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(ABSTRACT) 

Previous work by Fox has extended the vector space model of information retrieval and its imple

mentation in the SMART system so different types of information about documents can be sepa

rately handled as multiple subvectors, each for a ditferent concept type. We hypothesized that 

relevance of a document could be best predicted if proper coefficients are obtained to reflect the 

importance of the query-document similarity for each subvector when computing an overall simi

larity value. Two different research collections, CACM and lSI, each split into halves, were used 

to generate data for the regression studies to obtain coefficients. Most of the variance in relevance 

could be accounted for by only four of the subvectors (authors, Computing Review descriptors, 

links, and terms) for the CACM l collection. In the ISll collection, two of the vectors (terms and 

cocitations) accounted for most of the variance. Log transformed data and samples of the records 

gave the best RSQ's; .6654 was the highest RSQ (binary relevance). The regression runs provided 

coefficients which were used in subsequent feedback runs in SMART. Having ranked relevance 

did not improve the regression model over binary relevance. The coefficients in the feedback runs 

with SMART proved to be of limited usefulness since improvements in precision were in the 1-5% 

range. Although log data and samples of the records gave the best RSQ's, coefficients from log 

values of all data improved precision the most. The findings of this study support previous work 

of Fox, that additional information improves retrieval. Regression coefficients improved precision 

slightly when used as subvector weights. Log transfonning the data values for the concept types 

modestly helped both the regression analyses and the retrieval in SMART. 
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1.0 Introduction 

1.1 Probabilistic retrieval 

The probabilistic model for information retrieval ((Yu and Salton, 1976 and Robertson and Sparck 

Jones, 1976) as cited in van Rijsbergcn, 1981) assumes that the terms in a query and the terms in 

a collection of documents are used in an initial retrieval to obtain a sample of the documents. The 

terms in the sample are then used to estimate the probability that each document in the collection 

is relevant or not relevant. The collection has usually been indexed by building a vector of terms 

for each document where the vector consists of binary values ( l for presence - 0 for absence) for 

all terms in the collection. A document thus is represented as a vector of length n: 

Term(l), Term(2) ... Term(n) 

For a given query it is possible to estimate a probability of relevance for each document in the 

collection by computing an inner product of "term relevance" values for all terms considered: 

Probability(relevanceldocument) = SUM [term_relevance(i) * Term(i)] 
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where: 

term_relevance(i) = [r / CR - r)] / [(n - r) / CN - n - R + r)] 

and: 

N = number of documents 

n = number of documents with term i 

R = number of relevant documents 

r = number of relevant documents with term i 

The Bayesian decision rule can be used to the decide whether a document has a high enough 

probability estimate to be chosen as relevant: 

Probability(relevanceldocument) > Probability(non-relevanceldocument) 

1.2 lufornzation retrieval in SMART 

The SMART information retrieval system (Salton and McGill, 1983) has options to use the prob

abilistic model to rank documents that are retrieved as part of a feedback process. Initial retrieval 

is usually accomplished after computing a cosine similarity (Salton and McGill, 1983) between the 

terms in a query and the terms in documents. Those documents with the highest similarity have 

the lowest ranks (also the highest probability of being relevant). The user is presented with a list 

of the "top ranked" documents. The user can then decide which of the "top ranked" documents 

are relevant. SMART then can perform a vector feedback search (if desired) by adding any new 

terms from the relevant documents to the initial query and subtracting those terms from the initial 

query, which only appeared in the documents that were judged to be nonrelevant. The resultant 
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feedback query is then used to provide a new ranked list of documents (Salton and McGill, 1983). 

Alternatively, a probabilistic feedback can be performed. 

Fox (1983a) has modified the application of the vector and probabilistic models to utilize additional 

information. This consists of author, date of publication, bibliographic coupling, bibliographic 

links, Computing Reviews' categories, and cocitations. SMART has been modified to add the 

additional information as subvectors (Fox, 1983a) to the document-term vectors of the original 

vector/probabilistic system. As modified, the collection then consists of extended vectors where the 

information is separated into subvectors: 

Document_identification_number, 

Terms, authors, date of publication, bibliographic coupling, 

bibliographic links, Computing Reviews' categories, cocitations 

1.3 Resea1·ch goals 

The goals of this study were to statistically examine the usefulness of the subvectors associated with 

different concept types (Fox, 1983a) and to determine if coefficients obtained via multiple re

gressions could be used to further enhance SMART's retrieval using the extended vectors. A less 

significant goal was to detennine if knowledge of relevance as a ranking (from least (1) to most (4) 

relevant) would facilitate prediction, thus yielding better coefficients. To accomplish these objec

tives two different research collections were analyzed. These had been loaded into a version of 

SMART, which has been installed on a VAX-11/785 running UNIX (Pox, 1983b). 
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The collections, which have been described elsewhere (Fox, l983b), consist of 3,204 abstracts of 

documents which appeared ( 1958 - 1979) in Communications of the Association for Computing 

Machinery (CACM Collection) and 1,460 abstracts of documents from various sources ( 1969 -

1977) concerning information science, along with citation data obtained from the Institute for Sci

entific Information (lSI Collection). The CACM collection has information necessary for all of the 

above mentioned extended vectors, but the lSI collection has only two additional information 

components (subvectors), author and cocitations. For both collections, a set of queries with known 

document-query relevances was used to generate data for the regression studies. Precision (the ratio 

of relevant documents retrieved to all documents retrieved for that query) averages were the prin

cipal measure used for determining the effectiveness of all retrieval runs with SMART. 
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2.0 Methods 

2.1 Division of the collections 

Both the CACM and lSI collections were divided into two approximately equally sized sub

collections by randomly selecting documents. The collections were split so that all analyses could 

be performed on one half of the data and the results obtained could be tested on the other half of 

the data. The dividing procedure used kept the same proportion of relevant to nonrelevant docu

ments with regard to sets of queries for each collection. In the description and discussion that fol

low these sub collections are referred to as the CACM 1 or CACM2 and lSI 1 or ISI2 Collections. 

2.2 Descriptioll of the collectious aud vectors 

SMART was used to prepare data sets, for both the CACM! and ISil collections, which consisted 

of query identification number (QID), document identification number (DID), rank in the prob-
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abilistic retrieval, and a similarity measure (SIM). However, as it was based on the value of the 

similarity, rank was not used in this study. A separate data set was obtained for each concept type, 

which had the appropriate measure of similarity for all QID - DID pairings. 

for use in tables and figures the concept types will be represented by the following abbreviations: 

AUT Authors 

CRC Computing Reviews' Category 

DTE Date of Publication 

TRM Terms 

nne Bibliographic Coupling 

LNK Bibliographic Links 

coc Cocitations 

for the CACM I collection, there were 7 equal len!,>th data sets, one for each concept type, and a 

data set which listed the relevance judgment (ranked from 0 to 4) for each QID - DID pairing. 

The Statistical Analysis System (SAS, 1985) was used to merge the 7 concept type data sets with 

the relevance judgment data set by matching QID and DID. Tllis gave a data set, which has QID, 

DID, and 7 different similarity measures (independent variables) and relevance judgment (depend

ent variable) for subsequent analysis. 

For the ISil collection, only three concept types were available. Thus, only three concept type data 

sets with their appropriate sirrlllarity measure were obtained from SMART. Also, only binary rel

evance judgments were available for the ISil collection. SAS was used to merge the three concept 

type data sets with the relevance data set by matching a query and document. Thus, a data set with 
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three similarity measures (independent variables) and relevance judgment was constructed. 

Table 1 on page 8 shows the nature of the matrix that resulted from the merger of the 7 concept 

type data sets and the relevance data set. 

2.3 Descriptive analysis of the data 

SAS, the Statistical Analysis System, Version 5 ( 1985) was used to produce all statistical and 

graphical results. For all statistical tests of significance a threshold of .05 was used. 

Procedures MEANS and UNIVARIATE were used to obtain descriptive statistics for all concept 

types in the two collections. As the distributions of values for the concept types were quite variable, 

they were transformed by taking the natural log of the similarity measure plus one. The log trans

formation was chosen, because the data were highly positively skewed due to the large values that 

occur in itmer product calculations, when there is a good match between a query and document. 

Log and square root transformations arc good choices for positively skewed data, but the log 

transformation is more effective at bringing the large vatues closer to the mean. This made the 

distributions much more symmetrical. The variables for the two collections were summarized in 

tables and some representative histograms and can be found in section "Description of the data" 

on page II. 

2.4 Obtaining regression coefficients for use in SMART 

Procedure General Linear Model (GLM) was used for most regressions with models specified so 

that regressions were run without an intercept being calculated. The intercept would have been 
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Table I. Organization of the CACM I merged data set. 

R PROBABILISTIC "SIMILARITY" FOR EACH CONCEPT TYPE 
N 
K 

Q D R A c D T B L c 
I I E u ·R T R B N 0 
D D L T c E M c K c 

2 98 0 0.000 0.000 0.0000 0.13 0.000 20.816 0.000 
2 655 0 0.000 0.000 0 . 0000 38.28 0 . 000 0.000 0.000 
2 1138 0 0.000 3.620 0.0000 7.78 87 . 531 0.000 0.000 
2 1179 0 0.000 0 . 000 0.0000 8.35 73.654 27.7 54 117.956 
2 1314 0 0.000 3.620 0.0000 4 . 09 6.939 0.000 0.000 
2 1426 0 0.000 4.895 0.0000 9.61 0.000 0.000 0.000 
2 1429 4 428.254 4 . 730 20.8158 228.92 143 . 040 97.140 117.956 
2 1435 0 0.000 13.877 0.0000 37.15 0.000 0.000 0.000 
2 1541 4 484.816 185.923 27.7544 143.27 0.000 84.316 0.000 
3 486 0 0.000 0.000 0.0000 2.41 0.000 0.000 41.250 
3 507 0 0.000 0.000 0.0000 63.35 0.000 0.000 0.000 
3 561 4 252.947 0.000 10.4079 282.14 87.228 166.526 57.903 
3 816 0 0 . 000 0.000 0.0000 60 . 52 0.000 0.000 0 . 000 

NOTE: QID = query identification number 
DID = document identification number 
RNKREL = ranked relevance 
Other variables are as previously described . 
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useless in subsequent runs, which tested the coefficients obtained from regressions. For the CACM 

collection, two, four, and all variable models were run on raw and log transformed data. In the lSI 

collection studies, two and all variable models were used. An example of one of the regression 

equations (two variable model) is as follows: 

Relevance = al * (Similarity_TRM) + a2 * CSimilarity_LNK) + Error 

Where al and a2 are regression coefficients for terms and 

bibliographic links respectively. 

In addition to the linear regressions pertormed with GLM, logistic regression (Procedure LOGIST) 

and all possible regressions (Procedure REG) were used on a preliminary data set. 

2.5 Testillg the usefullless of the coefficiellts as weights ill 

SMART 

Base runs were made in SMART for both halves of both the CACM and lSI collections. These 

runs used combinations of concept types that corresponded to the two and three variable models 

for the ISll Collections and two, four, and seven variable models for the CACM! Collection. As 

no coefficients were used in these runs , they provided equal weights for all concept types for com

parison with runs having coeflicients. The coefficients obtained in the regression runs were then 

used as weights in feedback runs to try to improve precision in SMART. The runs using coeffi

cients were compared against base runs, which had no coefficients but did use the same concept 

types. The coeflicients that were developed for CACM I and ISll were also tested on CACM2 and 

ISI2. 
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2.6 Threshold tech11iques 

I Iistograms and graphs of the data were examined for possible threshold values for the concept 

types. Threshold values could be useful, if it could be shown that a value as high or higher than a 

certain percentile for a concept type gave a high probability that the document was relevant. Ac

cordingly, the 60th, 75th and 90th percentiles were used as thresholds to test their usefulness. 

Variables were created for each concept type at each of the above percentiles. The corresponding 

threshold variables were given a value of 1.0 when the concept type value exceed the threshold and 

0.0 otherwise. The regressions were then rerun with the additional variables for each threshold. 

These results of these runs are reported in "Use of threshold techniques" on page 33. 
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3.0 Results 

3.1 Descriptioll of the data 

Descriptive statistics for the CACM! collection are given in Table 2 on page 13. Vectors for the 

seven concept types show considerable variation, as they range from zero to four digit numbers. 

All show relatively high values for CV (the coefficient of variation, from 235.0 to 674.4) and all are 

highly positively skewed (from 4.22 to 17.3). This is due to the high values that resulted from the 

inner product calculations when concept types in the query obtained good match with a document. 

Kurtosis measures were all large (from 8.8 to 381.5) due to peakedness caused by the high propor

tion of low or zero values in most concept types that were produced when there was a poor match. 

As seen in Table 3 on page 14 the variables in the lSI 1 collection were similar. The numbers range 

from 0 to 1188.1 and had high skewness (from 3.4 to 5.8) and high kurtosis (from 17.1 to 45.4). 

Their CV's were somewhat lower ( 163.8 to 356. 7). Although linear regression and the F test are 

robust, these data are rather variable and quite different from the kind of examples usually shown 

in textbooks on regression analysis. Some of the variation is due to the extremes in values, but 

much of the variability is due to the sparseness of the QID- DID array. Evidence of the sparseness 

Results II 



is seen in Table 2 on page 13 and Table 3 on page 14 regarding length, the column that gives the 

number of non-zero values for each vector. In fact, five of the seven concept types for CACM! 

have non-zero values in from 8.8% (AUT) to 17.9% (BBC) of the data records. In the ISll col

lection one of the three subvectors has only 13% of its values that are non-zero (AUT). An at

tempt to compensate for the sparseness is discussed under "Linear regressions on the CACM 1 

collection" on page 19. To try to minimize the effect of the high variability in the data, a natural 

log transformation was used on all variables and is reported in Table 4 on page 15 and Table 5 

on page 16 for the CACM 1 and ISil collections respectively. As can be seen in these two tables, 

the transformation docs make the distributions considerably more symmetrical and reduces ex

tremes among the various measures. 

In the CACM 1 collection, skewness (0 is normal) was reduced to more acceptable levels ( -.009 to 

2.53), kurtosis (0 is normal) was reduced similarly ( -.44 to 10.2) and CV ( 100 is normal) was tighter 

( 52.3 to 265.0). In the ISil collection, skewness dropped ( -.37 to 2.6), kurtosis declined ( -1.4 to 

5.1), and CV was lowered (39.5 to 270.2). Thus, in both collections, the distributions of the con

cept type variables are more evenly matched and closer to nonnal than for the raw data. 

I Iistograms of raw data and log data further illustrate the effects of the log transformation on the 

data. I Iistograms in Fi~:,rure 1 on page 17 show the impact of the log transformation on TRM in 

the lSI 1 collection (sample data). The large value of 4.8 for skewness in the raw data is shown by 

the long positive tail. I lowcver, the log transformed data show no tail in either direction, as 

skewness has been reduced to -.154. Not all of the histograms show such dramatic improvement 

as those seen in Figure 1 on page 17, but all of the concept types do show improved distributions. 

Figure 2 on page 18, which is of raw and log transformed CRC from the CACM! collection (all 

records) is an example of a variable with only modest improvement. 
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Table 2. Descriptive statistics ami vector length of raw CACM I data. 

VARIABLE MEAN c.v. MINIMUM MAXIMUM 
VALUE VALUE 

AUT 8.38 601.6 0 1152.3 
CRC 4.24 668.1 0 187.9 
DTE 3.41 674.4 0 87.8 
TRM 47.69 235.0 0 2389.0 
BBC 10.89 313.9 0 433.2 
LNK 11.62 486.0 0 1574.3 
coc 10.76 603.7 0 1602.0 

VARIABLE SKEWNESS KURTOSIS NUMBER 
NON-ZERO 

AUT 14.0 268.3 314 
CRC 7.3 78.9 1603 
DTE 4.2 24.3 725 
TRM 7.6 90.5 3899 
BBC 4.7 30.2 819 
LNK 12.1 226.3 616 
coc 17.3 381.4 566 

NOTE: There were 4035 records in this set. 
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Table 3. Descriptive statistics and vector length of raw IS II data 

VARIABLE MEAN c.v. MINIMUM MAXIMUM 
VALUE VALUE 

TRM 45.7 176.6 0 1188.1 
AUT 3.8 356.6 0 200.3 coc 33.7 163.7 0 727.5 

VARIADLE SKEWNESS KURTOSIS NUMBER 
NON-ZERO 

TRM 5.8 45.4 5449 
AUT 5.2 36.4 710 
coc 3.4 17.1 3400 

NOTE: There were 5456 records in this set. 
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Table 4. Descriptive statistics of log CACM I data 

Results 

VARIADLE 

AUT 
CRC 
DTE 
TRM 
DOC 
LNK 
coc 

VARIADLE 

AUT 
CRC 
DTE 
TRM 
DDC 
LNK 
coc 
NOTE: 

MEAN 

0.33 
0.81 
0.50 
2.83 
0.68 
0.53 
0.50 

c.v. 

351.8 
138.4 
218.4 
52.3 

214.5 
257.1 
265.0 

SKEWNESS KURTOSIS 

3.39 
1.07 
1.84 

-0.00 
1.95 
2.49 
2.53 

10.20 
0.05 
1.75 

-0.44 
2.33 
4.90 
5.16 

MINIMUM 
VALUE 

0 
0 
0 
0 
0 
0 
0 

Number of non-zero values and number of records 
are given in Table 2 on page 13 

MAXIMUM 
VALUE 

7.1 
5.2 
4.4 
7.7 
6.1 
7.3 
7.3 
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Table 5. Descriptive statistics of log IS II data 

Results 

VARIABLE 

TRM 
AUT 
coc 

VARIABLE 

TRM 
AUT 
coc 
NOTE: 

MEAN 

3.19 
0.40 
2.34 

c.v. 

35.2 
268.5 
74.2 

SKEWNESS KURTOSIS 

-0.12 
2.51 

-0.03 

0.48 
4.85 

-1.30 

MINIMUM 
VALUE 

0 
0 
0 

Number of non-zero values and number of records 
are given in Table 3 on page 14. 

MAXIMUM 
VALUE 

7.1 
5.3 
6.6 
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Figure I. Histograms of raw versus log terms in sample IS II tlallt. 
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Figure 2. llistogrnms of rnw versus log Computing Reviews categories in nil CACM I llnta. 
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3.2 Li11ear regressions on the CACM 1 collection 

SAS Procedure GLM was used to run full models. of all concept types as independent variables and 

ranked relevance judgment as the dependent variable. These runs were performed with the raw data 

and log transformed data and are summarized in Table 6 on page 22. However, the proportion 

of nonrelevant to relevant documents was too high, more than 9 to l. This problem of unbalanced 

groups was partly responsible for the low coefficient of determination (RSQ) for the raw data (.387) 

and for the log data (.396). In order to improve the proportion of relevant versus nonrelevant re

cords, most of the nonrclevant documents were randomly discarded leaving a data set that had 

equal proportions of relevant versus nonrelevant records (766 total records). This modestly im

proved the RSQ of the raw data to .445 and considerably improved the RSQ of the log transformed 

data to .627, as can also be seen in Table 6 on page 22. The sparseness of many of the concept 

type subvectors is also probably contributing to the relatively low RSQ (see "Description of the 

data" on page II), but nothing could be done about that. 

Similar runs were made using binary relevance as the dependent variable. The results of these re

gressions are given in Table 7 on page 23. The same kind of improvement in RSQ that was seen 

in Table 6 on page 22 was found by discarding most of the nonrelevant records and balancing the 

relative number of relevant versus nonrelevant documents. Ilowevcr, the improvement between 

raw data and log data is a little greater, by approximately 1% to 4% . furthermore, the binary rel

evance data with the log transformed indcpemlcnt variables gave a better RSQ than the ranked 

relevance (.6659 versus .6274). 

A plot of predicted scores versus residuals for the best log sample model with binary relevance data 

is displayed in Pigure 3 on page 24 and shows a fair degree of closeness for relevant documents ( l.O) 

and considerable spread for nonrelevant documents. A similar plot for ranked relevance data is 
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shown in Figure 4 on page 25, but here the relevant values are divided into values from 1.0 to 4.0. 

Again, the relevant documents show less spread than the noruelevant. 

The concept type variables for each regression run were ranked by their Type III Sum of Squares 

(Si\S, 1985), which gives the sum of squares for each variable independently of its order in the re

gression model. From the rankings, some two and four variable models were chosen and run using 

the same two dependent variables for all records and for the sample set of records. The coefficients, 

RSQ's, and rankings are also provided in Table 7 on page 23 and Table 6 on page 22 for binary 

and ranked relevance data respectively. 

The two variable model (TRM and LNK) using raw data and all records gave 86% of the RSQ 

of the seven variable model for both dependent variables. For sample raw data, 83% and 86% of 

the seven variable RSQ was obtained. For log transformed data, all record regressions with the 

same independent and dependent variables gave 79% and 81% of the original seven variable RSQ 

(ranked.and binary relevances respectively). However, the sample of log data gave 98% of the seven 

variable RSQ for both ranked and binary relevance data. In fact the two variable model for log 

translormcd imlcpcndent variables and binary relevance data gave a higher RSQ than any of the 

other seven variable models. The four variable model (AUT, CRC, TRM, and LNK) gave modest 

improvement, but clearly most of the variance is accounted for by TRM and LNK. 

All possible two-way interactions were tested (using proc GLM in SAS) on ranked relevance and 

binary relevance data. Several were found to be significant at the .05 level. Table 8 on page 26 

shows interactions for binary and ranked relevances for log sample data, the best models. For ex

ample, there is a significant interaction between AUT and TRM using the reduced sample log data 

for ranked relevance. This makes sense as authors may write more than one article in the same 

subject area using common terms and few articles in other areas with different terms. The amount 

of variance explained by this interaction was relatively small, less than 3% of that of TRM. 

However, this interaction accounts for more variance than the three lowest ranking concept types, 

which did not add much predictive ability to the seven variable model (see Table 6 on page 22) 
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either. Other interactions seemed reasonable, but also did not account for much variance. In fact, 

all of the interactions together only raised RSQ from .6274 to .6432. Additionally, some inter

actions had negative coeflicients, which indicated inverse relationships with the other variables. 

Furthennore, as SMART is not currently programmed to use interactions, they were not used on 

subsequent regression runs. A subset (based on the largest two-way interactions and the concept 

types) of the possible three-way interactions was tested with none being significant at the .05 level. 
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Table 6. Regression coefficients, ranks, ami RSQ's for CACi\1 ranked relevances. 

Raw data 

l\tlodel Rank All data Rank Sample Rank 

yariables coefficients coefficients 

AUT 2 .0037* 3 .0027* I 

CRC 5 .0069* 4 .OI20* 3 

DTE 6 .0060* 6 .0096* 5 

TRM I .002I* I .0022* 4 

BBC 4 .0027* 2 .0070* 7 

LNK 3 .0031 + 5 .0025* 2 

coc 7 .0006 7 .0009 6 

Model RSQ .3869 .4452 

TRl\1 1 .0033* I .00415* 1 

LNK 2 .0050* 2 .0049* 2 

Model RSQ .3362 .3853 

AUT 3 .0039* 3 .0030* 1 
CRC 4 .0077* 4 .0147* 4 

TRM 1 .0074* 1 .0029* 3 

LNK 2 .0042* 2 .0041"' 2 

Model RSQ .3753 .4192 

~E: " = significant at the .05 le,·cl 

Log data 

All data Rank Sample 

coefficients coefficents 

.2619* 4 .1300* 

.0653* 3 .I645* 

.0552* 5 -.0808 

.0262* 1 .2724* 

.0014 7 .0120 

.1788* 2 .1893* 

.0135 6 .0176 

.3959 .6274 

.0630* I .3287* 

.3063* 2 .2719* 

.3120 .6152 

.2740* 4 .1003* 

.0646* 3 .1633* 

.0327* 1 .2699* 

.1403* 2 .1938"' 

.3922 .6260 
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Table 7. Rcl(ression eoeflieients, ranks, and RSQ's for CACi\1 binary relevances. 

Raw data 

1\~lodel Rank All data Rank Sample Rank 

yariables coefficients coefficients 

ACT 2 .00093* 5 .0006I * l 

CRC 4 .00270* 3 .00509 3 

DTE 6 .00192* 6 .00300 5 

TRl\1 I .00060* 2 .00059* 4 

BBC 5 .00098* 1 .00243• 7 

LNK 3 .00094* 4 .00074* 2 

coc 7 .0002I * 7 .00029 6 

Model RSQ .3721 .4386 

TRl\1 I .00096* I .0012I * 2 

LNK 2 .OOI51* 2 .00147* l 

Model RSQ .3212 .3678 

AUT 3 .00099* 4 .00071 + l 

CRC 4 .00312* 3 .00596* 4 

TRM l .0070* l .00084* 3 

LNK 2 .00128* 2 .00128* 2 

Model RSQ .3577 .4056 

NOTE: * = signilkant at the .05 level 
- --

Log rlata 

All data Rank Sample 

coefficients coefficents 

.0740* 5 .0193 I 

.0228* 3 .0604* 

.0167"' 4 -.0249 

.0084* 1 .0!576* 

-.00066* 7 -.00167* 

.05729* 2 .0667* 

.00655 6 .0111 

.4064 .6659 

.01997* 1 . 10446* 

.09478* 2 .08194* 

.3294 .6538 

.0777* 4 .01007 

.0222* 3 .05829* 

.01047* l .08679* 

.06138* 2 .06903* 

.4024 .6640 
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Figure 4. Predicted versus residuals for log sample ranked data, CACM I collection. 
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Table 8. Sums of squares and probability values for CACMJ two-way interactions. 

RANKED RELEVANCE DATA 

SOURCE SUM OF SQS F VALUE PR > F 

AUT 1733.250 852.55 0.0001 
CRC 69.646 231.01 0.0001 
DTE 8.562 4.21 0.0405 
TRM 378.762 186.30 0.0001 
BBC 8 . 829 4 . 34 0.0375 
LNK 53 . 929 26.53 0.0001 
coc 0.621 0.31 0.5806 
AUntCRC 16.005 7.87 0.0051 
AUT*TRM 10.277 5.06 0.0248 
AUnEBBC 10.966 5.39 0.0205 

BINARY RELEVANCE DATA 

SOURCE SUM OF SQS F VALUE R > F 

AUT 156.031 942.08 0.0001 
CRC 3.271 321.64 0.0001 
DTE 1. 081 6.53 0.0108 
TRM 39.924 241.05 0.0001 
BBC 0.649 3.92 0.0481 
UlK 7.164 43.25 0.0001 
coc 0.247 1. 49 0.2220 
AUTlECRC 2.318 14.00 0.0002 
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3.3 Li11ea•· reg•·essions 011 the IS/ 1 collection 

Regressions on the lSI l collection followed the same general pattern as those for the CACM l 

collection, but there were only three concept types (TRM, AUT, and COC) and only binary rele

vance data. Full models on raw data gave (see Table 9 on page 28) RSQ's of .2356 and .2812 for 

all records and a sample respectively. Pull models of log transformed data gave RSQ's of .3162 (all 

records) and .481 (sample). i\. plot of predicted scores versus residuals for the best log sample model 

is displayed in Figure 5 on page 29 and shows a fair degree of closeness for relevant documents ( 1.0) 

and considerable spread for nonrelevant documents. As shown in Table 9 on page 28, the variables 

TRM and COC were ranked one and two by Type III Sums of Squares. Thus, they were used in 

two model runs which had RSQ's of 96% to 99.5% of the full model RSQ's. 

All possible two-way interactions were done and all were significant at the .05 level, but they ac

counted for little variance (see Table 10 on page 30, which has interactions for the best model, log 

sample data). For example, the regression for log sample improved from .481 to .4978. However, 

the coellicient for AUT became negative and one of the interactions (TRM with LNK) was also 

negative. As for the CACM 1 collection, coeJiicients for the interaction terms were not used with 

SMART. 
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Table 9. Regression coefficients, ranks, and RSQ's for lSI data. 

Raw data 

1\tlodel Rank All data Rank Sample 

variables coefficients coefficients 

TRJ\1 I .0017* 2 .0017* 

AUT 3 .0035* 3 .002834* 

coc 2 .0018* I .00283* 

Model RSQ .2812 .2812 

TRM I .0020• 1 .0020"' 

coc 2 .019* 2 .0029* 

Model RSQ .2300 .2784 

1\0TE: * = significant at the .05 level 

--- --- --- ---~ 

Log data 

Rank All data Rank Sample 

coefficients coefficents 

I .06I4* I .1092* 

2 .0608* 3 .0281 * 
3 .0256* 2 .0373* 

.3162 .4810 
I 
I 

I .0667• 1 . I128* I 

2 .0314* 2 .0400* ' 

.3036 .4790 
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Figure 5. Predicted versus residuals for log sample for the lSI collection. 
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Table I 0. Sums of squares anti probability values for IS II (log sample data) interactions. 

SOURCE SUM of SQS F VAlUE PR > F 
TRM 777.610 3126.57 0.0001 
AUT 4.869 19.58 0.0001 coc 11.332 45.57 0.0001 
TRM*AUT 7.240 29.11 0.0001 
TRM'lfCOC 9.867 39.67 0.0001 
AUT'lfCOC 2. 774 11.16 0.0008 
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3.4 Additional r~gressiou techniques 

Other regression techniques, including all possible regressions (using procedure REG in SAS) and 

logistic regression (using procedure LOGIST in SAS) were tried. In these runs different coefficients 

were obtained, but the same four predictor variables were most important in the models (TRM, 

AUT, LNK, and CRC). They did not give improved RSQ, but rather were much worse with 

RSQ's of approximately half that of the models described earlier. Additionally, the logistic re

gression program gave an intercept, which was not desirable for use in SMART. 

3.5 Use of regression coefficients in SLvlART for CACMJ 

and /S/1 collections 

Table 11 on page 34, Table 12 on page 35, and Table 13 on page 36 show the average precision 

values for base runs and precision values for the coeflicient runs for CACM 1 and lSI 1 collections. 

Base runs are retrievals, which used the concept type values, but which give equal weights to the 

various concept types. ln the coefficient runs the various concept type values are wieghted by the 

regression coet1icients. 

Some minor improvement was found in most runs. For example, in the lSI 1 collection, precision 

with coefficients from the sample log regressions showed a 2.9% improvement for the two concept 

type run and a .7% improvement for the three concept type run. Also tor ISil runs, both raw data 

and log data in the two and three concept type runs showed very small improvement ( .4% • 1.1% ), 

while coeflicients from a sample of raw data were worse (.4% - 1.2% ). The best precision was 

obtained using coefficients developed from log data with all records included. 
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In the CACM 1 runs, coefficients from log data and all records with binary relevance gave the best 

improvement over the base runs ( 1% for the seven concept type model to 5% for the two concept 

type model), but the matching sample log runs were all worse (3.3%- 9.4%). In general, all of runs 

using all data for both binary and ranked relevance measures in the CACM 1 runs yielded improved 

precision values (l% - 5%) with the exception of binary relevance raw data all, which was worse 

by nearly 15% (see Table 7 on page 23). 

3.6 Use of regression coefficiellts ill SMART for CACM2 

and /S/2 collectiolls 

Table 14 on page 37, Table 15 on page 38, <md Table 16 on page 39 show the average precision 

values for base runs and precision values for the cocflicient runs for CACM2 and ISI2 collections. 

The base runs in CACM2 and ISI2 of each collection arc not as high as those of CACM! and ISll. 

That was expected, because the relevance weights were computed over a di1fcrcnt document sample. 

In the CACM2 base runs, when the other concept types were added to terms, consistent improve

ment in average precision was found. I Iowever, in the ISI2 base runs, when the other concept types 

were added to terms, average precision was consistently lower (see Table 14 on page 37). For the 

runs with coefficients that were developed using the CACM I and IS I 1 collections, precision im

proved progressively as concept types were added to terms. However, all of the runs which used 

coefficients had lower precision values than the corresponding base run. The best CACM2 preci

sion value for a run with coefficients used coeflicients that had been obtained from all raw data with 

ranked relevance in CACM! (.1987), while the best CACM2 base run was for log data with all 

concept types in the model (.2251). Though disappointing, these results are not surprising - term 

relevance weights and coefficients for concept types were derived through a feedback sampling 

process on a different half of the collection. 
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3.7 Use of threshold techniques 

I lis to grams for all of the concept type values were examined for possible threshold values. A 

threshold would be a value for a concept type, which when reached or exceeded would give a very 

high probability that that document would be relevant, without regard to the values of the other 

concept types. The 60th, 75th and 90th percentiles for each concept type were tested as thresholds 

and variables were created for each concept type at each level. The corresponding threshold vari

ables were given a value of 1.0 when the concept type value exceeded the threshold and 0.0 other

wise. Regressions were then rerun on the CACM l data with the additional variables for each 

threshold. With the additional variables RSQ's went down. For example, using all records, ranked 

relevance, and raw data at the 90th percentile threshold, RSQ dropped from .3869 to .3344. Other 

runs showed similar drops, but were not reported here. 
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Table 11. Precision values rrom base and coefficient runs ror the ISll collection. 

Base Runs Raw Data Log Data 

Model Raw Log All Sample All Sample 

TRM .3220 .3309 

TRM, COC .3485 .3239 .3499 .3474 .3521 .3S88 

ALL .3573 .3356 .3558 .3531 .3589 .3597 
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Table 12. Precision values from base and coefficient runs for the CACM I 

collection (binary relevance). 

Base Runs Raw Data log Data 

Model Raw Log All Sample All Sample 
TRM .4813 .4775 

TRM, LNK .5714 .5584 .5806 .5753 .6006 .5466 

AUT, CRC, 
TRM, LNK .5855 .5965 .6182 .6121 .6309 .5663 

ALL .6315 .6066 .5383 .5975 .6384 .5770 
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Table 13. Precision values from base anti coefficient runs for the CACM 1 

collcclion (ranked relevance). 

Base Runs Raw Data I"og Data 

Model Raw Log All Sample All s~unple 

TRM .4813 .4775 

TRM, LNK .5714 .5584 .5783 .5746 .6007 .5510 

AUT, CRC, 
TRM, LNK .5855 .5965 .6127 .6146 .6285 .5720 

ALL .6315 .6066 .6298 .5962 .6340 .5779 
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Table 14. Precision values from base and coefficient runs for the ISI2 collection. 

Base Runs Raw Data Log Data 
Model Raw Log All Sample All Sample 
TRM .1444 .09R4 

TRM, COC .1249 .0854 .1256 .1190 .0966 .09R33 

ALL . 1265 .0904 .1257 . 1190 .1035 .0999 
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Table 15. Precision values from base anLI coefficient runs for CACM2 (hinary relevance). 

Base Runs lhw Data Log Data 

Model Raw Log i\11 Sample i\11 Sample 

TRM . 1889 . lR07 

TRM, LNK . 1736 . 1799 .154R .1687 .1237 .1801 

AUT, CRC, 
TRM, LNK .2125 .2037 .1927 .1770 .1721 .1936 

ALL .2185 .2251 . 1502 .1547 .1725 . 1961 
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Table 16. Precision values from base anti coellicient runs for CACM2 (ranked relevance). 

Base Runs Raw Data Log Data 

Model Raw Log All Sam ple All Sample 

TR:vt . 1889 . 1807 

TR:\1 , LNK . 1736 . 1799 .1548 .1694 . 1229 .1800 

AUT, CRC, 
TRM, LNK .2125 .2037 . 1930 .1794 .1709 .1940 

ALL .2185 .2251 .1987 .1502 .1692 .1979 

Results 39 



4.0 Discussion 

4.1 Usefulness of concept types as slzowll by linear 

. regreSSIO/lS 

The ftrst goal of this study was to statistically examine the usefulness of the concept types (extended 

vectors) in probabilistic retrieval. As had been shown by Fox ( l983a), the extended vectors (base 

runs) appreciably improve feedback retrievals over those with just terms; in the CACM 1 collection, 

as divided here, precision is increased from .4813 to .6315. Additional information (concept types) 

also improved precision for base runs in the lSI 1 collection, but by more modest amounts (.3220 

to .3556). 

Descriptive statistics revealed that the concept type data values were highly variable and natural log 

transformations were used to partially alleviate problems due to the variability of the data. The 

descriptive analyses also pointed out potential problems due to sparseness of some of the vectors 

when they were compared to others. Although these data were not normally distributed, linear 

regression seemed robust enough to be of some use in their analysis. It was believed that consist-
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ency and repeatibility of results across different runs and different data sets were of more importance 

than meeting all of the assumptions of the linear regression technique. A high degree of consistency 

was found, as shown by Table 6 on page 22, Table 7 on page 23, and Table 9 on page 28. This 

is especially evident from the rank columns in these tables as the same concept types consistently 

achieved the highest rankings. Consistency was also shown in that the same highest ranking con

cept types were also consistently statistically significant. The same kind of consistency was also 

shown by the logistic regression and all possible regressions techniques that were also tried. 

The regression analyses of this study were used to obtain measures of the importance of each con

cept type in predicting whether a document would be relevant or not. The relative importance of 

each concept type was summarized in Tables 6, 7, and 9 as their ranks for each run. The various 

models that were run also showed that most of the variance in relevance could be accounted for 

by only four of the vectors (AUT, CRC, LNK, and TRM) for the CACM! collection. In the ISll 

collection, two of the vectors (TRM and COC) accounted for most of the variance. The regression 

runs did provide numerous coefficients, which were used in subsequent feedback runs in SMART. 

Log transformed data and samples of the records gave the best RSQ's; .6654 was the highest RSQ 

(binary relevance). 

4.2 Rallked relevatlces •'ersus hillary relevances 

A lesser goal of this study was to test whether more knowledge of relevance would result in better 

prediction. It is surprising that having relevance ranked from 0 to 4 did not really improve the re

gression model over binary relevance alone. Perhaps relevant documents (ranked from l to 4) have 

more in common with each other than they have differences from nonrelevant (ranked 0). 
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4.3 Thesholds as aids in regression 

The investigation of threshokls did not yield anything useful for these collections. It was thought 

that a high value for a single concept type would virtually assure that a document would be in the 

relevant group. However, no signjficant improvement was obtained in any of the threshold runs 

and some runs even showed poorer RSQ. 

4.4 ltnprovenzent of retrieval using coefficients 

The second major goal of this project was to test whether coefficients obtained by linear regression 

would prove useful as weights for extended vectors in probabilistic retrieval. The coefficients that 

were used in the feedback runs with SMART proved to be of limited usefulness here as improve

ments in precision were limited to the 1 'Yu to 5% range. Although log Jata and samples of the re

cords gave the best RSQ's, cocllicients from log values of all data improved precision the most. 

4.5 Conclusions and ituplications for further research 

The fmdings of this study support previous work of Fox (1983), which showed that additional in

formation improves retrieval as measured by precision and illustrated in the base runs. Regression 

coefficients were of some usefulness, when used as subvector weights in improving precision. It 

was also found that terms, authors, bibliographic links and Computing Reviews' abstracts ac

counted for the most variance in predicting relevance. Log transforming the data values for the 
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concept types modestly helped both the regression analyses and the retrieval in SMART. Binary 

relevance seemed to be better than ranked relevance in this study. 

The author of this study would like to suggest that further research might be pursued along two 

paths. The ftrst path would be to obtain a larger collection of documents, of a more general nature. 

The purpose of this collection would be to try to better characterize the properties of the concept 

types and to try to develop coefficients that could be generalized to other collections. The second 

path would be to try to develop a simulated document collection to try to learn more about the 

capabilities and limitations of the probabilistic model. 
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