It should only be used selectively.

The PATCH utility is primarily for patching "IMAGE" files, but
it may be used to patch any kind of file by using the
qualifier /ABSOLUTE. In addition, to do the patch in place
use the qualifier /NONEW _VERSION; otherwise, in the case of an
indexed file, it outputs a new SEQUENTIAL version.

The steps for using the PATCH utility are described at the end

.of this section.

IMPORTANT

The patched file definitely must be converted
to produce a valid index structure (see Step
9).

If you used the PATCH utility in Step 7, rerun
ANALYZE/RMS/CHECK on the patched data file.

1f the data was recovered by the PATCH utility (even 1if no
errors are now identified by /CHECK), make a new copy of the
file using the CONVERT utility so that the index structures
are rebuilt.

If the problem was with a data bucket (primary level 0 data
buckets), use the dump obtained of the respective bucket (Step
4) to identify whether any data records in the bucket need to
be updated or deleted.

If the problem was with a primary index bucket or with a
bucket in a secondary index tree, then the convert in Step 5
or in Step 9 reconstructed these buckets and no further action
is required.

If the corruption appears to be due to something other than a
minor hardware failure (such as a power failure in the middle
of writing an updated bucket back to disk), try to find out
what caused the corruption.

You may be able to save yourself a lot of work in the future
by trying to find out what happened to the file. 1If, for

example, the file is always corrupted on Tuesday, it is worth
investigating what is different on Tuesday.

17-11
427 Facebook Inc. Ex. 1215

12.

In all cases, even if your data recovery was successful, 1if
you believe that some DIGITAL software caused the error,
submit a Software Performance Report (SPR). Always include
the ANALYZE/RMS/CHECK report, a copy of the data file, and a
description of what was done with the data file. 1If possible,
also supply a version of the file prior to the corruption and
the program or procedure which led to the corruption. Being
able to reproduce the problem is of tremendous value.

17-12

428 Facebook Inc. Ex. 1215

INTRODUCTION TO THE PATCH UTILITY

Qualifiers

/ABSOLUTE
The /ABSOLUTE function allows a user to patch any file (not just

image files) at absolute virtual addresses relative to the
beginning of the file. This feature allows replacement of
existing data with new data of the same length. If data is
smaller than that of the original data, the PATCH utility uses the
appropriate fill character for the mode in use. For example, if
the current mode is data (numeric or ASCII) mode, a null is wused
for fill. Any patch operation that results in a data replacement
longer than the length of the original data generates an error
message and terminates the command in progress; either the PATCH
utility prompt or DCL prompt is then displayed, whichever is
appropriate.

/NEW_VERSION

The ~/NEW_VERSION qualifier is wused in conjunction with the
/ABSOLUTE qualifier to control whether a new version of the
patched file is created or the contents of the existing file are
modified in place. /NEW_VERSION is the default. If
/NONEW_VERSION is selected, the PATCH command UPDATE will act as a
checkpoint operation; all modifications made to the file are
written back to the file instead of waiting until image exit. If
/ABSOLUTE 1is not specified with /NONEW_VERSION, /NONEW_VERSION is
ignored; a new version of the file will be created.

NOTE

If /NONEWVERSION is specified, the file will be
overwritteh. No attempt on the part of the user,
including pressing CTRL/Y, will prevent this result.
Therefore, you should have a backup copy of the file
before making any attempt to patch it.

There are only two PATCH commands appropriate for replacing data
when the /ABSOLUTE qualifier is used.

1. The EXAMINE command for read operations.

2. The REPLACE command for write operations.

Commands that attempt to expand the file, such as ALIGN and
INSERT, should be avoided because they will probably corrupt the
file. (These commands will be trapped by the PATCH utility and an

error message will be issued indicating that the replacement data
must not exceed the length of the original data.)

17-13
429 Facebook Inc. Ex. 1215

Patch Commands

EXAMINE

Displays the contents of the specified locations in terms of the
current mode settings.

PATCH> EXAMINE location [:location][,...]

location
Specifies one or more 1locations whose contents are to be
displayed. Several locations can be specified 1in a

comma-separated list or colon-separated range. Both lists and
ranges can be specified in a single command.

The location parameter can also be represented by a backslash
operator (\).

REPLACE
Replaces the contents of one or more locations with new
instructions or data in terms of the current mode settings.

PATCH> REPLACE location =current-contents{[,...] new-=content...

location '

Specifies either a single location whose contents are to be
replaced or the starting address of a sequence of locations
whose contents are to be replaced. The length of the sequence
depends on the current mode settings (/BYTE, /WORD, or /LONG).
The default length is a longword (4 bytes).

current-contents
Specifies one or more data entries to be replaced. The data
specified must be the actual contents.

new-contents
Specifies one or more data entries that are to replace the
current contents.

Do not specify conflicting data types within a single REPLA "
command.

Use the REPLACE command to replace the contents of one or more
locations with new data in terms of the current mode settings.
Before performing the replacement, the REPLACE command confirms
the contents of the specified locations.

When you replace ASCII or numeric data, the number of replacement
entries cannot exceed the number of existing entries. For
example, this means that if vyou confirm the contents of six
consecutive 1locations, you can replace the contents of only those
six locations. If the number of replacement entries is less than
the number of existing entries, the remaining locations are filled
with zeros.

17-14

430 Facebook Inc. Ex. 1215

In addition, the PATCH utility truncates replacement entries 1if
they exceed the limit imposed on them by the current length mode.
For ASCII characters, the right-most characters are discarded.
For numeric data, the left-most digits are discarded.

Example

S PATCH/ABSOLUTE/NONEW;VERSION LIN.COM
PATCH>EX/ASCII 57

00000057: 'MANA'

PATCH>REPLACE/ASCII 57='MANA'

NEW> 'mana'

NEW> 'test'’

NEW> exit

old: 00000057: 'MANA’
$PATCH-E-REPLACEERR, replacement value too large for location
PATCH>replace/ascii 57='MANA’

NEW> 'mana'’

NEW> exit

old: 00000057: 'MANA'

new: 00000057: 'mana’

17-15
431 Facebook Inc. Ex. 1215

DATA RECOVERY EXAMPLES

Example 4. Data Recovery Lab for CORRUPT3.DAT

Problem observed with INTER11.DAT:

Data file had eleven records when last accessed. Today the
file appears to have a total of two records.

Steps

1.

2.

$SCOPY INTER11.DAT CORRUPT3.DAT
SANALYZE/RMS/INTER CORRUPT3.DAT
Verified was INTER11.DAT format
SANALYZE/RMS/CHECK/OUT=CORRUPT3.CHECK CORRUPT3.DAT

SANLRMS-I-ERRORS, DISKSINSTRUCTOR: [WOODS.RMS.COURSE] CORRUPT3.DAT;1
1 error

CHECK /OUTPUT identifies bucket format check
failed for VBN = 6

NOTE

VBN 6 is a level 0 data bucket.

$DUMP/BLOCKS=(START:6 ,END:6) /OUTPUT=CORRUPT3 .DUMP CORRUPT3.DAT
Bucket VBN:G is a data bucket.

SCONVERT/SfAT CORRUPT3.DAT GOOD3.DAT

$CONV-F-READERR, error reading

DISKSINSTRUCTOR: [WOODS .RMS.COURSE] CORRUPT3.DAT;1
-RMS~F-CHK, bucket format check failed for VBN = 6

SDELETE GOOD3.DAT;1 < NULL FILE >

17-16

432 Facebook Inc. Ex. 1215

6. Examine output from CORRUPT3.DUMP
CHECK bytes

VBN 6 - BYTE 0 02
BYTE 511 01
NOTE

In this atypical case, bucket size happens to
be one block.

7. Use the PATCH utility to change VBN 6 -- byte 511 to 02.

a. Location

512 x 6 = 3072
- 1 (backup one byte to byte 511 in VBN 6)

3071
b. Calculate location in HEX

$ X == 3071
$ SH SYM X
X = 3071 Hex = 00000BFF Octal = 00000005777

c. Run PATCH
$ PATCH/ABSOLUTE/NONEW CORRUPT3.DAT

SPATCH-I-NOGBL, some or all global symbols not accessible
SPATCH-I-NOLCL, image does not contain local symbols

PATCH>EXAMINE/BYTE 00000BFF
00000BFF: Ol

PATCH>REPLACE/BYTE 00000BFF = 01 _
NEW> 02

NEW> EXIT

old: 00000BFF: 01

new: 00000BFF: 02

PATCH>EXIT

$PATCH-I-OVERLAY,DISK$ INSTRUCTR: [WOODS .RMS .COURSE] CORRUPT3 .DAT; 1
being overwritten

8. SRENAME CORRUPT3.DAT GOOD3.DAT

SANALY/RMS/CHECK/OUT=GOOD3.CHECK GOOD3.DAT

17-17
433 Facebook Inc. Ex. 1215

9. S$CONVERT/STAT GOOD3.DAT INTER11l_CONV.DAT

10. Check CORRUPT3.DUMP output to see whether any data records in
VBN 6 need to be updated or deleted.

17-18

434 Facebook Inc. Ex. 1215

Example 5.

Step 6 —- Identify nature of problem

Data Recovery Lab for CORRUPT4.DAT

The check bytes do not match in one of the index buckets

which

1 bucket.

20202020
20202020
20202020
454E4F4A
20202020
20202020
20202020
20202020
20202020
20202020
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

000000

0001F7

lies

20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
FFFFFFFF
FPFFFFFPFP
FFFFFFFF
FFFFFFFF
00000000
00040006

Dump of

VBN 7

on the initial path of the primary index.
bucket is not the root primary index bucket (level 2), but a level

Dump of file DISKSINSTRUCTOR:[WOODS.RMS.COURSE] CORRUPT4 .DAT;1
File ID (37426,1,0)

End of file block 16 / Allocated 16

20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
FPFFPPFFF
FFFFFFFF
FFFFFFFF
00000000
0005000?

ek et

20204853
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
FFPFFFFFP
FFFFFFFP
FFFFFFFF
00000000
00000000

There are two alternatlve ways
example.

1.

2.

Use alternate key 1 to recover a
data file. See Step S5(b.). -
Patch the ending check byte to match the beglnnlng check byte
in bucket VBN 7.

See Step 7.

to

Virtual block number 7 (00000007), 512 (0200)

55420001
20202020
20202020
20202020
20202020
20202020
20202020
20534F4B
20202020
20202020
20202020
FFFFFFFF
FFPFPFFFFF
FPFFFFPFF
00000000
00000000

recover

bytes

00000008
20202020
20202020
20202020
20202020
20202020
20202020
41522020
20202020
20202020
20202020
FFFPFFFFP
FFFFFFFF
FFPFFFFF
00000000
00000000

sequential

The first alternative is the preferred one, but
purposes both alternatives will be demonstrated.

Alternative 1 -- CORRUPT4.DAT
Step 5(b.) -- Use alternate key to convert
1. If you don't have an FDL file for the indexed version,

one.

SANAL/RMS/FDL CORRUPT4.DAT

SEDIT CORRUPT4.FDL

@ Delete version number in filename.

17-19
435

Facebook Inc. Ex. 1215

the

for

000100EA
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20202020
FFFFPFFF
FFPFFFFF
FFPFFFFF
OCOOFFFF

00000000 00000000
this

data

version

(VBN 7)
This index

00070904
20202
20202020
20202020
20202053
20202020
20202020
20202020
20202020
20202020
20202020
FFPFFPFF
FFFFFFFF
FFFFFFFF
FFFFFPFF

for

of

illustration

{-= outputs CORRUPT4.FDL

the

obtain

Ched ches
)

Al
]/@ {L@}'

ratel,

Use EDIT/FDL to produce a sequential FDL specification for
output file in Step 4.

SEDIT/FDL seq4.£fdl
SCONVERT/KEY=1/FDL=seq4.fd1/STAT CORRUPT4.DAT seq4.dat

sequential output

SCONVERT/FDL=corrupt4.fdl/STAT seq4.dat GOOD4 .DAT

FDL indexed indexed output

Alternative 2 -~ CORRUPT4.DAT

Step 7 -- Use the PATCH utility

1.

Location

7 x 512 = 3584
- 1 (backup one byte to byte 511 in VBN 7)

3583
HEX location
$§ X == 3583
$SH SYM X .
X = 3583 Hex = 00000DFF oOctal = 00000006777
Patch

SPATCH/ABSOLUTE/NONEW CORRUPT4 .DAT

SPATCH-I-NOGBL, some or all global symbols not accessible

$PATCH-I-NOLCL, image does not contain local s mbols

PATCH>EXAMINE/BYTE 000OODFF
00000DFF: 03

PATCH>REPLACE/BYTE 000OODFF = 03

NEW> 04
‘NEW> EXIT
old: 00000DFF: 03

new: O000OODFF: 04

PATCH>EXIT

$PATCH-I-OVERLAY, DISKS$INSTRUCTR:[WOODS.RMS.COURSE]CORRUPT4.DAT;1

being overwritten

17-20

436 Facebook Inc. Ex. 1215

Appendix A

437 Facebook Inc. Ex. 1215

438

Facebook Inc. Ex. 1215

APPENDIX A

Indexed files -- specific points in RMS-coded instructions when
locking is done at record, bucket, or file level.

1. Record operations (assumes no bucket splits)

e SPUT

Initialization/validation (if sequential access, is
key value of new record greater (ascending primary
key) or less (descending primary key) than that of
last record, etc.)

Position to point of insert (involves positioning
through the index structure by key, and leaves data
bucket locked)

Adjust "high set" appropriately

Build record overhead fields in bucket; move in record
itself

Lock new record
Update new record (if necessary)
Unlock bucket

Insert alternate keys (if any) extracted from user
buffer

e SDELETED (assumes previous $GET/SFIND and record locked)

Initialization/validation (is there a current record,
etc.) :

If RRV, position by RFA to record (leaves bucket
locked) .

save record in internal buffer
Delete the RRV (if any)

Delete the primary record itself
Unlock bucket

Delete all alternate keys, plucking values from saved

.record (if FAST_DELETE option not specified)

A-1
439 Facebook Inc. Ex. 1215

2.

SUPDATE (assumes previous S$SGET/SFIND and record locked)

- 1Initialization/validation

- TIf RRV, position by RFA to record (leaves bucket

locked)

- If alternate keys will change, then:
a. Save old record .
b. Unlock data bucket

c. Insert new SIDR entries

d. Reposition by RFA to record (leaves bucket locked

again)
- 1Is new record size less than or equal to old size?
+ YES (smaller or same as old record)
a. Adjust high set appropriately
b. 1Insert record
+ NO (larger than old record)
a. Save record ID

b. Perform "pseudo-$DELETE"

c. Perform "pseudo-$PUT" (stuffing saved record ID)

- Unlock bucket

- Delete old SIDR entries (if any) wusing old record

buffer

Record operations involving bucket - split(s) (assume.
bucket is currently locked)

Lock area

Enough space for a new bucket?

+ YES (a bucket's worth of blocks is available)
- Allocate new bucket

- Unlock area

440 Facebook Inc. Ex.

old

1215

+ NO (must do a SEXTEND)

- Lock file to prevent file operations

- Lock prolog

- Do the SEXTEND

- Allocate new bucket

- Unlock area

- Unlock prolog

- Unlock file

Format new bucket

Set new bucket's next pointer to old bucket's next pointer
Set old bucket's next pointer to the new bucket
Move data into new bucket

Scan old bucket for records past the split point that have
RRVs, and keep in a table.

Update free space in old bucket and unlock it

Update RRVs in internal table to point to new location of
records. This involves multiple positionings by RRV -~
one for each RRV to be updated.

Note that SIDRs are not updated. SIDR entries may point
to an RRV, which in turn points to the real record.
Because of the RRV updating process, this level of
indirection never goes beyond one.

441 Facebook Inc. Ex. 1215

442 Facebook Inc. Ex. 1215

Appendix B

443 Facebook Inc. Ex. 1215

444

Facebook Inc.

Ex. 1215

APPENDIX B

Hexadecimal to Decimal Conversion Table

Hexadecimal to Decimal c?monloﬂ Table

MMOOEDPOR®INORIPWN--0TZF

-

8
DecC
0
208.435.458
$36.870.912
805.308.368
1.073.741.824
1.342.177.280
1.610.612.738
1.879.048.192

2.147.481.648

2.418,929,104
2.084,354,580
2.952.790.016
3.221,225.472
3.489.6680.928
3.753.096.384
4.026.531.840

MTMONAPOBRIYARNELN-OX

-

7
DeC
0
18.777.218
33.554.432
$0.331.648
67.100.884
83.888.000
100.5683.296
117,440,512
134.212,728
150.994.99¢
187.772.160
184.549.376
201,228,592
218.103.808
234,881,024
251.885.240

MAOORP>POOIYANRNDDLULN-0ZF

[] B

OfC WEX DfC

oo o
1,048.57¢ 1 65.536
2097182 2 1non
3148728 3 190.508
4194304 4 26244
5242880 5 327,880
6291486 8 326
7.340.032 7 488.7%2
8.388.608 8 8524280
9437184 9 S80.824
10485.780 A 8355380
11834336 8 720898
12582912 C 788422
12631488 O 851968
14680064 E 917504
15,728.640 F 983040

B-1
445

MM OOBDPOO®IVORELN-0O

4.096

8.192
12.268
18,384
20.480
24578
28.872
32.7¢8
36.884

40.960

45,056
49,182
82.248
57.344
61.440

AMOOBPOBUARSWUN =0

3

DEC
0

258
512
768
1.024
1.260
1.538
1,792
2.048
2.304
2.580
2.818
3.072
3.328
3.584
3.840

HEX

HEX DEC

MTADOE P> OE®INOREWN--D

18

- b e = e =
Ss3iatssgsesse
ﬂmonobuouau.un-o

224

DEC

EOGMOO.HN-‘O

- e - - b
B e -

Facebook Inc. Ex. 1215

ASCII Table

a’ s} 0 [1] Q 1 T
86 0 0 ! .
:L] o 1 Q 0 1
BITS COLUMN
24 03 82 81 |ROW (0] 1 2 4 7 .
0 20 40 60 100 120 140 160
oooo0l}o NUL| ; |DLE || SP | o o @ 64 80 w| P 12
0 10 20 0 40 50 60 70
" 1D n al et 101 121 141 181 —
8000 1)1 SOH 1 ng 17 ! 13 1 4 A 68 81 | 4 n3
1 1 n kT a 51 81 n
2 22 " a2 62 102 122 142 162
00 1 0] 2 STX 2 Dc2 18 34 2 50 8 a8 82 98 r 114
2 12 2 2 42 52 62 72 _
3 PE] 43 83 103 123 143 183 i
oo fa |ETX}] {xQOFF) | 19 # x| 3 | c 67 *83 w| 8 |ns }
3 13 23 13 a 53 63 73 :
4 24 4 64 104 124 144 184
t1o00|s |[EOT} . DC4 20 $ % 4 52 D 8 84 100 t 18
. 1 24) “ 54 84 74
5 25 I 85 105 125 145 185
0101 L] ENO s NAK 2 % 37 5 53 E 69 88 101 u 117
5 15] 35 45 55 s 78
A] % a8 6 | 108 128 148 v |18
ottt olse CK [SYN 22 & 1 54 F 70) 102 118
s 18 2 '] % 58 86 78
B M E 7 a7 a7 107 127 147 187
o 1t ? BEL 7 2 39 7 58 G n 87 103 w 19
7 17 27 a7 47 57 67 7 .
10 30 50 70 110 130 150 170] :
1000]8 BS |, |[CAN| (a0 8 | H |5 38 10¢] X 120
8 18 28 38 48 58 68 8
T 3 51) m 131 151 m
too01|e | HT |y | EM |3) " 9 57 L S P 89 wos| Y 121 -
9 19 2 9 9 59 69 79 .
12 [suB | 32 * 52 . 77 112 132 152 172
to10lw0| YF | oy 42 58 J | 90 we|] T 122
A 1A 2A 3A A 5A 8A 1A
3 [ESC|[= * 53 . 73 113 133 153 173
1tor 1 mn vT n 2 a ' 59 K 75 91 07 122
8 18 28 38 4 58 68 78
14 3 54 74 114 134 164 174
Tt 1002 FF |, FS 8 ’ u| < 60 L 78 92 108 I 12¢ i
c 1c P i 4C SC 6C 7C
15 ED) - 55 7 18 135 156 175
t1 0113 CR 13 GS 2 s| = 81 M 7 93 109 } 128
0 10 20 30 40 50 80 70
18 ") 58 78 116 130 156] ~ 178
t 11 04 SO 14 RS 0 * 48 > 82 N 78 } 1) 110 128
3 1€ 2€ 3E 4E SE € 13
17 37 57 ” 17 137 . 177
111 118 Sl | us N / al ? 63 o 19 95 i DEL | o
£ ¢ 2 3F 4F SF 8k F -
33] ocTaL
ASCII CHARACTER
ESC 27] 0ECIMAL
18 I HEX
MA-7748 o
B-2 -
446 Facebook Inc. Ex. 1215

