
89

described in a subsequent section on the domain knowledge expert. Figure 4.5 shows an

example of how a portion of the conceptual knowledge might be structured. The node

labeled "document collection" indicates that the attached single word concepts are

components of the document representatives.

bt/nt

j3
phrase phrase phrase phrase

~---OC;_- - ~-<§,~--~-~ --- -----
~ j ...·······synonym

phrasephrase

~--o..... Document
-~ Collection

Figure 4.5: Sample Conceptual structure.

The concept level, during a session, is a combination of three knowledge bases, the

global domain knowledge, the user's domain knowledge, and the text database. The global

domain knowledge is derived from published thesauri or other classification information .

001 Facebook Inc. Ex. 1214 Part 3

90

In the case of our test data, for example, it was derived from the old and new Computing

Reviews classifications. The user's domain knowledge is gathered from him as he in

teracts with the system. When a user is developing his query initially or is examining re

trieved text, he may make connections between words. For example, a user examining a

document may indicate that the words "concurrent" and "processes" form the concept

"concurrent processing." This phrase is entered in to his domain knowledge model by the

Domain Knowledge Expert. He may then think of the: concept "parallel processes," and

decide that it is not close enough to be a synonym, but is certainly related. Figures 4.6

through 4.9 show the user selecting these phrases and connecting them with the "related"

link.

The information from the text database simply gives the mapping from terms to the

documents in which they occur. These links are represented by the dotted links in figure

4.5.

4.2.5.1.2 Implementation of the Concept level

The semantic net representation of the concept level is implemented by means of a

bash table of record structures. Hash tables are a convenient structure in Common Lisp.

They are expanded in size automatically when they reach a specified percentage of their to

tal capacity, the equality test used to determine if a hit has been made can be user specified,

and there is a special function, maphash, for iterating through all the values in a table.

The definition of record structure used for storing each entry is:

(Defstruct (Concept

(: Include Common-Con t e nt -Info)

;; the a b ov e is used for DK e n t r y

(: Conc -N ame nil)

(:Predicate Concept ?»

002 Facebook Inc. Ex. 1214 Part 3

91

Id ; either a t erm number o r if a phr a s e a list

;of t erm n umbers

St ern

Text

Synonym

Relate d

Broader

Narrowe r

Phrase

;either a stern or a l i st o f sterns

; fu ll t ext of t he concept

;l i s t of s yn on yms

;lis t o f related words

;list of broader te r ms

; l ist of n a rrower terms

;te x t of sin g le wo rds t ha t make up p hrase or

;lis t o f ph r a s e s that t h i s word i s in)

Each concept is stored using its full text as the key to the hash table. So, when the domain

knowledge expert wants to find all of the phrases that a single word concept is a part of, it

executes the function Get - DK which is defined as follows:

(De fun Ge t-DK (Connec tion Word Table)

(Apply Connection (Getha sh Word Ha sh-Tab l e)) --)- - - -- -- - - - -

where Connection is the particular link, Word is the concept of interest and Ta bl e is

either the user's domain knowledge or the global domain knowledge. The id field pro

vides the connection into the document representations, which are stored in YMS/RMS

files.

003 Facebook Inc. Ex. 1214 Part 3

92

eat Entry
Suspend
Help

amport, L.

Brooder
Narrower
Rela t ed
Synonym
Phrase
Entry Ok:
Cancel
Done
Releuant
Help

he problem of sharing data among asynchronous
rncessess is considered. It is assumed that only
ne process at a time can modify the data, but

L..-.-----+oncurrent reading and writing is permitted.
uro general theorems are proued, and some

Figure 4.6: The user is making a connection between "concurrent
processes" and "parallel processes." The first step is to select Related
from the Content menu. This causes the related window to appear. The
user then selects Phrase from the Content menu, causing the Phrase
window to appear above the document. Selecting the words "concurrent"
and "processes" using the mouse causes them to appear in the Phrase
window.

004 Facebook Inc. Ex. 1214 Part 3

93

eut Entry
Suspend
Help

arnport, l.

he problem of sharing data among asynchronous
rocessess is considered. I t is assumed that only
ne process at a time can modify the data, but

L-.------t'oncurrent reading and writing is permitted.
wo general theorems are pruned, and some

Brooder
Narrower
Related
Synonym
Phrose

. . . __.__ En_~!JJ_.!L~ _
Cancel
Done
Relevont
Help

Figure 4.7: After selecting Entry OK from the Content menu,
the phrase "concurrent processes" is transferred to the Related Window.
The user then selects Phrase again from the Content menu and then
Text Entry from the Window menu to allow him to enter the word
"parallel."

005 Facebook Inc. Ex. 1214 Part 3

94

eut Entry
Suspend
Help

2912

lamport, l.

The problem of sharing data among asynchronous
processess is considered!. I t is assumed that only
one process at a time can modify the data, but

'--------1 concurrent reading and writing is permitted.
Two general theorems are proued, and some

roo er
Narrower
Related
Synonym
Phrase
Entry Ole
Cancel
Done
IRe l eu o n t
Help

concurrent processes,

.. • I

Figure 4.8: The user has keyed return in the Text Entry window
(which then disappears), causing the word "parallel" to appear in the Phrase
window, and has selected "processes" from the text, which also appears in
the Phrase window.

Con t.e nf o'- , : : : ': , co, 0 ",: " ,; Do'dlm (;11 ,• .0 jo >" ,: _.-" _; '.-. . : » ':,' 0 ~ .,Win 'd.0 IV ,
. ' .. . "'. ~ : ." " " , .. t ,- , _ '. ·r .' ' .' ~ ~ . , ', . ~

Concurrent Reading and Writing e at Entry
Suspend
Help

2912

Lamport, l.

Broader
Narrower
Related
Synonym
Phrase
Entry Ole
Cancel
Done
Releuant
Help

The problem of sharing data among asynchronous
processess is considered. It is assumed that only
one process at 0 time can modify the data, but

'-------'concurrent reading and writing is permitted.
Two 0 eneral theorems are proued, and some

concurrent processes, parallel processes

Figure 4.9: The user selects Entry OK from the Content menu,
which causes the phrase to be transferred to the Related window. When the
user selects Entry OK again, the Related window disappears and the domain
knowledge is entered into the user's domain knowledge model.

006 Facebook Inc. Ex. 1214 Part 3

95

9mre~ parallelprocesses <J-- related --t> rocesses

/
GOC£ ~~j~= P~'V

Figure 4.10: Representation of the domain knowledge added to the
user's model

4.~~.5.1.3 Document Level

The next level is the document level. In this system, documents are the fun-

darnental units of information. It is in a document that the user will find the desired in-

__ _ ____ __ .- - fa nnation. _Each documenLis..rep.resented-h)'-<LCollection....oLc.oncepls.ibaLindic.ale_its _

content. These are generally derived from the title, abstract, and whatever keywords are

supplied by the author. Because of the automatic indexing method [Porter 80J used to de-

- rive the document representations, they consist only of single word concepts (terms). The

document level is, like the concept level, highly interconnected. Figure 4.11 shows the

kinds of links that can be found. A document nearest neighbor link, which is similar to the

concept nearest neighbor link, is used. It is based on the overlap of the terms contained in

representations of two documents. Only the most highly related documents are linked by

the nearest neighbor link. The algorithm used for generating these links was described in

chapter two.

007 Facebook Inc. Ex. 1214 Part 3

Many
Docs ~

M
C C

NN

96

Figure 4.11: The Document level. The markings on the links are as
follows: BC = Bibliographic Coupl ing, CC = Cocitation, NN = Nearest
Neighbor, C =Citation.

Each document also contains citation links, which connect it to other documents;

these are important since they represent author judgements of what other documents are

related to the contents of their documents. They can be used directly to facilitate finding

other documents, or they can be used to generate two other kinds of document-document

similarity links called bibliographic coupling (BC) links and co-citation (CC) links [Salton

83, Mansur 80]. The first is based on the overlap of two documents' reference lists, and

the second is based on the number of times that two documents appear together in reference

lists of other documents. Due to some deficiencies in the test collection that is currently

used by r3R, the BC and CC links are not generated. Specifically, the citation information

available for eac h document only references other documents in the collection.

Consequently, accurate determination of bibliographic coupling links could not be made,

since much many references were missing.

Even without bibliographic coupling and cocitation links, the document level even

in the collection used is still highly interconn ected. Figure 4.12 shows a region of the test

collection, containing documents that deal with tree data structures. In a few cases, the

008 Facebook Inc. Ex. 1214 Part 3

97

nearest neighbor links link the same documents as the citation links do. In others, they link:

documents whose connection by citations is more circuitous, or is not made at all.

2278 2455 2138 3096 3065 1429

1116

27222388 K"'---\-~

2968

NN
~- - from & to -t

Cit.ations
-----------1[>

Figure 4.12: Document neighborhood taken from the CACM col
lection. This neighborhood will be used in the fourth scenario in chapter
SIX.

4.2.5.1.4 Implementation of the Document level

The document level is implemented using VAXfRMS file structures. There are 9

files which are:

1. DOC_TERM - holds the basic document representations,

2. DOC_DOC_CITATION - holds the citation links,

3. DOC_DOC - holds nearest neighbor links,

4. DOC_TEXT- holds the full text of the document as well as the dale,

5. DOC_AUTHOR - maps documents to authors,

009 Facebook Inc. Ex. 1214 Part 3

98
6. TERM_DOC - hold the inverted file of #1,

7. TERM_TERM - holds term nearest neighbors,

8. TERM_PHRASE - maps the text of terms to the term numbers,

9. COLLECtION_INFO - holds information about the size of the collection and
the most frequently occurring term.

These files are accessed directly by the search program. The rest of the system uses access

programs that are written in C that can be called form Lisp. Originally, these files were

stored as relations in a relational database, VAXfRDB. This database system, however,

was very inefficient, causing the searches to take about five minutes. Searches in the

current system take about 50 seconds.

4.2.5.1.5 Journal Issue Level and Abovle

The journal issue level is based on the observation that many journals will have

from time to time whole issues devoted to a specific topic. These issues might be the pro-

ceedings from a particular conference, or tutorial articles on a specific area. Journal issues

may also have sections which are topic specific. The primary motivation for including this

level is to support browsing. A typical browsing heuristic is: "If this document is interest-

ing, then are there any more documents in this issue that are interesting."

There are other possible connections above the journal issue level. The most ob-

vious in a collection that has more than one source of information is connecting the journal

issues together into journals. The journals can then be categorized by higher level classifi-

cation structures like the Library of Congress system.

In the current system, the journal issues are not represented by a separate file

structure. This information is available from the DOC__TEXT file which has fields repre-

senting the month and year that the document appeared.

010 Facebook Inc. Ex. 1214 Part 3

99

4.2.5.1.6 The Test Collection

The test collection used to test the implementation of I3R consists of 3204 doc

uments taken from the Communications of the ACM, from the years 1960 to 1979.

4.2.5.2 User Histories

The other part of the long term memory is the user histories, which consists of two

paris, the user's domain knowledge and the records of the user's previous searches. The

user's domain knowledge is organized the same way as the global domain knowledge. The

user record has the following structure.

{Defstruet {User-Re c o rd

(: Cone -Name UR-)

(:Predie a t e UR?»

(User-Name n il)

(Session- Re c ords nil)

(Domain-Knowledge»

This record is stored in the VMS file system In a file with the name

<username>. model. The user name corresponds to what the user's account name is on

the particular machine.

The session records contain information that was in the short term memory when

the session was suspended or ended. Briefly, a session record consists of:

1. The stereotypes that were in effect when the session was closed. (These will
bediscussed in the next section on experts under the user model builder.)

2. The request model consisting of the concepts that were judged relevant, any
relevant phrases, and the documents that have been judged relevant.

3. If the session was suspended, the browse map if there was one, and the state
-history.

A session record has the following structure.

{De f s t rue t (Se ssi on-Re c o r d

(: Cone - Name SR-)

011 Facebook Inc. Ex. 1214 Part 3

100

(:Predicate SR?))

(Date nil)

(Stereotypes nil)

(Initial-Need nil)

(Document-Evaluations nil)

(Term-Weights nil)

(Browsing-Path nil)

(Session-Complete»

4.2.6 Experts and Short Term Memory Structure

In the current implementation of 13R, six of the eight specified experts were im

plemented. The natural language expert (NLE) was not implemented since the needed

techniques are still under development [Croft 87]. The explainer (EXP) was not imple

mented since it represented a significant piece of work in itself and it was felt that the utility

of the 13R could be demonstrated without it. The browsing expert will be discussed in

chapter five.

4.2.6.1 Control Expert (Scheduler)

4.2.6.1.1 Purpose

One of the major differences between the traditional blackboard system and 13R is

the purpose of the control expert or scheduler. In most blackboard systems, the purpose of

control is to constrain the system's activity to processing those KS instantiations that will

contribute the most to solution of the problem. In other words, the scheduler's purpose is

to conserve the resource of time.

In information retrieval, the purpose of control is to constrain the course of a

session, so that it appears logical and consistent to the user, rather than being chaotic. In

this sense, the control function could be considered a dialogue manager. What the control

012 Facebook Inc. Ex. 1214 Part 3

101

function determines is the relative importance of the activity of the system experts during a

given part of the session.

The control function must be organized to provide a flexible dialogue with the user.

The work by Belkin [83], Brooks [83], and Daniels [85J has shown that, while the same

basic steps are accomplished in every session, the order may vary considerably. Con-

sequently, the control function has to be organized so that it can handle this variability.

Their analysis goes fairly deep, examining the changes in focus down to the utterance level.

In I3R these lower level utterances are determined by the individual experts. For example,

the domain knowledge expert would decide what concepts should be presented to the user

for approval, the control expert would determine when the domain knowledge expert

should be engaged in this activity.

Because the actual requests for and presentations of information, which correspond

to the utterances of a human intermediary, are determined by the different experts, the

control expert does not have to engage in a sophisticated process to determine the course of

a session. Therefore, the control expert can be implemented as a state/transition network

with relatively few states that encodes the general plan or sequence of activities for the

information retrieval process. In this network, there are two types of states, intermediate

and leaf states. The leaf states are where priority orderings for the experts are determined.

The transitions are also of two types, normal and exception. Normal transitions encode the

standard path through the states; exception transitions are taken when the session is not

proceeding as expected. Figure 4.13 shows the structure of the network. Selection of

what transition to take is based on parameters derived from the stereotypes determined by

the UMB and by completion of certain functions; for example, the user has entered his

query.

Another interpretation of these states are that they are goals to be met. When all the

goals are met then the session is complete. Associated with each state, then, are the criteria

013 Facebook Inc. Ex. 1214 Part 3

102

to determine when that goal is satisfied. At present there are two criteria, the number of

relevant documents expected to be found and the number of searches expected to find them.

RMB DKE
BE
RMB

----I.ll"i~

SC 111' BE
'" ", RMB'.'

DKE

Figure 4.13: Control Expert States. Shaded states are leaf states
where the relative priorities of the experts are established.

4 .2.6.1.2 Conceptual Operation

The top level goal of Conduct Retrieval Session (CRS) simply represents the goal

of the system, and it is met by the three subgoals of Characterize User (CU), Characterize

Information Need (CrN), and Search for Relevant Documents (SRD) being satisfied, or the

user indicating that he wants to quit or suspend the session.

The purpose of the first subgoal, Characterize User, is to allow the UMB to engage

the user in a dialogue to determine what stereotypes apply to the user for the session. This

allows the search and document expectations to be posted in the STM. Posting of these

signals the satisfaction of the goal. Figure 4.14 shows the values that the control expert

uses based on the user's stereotypes. These values are based on the following assump-

tions .

014 Facebook Inc. Ex. 1214 Part 3

103
1. A domain expert will be able to specify the information that he is looking for

precisely.

2. A domain novice will not be able to specify the information he is looking for
with the same precision as an expert.

Because of the inability of the domain novice, it will require more searching to find relevant

information. Furthermore, the domain novice may not recognize relevant documents. The

values chosen reflect the abilities of these kinds of users.

- - - --- - --- - --- _ . _ - - -

Search Domain Knowledge Expertise

_Emphasis
Novice Expert

Exhaustive D = 15 D=20
(recall
oriented) S =4 S=2

Selective D=5 0=5tprecision- - - - -- ------------ - 1-- - -- -- - - -

oriented) S=2 S = 1

Figure 4.14: Summary of control expert expectation values based
on user stereotypes. D is the number of relevant documents expected, and S
is the maximum number of searches needed to find the relevant documents

The next goal is Characterize Information Need (CIN) which is divided into two

subgoals of Get Information Need (GIN) and Develop Need Context (DNC). The first

goal (state) only allows the RMB to operate, during which the user enters his query in one

of the query entry forms supplied by the RMB (see section 4.2.6.3). Completion of the

state is marked by the internal form of the initial need being posted. The ONC state is

characterized by an interaction between the domain knowledge expert (OKE) and the user

where the DKE suggests, for user approval, additional concepts to be added to the devel -

oping information need. Any terms approved will be added to the request model by the

RMR.

The browsing expert (BE) may also be active during thi s state, ONe. Whether or

not it is depends on the user model and the history of the session. If control expert returns

015 Facebook Inc. Ex. 1214 Part 3

104

to this state as a result of failure to retrieve the expected number of relevant documents in

the number of searches allowed or if two searches in a row fail to retrieve any relevant

documents, then browsing will be enabled. It will also be enabled if the user is categorized

as a system expert. The state is completed when either the DKE has no more terms to

suggest, or the user quits browsing.

Once the states of GIN and DNC are finished, then so is CIN, and the system

passes to Search for Relevant Documents (SRD). If the search and relevant document

expectations have not been met the control expert passes to the Search for Documents (SD)

state where the search controller selects an appropriate strategy. When finished the SC

posts the results in the STM and passes them to the interface manager (1M) for evaluation

by the user.

The control expert (CE) then goes to the Evaluate Results (ER) state. Here the user

will determine what documents and concepts are relevant. This information is of interest to

the RMB, DKE, and Sc. The user is also able to browse at this point depending on the

context of the situation. If the user is browsing the RMB and the DKE will record judge

ments made during the process. The ER state is finished when either the user exits

browsing after having evaluated at least one document as relevant or after having evaluated

the search results.

After the results of the search are evaluated and the user has not found the expected

number of documents the exception transition back to SD is taken, so that the SC can use

the revised request model for a new search. If the expected number of searches has been

taken and the expected number of documents has not been found, the CE will take the ex

ception transition from SRD to CIN and then take the normal transition from CIN to DNC.

This transition embodies the idea that the information need is still not defined sufficiently

and needs further refinement by the DKE. If no new concepts are added the system will

016 Facebook Inc. Ex. 1214 Part 3

105

suggest that the user browse if he has not already done so. If concepts are added, the CE

will return to the SD to make use of the revised need model.

4.2.6.1.3 Implementation

The Control expert is implemented using Lisp symbols to represent the states (or

goals) and rules to represent the transitions. State related information is kept on the prop

erty list of a state. This information includes the expert priority list for those states where

the experts are operable. It also includes the substates that must be completed for the state

to be completed; for example, the state CRS has three substates, GIN, ONC, and SRD that

must be completed for it to be completed.

Since the transitions are implemented by rules, it is easy to add new transitions to

the control expert. For example, say that the user model builder is expanded so that it also

monitors how the user interacts with the system. At some point, the user model builder

may wish to ask the user about how he works with the system, since the user's activity

differs from that expected by the system based on the original model. A transition can be

added that will take the system state back to the Characterize User state, so the user model

builder can pose questions to make new determinations. Addition of this transition only

requires a new rule that would respond to the conditions of the system and expectations set

up by the UMB.

4.2.6.2 User Model Builder

The purpose of the user model builder is to determine where the user fits into the

kinds of users that the system expects to find . Recognition of these stereotypical users is

embedded in the rules that make up the UMB . The second purpose is to perform house

keeping functions for orher experts by maintaining the user models kept in the long term

memory.

017 Facebook Inc. Ex. 1214 Part 3

106

In ,3R there are three kinds of information about the user that arc important to

maintain. The first is the user's domain knowledge. Since this information is primarily

used by and manipulated by the DKE, the UMB simply performs the housekeeping func

tions of storing it at the end of a session and retrieving it at the beginning. The second kind

of information is the characterization of the user along three lines, experience with comput

ers, experience with the domain of the search topic, and interest in exhaustive or precise

search. The third is the user's history, which is a record of the search sessions that the

user has with the system. This information is used primarily by the request model builder,

so here too the UMB performs housekeeping.

The primary reason for the inclusion of the user model builder is to demonstrate

how a user model can be used to modify the behavior of the system. This is different from

the use that user models were put to in GRUNDY, where the purpose was to assess the

user and find books that would match or fit with that assessment. To this end, what the

model should contain is determined by what behaviors are important to modify. Adapt

ability based on user models is another significant contribution of this thesis to the design

and implementation of information retrieval systems.

The behaviors in I3R that are important to modify are how the search controller re

sponds to the information need, and how the interface changes with the respect to the abil

ity and experience of the user. The second aspect is made up of a number of the kinds of

choices that the user has for domain knowledge entry, the amount of information to be dis

played on the two browsing maps, and how quickly the search controller will initiate a

search while the user is browsing.

The UMB determines what stereotypes apply to the user by questioning him di

rectly. It asks directly whether the user is interested in an exhaustive or a specific search to

determine the interest in recall or precision. It poses a number of choices to determine the

user's domain and system experience. These choices are for domain experience:

018 Facebook Inc. Ex. 1214 Part 3

107
1. Know very little.

2. Have read a few news magazine articles on the subject.

3. Have read a few science magazine articles on the subject.

4. Have read a textbook on the subject.

5 . Have read a few journal articles on the subject.

6. Have written journal articles on the subject.

7. Have written a textbook on the subject.

And for system experience are:

1. Seldom use a computer.

2. Use a word processor.

3. Own a personal computer.

.. - --. - - - ..-....---.- - ---4..~- - -Ha\le_ne¥_er_user-anjnformationJetrie Ya1 .s)'stem-before~_

5. Have used an information retrieval service before.

6. Frequently use an information retrieval service.

To these the user can answer yes or no; the default answer is no. If the user answer yes to

questions 5, 6, or 7 of the first group, he is considered a domain expert. If he answers yes

to 3, 5, or 6 of the second group, he is considered a system expert. From these determina

tions, the UMB posts on the STM on the *User-Model * place, its evaluations in the

form of a list. For example, ((Domain Novice) (System Expert) (Search

Recall)).

4.2.6.3 Request Model Builder

The primary purpose of the Request Model Builder (RMB) is to keep track of the

information provided by the user that pertains to the developing query. This includes the

initial definition of the query, the single word concepts (also called terms) and multi-word

concepts derived (called phrases) that the user considers important from the initial query,

from concepts presented by the domain knowledge expert, from documents presented by

019 Facebook Inc. Ex. 1214 Part 3

108

the search controller, and from browsing. Each term is stored in a hash table of records

that is keyed by the term's number and its stem. The following is the record structure kept

in the table.

(Defstruct

(Term-Representative

(: Cone-Name TR-)

(:Predicate TR?»

(Full-Text nil : Type String)

(Stem nil : Type String)

(TermNo 0 : Type Integer)

(Cfreq 0 : Type Integer) ; Collection Freq

(Qfreq 0 : Type Integer) ; Query Freq

(RelFreq 0 : Type Integer) ; Relevant Freq

(User-Judgement nil)

(Source nil)

(Concept nil)

(DK-Checked nil)

(B-Recommended))

The RMB also performs stemming of any input text (see the example in chapter

two), as well as providing different ways of initially specifying the information need.

These specifications are:

1. free text,

2. a known document,

3. a simple Boolean query - terms occurring on the same line on the input form
are implicitly ORed together, the separate lines are implicitly ANDed, and
NOT is not allowed,

4. a complex Boolean query - an arbitrarily complex query using all three
operators and parentheses.

Choices 3 and 4 are provided because many users are used to this form of specification or

they may have previously developed queries on another system that they wish to transport.

Boolean-queries in either form would be processed in-the-following way [Croft 86a].

020 Facebook Inc. Ex. 1214 Part 3

109
1. The component words are stemmed.

2. The query is transformed into a tree which is then used to generate candidate
phrases for user approval. For example, the query, (parallel OR distributed)
AND (processes OR programs) yields the phrases: parallel processes, parallel
programs, distributed processes, and distributed programs.

3. The candidate phrases are presented to the user for evaluation. This step is
required because the combinatorial nature of step 2 can produce phrases that
do not make sense.

4. Phrases approved by the user are added to the request model.

The RMB also maintains a list of documents, on the STM place *Doc-Eva 1 s * that have

been seen by the user. Each document is represented by a record:

(Defstruct (Document-Representative

(: Cone-Name DR-)

(: Predicate DR?)

(ID a :Type Integer)

···_--(tJs-e---r=--J ud ge me-rrc-n-t t 1

(Nearest-Neighbors nil)

(Terms nil)

(B-Recommend nil))

Documents that have been judged relevant have their component terms retrieved and put in

the appropriate field; documents that have been retrieved and are not judged relevant do not

have their terms retrieved.

4.2.6.4 Domain Knowledge Expert

The DKE is one of the major functions in I3R devoted to query refinement. Its re-

sponsibilities are twofold. The first is to build a model of the user's domain knowledge.

The second is to search the available domain knowledge models for concepts that are re-

lated to those supplied by the user while describing his information need.

An underlying assumption in the operation of the DKE is that the user is the final

authority on what is and is not relevant to his need. Therefore, the DKE acts as an advisor

021 Facebook Inc. Ex. 1214 Part 3

110

to the user while the query is being developed. This means that the DKE will only suggest

concepts for the user's approval, and will never automatically add any.

The DKE has, in the current design of the system, two sources in which to look for

concepts, the global domain knowledge and, if present, the user's domain knowledge.

There will be at least a minimal amount of information in the global domain knowledge

consisting of term nearest neighbors. The order in searching for candidate concepts, is to

search the user's knowledge before the global knowledge.

Searching for concepts proceeds by taking the terms in the request model that have

not been checked previously by the DKE, and using them as entry points into the knowl

edge. From these entry points a modified form of spreading activation is performed. The

links emanating from them are chosen in a specific order to find candidate concepts. The

basis for the order is to find the words that are most likely to be, in the mind of the user,

associated with the information that he is looking for.

The first links taken are the nearest neighbor links. These are relatively rare,

therefore, if they exist it is very likely that the associated term is "about" the same topic.

This not to say that the nearest neighbor is synonymous, but by reason of the association

hypothesis (see section 2.2.2.3.2.3) it will be dealing with the same topic. The second link

followed is the synonym link, since synonyms are defined to have the very same meaning.

In effect, these words have to be interchangeable. These words increase the coverage of

the request model, but do not expand meaning of it. Synonyms are especially important in

fields where there are a number of synonymous terms for the same concept. For example,

in graph theory, point, vertex, and node mean the same thing, and line, edge, and arc are

also synonymous. The third link followed is the narrower link, which tends to make the

query more specific. For example, a user may be interested in trees (botanical usage) and

the DKE might find deciduous trees and coniferous trees as narrower terms. The user may

or may not be interested in the distinction.

022 Facebook Inc. Ex. 1214 Part 3

111

The next group of links to be followed tend to expand the query beyond its original

meaning. The fourth link followed is the related link , which gets terms that bear some

general association to another term or are a cross reference. The fifth link to follow is the

phrase link that connects single word concepts to any phrases that they are members of.

The last link that is followed is the broader-than link, which finds more general terms

This activation method differs from that used in most semantic link based systems.

In those systems the purpose of the activation is to determine what relation ship, if any, that

the entry points have either to the other entry points or to some other designated set of

points in the network. In earlier systems, such as Quillian's original one [Quillian 68] , the

activation sought to find any path between the entry points, and then to explain the path,

thereby giving a description of the relationship of the points.

--- - - - t acl io fTIle words used as ail entry pomt IS marReQ~Irana wheinhe -DKE rooks

for additional terms, only those that have not been examined previously will be used as

new entry points. Before the DKE further examines the domain knowledge for additional

concepts, there is expected to be a search or some browsing activity providing some con

cept that can be used.

The other major activity of the DKE is updating of the user's domain knowledge

model. This is done when the user is initially developing his query and when he is exam

ining documents. During each of these activities, depending on the user model, the DKE

will allow the user to enter different kinds of domain knowledge. A novice user is allowed

to pick out phrases of interest, whereas an expert can enter all types.

Figures 4.6 through 4.9 show the interaction that the user has with the system to

enter some domain knowledge. The actual operation of the system works in the following

way. As the user selects the relationships, the full words are placed in list structures that

reflect the relationships and words. These list structures are kept in fields of a record that is

023 Facebook Inc. Ex. 1214 Part 3

112

part of every record that holds the content of what is displayed on the interface. This

record is defined as follows.

(Defstruct

(Corr~on-Content-lnfo

(:Conc-Name CCl-)

(:Predicate CCl?»

Display ;pointer to the display structure

Relevant-Display

Relevant-Display-Content

DK-Display ; holder for DK acquisition displays

DK-Type ;type of DK being acg~ired

DK-Words ;words or phrases being related

DK-New-Word ;holder for a word entered from keyboard

DK-Phrase ;holder for phrase being built as part of

;another relationship

Expanded ;a flag to indicate whether this node has

;been expanded in browsing

When a user selects a relationship to enter, the first thing that happens is a window is

generated to display what the user is entering; the pointer to that display is held in DK

Display. This field may actually contain up to three display pointers, depending on what is

being entered. This is the case of the situation shown in figure 4.7. When the user selects a

word from the display, it is first pushed into DK-Word, and then displayed in the DK entry

display that is either at the top or the bottom of the main document, concept, or query dis

play. When Entry OK is selected the whole DK entry, for example, (related dis

tributed parallel), is pushed onto the list kept on Relevant -Display-Con

tent. If Cancel is selected, the fields containing the information are cleared and the

display is removed.

When Done is selected for a document or a concept the connections are sent from

the interface manager to the system as a list of connections, as in:

«related (phrase concurrent processes)

024 Facebook Inc. Ex. 1214 Part 3

113

(phrase parallel p r oces s es))

<other connections»

After the domain knowledge is received by the DKE, each of the component

phrases is stemmed and the words are entered into the domain knowledge with the original

phrase put into the phrase field of the individual word record. Then, the phrases are put

into the user's domain knowledge with the single words that make them up put into the

phrase field of the record and the related phrase in the related field.

The only information that goes into the model is that which the user enters while

examining a document or the query. The concepts that the user approves while he is

evaluating the suggestions that the DKE makes go only into the request model. There is no

migration of information from the global domain knowledge to the user's domain

_____ _ Jmowledge.......Ih~pllfllQSe--QfJ.QeJlsec.sJl1odeJj£JQ-Le-Cord the relationships he makes.tbar - _

are different from those in the global model.

4.2.6.5 Search Controller

The purpose of the search controller is to select the search technique or techniques

that are appropriate given the user's interest in precision or recall, and the history of the

session. This is an innovative feature of 13R, since most systems are limited to a single

search strategy. The system has two basic kinds of searches at its disposal, a probabilistic

search based on the term independence model, and a cluster search. The cluster search in

this system has a two variations depending on the links used to define the clusters. The

primary cluster search uses nearest neighbor links; the other variation uses citation links.

Other variations of the cluster search based on bibliographic coupling links, or cocitation

links could be included, as well as searches based on different retrieval models such as the

vector space model with the cosine correlation (Salton 681 or the extended Boolean model

rSalton 831.

025 Facebook Inc. Ex. 1214 Part 3

114

As has been mentioned previously, there is as yet no way to select retrieval strate-

gies based solely on attributes of the query [Croft 841. Therefore, other kinds of in-

formation must be used. This is the prime motivation for determining the user's interest in

recall or precision. Besides the user's search interest, attributes of the search techniques

should be taken into consideration, but there is little information to work with in relation to

this. One piece of information is that cluster searches tend to retrieve different sets of doc-

uments than probabilistic searches for the same query [Croft 80] (see figure 2.1 and

scenario three in chapter 6).

In order to make use of the available information heuristics have been developed to

select what strategy to use in a particular situation. In developing these heuristics,

knowledge of how human intermediaries perform searches is of no use, since their

experience lies in manipulating Boolean queries in commercial systems. The heuristics of

the search controller can be summarized as follows.

• Initial Searches

o

o

If the user is precision oriented, use a probabilistic search. The
motivation for this is to use a well test search method as the basic
technique.

If the user is recall oriented, initiate both a probabilistic and a citation
cluster search. This will give the user the greatest number of documents
to choose from. A large volume of documents is the goal in a recall
oriented search.

• Subsequent Searches

o

o

o

If the previous search failed to retrieve more than two relevant docu
ments, use the other search technique. The search had very low
precision , so try another technique.

If the previous search was successful , more than 2 relevant documents,
use it again with the modified request model. If a search has achieved a
minimally acceptable performance, stick with it.

If two searches in a row fail to retrieve more than 2 relevant documents,
signal this failure. The control expert will then put the system in a state
where the browsing expert has priority and will suggest that the user
browse. If all of the search techniques fail, then let the user do

026 Facebook Inc. Ex. 1214 Part 3

115
some of the searching manually. This will cause the request model to be
altered, so that the searches may work better later.

The search controller maintains a record of each search, so that it can keep track of

all the documents that it has retrieved, the kind of search used, and the precision of the

search.

The searches are implemented by means of a C program that performs all of the

searches currently implemented. The search controller get s from the request model the term

numbers, the term's collection frequency and occurrence in relevant documents, relevant

phrases, and documents that have already been seen. This information, as well as what

kind of search to perform is passed to the search program.

4.2.7 Interface Manager

----- - ----- - - - ._ - -- - - -
The interface to the system is handled by an interface manager that operates inde-

pendently from the rest of the system. The interface manager communicates with the rest

of the system by placing messages on and reading messages from two places on the short

term memory. It is primarily window oriented, and the following are the kinds of win-

dows it supports:

• System Messages Window - displays textual messages from the system to the
user.

• Choices Window - display choices to the use r which may be selected by the
mouse.

.. Query Entry Window- a window produced by a text editor that allows the user
to enter a query in a variety of different ways. These different ways are
defined by forms that the user completes.

• Menus - there are two types, window and content. Window menus allow the
user to manipulate a window by scrolling the contents, susp ending it, etc .
Content menus let the user make choices about the content of a window. For
example, getting the bibliography of a doc ument, or selecting the domain
knowledge link that he wishes to use to connect two concepts.

• Text Entry Windows - these allow the user to e nter character strings. Used in
acquiring domain knowledge.

027 Facebook Inc. Ex. 1214 Part 3

116
• Document Window - Shows the document title, author, abstract, and reference.

Also used for displaying the query after it has been entered.

• Document List Window - shows the titles of documents. Used for search
results, bibliography lists, and citation lists .

• Concept Window - displays the concept as well as all of the other words it is
connected to.

• Concept List Window - displays concepts chosen by the domain knowledge ex
pert to the user for approval.

• Context Map - Gives a graphic "road map" of where the user has been while
browsing.

• Neighborhood Map - Shows the immediate neighborhood of a node in the
Context Map.

The content of the windows is controlled by the experts via the content of the rnes-

sages that they send. For example, depending on the UMB's categorization of the user,

different choices for domain knowledge entry are made available by the DKE. A domain

novice user is only allowed to select phrases he is interested in, whereas an expert can enter

domain knowledge using any of the links and can enter text as well.

The interface manager is basically composed of two parts, one part to receive mes-

sages from the experts and display appropriate information, and another to receive infor-

mation from the end user. The output portion of the 1M runs as it is called from the main

part of the system. This is done in several places. The: first is during the part of the cycle

when the Control Expert is determining what state the system is in. This allows it to pass

any control information to the 1M. The second place that the 1M is called is after all the

rules of the experts have been executed. This is when information that was the result of

rule execution is passed to the 1M for action. The messages passed to and from the 1M

have the following format

(Defstruct (Inter-Process-Message

(:Predicate IPM?)

(:Conc-Name IPM-)

(Me s s age -No 0 :Type Integer)

Msg-Id

028 Facebook Inc. Ex. 1214 Part 3

117

Choices

Value-Type ;Choice-List, Done, Concepts, Te xt, etc.

Values)

These are placed in a list on an blackboard place named To- 1M, and they are received back

in a list on a place called From- 1M. The interface basically takes each message from the

place, To- 1M, each cycle, decodes it and performs the action specified by the message-ide

These actions consist of displaying information or changing parts of the interface, such as

adding or removing choices from a menu, for example. Some of these actions provide a

response back to the system and some do not. The system looks at the From-1M place on

every cycle before the experts determine what rules to place on the agenda, so that they can

act on information collected from the user.

The input part of the interface is primarily interrupt or event driven. Each mouse

click or keystroke, depending on the window in which it occurs, causes an interrupt routine

to be executed. These routines execute at a higher priori ty than the rest of the system, so

the response to the user is fast. The only exception to this is the query input editor, which

runs as a separate process while the rest of the system is suspended.

4.3 Implementation of the Blackboard System

Many of the design decisions in the way that the blackboard system was

implemented were based on building the system inside of a single LISP image. More

specifically, each expert does not run as a separate process communicating with a process

that manages the blackboard. There are an number of reasons for this. As mentioned

previously, on a DEC VAX minicomputer running the VMS operating system, a LISP

process consumes a significant amount of resources. Running more than one process

slows down the operation of the system considerably.

Descriptions of a blackboard architecture often make the statement that knowledge

sources look for changes on the blackboard. This implies that they actively examine the

029 Facebook Inc. Ex. 1214 Part 3

118

blackboard when they are not performing some other computation, and suggests a polling

implementation. Polling in this situation would be a very inefficient implementation. A

more accurate description would be that the knowledge sources respond to changes on the

blackboard. This suggests an interrupt-driven or message-sending implementation, where

the knowledge sources are idle until something of interest happens. The difficulty of this

style of implementation is that the process that monitors the blackboard must know what

interests the various knowledge sources. In the Hearsay II system, this information was

simply that a hypothesis was posted on the level that a knowledge source examines. What

to do with the notification was up to the KS. I3R follows the message-sending view and

provides the underlying process that runs the system with the information about what

interests I3R experts

4.3.1 Rule organization and execution

Because of the requirements to support explanation and incremental development,

each expert in I3R is implemented as a separate rule system. Rules can be interpreted as a

condition/action pair or an antecedent/conseq uent pair. There is a subtle difference be

tween the two interpretations. The first is an operational view and corresponds to the "1 f

Then" construct found in most programming languages.

The other interpretation is a logical view, and means that the antecedent and the

consequent are related by modus ponens. This interpretation means that the rule is a speci

fication that is interpreted by an underlying mechanism. The rules can be used in both

directions. An example is the BNF specification of a programming language. If the

specification is used as a generator, starting with the start symbol and working toward the

terminals it is a top-down interpretation. If it used as a recognizer, working from the ter

minal symbols to the start symbol, it is bottom up interpretation.

030 Facebook Inc. Ex. 1214 Part 3

119

In I3R the rules were implemented using the condition/action interpretation. The

primary reasons for this choice were the following:

1. Rules represent the high level control structure in each expert, where the ac
tions are performed by algorithmic processes; for example, stemming or
search. It was not intended to implement the entire operation of each expert
using rules. In some cases, it would have been grossly inefficient to do so;
for example, the search processes.

2. Ease of implementation with regard to the blackboard. Since it was desired to
have more than one rule fire, if possible, during a major cycle of the system,
use of commercially available systems was infeasible.

4.3.1.1 Rule form

Tne form of a rule is relatively simple, it is a 4-tuple consisting of:

« e xpert name> <r u l e #> «conditions» «actions»)

-----:rhe-exp~11-name_and-_th~tlmoor_simpl¥_indicate-wheFe-dm-H:l le-b~1ong-s.--The-aGtion-s-and-------

conditions are the meat of the rule. The conditions are a list of 4-tuples and the actions are

a list of triples. The condition 4-tuple is:

«BB-place > <a c t i on-name> <pred i cate- name> <a r gument s » .

The essential meaning of a condition is that if a certain action is taken on a specified place,

then check the blackboard place with the given predicate and arguments. The action triple

IS:

«BB-pl ace > <a c t i on - name > <a rguments » .

Similarly, this means perform the specified action on the BB-place with the specified ar-

guments.

The actions and the place names provide the mechanism for notifying experts when

something has happened that is of interest. At each blackboard place a list is kept, indexed

by action names, of the actions that are interesting to particular experts. This information is

extracted from the condition part when a new rule is added to the system. This list is ac-

cessed by the rule execution code when an action is performed by using the bb-p] a c e'

and ac t ion- name part of the condition . For example, the bb-place called *Dorna i n-

031 Facebook Inc. Ex. 1214 Part 3

120

Knowl edge* would have on its list of actions an action called Add-OK. This action is

interesting to the request model builder, since the new domain knowledge may contain

words that are not already in the request model. When Add- OK was performed a message

would be sent to the RMB of the form (Add-OK *Oornain-Knowledge*). This

would cause all the rules of the RMB that have this action/place pair in anyone of its

conditions to become a candidate rule for selection.

4.3.1.2 Rule processing

When the rules are stored in the system for an expert, they are processed in the fol

lowing way. First, each rule is stored in an array at the location that corresponds to its rule

number. Then the condition part is broken up into individual conditions. These are used to

form an inverted list of action-place indexes that point to the rules that contain them. To il

lustrate this, an expert, E1, has the following three rules:

(EI I « PI Al <p red i c a te ><a r g s »

(P2 A2 <pred i c a t e ><a r g s ») «action part»)

(E1 2 «PI Al <pre d i c a t e ><a r g s »

(P2 A3 <p r e d i c a te><ar g s ») «action part»)

(EI 3 «PI Al <predicate><args»

(P3 A3 <pred i c a te><ar g s ») «action pa~t»).

When these rules are read in,each one is put in an array indexed by its rule number. The

condition parts are then broken up into the following triples:

(PI Al l) (P2 A2 1) (PI Al 2) (P2 A3 2) (PI Al 3)

(P3 A3 3)

These are combined into lists:

« PI AI) (12 3» «P2 A2) (1» «P2 A3) (2»

«P3 A3 (3»

These lists are pur into a hash table, keyed by the place/action pair. These place/action

-pairs are also used to key operations on places back to the experts that are interested in

them. For example place PI would have on its action list the following:

032 Facebook Inc. Ex. 1214 Part 3

121

«AI (EI <other experts») (An «experts») ...)

So, when an action is performed on a place, the experts that have rules that have that

place/action combination in their condition part can be notified, by means of a message, of

that event.

When an expert is allowed to operate by the control expert, it looks at its list of in-

coming messages notifying it that some action has occurred on a place that it is interested

in. For each one of these messages, the expert retrieves all of the rules, by means of the

index table, that have the place/action pair in their condition part. The system forms a triple

that consists of the rule number, the number of conditions it has in its condition part, and

the number of messages that refer to it. After all the messages have been processed, the list

of triples is sorted; the major criterion being the number of conditions in the condition part,

is the rule number. The system then goes down the list and takes the first rule whose

condition part is true and places it on the agenda for potential execution during that cycle.

This ordering is how the system performs conflict resolution. It is based on con-

flict resolution heuristics that give priority to the most constrained rule, the rule that is re-

sponding to the most activity in the system, and the numbering of the rules.

The actions and the predicates are implemented as Common Lisp functions. Some

of these may call-out to programs written in C.

4.3.1.3 System operation

A detailed description of the system operation is the following.

1. The scheduler determines what state it is in, which specifies what experts can
operate during this cycle of the system. This is done in the same way that the
rest of the experts determine what rules will be eligible for execution. The
stopping criterion for the scheduler is the attainment of a leaf state.

2. Any messages from the interface manager are put in the short term memory
and appropriate action-place pairs are sent to the experts.

033 Facebook Inc. Ex. 1214 Part 3

122
3. Each expert that is allowed 10 operate by the control expert looks on its list of

messages that contains action-place pairs that correspond to condition parts of
its rules.

4 . Every rule that is indexed by an action-place pair is retrieved and is ordered by
the rule conflict resolution criteria.

5. The rules are then checked in order to find the first rule that is true. This rule
is placed on the agenda for execution.

6. Once the agenda is set, it is executed in the order determined by the scheduler
in the following way.

a. The first rule is executed.

1. Any BB-place that has been altered is put on a list of altered
places.

11. For each place that is altered a message consisung of an
place/action pair is sent to each expert "interested" in that place and
action .

b. The rest of the rules on the agenda are executed in order.

I. A rule is checked to see if any of the altered places are in its
condition part. If so, then the condition part is rechecked to see if
it is valid.

11. If it is valid, then it is executed in the same fashion as the first rule
(steps 6.a.i & 6.a .2).

Ill. Get the next rule.

IV. If any more rules, go 1O step 6.b.i.

7 . Any messages for the interface manager arc sent.

8. Goto Step 1.

4.3.2 Interface Manager

The interface manager (1M) represents a significant portion of the code that imple

ments I3R. In its initial design , it was to run as a process separate from the main part of

I3R. This proved infeasible, since running two Lisp processes on a single processor

severely degrades performance. It was desired to imp lement the 1M in Lisp to retain the

flexibility and superior development environment that Lisp provides.

034 Facebook Inc. Ex. 1214 Part 3

123

With these constraints in mind, the structure of the interface manager can now be

described. Figure 4.15 presents a schematic view of the 1M structure. The * Di s p l a y -

Table * holds pointers to all of the records that define a major window on the screen,

which are displays such as documents, concepts search results, the context map, etc. Nei

ther menus nor domain knowledge entry windows are considered major windows and are

associated with a particular major window. The first six records hold pointers to the win-

dows that the system always has, which are the system messages window, the questions

window, the neighborhood map, the context map, query display, and the relevant docu-

ments display.

The other displays are lists of concepts, lists of documents, single concepts, or

single documents. Each display is represented by a record that holds information related to

the VMS UIS (User Interface System) display and a pointer to the content of the display.

The content is either an array of pointers to documents or concepts, or is a single document

or concept. The documents and concepts items are kept in hash tables, the concepts are

kept in their respective global or user domain knowledge hash tables, and the documents

are kept in a document hash table, which is keyed by document number.

Each display is represented by a record structure that keeps the size of the window,

the associated interrupt functions, pointers to the menu displays, the coordinates of the ob-

ject on the browsing map, and a pointer to the content of the display. The content is either

a document, a document-list, a concept, or a concept list. The system messages window

have no associated content and the choices displays are a special case of a menu display.

The interface manager data organization is summarized in Figure 4. I5.

035 Facebook Inc. Ex. 1214 Part 3

124

Display-List

Concept
List
Display

User
Domain
Knowledge

Global
Domain
Knowledge

Document-Table

Document
List
Display

Figure 4.15: Organization of Interface Manager data.

4.4 Summary

In this chapter, an architecture for an intelligent interface for information retrieval

has been presented. It meets the requirements established in the previous chapter in the

following way. New large scale functions can be added easily by means of adding new

experts to the system. This can be accomplished simply by adding the expert's name to the

priority lists of the control expert in the appropriate states, and writing the rules . Each ex-

pert can be incrementally developed by adding or changing rules. Rules also make explicit

the decision criteria, so that the operation of the system can be explained. The system

provides different ways for the user to enter his query and allows him refine his query by

having a flexible interface that supports the entry of domain knowledge and browsing. The

system can use multiple search strategies to find candidate relevant documents. Finally the

system allows the user to take complete control of a session by browsing.

036 Facebook Inc. Ex. 1214 Part 3

CHAPTER 5

BROWSING EXPERT

5.1 Introduction

In this chapter, the browsing expert is examined. Browsing is an alternative

method for both query refinement and information search . It gives the user direct access to

the concept/document knowledge so that he may explore to find the information he needs.

The end user is assisted in the browsing process by recommendations made by the expert

and by graphical displays that provide the user with context, showing where he has been

and the immediate neighborhood of his current location. Browsing, in concert with the

automatic construction oTtliefequest mOdel and multlple-fOrrnaTse1ifch-lech111ques-provKle- ---

a synergistic retrieval environment that overcomes the disadvantages of using browsing as

the sole means of information search.

5.2 Definition

Browsing is an informal or heuristic search throu gh a well connected collection of

records in order to find information relevant to one's need . The searcher evaluates the in

formation currently being displayed to determine its value relative to the information he is

seeking. Once this evaluation is made, the user then selects the next item to display and

evaluate. Browsing is also a feedback process, but it differs from traditional relevance

feedback in two major ways. The first difference is granularity; the user only examines one

item at a time evaluating its relevance and selecting another item for view, instead of having

to examine the results of an entire search. The second difference is the locus of control; it

is the user that determines the items to be examined rather than the system.

125

037 Facebook Inc. Ex. 1214 Part 3

5.2.1 Advantages

Bates IBates 861 points out the advantages of browsing in the context of term

selection by showing how it takes advantage of two cognitive capabilities. The first one is

the greater ability to recognize what is wanted over being able to describe it. This concept

is evidenced in the production artist renditions of criminals by means of "paste up" facial

sections, where an individual picks out facial features that they recognize of the individual

being sought. The second capability is being able to skim or perceive at a glance. This

allows a searcher to evaluate rapidly a large amount of material, determining what is useful

in it. Browsing makes use of these abilities by showing the user examples of information

that match his current model, as expressed to the interface, for evaluation. A system that

allows a user to browse and to do so quickly may provide information that the user wants

and may not have been able to describe, and quite possibly all the information that the user

needs. In this way, browsing addresses the content specification problem of query formu

lation described in chapter 2.

Besides being an alternative to a formal or parameterized search, browsing serves to

acquaint a user, unfamiliar with a domain, with the structure of its information. This tu

torial use helps those users that cannot find the right words to express their information

need or that do not know how terms in a particular domain are used. This kind of brows

ing is dependent on having a high quality thesaurus, which mayor may not be available.

Some domains, like medical science, have very well defined structures that are embodied in

thesauri such as MeSH (Medical Subject Headings). Other domains do not have such a

readily available source of knowledge, but domain knowledge collected from domain ex

perts can be a source for this kind of information.

038 Facebook Inc. Ex. 1214 Part 3

5 .. 2.2

127

Use in Other Systems

Because of these advantages, a number of systems use browsing as a means of

finding information. These systems include hypertext and text retrieval systems, database

systems [Morro 85], and object oriented programming systems [Goldberg 1983]. In the

hypertext and text retrieval systems browsing has been used for both query formulation

assistance and finding document information directly. Some prototype systems developed

to tackle the query formulation problem are CANSEARCH [Pollitt 83], CALJBAN

[Frei 831. and CoalSORT (Monarch 87]. These systems take an existing classification

system and automate it to give a user online access in order to select terms for a query. The

structure of the knowledge is organized as frames with various kinds of relationships,

depending on the field to which the system was applied , connecting them. In both CAL-

IBAN and CoalSORT the user is required to manually construct a query. CANSEARCH is

oriented directly at producing a query. Consequently, it leads the user to a greater extent

than the others to specify certain types of information. As the user makes evaluations and

selections, the system includes them in the developing query.

There have been a number of text oriented systems that use browsing as a method

of search. An early system is ZOG [McCracken 84}, which is designed to be a general

purpose human-computer interface. The fundamental mode of operation is menu selection

with the basic unit of information being a screen-full of text called a frame. The informa-

tion in a ZOG system is handbuilt using the built-in editor. The main organization is a tree,

but there is no restriction on how frames may be linked . Search is done by traversing the

frames until one finds the information one desires. ZOG 's advantages are that it is easy to

use, requires very little training, and is fast.

BROWSE IPalay 811 is a system built on top of ZOG and more oriented to doc-

ument retrieval. The set of frames combined document abstracts with a concept class ifica-

tion hierarchy, author, and journal information. It overcomes some of the limitations of

039 Facebook Inc. Ex. 1214 Part 3

128

ZOG by including a partial map of the frame structure. This map is limited to only the

concept hierarchy. A further improvement is the addition of a search capability. At any

time the user could make a selection to perform a parameterized search of the documents.

However, the query for the search still has to be manually constructed by the user.

Browsing is also found in the hypertext or dynabook systems [Kay 77, Weyer 82,

Trigg 83]. These kinds of systems are characterized by text units of approximately

paragraph or page length conn ected by various kinds of links. One class of links organizes

the text units hierarchically into subsection, section, chapters, and papers or books. Other

kinds of links provide citation referencing and editorial commentary. TEXTNET [Trigg

831 maintains over 50 kinds of links. Once the user has entered the system, he is free to

meander through the network examining the text. These systems also provide a

sophisticated user interface, giving the user a number of ways to get information about the

document that he is in.

A major problem with these systems is that browsing is, gerierally, the only way to

find information in them. Either no facility or only a rudimentary one is provided to per

form a search. Searching through that many units of text by browsing only would be a

formidable task. In one case, the dynamic book [Weyer 82], an index structure similar to

that of a book is provided so that the user can "jump" from one place to another. However,

thi s prototype was constructed from a history text, and therefore, the amount of infor

mation and the subject matter was constrained.

THOMAS [Oddy 77] is an interface program that employs a different type of

browsing. In this work, the system does not rely on a pre-existing complex, highly con

nected database of documents. Instead, a model is built by the system of the user's interest

as the user evaluates the information presented to him. The model is different from the

kind built by CANSEARCH in that it is domain independent. This aspect of THOMAS is

040 Facebook Inc. Ex. 1214 Part 3

129

significant since it relieves the user of having to manuall y construct a query , other than the

initial few terms.

Another difference in the operation of THOMAS from the previous characterization

of browsing is that the system takes the initiative, after the user entered a few initial terms,

in selecting what to show the user. Even though this would seem constraining, the system

is quite flexible in its interaction. It can determine when the user is not making progress,

and ask him to reevaluate previously seen abstracts. It is similar to the ZOG systems in that

it presents the user with only one item of information, a document abstract, at a time for

evaluation. However, the user can indicate that individual elements of the abstract are

relevant, rather that only being able to evaluate the whole item.

- - - - -- ------- ---

The disadvantages of browsing as a means of search are that given the complexity

of the concept/document database it is very easy to get lost. This is one of the major prob

lems of ZOG-like or hypertext systems. Once the user is deep into the database, he may

have forgotten how he got there and has only the current frame for context. This results

from these systems being "mernoryless," and providing only a simple interface and a

structure. Another disadvantage is that browsing is labor intensive. The user may have to

examine many pieces of information before finding anything that is relevant. In I3R this is

overcome by the availability of formal search techniques that can be used after the user has

judged a number of documents or concepts relevant.

5.2.4 User Heuristics

How does a user browse? How does he get started , and how does he determine

what to view? In order to determine what item will be di splayed next for evaluation, the

041 Facebook Inc. Ex. 1214 Part 3

130

searcher uses heuristics. Some examples of browsing heuristics that a searcher might use

in a document retrieval system are:

1. If the current document is interesting:

a. What else has been written by its authors?

b. Are any of its references interesting?

c . Are any of the documents that reference it interesting?

d Are any of the documents in the same journal issue, conference pro
ceedings, etc. interesting?

e. Are there any documents that are very similar to it in the database?

2. If the current term is interesting :

a. Does it have any synonyms, narrower terms, etc.?

b. What documents is it used in?

All of these heuristics depend on the kind of links maintained by the system. For

example, if references are not maintained, then heuristics 1band 1c cannot be used. The

richer the set of links, the more ways that the user can move through the database. By

having a rich set of links, the system is responsible for helping the user understand what

the links mean, how they might be used.und where he is in the network formed by them.

Browsing can also be seen as a form of constrained spreading activation in a se-

mantic net [Cohen 87J. The heuristics, in this case, constrain the choice of paths that the

user selects from. Each path is evidence that a document or concept is related to another

document or concept. For example, if two documents share a number of very common

terms, these documents are likely to be related only on a very general level. If one of the

documents cites the other, the likelihood of them being related is greater.

Since the concept/document database has a large variety of links, the user has many

possible ways to navigate through the information. Furthermore, because of the way that

the concept knowledge is fused with . the document knowledge, the user is given much

more latitude to find information of interest. The user can explore the structure of the do-

042 Facebook Inc. Ex. 1214 Part 3

131

main knowledge in a variety of ways. For example, he can look at all the phrases that a

particular word is used in, as well as how the concepts are used in the documents. This is

in contrast to the BROWSE system [Palay 81] where the user is restricted to the tree

structure and the few cross reference links of the hand-coded domain knowledge.

5.3 Browsing Operation

The Browsing Expert (BE) provides assistance to the user in three major ways.

First, it makes recommendations about nodes connected to the current node that it considers

likely to be useful. Second it remembers where the user has been, so that he can retrace his

steps to return to interesting nodes that he has seen in order to pursue different paths.

Third, in concert with the Interface Manager, it provides visual context, so that the user can

aVOId getung losfln the complex ana potentiany confusing stniCture ofllle ffirmoase-. - - ----- ---- ---

The BE, in a manner similar to the Domain Knowledge Expert, acts in an advisory

capacity, allowing the user to be the final judge of the usefulness of the information dis

played. The advice is given to guide and not restrict the user options; the user can always

ignore the advice of the BE, and elect to go off in a direction of his own choosing.

5.3.1 Browsing Interface

The advice given by the BE is reflected by what is displayed on the browsing maps.

These maps are generated by the 1M and consist of the neighborhood map and the context

map. The-neighborhood map (figure 5.1) gives a picture of the nodes that are immediately

adjacent to the current node of interest; the context map (figure 5.2) gives the view of a

larger area around the node of interest, so that the user can get an idea of the path that he

has been pursuing. Both maps consist of nodes representing concepts, documents, lists of

documents. and connectors connected by links marked as to their type or frequency (in the

case of document to concept links). Nodes are filled with different patterns indicating

043 Facebook Inc. Ex. 1214 Part 3

132

whether they have been visited, recommended, or judged relevant. The shape of the node

indicates what kind of item it represents; circles represent documents, squares represent

lists of documents, octagons represent concepts, diamonds represent connectors, and ova

sized boxes represent reminders. Reminders are markings made by the user on the maps to

indicate some node that he would like to come back to and examine at another time.

Ne n t
P...e uluus
Initial
Last
Help

I I

North
North-East
East
south-East
South
South-West
West
North-West
Suspend
Help

Figure 5.1: Sample Neighborhood Map. Markings on the links
indicate the kind of link: C = Citation, N = Nearest Neighbor.

When the user views the node again, the reminder is removed. This gives a cue to the user

if he is scrolling around on the maps that there is something that at one time caught his eye.

The possible number of links that can emanate from any node, representing a con-

cept, is potentially large. A moderately frequent single word concept (also called a "term")

may be found in as many as fifty documents, even in the CACM test collection. Besides

this, a concept can be linked to many other concepts by the different links. For example, a

044 Facebook Inc. Ex. 1214 Part 3

133

term such as "algorithm" in a computer science document collection could be a part ofrnany

phrases.

o
2 C

------. -~--------.--t

1

b

Figure 5.2: Sample Context Map.

The situation for documents is similar. With reference links, a document may have

anywhere from just a few links , in the case of a short correspondence with one or two

045 Facebook Inc. Ex. 1214 Part 3

