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Computer Science and Applications

(ABSTRACT)

Previous work by Fox has extended the vector space model of information retrieval and its imple-
mentation in the SMART system so different types of information about documents can be sepa-
rately handled as multiple subvectors, each for a different concept type. We hypothesized that
relevance of a document could be best predicted if proper coefficients are obtained to reflect the
importance of the query-document similarity for cach subvector when computing an overall simi-
larity value. Two different research collections, CACM and ISI, each split into halves, were used
to generate data for the regression studies to obtain coefficients. Most of the variance in relevance

could be accounted for by only four of the subvectors (authors, Computing Review descriptors,

links, and terms) for the CACMI collection. In the ISII collection, two of the vectors (terms and
cocitations) accounted for most of the variance. Log transformed data and samples of the records
gave the best RSQ’s; .6654 was the highest RSQ (binary relevance). The regression runs provided
coefficients which were used in subsequent feedback runs in SMART. Having ranked relevance
did not improve the regression model over binary relevance. The coefficients in the feedback runs
with SMART proved to be of limited usefulness since improvements in precision were in the 1-5%
range. Although log data and samples of the records gave the best RSQ’s, coefficients from log
values of all data improved precision the most. The findings of this study support previous work
of Fox, that additional information improves retrieval. Regression coeflicients improved precision

slightly when used as subvector weights. Log transforming the data values for the concept types

modestly helped both the regression analyses and the retrieval in SMART.
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1.0 Introduction

1.1 Probabilistic retrieval

The probabilistic model for information retrieval ((Yu and Salton, 1976 and Robertson and Sparck

Jones, 1976) as cited in van Rijsbergen, 1981) assumes that the terms in a query and the terms in

a collection of documents are used in an initial retrieval to obtain a sample of the documents. The
terms in the sample are then used to estimate the probability that each document in the collection
is relevant or not relevant. The collection has usually been indexed by building a vector of terms
for each document where the vector consists of binary values (1 for presence - 0 for absence) for

all terms in the collection. A document thus is represented as a vector of length n:

Term(l), Term(2)...Term(n)

For a given query it is possible to estimate a probability of relevance for each document in the
collection by computing an inner product of “term relevance” values for all terms considered:

Probability(relevance|document) = SUM [term_relevance(i) ¥ Term(i)]

Introduction 1




where:
term_relevance(i) = [r 7 (R-mM1/ [(n-r) 7 (N-n-R + )]
and:

N = number of documents
n = number of documents with term i
R = number of relevant documents

r = number of relevant documents with term i

The Bayesian decision rule can be used to the decide whether a document has a high enough

probability estimate to be chosen as relevant:

Probability(relevanceldocument) > Probability(non-relevance|document)

1.2 Information retrieval in SMART

The SMART information retrieval system (Salton and McGill, 1983) has options to use the prob-
abilistic model to rank documents that are retrieved as part of a feedback process. Initial retrieval
is usually accomplished after computing a cosine similarity (Salton and McGill, 1983) between the
terms in a query and the terms in documents. Those documents with the highest similarity have
the lowest ranks (also the highest probability of being relevant). The user is presented with a list
of the “top ranked” documents. The user can then decide which of the “top ranked” documents
are relevant. SMART then can perform a vector feedback search (if desired) by adding any new
terms from the relevant documents to the initial query and subtracting those terms from the initial

query, which only appeared in the documents that were judged to be nonrelevant. The resultant
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feedback query is then used to provide a new ranked list of documents (Salton and McGill, 1983).

Alternatively, a probabilistic feedback can be performed.

Fox (1983a) has modified the application of the vector and probabilistic models to utilize additional
information. This consists of author, date of publication, bibliographic coupling, bibliographic

links, Computing Reviews’ categories, and cocitations. SMART has been modified to add the

additional information as subvectors (Fox, 1983a) to the document-term vectors of the original
vector/probabilistic system. As modified, the collection then consists of extended vectors where the

information is scparated into subvectors:
Document_identification_number,

Terms, authors, date of publication, bibliographic coupling,

bibliographic links, Computing Reviews' categories, cocitations

1.3 Research goals
' \

The goals of this study were to statistically examine the usefulness of the subvectors associated with
diffcrent concept types (Fox, 1983a) and to determine if coefficients obtained via multiple re-
gressions could be used to further enhance SMAR'T's retrieval using the extended vectors. A less
significant goal was to determine if knowledge of relevance as a ranking (from least (1) to most (4)
relevant) would facilitate prediction, thus yielding better coefficients. To accomplish these objec-
tives two different research collections were analyzed. These had been loaded into a version of

SMART, which has been installed on a VAX-11/785 running UNIX (I'ox, 1983b).

Introduction 3
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The collections, which have been described elsewhere (Fox, 1983b), consist of 3,204 abstracts of

documents which appeared (1958 - 1979) in Communications of the Association for Computing

Machinery (CACM Collection) and 1,460 abstracts of documents from various sources (1969 -
1977) concerning information science, along with citation data obtained from the Institute for Sci-
entific Information (ISI Collection). The CACM collection has information necessary for all of the
above mentioned extended vectors, but the ISI collection has only two additional information
components (subvectors), author and cocitations. For both collections, a set of queries with known
document-query relevances was used to generate data for the regression studies. Precision (the ratio
of relevant documents retrieved to all documents retrieved for that query) averages were the prin-

cipal measure used for determining the effectiveness of all retrieval runs with SMART.
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2.0 Methods

2.1 Division of the collections

Both the CACM and ISI collections were divided into two approximately equally sized sub-
collections by randomly selecting documents. The collections were split so that all analyses could
be performed on one half of the data and the results obtained could be tested on the other half of
the data. The dividing procedure used kept the same proportion of relevant to nonrelevant docu-
ments with regard to scts of queries for each collection. In the description and discussion that fol-

low these sub collections are referred to as the CACM1 or CACM2 and ISI1 or ISI2 Collections.

2.2 Description of the collections and vectors

SMART was used to prepare data sets, for both the CACM1 and ISI1 collections, which consisted

of query identification number (QID), document identification number (DID), rank in the prob-

Methods 5
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abilistic retrieval, and a similarity measure (SIM). However, as it was based on the value of the

similarity, rank was not used in this study. A separate data set was obtained for each concept type,
which had the appropriate measure of similarity for all QID - DID pairings.
?

For use in tables and figures the concept types will be represented by the following abbreviations:
AUT Authors

CRC Computing Reviews’ Category

DTE Date of Publication

TRM Terms

BBC Bibliographic Coupling
LNK Bibliographic Links

CcocC Cocitations

data set which listed the relevance judgment (ranked from 0 to 4) for each QID - DID pairing.
The Statistical Analysis System (SAS, 1985) was used to merge the 7 concept type data sets with
the relevance judgment data set by matching QID and DID. This gave a data set, which has QID,
DID, and 7 different similarity measures (independent variables) and relevance judgment (depend-

ent variable) for subsequent analysis.

For the ISII collection, only three concept types were available. Thus, only three concept type data
sets with their appropriate similarity measure were obtained from SMART. Also, only binary rel-
evance judgments were available for the ISI1 collection. SAS was used to merge the three concept

For the CACMI collection, there were 7 equal length data sets, one for each concept type, and a
; |
type data sets with the relevance data set by matching a query and document. Thus, a data set with ‘

|
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three similarity measures (independent variables) and relevance judgment was constructed.
Table 1 on page 8 shows the nature of the matrix that resulted from the merger of the 7 concept

type data sets and the rclevance data set.

2.3 Descriptive analysis of the data

SAS, the Statistical Analysis System, Version 5 (1985) was used to produce all statistical and

graphical results. For all statistical tests of significance a threshold of .05 was used.

Procedures MEANS and UNIVARIATE were used to obtain descriptive statistics for all concept
types in the two collections. As the distributions of values for the concept types were quite vanable,
they were transformed by taking the natural log of the similarity measure plus one. The log trans-
formation was chosen, because the data were highly positively skewed due to the large values that
occur in inner product calculations, when there is a good match between a query and document.
Log and square root transformations arc good choices for positively skewed data, but the log
transformation is more effective at bringing the large values closer to the mean. This made the
distributions much more symmetrical. The varables for the two collections were summarized in
tables and some representative histograms and can be found in section “Description of the data”

on page 11.

2.4 Obtaining regression coefficients for use in SMART

Procedure General Linear Model (GLM) was used for most regressions with models specified so

that regressions were run without an intercept being calculated. The intercept would have been
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Table 1. Organization of the CACMI merged data set.
R PROBABILISTIC ™SIMILARITY™ FOR EACH CONCEPT TYPE
N
K
Q D R A g D T B L c |
I I E U ‘R T R B N (4]
D DL T C E M € K C
2 98 0 0.000 0.000 0.0000 0.13 0.000 20.816 0.000
2 6550 0.000 0.000 0.0000 38.28 0.000 0.000 0.000 ‘
2 1138 0 0.000 3.620 o0.0000 7.78 87.531 0.000 0.000
2 1179 0 0.000 0.000 0.0000 8.35 73.656 27.759 117.956
2 1314 0 0.000 3.620 0.0000 4.09 6.939 0.000 0.000
2 1426 0 0.000 6.895 0.0000 9.61 0.000 0.000 0.000 ‘
2 16429 4 428.254 4.730 20.8158 228.92 143.0640 97.140 117.956
2 1435 0 0.000 13.877 0.0000 37.15 0.000 0.000 0.000
2 1541 4 486,816 185.923 27.7544 143.27 0.000 84.316 0.000 \
3 486 0 0.000 0.000 0.0000 2.61 0.000 0.000 41.250
3 507 0 0.000 0.000 0.0000 63.35 0.000 0.000 0.000 |
3 561 4 252.947 0.000 10.4079 282.14 87.228 166.526 57.903
3 816 0O 0.000 0.000 0.0000 60.52 0.000 0.000 0.000 ‘
NOTE: QID = query identification number
DID = document identification number
RNKREL = ranked relevance
Other variables are as previously described.
Methods 8
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useless in subsequent runs, which tested the coefficients obtained from regressions. For the CACM
collection, two, four, and all variable models were run on raw and log transformed data. In the ISI
collection studies, two and all variable models were used. An example of one of the regression

equations (two variable model) is as follows:
Relevance = al ¥ (Similarity_TRM) + a2 ¥ (Similarity_LNK) + Error

Where al and a2 are regression coefficients for terms and

bibliographic links respectively.

In addition to the linear regressions performed with GLM, logistic regression (Procedure LOGIST)

and all possible regressions (Procedure REG) were used on a preliminary data set.

2.5 Testing the usefulness of the coefficients as weights in

SMART

Basc runs were made in SMART for both halves of both the CACM and ISI collections. These
runs used combinations of concept types that corresponded to the two and three variable models
for the ISI1 Collections and two, four, and seven variable models for the CACM1 Collection. As
no coefficicnts were used in these runs, they provided equal weights for all concept types for com-
parison with runs having coeflicients. The coefficients obtained in the regression runs were then
used as weights in feedback runs to try to improve precision in SMART. The runs using coeffi-
cients were compared against base runs, which had no coefficients but did use the same concept
types. The coefficients that were developed for CACM1 and ISI! were also tested on CACM?2 and
ISI2.

Methods 9
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2.6 Threshold techniques

Iistograms and graphs of the data were examined for possible threshold values for the concept
types. Threshold values could be useful, if it could be shown that a value as high or higher than a
certain percentile for a concept type gave a high probability that the document was relevant. Ac-
cordingly, the 60th, 75th and 90th percentiles were used as thresholds to test their usefulness.
Variables were created for each concept type at each of the above percentiles. The corresponding
threshold variables were given a value of 1.0 when the concept type value exceed the threshold and
0.0 otherwise. The regressions were then rerun with the additional variables for each threshold.

These results of these runs are reported in “Use of threshold techniques” on page 33.

Methods 10
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3.0 Results

3.1 Description of the data

Descriptive statistics for the CACMI collection are given in Table 2 on page 13. Vectors for the
seven concept types show considerable variation, as they range from zero to four digit numbers.
All show relatively high values for CV (the cocflicient of variation, from 235.0 to 674.4) and all are
highly positively skewed (from 4.22 to 17.3). This is due to the high values that resulted from the
inner product calculations when concept types in the query obtained good match with a document.
Kurtosis measures were all large (from 8.8 to 381.5) due to peakedness caused by the high propor-

tion of low or zero values in most concept types that were produced when there was a poor match.

As seen in Table 3 on page 14 the vanables in the IS11 collection were similar. The numbers range
from 0 to 1188.1 and had high skewness (from 3.4 to 5.8) and high kurtosis (from 17.1 to 45.4).
Their CV’s were somewhat lower (163.8 to 356.7). Although linear regression and the F test are
robust, these data are rather variable and quite different from the kind of examples usually shown
in textbooks on regression analysis. Some of the variation is due to the extremes in values, but

much of the variability is due to the sparseness of the QID - DID array. Evidence of the sparseness

Results 11
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is seen in Table 2 on page 13 and Table 3 on page 14 regarding length, the column that gives the
number of non-zero values for each vector. In fact, five of the seven concept types for CACM1
have non-zero values in from 8.8% (AUT) to 17.9% (BBC) of the data records. In the ISII col-
lection one of the three subvectors has only 13“’/0 of its values that are non-zero (AUT). An at-
tempt to compensate for the sparseness is discussed under “Lincar regressions on the CACMI
collection” on page 19. To try to minimize the effect of the high variability in the data, a natural
log transformation was used on all variables and is reported in Table 4 on page 15 and Table §
on page 16 for the CACMI1 and ISI1 collections respectively. As can be seen in these two tables,
the transformation does make the distributions considerably more symmetrical and reduces ex-

tremes among the various measures.

In the CACMI collection, skewness (0 is normal) was reduced to more acceptable levels (-.009 to
2.53), kurtosis (0 is normal) was reduced similarly (-.44 to 10.2) and CV (100 is normal) was tighter
(52.3 to 265.0). In the ISII collection, skewness dropped (-.37 to 2.6), kurtosis declined (-1.4 to
5.1), and CV was lowered (39.5 to 270.2). Thus, in both collections, the distributions of the con-

cept type variables are more evenly matched and closer to normal than for the raw data.

Histograms of raw data and log data further illustrate the effects of the log transformation on the
data. Histograms in Figure 1 on page 17 show the impact of the log transformation on TRM in
the ISII collection (sample data). The large value of 4.8 for skewness in the raw data is shown by
the long positive tail. Ilowever, the log transformed data show no tail in either direction, as
skewness has been reduced to -.154. Not all of the histograms show such dramatic improvement
as those seen in Figure 1 on page 17, but all of the concept types do show improved distributions.
Iligure 2 on page 18, which is of raw and log transformed CRC from the CACM1 collection (all

records) is an example of a variable with only modest improvement.

Results 12
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Table 2. Descriptive statistics and vector length of raw CACM | data.

VARIABLE MEAN CV. MINIMUM MAXIMUM
VALUE VALUE

AUT 8.38 601.6 0 1152.3

CRC 4.24 668.1 0 187.9

DTE 3.41 674.4 0 87.8

TRM 47.69 235.0 0 2389.0

BBC 10.89 3139 0 433.2

LNK 11.62 486.0 0 1574.3

COC 10.76 603.7 0 1602.0

VARIABLE SKEWNESS KURTOSIS NUMBER

NON-ZERO
AUT 14.0 268.3 314
CRC 7.3 78.9 1603
DTE 4.2 24.3 725
TRM 7.6 90.5 3899
BBC 4.7 30.2 819
LNK 12.1 226.3 616
COC 17.3 381.4 566
NOTE: There were 4035 records in this set.
Results 13
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Table 3. Descriptive statistics and vector length of raw 1S1] gata

VARIABLE MEAN C.V.
TRM 45.7 176.6
AUT 3.8 356.6
COC 33.7 163.7

VARIABLE SKEWNESS KURTOSIS

TRM 5.8 45.4
AUT 5.2 36.4
COC 3.4 17.1

NOTE: There were 5456 records in this set.

MINIMUM
VALUE

SO O

NUMBER
NON-ZERO

5449
710
3400

MAXIMUM
VALUE

1188.1
200.3
727.5
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VARIABLE

AUT
CRC
DTE
TRM
BBC
LNK
CoC

VARIABLE

AUT
CRC
DTE
TRM
BBC
LNK
COC

NOTE:

Table 4. Descriptive statistics of log CACMI data

MEAN C.V. MINIMUM
VALUE
0.33 351.8 0
0.81 138.4 0
0.50 218.4 0
2.83 52.3 0
0.68 214.5 0
0.53 257.1 0
0.50 265.0 0

SKEWNESS KURTOSIS

3.39 10.20
1.07 0.05
1.84 1.75
-0.00 -0.44
1.95 2,33
2.49 4.90
2.53 5.16

Number of non-zero values and number of records
are given in Table 2 on page 13

MAXIMUM
VALUE

3 SEN S A )
wbw—Ubhio—
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Table S. Descriptive statistics of log ISI1 data

VARIABLE MEAN C.V. MINIMUM MAXIMUM
VALUE VALUE

TRM 3.19 35.2 0 7.1

AUT 0.40 268.5 0 5.3

cocC 2.34 74.2 0 6.6

VARIABLE SKEWNLESS KURTOSIS

TRM -0.12 0.48
AUT 2.51 4.85
COC -0.03 -1.30
NOTE: Number of non-zero values and number of records

are given in Table 3 on page 14.
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Iigure 1. Histograms of raw versus log terms in sample ISI1 data.
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Figure 2. Histograms of raw versus log Computing Reviews categories in all CACM 1 data.
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3.2 Linear regressions on the CACMI collection

SAS Procedure GLM was used to run full modcls of all concept types as independent variables and
ranked relevance judgment as the dependent variable. These runs were performed with the raw data
and log transformed data and are summarized in Table 6 on page 22. However, the proportion
of nonrelevant to relevant documents was too high, more than 9 to 1. This problem of unbalanced
groups was partly responsible for the low coefficient of determination (RSQ) for the raw data (.387)
and for the log data (.396). In order to improve the proportion of relevant versus nonrelevant re-
cords, most of the nonrelevant documents were randomly discarded leaving a data set that had
equal proportions of relevant versus nonrelevant records (766 total records). This modestly im-
proved the RSQ of the raw data to .445 and considerably improved the RSQ of the log transformed
data to .627, as can also be seen in Table 6 on page 22. The sparseness of many of the concept
type subvectors is also probably contributing to the relatively low RSQ (see “Description of the

data” on page 11), but nothing could be done about that.

Similar runs were made using binary relevance as the dependent variable. The results of these re-
gressions are given in Table 7 on page 23. The same kind of iinprovement in RSQ that was seen
in Table 6 on page 22 was found by discarding most of the nonrelevant records and balancing the
relative number of relevant versus nonrelevant documents. Ilowever, the improvement between
raw data and log data is a little greater, by approximately 1% to 4%. Furthermore, the binary rel-
evance data with the log transformed independent variables gave a better RSQ than the ranked

relevance (.6659 versus .6274).

A plot of predicted scores versus residuals for the best log sample model with binary relevance data
is displayed in Figure 3 on page 24 and shows a fair degree of closeness for relevant documents (1.0)

and considerable spread for nonrelevant documents. A similar plot for ranked relevance data is

Results 19
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shown in Figure 4 on page 25, but here the relevant values are divided into values from 1.0 to 4.0.

Again, the relevant documents show less spread than the nonrelevant.

The concept type variables for each regression run were ranked by their Type 111 Sum of Squares
(SAS, 1985), which gives the sum of squares for each variable independently of its order in the re-
gression model. From the rankings, some two and four variable modcls were chosen and run using
the same two dependent variables for all records and for the sample set of records. The coefficients,

RSQ’s, and rankings are also provided in Table 7 on page 23 and Table 6 on page 22 for binary

and ranked relevance data respectively.

The two variable model (TRM and LNK) using raw data and all records gave 86% of the RSQ
of the seven variable model for both dependent variables. For sample raw data, 83% and 86% of
the seven variable RSQ was obtained. For log transformed data, all record regressions with the
same independent and dependent variables gave 79% and 81% of the original seven variable RSQ
(ranked.and binary relevances respectively). However, the sample of log data gave 98% of the seven
variable RSQ for both ranked and binary relevance data. In fact the two variable model for log
transformed independent varables and binary relevance data gave a higher RSQ than any of the
other scven variable models. The four variable model (AUT, CRC, TRM, and LNK) gave modest

improvement, but clearly most of the variance is accounted for by TRM and LNK.

All possible two-way interactions were tested (using proc GLM in SAS) on ranked relevance and
binary relevance data. Several were found to be significant at the .05 level. Table 8 on page 26
shows interactions for binary and ranked relevances for log sample data, the best models. For ex-
ample, there is a significant interaction between AUT and TRM using the reduced sample log data
for ranked rclevance. This makes scnse as authors may write more than one article in the same
subject area using common terms and few articles in other areas with different terms. The amount
of variance explained by this interaction was relatively small, less than 3% of that of TRM.
However, this interaction accounts for more variance than the three lowest ranking concept types,

which did not add much predictive ability to the seven variable model (see Table 6 on page 22)
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either. Other interactions seemed reasonable, but also did not account for much variance. In fact,
all of the interactions together only raised RSQ from .6274 to .6432. Additionally, some inter-
actions had negative coefficients, which indicated inverse relationships with the other variables.
Furthermore, as SMART is not currently programmed to use interactions, they were not used on
subsequent regression runs. A subsct (based on the largest two-way interactions and the concept

types) of the possible three-way interactions was tested with none being significant at the .05 level.
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Table 6. Regression cocfficients, ranks, and RSQ’s for CACM ranked relevances.

Raw data Log data
Model Rank| All data Rank|Sample Rank| All data Rank{ Sample
variables coefficients coefficients coefficients coefficents
AUT 2 0037+ 3 0027+ 1 2619+ 4 .1300*
CRC 5 .0069* 4 0120+ 3 0633* 3 .1645%
DTE 6 .0060* 6 .0096* 5 0352+% 5 -.0808
TRM 1 0021+ ] 0022+ 4 0262+ 1 2724+
BBC 4 0027+ 2 .0070* 7 0014 9 0120
LNK 3 0031+ 5 .0025+* 2 .1788* 2 1893+
CcocC 7 0006 7 .0009 6 0135 6 0176
Model RSQ .3869 4452 .3959 6274
TRM 1 0033+ ] .00415* 1 0630* ] 3287*
LNK 2 .0030* 2 0049+ 2 3063+ 2 2719%
Model RSQ 3362 3853 3120 6152
AUT 3 .0039+* 3 .0030* 1 .2740+* 4 .1003*
CRC 4 0077+ 4 0147+ 4 .0646* 3 .1633+#
TRM 1 0074* 1 0029+ 3 0327+ 1 2699%
LNK 2 0042+ ] .0041* 2 .1403* 93 .1938*
Model RSQ 3753 4192 .3922 .6260

NOTE: * = significant at the .05 lcvel
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Table 7. Regression coefficients, ranks, and RSQ’sAfor CACM binary relevances.

Raw data Log data
Model Rank| All data Rank|Sample Rank| All data Rank| Sample
variables coefficients coefficients coefficients coefficents
AUT 2 .00093* 5 .00061% 1 0740* 5 0193
CRC 4 00270* 3 200509 3 0228+ 3 0604*
DTE 6 00192+ 6 .00300 5 0167+ 4 -.0249
TRM 1 .00060* 2 .00059* 4 0084+ 1 0876*
BBC 5 .00098* 1 00243+ 7 -.00066* 7 -.00167*
LNK 3 .00094* 4 00074* 2 05729+ 2 0667*
CcOoC 7 .00021* 7 .00029 6 00655 6 0111
Model RSQ 3721 .4386 .4064 .6659
TRM 1 .00096* 1 00121+ ] 01997+ 1 .10446*
LNK 2 00151* 2 00147+ 1 09478+ 2 08194+
Model RSQ 3212 3678 3294 .6538
AUT 3 .00099* 4 .00071* 1 0777* 4 .01007
CRC 4 .00312* 3 .00596* 4 0222+ 3 05829+
TRM ] .0070* 1 .00084* 3 01047+ 1 .08679%
LNK 2 00128+ 2 00128+ 2 06138*% 2 06903+
Model RSQ 3577 .4056 .4024 .6640

NOTE: * = significant at the .05 level
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Table 8. Sums of squares and probability values for CACM I two-way interactions.

RANKED RELEVANCE DATA

SOURCE SUM OF SQs F VALUE PR > F
AUT 1733.250 852.55 0.0001
CRC 69.646 231.01 0.0001
DTE 8.562 4.21 0.0405
TRM 378.762 186 .30 0.0001
BBC 8.829 4,34 0.0375
LNK 53.929 26 .53 0.0001
cac 0.621 0.31 0.5306
AUT%CRC 16.005 7.87 0.0051
AUTXTRM 10.277 5.06 0.0243
AUTXBBC 10.966 5.39 0.0205

BINARY RELEVANCE DATA

SOURCE SUM OF sSQsS F VALUE R>F
AUT 156.031 962.08 0.0001
CRC 3.271 321.64 0.0001
DTE 1.0381 6.53 0.0108
TRM 39.924 241.05 0.0001
BBC 0.649 3.92 0.0481
LNK 7.164 43.25 0.0001
coc 0.247 1.49 0.2220
AUT*CRC 2.318 14.00 0.0002
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3.3 Linear regressions on the ISII collection

Regressions on the ISI1 collection followed the same general pattern as those for the CACM1
collection, but there were only three concept types (TRM, AUT, and COC) and only binary rele-
vance data. Full models on raw data gave (see Table 9 on page 28) RSQ’s of .2356 and .2812 for
all records and a sample respectively. Full models of log transformed data gave RSQ’s of .3162 (all
records) and .481 (sample). A plot of predicted scores versus residuals for the best log sample model
is displayed in Figure 5 on page 29 and shows a fair degree of closeness for relevant documents (1.0)
and considerable spread for nonrelevant documents. As shown in Table 9 on page 28, the variables
TRM and COC were ranked one and two by Type III Sums of Squares. Thus, they were used in
two model runs which had RSQ’s of 96% to 99.5% of the full model RSQ’s.

All possible two-way interactions were done and all were significant at the .05 level, but they ac-
counted for little variance (see Table 10 on page 30, which has interactions for the best model, log
sample data). For example, the regression for log sample improved from .481 to .4978. However,
the coefficient for AUT became ncgative and one of the interactions ('RM with LNK) was also

negative. As for the CACMI collection, coefficients for the intcraction terms were not used with

SMART.
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Table 9. Regression coefficients, ranks, and RSQ’s for 1S1 data.

Raw data Log data

Model Rank| All data Rank|Sample Rank| All data Rank| Sample
variables coefficients coefficients coefficients coefficents
TRM ] 0017+ 2 0017+ 1 0614* 1 1092%

AUT 3 .0035* 3 1002834+ 5 0608+ 3 0281*

COC 2 0018+ ] 00283+ 3 02356* 2 .0373*
Model RSQ 2812 2812 .3162 4810

TRM 1 .0020% 1 .0020* 1 0667* ] 1128+

CcOC 2 019+ 2 0029+ 2 0314+ 2 0400*
Model RSQ .2300 2784 3036 4790

NOTE: * = significant at the .05 level
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Table 10. Sums of squares and probability values for ISI1 (log sample data) interactions.
] SOURCE SUM of 5QS F VALUE PR > F
F TRM 777.610 3126 .57 0.0001
AUT 4.869 19.58 0.0001
cocC 11.332 45.57 0.0001
TRM*AUT 7.240 29.11 0.0001
TRM*COC 9.867 39.67 0.0001
AUT*COC 2.774 11.16 0.0008
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3.4 Additional regression techniques

Other regression techniques, including all possible regressions (using procedure REG in SAS) and
logistic regression (using procedure LOGIST in SAS) were tried. In these runs different coefficients
were obtained, but the same four predictor variables were most important in the models (TRM,
AUT, LNK, and CRC). They did not give improved RSQ, but rather were much worse with
RSQ’s of approximately half that of the models described earlier. Additionally, the logistic re-

gression program gave an intercept, which was not desirable for use in SMART.

3.5 Use of regression coefficients in SMART for CACM1

and ISI1 collections

Table 11 on page 34, Table 12 on page 35, and Table 13 on page 36 show the average precision
values for base runs and precision values for the coefficient runs for CACMI and ISI1 collections.
Base runs are retrievals, which used the concept type values, but which give equal weights to the
various concept types. In the coelficient runs the various concept type values are wicghted by the

regression coefficients.

Some minor improvement was found in most runs. For example, in the ISI1 collection, precision
with cocflicients from the sample log regressions showed a 2.9% improvement for the two concept
type run and a .7% improvement for the three concept type run. Also for ISI1 runs, both raw data
and log data in the two and three concept type runs showed very small improvement (.4% - 1.1%),
while coellicients from a sample of raw data were worse (4% - 1.2%). The best precision was

obtained using coefficients developed from log data with all records included.
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In the CACMI1 runs, coefficients from log data and all records with binary relevance gave the best
improvement over the base runs (1% for the seven concept type model to 5% for the two concept
type model), but the matching sample log runs were all worse (3.3% - 9.4%). In general, all of runs
using all data for both binary and ranked relevance measures in the CACMI1 runs yielded improved
precision values (1% - 5%) with the exception of binary relevance raw data all, which was worse

by nearly 15% (see Table 7 on page 23).

3.6  Use of regression coefficients in SMART for CACM2

and ISI2 collections

Table 14 on page 37, Table 15 on page 38, and Table 16 on page 39 show the average precision

values for base runs and precision values for the coeflicient runs for CACM2 and ISI2 collections.

The base runs in CACM2 and IS12 of each collection are not as high as those of CACM1 and [SI1.
That was cxpected, because the relevance weights were computed over a different document sample.
J In the CACM2 base runs, when the other concept types were added to terms, consistent improve-
} ment in average precision was found. However, in the 1SI2 base runs, when the other concept types
were added to terms, average precision was consistently lower (sce Table 14 on page 37). For the
runs with coefficients that were developed using the CACMI and ISI1 collections, precision im-
proved progressively as concept types were added to terms. However, all of the runs which used
coefficients had lower precision values than the corresponding base run. The best CACM2 preci-
sion value for a run with coefficients used coeflicients that had been obtained from all raw data with
| ranked relevance in CACMI1 (.1987), while the best CACM2 base run was for log data with all
concept types in the model (.2251). Though disappointing, these results are not surprising - term
* relevance weights and coefficients for concept types were derived through a feedback sampling

process on a different half of the collection.
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3.7 Use of threshold techniques

Histograms for all of the concept type values were examined for possible threshold values. A
threshold would be a value for a concept type, which when reached or exceeded would give a very
high probability that that document would be relevant, without regard to the values of the other
‘ concept types. The 60th, 75th and 90th percentiles for each concept type were tested as thresholds
g and variables were created for each concept type at each level. The corresponding threshold vari-
} ables were given a value of 1.0 when the concept type value exceeded the threshold and 0.0 other-
\ wise. Regressions were then rerun on the CACMI data with the additional variables for each
J threshold. With the additional variables RSQ’s went down. For example, using all records, ranked
relevance, and raw data at the 90th percentile threshold, RSQ dropped from .3869 to .3344. Other

runs showed similar drops, but were not reported here.
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Table 11. Precision values from base and coeflicient runs for the ISI1 collection. o
, Basc Runs Raw Data Log Data
Model Raw Log All Sample | All Sample
/ TRM 3220 3309
L TRM, COC 3485 3239 .3499 3474 3521 3588
ALL 3573 3356 3558 3531 3589 3597
|
|
|
|
\
[
‘r
|
i
I
l
|
l
|
J
|
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Table 12. Precision values from base and coefficicnt runs for the CACM I
collection (binary relevance).
Base Runs Raw Data Log Data
, Model Raw Log All Sample | All Sample
| TRM 4813 4775
TRM, LNK 5714 5584 5806 5753 6006 5466
AUT, CRC,
TRM, LNK .5855 .5965 .6182 6121 .6309 .5663
ALL 6315 .6066 .5383 5975 .6384 5770
|
|
|
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Table 13. Precision values from base and cocfficient runs for the CACM |
{ collection (ranked relevance).
Basc Runs Raw Data Log Data
] Model Raw Log All Sample | All Sample
TRM 4813 4775
TRM, LNK S714 .5584 5783 5746 .6007 S5S510
AUT, CRC,
TRM, LNK .5855 5965 6127 6146 6285 .5720
ALL 6315 .6066 .6298 .5962 .6340 5779
Results
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Table 14. Precision values from base and coefficient runs for the 1S12 collection.

Base Runs Raw Data Log Data
Model Raw Log All Sample All Sample
TRM 1444 .0984
TRM, COC 1249 0854 1256 1190 .0966 .09833
ALL 1265 0904 1257 1190 1035 .0999
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Table 1S. Precision values from base and coefficient runs for CACM?2 (binary relevance).
Base Runs Raw Data Log Data
Model Raw Log All Sample | Al Sample
TRM . 1889 1807
TRM, LNK 1736 .1799 1548 1687 1237 1801
AUT, CRC,
TRM, LNK 2125 2037 1927 1770 1721 .1936
ALL 2185 2251 .1502 1547 1725 .1961
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Table 16. Precision values from base and cocflicient runs for CACM?2 (ranked relevance).
Base Runs Raw Data Log Data

Model Raw Log All Sample | All Sample

TRM 1889 1807

TRM, LNK 1736 1799 1548 1694 w229 .1800

AUT, CRC,

TRM, LNK 2125 2037 1930 1794 1709 1940

ALL 2185 2251 .1987 1502 1692 .1979
Results 39




4.0 Discussion

4.1 Usefulness of concept types as shown by linear

regressions

The first goal of this study was to statistically examine the uscfulness of the concept types (extended
vectors) in probabilistic retrieval. As had been shown by Fox (1983a), the extended vectors (base
runs) appreciably improve fecdback retrievals over those with just terms; in the CACM1 collection,
as divided here, precision is increased from 4813 to .6315. Additional information (concept types)
also improved precision for base runs in the ISII collection, but by more modest amounts (.3220

to .3556).

Descriptive statistics revealed that the concept type data values were highly variable and natural log
transformations were used to partially alleviate problems due to the variability of the data. The
descriptive analyses also pointed out potential problems due to sparseness of some of the vectors
when they were compared to others. Although these data were not normally distributed, linear

regression seemed robust enough to be of some use in their analysis. It was believed that consist-
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ency and repeatibility of results across different runs and different data sets were of more importance
than meeting all of the assumptions of the linear regression technique. A high degree of consistency
was found, as shown by Table 6 on page 22, Table 7 on page 23, and Table 9 on page 28. This
is especially evident from the rank columns in these tables as the same concept types consistently
achieved the highest rankings. Consistency was also shown in that the same highest ranking con-
cept types were also consistently statistically significant. The same kind of consistency was also

shown by the logistic regression and all possible regressions techniques that were also tried.

The regression analyses of this study were used to obtain measures of the importance of each con-
cept type in predicting whether a document would be relevant or not. The relative importance of
each concept type was summarized in Tables 6, 7, and 9 as their ranks for each run. The various
models that were run also showed that most of the variance in relevance could be accounted for
by only four of the vectors (AUT, CRC, LNK, and TRM) for the CACM1 collection. In the ISI1
collection, two of the vectors (TRM and COC) accounted for most of the variance. The regression
runs did provide numerous cocflicients, which were used in subsequent feedback runs in SMART.
Log transformed data and samples of the records gave the best RSQ’s; .6654 was the highest RSQ

(binary relevance).

4.2 Ranked relevances versus binary relevances

A lesser goal of this study was to test whether more knowledge of relevance would result in better
prediction. It is surprising that having relevance ranked from 0 to 4 did not really improve the re-
gression model over binary relevance alone. Perhaps relevant documents (ranked from 1 to 4) have

more in common with each other than they have differences from nonrelevant (ranked 0).
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4.3 Thesholds as aids in regression

The investigation of thresholds did not yield anything useful for these collections. It was thought

that a high value for a single concept type would virtually assure that a document would be in the

relevant group. However, no significant improvement was obtained in any of the threshold runs

and some runs even showed poorer RSQ. ’

4.4 Improvement of retrieval using coefficients

The second major goal of this project was to test whether coeflicients obtained by linear regression '
would prove useful as weights for extended vectors in probabilistic retrieval. The coefficients that
were used in the feedback runs with SMART proved to be of limited usefulness here as improve-
ments in precision were limited to the 1% to 5% range. Although log data and samples of the re-

cords gave the best RSQ'’s, coclficients from log values of all data improved precision the most.

4.5 Conclusions and implications for further research

The findings of this study support previous work of Fox (1983), which showed that additional in-

formation improves retrieval as measured by precision and illustrated in the base runs. Regression
coeflicients were of some usefulness, when used as subvector weights in improving precision. It

was also found that tcrms, authors, bibliographic links and Computing Reviews’ abstracts ac-

counted for the most variance in predicting relevance. Log transforming the data values for the
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concept types modestly helped both the regression analyses and the retrieval in SMART. Binary

relevance seemed to be better than ranked relevance in this study.

The author of this study would like to suggest that further research might be pursued along two
paths. The first path would be to obtain a larger collection of documents, of a more general nature.
The purpose of this collection would be to try to better characterize the properties of the concept
types and to try to develop coefficients that could be generalized to other collections. The second
path would be to try to develop a simulated document collection to try to learn more about the

capabilities and limitations of the probabilistic model.
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