A REFERENCE BOOK for the Mechanical Engineer, Designer, Manufacturing Engineer, Draftsman, Toolmaker, and Machinist

26th Edition Machinery's Handbook

BY ERIK OBERG, FRANKLIN D. JONES, HOLBROOK L. HORTON, AND HENRY H. RYFFEL

CHRISTOPHER J. MCCAULEY, EDITOR RICCARDO HEALD, ASSOCIATE EDITOR MUHAMMED IQBAL HUSSAIN, ASSOCIATE EDITOR

> 2000 Industrial Press Inc. New York

COPYRIGHT 1914, 1924, 1928, 1930, 1931, 1934, 1936, 1937, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, © 1959, © 1962, © 1964, © 1966, © 1968, © 1971, © 1974, © 1975, © 1977, © 1979, © 1984, © 1988, © 1992, © 1996, © 1997, © 1998, © 2000 by Industrial Press Inc., New York, NY.

Library of Congress Cataloging-in-Publication Data

Oberg, Erik, 1881—1951 Machinery's Handbook. 2640 p. Includes index.
I. Mechanical engineering—Handbook, manuals, etc.
I. Jones, Franklin Day, 1879-1967
II. Horton, Holbrook Lynedon, 1907III. Ryffel, Henry H. 1920- IV. Title.
TJ151.0245 2000 621.8'0212 72-622276
ISBN 0-8311-2625-6 (Thumb Indexed 11.7 x 17.8 cm)
ISBN 0-8311-2666-3 (CD-ROM)
LC card number 72-622276

> INDUSTRIAL PRESS, INC. 200 Madison Avenue New York, New York 10016-4078

MACHINERY'S HANDBOOK 26th Edition First Printing

Printed and bound in the United States of America by National Publishing Company, Philadelphia, Pa. All rights reserved. This book or parts thereof may not be reproduced, stored in a retrieval system, or transmitted in any form without permission of the publishers.

TABLE OF CONTENTS

TOOLING AND TOOLMAKING

		CUTTING TOOLS		FORMING TOOLS
1	723	Tool Contour	758	Dovetail Forming Tools
	723	Terms and Definitions	758	Straight Forming Tools
	726	Relief Angles	761	Circular Forming Tools
	727	Rake Angles	763	Formulas
	728	Nose Radius	764	Circular Tools
	729	Chipbreakers	764	Circular Cut-Off Tools
	730	Planing Tools	765	Constants for Diameters
	730	Indexable Inserts	766	Corrected Diameters
	731	Identification System	770	Arrangement of Circular
	732	Indexable Insert Tool Holders		MILLING CUTTERS
	733	Standard Shank Sizes		MILLING CUTTERS
	734	Letter Symbols	771	Selection of Milling Cutt
	735	Indexable Insert Holders	771	Number of Teeth
	738	Sintered Carbide Blanks	772	Hand of Milling Cutters
	739	Standard Sizes for Carbide Blanks	773	Plain Milling Cutters
	741	Style A Carbide Tipped Tools	774	Side Milling Cutters
	741	Single-Point, Sintered-Carbide-	775	Staggered Teeth, T-Slot N
	/ 11	Tipped Tools	115	Cutters
	742	Style B Carbide Tipped Tools	776	Metal Slitting Saws
	743	Style C Carbide Tipped Tools	776	Milling Cutter Terms
	743	Style D Carbide Tipped Tools	778	Shell Mills
	744	Style E, Carbide Tipped Tools	779	Multiple- and Two-Flute
	744	Standard Styles ER and EL	119	End Helical End Mills
	/44	Carbide Tipped Tools	780	Regular-, Long-, and Ext
	745	Style F Carbide Tipped Tools	780	Length, Mills
	745	Tool Nose Radii	781	Two-Flute, High Helix,
	746	Tool Angle Tolerances	/01	Long-, and Extra Long
	746	Style G, Carbide Tipped Tools		Mills
	740		782	Roughing, Single-End E
		CEMENTED CARBIDES	790	Concave, Convex, and
		a	1.70	Rounding Arbor-Typ
	747	Cemented Carbide	792	Roller Chain Sprocket
	747	Carbides and Carbonitrides	794	Keys and Keyways
	748	Properties of Tungsten-Carbide-	795	Woodruff Keyseat Cutte
		Based Cutting-Tool	799	Spline-Shaft Milling Cu
	752	ISO Classifications of Hardmetals	799	Cutter Grinding
	752	Ceramics	800	Wheel Speeds and Feed
	755	Superhard Materials	800	Clearance Angles
	756	Machining Data	800	Rake Angles for Milling
	757	Hardmetal Tooling		Eccentric Type Radial F
	757	Cutting Blades	801	Indicator Drop Method
			804	marcator Drop Methou

- Hardmetal Tooling
- Cutting Blades

ovetail Forming Tools raight Forming Tools reular Forming Tools reular Tools reular Tools reular Cut-Off Tools opstants for Diameters orrected Diameters rrangement of Circular Tools ILLING CUTTERS selection of Milling Cutters velocition of Teeth Hand of Milling Cutters Plain Milling Cutters Staggered Teeth, T-Slot Milling Cutters Staggered Teeth, T-Slot Milling Cutters Metal Slitting Saws Milling Cutter Terms Shell Mills Multiple- and Two-Flute Single-End Helical End Mills Multiple- and Two-Flute Single-End Helical End Mills Multiple- and Extra Long-Length, Mills Two-Flute, High Helix, Regular, Long-, and Extra Long-Length, Mills Roughing, Single-End End Mills Concave, Convex, and Corner-Rounding Arbor-Type Cutters Roller Chain Sprockt Keys and Keyways Woodruff Keyseat Cutters Spline-Shaft Milling Cutter Cutter Grinding Wheel Speeds and Feeds Clearance Angles Rake Angles for Milling Cutters Eccentric Type Radial Relief Indicator Drop Method Distance to Set Tooth lection of Milling Cutters

- 801 801 804 806

TABLE OF CONTENTS

	REAMERS	(TWIST DRILLS AND COUNTERBORES (Cont.)
807	Hand Reamers		
808	Irregular Tooth Spacing in	865	Spade Drills and Drilling
	Reamers	865	Spade Drill Geometry
808	Threaded-end Hand Reamers	867	Spade Drilling
808	Fluted and Rose Chucking	869	Feed Rates
	Reamers	870	Power Consumption
811	Vertical Adjustment of Tooth-rest	871	Trepanning
812	Reamer Difficulties	TA	PS AND THREADING DIES
813	Dimensions of Centers		Brith Hints and the seas
814	Expansion Chucking Reamers	872	Types of Taps
816	Hand Reamers	872	Definitions of Tap Terms
817	Expansion Hand Reamers	876	Fraction-Size Taps
818	Driving Slots and Lugs	878	Machine Screw Taps
819	Chucking Reamers	879	Ground Thread Limits
822	Shell Reamers	880	Taper Pipe Taps
825	Taper Pipe Reamers	881	Straight Pipe Taps
	TWIST DRILLS AND	883	Straight Fluted Taps
	COUNTERBORES	885	Spiral-Pointed Taps
	COUNTERBORES	890	ANSI Standard Taps
827	Definitions of Twist Drill Terms	891	Pulley Taps
828	Types of Drill	891	Spark Plug Taps
848	British Standard Combined Drills	893	Spiral Pointed Ground Thread
848	Split-Sleeve, Collet Type Drill		Taps
	Drivers	894	Taper and Straight Pipe Taps
849	Three- and Four-Flute Straight	896	Thread Series Designations
	Shank Core Drills	897	Pitch Diameter Tolerance
850	Drill Drivers	897	Eccentricity Tolerances
850	British Standard Metric Twist	899	Acme Threads Taps
	Drills	900	Acme and Square-Threaded Taps
851	Gauge and Letter Sizes	901	Proportions
852	Morse Taper Shank Twist Drills		Drill Hole Sizes
853	Tolerance on Diameter	902	Screwing Taps for ISO Metric
854	Parallel Shank Jobber Series		Threads
	Twist Drills	905	Tapping Square Threads
856	Stub Drills		STANDARD TAPERS
856			STANDARD TATERS
856	Accuracy of Drilled Holes	906	Standard Tapers
857		906	
858		906	
858		906	
859		914	
859		915	

- Square Boring Tools
 Sintered Carbide Boring Tools
 Carbide-Tipped Square Boring Tools
 Solid Carbide Round Boring Tools

 $(\cdot,\cdot)_{i \in I}$

- 915 916 917 917 918 919 920

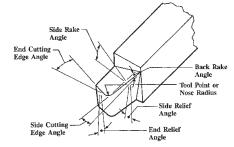
- Morse Taper Sleeves Brown & Sharpe Taper Shank Jarno Taper Shanks Machine Tool Spindles Plug and Ring Gages Jacobs Tapers and Threads Spindle Noses

1.5

721

TABLE OF CONTENTS

ST	TANDARD TAPERS (Cont.)		JIGS AND FIXTURES
922	Tool Shanks	941	Jig Bushings
923	Draw-in Bolt Ends	941	Materials
924	Spindle Nose	941	American National Standard
925	Twist Drills and Centering Tools	942	Head Type Press Fit Wearing
BRC	DACHES AND BROACHING	945	Bushings Specifications for Press Fit
926	The Broaching Process		Wearing Bushings
926	Types of Broaches	945	Slip Type Renewable Wearing
927	Pitch of Broach Teeth		Bushings
928	Designing Data for Surface Broaches	947	Fixed Type Renewable Wearing Bushings
928	Broaching Pressure	948	Headless Type Liner Bushings
929	Depth of Cut per Tooth	950	Locking Mechanisms
930	Face Angle or Rake	951	Jig Bushing Definitions
930	Clearance Angle	951	Jig Plate Thickness
930	Land Width	951	Jig Bushing Designation System
930	Depth of Broach Teeth	951	Definition of Jig and Fixture
930	Radius of Tooth Fillet	951	Jig Borers
930	Total Length of Broach	952	
930	Chip Breakers	953	
931	Shear Angle	955	
931	Types of Broaching Machines	956	
931	Broaching Difficulties		Factors
933		957	
935	Sharpening Twist Drills		of Circles
935	Relief Grinding of the Tool Flanks	959	
936	Drill Point Thinning		Factors
937	Sharpening Carbide Tools	971	
937	Silicon Carbide Wheels	971	
938	Diamond Wheels		Grinders, and Fixtures
938	Diamond Wheel Grit Sizes		
938	Diamond Wheel Grades		
938	Diamond Concentration		
939	Dry Versus Wet Grinding of		
	Carbide Tools		
939	Coolants for Carbide Tool		
	Grinding		
939	Peripheral Versus Flat Side Grinding		
940	Lapping Carbide Tools		
940	Chip Breaker Grinding		


940 Chip Breaker Grinding 940 Summary of Miscellaneous Points

723

CUTTING TOOLS

Tool Contour.—Tools for turning, planing, etc., are made in straight, bent, offset, and other forms to place the cutting edges in convenient positions for operating on differently located surfaces. The contour or shape of the cutting edge may also be varied to suit differ-entclasses of work. Tool shapes, however, are not only related to the kind of operation, but, in roughing tools particularly, the contour may have a decided effect upon the cutting effi-ciency of the tool. To illustrate, an increase in the side cutting-edge angle of a roughing tool, or in the nose radius, tends to permit higher cutting speeds because the chip will be unless the work and the machine are rigid; hence, the most desirable contour may be a com-promise between the ideal form and one that is needed to meet practical requirements. **Terms and Definitions**—The terms and definitions relating to sincle-noint tools vary

Terms and Definitions.- The terms and definitions relating to single-point tools vary somewhat in different plants, but the following are in general use.

Fig. 1, Terms Applied to Single-point Turning Tools

Single-point Tool: This term is applied to tools for turning, planing, boring, etc., which have a cutting edge at one end. This cutting edge may be formed on one end of a solid piece of steel, or the cutting part of the tool may consist of an insert or tip which is held to the body of the tool by brazing, welding, or mechanical means. Shunk: The shank is the main body of the tool. If the tool is an inserted cutter type, the bar meret to putter or the form of the tool is an inserted cutter type, the

Shank supports the cutter or bit. (See diagram, Fig. 1.) Nose: A general term sometimes used to designate the cutting end but usually relating

more particularly to the rounded tip of the cutting end.

Face: The surface against which the chips bear, as they are severed in turning or planing operations, is called the face.

Flank: The flank is that end surface adjacent to the cutting edge and below it when the tool is in a horizontal position as for turning. Base: The base is the surface of the tool shank that bears against the supporting tool-

holder or block.

holder or block. Side Cutting Edge: The side cutting edge is the cutting edge on the side of the tool. Tools such as shown in Fig. 1 do the bulk of the cutting with this cutting edge and are, therefore, sometimes called side cutting edge tools. End Cutting Edge: The end cutting edge is the cutting edge at the end of the tool.

On side cutting edge tools, the end cutting edge can be used for light plunging and facing cuts. Cutoff tools and similar tools have only one cutting edge located on the end. These

tools and other tools that are intended to cut primarily with the end cutting edge are sometimes called end cutting edge tools.

Rake: A metal-cutting tool is said to have rake when the tool face or surface against which the chips bear as they are being severed, is inclined for the purpose of either increasing or diminishing the keenness or bluntness of the edge. The magnitude of the rake is most conveniently measured by two angles called the back rake angle and the side rake angle. The tool shown in Fig. 1 has rake. If the face of the tool did not incline but was parallel to the base, there would be no rake; the rake angles would be zero.

Positive Rake: If the inclination of the tool face is such as to make the cutting edge keener or more acute than when the rake angle is zero, the rake angle is defined as positive. Negative Rake: If the inclination of the tool face makes the cutting edge less keen or

more blunt than when the rake angle is zero, the rake is defined as negative.

Back Rake: The back rake is the inclination of the face toward or away from the end or the end cutting edge of the tool. When the inclination is away from the end cutting edge, as shown in Fig. 1, the back rake is positive. If the inclination is downward toward the end cutting edge the back rake is negative.

Side Rake: The side rake is the inclination of the face toward or away from the side cutting edge. When the inclination is away from the side cutting edge, as shown in Fig. 1, the side rake is positive. If the inclination is toward the side cutting edge the side rake is negative.

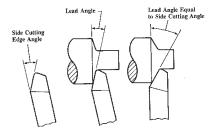
Relief: The flanks below the side cutting edge and the end cutting edge must be relieved to allow these cutting edges to penetrate into the workpiece when taking a cut. If the flanks are not provided with relief, the cutting edges will rub against the workpiece and be unable to penetrate in order to form the chip. Relief is also provided below the nose of the tool to allow it to penetrate into the workpiece. The relief at the nose is usually a blend of the side relief.

End Relief Angle: The end relief angle is a measure of the relief below the end cutting edge.

Side Relief Angle: The side relief angle is a measure of the relief below the side cutting edge.

Back Rake Angle: The back rake angle is a measure of the back rake. It is measured in a plane that passes through the side cutting edge and is perpendicular to the base. Thus, the back rake angle can be defined by measuring the inclination of the side cutting edge with respect to a line or plane that is parallel to the base. The back rake angle may be positive, negative, or zero depending upon the magnitude and direction of the back rake.

Side Rake Angle: The side rake angle is a measure of the side rake. This angle is always measured in a plane that is perpendicular to the side cutting edge and perpendicular to the base. Thus, the side rake angle is the angle of inclination of the face perpendicular to the side cutting edge with reference to a line or a plane that is parallel to the base.


End Cutting Edge Angle: The end cutting edge angle is the angle made by the end cutting edge with respect to a plane perpendicular to the axis of the tool shank. It is provided to allow the end cutting edge to clear the finish machined surface on the workpiece.

Side Cutting Edge Angle: The side cutting edge angle is the angle made by the side cutting edge and a plane that is parallel to the side of the shank.

Nose Radius: The nose radius is the radius of the nose of the tool. The performance of the tool, in part, is influenced by nose radius so that it must be carefully controlled.

Lead Angle: The lead angle, shown in Fig. 2, is not ground on the tool. It is a tool setting angle which has a great influence on the performance of the tool. The lead angle is bounded by the side cutting edge and a plane perpendicular to the workpiece surface when the tool is in position to cut; or, more exactly, the lead angle is the angle between the side cutting edge and a plane perpendicular to the direction of the feed travel.

725

Fig. 2. Lead Angle on Single-point Turning Tool

Solid Tool: A solid tool is a cutting tool made from one piece of tool material.

Brazed Tool: A brazed tool is a cutting tool having a blank of cutting-tool material permanently brazed to a steel shank.

Blank: A blank is an unground piece of cutting-tool material from which a brazed tool is made.

Tool Bit: A tool bit is a relatively small cutting tool that is clamped in a holder in such a way that it can readily be removed and replaced. It is intended primarily to be reground when dull and not indexed.

Tool-bit Blank: The tool-bit blank is an unground piece of cutting-tool material from which a tool bit can be made by grinding. It is available in standard sizes and shapes.

Tool-bit Holder: Usually made from forged steel, the tool-bit holder is used to hold the tool bit, to act as an extended shank for the tool bit, and to provide a means for clamping in the tool post.

Straight-shank Tool-bit Holder: A straight-shank tool-bit holder has a straight shank when viewed from the top. The axis of the tool bit is held parallel to the axis of the shank.

Offset-shank Tool-bit Holder: An offset-shank tool-bit holder has the shank bent to the right or left, as seen in Fig. 3. The axis of the tool bit is held at an angle with respect to the axis of the shank.

Side cutting Tool: A side cutting tool has its major cutting edge on the side of the cutting part of the tool. The major cutting edge may be parallel or at an angle with respect to the axis of the tool.

Indexable Inserts: An indexable insert is a relatively small piece of cutting-tool material that is geometrically shaped to have two or several cutting edges that are used until dull. The insert is then indexed on the holder to apply a sharp cutting edge. When all the cutting edges have been dulled, the insert is discarded. The insert is held in a pocket or against other locating surfaces on an indexable insert holder by means of a mechanical clamping device that can be tightened or loosened easily.

Indexable Insert Holder: Made of steel, an indexable insert holder is used to hold indexable inserts. It is equipped with a mechanical clamping device that holds the inserts firmly in a pocket or against other seating surfaces.

Straight-shank Indexable Insert Holder: A straight-shank indexable insert tool-holder is essentially straight when viewed from the top, although the cutting edge of the insert may be oriented parallel, or at an angle to, the axis of the holder.

Offset-shank Indexable Insert Holder: An offset-shank indexable insert holder has the head end, or the end containing the insert pocket, offset to the right or left, as shown in Fig. 3.

Fig. 3. Top: Right-hand Offset-shank, Indexable Insert Holder Bottom: Right-hand Offset-shank Tool-bit Holder

End cutting Tool: An end cutting tool has its major cutting edge on the end of the cutting part of the tool. The major cutting edge may be perpendicular or at an angle, with respect to the axis of the tool.

Curved Cutting-edge Tool: A curved cutting-edge tool has a continuously variable side

Curved Cutting-edge Tool: A curved cutting-edge tool has a continuously variable side cutting edge angle. The cutting edge is usually in the form of a smooth, continuous curve along its entire length, or along a large portion of its length. *Right-hand Tool:* A right-hand tool has the major, or working, cutting edge on the right-hand side when viewed from the cutting end with the face up. As used in a lathe, such a tool is usually fed into the work from right to left, when viewed from the shank end. Left-hand Tool: A left-hand tool has the major or working cutting edge on the left-hand side when viewed from the cutting end with the face up. As used in a lathe, the tool is usu-ally fed into the work from left to right, when viewed from the shank end. Neurother hand Tool: A neutral-hand tool is a tool to cut either left to right to left;

Neutral-hand Tool: A neutral-hand tool is a tool to cut either left to right or right to left; or the cut may be parallel to the axis of the shank as when plunge cutting.

or the cut may be parallel to the axis of the shank as when punge cutring. *Chipbreaker:* A groove formed in or on a shoulder on the face of a turning tool back of the cutting edge to break up the chips and prevent the formation of long, continuous chips which would be dangerous to the operator and also bulky and cumbersome to handle. A chipbreaker of the shoulder type may be formed directly on the tool face or it may consist of a separate piece that is held either by brazing or by clamping.

Relief Angles.— The end relief angle and the side relief angle on single-point cutting tools are usually, though not invariably, made equal to each other. The relief angle under the nose of the tool is a blend of the side and end relief angles.

The size of the relief angles has a pronounced effect on the performance of the cutting tool. If the relief angles are too large, the cutting edge will be weakened and in danger of breaking when a heavy cutting load is placed on it by a hard and tough material. On finish breaking when a heavy cutting load is placed on it by a hard and tough material. On finish cuts, rapid wear of the cutting edge may cause problems with size control on the part. Relief angles that are too small will cause the rate of wear on the flank of the tool below the cutting edge to increase, thereby significantly reducing the tool life. In general, when cut-ting hard and tough materials, the relief angles should be 6 to 8 degrees for high-speed steel tools and 5 to 7 degrees for carbide tools. For medium steels, mild steels, cast iron, and other average work the recommended values of the relief angles are 8 to 12 degrees for high-speed steel tools and 5 to 10 degrees for carbides. Ductile materials having a rela-tively low modulus of elasticity should be cut using larger relief angles. For example the

726

1.11

iron, and similar metals are 12 to 16 degrees for high-speed steel tools and 8 to 14 degrees for carbides.

Larger relief angles generally tend to produce a better finish on the finish machined surface because less surface of the worn flank of the tool rubs against the workpiece. For this reason, single-point thread-cutting tools should be provided with relief angles that are as large as circumstances will permit. Problems encountered when machining stainless steel may be overcome by increasing the size of the relief angle. The relief angles used should never be smaller than necessary.

Rake Angles.—Machinability tests have confirmed that when the rake angle along which the chip slides, called the true rake angle, is made larger in the positive direction, the cutting force and the cutting temperature will decrease. Also, the tool life for a given cutting speed will increase with increases in the true rake angle up to an optimum value, after which it will decrease again. For turning tools which cut primarily with the side cutting edge, the true rake angle corresponds rather closely with the side rake angle except when taking shallow cuts. Increasing the side rake angle in the positive direction lowers the cuting force and the cutting temperature, while at the same time it results in a longer tool life or a higher permissible cutting speed up to an optimum value of the side rake angle. After the optimum value is exceeded, the cutting the permissible cutting when the tool drop; however, the tool life and the permissible cutting peed will decrease.

As an approximation, the magnitude of the cutting force will decrease about one per cent per degree increase in the side rake angle. While not exact, this rule of thumb does correspond approximately to test results and can be used to make rough estimates. Of course, the cutting force also increases about one per cent per degree decrease in the side rake angle. The limiting value of the side rake angle for optimum tool life or cutting speed depends upon the work material and the cutting tool material. In general, lower values can be used for hard and tough work materials. Cemented carbides are harder and more brittle than high-speed steel; therefore, the rake angles usually used for cemented carbides are less positive than for high-speed steel.

positive than for high-speed steel. Negative rake angles cause the face of the tool to slope in the opposite direction from positive rake angles and, as might be expected, they have an opposite effect. For side cutting edge tools, increasing the side rake angle in a negative direction will result in an increase in the cutting force and an increase in the cutting temperature of approximately one per cent per degree change in rake angle. For example, if the side rake angle is changed from 5 degrees positive to 5 degrees negative, the cutting force will be about 10 per cent larger. Usually the tool life will also decrease when negative side rake angles are used, although the tool life will some times increase when the negative rake angle is not too large and when a fast cutting speed is used.

a tast cutting speed is used. Negative side rake angles are usually used in combination with negative back rake angles on single-point cutting tools. The negative rake angles strengthen the cutting edges enabling them to sustain heavier cutting loads and shock loads. They are recommended for turning very hard materials and for heavy interrupted cuts. There is also an economic advantage in favor of using negative rake indexable inserts and tool holders inasmuch as the cutting todge bar out primarily with the side cutting redge the effect of the back rake

the cutting edges provided on both the top and bottom of the insert can be used. On turning tools that cut primarily with the side cutting edge, the effect of the back rake angle alone is much less than the effect of the side rake angle although the direction of the change in cutting force, cutting temperature, and tool life is the same. The effect that the back rake angle has can be ignored unless, of course, extremely large changes in this angle are made. A positive back rake angle does improve the performance of the nose of the tool somewhat and is helpful in taking light finishing cuts. A negative back rake angle strengthens the nose of the tool and is helpful when interrupted cuts are taken. The back rake angle has a very significant effect on the performance of end cutting edge tools, such as cut-off tools. For these tools, the effect of the back rake angle is very similar to the effect of the side rake angle on side cutting edge tools.

727

. .

Side Cutting Edge and Lead Angles.—These angles are considered together because the side cutting edge angle is usually designed to provide the desired lead angle when the tool is being used. The side cutting edge angle and the lead angle will be equal when the shank of the cutting tool is positioned perpendicular to the workpiece, or, more correctly, perpendicular to the direction of the feed. When the shank is not perpendicular, the lead angle is determined by the side cutting edge and an imaginary line perpendicular to the feed direction.

The flow of the chips over the face of the tool is approximately perpendicular to the side cutting edge except when shallow cuts are taken. The thickness of the undeformed chip is measured perpendicular to the side cutting edge. As the lead magle is increased, the length of chip in contact with the side cutting edge is increased, and the chip will become longer and thinner. This effect is the same as increasing the depth of cut and decreasing the feed, although the actual depth of cut and feed remain the same amount of metal is removed. The effect of lengthening and thinning the chip by increasing the lead angle is very beneficial as it increases the tool life for a given cutting speed or that speed can be increased. Increasing the cutting speed while the feed and the tool life remain the same leads to faster production.

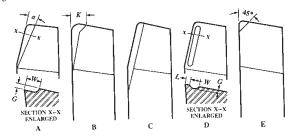
leads to faster production. However, an adverse effect must be considered. Chatter can be caused by a cutting edge that is oriented at a high lead angle when turning and sometimes, when turning long and slender shafts, even a small lead angle when turning and sometimes, when turning long and slender shafts, even a small lead angle can cause chatter. In fact, an unsuitable lead angle of the side cutting edge is one of the principal causes of chatter. When chatter occurs, often simply reducing the lead angle will cure it. Sometimes, very long and slender shafts can be turned successfully with a tool having a zero degree lead angle (and having a small nose radius). Boring bars, being usually somewhal long and slender, are also susceptible to chatter if a large lead angle is used. The lead angle for boring bars should be kept small, and for very long and slender boring bars a zero degree lead angle is recommended. It is impossible to provide a rule that will determine when chatter caused by a lead angle will occur radiu when it will not. In making a judgment, the first consideration is the length to diameter ratio of the part to be turned, or of the boring bar. Then the method of holding the workpiece must be considered — a part that is firmly held is less apt to chatter. Finally, the overall condition and rigidity of the machine must be considered because they may be the real cause of chatter.

Although chatter can be a problem, the advantages gained from high lead angles are such that the lead angle should be as large as possible at all times.

End Cutting Edge Angle,—The size of the end cutting edge angle is important when tool wear by cratering occurs. Frequently, the crater will enlarge until it breaks through the end cutting edge just behind the nose, and tool failure follows shortly. Reducing the size of the end cutting edge angle tends to delay the time of crater breakthrough. When cratering takes place, the recommended end cutting edge angle is 8 to 15 degrees. If there is no cratering, the angle can be made larger. Larger end cutting edge angles may be required to enable profile turning tools to plunge into the work without interference from the end cutting edge.

Nose Radius,—The tool nose is a very critical part of the cutting edge since it cuts the finished surface on the workpiece. If the nose is made to a sharp point, the finish machined surface will usually be unacceptable and the life of the tool will be short. Thus, a nose radius is required to obtain an acceptable surface finish and tool life. The surface finish obtained is determined by the feed rate and by the nose radius if other factors such as the work material, the cutting speed, and cutting fluids are not considered. A large nose radius will give a better surface finish and will permit a faster feed rate to be used. Machinghitte test have demonstrated that increasing the nose radius will also improve

Machinability tests have demonstrated that increasing the nose radius will also improve the tool life or allow a faster cutting speed to be used. For example, high-speed steel tools were used to turn an alloy steel in one series of tests where complete or catastrophic tool failure was used as a criterion for the end of tool life. The cutting speed for a 60-minute tool


life was found to be 125 fpm when the nose radius was $\frac{1}{16}$ inch and 160 fpm when the nose radius was $\frac{1}{16}$ inch.

A very large nose radius can often be used but a limit is sometimes imposed because the tendency for chatter to occur is increased as the nose radius is made larger. A nose radius that is too large can cause chatter and when it does, a smaller nose radius must be used on the tool. It is always good practice to make the nose radius as large as is compatible with the operation being performed.

Chipbreakers.—Many steel turning tools are equipped with chipbreaking devices to prevent the formation of long continuous chips in connection with the turning of steel at the high speeds made possible by high-speed steel and especially cemented carbide tools. Long steel chips are dangerous to the operator, and cumbersome to handle, and they may twist around the tool and cause damage. Broken chips not only occupy less space, but permit a better flow of coolant to the cutting edge. Several different forms of chipbreakers are illustrated in Fig. 4.

Angular Shoulder Type: The angular shoulder type shown at A is one of the commonly used forms. As the enlarged sectional view shows, the chipbreaking shoulder is located back of the cutting edge. The angle a between the shoulder and cutting edge may vary from 6 to 15 degrees or more, 8 degrees being a fair average. The ideal angle, width W and depth G, depend upon the speed and feed, the depth of cut, and the material. As a general rule, width W, at the end of the tool, varies from $\frac{3}{2}$ to $\frac{3}{2}$ inch, and the depth G may range from $\frac{1}{6}$ to $\frac{1}{6}$ inch. The shoulder radius equals depth G. If the tool has a large nose radius, the corner of the shoulder at the nose end may be beveled off, as illustrated at B, to prevent if from coming into contact with the work. The width K for type B should equal approximately 1.5 times the nose radius.

Parallel Shoulder Type: Diagram C shows a design with a chipbreaking shoulder that is parallel with the cutting edge. With this form, the chips are likely to come off in short curled sections. The parallel form may also be applied to straight tools which do not have a side cutting-edge angle. The tendency with this parallel shoulder form is to force the chips against the work and damage it.

Fig. 4. Different Forms of Chipbreakers for Turning Tools

Groove Type: This type (diagram D) has a groove in the face of the tool produced by grinding. Between the groove and the cutting edge, there is a land L. Under ideal conditions, this width L, the groove width W, and the groove depth G, would be varied to suit the feed, depth of cut and material. For average use, L is about $\frac{1}{2}$, inch; G, $\frac{1}{2}$, inch; and W, $\frac{1}{2}$, inch. There are differences of opinion concerning the relative merits of the groove type and

the shoulder type. Both types have proved satisfactory when properly proportioned for a given class of work.

Chipbreaker for Light Cuts: Diagram E illustrates a form of chipbreaker that is sometimes used on tools for finishing cuts having a maximum depth of about $\frac{1}{32}$ inch. This chipbreaker is a shoulder type having an angle of 45 degrees and a maximum width of about $\frac{1}{16}$ inch. It is important in grinding all chipbreakers to give the chip-bearing surfaces a fine finish, such as would be obtained by honing. This finish greatly increases the life of the tool.

Planing Tools.—Many of the principles which govern the shape of turning tools also apply in the grinding of tools for planing. The amount of rake depends upon the hardness of the material, and the direction of the rake should be away from the *working part* of the cutting edge. The angle of clearance should be about 4 or 5 degrees for planer tools, which is less than for lathe tools. This small clearance is allowable because a planer tool is held about square with the platen, whereas a lathe tool, the height and inclination of which can be varied, may not always be clamped in the same position.

Carbide Tools: Carbide tools for planing usually have negative rake. Round-nose and square-nose end-cutting tools should have a "negative back rake" (or front rake) of 2 or 3 degrees. Side cutting tools may have a negative back rake of 10 degrees, an egative side rake of 5 degrees, and a side cutting-edge angle of 8 degrees.

Indexable Inserts.—A large proportion of the cemented carbide, single-point cutting tools are indexable inserts and indexable insert tool holders. Dimensional specifications for solid sintered carbide indexable inserts are given inAmerican National Standard ANSI B212,12-1991. Samples of the many insert shapes are shown in Table 3. Most modern, cemented carbide, face milling cutters are of the indexable insert type. Larger size end milling cutters, side milling or slotting cutters, boring tools, and a wide variety of special tools are made to use indexable inserts. These inserts are primarily made from cemented carbide, although most of the cemented oxide cutting tools are also indexable inserts.

The objective of this type of tooling is to provide an insert with several cutting edges. When an edge is worn, the insert is indexed in the tool holder until all the cutting edges are used up, after which it is discarded. The insert is not intended to be reground. The advantages are that the cutting edges on the tool can be rapidly changed without removing the tool holder from the machine, tool-grinding costs are eliminated, and the cost of the insert is less than the cost of a similar, brazed carbide tool. Of course, the cost of the tool holder must be added to the cost of the insert; however, one tool holder will usually last for a long time before it, too, must be replaced.

Indexable inserts and tool holders are made with a negative rake or with a positive rake. Negative rake inserts have the advantage of having twice as many cutting edges available as comparable positive rake inserts, because the cutting edges consolited to parable positive rake inserts, because the cutting edges can be used on positive rake inserts. Positive rake inserts have a distinct advantage when machining long and slender parts, thin-walled parts, or other parts that are subject to bending or chatter when the cutting load is applied to them, because the cutting force is significantly lower as compared to that for negative rake inserts. Indexable inserts can be obtained in the following forms: utility ground, or ground on top and bottom only: precision ground, or ground on all surfaces; prehoned to produce a slight rounding of the cutting edge; and precision molded, which are unground. Positive-negative rake inserts also are available. These inserts are held on a negative-rake tool holder and have a chipbreaker groove that is formed to produce an effective positive-rake angle while cutting. Cutting edges may be available on the top surface only, or on both top and bottom surfaces. The positive-rake chipbreaker surface

Many materials, such as gray cast iron, form a discontinuous chip. For these materials an insert that has plain faces without chipbreaker grooves should always be used. Steels and other ductile materials form a continuous chip that must be broken into small segments

when machined on lathes and planers having single-point, cemented-carbide and when machined on faithes and planers having single-point, centender-carbide and cemented-oxide cutting tools; otherwise, the chips can cause injury to the operator. In this case a chipbreaker must be used. Some inserts are made with chipbreaker grooves molded or ground directly on the insert. When inserts with plain faces are used, a cemented-carbide plate-type chipbreaker is clamped on top of the insert.

Identification System for Indexable Inserts.—The size of indexable inserts is deter-mined by the diameter of an inscribed circle (I.C.), except for rectangular and parallelo-gram inserts where the length and width dimensions are used. To describe an insert in its gram inserts where the length and width dimensions are used. To describe an insert in the entirety, a standard ANSI B212.4-1986 identification system is used where each position number designates a feature of the insert. The ANSI Standard includes items now com-monly used and facilitates identification of items not in common use. Identification con-sists of up to ten positions; each position defines a characteristic of the insert as shown below:

1	2	3	4	5	6	7	8ª	9ª	10ª
					4				

*Eighth, Ninth, and Tenth Positions are used only when required.

Lagran, Vanu, and Team rossous are used only when required.

 Shape: The shape of an insert is designated by a letter: R for round; S, square; T, triangle; A, 85° parallelogram; C, 80° diamond; D, 55° diamond; E, 75° diamond; H, hexagon; K, 55° parallelogram; L, rectangle; M, 86° diamond; O, octagon; P, pentagon; V, 35° diamond; and W, 80° trigon.

2) Relief Angle (Clearances): The second position is a letter denoting the relief angles; N 2) Rent Mage (clean mark) in a score point point point of the score in the score in

3) Tolerances: The third position is a letter and indicates the tolerances which control the indexability of the insert. Tolerances specified do not imply the method of manufacture.

	Tolerar (± from no			Tolerar (±from no		
Symbol	Inscribed Circle, Inch	Thicknes, Inch	Symbol	Inscribed Circle, Inch	Thickness, Inch	
A	0.001	0.001	Н	0.0005	0.001	
В	0.001	0.005	J	0.002-0.005	0.001	
Ē	0.001	0.001	K	0.002-0.005	0.001	
D	0.001	0.005	L	0.002-0.005	0.001	
E	0.001	0.001	M	0.002-0.004 ^a	0.005	
F	0,0005	0.001	U	0.005-0.010ª	0.005	
G	0.001	0.005	N	0.002-0.004ª	0.001	

*Exact tolerance is determined by size of insert. See ANSI B94.25.

^aExact tolerance is determined by size of insert. See ANSI B94.25. 4) Type: The type of insert is designated by a letter. A, with hole; **B**, with hole and coun-tersink; **C**, with hole and two countersinks; **F**, chip grooves both surfaces, no hole; **G**, same as **F** but with hole; **H**, with hole, one countersink, and chip groove on one rake surface; **J**, with hole, two countersinks and chip grooves on two rake surfaces; **M**, with hole and chip groove on one rake surface; **N**, without hole; **Q**, with hole and two countersinks; **R**, without hole but with chip groove on one rake surface; **T**, with hole, one countersink, and chip groove on one rake face; **U**, with hole, two countersinks, and chip grooves on two rake faces; and **W**, with hole and one countersink. *Note*: a dash may be used after position 4 to

*Second angle is secondary facet angle, which may vary by $\pm 1^{\circ}$.

separate the shape-describing portion from the following dimensional description of the insert and is not to be considered a position in the standard description.

5) Size: The size of the insert is designated by a one- or a two-digit number. For regular polygons and diamonds, it is the number of eighths of an inch in the nominal size of the insertibed circle, and will be a one- or two-digit number when the number of eighths is a whole number. It will be a two-digit number, including one decimal place, when it is not a whole number. Rectangular and parallelogram inserts require two digits: the first digit indicates the number of eighths of an inch width and the second digit, the number of quarters of an inch length.

6) Thickness: The thickness is designated by a one- or two-digit number, which indicates the number of sixteenths of an inch in the thickness of the insert. It is a one-digit number when the number of sixteenths is a whole number; it is a two-digit number carried to one decimal place when the number of sixteenths of an inch is not a whole number.

7) Cutting Point Configuration: The cutting point, or nose radius, is designated by a number representing V_{44} hs of an inch; a flat at the cutting point or nose, is designated by a letter: 0 for sharp corner; 1, V_{44} inch radius; 2, V_{22} inch radius; 3, V_{44} inch radius; 4, V_{46} inch radius; 5, V_{44} inch radius; 6, V_{24} inch radius; 7, V_{44} inch radius; 8, V_{46} inch radius; 8, V_{46} inch radius; 6, V_{46} inch radius; 7, V_{44} inch radius; 8, V_{46} inch radius; 9, V_{46} inch radius; 7, V_{44} inch radius; 8, V_{46} inch radius; 9, $V_$

8) Special Cutting Point Definition: The eighth position, if it follows a letter in the 7th position, is a number indicating the number of $\frac{1}{\sqrt{4}}$ the of an inch measured parallel to the edge of the facet.

9) Hand: R, right; L, left; to be used when required in ninth position.

10) Other Conditions: The tenth position defines special conditions (such as edge treatment, surface finish) as follows: **A**, honed, 0.0005 inch to less than 0.003 inch; **B**, honed, 0.003 inch to less than 0.005 inch; **C**, honed, 0.005 inch to less than 0.007 inch; **J**, polished, 4 microinch arithmetic average (AA) on rake surfaces only; **T**, chamfered, manufacturer's standard negative land, rake face only.

Indexable Insert Tool Holders.—Indexable insert tool holders are made from a good grade of steel which is beat treated to a hardness of 44 to 48 Rc for most normal applications. Accurate pockets that serve to locate the insert in position and to provide surfaces against which the insert can be clamped are machined in the ends of tool holders. A cemented carbide seat usually is provided, and is held in the bottom of the pocket by a screw or by the clamping pin, if one is used. The seat is necessary to provide a flat bearing surface upon which the insert can rest and, in so doing, it adds materially to the ability of the insert to withstand the cutting load. The seating surface of the bolder may provide a positive, negative-, or a neutral-rake orientation to the insert when it is in position on the holder. Holders, therefore, are classified as positive, negative, or neutral rake.

Four basic methods are used to clamp the insert on the holder: 1) Clamping, usually top clamping; 2) Pin-lock clamping; 3) Multiple clamping using a clamp, usually a top clamp, and a pin lock; and 4) Clamping the insert with a machine screw.

All top clamps are actuated by a screw that forces the clamp directly against the insert. When required, a cemented-carbide, plate-type chipbreaker is placed between the clamp and the insert. Pin-lock clamps require an insert having a hole: the pin acts against the walls of the hole to clamp the insert firmly against the seating surfaces of the holder. Multiple or combination clamping, simultaneously using both a pin-lock and a top clamp, is recommended when taking heavier or interrupted cuts. Holders are available on which all the above-mentioned methods of clamping may be used. Other holders are made with only a top clamp or a pin lock. Screw-on type holders use a machine screw to hold the insert in the

733

· 1

pocket. Most standard indexable insert holders are either straight-shank or offset-shank, although special holders are made having a wide variety of configurations. The common shank sizes of indexable insert tool holders are shown in Table 1. Not all styles are available in every shank size. Positive- and negative-rake tools are also not avail-able in every style or shank size. Some manufacturers provide additional shank sizes for certain tool holder styles. For more complete details the manufacturers' catalogs must be consulted. consulted.

Table 1. Standard Shank Sizes for Indexable Insert Holders

	C					B
		Shank D	imensions for In	dexable Insert I	lolders	
Basic	A		Б		c	<u>u</u>
Shank Size	In.	IDIA	In.	лum	In.	nn
½×½×4½	0.500	12.70	0.500	12.70	4.500	114.3
%×%×4%	0.625	15.87	0.625	15.87	4.500	114.3
%×1%×6	0.625	15.87	1.250	31.75	6.000	152.4
3×3×4×45	0.750	19.05	0.750	19.05	4.500	114.3
%×1×6	0.750	19.05	1.000	25.40	6.000	152.4
3×15×6	0,750	19.05	1.250	31.75	6.000	152.4
1×1×6	1.000	25.40	1.000	25.40	6.000	152.4
1×1½×6	1.000	25.40	1.250	31.75	6.000	152.4
1×1%×6	1.000	25.40	1.500	38.IU	6.000	152.4
1%×1½×1	1.250	31.75	1.250	31.75	7.000	177.5
1%×1%×8	1.250	31.75	1.500	38,10	8.000	203.2
	1,375	34.92	2.062	52.37	6.380	162.
$1_{8}^{8} \times 2_{16}^{1} \times 6_{8}^{1}$	1.500	38.10	1.500	38.10	7.000	177.3
1½×1½×7 1½×1½×9%	1.750	44.45	1,750	44.45	9.500	241.

^a Holder length; may vary by manufacturer. Actual shank length depends on holder style.

Identification System for Indexable Insert Holders.— The following identification system conforms to the American National Standard, ANSI B212.5-1986, Metric Holders for Indexable Inserts.

Each position in the system designates a feature of the holder in the following sequence: $1 2 3 4 5 - 6 - 7 - 8^{a} - 9 - 10^{a}$

	С	Т	Ν	\mathbf{A}	R	_	85	_	25	_	D		16	—	Q	
D	Metl	iod c	of Ho	lding	Hor	izont	ally M	lounte	ed Ins	ert: T	he m	ethod	of hol	ding o	r clamp	ing
is d	esign	ated	by a	lette	r: C,	top c	lampi	ng, in	sert v	ithou	it hol	e; M, I	top an	d hole	clampi	ng,

is designated by a letter: C, top clamping, insert without hole; M, top and hole clamping, insert with hole; P, hole clamping, insert with hole; S, screw clamping through hole, insert with hole; W, wedge clamping. 2) *Insert Shape*: The insert shape is identified by a letter: H, hexagonal; O, octagonal; P, pentagonal; S, square; T, triangular; C, rhombic, 80° included angle; D, rhombic, 55° included angle; E, rhombic, 75° included angle; M, rhombic, 86° included angle; V, rhom-bic, 35° included angle; B, parallelogram, 82° included angle; K, parallelogram, 85° included angle; B, parallelogram, 82° included angle; K, parallelogram, 85° included angle; P, rhom. The included angle is always the smaller angle. 3) *Holder Style*: The holder style designates the shank style and the side cutting edge angle, or end cutting edge angle, or the purpose for which the holder is used. It is designated

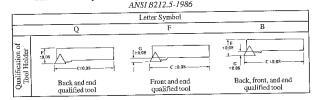
· . . .

nated by a letter: **A**, for straight shank with 0° side cutting edge angle; **B**, straight shank with 15° side cutting edge angle; **C**, straight-shank end cutting tool with 0° end cutting edge angle; **D**, straight shank with 45° side cutting edge angle; **F**, offset shank with 0° end cutting edge angle; **F**, offset shank with 0° end cutting edge angle; **G**, offset shank with 0° side cutting edge angle; **F**, offset shank with 0° end cutting edge angle; **G**, offset shank with 0° side cutting edge angle; **H**, offset shank with 15° side cutting edge angle; **N**, straight shank with 15° side cutting edge angle; **N**, straight shank with 15° side cutting edge angle; **N**, straight shank with 15° side cutting edge angle; **N**, offset shank with 15° side cutting edge angle; **N**, offset shank with 15° side cutting edge angle; **U**, offset shank with 15° side cutting edge angle; **C**, offset shank with 30° side cutting edge angle; **U**, offset shank with 15° side cutting edge angle; **Y**, straight shank with 17½° side cutting edge angle; **V**, offset shank with 30° end cutting edge angle; **V**, straight shank with 17½° side cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **V**, straight shank with 15° side cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **V**, straight shank with 5° end cutting edge angle; **H**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cutting edge angle; **U**, offset shank with 30° end cut

4) Normal Clearances: The normal clearances of inserts are identified by letters: A, 3°; B, 5°; C, 7°; D, 15°; E, 20°; F, 25°; G, 30°; N, 0°; P, 11°.

5) Hand of tool: The hand of the tool is designated by a letter: R for right-hand; L, left-hand; and N, neutral, or either hand.

hann, and ry normal, or other hand.
6) Tool Height for Rectangular Shank Cross Sections: The tool height for tool holders with a rectangular shank cross section and the height of cutting edge equal to shank height is given as a two-digit number representing this value in millimeters. For example, a height of 32 mm would be encoded as 32; 8 mm would be encoded as 08, where the one-digit value is preceded by a zero.


7) Tool Width for Rectangular Shank Cross Sections: The tool width for tool holders with a rectangular shank cross section is given as a two-digit number representing this value in millimeters. For example, a width of 25 mm would be encoded as 25; 8 mm would be encoded as 08, where the one-digit value is preceded by a zero.

encoded as 06, where the one-ongu value is preceded of a 240. 8) *Tool Length:* The tool length is designated by a letter: **A**, 32 mm; **B**, 40 mm; **C**, 50 mm; **D**, 60 mm; **E**, 70 mm; **F**, 80 mm; **G**, 90 mm; **H**, 100 mm; **J**, 110 mm; **K**, 125 mm; **L**, 140 mm; **M**, 150 mm; **N**, 160 mm; **P**, 170 mm; **Q**, 180 mm; **R**, 200 mm; **S**, 250 mm; **T**, 300 mm; **U**, 350 mm; **V**, 400 mm; **W**, 450 mm; **X**, special length to be specified; **Y**, 500 mm.

9) Indexable Insert Size: The size of indexable inserts is encoded as follows: For insert shapes C, D, E, H. M, O, P, R, S, T, V, the side length (the diameter for R inserts) in millimeters is used as a two-digit number, with decimals being disregarded. For example, the symbol for a side length of 16.5 mm is 16. For insert shapes A, B, K, L, the length of the main cutting edge or of the longer cutting edge in millimeters is encoded as a two-digit number, disregarding decimals. If the symbol obtained has only one digit, then it should be preceded by a zero. For example, the symbol for a main cutting edge of 19.5 mm, the symbol is 09.

10) Special Tolerances: Special tolerances are indicated by a letter: **Q**, back and end qualified tool; **F**, front and end qualified tool; **B**, back, front, and end qualified tool. A qualified tool is one that has tolerances of ± 0.08 mm for dimensions *F*, *G*, and *C*. (See Table 2.)

Table 2. Letter Symbols for Qualification of Tool Holders - Position 10

Selecting Indexable Insert Holders.—A guide for selecting indexable insert holders is provided by Table 3b. Some operations such as deep grooving, cut-off, and threading are not given in this table. However, tool holders designed specifically for these operations are available. The boring operations listed in Table 3b refer primarily to larger holes, into which the holders will fit. Smaller holes are bored using boring bars. An examination of this table shows that several tool-holder styles can be used and frequently are used for each operation. Selection of the best holder for a given job depends largely on the job and there are certain basic facts that should be considered in making the selection.

Rake Angle: A negative-rake insert has twice as many cutting edges available as a comparable positive-rake insert. Sometimes the tool life obtained when using the second face may be less than that obtained on the first face because the tool wear on the cutting edges of the first face may reduce the insert strength. Nevertheless, the advantage of negative-rake inserts and holders is such that they should be considered first in making any choice. Positive-rake holders should be used where lower cutting forces are required, as when machining slender or small-diameter parts, when chatter may occur, and for machining some materials, such as aluminum, copper, and certain grades of stainless steel, when positivenegative-rake holders that have their rake surfaces ground or molded to form a positive-rake angle.

Insert Shape: The configuration of the workpiece, the operation to be performed, and the lead angle required often determine the insert shape. When these factors need not be considered, the insert shape should be selected on the basis of insert strength and the maximum number of cutting edges available. Thus, a round insert is the strongest and has a maximum number of available cutting edges. It can be used with heavier feeds while producing a good surface finish. Round inserts are limited by their tendency to cause chatter, which may preclude their use. The square insert is the next most effective shape, providing good corner strength and more cutting edges than all other inserts except the round insert. The only limitation of this insert shape is that it must be used with a lead angle. Therefore, the square insert is the next observes and the most versatile and can be used to perform more operations than any other insert shape. The 80-degree diamond insert is designed primarily for heavy turning and facing operations, using the 100-degree corners, and for turning and back-facing square shoulders using the 80-degree corners. The 55- and 35-degree diamond inserts are

Lead Angle: Tool holders should be selected to provide the largest possible lead angle, although limitations are sometimes imposed by the nature of the job. For example, when tuning and back-facing a shoulder, a negative lead angle must be used. Slender or small-diameter parts may deflect, causing difficulties in holding size, or chatter when the lead angle is too large.

End Cutting Edge Angle: When tracing or contour turning, the plunge angle is determined by the end cutting edge angle. A 2-deg minimum clearance angle should be provided between the workpiece surface and the end cutting edge of the insert. Table 3a provides the maximum plunge angle for holders commonly used to plunge when tracing divere insert shape identifiers are S = square; T = triangle; D = 55-deg diamond, V = 35-deg diamond. When severe cratering cannot be avoided, an insert having a small, end cutting edge angle is desirable to delay the crater breakthrough behind the nose. For very heavy cuts a small, end cutting edge angle will strengthen the comer of the tool. Tool holders for numerical control machines are discussed in the NC section, beginning page 1280.

736

CUTTING TOOLS

Table 3a. Maximum Plunge Angle for Tracing or Contour Turning

Tool Holder Style	Insert Shape	Maximum Plunge Angle	Tool Holder Style	Insert Shape	Maximum Plunge Angle
E	Т	58°	J	D	30°
D and S	l s	43°	J	V	50°
Н	D	71°	N	Т	55°
J	T	25°	N	D	58°-60°

 		legative				Apj	olicat	ion			
Tool Holder Sty	Insert Shape	Rake P-Po	Turn	Face	Turn and Face	Turn and Backface	Trace	Groove	Chamfer	Bore	Plane
A	т	Ν	•	•						•	
		Р	٠	٠				L		•	
A	т	N	٠	•	L		٠				
		Р	٠	٠			•	-			1
A	R	N	•	•	• •						•
A	R	N	•	•	•		•				•
		N	•	•	1			1		٠	1.
В	T	Р	•	•						٠	
B	Т	Ν	٠	•			•			•	
		Р	٠	•			•			•	
В	s	N	•	•					_	•	1
		Р	•	•						•	
В	с	N	•	•	•				+	•	•
	A A B B B B	International A R A R A R A R A R B T International A R B T B T B S A R B S A R A R B S A R A R A R A R A R A R A R A R A R A	$ \begin{array}{c} A \\ A \\ \end{array} \\ \begin{array}{c} T \\ \end{array} \\ \begin{array}{c} N \\ P \\ \hline P \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} N \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ P \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}	A Tool(Hold) A T N A T P A N P A N P A N P A N P A N P A N P A N P A N P B T N B S N B N N A N N	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 3b. Indexable Insert Holder Application Guide

737

Table 3b. (Continued) Indexable Insert Holder Application Guide

	Application											
Tool	Tool Holder Style	Insert Shape	Rake P-P	Tum	Face	Turn and Face	Turn and Backface	Trace	Groove	Chamfer	Bore	Plane
	с	т	N P	•	•				•	•		
			P N	•	•	•		•	-	•	•	•
45°	D	S	Р	•	•	•		•		•	•	٠
	Е	т	N	٠	٠			٠	•	٠		
30°			Р	٠	•			•	•	•		
	F	т	N P	•	•						•	
0° 0			N	•	•						•	
	G	Т	Р	٠	•						٠	
6P	G	Ŕ	N	•	•	•						
0°	G	с	Ν	•	•	٠						
	0		Р	•	•	•						
360	н	D	N	•	•			•				
-3°	J	т	Ν				•	٠				
T-C			Р				•	٠				
-3°	l	D	N				•	•				
	J	v	N				•	•				

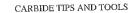
Table 3b. (Co	ontinu			able I	nsert	Hold	ler Ap	plica	tion	Guid	e	
	le		N-Negative P-Positive				Apı	olicat	ion			
Tool	Tool Holder Style	Insert Shape	Rake P-P.	Tum	Face	Turn and Face	Turn and Backface	'frace	Groove	Chamfer	Bore	Plane
15° 9	к	s	N	•	•	 					•	
			Р	•	•		-					
15°	к	с	N	•	•							
5° -5°	L	с	N			•	•	-				
7			N	•	•	+	+	•		+	+	+
270	N	T	Р	•	•	\uparrow		•	1			
12	N	D	N	٠	•			•				
27°												
45°	s	s	N	•	•	•	<u>'</u>	•		•	•	•
			Р	•	•	•	<u>'</u>	•	-	•	•	•
10° R	10° R W		N	•	•	_		+	_	_		
1												

738

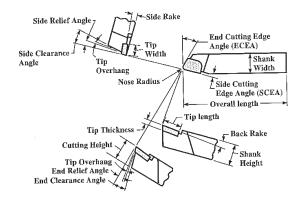
Sintered Carbide Blanks and Cutting Tools.—As shown in Table 4, American National Standard ANSI B212.1-1984 (R1997) provides standard sizes and designations for eight styles of sintered carbide blanks. These blanks are the unground solid carbide from which either solid or tipped cutting tools are made. Tipped cutting tools are made by brazing a blank onto a shank to produce the cutting tool; these tools differ from carbide *insert* cutting tools which consist of a carbide insert held mechanically in a tool holder. A typical single-point carbide-tipped cutting tool is shown in the diagram on page 740.

· . .

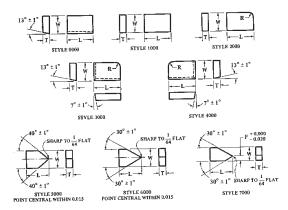
739


 Table 4. American National Standard Sizes and Designations for Carbide Blanks

 ANSI B212.1-1984 (R1997)


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				A	NSI B212	,1-198	4 (R19	97)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		Sty	c									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Į		F	1000	2000				0000			4000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T	1 w	L	Blank Des	ignation	Т	W	L						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1010	2010	14	3/8	2/16	0350	1350	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1015	2015	14	*	₹4	0360	1360	3360			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2020			*	0370	1370	3370			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	2025				0380	1380	3380	4380		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					2030				U390	1390	3390	4390		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	216	4	^{/ 6}					%	0400	1400	3400	4400		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/	1/	υ	1035	2035				0405	1405	3405	4405		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2040			1	0410	J410	3410	4410		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1	0415	1415	3415	4415		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						84	7%	- %	0420	1420	3420	4420		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	" <u>n</u>	74	12	2010					0430	1430	3430	4430		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				ĺ			10	0440	1440	3440	4440		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1080	2080				0450	1450	3450	4450		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1	0460	1460	3460	4460		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									0470	1470	3470	4470		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									0475	1475	3475	4475		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1/2	716	1/2	1105	2102			11/2	0480	1480	3480	4480		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			32	1110	2110	15	4	1			1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1	1 3	14	3/	0490	1490	3490	4490		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1			1 .	0500	1500	3500	4500		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1				li -	0510	1510	3510	4510		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1			112	1	1515	3515	4515		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)	1					1	3520	4520		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/8	36	1/2	1100	2110					1	3525	4525		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2170			-			1	4530		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							4540		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1						1	4550		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1	1 2	174	1/2	1			ļ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-					I		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1							Style			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/8	24	1 4	1215	2215		- w	ļ,		5000	600	7000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1220	2220									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1		1 16	1 4	116		Į –				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	1	34	1 12	3/.	1/2		1	7060		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/2	1 *	1 14	1240	1					1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7.	1750	2250					5100	6100			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1					1		7170		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					L	11 1	16	8	1 '2			ł		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1/	14	1		5200	6200			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 %	. *	4	1250								7230		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1200	7300				1 .		6240			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			1 732	76	1 *			1	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1 2	3/	×		5340	6340			
$\frac{1}{16}$				i i		710	1 74			1	ì			
7/6 4 4 4				1		4	1	4						
	X			1	2540	11		_						

 X₆
 X
 X
 1340


 All dimensions are in inches.
 See diagram on page 740.

740

A typical single-point carbide tipped cutting tool. The side rake, side relief, and the clearance angles are normal to the side-cutting edge, rather than the shank, to facilitate its being ground on a tilting-table grinder. The end-relief and clearance angles are *normal* to the end-cutting edge. The back-rake angle is parallel to the side-cutting edge. The tip of the brazed carbide blank overhangs the shank of the tool by either $\frac{1}{\sqrt{2}}$ of $\frac{1}{\sqrt{2}}$ inch depending on the size of the tool. For tools in Tables 5, 6, 7, 8, 11 and 12, the maximum overhang is $\frac{1}{\sqrt{2}}$ inch. Tables 9 and 10 all tools have maximum overhang of $\frac{1}{\sqrt{2}}$ inch.

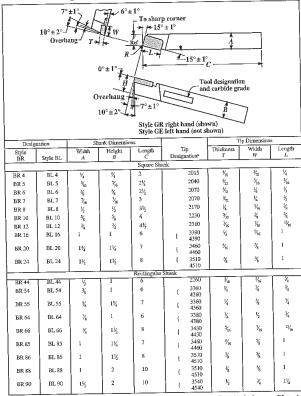
Eight styles of sintered carbide blanks. Standard dimensions for these blanks are given in Table 4.

· 1

741

American National Standard Style A Carbide Tipped Tools ANSI B212.1-1984 (R1997)

			ANDIL						
	7° ± 1°-	6° ± 1° OVERHAN	T.						
				11	styl		KIL DESIGNATION ND CARBIDE GRAD		
Design	ation	Sha	nk Dimension	IS			Tip	Dimensions	
Style AR ^a	Style AL*	Width	Height B	Length C	Ti Design		Thickness T	Width W	Length L
AK*	AL-			Square S					
AR4	AL4	1/4	8	2		2040	3/32		¥16
AR 5	AL 5	74 %6	×4	21/4		2070	¥2	14	1/2
AR 6	AL 6	3	34	21/5		2070	32	14	12
AR7	AL 7		3/10	3		2070	3/22	4	1/2
AR 8	AL 8	10 12	15	314		2170	Υ.	5/16	%
AR 10	AL 10	5%	5%	4		2230	3/12	36	34
AR 12	AL 12	-%	3/	4%		2310	∛16	3/16	13/16
AR 16	AL 16	1	I	6	{	P3390 P4390	И,	$%_{16}$	1
AR 20	AL 20	11/4	11/4	7	ł	P3460 P4460	346	*	1
AR 24	AL 24	1½	14	8	ł	P3510 P4510	×	*	1
				Rectangui	ar Shank				
AR 44	AL 44	Y2	1	6		P2260	Y16	*16 24	-14 14
AR 54	AL 54	%	1	6	ł	P3360 P4360	1/4	*	-34
AR 55	AL 55	%	1%	7	{	P3360 P4360	<u> </u>	ž	×.
AR 64	AL 64	34	1	6	6	P3380 P4380	14	1/2	*
AR 66	AL 66	*4	1½	8	ł	P3430 P4430	×16	×.	15/16
AR 85	AL 85	1	11/4	7	(P3460 P4460	3/16	*	
AR 86	AL 86	1	1½	8	(P3510 P4510	34	*	
AR 88	AL 88) u –	2	10	{	P3510 P4510	**	*	1
AR 90	AL 90	1½	2	10	{	P3540 P4540	1/2	4	114


"A" is straight shank, 0 deg., SCEA (side-cutting-edge angle). "R" is right-cut. "L" is left-cut. Where a pair of tip numbers is shown, the upper number applies to AR tools, the lower to AL tools. All dimensions are in inches.

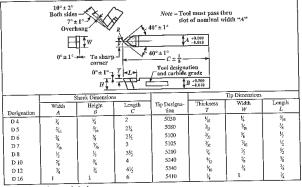
Single-Point, Sintered-Carbide-Tipped Tools.—American National Standard ANSI B212.1-1984 (R1997) covers eight different styles of single-point, carbide-tipped general purpose tools. These styles are designated by the letters A to G inclusive. Styles A, B, F, G, and E with offset point are either right- or left-hand cutting as indicated by the letters R or L. Dimensions of tips and shanks are given in Tables 5 to 11. For dimensions and tolerances not shown, and for the identification system, dimensions, and tolerances of sintered carbide boring tools, see the Standard.

· 6

742

^a Where a pair of tip numbers is shown, the upper number applies to BR tools, the lower to BL tools. All dimensions are in inches.

All dimensions are in incress. A number follows the letters of the tool style and hand designation and for square shank tools, represents the number of sixteenths of an inch of width, W, and height, H. With rectangular shanks, the first digit of the number indicates the number of eighths of an inch in the shank width, W, and the second digit the number of quarters of an inch in the shank height, H. One exception is the $1\frac{1}{2} \times 2$ -inch size which has been arbitrarily assigned the number 90.


743

- - - po

Table 7. American National Standard Style C Carbide Tipped Tools ANSI B212, J-1984 (R1997)

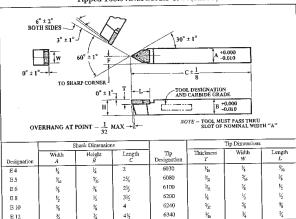

Bo	$3^{\circ}12^{\circ}$ $\downarrow \qquad \downarrow \qquad \Box Ove$ $\downarrow^{\circ} \pm 2^{\circ}$ th sides $\theta^{\circ} \pm 1^{\circ}$	$\frac{1}{10^{\circ}\pm 1^{\circ}}$	F	C Tool design and carbide	A ation grade B - Tool must p slot of nomi	nal width "A		
		Shank Dimension			Tip Dimensions			
	Width	Height	Length C	Tip Designnation	Thickness T	Width W	Length L	
Designation	A	B	-	1030	Y ₁₅	4	5/16	
C4	¥.	¥4	2	1030		- 14 5/	16	
C 5	×16	÷∕µn	21/4	1080	3 <u>73</u>	9%6 7%6	14	
Ç6	₹ 746	×₀	21/2		×2	78	28	
C7	V_{16}	7/16	3	1105	3 <u>%</u>	⁷ 86	1 ² / ₂	
C 8	12	1/2	31/2	1200	1% 5%2	<u>5</u>	1 ²⁵ / ₅₇	
C 10	5 % %	1/2 % 3/2	4	1240	5% <u>-</u>	К % %	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	
C 12	34	34	4½	1340	÷∕ _{tei}		4	
C 16	1	1	6	1410	1/4	1	¥ 34	
C 20	11/4	114	7	1480	¥ ₁₆	14	- 14	
C 44		1	6	1320		12	1/2	
	К %	1	6	1400	4	*	*	
C 54		11/4	7	1400	14	1 %	- %	
C 54 C 55	*	174						
	*	174	6	1405	14	34	34	
C 55	* * *	1%	6 8	1405 1470 1475	14 1316 1316	12 % % % % %	** ** ** **	

Table 8. American National Standard Style D, 80-degree Nose-angle Carbide Tipped Tools ANSI B212.1-1984 (R1997)

All dimensions are in inches.

744

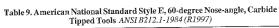
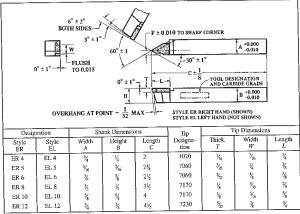



Table 10. American National Standard Styles ER and EL, 60-degree Nose-angle, Carbide Tipped Tools with Offset Point ANSI B212.1-1984 (R1997)

All dimensions are in inches.

All dimensions are in inches.

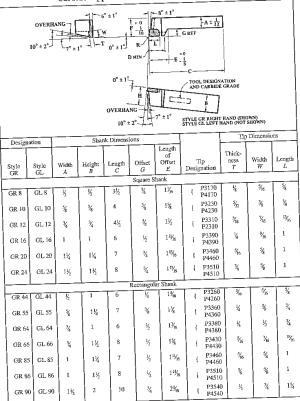
745

· (··

Table 11. American National Standard Style F, Offset, End-cutting Carbide Tipped Tools ANSI B212.1-1984 (R1997)

	OVEF 10° ± 2°		1.	6" ± 1°	工商	+0 +E_1 -1 18	C							
OVERHANG- 7° ± 1°														
Designation Dindrik Dimonsterio														
Style FR	Style FL	Width A	Height B	Length C	Offset G	Length of Offset E	Tip Designation			Length L				
					Square S	hank								
FR 8	FL 8	¥	42	3½	3½ ¼		{ P4170 { P3170	1%	∛16	*				
FR 10	FL 10	-%	%	4	℁	1	{ P1230 P3230	3₂	*	34				
FR 12	FL 12	4	34	4½	%	1% { P4310 { P3310		∛6	746	13/16				
FR 16	FL 16	1	1	6	⅔	34 136 P4390 P P3390		1/4	% ₁₆	1				
FR 20	FL 20	1½	11/4	7	¾	11/2	{ P4460 { P3460	₹6	⁵ /8	1				
FR 24	FL 24	1½	11/2	8	3/4	1½	{ P4510 P3510	3%	*	1				
<u> </u>				ŀ	Rectangula	r Shank								
FR 44	FL 44	14	1	6	1/2	78	P4260 P1260	3/16	16	3%				
FR 55	FL 55	5%	1¼	7	⁵ /8	1½ P4360 ¼		1/4	3	¾				
FR 64	FL 64	34	1	6	5%	13%	P4380 P3380	1/4	1/2	34				
FR 66	FL 66	34	11/2	8	34	1¼	P4430	5/16	74	15/16				
FR 85	FL 85	1	11/4	7	3%	1½	{ P4460 P3460	⁵ / ₁₆	*8	1				
FR 86	FL 86	1	1½	8	34	1½	(P4510 P3510	∛8	*	1				
FR 90	FL 90	1½	2	10	34	1%	P4540 P3540	1/2	3/4	14				
					· 6		a sharron dha s		harappli	1273				

All dimensions are in inches. Where a pair of tip numbers is shown, the upper number applies to FR tools, the Jower number to FL tools.


Single-point Tool Nose Radii.—The tool nose radii recommended in the American National Standard are as follows: For square-shank tools up to and including $\frac{1}{2}$ -inch square tools, $\frac{1}{2}$ -inches square, $\frac{1}{2}$ -i

· . .

746

Single-point Tool Angle Tolerances.—The tool angles shown on the diagrams in the Tables 5 through 11 are general recommendations. Tolerances applicable to these angles are ± 1 degree on all angles except end and side clearance angles; for these the tolerance is ± 2 degrees.

Table 12. American National Standard Style G, Offset, Side-cutting, Carbide Tipped Tools ANSI B212.1-1984 (R1997)

All dimensions are in inches. Where a pair of tip numbers is shown, the upper number applies to GR tools, the lower number to GL tools.

CEMENTED CARBIDES

Cemented Carbides and Other Hard Materials

Carbides and Carbonitrides.—Though high-speed steel retains its importance for such applications as drilling and broaching, most metal cutting is carried out with carbide tools. For materials that are very difficult to machine, carbide is now being replaced by carbonitrides, ceramics, and superhard materials. Cemented (or sintered) carbides and carbonitrides, known collectively in most parts of the world as hard metals, are a range of very hard, refractory, wear-resistant alloys made by powder metallurgy techniques. The minute carbide or nitride particles are "cemented" by a binder metal that is liquid at the sintering temperature. Compositions and properties of individual hardmetals can be as different as those of brass and high-speed steel.

Inose of orass and mgn-speed steel. All hardmetals are *cermets*, combining *cer*amic particles with a *metallic* binder. It is unfortunate that (owing to a mistranslation) the term *cermet* has come to mean either all hardmetals with a titanium carbide (TiC) base or simply cemented titanium carbonitrides. Although no single element other than carbon is present in all hard-metals, it is no accident that the generic term is "tungsten carbide." The earliest successful grades were based on carbon, as are the majority of those made today, as listed in Table 1.

carbon, as are the majority of those made today, as listed in Table 1. The outstanding machining capabilities of high-speed steel are due to the presence of very hard carbide particles, notably tungsten carbide, in the iron-rich matrix. Modern methods of making cutting tools from pure tungsten carbide were based on this knowledge. Early pieces of cemented carbide powder with up to 10 per cent of metals such as soon found that mixing tungsten carbide powder with up to 10 per cent of metals such as iron, nickel, or cobalt, allowed pressed compacts to be sintered at about 1500°C to give a product with low porosity, very high hardness, and considerable strength. This combination of properties made the materials ideally suitable for use as tools for cutting metal.

Cemented carbides for cutting tools were introduced commercially in 1927, and although the key discoveries were made in Germany, many of the later developments have taken place in the United States, Austria, Sweden, and other countries. Recent years have seen two "revolutions" in carbide cutting tools, one led by the United States and the other by Europe. These were the change from brazed to clamped carbide inserts and the rapid development of coating technology.

When indexable tips were first introduced, it was found that so little carbide was worm away before they were discarded that a minor industry began to develop, regrinding the socalled "throwaway" tips and selling them for reuse in adapted toolholders. Hardmetal consumption, which had grown dramatically when indexable inserts were introduced, leveled off and began to decline. This situation was changed by the advent and rapid acceptance of carbide, nitride, and oxide coatings. Application of an even harder, more wear-resistant surface to a tougher, more shock-resistant substrate allowed production of new generations of longer-lasting inserts. Regrinding destroyed the enhanced properties of the coatings, so was abandoned for coated tooling.

ings, so was abandoned for coated tooling. Brazed tools have the advantage that they can be reground over and over again, until almost no carbide is left, but the tools must always be reset after grinding to maintain machining accuracy. However, all brazed tools suffer to some extent from the stresses left by the brazing process, which in unskilled hands or with poor design can shatter the carbide even before it has been used to cut metal. In present conditions it is cheaper to use indexable inserts, which are tool tips of precise size, clamped in similarly precise holders, needing no time-consuming and costly resetting but usable only until each cutting edge or corner has lost its initial sharpness (see *Indexable Inserts* and related topics starting on page 730 and *Indexable Insert Holders for NC* on page 1280. The absence of brazing stresses and the "one-use" concept also means that harder, longer-lasting grades can be used.

Table 1. Typical Properties of Tungsten-Carbide-Based Cutting-Tool Hardmetals

Table 1. Typical (Toperties of Tungstein Curptus Carbons Constant)													
		Composi	tion (%)			Trans- verse							
ISO							Rupture						
Applica-							Strength						
tion Code	WC	TiC	TaC	Co	Density	Hardness	(N/mm^2)						
		35	7	6	8.5	1900	1100						
P01	50					1820	1300						
P05	78	16		6	11.4								
P10	69	15	8	8	11.5	1740	1400						
P15	78	12	3	7	11.7	1660	1500						
P20	79	8	5	8	12.1	1580	1600						
P25	82	6	4	8	12.9	1530	1700						
P30	84	5	2	9	13.3	1490	1850						
P40	85	5		10	13.4	1420	1950						
P50	78	3	3	16	13.1	1250	2300						
M10	85	5	4	6	13.4	1590	1800						
M20	82	5	5	8	13.3	1540	1900						
M30	86	4		10	13.6	1440	2000						
M40	84	4	2	10	14.0	1380	2100						
K01	97			3	15.2	1850	1450						
K05	95		1	4	15.0	1790	1550						
K10	92		2	6	14.9	1730	1700						
K20	94	1	+	6	14.8	1650	1950						
K30	91	1	1	9	14.4	1400	2250						
K40	89		<u> </u>	11	14.1	1320	2500						

 N40
 09
 11
 14.1
 12.00
 2000

 A complementary development was the introduction of ever-more complex chip-breakers, derived from computer-aided design and pressed and sintered to precise shapes and dimensions. Another advance was the application of hot isostatic pressing (HIP), which has moved hardmetals into applications that were formerly uneconomic. This method allows virtually all residual porosity to be squeezed out of the carbide by means of inert gas at high pressure, applied at about the sintering temperature. Toughness, rupture strength, and shock resistance can be doubled or tripled by this method, and the reject rates of very large sintered components are reduced to a fraction of their previous levels.

 Burther execution is method a substantial number of excellent cutting content as the strength.

Further research has produced a substantial number of excellent cutting-tool materials based on titanium carbonitride. Generally called "cermets," as noted previously, carbonitride-based cutting inserts offer excellent performance and considerable prospects for the future.

Compositions and Structures: Properties of hardmetals are profoundly influenced by microstructure. The microstructure in turn depends on many factors including basic chemical composition of the carbide and matrix phases; size, shape, and distribution of carbide particles; relative proportions of carbide and matrix phases; degree of intersolubility of carbides; excess or deficiency of carbon; variations in composition and structure caused by diffusion or segregation; production methods generally, but especially milling, carburizing, and sintering methods, and the types of raw materials; post sintering treatments such as hot isostatic pressing; and coatings or diffusion layers applied after initial sintering.

Tungsten Carbide/Cobalt (WC/Co): The first commercially available cemented carbides consisted of fine angular particles of tungsten carbide bonded with metallic cobalt. Intended initially for wire-drawing dies, this composition type is still considered to have

· .

the greatest resistance to simple abrasive wear and therefore to have many applications in machining.

machining. For maximum hardness to be obtained from closeness of packing, the tungsten carbide grains should be as small as possible, preferably below 1 µm swaging 0.00004 in.) and considerably less for special purposes. Hardness and abrasion resistance increase as the cobalt content is lowered, provided that a minimum of cobalt is present (2 per cent can be enough, although 3 per cent is the realistic minimum) to ensure complete sintering. In general, as carbide grain size or cobalt content or both are increased—frequently in unison tougher and less hard grades are obtained. No porosity should be visible, even under the highest optical magnification.

highest optical magnification. WC/Co compositions used for cutting tools range from about 2 to 13 per cent cobalt, and from less than 0.5 to more than 5 μ m (0.00002–0.0002 in.) in grain size. For stamping tools, swaying dies, and other wear applications for parts subjected to moderate or severe shock, cobalt content can be as much as 30 per cent, and grain size a maximum of about 10 µm (0.0004 in.). In recent years, "micrograin" carbides, combining submicron (less than 0.00004 in.) carbide grains with relatively high cobalt content have found increasing use for machining at low speeds and high feed rates. An early use was in high-speed woodworking cutters such as are used for planing.

working cutters such as are used for planng. For optimum properties, porosity should be at a minimum, carbide grain size as regular as possible, and carbon content of the tungsten carbide phase close to the theoretical (stoichiometric) value. Many tungsten carbide/cobalt compositions are modified by small but important additions—from 0.5 to perhaps 3 per cent of tantalum, niobium, chromium, vanadium, titanium, hafnium, or other carbides. The basic purpose of these additions is generally inhibition of grain growth, so that a consistently fine structure is maintained.

generative information of grain growth, so that a consistently find subsective is maintained. *Tungsten – Titanium Carbide/Cobalt (WC/TiC/Co.*): These grades are used for tools to cut steels and other ferrous alloys, the purpose of the TiC content being to resist the hightemperature diffusive attack that causes chemical breakdown and cratering. Tungsten carbide diffuses readily into the chip surface, but titanium carbide is extremely resistant to such diffusion. A solid solution or "mixed crystal" of WC in TiC retains the anticratering property to a great extent.

Unfortunately, titanium carbide and TiC-based solid solutions are considerably more brittle and less abrasion resistant than tungsten carbide. TiC content, therefore, is kept as low as possible, only sufficient TiC being provided to avoid severe cratering wear. Even 2 or 3 per cent of titanium carbide has a noticeable effect, and as the relative content is substantially increased, the cratering tendency becomes more severe.

In the limiting formulation the carbide is tungsten-free and based entirely on TiC, but generally TiC content extends to no more than about 18 per cent. Above this figure the carbide becomes excessively brittle and is very difficult to braze, although this drawback is not a problem with throwaway inserts.

not a problem with throwaway inserts. WC/TiC/Co grades generally have two distinct carbide phases, angular crystals of almost pure WC and rounded TiC/WC mixed crystals. Among progressive manufacturers, although WC/TiC/Co hardmetals are very widely used, in certain important respects they are obsolescent, having been superseded by the WC/TiC/Ta(Nb)C/Co series in the many applications where higher strength combined with crater resistance is an advantage. TiC, TiN, and other coatings on tough substrates have also diminished the attractions of high-TiC grades for high-speed machining of steels and ferrous alloys.

The grades for high-speece machining of breas and reflocations analys. *Tungsten-Titanium-Tantalum (-Niobium) Carbide/Cobalt:* Except for coated carbides, tungsten-titanium-tantalum (-niobium) grades could be the most popular class of hardmetals. Used mainly for cutting steel, they combine and improve upon most of the best features of the longer-established WC/TiC/Co compositions. These carbides compete directly with carbonitrides and silicon nitride ceramics, and the best cemented carbides of this class can undertake very heavy cuts at high speeds on all types of steels, including austenitic stain-

· 6

less varieties. These tools also operate well on ductile cast irons and nickel-base superalloys, where great heat and high pressures are generated at the cutting edge. However, they do not have the resistance to abrasive wear possessed by micrograin straight tungsten carbide grades nor the good resistance to cratering of coated grades and titanium carbidebased cermets.

Titanium Carbide/Molybdenum/Nickel (TiC/Mo/Ni): The extreme indentation hardness and crater resistance of itanium carbide, allied to the cheapness and availability of its main raw material (titanium dioxide, TiO₂), provide a strong inducement to use grades based on this carbide alone. Although developed early in the history of hardmetals, these carbides were difficult to braze satisfactorily and consequently were little used until the advent of clamped, throwaway inserts. Moreover, the carbides were notoriously brittle and could take only fine cuts in minimal-shock conditions.

Titanium-carbide-based grades again came into prominence about 1960, when nickelmolybdenum began to be used as a binder instead of nickel. The new grades were able to perform a wider range of tasks including interrupted cutting and cutting under shock conditions.

The very high indentation hardness values recorded for titanium carbide grades are not accompanied by correspondingly greater resistance to abrasive wear, the apparently less hard tungsten carbide being considerably superior in this property. Moreover, carbonitrides, advanced tantalum-containing multicarbides, and coated variants generally provide better all-round cutting performances.

Titanium-Base Carbonitrides: Development of titanium-carbonitride-based cuttingtool materials predates the use of coatings of this type on more conventional hardmetals by many years. Appreciable, though uncontrolled, amounts of carbonitride were often present, if only by accident, when cracked ammonia was used as a less expensive substitute for hydrogen in some stages of the production process in the 1950's and perhaps for two decades earlier.

Much of the recent, more scientific development of this class of materials has taken place in the United States, particularly by Teledyne Firth Sterling with its SD₃ grade and in Japan by several companies. Many of the compositions currently in use are extremely complex, and their structures—even with apparently similar compositions—can vary enormously. For instance, Mitsubishi characterizes its Himet NX series of cermets as TiC/WC/Ta(Nb)C/Mo₂C/TiN/Ni/Co/Al, with a structure comprising both large and medium-size carbide particles (mainly TiC according to the quoted density) in a superalloy-type matrix containing an aluminum-bearing intermetallic compound.

Steel- and Alloy-Bonded Titanium Carbide: The class of material exemplified by Ferro-Tic, as it is known, consists primarily of titanium carbide bonded with heat-treatable steel, but some grades also contain tungsten carbide or are bonded with nickel- or copper-base alloys. These cemented carbides are characterized by high binder contents (typically 50-60 per cent by volume) and lower hardnesses, compared with the more usual hardmetals, and by the great variation in properties obtained by heat treatment.

and by the great variation in properties obtained by heat treatment. In the annealed condition, steel-bonded carbides have a relatively soft matrix and can be machined with little difficulty, especially by CBN (superhard cubic boron nitride) tools. After heat treatment, the degree of hardness and wear resistance achieved is considerably greater than that of normal tool steels, although understandably much less than that of traditional sintered carbides. Microstructures are extremely varied, being composed of 40–50 per cent TiC by volume and a matrix appropriate to the alloy composition and the stage of heat treatment. Applications include stamping, blanking and drawing dies, machine components, and similar items where the ability to machine before hardening reduces production costs substantially.

Coating: As a final stage in carbide manufacture, coatings of various kinds are applied mainly to cutting tools, where for cutting steel in particular it is advantageous to give the

rank and clearance surfaces characteristics that are quite different from those of the body of the insert. Coatings of titanium carbide, nitride, or carbonitride; of aluminum oxide; and of other refractory compounds are applied to a variety of hardmetal substrates by chemical or physical vapor deposition (CVD or PVD) or by newer plasma methods.

The most recent types of coatings include hafnium, tantalum, and zirconium carbides and nitrides; alumina/titanium oxide; and multiple carbide/carbonitride/nitride/oxide, oxynitride or oxycarbonitride combinations. Greatly improved properties have been claimed for variants with as many as 13 distinct CVD coatings. A markedly sharper cutting edge compared with other CVD-coated hardmetals is claimed, permitting finer cuts and the successful machining of soft but abrasive alloys.

the successful machining of soft but abrasive alloys. The keenest edges on coated carbides are achieved by the techniques of physical vapor deposition. In this process, ions are deposited directionally from the electrodes, rather than evenly on all surfaces, so the sharpness of outting edges is maintained and may even be enhanced. PVD coatings currently available include titanium nitride and carbonitride, their distinctive gold color having become familiar throughout the world on high-speed steel tooling. The high temperatures required for normal CVD tends to soften heat-treated high-speed steel. PVD-coated hardmetals have been produced commercially for several years, especially for precision milling inserts.

superspectation of the end of the

For cutting tools the substrate is of equal importance to the coating in many respects, its critical properties including fracture toughness (resistance to crack propagation), elastic modulus, resistance to heat and abrasion, and expansion coefficient. Some manufacturers are now producing inserts with graded composition, so that structures and properties are optimized at both surface and interior, and coatings are less likely to crack or break away.

Specifications: Compared with other standardized materials, the world of sintered hardmetals is peculiar. For instance, an engineer who seeks a carbide grade for the finishmachining of a steel component may be told to use *ISO Standard Grade P10 or Industry Code C7*. If the composition and nominal properties of the designated tool material are then requested, the surprising answer is that, in basic composition alone, the tungsten carbide content of P10 (or of the now superseded C7) can vary from zero to about 75, titanium carbide from 8 to 80, cobalt 0 to 10, and nickel 0 to 15 per cent. There are other possible constituents, also, in this so-called standard alloy, and many basic properties can vary as much as the composition. All that these dissimilar materials have in common, and all that the so-called standards mean, is that their suppliers—and sometimes their suppliers alone—consider them suitable for one particular and ill-defined machining application (which for P10 or C7 is the finish machining of steel).

(which for P10 or C7 is the finish machining of steel). This peculiar situation arose because the production of cemented carbides in occupied Europe during World War II was controlled by the German Hartmetallzentrale, and no factory other than Krupp was permitted to produce more than one grade. By the end of the war, all German-controlled producers were equipped to make the G, S, H, and F series to German standards. In the postwar years, this series of carbides formed the basis of unofficial European standardization. With the advent of the newer multicarbides, the previous identities of grades were gradually lost. The applications relating to the old grades were retained, however, as a new German DIN standard, eventually being adopted, in somewhat modified form, by the International Standards Organization (ISO) and by ANSI in the United States.

The American cemented carbides industry developed under diverse ownership and solid competition. The major companies actively and independently developed new varieties of hardmetals, and there was little or no standardization, although there were many attempts

HARDMETAL CUTTING TOOL INSERTS

752

to compile equivalent charts as a substitute for true standardization. Around 1942, the Buick division of GMC produced a simple classification code that arranged nearly 100 grades derived from 10 manufacturers under only 14 symbols (TC-1 to TC-14). In spite of serious deficiencies, this system remained in use for many years as an American industry standard; that is, Buick TC-1 was equivalent to industry code C1. Buick itself went much further, using the tremendous influence, research facilities, and purchasing potential of its parent company to standardize the products of each carbide manufacturer by properties that could be tested, rather than by the indeterminate recommended applications. Many large-scale carbide users have developed similar systems in attempts to exert some degree of in-house standardization and quality control. Small and medium-sized users, however, still suffer from so-called industry standards, which only provide a starting point for grade

selection. ISO standard 513, summarized in Table 2, divides all machining grades into three colorcoded groups: straight tungsten carbide grades (letter K, color red) for cutting gray cast iron, nonferrous metals, and nommetallics; highly alloyed grades (letter, P. color blue) for machining steel; and less alloyed grades (letter M, color yellow, generally with less TiC than the corresponding P series), which are multipurpose and may be used on steels, nickel-base superalloys, ductile cast irons, and so on. Each grade within a group is also given a number to represent its position in a range from maximum hardness to maximum toughness (shock resistance). Typical applications are described for grades at more or less regular numerical intervals. Although coated grades scarcely existed when the ISO standard was prepared, it is easy to classify coated as uncoated carbides—or carbonitrides, ceramics, and superhard materials—according to this system. In this situation. it is easy to see how one plant will prefer one manufacturer's carbide and

In this situation, it is easy to see how one plant will prefer one manufacturer's carbide and a second plant will prefer that of another. Each has found the carbide most nearly ideal for the particular conditions involved. In these circumstances it pays each manufacturer to make grades that differ in hardness, toughness, and crater resistance, so that they can provide a product that is near the optimum for a specific customer's application.

vide a product that is near the optimum for a specific customer's application. Although not classified as a hard metal, new particle or powder metallurgical methods of manufacture, coupled with new coating technology have led in recent years to something of an upsurge in the use of high speed steel. Lower cost is a big factor, and the development of such coatings as titanium nitride, cubic boron nitride, and pure diamond, has enabled some high speed steel tools to rival tools made from tungsten and other carbides in their ability to maintain outling accuracy and prolong tool life. Multiple layers may be used to produce optimum properties in the coating, with adhesive strength where there is contact with the substrate, combined with hardness at the cutting surface to resist abrasion. Total thickness of such coating, even with multiple layers, is seldom more than 15 microns (0.000060 in.).

Importance of Correct Grades: A great diversity of hardmetal types is required to cope with all possible combinations of metals and alloys, machining operations, and working conditions. Tough, shock-resistant grades are needed for slow speeds and interrupted cutting, harder grades for high-speed finishing, heat-resisting alloyed grades for machining superalloys, and crater-resistant compositions, including most of the many coated varieties, for machining steels and ductile iron.

Ceramics.— Moving up the hardness scale, ceramics provide increasing competition for cemented carbides, both in performance and in cost-effectiveness, though not yet in reliability. Hardmetals themselves consist of ceramics—nonmetallic refractory compounds, usually carbides or carbonitrides—with a metallic binder of much lower melting point. In such systems, densification generally takes place by liquid-phase sintering. Pure ceramics have no metallic binder, but may contain lower-melting-point compounds or ceramic mixtures that permit liquid-phase sintering to take place. Where this condition is not possible, hot pressing or hot isostatic pressing can often be used to make a strong, relatively pore-

			CF	SM	EN.	TEL		4K	BIL) 	15 A		<u> </u>	<u> </u>		EK										
	Direction of Decrease in Chanceristic	of out of carbide	-(-	speed	wear																			1 -	feed	2
Carbides and Carbonitrides) by Application	Table 2, ISO Classifications of Hardmetals (Cemented Carbudes and Carbourt nees) by Approximate Defenses of Appreciates		Use and Working Condutons	Physik turning and boring; high cutting system, summ curp sectors, summ curp sectors, fine failsh, vibration-free operations	Turning, copying, threading, milling; high cutting speeds, small or medium thin sections	"Iurning: copying, milting; medium cutting speeds and chip sections, plan- ne with sealt chip sections	Turning, milling, plantag; medium or large chip sections, unfavorable 	Truction aloning slotting tow cutting speeds, large chip sections, with	Intrings, paramy, another section and work possible bare cuting conditions, and work possible large cuting and work on automatic machines.	A survey of the section of the survey of the survey of the section	Operations constructions for a section section, with possible large cutting angles, cutting specify, large chin sections and work on automatic machines	Tracker medium or high cutting sneeds, small or medium chip sections		Turning, milling: medium cutting speeds and chip sections	metion and a strain of a section and the speeds, medium or large chip	auring, munug, paning, measure comme of	Turning, parting off; particularly on automatic machines	and the second s	Ղառանը, քան առանը, հոժողջ, որույութ, «շուսթութ,	Turning, milling, drilling, boring, broaching, scraping			Turning, milling, planing, boring, broaching, domanding very tough cur-	Ditte	Internet, municip parameter accorder and the second of large cutting angles	Turning, milling, planing, slotting, untavorable condutous, and possibility of large cutting angles
cotions of Hardmetals (Cemented		Secrific Material		Steel, steel castings	Steel, steel casting	Steel, steel custings, ductile cast iron with long	chips Steci, steel castings, ductile cast iron with long	chips	Sleel, steel castings with said inclusions and cavities		Steel, steel castings of medium or low tensile strength, with sand inclusions and envities		Stool, steel custings, manganese steel, gray cast iron, alloy cast from	Steel, steel castings, austonitic or mangunese	steet, gray tast it ou	Steel, steel castings, austenitic steel, gmy cast iron high-temperature-resistant alloys	Mild, free-cutting steel, low-tensile steel, non-	ferrous metals and light alloys	Very hard gray cast iron, chilled castings over 85 Shore, high-stilten atuminum alloys, hard- ered steph highly abrasive plastics, hard card- hound commize	Contract from over 250 Reinofi multicable cast	iron with short chips, hardened steel, silicon-	aluminum and copper alloys, plastics, glass, tool which had curdhownl, noreclain, stone	Gray cast iron up to 220 Brinell, nonferrous	metals, copper, brass, aluminum	Low-hardness gray cast iron, low-tensile steel, commessed wood	Softwood or hard wood, nonferrous metals
Closeff			(Grade)	104	014	P20	P30		P40		P20		M10	M20		M30	M40		K01	0.10	R P		K20		K30	0tN
T LL A LCA		Main Types of Chip Removal	Broad Categories of Materials to be Machined								Ferrous metals with long or	Terrous metals with long or shart chips, and nou for- rous micals				Ferrous metals with short chips, non-ferrous metals and non-metallic materials										
		Main T	Symbol and Color	- bo con	Blue								W	Yellow					K Red							

free component or cutting insert. This section is restricted to those ceramics that compete directly with hardmetals, mainly in the cutting-tool category as shown in Table 3.

Ceramics are hard, completely nonmetallic substances that resist heat and abrasive wear. Increasingly used as clamped indexable tool inserts, ceramics differ significantly from tool steels, which are completely metallic. Ceramics also differ from cernets such as cemented carbides and carbonitrides, which comprise minute ceramic particles held together by metallic binders.

Table 3, Typical P	ropernes or	Cutting 100	(Cerannes		
Group	Alumina	Alumina/TiC	Silicon Nitride	PCD	PCBN
Typical composition types	Al ₂ O ₃ or Al ₂ O ₃ /ZrO ₂	70/30 Al ₂ O ₃ /TiC	Si ₃ N ₄ /Y ₂ O ₃ plus		
Density (g/cm ³)	4.0	4.25	3.27	3.4	3.1
Transverse rupture strength (N/mm ²)	700	750	800		800
Compressive strength (kN/mm ²)	4.0	4.5	4.0	4.7	3.8
Hardness (HV)	1750	1800	1600		
Hardness HK (kN/mm ²)				50	28
Young's modulus (kN/mm2)	380	370	300	925	680
Modulus of rigidity (kN/mm2)	150	160	150	430	280
Poisson's ratio	0.24	0.22	0.20	0.09	0.22
Thermal expansion coefficient (10-6/K)	8.5	7.8	3.2	3.8	4.9
Thermal conductivity (W/m K)	23	17	22	120	100
Fracture toughness(K1cMN/m3/2)	2.3	3.3	5.0	7.9	10

Table 3, Typical Properties of Cutting Tool Ceramics

Alumina-based ceramics were introduced as cutting inserts during World War II, and were for many years considered too brittle for regular machine-shop use. Improved machine tools and finer-grain, tougher compositions incorporating zirconia or silicon carbide "whiskers" now permit their use in a wide range of applications. Silicon nitride, often combined with alumina (aluminum oxide), yttria (yttrium oxide), and other oxide and nitrides, is used for much of the high-speed machining of superalloys, and newer grades have been formulated specifically for cast iron—potentially a far larger market. In addition to improvements in toolholders, great advances have been made in machine

In addition to improvements in toolholders, great advances have been made in machine tools, many of which now feature the higher powers and speeds required for the efficient use of ceramic tooling. Brittleness at the cutting edge is no longer a disadvantage, with the improvements made to the ceramics themselves, mainly in toughness, but also in other critical properties.

Although very large numbers of useful ceramic materials are now available, only a few combinations have been found to combine such properties as minimum porosity, hardness, wear resistance, chemical stability, and resistance to shock to the extent necessary for cutting-tool inserts. Most ceramics used for machining are still based on high-purity, finegrained alumina (aluminum oxide), but embody property-enhancing additions of other ceramics such as zirconia (zirconium oxide), tiania (tianium oxide), tiania (tianium oxide), tiania (tianium oxide), tiania (tianium oxide), tungten carbide, and titanium nitride. For commercial purposes, those more commonly used are often termed "white" (alumina with or without zirconia) or "black" (roughly 70/30 alumina/titanium carbide). More recent developments are the distinctively green alumina ceramics strengthened with silicon carbide whiskers and the brown-tinged silicon nitride types.

Ceramics benefit from hot isostatic pressing, used to remove the last vestiges of porosity and raise substantially the material's shock resistance, even more than carbide-based hardmetals. Significant improvements are derived by even small parts such as tool inserts, although, in principle, they should not need such treatment if raw materials and manufacturing methods are properly controlled.

Oxide Ceramics: Alumina cutting tips have extreme hardness—more than HV 2000 or HRA 94—and give excellent service in their limited but important range of uses such as

the machining of chilled iron rolls and brake drums. A substantial family of alumina-based materials has been developed, and fine-grained alumina-based composites now have sufficient strength for milling cast iron at speeds up to 2500 ft/min (800 m/min). Resistance to cratering when machining steel is exceptional.

Oxide/Carbide Ceramics: A second important class of alumina-based cutting ceramics combines aluminum oxide or alumina-zirconia with a refractory carbide or carbides, nearly always 30 per cent TiC. The compound is black and normally is hot pressed or hot isostatically pressed (HPPed). As shown in Table 3, the physical and mechanical properties of this material are generally similar to those of the pure alumina ceramics, but strength and shock resistance are generally higher, being comparable with those of higher-toughness simple alumina-zirconia grades. Current commercial grades are even more complex, combining alumina, zirconia, and titanium carbide with the further addition of titanium nitride.

Silicon Nitride Base: One of the most effective ceramic cutting-tool materials developed in the UK is Syalon (from SiAION or silicon-aluminum-oxynitride) though it incorporates a substantial amount of yttria for efficient liquid-phase sintering). The material combines high strength with hot hardness, shock resistance, and other vital properties. Syalon cutting inserts are made by Kennametal and Sandvik and sold as Kyon 2000 and CC680, respectively. The brown Kyon 200 is suitable for machining high-nickel alloys and cast iron, but a later development, Kyon 3000 has good potential for machining cast iron.

Resistance to thermal stress and thermal shock of Kyon 2000 are comparable to those of sintered carbides. Toughness is substantially less than that of carbides, but roughly twice that of oxide-based cutting-tool materials at temperatures up to 850°C. Syon 200 can cut at high edge temperatures and is harder than carbide and some other ceramics at over 700°C, although softer than most at room temperature.

although softer than most action temperature. Whisker-Reinforced Ceramics: To improve toughness, Greenleaf Corp. has reinforced alumina ceramics with silicon carbide single-crystal "whiskers" that impart a distinctive green color to the material, marketed as WG300. Typically as thin as human hairs, the immensely strong whiskers improve tool life under arduous conditions. Whisker-reinforced ceramics and perhaps hardmetals are likely to become increasingly important as cutting and wear-resistant materials. Their only drawback seems to be the carcinogenic nature of the included fibers, which requires stringent precautions during manufacture.

Superhard Materials.—Polycrystalline synthetic diamond (PCD) and cubic boron nitride (PCBN), in the two columns at the right in Table 3, are almost the only cutinginsert materials in the "superhard" category. Both PCD and PCBN are usually made with the highest practicable concentration of the hard constituent, although ceramic or metallic binders can be almost equally important in providing overall strength and optimizing other properties. Variations in grain size are another critical factor in determining cutting characteristics and edge stability. Some manufacturers treat CBN in similar fashion to tungsten carbide, varying the composition and amount of binder within exceptionally wide limits to influence the physical and mechanical properties of the sintered compact.

influence the physical and mechanical properties of the sintered compact. In comparing these materials, users should note that some inserts comprise solid polycrystalline diamond or CBN and are double-sized to provide twice the number of cutting edges. Others consist of alayer, from 0.020 to 0.040 in. (0.5 to 1 nm) thick, on a tough carbide backing. A third type is produced with a solid superhard material almost surrounded by sintered carbide. A fourth type, used mainly for cutting inserts, comprises solid hard metal with a tiny superhard insert at one or more (usually only one) cutting corners or edges. Superhard cutting inserts are expensive—up to 30 times the cost of equivalent shapes or sizes in ceramic or cemented carbide—but their outstanding properties, exceptional performance and extremely long life can make them by far the most cost-effective for certain applications.

Diamond. Diamond is the hardest material found or made. As harder, more abrasive ceramics and other materials came into widespread use, diamond began to be used for

grinding-wheel grits. Cemented carbide tools virtually demanded diamond grinding wheels for fine edge finishing. Solid single-crystal diamond tools were and are used to a small extent for special purposes, such as microtomes, for machining of hard materials, and for exceptionally fine finishes. These diamonds are made from comparatively large, high-quality gem-type diamonds, have isotropic properties, and are very expensive. By comparison, diamond abrasive grits cost only a few dollars a carat.

Synthetic diamonds are produced from graphite using high temperatures and extremely high pressures. The fine diamond particles produced are sintered together in the presence of a metal "catalyst" to produce high-efficiency anisotropic cutting tool inserts. These tools comprise either a solid diamond compact or a layer of sintered diamond on a carbide backing, and are made under conditions similar to, though less severe than, those used in diamond synthesis. Both natural and synthetic diamond can be sintered in this way, although the latter method is the most frequently used.

Polycrystalline diamond (PCD) compacts are immensely hard and can be used to machine many substances, from highly abrasive hardwoods and glass fiber to nonferrous metals, hardmetals, and tough ceramics. Important classes of tools that are also available with cubic boron nitride inserts include brazed-tip drills, single-point turning tools, and face-milling cutters.

Boron Nitride: Polycrystalline diamond has one big limitation: it cannot be used to machine steel or any other ferrous material without rapid chemical breakdown. Boron nitride does not have this limitation. Normally soft and slippery like graphite, the soft hexagonal crystals (HBN) become cubic boron nitride (CBN) when subjected to ultrahigh pressures and temperatures, with a structure similar to and hardness second only to diamond. As a solid insert of polycrystalline cubic boron nitride (PCBN), the compound machines even the hardest steel with relative immunity from chemical breakdown or cratering.

Backed by sintered carbide, inserts of PCBN can readily be brazed, increasing the usefulness of the material and the range of tooling in which it can be used. With great hardness and abrasion resistance, coupled with extreme chemical stability when in contact with ferrous alloys at high temperatures, PCBN has the ability to machine both steels and cast irons at high speeds for long operating cycles. Only its currently high cost in relation to hardmetals prevents its wider use in mass-production machining.

Similar in general properties to PCBN, the recently developed "Wurbon" consists of a mixture of ultrafine (0.02 µm grain size) hexagonal and cubic boron nitride with a "wurtzite" structure, and is produced from soft hexagonal boron nitride in a microsecond by an explosive shock-wave.

Basic Machining Data: Most mass-production metalcutting operations are carried out with carbide-tipped tools but their correct application is not simple. Even apparently similar batches of the same material vary greatly in their machining characteristics and may require different tool settings to attain optimum performance. Depth of cut, feed, surface speed, cutting rate, desired surface finish, and target tool life often need to be modified to suit the requirements of a particular component.

For the same downtime, the life of an insert between indexings can be less than that of an equivalent brazed tool between regrinds, so a much higher rate of metal removal is possible with the indexable or throwaway insert. It is commonplace for the claims for a new coating to include increases in surface-speed rates of 200–300 per cent, and for a new insert design to offer similar improvements. Many operations are run at metal removal rates that are far from optimum foot tool life because the rates used maximize productivity and cost-effectiveness.

Thus any recommendations for cutting speeds and feeds must be oversimplified or extremely complex, and must be hedged with many provisos, dependent on the technical and economic conditions in the manufacturing plant concerned. A preliminary grade

selection should be made from the ISO-based tables and manufacturers' literature consulted for recommendations on the chosen grades and tool designs. If tool life is much greater than that desired under the suggested conditions, speeds, feeds, or depths of cut may be increased. If tools fail by edge breakage, a tougher (more shock-resistant) grade should be selected, with a numerically higher ISO code.

Alternatively, increasing the surface speed and decreasing the feed may be tried. If tools fail prematurely from what appears to be abrasive wear, a harder grade with numerically lower ISO designation should be tried. If cratering is severe, use a grade with higher titanium carbide content; that is, switch from an ISO K to M or M to P grade, use a P grade with lower numerical value, change to a coated grade, or use a coated grade with a (claimed) more-resistant surface layer.

Built-Up Edge and Cratering: The big problem in cutting steel with carbide tools is associated with the built-up edge and the familar phenomenon called cratering. Research has shown that the built-up edge is continuous with the chip itself during normal cutting. Additions of titanium, tantalum, and niobium to the basic carbide mixture have a remarkable effect on the nature and degree of cratering, which is related to adhesion between the tool and the chip.

Hardmetal Tooling for Wood and Nonmetallics.—Carbide-tipped circular saws are now conventional for cutting wood, wood products such as chipboard, and plastics, and tipped bandsaws of large size are also gaining in popularity. Tipped handsaws and mechanical equivalents are seldom needed for wood, but they are extremely useful for cutting abrasive building boards, glass-reinforced plastics, and similar material. Like the hardmetal tips used on most other woodworking tools, saw tips generally make use of straight (unalloyed) tungsten carbide/cobalt grades. However, where excessive heat is generated as with the cutting of high-silica hardwoods and particularly abrasive chipboards, the very hard but tough tungsten-titanium-tantalum-niobium carbide solid-solution grades, normally reserved for steel finishing, may be preferred. Saw tips are usually brazed and reground a number of times during service, so coated grades appear to have litte immediate potential in this field.

Cutting Blades and Plane Irons: These tools comprise long, thin, comparatively wide slabs of carbide on a minimal-thickness steel backing. Compositions are straight tungsten carbide, preferably micrograin (to maintain a keen cutting edge with an included angle of 30° or less), but with relatively high amounts of cobalt, 11–13 per cent, for toughness. Considerable expertise is necessary to braze and grind these cutters without inducing or failing to relieve the excessive stresses that cause distortion or cracking.

Other Woodworking Cutters: Routers and other cutters are generally similar to those used on metals and include many indexable-insert designs. The main difference with wood is that rotational and surface speeds can be the maximum available on the machine. Highspeed routing of aluminum and magnesium alloys was developed largely from machines and techniques originally designed for work on wood.

Cutting Other Materials: The machining of plastics, fiber-reinforced plastics, graphite, asbestos, and other hard and abrasive constructional materials mainly requires abrasion resistance. Cutting pressures and power requirements are generally low. With thermoplastics and some other materials, particular attention must be given to cooling because of softening or degradation of the work material that might be caused by the heat generated in cutting. An important application of ccemented carbides is the drilling and routing of printed circuit boards. Solid tungsten carbide drills of extremely small sizes are used for this work.

and a second

FORMING TOOLS

When curved surfaces or those of stepped, angular or irregular shape are required in connection with turning operations, especially on turret lathes and "automatics," forming tools are used. These tools are so made that the contour of the cutting edge corresponds to the shape required and usually they may be ground repeatedly without changing the shape of the cutting edge. There are two general classes of forming tools—the straight type and the circular type. The circular forming tool is generally used on small narrow forms, whereas the straight type is more suitable for wide forming operations. Some straight forming tools are clamped in a horizontal position upon the cut-off slide, whereas the others are held in a vertical position in a special holder. A common form of holder for these vertical tools is one having a dovetail slot in which the forming tools are used, especially when a very smooth surface is required, one being employed for roughing and the other finishing.

There was an American standard for forming tool blanks which covered both straight or dovetailed, and circular forms. The formed part of the finished blanks must be shaped to suit whatever job the tool is to be used for. This former standard includes the important dimensions of holders for both straight and circular forms.

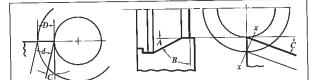
Dimensions of Steps on Straight or Dovetail Forming Tools.—The diagrams at the top of the accompanying table illustrate a straight or "dovetail" forming tool. The upper or cutting face lies in the same plane as the center of the work and there is no rake. (Many forming tools have rake to increase the cutting efficiency, and this type will be referred to later.) In making a forming tool, the various steps measured perpendicular to the front face (as at d) must be proportioned so as to obtain the required radial dimensions on the work. For example, if D equals the difference between two radial dimensions on the work, then:

Step $d = D \times \text{cosine}$ front clearance angle

Angles on Straight Forming Tools.—In making forming tools to the required shape or contour, any angular surfaces (like the steps referred to in the previous paragraph) are affected by the clearance angle. For example, assume that angle A on the work (see diagram at too of accompanying table) is 20 degrees. The angle on the tool in plane x-x, in that case, will be slightly less than 20 degrees. In making the tool, this modified or reduced angle is required because of the convenience in machining and measuring the angle square to the front face of the tool or in the plane x-x.

If the angle on the work is measured from a line parallel to the axis (as at A in diagram), then the reduced angle on the tool as measured square to the front face (or in plane x-x) is found as follows:

tan reduced angle on tool = $tanA \times cos$ front clearance angle


If angle A on the work is larger than, say, 45 degrees, it may be given on the drawing as indicated at B. In this case, the angle is measured from a plane perpendicular to the axis of the work. When the angle is so specified, the angle on the tool in plane x-x may be found as follows:

tan reduced angle on tool = $\frac{\tan B}{\cos \text{ clearance angle}}$

Table Giving Step Dimensions and Angles on Straight or Dovetailed Forming Tools.—The accompanying table *Dimensions of Steps and Angles on Straight Forming Tools* gives the required dimensions and angles within its range, direct or without calculation.

759

Dimensions of Steps and Angles on Straight Forming Tools

Upper section of table gives depth d of step on forming tool for a given dimension D that equals the actual depth of the step on the work, measured radially and along the cutting face of the tool (see diagram at left). First, locate depth D required on work; then find depth d on tool under tool clearance angle C. Depth d is measured perpendicular to front face of tool.

Radial	Deptl	d of step of	n tool	Radial	Dept	1 d of step o	n tool
Depth of Step D	When $C = 10^{\circ}$	When $C = 15^{\circ}$	When $C = 20^{\circ}$	Depth of Step D	When $C = 10^{\circ}$	When $C = 15^{\circ}$	When $C = 20^{\circ}$
0.001	0.00098	0.00096	0.00094	0.040	0.03939	0.03863	0.03758
0.002	0.00197	0.00193	0.00187	0.050	0.04924	0.04829	0.04698
0.003	0.00295	0.00289	0.00281	0.060	0.05908	0.05795	0.05638
0.004	0.00393	0.00386	0.00375	0.070	0.06893	0.06761	0.06577
0.005	0.00492	0.00483	0.00469	0.080	0.07878	0.07727	0.07517
0.006	0.00590	0.00579	0.00563	0.090	0.08863	0.08693	0.08457
0.007	0.00689	0.00676	0.00657	0.100	0.09848	0.09659	0.09396
0.008	0.00787	0.00772	0.00751	0.200	0.19696	0.19318	0.18793
0.009	0.00886	0.00869	0.00845	0.300	0.29544	0.28977	0.28190
0.010	0.00984	0.00965	0.00939	0.400	0.39392	0.38637	0.37587
0.020	0.01969	0.01931	0.01879	0.500	0.49240	0.48296	0.46984
0.030	0.02954	0.02897	0.02819				

Section of table below gives angles as measured in plane x-x perpendicular to front face of forming tool (see diagram on right). Find in first column the angle A required on work; then find reduced angle in plane x-x under given clearance angle C.

Angle A	A	ingle	on tool	in pla	me x-:	x	Angle A	A	Ingle	on tool	in pla	me x -	x
in Plane of Tool Cutting Face	C =	ien 10°	C =	nen 15º	Wł C =	nen 20°	in Plane of Tool Cutting Face		nen 10°	₩ł C=		C =	
5°	4°	55'	4°	50'	4°	42'	50°	49°	34'	49°	1′	48°	14'
10	9	51	9	40	9	24	55	54	35	54	4	53	18
15	14	47	14	31	14	8	60	59	37	59	8	58	26
20	19	43	19	22	18	53	65	64	40	64	14	63	36
25	24	40	24	15	23	40	70	69	43	69	21	68	50
30	29	37	29	9	28	29	75	74	47	74	30	74	5
35	34	35	34	4	33	20	80	79	51	79	39	79	22
40	39	34	39	l	38	15	85	84	55	84	49	84	41
45	44	34	44	0	43	13	···	.		· .		•	

42

and the second second

To Find Dimensions of Steps: The upper section of the table is used in determining the dimensions of steps. The radial depth of the step or the actual cutting depth D (see left-hand diagram) is given in the first column of the table. The columns that follow give the corresponding depths d for a front clearance angle of 10, 15, or 20 degrees. To illustrate the use of the table, suppose a tool is required for turning the part shown in Fig. 1, which has diameters of 0.75, 1.25, and 1.75 inches, respectively. The difference between the largest and the smallest radius is 0.5 inch, which is the depth of one step. Assume that the clearance angle is 15 degrees. First, locate 0.5 in the column headed "Radial Depth of Step D"; then find depth d in the column headed "when $C = 15^\circ$." As will be seen, this depth is 0.48296 inch. Practically the same procedure is followed in determining the depth of the second directly in the table, so first find the depth equivalent to 0.200 and add to it the depth equivalent to 0.050. Thus, we have 0.19318 + 0.04829 = 0.24147. In using this table, it is assumed that the top face of the tool is set at the height of the work axis.

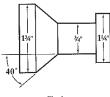


Fig. 1.

To Find Angle: The lower section of the table applies to angles when they are measured relative to the axis of the work. The application of the table will again be illustrated by using the part shown in Fig. 1. The angle used here is 40 degrees (which is also the angle in the plane of the cutting face of the tool). If the clearance angle is 15 degrees, the angle measured in plane x-x square to the face of the tool is shown by the table to be 39° 1′- a reduction of practically 1 degree.

If a straight forming tool has rake, the depth x of each step (see Fig. 2), measured perpen-If a starget forming down have, the dependence of the down on the drawing.

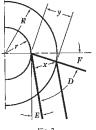


Fig. 2.

Angle
$$A = 180^{\circ} - \text{rake angle } F$$

 $\sin B = \frac{r \sin A}{R}$
Angle $C = 180^{\circ} - (A + B)$
 $y = \frac{R \sin C}{\sin A}$
Angle D of tool = $90^{\circ} - (E + F)$

Depth $x = y \sin D$

If the work has two or more shoulders, the depth x for other steps on the tool may be determined for each radius r. If the work has curved or angular forms, it is more practical to use a tool without rake because its profile, in the plane of the cutting face, duplicates that of the work.

Example: Assume that radius R equals 0.625 inch and radius r equals 0.375 inch, so that the step on the work has a radial depth of 0.25 inch. The tool has a rake angle F of 10 degrees and a clearance angle E of 15 degrees. Then angle A = 180 - 10 = 170 degrees. 0.375 × 0.17265

$$\sin B = \frac{0.375 \times 0.17365}{0.625} = 0.10419$$
Angle B = 5°59' nearly. Angle C = 180 - (170° + 5°59') = 4°1'
Dimension y = $\frac{0.625 \times 0.07005}{0.17365} = 0.25212$
Angle D = 90° - (15 + 10) = 65 degrees

Depth x of step = $0.25212 \times 0.90631 = 0.2285$ inch

Circular Forming Tools.—To provide sufficient peripheral clearance on circular forming tools, the cutting face is offset with relation to the center of the tool a distance C, as shown in Fig. 3. Whenever a circular tool has two or more diameters, the difference in the shown in Fig. 5. Whenever a chrouar too has two or more diameters, the dimension in the radii of the steps on the tool will not correspond exactly to the difference in the steps on the work. The form produced with the tool also changes, although the change is very slight, unless the amount of offset C is considerable. Assume that a circular tool is required to produce the piece A having two diameters as shown.

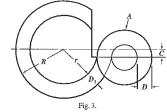


Fig. 3. If the difference D_1 between the large and small radii of the tool were made equal to dimension D required on the work, D would be a certain amount oversize, depending upon The offset C of the cutting edge. The following formulas can be used to determine the radii of circular forming tools for turning parts to different diameters: Let R =largest radius of tool in inches; D = difference in radii of steps on work; C =

amount cutting edge is offset from center of tool; r = required radius in inches; then

FORMING TOOLS

$$r = \sqrt{\left(\sqrt{R^2 - C^2} - D\right)^2 + C^2}$$
(1)

If the small radius r is given and the large radius R is required, then

$$R = \sqrt{\left(\sqrt{r^2 - C^2} + D\right)^2 + C^2}$$
(2)

To illustrate, if D (Fig. 3) is to be $\frac{1}{2}$ inch, the large radius R is $1\frac{1}{2}$ inches, and C is $\frac{1}{2}$ inch, what radius r would be required to compensate for the offset C of the cutting edge? Inserting these values in Formula (1):

 $r = \sqrt{\sqrt{(1\frac{1}{8})^2 - (\frac{5}{32})^2 - (\frac{1}{8})^2 + (\frac{5}{32})^2}} = 1.0014 \text{ inches}$

The value of r is thus found to be 1.0014 inches; hence, the diameter = $2 \times 1.0014 = 2.0028$ inches instead of 2 inches, as it would have been if the cutting edge had been exactly on the center line. Formulas for circular tools used on different makes of screw machines can be simplified when the values R and C are constant for each size of machine. The accompanying table, "Formulas for Circular Forming Tools," gives the standard values of R and C for circular tools used on different automatics. The formulas for determining the radius r (see column at right-hand side of table) contain a constant that represents the value

of the expression $\sqrt{R^2 - C^2}$ in Formula (1).

The table "Constants for Determining Diameters of Circular Forming Tools" has been compiled to facilitate proportioning tools of this type and gives constants for computing the various diameters of forming tools, when the cutting face of the tool is $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac$

Make of Machine	Size of Machine	Radius R, Inches	Offset C, Inches	Radius r, Inches
MACHINE	No. 00	0.875	0.125	$r = \sqrt{(0.8660 - D)^2 + 0.0156}$
	No. 0	1.125	0.15625	$r = \sqrt{\left(1.1141 - D\right)^2 + 0.0244}$
Brown & Sharpe	No. 2	1.50	0.250	$r = \sqrt{\left(1.4790 - D\right)^2 + 0.0625}$
	No. 6	2.00	0.3125	$r = \sqrt{\left(1.975 - D\right)^2 + 0.0976}$
	No. 51	0.75	0.09375	$r = \sqrt{\left(1.7441 - D\right)^2 + 0.0088}$
	No. 515	0.75	0.09375	$r = \sqrt{\left(0.7441 - D\right)^2 + 0.0088}$
	No. 52	1.0	0.09375	$r = \sqrt{\left(0.9956 - D\right)^2 + 0.0088}$
Acme	No. 53	1.1875	0.125	$r = \sqrt{\left(1.1809 - D\right)^2 + 0.0156}$
	No. 54	1.250	0.15625	$r = \sqrt{\left(1.2402 - D\right)^2 + 0.0244}$
	No. 55	1.250	0.15625	$r = \sqrt{\left(1.2402 - D\right)^2 + 0.0244}$
	No. 56	1.50	0.1875	$r = \sqrt{\left(1.4882 - D\right)^2 + 0.0352}$
	¥4*	0.625	0,03125	$r = \sqrt{\left(0.6242 - D\right)^2 + 0.0010}$
	₩"	0.084375	0.0625	$r = \sqrt{\left(0.8414 - D\right)^2 + 0.0039}$
	38 "	1.15625	0.0625	$r = \sqrt{\left(1.1546 - D\right)^2 + 0.0039}$
	₹	1.1875	0.0625	$r = \sqrt{\left(1.1859 - D\right)^2 + 0.0039}$
	1%"	1.375	0.0625	$r = \sqrt{\left(1.3736 - D\right)^2 + 0.0039}$
Cleveland	2″	1.375	0.0625	$r = \sqrt{\left(1.3736 - D\right)^2 + 0.0039}$
	21/4"	1.625	0.125	$r = \sqrt{\left(1.6202 - D\right)^2 + 0.0156}$
	23⁄4″	1.875	0.15625	$r = \sqrt{\left(1.8685 - D\right)^2 + 0.0244}$
	31/4"	1.875	0.15625	$r = \sqrt{\left(1.8685 - D\right)^2 + 0.0244}$
	4¼″	2.50	0.250	$r = \sqrt{\left(2.4875 - D\right)^2 + 0.0625}$
	6"	2.625	0.250	$r = \sqrt{(2.6131 - D)^2 + 0.0625}$

The tables "Corrected Diameters of Circular Forming Tools" are especially applicable to tools used on Brown & Sharpe automatic screw machines. Directions for using these tables are given at the end of Table 4.

Circular Tools Having Top Rake.—Circular forming tools without top rake are satisfactory for brass, but tools for steel or other tough metals cut better when there is a rake angle of 10 or 12 degrees. For such tools, the small radius r (see Fig. 3) for an outside radius R may be found by the formula

$r = \sqrt{P^2 + R^2 - 2PR\cos\theta}$

To find the value of P, proceed as follows: $\sin \phi = \operatorname{small}$ radius on work $\times \sin r$ ake angle + large radius on work. Angle $\beta = \operatorname{rake}$ angle $-\rho$ $P = \operatorname{large}$ radius on work $\times \sin \beta + \sin r$ ake angle $+\delta$. Sin $\delta =$ vertical height C from center of tool to center of work + R. It is assumed that the tool point is to be set at the same height as the work center.

		Soft I Cop		Norwa Machin	y fron, e Steel	Drill Ro Ste	
	Dia.	a = 23	Deg.	a = 15	Deg.	a = 12	Deg.
	of Stock	Т	x	Т	x	Т	x
	Чик	0.031	0.013	0.039	0.010	0.043	0.009
$\frac{1}{\frac{1}{2}}$	¥8	0.044	0.019	0.055	0.015	0.062	0.013
	34 ₁₆	0.052	0.022	0.068	0.018	0.076	0.016
	4	0.062	0.026	0.078	0.021	0.088	0.019
	⁵ ∕ ₁₆	0.069	0.029	0.087	0.023	0.098	0.021
	3%	0.076	0.032	0.095	0.025	0.107	0.023
	7/16	0.082	0.035	0.103	0.028	0.116	0.025
$\frac{1''}{32}$	1/2	0.088	0.037	0.110	0.029	0.124	0.026
32 	%₀	0.093	0.039	0.117	0.031	0.131	0.028
$\frac{1}{D}$	5%g	0.098	0.042	0.123	0.033	0.137	0.029
	Щ/16	0.103	0.044	0.129	0.035	0.145	0.031
	3%	0.107	0.045	0.134	0.036	0.152	0.032
	¹³ / ₃₆	0.112	0.047	0.141	0.038	0.158	0.033
	%	0.116	0.049	0.146	0.039	0.164	0.035
	15/16	0.120	0.051	0.151	0.040	0.170	0.036
	1	0,124	0.053	0.156	0.042	0.175	0.037

Dimensions for Circular Cut-Off Tools

The length of the blade equals radius of stock $R + x + r + \frac{1}{2}$ inch (for notation, see illustration above); $r = \frac{1}{6}$ inch for $\frac{1}{6}$ to $\frac{1}{6}$ inch stock, and $\frac{3}{2}$ inch for $\frac{3}{4}$ to 1-inch stock.

.

				j	CORFIGMENTION DETECTION FOR TRANSPORTED ON CALCULAR FOR TRANS	Determina	100107			one Smith				
Public Loss Public Correction for Difference in Diameter Correction for Difference in Diameter Correction for Difference in Diameter Correction for Difference in Diameter $1,2630$ χ_{Linh} <td></td> <td></td> <td>Cutting Fa</td> <td>ice ½ Inch Beli</td> <td>ow Center</td> <td>Cutting Fac</td> <td>se ∛₁₆ Inch Bei</td> <td>ow Center</td> <td>Cutting Fa</td> <td>ce 14 Inch Belo</td> <td>w Center</td> <td>Culting Fac</td> <td>e S_{is} Inch Belo</td> <td>w Center</td>			Cutting Fa	ice ½ Inch Beli	ow Center	Cutting Fac	se ∛ ₁₆ Inch Bei	ow Center	Cutting Fa	ce 14 Inch Belo	w Center	Culting Fac	e S _{is} Inch Belo	w Center
m_{10} χ_{1mch} χ_{1mch	Dia. of	Radius of 'Thof	Correction for	or Difference.	in Diameter	Correction f	or Difference	n Diameter	Correction f	or Difference i	n Diameter	Correction fo	ar Difference in	Diameter
5300 <t< th=""><th>Inov</th><th>1007</th><th>k, Inch</th><th>¼ Inch</th><th>½ Inch</th><th>½ Inch</th><th>½ Inch</th><th>½ Inch</th><th>% Inch</th><th>½ Inch</th><th>½ Inch</th><th>½ Inch</th><th>χ_4 Inch</th><th>1/2 Inch</th></t<>	Inov	1007	k, Inch	¼ Inch	½ Inch	½ Inch	½ Inch	½ Inch	% Inch	½ Inch	½ Inch	½ Inch	χ_4 Inch	1/2 Inch
05632 0.0036 0.0066 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0137 0.0137 0.0136	-	0.500	:	:	:	:	:	***	:	:	:	:	1	:
0.625 0.0078 0.0067 0.0154 0.0128 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0134 0.0133 0.0134	11%	0.5625	0.0036	:	:	0.0086	:	:	0.0167	:	:	0.0298	:	;
0.6675 0.0023 0.0054 0.0054 0.0123 0.0133 0.0132 0.750 0.0019 0.0035 0.0035 0.0138 0.0138 0.0138 0.0318 <td>24</td> <td>0.625</td> <td>0.0028</td> <td>0.0065</td> <td>;</td> <td>0.0067</td> <td>0.0154</td> <td>÷</td> <td>0.0128</td> <td>0.0296</td> <td>:</td> <td>0.0221</td> <td>0.0519</td> <td>:</td>	24	0.625	0.0028	0.0065	;	0.0067	0.0154	÷	0.0128	0.0296	:	0.0221	0.0519	:
0.756 0.0019 0.01042 0.01047 0.00045 0.01047 0.01037 0.01148 0.01148 0.02134 0.00134 0	1%	0.6875	0.0023	:	:	0.0054	ŧ	÷	0.0102	:	:	0.0172	:	:
0.8125 0.0016 0.0127 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0024 0.0024 0.0234 0.0244 0.00244 0.00244 0.00	1%	0.750	0.0019	0.0042	0.0107	0.0045	0.0099	0.0253	0.0083	0.0185	0.0481	0.0138	0.0310	0,0829
0375 0.0014 0.0237 0.0023 0.0023 0.0024 0.0024 0.0024 0.0024 0.0024 0.0034 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0034 <td>1% %</td> <td>0.8125</td> <td>0.0015</td> <td>:</td> <td>:</td> <td>0.0037</td> <td>:</td> <td>÷</td> <td>6900.0</td> <td>:</td> <td>;</td> <td>0.0114</td> <td>:</td> <td>:</td>	1% %	0.8125	0.0015	:	:	0.0037	:	÷	6900.0	:	;	0.0114	:	:
09775 0.0012 0.0027 0.0021 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.00333 0.0033	134	0.875	0.0014	0.0030	÷	0.0032	0.0069	÷	0.0058	0.0128	:	0.0095	0.0210	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1%	0.9375	0.0012	:	÷	0.0027	:	:	0.0050	:	:	0.0081	:	:
$ \begin{array}{ $	2	1.000	0.0010	0.0022	0.0052	0.0024	0.0051	0.0121	0.0044	0.0094	0.0223	0.0070	0.0152	0.0362
1125 0.0008 0.0017 0.0018 0.0014 0.0015 0.0016 0.0015 0.0015 0.0016 0.0015 0.0016 0.0015 0.0016 0.0016 0.0015 0.0016 0.0011 0.0013 0.0021 0.0021 0.0023 0.0013 0.0023 0.0013 0.0023 0.0036 0.0038 0.0038 0.0033 0.0023 0.0031 0.0031 0.0033	2%	1.0625	00000	;	:	0.0021	:	:	0,0038	:	:	0.0061	:	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2y_{4}$	1.125	0.0008	6.0017	:	0.0018	0,0040	:	0.0034	0.0072	:	0.0054	0.0116	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$23'_{\rm k}$	1.1875	0.0007	:	:	0,0016	:	:	0.0029	:	:	0.0048	:	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2_{1_{2}}^{1_{2}}$	1.250	0.0006	0.0014	0.0031	0.0015	0.0031	0.0071	0.0027	0.0057	0.0129	0.0043	0.0092	0.0208
1375 0.0005 0.0011 0.0025 0.0046 0.0035 0.0035 0.0035 14375 0.0005 0.0011 0.0011 0.0032 0.0032 0.0032 15505 0.0004 0.0011 0.0011 0.0032 0.0032 0.0032 15505 0.0004 0.0011 0.0011 0.0032 0.0032 15525 0.0004 0.0011 0.0017 0.0032 0.0032 15525 0.0003 0.0013 0.0013 0.0032 0.0032 14357 0.0003 0.0013 0.0013 0.0024 0.0024 14359 0.0003 0.0013 0.0013 0.0023 0.0024	2%	1.3125	0.0006	:	:	0.0013	:	:	0.0024	:	:	0.0038	:	:
14.375 0.4005 0.4011 0.4002 0.4032 0.4032 0.4032 0.4032 0.4032 0.4032 0.4032 0.4032 0.4032 0.40333 0.4033 0.4033	$2^{3_{4}}_{4}$	1.375	0.0005	0.0011	:	0.0012	0.0026	:	0.0022	0.0046	:	0.0035	0.0073	:
1,500 0,0004 0,0003 0,0001 0,0001 0,0001 0,0003 0,0004 0,0003 0,0004 0,0003 0,0004 0,0003 0,0046 0,0003 0,0046 0,0003 0,0046 0,0013 0,0046 0,0013 0,0046 0,0013 0,0014 </td <td>278</td> <td>1.4375</td> <td>0.0005</td> <td>:</td> <td>:</td> <td>0.0011</td> <td>:</td> <td>:</td> <td>0.0020</td> <td>:</td> <td>÷</td> <td>0.0032</td> <td>:</td> <td>:</td>	278	1.4375	0.0005	:	:	0.0011	:	:	0.0020	:	÷	0.0032	:	:
15625 0.0004 0.0077 0.0077 0.0077 0.0027 1.425 0.0003 0.0008 0.0018 0.0017 0.0027 1.4575 0.0003 0.0008 0.0018 0.0014 0.0024 0.0024 0.0024 1.5575 0.0003 0.0008 0.0013 0.0024 0.0024 0.0024 1.7560 0.0003 0.0017 0.0023 0.0024 0.0024 1.875 0.0003 0.0017 0.0012 0.0023 0.0024 0.0013 0.0013 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 1.00244 0.0024	3	1.500	0.0004	0.0009	0.0021	0.0010	0,0021	0.0047	0.0018	0.0038	0.0085	0.0029	0.0061	0.0135
1.6.25 0.0003 0.0008 0.0008 0.0001 0.0015 0.0012 0.0024 0.0024 0.0024 1.6.875 0.0003 0.0008 0.00018 0.0014 0.0023 0.0023 0.0024 0.0024 0.0024 0.0023 1.750 0.0007 0.0015 0.0015 0.0013 0.0013 0.0013 0.0013 0.0024 0.0024 0.0024 0.0044 1.8125 0.0007 0.0015 0.0013 0.0013 0.0012 0.0014 0.0014 1.875 0.0006 0.0013 0.0013 0.0014 0.0014	3%	1.5625	0.0004	:	:	0.0009	:	;	0.0017	:	:	0.0027	1	:
16875 0.0003 0.0008 0.0014 0.0023 0.0023 0.0023 0.0023 0.0021 0.0023 0.0014 0.0012 0.0021 0.0044 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0011 0.0014 0.0011 0.0014 0.0014 0.0014 0.0011 0.0014 0.	31/2	1.625	0.0003	0.0003	:	0.0008	0.0018	:	0.0015	0.0032	:	0.0024	0.0051	:
1.750 0.0007 0.0015 0.0007 0.0015 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0044 1.8125 0.0003 0.0017 0.0013 0.0012 0.0019 1.875 0.0006 0.01013 0.0013 0.0019 1.875 0.0006 0.01013 0.0011 0.0019	3%	1.6875	0.0003	:	:	0.0008	:	:	0.0014	:	:	0.0023	:	:
1.8/125 0.0003 0.0007 0.0012 0.2019 1.875 0.0002 0.0006 0.0003 0.0013 0.0018	$3\frac{1}{2}$	1.750	0.0003	0.0007	0.0015	0.0007	0.0015	0.0033	0.0013	0.0028	0.0060	0.0021	0.0044	0.0095
1.875 0.0002 0.0006 0.0013 0.0014 0.0018 0.0038	3%	1.8125	0.0003	;	:	0.0007	;	:	0.0012	:	;	0.0019	***	:
	3%	1.875	0.0002	0.0006	:	0.0.0006	0.0013		0.0011	0.0024	:	0.0018	0.0038	:

Constant for Determining Diameters of Circular Forming Tools

. .

766

	Corre	ected Diam	eters of Ci	ircular For	ming Tool	s—1	
Length c		er of B. & S. Au Screw Machine	tomatic	Length c	Nambo	π of B. & S. Au Screw Machine	
on Tool	No. 00	No. 0	No. 2	on Tool	No. 00	No. 0	No. 2
0.001	1.7480	2.2480	2.9980	0,058	1.6353	2.1352	2.8857
0.002	1.7460	2.2460	2.9961	0.059	1.6333	2.1332	2.8837
0.003	1.7441	2.2441	2.9941	0.060	1.6313	2.1312	2.8818
0.004	1.7421	2.2421	2.9921	0.061	1.6294	2.1293	2.8798
0.005	1.7401	2.2401	2.9901	0.062	1.6274	2.1273	2.8778
0.006	1.7381	2.2381	2.9882	1/16	1.6264	2.1263	2.8768
0.007	1.7362	2.2361	2.9862	0.063	1.6254	2.1253	2.8759
0.008	1.7342	2.2341	2.9842	0.064	1,6234	2.1233	2.8739
0.009	1.7322	2.2321	2.9823	0.065	1.6215	2.1213	2.8719
0.010	1.7302	2.2302	2.9803	0.066	1.6195	2.1194	2,8699
0.011	1.7282	2.3282	2.9783	0.067	1.6175	2.1174	2,8680
0.012	1.7263	2.2262	2.9763	0.068	1.6155	2.1154	2.8660
0.013	1.7243	2.2243	2.9744	0.069	1.6136	2.1134	2.8640
0.014	1.7223	2.2222	2.9724	0.070	1.6116	2.1115	2.8621
0.015	1.7203	2.2203	2.9704	0.071	1.6096	2.1095	2,8601
1/64	1.7191	2,2191	2.9692	0.072	1.6076	2.1075	2.8581
0.016	1.7184	2.2183	2,9685	0.073	1.6057	2.1055	2.8561
0.017	1.7164	2,2163	2.9665	0.074	1.6037	2.1035	2.8542
0.018	1.7144	2.2143	2.9645	0.075	1.6017	2,1016	2.8522
0.019	1.7124	2.2123	2.9625	0.076	1.5997	2.0996	2.8503
0.020	1.7104	2.2104	2,9606	0.077	1.5978	2.0976	2.8483
0.021	1.7085	2.2084	2,9586	0.078	1.5958	2.0956	2.8463
0.022	1.7065	2.2064	2.9566	3/64	1.5955	2.0954	2.8461
0.023	1.7045	2.2045	2,9547	0.079	1.5938	2.0937	2.8443
0.023	1.7025	2.2045	2.9547	0.079	1.5938		
0.024	1.7025	2.2023	2.9517	0.080		2.0917	2.8424
0.025	L6986	2.1985	2.9507	0.081	1.5899 1.5879	2.0897 2.0877	2.8404
0.027	1.6966	2.1985	2.9468	0.082	1.5859	2.0877	2,8384
0.021	1.6946	2.1905	2.9408	0.083			2.8365
0.029	1.6926	2.194.5	2,9428	0.085	1.5839	2.0838 2.0818	2.8345 2.8325
0.030	1.6907	2.1925	2.9428	0.085	1.58.00	2.0818	2.8325
0.031	1.6887	2.1886	2.9409	0.080	1.5800	2.0798	2.8306
	1.6882	2.1880	2.9389	0.087			
1/2					1.5760	2.0759	2.8266
0.032	1.6867	2.1866	2.9369	0.089	1.5740	2.0739	2.8247
0.033	1.6847	2.1847	2.9350	0.090	1.5721	2.0719	2.8227
0.034	1.6827	2.1827	2.9330	0.091	1.5701	2.0699	2.8207
0.035	1.6808	2.1807	2.9310	0.092	1.5681	2.0679	2.8187
0.036	1.6788	2.1787	2.9290	0.093	1.5661	2.0660	2,8168
0.037	1.6768	2.1767	2.9271	1 1/2	1,5647	2.0645	2.8153
0.038	1.6748	2.1747	2.9251	0.094	1.5642	2.0640	2.8148
0.039	1.6729	2.1727	2.9231	0.095	1.5622	2.0620	2.8128
0.040	1.6709	2.1708	2.9211	0.096	1.5602	2.0600	2.8109
0.041	1.6689	2.1688	2.9192	0.097	1.5582	2.0581	2.8089
0.042	1.6669	2.1668	2.9172	0.098	1.5563	2.0561	2.8069
0.043	1.6649	2.1649	2.9152	0.099	1.5543	2.0541	2.8050
0.044	1.6630	2.1629	2.9133	0.100	1.5523	2.0521	2.8030
0.045	1.6610	2.1609	2.9113	0.101	1.5503	2.0502	2.8010
0.046	1.6590	2.1589	2.9093	0.102	1.5484	2.0482	2.7991
3/4	1.6573	2.1572	2.9076	0.103	1.5464	2.0462	2.7971
0.047	1.6570	2.1569	2.9073	0.104	1.5444	2.0442	2.7951
0.048	1.6550	2.1549	2.9054	0.105	1.5425	2.0422	2.7932
0.649	1.6531	2.1529	2.9034	0.106	1.5405	2.0403	2.7912
0.050	1.6511	2.1510	2.9014	0.107	1.5385	2.0383	2.7892
0.051	1.6491	2.1490	2.8995	0.108	1.5365	2.0363	2,7873
0.052	1.6471	2.1470	2.8975	0.109	1.5346	2.0343	2.7853
0.053	1.6452	2.145I	2.8955	2/64	1.5338	2.0336	2.7846
0.054	1.6432	2,1431	2.8936	0.110	1.5326	2.0324	2,7833
0.055	1.6412	2.1411	2.8916	0.111	1.5306	2.0304	2.7833
0.056	1.6392	2.1391	2.8896	0.112	1.5287	2.0284	2.7794
0.057	1.6373	2.1372	2.8877	0.113	1.5267		
0.007	1.6373	4.1374	2.00//	0.115	1.9207	2.0264	2.7774

1.0

		of B. & S. Auto	matic	1	Number	of B. & S. Auto Serew Machine	matic
Length c	No. 00	crew Machine No. 0	No. 2	Length c on Tool	No. 00	No. 0	No. 2
on Tool 0,113	1.5267	2.0264	2,7774	0.171	1.4124	1.9119	2.6634
0.113	1.5247	2.0245	2,7755	11/64	1,4107	1.9103	2.6617
0.115	1.5227	2.0225	2.7735	0.172	1.4104	1.9099	2.6614
	1.5208	2.0205	2.7715	0.173	1.4084	1.9080	2.6595
0.116	1.5188	2.0185	2,7696	0.174	1.4065	1.9060	2.6575
0.117 0.118	1,5168	2.0165	2,7676	0,175	1.4045	1.9040	2.6556
0.118	1.5148	2.0146	2,7656	0.176	1.4025	1,9021	2.6536
0.120	1.5129	2.0126	2.7637	0.177	1,4006	1.9001	2.6516
0.121	1.5109	2.0106	2.7617	0.178	1,3986	1.8981	2.6497
0.122	1.5089	2.0087	2.7597	0.179	1.3966	1.8961	2.6471
0.123	1,5070	2.0067	2.7578	0.180	1.3947	1.8942	2.645
0.124	1,5050	2.0047	2,7558	0.181	1.3927	1.8922	2.643
0.125	1.5030	2.0027	2.7538	0.182	1.3907	1.8902	2.641
0.126	1.5010	2.0008	2.7519	0.183	1.3888	1.8882	2.639
0.127	1.4991	1,9988	2.7499	0.184	1.3868	1.8863	2.637
0.128	1.4971	1.9968	2.7479	0.185	1.3848	1.8843	2.635
0.129	1,4951	1.9948	2.7460	0.186	1.3829	1.8823	2.633
0.130	1.4932	1.9929	2.7440	0.187	1.3809	1.8804	2.632
0.131	1.4912	1.9909	2,7420	3416	1.3799	1.8794	2.631
0.132	1.4892	1.9889	2,7401	0.188	1.3789	1.8784	2.630
0.133	1.4872	1.9869	2,7381	0.189	1.3770	1.8764	2.628
0.134	1.4853	1,9850	2.7361	0.190	1.3750	1.8744	2,626
0.135	1.4833	1.9830	2.7342	0.191	1.3730	1.8725	2.624
0.136	1.4813	1.9810	2.7322	0.192	1.3711	1.8705	2.622
0.137	1.4794	1.9790	2.7302	0.193	1.3691	1.8685	2.620
0.138	1.4774	1.9771	2.7282	0.194	1.3671	1.8665	2,618
0.139	1.4754	1.9751	2.7263	0.195	1.3652	1.8646	2.610
0.140	1.4734	1.9731	2.7243	0.196	1,3632	1.8626	2.614
%	1.4722	1.9719	2.7231	0.197	1.3612	1.8606	2.613
0.141	1,4715	1.9711	2.7224	0.198	1.3592	1.8587	2.610
0.141	1.4695	1,9692	2,7204	0.199	1.3573	1.8567	2.60
0,143	1.4675	1.9672	2,7184	0.200	1.3553	J.8547	2.60
0,144	1,4655	1,9652	2,7165	0.201		1.8527	2.60
0.145	1.4636	1,9632	2.7145	0.202		1.8508	2.60
0.146	1,4616	1.9613	2.7125	0,203		1.8488	2.60
0.147	1,4596	1.9593	2.7106	1%	1	1.8486	2.60
0.148	1.4577	1.9573	2,7086	0.204		1.8468	2.59
0.149	1.4557	1.9553	2.7066	0.205		1.8449	2.59
0.149	1.4537	1.9534	2.7047	0.206	1	1.8429	2.59
0.151	1.4517	1.9514	2,7027	0.207		1.8409	2.59
0.152	1.4498	1,9494	2,7007	0.208		1.8390	2.59
0.153	1,4478	1,9474	2.6988	0.209	· ···	1.8370	2.58
0.154	1.4458	1.9455	2.6968	0.210		1.8350	2.58
0.155	1.4439	1.9435	2.6948	0.211		1.8330	2.58
0.156	1.4419	1.9415	2.6929	0.212		1.8311	2.58
%	1.4414	1.9410	2.6924	0.213	1	1.8291	2,58
0.157	1.4399	1,9395	2,6909	0,214		1.8271	2.57
0.157	1.4380	1.9376	2.6889	0.215		1.8252	2,57
0.159	1.4360	1.9356	2.6870	0.216		1.8232	2,57
0.160	1.4340	1.9336	2.6850	0.217		1.8212	2.57
0.161	1,4321	1,9317	2.6830	0,218		1.8193	2.57
0.162	1,4301	1.9297	2.6811	1/2	·	1.8178	2.50
		1.9277	2.6791	0.219	1	1.8173	2.50
0.163	1.4281		2.6772	0.219		1.8153	2.50
0.164	1.4262	1.9257	2.6752	0.220		1.8133	2.5
0.165	1.4242		2.6732	0.222	1	1.8114	2.5
0,166	1.4222	1.9218	2.6713	0.223		1.8094	2.5
0.167	1.4203	1.9198	2.6693	0.224		1.8074	2.5
0.168	1.4183	1.9178	2.6673	0.225		1.8055	2.5
0.169	1.4163 1.4144	1.9139	2.6654	0.226		1.8035	2.5

FORMING TOOLS

	Number o	of B. & S.		Number o	€B.&S.		
	Serew N			Screw N			Number 2
Length c on Tool	No. 0	No. 2	Length c on Tool	No. 0	No. 2	Length c on Tool	B. & S. Machine
0.227	1.8015	2.5535	0.284	1.6894	2.4418	0.341	2.3303
0.228	1.7996	2.5515	0.285	1.6874	2,4398	0.342	2.3284
0.229	1.7976	2.5496	0.286	1.6854	2.4378	0.343	2.3264
0.230	1.7956	2.5476	0.287	1.6835	2.4359	11/52	2.3250
0.231	1.7936	2.5456	0.288	1.6815	2.4340	0.344	2.3245
0.232	1.7917	2.5437	0.289	1.6795	2.4320	0.345	2.3225
0.233	1.7897	2.5417	0.290	3.6776	2,4300	0.346	2.3206
0.234	1.7877	2.5398	0.291	1.6756	2.4281	0.347	2.3186
564	1.7870	2.5390	0.292	1.6736	2,4261	0,348	2.3166
0.235	1.7858	2.5378	0.293	1.6717	2.4242	0.349	2.3147
0.236	1.7838	2.5358	0.294	1.6697	2.4222	0.350	2.3127
0.237	I.7818	2.5339	0.295	1.6677	2.4203	0.351	2.3108
0.238	1.7799	2.5319	0.296	1.6658	2.4183	0.352	2.3088
0.239	1.7779	2.5300	19/64	1.6641	2.4166	0.353	2,3069
0.240	1.7759	2.5280	0,297	1.6638	2.4163	0.354	2,3049
0.241	1.7739	2.5260	0.298	1.6618	2.4144	0.355	2.3030
0.242	1.7720	2.5241	0.299	1.6599	2.4124	0.356	2,3010
0.243	1.7700	2.5221	0.300	1.6579	2.4105	0.357	2.2991
0.244	1.7680	2.5201	0.301		2.4085	0.358	2.2971
0.245	1.7661	2.5182	0.302		2,4066	0.359	2.2952
0.246	1.7643	2.5162	0.303		2.4046	7%	2.2945
0.247	1,7623	2.5143	0.304		2.4026	0.360	2.2932
0.248	1.7602	2.5123	0.305		2.4007	0.361	2.2913
0.249	1.7582	2.5104	0.306		2.3987	0.362	2.2893
0.250	1.7562	2.5084	0.307		2,3968	0.363	2.2874
0.251	1.7543	2.5064	0.308		2.3948	0.364	2.2854
0.252	1.7523	2.5045	0.309		2,3929	0.365	2.2835
0.253	1.7503	2.5025	0.310	,	2.3909	0.366	2.2815
0.254	1.7484	2.5005	0.311		2.3890	0.367	2.2796
0.255	1.7464	2.4986	0.312		2.3870	0.368	2.2776
0.256	1.7444	2.4966	-5/16		2.3860	0.369	2.2757
0.257	1.7425	2.4947	0.313		2.3851	0.370	2.2737
0.258	1.7405	2.4927	0.314		2.3831	0.371	2.2718
0.259	1.7385	2.4908	0.315		2.3811	0,372	2,2698
0.260	1.7366	2.4888	0.316		2.3792	0.373	2.2679
0.261	1.7346	2.4868	0.317		2.3772	0.374	2,2659
0.262	1.7326	2.4849	0.318		2.3753	0.375	2.2640
0.263	1.7306	2.4829	0.319		2.3733	0.376	2,2620
0.264	1.7287	2.4810	0.320		2.3714	0.377	2.2601
0.265	1.7267	2.4790	0.321		2.3694	0.378	2.2581
1764	1.7255	2.4778	0.322		2.3675	0.379	2.2562
0.266	1.7248	2.4770	0.323		2.3655	0.380	2.2542
0.267	1.7228	2.4751	0.324		2.3636	0.381	2.2523
0.268	1.7208	2.4731	0.325		2.3616	0.382	2.2503
0.269	1.7189	2.4712	0.326		2.3596	0.383	2.2484
0.270	1.7169	2.4692	0.327		2.3577	0.384	2.2464
0.271	1.7149	2.4673	0.328		2.3557	0.385	2.2445
0.272	1.7130	2.4653	21/64		2.3555	0.386	2.2425
0.273	1.7110	2.4633	0.329		2.3538	0.387	2.2406
0.274	1.7090	2.4614	0.330		2.3518	0.388	2.2386
0.275	1.7071	2.4594	0.331		2.3499	0.389	2.2367
0,276	1.7051	2.4575	0.332		2.3479	0.390	2.2347
0.277	1.7031	2.4555	0.333		2.3460	25%	2.2335
0.278	1,7012	2,4535	0.334		2,3440	0.391	2.2328
0.279	1.6992	2.4516	0.335		2.3421	0.392	2.2308
0.280	1.6972	2.4496	0.336		2.3401	0.393	2.2289
0.281	1.6953	2.4477	0.337		2.3381	0.394	2.2269
%	1.6948	2.4472	0.338		2.3362	0.395	2.2250
0.282	1.6933	2,4457	0.339		2.3342	0.396	2.2230
0.283	1.6913	2,4438	0.340		2.3323	0.397	2.2211
			0.540		6.0060	U.397	I 2.2211

Corrected Diameters of Circular Forming Tools-3

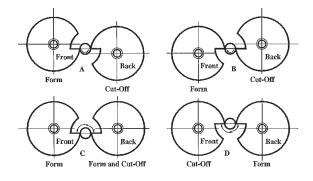
					Number 2		Number 2
	Number 2		Number 2 B. & S.	Length c	B. & S.	Length c	B. & S.
Length c	B. & S. Machine	Length c on Tool	B, & S. Machine	on Tool	Machine	on Tool	Machine
on Tool				0.449	2.1199	0.474	2.0713
0.398	2.2191	0.423	2.1704	0.449	2.1199	0.475	2.0694
0.399	2.2172	0.424	2.1685	0.450	2.1179	0.476	2.0674
0.400	2.2152	0.425	2.1666		2.1100	0.477	2.0655
0.401	2.2133	0.426	2.1646	0.452	2.1140	0.478	2.0636
0.402	2.2113	0.427	2.1627		2.1121 2.1118	0.479	2.0616
0,403	2.2094	0.428	2.1607	²⁹ /61		1	
0.404	2.2074	0.429	2.1588	0.454	2.1101	0.480	2.0597
0.405	2.2055	0.430	2.1568	0.455	2.1082	0.481	2,0577
0.405	2.2035	0.431	2.1549	0.456	2.1063	0.482	2,0558
13/32	2.2030	0.432	2.1529	0.457	2.1043	0.483	2.0538
0.407	2.2016	0.433	2,1510	0.458	2.1024	0.484	2.0519
0.408	2,1996	0.434	2.1490	0.459	2.1004	0.485	2.0500
0.409	2,1977	0.435	2.1473	0.460	2.0985	0.486	2.0480
0.410	2,1957	0.436	2.1452	0.461	2.0966	0.487	2.0461
0.411	2,1938	0.437	2.1432	0.462	2.0946	0.488	2.0441
0.412	2,1919	16	2.1422	0.463	2.0927	0.489	2.0422
0.413	2.1899	0.438	2.1413	0.464	2.0907	0,490	2.0403
0.414	2,1880	0.439	2.1393	0.465	2.0888	0.491	2.0383
0.414	2,1860	0,440	2,1374	0.466	2.0868	0.492	2.0364
0.416	2.1841	0.441	2.1354	0.467	2.0849	0.493	2.0344
0.417	2,1821	0.442	2,1335	0.468	2,0830	0.494	2.0325
0.418	2,1802	0,443	2.1315	15%	2.0815	0.495	2.0306
0.419	2,1782	0.444	2,1296	0,469	2.0810	0.496	2,0286
0.419	2.1763	0.445	2.1276	0.470	2.0791	0.497	2.0267
0.420	2.1743	0.446	2.1257	0.471	2.0771	0.498	2.0247
	2.1726	0.447	2.1237	0.472	2.0752	0.499	2.0228
²⁷ / ₆₄ 0.422	2.1726	0.448	2,1218	0.473	2.0733	0.500	2.0209
0,422	2.1724	0.440	2.12.10	11	1		1

Method of Using Tables for "Corrected Diameters of Circular Forming Tools" .---

Method of Using 1 ables for "Corrected Diameters of Circular Forming Tools".— These tables are especially applicable to Brown & Sharpe automatic screw machines. The maximum diameter D of forming tools for these machines should be as follows: For No. 00 machine, $1\frac{1}{3}$ inches; for No. 0 machine, $2\frac{1}{4}$ inches; for No. 2 machine, 3 inches. To find the other diameters of the tool for any piece to be formed, proceed as follows: Subtract the smallest diameter of the work from the diameter of the work that is to be formed by the required tool diameter; divide the remainder by 2; locate the quotient obtained in the col-umn headed "Length c on Tool," and opposite the figure thus located and in the column headed by the number of the machine used, read off directly the diameter to which the tool is to be made. The quotient obtained, which is located in the column headed "Length c on Tool," is the length c, as shown in the following table.

	No. of Machine	Max. Dia., D	h	Т	W
W	00	1¾	1/8	3~16	1⁄4
	0	21/4	⁵ / ₃₂	1/2-14	⁵ ∕ ₁₆
	2	3	₩4	<i>%</i> −12	3%₀
	6	4	⁵ / ₁₆	∛₄−12	3%8

Dimensions of Forming Tools for B. & S. Automatic Screw Machines


769

 $\epsilon = \rho$

770

Example: A piece of work is to be formed on a No. 0 machine to two diameters, one being $\frac{1}{2}$ inch and one 0.550 inch; find the diameters of the tool. The maximum tool diameter is $2\frac{1}{4}$ inches, or the diameter that will cut the $\frac{1}{2}$ -inch diameter of the work. To find the other diameter, proceed according to the rule given: $0.550 - \frac{1}{4} = 0.300$; 0.300 + 2 = 0.150. In Table 2, opposite 0.150, we find that the required tool diameter is 1.9534 inches. These tables are for tools without rakes.

Arrangement of Circular Tools.—When applying circular tools to automatic screw machines, their arrangement has an important bearing on the results obtained. The various ways of arranging the circular tools, with relation to the rotation of the spindle, are shown at A, B, C, and D in the illustration. These diagrams represent the view obtained when looking toward the chuck. The arrangement shown at A gives good results on long forming operations on brass and steel because the pressure of the cut on the front tool is downward; the support is more rigid than when the forming tool is turned upside down on the front side, as shown at B; here the stock, turning up toward the tool, has a tendency to lift the cross-slide, causing chattering; therefore, the arrangement shown at A is recommended when a high-quality finish is desired. The arrangement at B works satisfactorily for short steel pieces that do not require a high finish; it allows the chips to drop clear of the work, and is especially advantageous when making screws, when the forming and cut-off tools operate after the die, as no time is lost in reversing the spindle. The arrangement at C is recommended for heavy cutting on large work, when both tools are used for forming the piece; a rigid support is then necessary for both tools and a good supply of oil is also required. The arrangement at D is objectionable and should be avoided; it is used only when a left-hand thread is cut on the piece and when the cut-off tool is used on the front slide, leaving the heavy cutting to be performed from the rear slide. In all "cross-forming" work, it is essential that the spindle bearings be kept in good condition, and that the collet or chuck has a parallel contact upon the bar that is being formed.

Feeds and Speeds for Forming Tools.—Approximate feeds and speeds for forming tools are given in the table beginning on page 1095. The feeds and speeds are average values, and if the job at hand has any features out of the ordinary, the figures given should be altered accordingly.

MILLING CUTTERS

Selection of Milling Cutters.—The most suitable type of milling cutter for a particular milling operation depends on such factors as the kind of cut to be made, the material to be cut, the number of parts to be machined, and the type of milling machine available. Solid cutters of small size will usually cost less, initially, than inserted blade types; for long-run production, inserted-blade cutters will probably have a lower overall cost. Depending on either the material to be cut or the amount of production involved, the use of carbide-tipped cutters in preference to high-speed steel or other cutting tool materials may be justified.

Rake angles depend on both the cutter material and the work material. Carbide and cast alloy cutting tool materials generally have smaller rake angles than high-speed steel tool materials because of their lower edge strength and greater abrasion resistance. Soft work materials permit higher radial rake angles than hard materials; thin cutters permit zero or practically zero axial rake angles; and wide cutters operate smoother with high axial rake angles. See *Rake Angles for Milling Cutters* on page 801.

Cutting edge relief or clearance angles are usually from 3 to 6 degrees for hard or tough materials, 4 to 7 degrees for average materials, and 6 to 12 degrees for easily machined materials. See *Clearance Angles for Milling Cutter Teeth* on page 800.

The number of teeth in the milling cutter is also a factor that should be given consideration, as explained in the next paragraph.

Number of Teeth in Milling Cutters.—In determining the number of teeth a milling cutter should have for optimum performance, there is no universal rule.

There are, however, two factors that should be considered in making a choice: 1) The number of teeth should never be so great as to reduce the chip space between the teeth to a point where a free flow of chips is prevented; and 2) The chip space should be smooth and without sharp corners that would cause clogging of the chips in the space.

For milling ductile materials that produce a continuous and curled chip, a cutter with large chip spaces is preferable. Such coarse tooth cutters permit an easier flow of the chips through the chip space than would be obtained with fine tooth cutters, and help to eliminate cutter "chatter." For cutting operations in thin materials, fine tooth cutters reduce cutter and workpiece vibration and the tendency for the cutter teeth to "straddle" the workpiece and dig in. For slitting copper and other soft nonferrous materials, teeth that are either chamfered or alternately flat and V-shaped are best.

As a general rule, to give satisfactory performance the number of teeth in milling cutters should be such that *no more than two teeth at a time are engaged in the cut*. Based on this rule, the following formulas are recommended:

For face milling cutters,

$$T = \frac{6.3D}{W} \tag{1}$$

For peripheral milling cutters,

$$T = \frac{12.6D\cos A}{D+4d} \tag{2}$$

where T = number of teeth in cutter; D = cutter diameter in inches; W = width of cut in inches; d = depth of cut in inches; and A = helix angle of cutter.

To find the number of teeth that a cutter should have when other than two teeth in the cut at the same time is desired, Formulas (1) and (2) should be divided by 2 and the result multiplied by the number of teeth desired in the cut.

771

MILLING CUTTERS

Example: Determine the required number of teeth in a face mill where D = 6 inches and W = 4 inches. Using Formula (1),

 $T = \frac{6.3 \times 6}{4} = 10$ teeth, approximately

Example: Determine the required number of teeth in a plain milling cutter where D = 4 inches and $d = \frac{1}{4}$ inch. Using Formula (2),

$$T = \frac{12.6 \times 4 \times \cos^{\circ}}{4 + (4 \times \frac{1}{4})} = 10 \text{ teeth, approximately}$$

In high speed milling with sintered carbide, high-speed steel, and cast non-ferrous cutting tool materials, a formula that permits full use of the power available at the cutter but prevents overloading of the motor driving the milling machine is:

$$T = \frac{K \times H}{F \times N \times d \times W}$$
(3)

where T = number of cutter teeth; H = horsepower available at the cutter; F = feed per tooth in inches; N = revolutions per minute of cutter; d = depth of cut in inches; W = width of cut in inches; and K = a constant which may be taken as 0.65 for average steel, 1.5 for cast iron, and 2.5 for aluminum. These values are conservative and take into account dulling of the cutter in service.

Example: Determine the required number of teeth in a sintered carbide tipped face mill for high speed milling of 200 Brinell hardness alloy steel if H = 10 horsepower; F = 0.008 inch; N = 272 rpm; d = 0.125 inch; W = 6 inches; and K for alloy steel is 0.65. Using Formula (3),

$T = \frac{0.65 \times 10}{0.008 \times 272 \times 0.125 \times 6} = 4$ teeth, approximately

American National Standard Milling Cutters.—According to American National Standard ANSI/ASME B94.19-1997 milling cutters may be classified in two general ways, which are given as follows:

By Type of Relief on Cutting Edges: Milling cutters may be described on the basis of one of two methods of providing relief for the cutting edges. *Profile sharpened* cutters are those on which relief is obtained and which are resharpened by grinding a narrow land back of the cutting edges. Profile sharpened cutters may produce flat, curved, or irregular surfaces. *Form relieved* cutters are those which are so relieved that by grinding only the faces of the teeth the original form is maintained throughout the life of the cutters. Form relieved cutters may produce flat, curved or irregular surfaces.

By Method of Mounting: Milling cutters may be described by one of two methods used to mount the cutter. Arbor type cutters are those which have a hole for mounting on an arbor and usually have a keyway to receive a driving key. These are sometimes called Shell type. Shank type cutters are those which have a straight or tapered shank to fit the machine tool spindle or adapter.

Explanation of the "Hand" of Milling Cutters.—In the ANSI Standard the terms "right hand" and "left hand" are used to describe hand of rotation, hand of cutter and hand of flute helix.

Hand of Rotation or Hand of Cut: is described as either "right hand" if the cutter revolves counterclockwise as it cuts when viewed from a position in front of a horizontal milling machine and facing the spindle or "left hand" if the cutter revolves clockwise as it cuts when viewed from the same position.

1.

773

American National Standard Plain Milling Cutters ANSI/ASME B94.19-1997

Ci	itter Diamet	er	Range of	H	lole Diamete	r
Nom.	Max.	Min.	Face Widths Nom. ⁴	Nom.	Max.	Min.
			Light-duty Cutters ^b			
21/2	2.515	2.485	$\frac{3}{16}, \frac{14}{2}, \frac{5}{16}, \frac{3}{2}, \frac{5}{2}, \frac{5}{2}$	1	1.00075	1.0000
3	3.015	2.985	$\frac{1}{16}, \frac{1}{4}, \frac{1}{16}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{16}$	1	1.00075	1.0000
3	3.015	2.985	$\frac{1}{2}, \frac{5}{4}, \frac{3}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}$ and 3	11/4	1.2510	1.2500
4	4.015	3.985	$\frac{1}{16}$ and $\frac{3}{8}$	1	1.00075	1.0000
4	4.015	3.985	%, ½, %, ¾, 1, 1½, 2, 3 and 4	11/4	1.2510	1.2500
			Heavy-duty Cuttersc			
21/2	2.515	2.485	2	1	1.00075	1.0000
21/2	2.515	2.485	4	1	1.0010	1.0000
3	3.015	2,985	2, 2½, 3, 4 and 6	11/4	1.2510	1.2500
4	4.015	3.985	2, 3, 4 and 6	1½	1.5010	1.5000
		L	High-helix Cutters ^d			
3	3.015	2.985	4 and 6	11/4	1.2510	1.2500
4	4.015	3.985	8	1½	1.5010	1.5000

* Tolerances on Face Widths: Up to 1 inch, inclusive, ± 0.001 inch; over 1 to 2 inches, inclusive, +0.010, -0.000 inch; over 2 inches, +0.020, -0.000 inch. ^b Light-duty plain milling cutters with face widths under $\frac{3}{4}$ inch have straight teeth. Cutters with $\frac{3}{4}$ -inch face and wider have belix angles of not less than 15 degrees nor greater than 25 degrees. ^c Heavy-duty plain milling cutters have a helix angle of not less than 25 degrees nor greater than 45 degrees.

degrees. ⁴High-helix plain milling cutters have a helix angle of not less than 45 degrees nor greater than 52 degrees.

All dimensions are in inches. All cutters are high-speed steel. Plain milling cutters are of cylindri-cal shape, having teeth on the peripheral surface only.

cal shape, having teeth on the peripheral surface only. Hand of Cutter: Some types of cutters require special consideration when referring to their hand. These are principally cutters with unsymmetrical forms, face type cutters, or cutters with threaded holes. Symmetrical cutters may be reversed on the arbor in the same axial position and rotated in the cutting direction without altering the contour produced on the work-piece, and may be considered as either right or left hand. Unsymmetrical cutters reverse the contour produced on the work-piece when reversed on the arbor in the same axial position and rotated in the cutting direction. A single-angle cutter is considered to be a right-hand cutter if it revolves counterclockwise, or a left-hand cutter if it revolves clock-wise, when cutting as viewed from the side of the larger diameter. The hand of trotation of a single angle milling cutter is considered to be a right-hand cutter if it revolves counterclock-wise, or a left-hand cutter if it revolves clockwise, when cutting as viewed from the side of the same as its hand of cutter. A single corner rounding cutter is considered to be a right-hand cutter if it revolves counterclock-wise, or a left-hand cutter if it revolves clockwise, when cutting as viewed from the side of the smaller diameter.

MILLING CUTTERS

American National Standard Side Milling Cutters ANSUASME B94, 19-1997

(Cutter Diamete	r	Range of		Hole Diameter	
Nom.	Max.	Min.	Face Widths Nom. ^a	Nom.	Max.	Min.
			Side Cutters ^b			
2	2.015	1.985	3/16, 14, 3/8	5%	0.62575	0.6250
21/2	2.515	2.485	¥, ¥, ½	7%	0.87575	0.8750
3	3.015	2.985	1/4, 3/16, 3/8, 7/16, 1/2	1	1.00075	1.0000
4	4.015	3.985	岩,影,片,影,影,浅,	1	1.00075	1.0000
4	4.015	3.985	12, 16. 34	$1V_4$	1.2510	1.2500
5	5.015	4.985	5, 4, 4	1	1.00075	1.0000
5	5.015	4.985	$\frac{1}{2}, \frac{5}{4}, \frac{3}{4}, 1$	11/4	1.2510	1.2500
6	6.015	5.985	12	1	1.00075	1.0000
6	6.015	5.985	4,5,3,1	11/4	1.2510	1.2500
7	7.015	6.985	34	11/4	1.2510	1.2500
7	7.015	6.985	34	1½	1.5010	1.5000
8	8.015	7.985	$\frac{3}{4}, 1$	11/2	1.2510	1.2500
8	8.015	7.985	34,1	1½	1.5010	1.5000
		·	Staggered-tooth Side Cutterso			
2½	2.515	2.485	1/4, 5/16, 3/8, 1/2	1%	0.87575	0.8750
3	3.015	2.985	3/16, 3/4, 5/16, 3/8	1	1.00075	1.0000
3	3.015	2.985	5.%,浅	14	1.2510	1.2500
4	4.015	3.985	¥, ¾, ¾, %, ½, %, ¾ and %	1¼	1.2510	1.2500
5	5.015	4.985	1/2, 1/2, 3/4	11/4	1.2510	1.2500
6	6.015	5.985	34, 12, 18, 34, 76, 1	11/4	1.2510	1.2500
8	8.015	7.985	36, 1/2, 1/8, 3/4, 1	11/2	1.5010	1.5000
		L	Half Side Cutters ^d			
4	4.015	3.985	34	11/4	1.2510	1.2500
5	5.015	4.985	34	11/4	1.2510	1.2500
6	6.015	5.985	34	11/4	1.2510	1.2500

*Tolerances on Face Widths: For side cutters, +0.002, -0.001 inch; for staggered-tooth side cutters up to ¾ inch face width, inclusive, +0.000 -0.0005 inch, and over ¾ to 1 inch, inclusive, +0.000 -0.0010 inch; and for half side cutters, +0.010, -0.000 inch. %Side milling cutters have straight peripheral teeth and side teeth on both sides. <\$taggered-tooth side milling cutters have peripheral teeth of alternate right- and left-hand helix and alternate side teeth.

alternate side teeth.

auchante sure recur. "Half side milling cutters have side teeth on one side only. The peripheral teeth are helical of the same hand as the cut. Made either with right-hand or left-hand cut.

All dimensions are in inches. All cutters are high-speed steel. Side milling cutters are of cylindrical shape, having teeth on the periphery and on one or both sides.

Hand of Flute Helix: Milling cutters may have straight flutes which means that their cut-ting edges are in planes parallel to the cutter axis. Milling cutters with flute helix in one direction only are described as having a right-hand helix if the flutes twist away from the observer in a clockwise direction when viewed from either end of the cutter or as having a left-hand helix if the flutes twist away from the observer in a counterclockwise direction when viewed from either end of the cutter. Staggered tooth cutters are milling cutters with every other flute of opposite (right and left hand) helix.

An illustration describing the various milling cutter elements of both a profile cutter and a form-relieved cutter is given on page 776.

American National Standard Staggered Teeth, T-Slot Milling Cutters with Brown & Sharpe Taper and Weldon Shanks ANSUASME B94.19-1997 -L-_ With Weldon Shank Vith B. & Pace Width \underline{W} Cutte: Dia., D Neek Dia., N Dia., S Belt Size Length Taper No. Length. %6 ²¹/₃ ²¹/₃ ²¹/₃ ²¹/₃ ¹¹/₄ ¹¹/₂ 2¹%2 2¹%6 ***** × 34 314 3745 3156 ¥4 ¥4 5 7 5¼ 6% X $4\frac{7}{16}$ 1232 3%4 115 714 4¹% 14

^aFor dimensions of Brown & Sharpe taper shanks, see information given on page 916. ^bBrown & Sharpe taper shanks have been removed from ANSI/ASME B94.19 they are included for reference only.

All dimensions are in inches. All cutters are high-speed steel and only right-hand cutters are standard. Tolerances: On D, +0.000, -0.010 inch; on W, +0.000, -0.005 inch; on N, +0.000, -0.005 inch; on L, $\pm \frac{1}{2}_{00}$ inch; on S, -00001 to -0.0005 inch.

American National Standard Form Relieved Corner Rounding Cutters with Weldon Shanks ANSUASME B94.19-1997

	s				-d R	₽ -€	-		
Rad., R	Dia., D	Dia., d	5	L	Rad., R	Dia., D	Dia., d	s	L
Y ₁₆	7/16	4	3%	2½	ž	11/4	34	1/2	31/2
¥22	Ķ	14	34	21/2	¥ ₁₆	14	5/10	14	31/6
*	*	4	1/2	3	14	1	36	4	31/4
1/2	*4	\$46	1/2	3	≫16	15%	36	76	31/2
	_	<i>c</i> .	· · ·	-					1
3/16	34	% ₁₆	1/2	3	36	11/4	-%	76	33/4
3% 14	% 1	*⊪ ∛a	1/2	3	-% 7/16	1%	-% -%	1	4

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters are standard. *Tolerances:* On $D, \pm 0.010$ inch; on diameter of circle, $2R, \pm 0.001$ inch for cutters up to and including %-inch radius; +0.002, -0.001 inch for cutters over %-inch radius; on S, -0.0001 to -0.0005 inch; and on $L, \pm \frac{1}{16}$ inch.

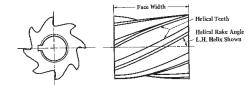
775

2 - 1 - E

· (

MILLING CUTTERS

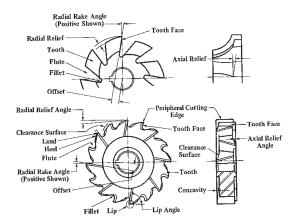
American National Standard Metal Slitting Saws ANSU/ASME B94.19-1997


C	utter Diameter	-	Range of		Hole Diameter	
Nom.	Max.	Min.	Face Widths Nom. ^a	Nom.	Max.	Min.
			Plain Metal Slitting Saws ^b			
2½	2.515	2.485	12. 164. 16. 32. K	1/8	0.87575	0.8750
1 - 1		2.005	1/2, 3/4, 1/6, 3/2,	1	1.00075	1.0000
3	3.015	2.985	$\frac{1}{16}$ and $\frac{1}{20}$	1	1.0007.5	1.0000
Į		0.005	塩, 褐, 46, 塩, %,	1	1.00075	1.0000
4	4.015	3.985	$\frac{1}{20}$ and $\frac{1}{26}$		[
5	5.015	4.985	1/16. 3/22, 1/8	1	1.00075	1.0000
5	5.015	4.985	16	1½	1.2510	1.2500
6	6.015	5.985	16, 32, 18	1	1.00075	1.0000
6	6.015	5.985	16. 36	11/4	1.2510	1.2500
8	8.015	7.985	14	1	1.00075	1.0000
8	8.015	7.985	1/3	1¼	1.2510	1.2500
			Metal Slitting Saws with Side Teeth			
21/2	2.515	2.485	1/16, 3/12, 1/8	1/8	0.87575	0.8750
3	3.015	2.985	16, 32, 16, 32	1	1.00075	1.0000
4	4.015	3.985	$y_{6}, y_{2}, y_{3}, y_{2}, y_{16}$	1	1.00075	1.0000
5	5.015	4.985	Y6, 32, 16, 32, 36	1	1.00075	1.0000
5	5.015	4.985	14	1¼	1.2510	1.2500
6	6.015	5.985	V16, 322, 18, 316	1	1.00075	1.0000
6	6.015	5.985	1/6, 3/15	11/4	1.2510	1.2500
8	8.015	7,985	4	1	1.00075	1.0000
8 Å	8.015	7,985	16, 316	134	1.2510	1.2500
<u> </u>		Metal Slittin	g Saws with Staggered Peripheral an	nd Side Teeth	a	
3	3.015	2.985	- M ₁₆	1	1.00075	1.0000
4	4.015	3.985	3/16	1	1.00075	1.0000
5	5.015	4.985	3/16 , 5/4	1	1.00075	1.0000
6	6.015	5.985	3/16, 14	1	1.00075	1.0000
6	6.015	5.985	3/16 . 14	11/4	1.2510	1.2500
8	8.015	7.985	3/16 , 1/4	11/4	1.2510	1.2500
10	10.015	9.985	3/16 . 14	1½	1.2510	1.2500
12	12.015	11.985	1/4.5/16	1½	1.5010	1.5000

 12
 12.01
 11.983
 3.7%
 122
 1.5010
 1.5000

 a Toberances on face widths are plus or minus 0.001 inch.
 b Plain metal slitting saws are relatively thin plain milling cutters having peripheral teeth only. They are furnished with or without hub and their sides are concaved to the arbor hole or hub.
 CM etal slitting saws with side teeth are relatively thin side milling cutters having both peripheral and side teeth are relatively thin side milling cutters having both peripheral and side teeth are relatively thin stageered to the information milling cutters having both milling cutters having peripheral teeth of alternate right- and left-hand helix and alternate side teeth.

All dimensions are in inches. All saws are high-speed steel. Metal slitting saws are similar to plain or side milling cutters but are relatively thin.


Milling Cutter Terms

59

e per

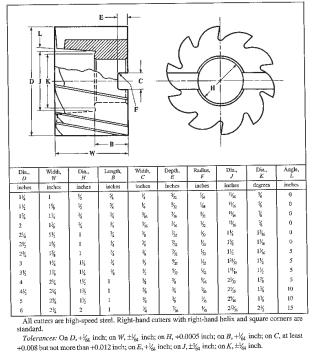
777

American National Standard Single- and Double-Angle Milling Cutters ANSI/ASME B94.19-1997

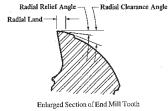
	Cutter Diameter				Hole Diameter	
Nom.	Max.	Min.	Nominal Face Width ^a	Nom.	Max.	Min.
			Single-angle Cuttersh			
		·····		;	≰-24 UNF-2B RI	н
°1¼	1.265	1.235	¥16		⊊-24 UNF-2B LI	Н
°1%	1.640	1.610	916	Ì	½ -20 UNP-2B F	н
21/4	2.765	2.735	Ķ	1	1.00075	1.000
3	3.015	2.985	K2	1½	1.2510	1.2500
	L	L	Double-angle Cutters ^d			
23/4	2.765	2.735	1/2	1	1.00075	1.000

 ±70
 ±703
 ½
 1
 100075
 10000

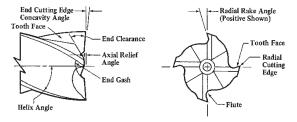
 * Face width tolerances are phis or minus 0.015 inch.
 b Single-angle milling cutters have peripheral teeth, one cutting edge of which lies in a conical surface and the other in the plane perpendicular to the cutter axis. There are two types: one has a plain keywayed hole and has an included tooth angle of either 45 or 60 degrees plus or minus 10 minutes, the other has the plane perpendicular to the cutter axis. There are two types: one has a plain keywayed hole and has an included tooth angle of 60 degrees plus or minus 10 minutes, the other has the included has an included tooth angle of 60 degrees plus or minus 10 minutes. Cutters with a fight-hand threaded hole have a right-hand hand of rotation and a right-hand hand of cutter. Cutters with a left-hand threaded hole have a left-hand hand of cutter. Cutters with plain keywayed holes are standard as either right-hand on the left-hand hand of cutter. Cutters with a left-hand tureaded hole have a left-hand threaded hole have a left-hand threaded hole have a left-hand thereaded hole have a left-hand threaded holes, the sizes of which are given under "Hole Diameter."


 * These cutters have threaded hole, the sizes of which hare given under "Hole Diameter."
 * Double-angle milling cutters have symmetrical peripheral teeth both sides of which lie in conical surfaces. They are designated by the included angle, which may be 45, 60 or 90 degrees. Tolerances are plus or minus 10 minutes for the half angle on each side of the center.

 Alt dimensioner are in inclused. All cutters were blab meret are are standard and side of the center.
 Alt dimeascince are blab. All cutters are blab.

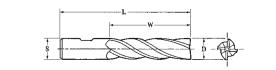

All dimensions are in inches. All cutters are high-speed steel.

778



End Mill Terms

779


Enlarged Section of End Mill

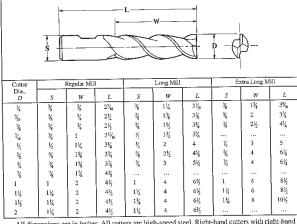
American National Standard Multiple- and Two-Flute Single-End Helical End Mills with Plain Straight and Weldon Shanks ANSUASME B94.19-1997

* \$ +		-w		L		<u>- р-ф</u> -
	Cutter Diameter, D		Shank D		Length	Length
Nom.	Max.	Min.	Max.	Min.	of Cut, W	Overall,
			te with Plain Strai			~ ~
16	.130	.125	.125	.1245	∜16	11/4
3/16	.1925	.1875	.1875	.1870	1/2	13%
K4	.255	.250	.250	.2495	5%	111/16
-%	.380	.375	.375	.3745	3∕4	113/16
1/2	.505	.500	.500	.4995	15/16	21/4
34	.755	.750	.750	.7495	11/4	25%
		Two-flute for Key	way Cutting with	Weldon Shanks		
K.	.125	.1235	.375	.3745	34	2%
3/16	.1875	.1860	.375	.3745	7/16	25/16
1/4	.250	.2485	.375	.3745	1/2	25/ ₁₆
⁵ /16	.3125	.3110	.375	.3745	% ₁₅	25/16
34	.375	.3735	.375	.3745	%₀	25/16
1/2	.500	.4985	.500	.4995	1	3
*	.625	.6235	.625	.6245	1%	31/16
4	.750	.7485	.750	.7495	$1\frac{5}{16}$	3%16
7 <u>6</u>	.875	.8735	.875	.8745	1½	3¾
1	1.000	.9985	1.000	.9995	1%	4¼
1½	1.250	1.2485	1.250	1.2495	$1\frac{1}{8}$	41/8
1½	1.500	1.4985	1.250	1.2495	1%	41/8

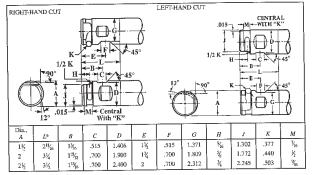
MILLING CUTTERS

ANSI Regular-, Long-, and Extra Long-Length, Multiple-Flute Medium Helix Single-End End Mills with Weldon Shanks ANSI/ASME B94.19-1997

As Indicated By The Dimensions Given Below, Shank Diameter S May Be Larger, Smaller, Or The Same As The Cutter Diameter D


Cutter		Regula	Mills			Long	Mills			Extra Long Mills				
Dia., D	s	W	L	N^n	s	w	L	Na	S	W	L	Na		
**	*	3/8	25/16	4										
346 h	34	14	23%	4										
1/4 b	₹¥,	5%	21/16	4	3%	11/4	31/16	4	*	134	3%	4		
3% b	*	34	21/2	4	3%	13%	31%	4	*	2	33/4	4		
36 P	¥,	34	2½	4	3%	1½	31/4	4	3	21/2	41/4	4		
₹/16	-%	1	211/16	4	1/2	13/	3¾	4						
- 12	36	1	2 ¹¹ / ₁₆	4	1/2	2	4	4	34	3	5	4		
1/2 10	<u>K</u>	1塩	31/4	4										
%₁6	<u>4</u>	$1\frac{3}{8}$	3%	4										
*	<u>k</u>	1%	3%	4	%	2½	4%	4	÷¥	4	6%	4		
14/16	14	1%	3%	4										
34	¥ %	$1\frac{5}{8}$	3%	4	3/4	3	51/4	4	34	4	6¼	4		
-%₽		1%	31/4	4										
11/16	*	1%	33/4	4										
34 р	-%	15%	33/4	4										
13/15	*	1%	4	6										
34	*	17%	4	6	7%	31/2	534	4	74	5	71/4	4		
1	54	11%	4	6	1	4	6½	4	1	6	85	4		
74	74	1%	4%	4										
1	7%	1%	4%	4										
11/8	76	2	4¼	6	1	4	6½	6						
1½	36	2	41/4	6	1	4	6½	6	11/4	6	8½	6		
1	1	2	4½	4	•									
11%	1	2	4 <u>½</u>	6										
11/4	1	2	4½	6										
13%	1	2	4½	6										
1½	1	2	4½	6	1	4	61/2	6						
11/4	1½	2	4½	6	11/4	4	6½	6						
1½	11/4	2	4½	6	11/4	4	6½	6	11/2	8	10½	6		
13/4	11/4	2	4½	6	11/4	4	6½	6						
2	11/4	2	4½	8	11/4	4	6½	8						

A CONTRACTOR OF A CONTRACTOR


^aN = Number of flutes. ^bIn this size of regular mill a left-band cutter with left-hand helix is also standard. All dimensions are in inches. All cutters are high-speed steel. Helix angle is greater than 19 degrees but not more than 39 degrees. Right-hand cutters with right-hand helix are standard. *Tolerances:* On D, +0.003 inch; on S, -0.0001 to -0.0005 inch; on W, $\pm \frac{1}{20}$ inch; on L, $\pm \frac{1}{16}$ inch.

781

ANSI Two-Flute, High Helix, Regular-, Long-, and Extra Long-Length, Single-End End Mills with Weldon Shanks ANSI/ASME B94.19-1997

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 39 degrees. *Tolerances*: On D, +0.003 inch; on S, =0.0001 to =0.0005 inch; on W, $\pm \frac{1}{20}$ inch; and on L, $\pm \frac{1}{20}$ inch.

Combination Shanks for End Mills ANSI/ASME B94.19-1997

^aLength of shank.

All dimensions are in inches.

Modified for use as Weldon or Pin Drive shank.

MILLING CUTTERS

ANSI Roughing, Single-End End Mills with Weldon Shanks, High-Speed Steel ANSI/ASME B94.19-1997

† S		~					† D
Diar	neter		ngth		neter		ngth
Cutter	Shank	Cut	Overall	Cutter	Shank	Cut	Overall
Ð	5	W	L	D	S	W	L
Ķ	经施施税税	1	3	2	2	2	5¾
1/2	1/2	134	31/4	.2 2	2	3	6%
1/2	1/2	2	4	2	2	4	7¾
站站着看着圣圣	省	11/4	3%	2	2	5	8¾
×	*	1%	3¾	2	2	6	91/4
*	%	21/2	4%	2	2	7	10¾
34	34	1½	3%	2	2	8	11¾
34	34	1%	3%	2	2	10	13¾
Y_{4}	34	3	5½	2	2	12	15%
1	1	2	4½	21/2	2	4	7¾
1	1	4	6½	2½	2	6	9%
1%	1½	2	4½	2½	2	8	11¾
11/4	11/4	4	6½	21/2	2	10	13¾
11/2	11/4	2	4½	3	21/2	4	734
1½	11/4	4	6½	3	21/2	6	9%
1%	11/4	2	4½	3	21/2	8	11¾
1%	11/4	4	6%	3	214	10	13¾

Tolerances: Outside diameter, +0.025, -0.005 inch; length of cut, $+\frac{1}{32}$, $-\frac{1}{32}$ inch.

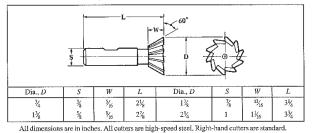
American National Standard Heavy Duty, Medium Helix Single-End End Mills, 2½-inch Combination Shank, High-Speed Steel ANSI/ASME B94.19-1997

Dia_ of Cuttor, D	No. of Plutes	Length of Cut, W	Length Overall, L	Dia. of Cutter, D	No. of Flutes	Length of Cut, W	Length Overall, L				
215	3	8	12	3	3	4	7%				
21/2	3	10	14	3	3	6	9%				
21/2	6	4	8	3	3	8	11½				
21/2	6	6	10	3	8	4	73⁄4				
21/2	6	8	12	3	8	6	934				
21/2	6	10	14	3	8	8	11¾				
21/2	6	12	16	3	8	10	13½				
3	2	4	73/4	3	8	12	15¾				
3	2	6	9¾								

All dimensions are in inches. For shank dimensions see page 781. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees. Tolerances: On D, +0.005 inch; on W, $\pm \sqrt{2}_{\Omega}$ inch; on L, $\pm \sqrt{6}_{\Omega}$ inch.

5 (F) (F)

a de la companya de l Companya de la company


ANSI Stub-, Regular-, and Long-Length, Four-Flute, Medium Helix, Plain-End, Double-End Miniature End Mills with 3/6-Inch Diameter Straight Shanks ANSI/ASME B94.19-1997

D-			6		-w	
Dia,	Stub L	ength			Regular	Length
D	W		L	W		L
1/16	3∕32		2	3/16		21/4
3/20	%		2	%2		21/4
1/8	3/16		2	3/8		21/4
5/32	%4 ₹16 ¹⁵ 64		2	7/16		21/4
3/16	%2		2	1/2		21⁄4
Dia.			Long	Length		
D	В			W		L
1/16	3%			K22		21/2
32	4		-	<u>%</u>		21%
4/8	3/4			4		31%
- ⁵ /32	7_8			4		31/4
34 ₁₆	1		Ĩ			33%

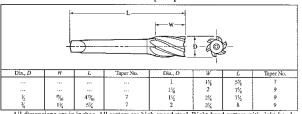
All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees.

Tolerances: On D_1 + 0.003 inch (if the shark is the same diameter as the output portion, however, then the tolerance on the cutting diameter is -0.0025 inch.); on $W_1 + \frac{1}{22}$, $-\frac{1}{24}$ inch; and on L, $\pm\frac{1}{16}$ inch.

American National Standard 60-Degree Single-Angle Milling Cutters with Weldon Shanks ANSI/ASME B94.19-1997

An unicensions are in factors. An entries are ingrespectively seen. Non-main cances are summary Tolerances: On $D_2 \pm 0.015$ inch; on $S_2 = 0.0001$ to = 0.0005 inch; on $W_2 \pm 0.015$ inch; and on $L_2 \pm l_{46}$ inch.

MILLING CUTTERS


American National Standard Stub-, Regular-, and Long-Length, Two-Flute, Medium Helix, Plain- and Ball-End, Double-End Miniature End Mills with ³/₁₆-Inch Diameter Straight Shanks ANSI/ASME B94.19-1997

D	w L	*	¦₽ \$1€		-w L-	*		-
	3/16			D	3/16		Ć	
Dia.,	Plain		Length			Regular		
C and D				Ball End		u End		End
	W	L	W	L	W	L	W	L
1/2	∛64	2			3/2	21/4		,
364	1/16	2			% ₄	214		
1/16	₩2	2	3/2	2	%4 3%6 1%6	2¼	3/16	21/4
5/64	¥	2			1.765	21/4		
3/32	%	2	%	2	%	21/4	%2	21/4
1/44	%	2	l		21/64	21/4		
1/2	y_{16}	2	3/16	2	3%	214	3%	21/4
564 352 764 76 76	¥2	2			14	214		
*	1%	2	15/64	2	74	21/4	746	21/4
5%2 11/64	4	2			14	21/4		
3/16	%.	2	%	2	22 26 26 26 26 26 26	21/4	K	21/4
				Long	Length			
Dia.,				Plai	n Eud			
D		B *	1		W		Ĺ	
1/16		32		34	1		21/2	
		* K K 1	1	23 25 3 3 3	-		2%	
1 1/2		<u>%</u>		3	,		31/2	
1 %		ż		ž	Ż		31/4	
3 <u>2</u> 14 15 16		ĩ			ĭ		3%	

^aB is the length below the shank.

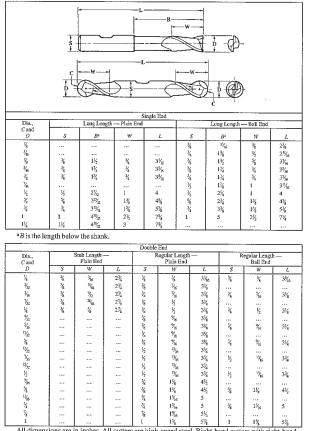
**B* is the length below the shank. All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees. *Tolerances:* On *C* and *D*, ~0.0015 inch for stub and regular length; +0.003 inch for long length (iff the shank is the same diameter as the cutting portion, however, then the tolerance on the cutting diameter is -0.0025 inch.); on *W*, $+\frac{V}{20}$, $-\frac{V}{26}$ inch; and on $L_{\lambda}\pm\frac{V}{26}$ inch.

American National Standard Multiple Flute, Helical Series End Mills with Brown & Sharpe Taper Shanks

 $\frac{1}{\sqrt{2}}$ $\frac{1$

1.1.1

785


American National Standard Stub- and Regular-Length, Two-Flute, Medium Helix, Plain- and Ball-End, Single-End End Mills with Weldon Shanks ANSI/ASME B94.19-1997

	* S 5 + 5 +			W T		-	
	Regular Lengt	1 — Plain End			Stuh Length	-Plain End Length	Leagth
Dia.,				Cutter Dia.,	Shank Dia.,	of Cat.	OveralL
D	5	W	L .	D 1%	<u> </u>	W ¥16	L 21/8
К 3 ₁₆	*i *i	*4 3%	2 ⁵ / ₁₆ 2 ⁵ / ₁₆	% 3/16	7k 2%	™16 %2	2% 2%
716 V4	rn ⊰	716 1 <u>4</u> 1 <u>16</u>	2%	4	×,	X	21/4
14 5% 7%	转换背景处放起转转转转转转转转转转转转	%	25/16 25/16		Regular Lengt	h — Ball End	
36 26 26 26 26 26 26 26 26 26 26 26 26 26	×	13/16	21/2 21/2	Dia.	Shank	Length	Length Overall.
<u>8</u> k	* 12	马 ¹⁶	3	C and D	Dia., S	of Cut. W	Overall.
%	Ŷź.	11%	31/8		-		
*	K K	11/4 15/16	31/8 35/16	%a ⊰h5	* *	4 5	2% 2%
1/16 3/	22 12	1%	35/16	14	34	%	2%
1/10 14 11/16	÷.	1%	31/16			1/	21/2
1/16	1	1% 1%	3½ 3½6	₹16 3%	% %	4 34	2%
*4 •%	78 54	15	3%	746	1 % K	1	3
36	*	11/2	3%	11	10	Ι.	3
1	2/	1½ 1½	3% 3%	1/2 9/16	½ ½	1	3%
1	3	11/2	33/4	-16 %	12	11/6	31%
15	1 %	1%	3%	4		1%	3½
1%	1	瑞	3% 4%	14 14	% ½	1%	3%
1 11/4	1	1%	4%	34	×2 ×4	1%	37%
11/4	1	1%	4½				
1%	1	1%	4½ 4½	% 1	∛á 1	2 2½	4¼ 4¾
1½ 1½	1	1% 1%	4% 4%	11%	1	21/4	43/4
1%	11/2	1%	41/8				
1%	11/4	1%	4%	14	11/4	2½ 2½	5
2	11/4	1%	4%	1½	1¼ el. Right-han		

 \mathbf{P}

MILLING CUTTERS

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees. Tolerances: On C and D, +0.003 inch for single-end mills, -0.0015 inch for double-end mills; on S, -0.0001 to -0.0005 inch; on W, $\pm \frac{1}{30}$ inch; and on L, $\pm \frac{1}{36}$ inch.

American National Standard Regular-, Long-, and Extra Long-Length, Three-and Four-Flute, Medium Helix, Center Cutting, Single-End End Mills with Weldon Shanks <u>ANSI/ASME</u> 894.19-1997

		+ S + S +					- }-		
				Four Pl				Extra Long L	anoth
Dia.,		Regular Ler	ogth T		Long Length		5	LAGA LONG L	L
D	5	W	L		12		·		
場	** ** ** ** ** ** ** * * * * * * * * *	着	2% 2% 2% 2% 2% 2% 3% 3% 3% 3% 4% 4% 4% 4%	··· ··· ··· ··· ··· ··· ··· ···	 1½ 1½ 1½ 2 2½ 3 3½ 4 4 	33/ 31/ 31/ 4 4 51/ 51/ 51/ 51/ 61/ 	**************************************	 1½ 2 2½ 3 4 4 5 6 6	 3%6 3¾ 4¼ 5 6¼ 6¼ 8½ 8½
				Three I	Flute Dia., D		S	W	L
Dia., D	5	ular Length	₩.	L	Dia, D		Regular Lengu		
% 3% 4 36 36 36 36 36	3		* * * * * * * * * * * * * *	2% 2% 2% 2% 2% 2% 2% 2% 2% 2%	1% 1% 1% 1% 1% 1% 1% 2		1 1 1½ 1½ 1½ 1½	2 2 2 2 2 2 2 2 2	41/2 41/2 41/2 41/2 41/2 41/2 41/2 41/2
12	1 %		11/4	3¼			Long Let	igth	
5.5.9%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	福福派藩派福兴送於外外部部部部部部 北部		1 1 1 2 3 1 3 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5	3% 3% 3% 3% 3% 3% 3% 4 4 3% % 4 4 4 % 4 4 4 4			***** *** ** ** ** ** ** * * * * * * *	$ 1\frac{1}{4} 1\frac{1}{6} 1\frac{1}{2} 1\frac{1}{4} 2 2\frac{1}{2} 3 4 4 4 4 4 4 $	314 34 34 34 34 4 4 4 4 4 54 65 54 65 65 65 65 65 65

787

. с. р.

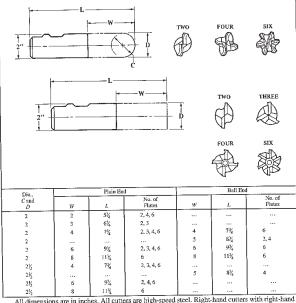
MILLING CUTTERS

American National Standard Stub- and Regular-length, Four-flute, Medium Helix, Double-end End Mills with Weldon Shanks ANSI/ASME B94.19-1997

Dia., D	s	w	L	Dia., D	s	W	L	Dia., D	S	W	L
	Stub Length										
4∕8	*	.⊰/ ₁₆	2¾	⅔6	36	%₂	23/4	1/4	3%	3%	2%
5/2	¥	15/64	2¾	7%₂	⅔	21%	21%			•••	
						Length					
1 <u>/</u> 3 a	3%	*	31/ ₁₆	%₀	*	3/4	31/2	- % ^a	%	1%	5
5%_≊	34	V_{16}	31/8	3/8 m	3%	34	31/2	1/16	3∕4	1%	5%
3/16 °	34	K	31/4	13/22	14	1	4%	34 a	3∕4	1%	5%
×2	3∕8	%	31/4	7/16	1/2	1	41%	13/16	7∕8	17%	6%
1/4 a	34	3%	3%	15/32	1/2	1	41%	%	₹%	$1\frac{7}{8}$	6%
%₂	3%	11/16	33%	1 <u>/</u> 2 *	12	1	41/8	1	1	176	6¾
5∕ ₁₆ ≈	*	34	3½	%	5%	1¾	5		•••		

¹⁰ In this size of regular mill a left-hand cutter with a left-hand helix is also standard. All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees. Tolerances: On D, +0.003 inch (if the shank is the same diameter as the cutting portion, however, then the tolerance on the cutting diameter is -0.0025 inch); on S, -0.0001 to -0.0005 inch; or W, $\pm V_{2}$

inch; and on $L, \pm \frac{1}{16}$ inch.


American National Standard Stub- and Regular-Length, Four-Flute, Medium Helix, Double-End End Mills with Weldon Shanks ANSI/ASME B94.19-1997

	L-	W (w t	L	W D	-	
Dia., D	s	w	L	Dia.,	s	w	L	
	Three	Flute		Four Flute				
1/8	36	*	31/16	4	34	*	31/10	
∛16	3	14	31/4	3/16	*	ķ	31/4	
4	1 34	34	33%	14	*	5∕8	3%	
5×16	36	- 34	3½	³ ℓn	4	34	3½	
36	*	34	3½	¥ 1	*	3/4	3½	
3/16	14	1	41	34	5	1	4%	
1/2	14	1	41%	5%	5%	13%	5	
%	*	13%	5	34	戈	1%	5%	
%	*	13%	5	74	36	1%	6%	
34	34	1%	5%	1	1	1%	6%	
1	1 1	1%	6%	II				

inch.

789

American National Standard Plain- and Ball-End, Heavy Duty, Medium Helix, Single-End End Mills with 2-Inch Diameter Shanks ANSUASME B94.19-1997

Dimensions of American National Standard Weldon Shanks ANSU/ASME B94.19-1997

Shank		Flat		Shank		Flat	
Dia.	Length	Xa	Length ^b	Dia.	Length	Xu	Length
*	1%	0.325	0,280	J	2%	0.925	0.515
<u>k</u>	125/2	0.440	0.330	1%	$2\%_{22}$	1.156	0.515
×2 %	121/32	0.560	0,400	1½	211/16	1.406	0.515
2. 2.	21/2	0.675	0.455	2	31/4	1.900	0.700
22	21/20	0.810	0.455	21/2	31/2	2.400	0.700

All dimensions are in inches. Centerline of flat is at half-length of shank except for $1\frac{1}{2}$, 2- and $2\frac{1}{2}$ -inch shanks where it is $1\frac{3}{46}$, 1^{27} ₂₂ and 1^{15} ₃₆ from shank end, respectively. Tolerance on shank diameter, -0.0001 to -0.0005 inch.

and the second second

MILLING CUTTERS

Amerian National Standard Form Relieved, Concave, Convex, and Corner-Rounding Arbor-Type Cutters ANSI/ASME B94.19-1997

W W	-H	C			w w ±	D	R L
D	Concave	lius R	Cor	Width		orner-roundi	
Num.	Мак.	Min.	Dia. D ^u	₩ ±.010 ^b	Nom.	Мах.	Min.
			Conca	vo Cutters ^e			
*	0.1270	0.1240	21/4	1/4	L	1.00075	1.00000
∛16	0.1895	0.1865	21/4	*	1	1.00075	1.00000
1/4	0.2520	0.2490	21/2	7∥6	1	1.00075	1.00000
%₁6	0.3145	0.3115	21/4	% _K	1	1.00075	1.00000
*	0.3770	0.3740	23/4	¥	1	1.00075	1.00000
36	0.4395	0.4365	3	₹4	1	1.00075	1.00000
<u>k</u>	0.5040	0.4980	3	¹³ /16	1	1.00075	1.00000
*	0.6290	0.6230	3½)	1%	1.251	1.250
34	0.7540	0.7480	3¾	13/16	11/4	1.251	1.250
%	0.8790	0.8730	4	1¾	1%	1.251	1.250
1	1.0040	0.9980	41/4	1% ₁₆	11/4	1.251	1.250
				α Cutters ^e			
₩8	0.1270	0.1230	21/4	8	F	1.00075	1.00000
∛16	0.1895	0.1855	21/4	∛16	I	1.00075	1.00000
1/4	0.2520	0.2480	21/2	54	I	1.00075	1.00000
*/16	0.3145	0.3105	23/4	∛16	Ι	1.00075	1.00000
*	0.3770	0.3730	2¾	집	1	1.00075	1.00000
⅔6	0.4395	0.4355	3	7 ₁₆	1	1.00075	1.00000
1/2	0.5020	0.4980	3	4	1	1.00075	1.00000
%	0.6270	0.6230	3½	*	1½	1.251	1.250
34	0.7520	0.7480	37/4	₹4	1½	1.251	1.250
76	0.8770	0.8730	4	×,	1½	1.251	J.250
1	1.0020	0.9980	41/4	1	1½	1.251	1.250
				inding Cutters ^d			
*	0.1260	0.1240	2½	4	1	1.00075	1.00000
4	0.2520	0.2490	3	1/2	1	1.00075	1.00000
3∕8	0.3770	0.3740	3¾	%6	11/4	1.251	1.250
1/2	0.5020	0.4990	41/4	*4	11/4	1.251	1.250
×.	0.6270	0.6240	41/4	15/16	11/4	1.251	1.250

 $\frac{\pi}{3}$ 0.6270
 0.6240
 $4\frac{\pi}{4}$ $\frac{\pi}{26}$ $1\frac{\pi}{4}$ 1.251
 1.250

 a"Tolerances on cutter diameter are $+\frac{\pi}{46}$, $-\frac{\pi}{46}$ inch for all sizes.
 b"Tolerance does not apply to convex cutters.
 5

 Size of cutter is designated by specifying diameter C of circular form.
 4 Size of cutter is designated by specifying radius R of circular form.
 4

 4 Size of cutter is designated by specifying radius R of circular form.
 4
 3

 4 Size of cutter is designated by specifying radius R of circular form.
 4
 3

 4 Size of cutter is designated by specifying radius R of circular form.
 4
 3

 4 Size of cutter is designated by specifying radius R of circular form.
 4
 3

 4 Size of cutter is designated by specifying radius R of circular form.
 4
 3

 4 Size of cutter is designated by specifying radius R of circular form.
 4
 3
 3

 4 Size of cutter is designated by specifying radius R of circular form.
 4
 3
 4
 3
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4<

791

American National Standard Roughing and Finishing Gear Milling Cutters for Gears with 14½-Degree Pressure Angles ANSI/ASME B94.19-1997

	ROUG					INISHING		2			
Diametral Pitch	Dia. of Cutter, D	Dia, of Hole, 11	Diametral Pitch	Dia. of Cutter, D	Dia. of Hole, H	Diametral Pitch	Dia. of Cutter, D	Dia, of Hole, H			
rnon				g Gear Milling							
1	8%	2	3	51/4	11/2	5	3%	1			
11/4	73/2	2	3	4¾	11/4	6	3%	1½			
115	7	1%	4	41/4	134	6	3½	11/4			
134	6½	1½	4	4½	1½	6	3%	1			
2	6½	1%	4	41/4	14	7	3%	11/4			
2	5%	1½	4	3%	1	7	21%	1			
21/2	61/8	11/4	5	4%	134	8	31/4	14			
21/2	5¾	1½	5	4¼	1½	8	2%	1			
3	5%	124	5	3¾	1%						
				g Gear Milling			2%	74			
1	81/2	2	6	3%	1½	14 16	2%	1			
14	7%	2	6	3½	1½ 1	16	21/2	1 7g			
1½	7	1%	6 7	3¼ 3%	1	18	23	18			
1%	6½	14			11/2	18	2	1/6			
2	6½	13/4	7 7	3½ 2½	1%	20	23%	1 1			
2	5¾	1½ 1¾	8	2% 31/3	135	20	2	1/2			
21/2	6% *`		8	3%	1%	20	21/4	1			
21/2	5% 5%	1½	8	2%	14	22	2	76			
3	51/4	1%	9	31/2	11/4	24	21/4	1			
3	41/4	11/2	9	23/4	1	24	134	₹,			
4	474 43/4	134	10	3	14	26	13%	×			
4	4%	1%	10	23%	1	28	1%	1/4			
4	4%	1%	10	23	_%	30	11/4	3			
4	3%	1 1		2%	L T	32	1%	7			
5	4%	11/4	11	23%	34	36	1%	3			
5	41/2	1½	12	2%	11/4	40	1浅	3			
5	3%	1%	12	25%	1	48	13/4	74			
5	3%	1	12	21/4	14						
6	41/4	1¾	I4	21/2	1						

American National Standard Gear Milling Cutters for Mitre and Bevel Gears with 14½-Degree Pressure Angles ANSUASME B94.19-1997

Diametral Pitch	Diameter of Cutter, D	Diameter of Hole, H	Diametral Pitch	Diameter of Cutter, D	Diameter of Hole, H
3	4	11/4	10	2%	14
4	3%	11/4	12	21/4	36
5	31/2	11/4	14	21%	34
6	31/8	1	16	21%	2
7	2%	I	20	2	¥
8	2%	I	24	1%	%

All dimensions are in inches.

792

All cutters are high-speed steel and are form relieved. For keyway dimensions see page 794. For cutter selection see page 2060. *Tolerances:* On outside diameter, $+Y_{16}$, $-Y_{16}$ inch; on hole diameter, through 1-inch hole diameter, $\div 0.00075$ inch, for $1\frac{1}{4}$ -inch hole diameter, ± 0.0010 inch.

To select the cutter number for bevel gears with the axis at any angle, double the back cone radius and multiply the result by the diametral pitch. This procedure gives the number of equivalent spur gear teeth and is the basis for selecting the cutter number from the table on page 2023.

American National Standard Roller Chain Sprocket Milling Cutters ANSI/ASME B94.19-1997

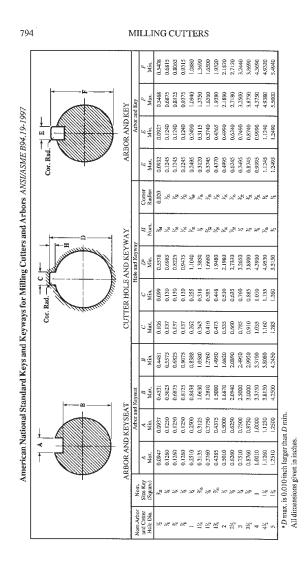
Chain	Dia. of	No. of Teeth in	Dia. of Cutter,	Width of Cutter,	Dia. of Hole,							
Pitch	Roll	Sprocket	D	W	М							
14	0.130	6	23	5/16	1							
14	0.130	7-8	23/4	×16	1							
14	0.130	9-11	2%	×16	1							
14	0.130	12-17	2%	×16	1							
1/4	0.130	18-34	234	¥ <u>32</u>	1							
V4	0.130	35 and over	23/4	%2	1							
×	0.200	6	234	15/32	1							
₩.	0.200	78	23/4	15/12	1							
*	0.200	9-11	2½	152	1							
*	0.200	12-17	21/4	- V16	1							
*	0.200	18-34	2¾	746	1							
*	0.200	35 and over	23/4	13/32	1							
12	0.313	6	3	- 14	1							
12	0.313	7-8	3	14	1							
	0.313	9–11	3%	24 24 24 24 24	1							
12	0.313	12-17	31%	- 24	1							
K	0.313	18-34	3%	23y ₃₂	1							
K	0.313	35 and over	31%	14/16	1							
×	0.400	6	3%	¥.	1							
*	0.400	78	31%	14	1							
%	0.400	9–11	31/4	24 74 74 74	1							
∛κ	0.400	12-17	31/4	4	1							

75

1.2

÷. р

793


American National Standard Roller Chain Sprocket Milling Cutters ANSI/ASME B94.19-1997

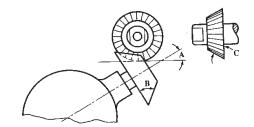
	, *********	g Cutters ANSI	///////////////////////////////////////	-1777	
Chordal	Dia. of	No. of Teeth in	Dia. of Cuttor,	Width of Cutter,	Dia.of Hole,
Pitch	Roll	Sprocket.	Ď	Ð	Н
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	0.400	18-34	3¼	23/12	L
×	0.400	35 and over	31/4	11/16 29/11	1
34	0.469	6	31/4	21/32	1
14	0.469	78	31/2	3%1 3%1 3%1	1
34	0.469	9-11	3%	3%	1
Y.	0.469	12-17	3%	%	1
2	0.469	18-34	31/	1/6 11/32	1
34	0.469	35 and over	3%	ц <u>х</u>	1
1 4	0.625	6	3%	142 142	14
1	0.625	7-8	4	11/2	14
1	0.625	9-11	4%	1½ 1½	14 14
1	0.625	18-34	41/4	11%	14
1	0.625	35 and over	41/4	11%	14
			4%		1%
1%	0.750	6	4%	11½6 11½6	174
11/4	0.750	7-8	43% 4½		11/4
1%	0.750	9-11	4%	11%	154
1%	0.750	18-34	43%	111/16	1%
14	0.750	35 and over	43/8	1%	1%
1½	0.875	6	4¾ 4½	113/16	1½ 1½
11/2	0.875	7-8	41/2	13%	14
11/2	0.875	9-11	4%	121/2	14
11/2	0.875	12-17	4%	1¾	11/4
11/2	0.875	18-34	434	11/16	11/4
115	0.875	35 and over	4%	1%	1¼ 1%
11/4	1.000	6	5	23/20	1½ 1½
13/4	1.000	78	51%	2.3 ₂₂	112
1¾ 1¾	1.000	9-11	51/4	21/16	1½
13/2	1.000	12-17	5%	21/32	15
13/4	1.000	18-34	51%	134/32	15 15 15 15 15 15 15
11/2	1.000	35 and over	5%	1%	1½
2	1.125	6	5%	213/32	1%
2	1.125	7-8	51/2	21%	1%
2	1.125	9-11	5%	2%	1½ 1½
2	1.125	12-17	5%	25%	11%
2	1.125	18-34	51/	21/4	1½
2	1.125	35 and over	5%	2%2	1½
21/4	1.125	6	574	2%	11/2
21/4	1.406	7-8	5	- /16 2 ¹¹ /-	1½ 1½ 1½
2% 2½	1.406	9-11	61/4	2/16	1/2
2%	1.406	12-17	6%	2 ^{1/16} 2 ¹¹ / ₁₆ 2 ²¹ / ₃₂ 2 ¹⁹ / ₃₂	1/2
274	1.406	12-17 18-34	6½	25%	1½ 1½
214 214 214 214 214 214 214 214 214 214	1.406		6%	24%	172
274		35 and over 6	6%	3	1½ 1½ 1¾
4% al.	1.563		6%	3	1%
2%	1.563	7-8			1%
2%	1.563	9-11	634	215/16	1%
2%	1.563	12-17	6¾	2 ^{2%} <u>n</u>	1%
2%	1.563	1834	7	2¾ 21%	134
21/2	1.563	35 and over	71/2	21%	1½
3	1.875	6	7½	31%2	2 2
3	1.875	7-8	71/4	31%	2
3	1.875	9-11	7%	311/2	2
3	1.875	12-17	8	315/32	2
3 3	1.875	18-34	8	311/32	2
	1.875	35 and over	81/4	37/32	2

All dimensions are in inches.

All duriters are high-speed steel and are form relieved. For keyway dimensions see page 794. *Tolerances:* Outside diameter, $+V_{16}$, $-V_{26}$ inch; hole diameter, through 1-inch diameter, + 0.00075 inch, above 1-inch diameter and through 2-inch diameter, + 0.0010 inch. For tooth form, see ANSI sprocket tooth form table on page 2438.

· 1

795


American National Standard Woodruff Keyseat Cutters—Shank-Type Straight-Teeth and Arbor-Type Staggered-Teeth ANSI/ASME B94.19-1997

					Shank-type							
Cutter Number	Nom. Dia.of Cutter, D	Width of Face, W	Length Over- all, L	Cutter Number	Nom. Dia. of Cutter, D	Width of Face, W	Length Over- all, L	Cutter Number	Nom. Dia.of Cutter, D	Width of Face, W	Length Over- all, L	
202	1/4	46	21/16	506	3/4	5⁄32	2%	809	1%	1/4	2 1/4	
202 1/2	5/16	1/16	21/16	606	34	3/16	23/15	1009	1 1%	5%	2 %	
302 1/2	5/16	3/2	23/32	806	34	1/4	21/4	610	11/2	3%	23/16	
203	3%	1/16	21/16	507	4	1/20	25%	710	11/4	1/2	2%	
303	3%	3/2	23/2	607	¥,	3/16	23/16	810	1%	14	21/4	
403	34	1/4	21%	707	¥,	Vie I	23/2	1010	1¼	5/16	23/16	
204	×	46	21/16	807	74	1/4	21/4	1210	11/4	36	23%	
304	*	3	2%	608	1	3√6	23/16	811	1%	14	21/4	
404	보노율	1%	21/6	708	1	7/2	2%	1011	1%	5/16	25/16	
305	×.	*	2%	808	1	1/4	21/4	1211	1%	3%	23%	
405	*	¥.	21/2	1008	1	%	25/16	812	152	4	21/4	
505	5%	₩.	2%	1208	1	¥8	23%	1012	1½	%6	2%	
605	<i>%</i>	3/16	23/16	609	11%	⅔6	23%	1212	1½	∛{	23%	
406	₹4	16	21/3	709	11%	3/2	23/32					
					Arbor-type	Cutters						
	Nom.	Width		1	Nom.	Width			Nom.	Width		
	Dia.of	of	Dia. of	0	Dia.of	of	Dia. of Hole,	Cutter	Dia.of	of Face.	Dia. of	
Cutter Number	Cutter, D	Face, W	Hole, H	Cutter Number	Cutter, D	Face, W	Hole, H	Number	Cutter, D	Face,	Hole, H	
617	21%	3/16	3/4	1022	23/4	5% 5%	1	1628	31/2	1/2	1	
817	21%	16	34	1222	23/4	3	1	1828	3%	×16	i	
1017	21%	3%	34	1422	23/4	745	i	2028	314	5%	î	
1217	21%	34	34	1622	23/4	1/2	1	2428	31/2	34	1	
822	23/4	1 k	1	1228	3%	3%	1					
Alld		is are giv	zen in in	ches. All	cutters ar	e high-s	peed ste	el.			· · · ·	

An unnersions are given in menes. An enters are ingrespeed steel. Shank type cutters are standard with right-hand cut and straight teeth. All sizes have ½-inch diam-

Shank type cutters are standard with right-hand cut and straight teeth. All sizes have $\frac{1}{2}$ -inch diameter straight shank. Arbor type cutters have staggered teeth. For Woodruff key and key-slot dimensions, see pages 2348 through 2350. *Tolerances:* Face with *W* for shank type cutters: $\frac{1}{2}_{0}$ - to $\frac{1}{2}_{0}$ - inch face, + 0.0000, -0.0005; $\frac{1}{2}_{0}$ to $\frac{1}{2}_{0}$. - 0.0002, - 0.0007; $\frac{1}{2}_{0}$, -0.0008; $\frac{4}{2}_{0}$, 0.0008; $\frac{1}{2}_{0}$, -0.0009; $\frac{1}{2}_{0}$, -0.0005; $\frac{1}{2}_{0}$, 0.0004, -0.0009; $\frac{1}{2}_{0}$, -0.0005; $\frac{1}{2}_{0}$, -0.0005, -0.0010 inch. Face width *W* for arbor type cutters; $\frac{1}{2}_{0}$ inch face, -0.0002, -0.0007; $\frac{1}{2}_{0}$, -0.0003, -0.0008; $\frac{1}{2}_{0}$, -0.0004, -0.0009; $\frac{1}{2}_{0}$, -0.0005, -0.0010 inch. Face through 1 $\frac{1}{2}_{0}$, +0.012, +0.017; 1 $\frac{1}{2}_{0}$ through 1 $\frac{1}{2}_{0}$, +0.012, +0.017; 1 $\frac{1}{2}_{0}$ through 1 $\frac{1}{2}_{0}$, +0.015, +0.020 inch. These tolerances include an allowance for sharpening. For arbor three cutters diameter *D* is furnished *W*, inch lareer than listed and a colerance of 20.002 inch applies type cutters diameter D is furnished $\frac{1}{32}$ inch larger than listed and a tolerance of ±0.002 inch applies to the oversize diameter.

Setting Angles for Milling Straight Teeth of Uniform Land Width in End Mills, Angular Cutters, and Taper Reamers.—The accompanying tables give setting angles for the dividing head when straight teeth, having a land of uniform width throughout their length, are to be milled using single-angle fluting cutters. These setting angles depend upon three factors: the number of teeth to be cut; the angle of the blank in which the teeth are to be cut; and the angle of the fluting cutter. Setting angles for various combinations of these three factors are given in the tables. For example, assume that 12 teeth are to be cut on the end of an end mill using a 60-degree cutter. By following the horizontal line from 12 teeth, read in the column under 60 degrees that the dividing head should be set to an angle of 70 degrees and 32 minutes.

The following formulas, which were used to compile these tables, may be used to calculate the setting-angles for combinations of number of teeth, blank angle, and cutter angle not covered by the tables. In these formulas, A = setting-angle for dividing head, B = angle of blank in which teeth are to be cut, C = angle of fluing cutter, N = number of teeth to be cut, and D and E are angles not shown on the accompanying diagram and which are used only to simplify calculations.

$$\tan D = \cos(360^{\circ}/N) \times \cot B \tag{1}$$

$$\sin E = \tan(360^\circ/N) \times \cot C \times \sin D \tag{2}$$

Setting-angle
$$A = D - E$$
 (3)

(4)

Example: Suppose 9 teeth are to be cut in a 35-degree blank using a 55-degree single-angle fluting cutter. Then, N = 9, $B = 35^\circ$, and $C = 55^\circ$.

 $\tan D = \cos(360^{\circ}/9) \times \cot 35^{\circ} = 0.76604 \times 1.4281 = 1.0940$; and $D = 47^{\circ}34'$ $\sin E = \tan(360^{\circ}/9) \times \cot 55^{\circ} \times \sin 47^{\circ}34' = 0.83910 \times 0.70021 \times 0.73806$

$$= 0.43365$$
; and $E = 25°42'$

Setting angle
$$A = 47^{\circ}34' - 25^{\circ}42' = 21^{\circ}52'$$

For end mills and side mills the angle of the blank B is 0 degrees and the following simplified formula may be used to find the setting angle A

$$\cos A = \tan(360^{\circ}/N) \times \cot C$$

Example: If in the previous example the blank angle was 0 degrees,

 $\cos A = \tan (360^\circ/9) \times \cot 55^\circ$

н. ро

= $0.83910 \times 0.70021 = 0.58755$; and setting-angle $A = 54^{\circ}1'$

Angles of Elevation for Milling Straight Teeth in 0-, 5-, 10-, 15-, 20-, 25-, 30-, and 35-degree Blanks Using Single-Angle Fluting Cutters

No. of					Angle of F	luting	; Cutte	r		_	
Teeth	90°	80°	70°	60°	50°	9	90°	80°	70°	60°	.50°
	0° Blank (End Mill)					5° Blank					
6		72° 13'	50° 55'		111	80°	4'	62° 34'	41° 41'		
8		79 51	68 39	54° 44'	32° 57'	82	57	72 52	61 47	48° 0'	25° 40'
10		82 38	74 40	65 12	52 26	83	50	76 31	68 35	59 11	46 4
12		84 9	77 52	70 32	61 2	84	14	78 25	72 10	64 52	55 5
14		85 8	79 54	73 51	66 10	84	27	79 36	74 24	68 23	60 28
16		85 49	81 20	76 10	69 40	84	35	80 25	75 57	70 49	64 7
18		86 19	82 23	77 52	72 13	84	41	81 1	77 6	72 36	66 47
20		86 43	83 13	79 11	74 11	84	45	81 29	77 59	73 59	68 50
22		87 2	83 52	80 14	75 44	84	47	81 50	78 40	75 4	70 26
24		87 18	84 24	81 6	77 0	84	49	82 7	79 15	75 57	71 44
			10° Blank						15° Blank		
6	70° 34'	53° 50'	34° 5'			61°	49'	46° 12'	28° 4′		
8	76 0	66 9	55 19	41° 56′	20° 39'	69	15	59 46	49 21	36° 34'	17° 34'
10	77 42	70 31	62 44	53 30	40 42	71	40	64 41	57 8	48 12	36 18
12	78 30	72 46	66 37	59 26	49 50	72	48	67 13	61 13	54 14	45 13
14	78 56	74 9	69 2	63 6	55 19	73	26	68 46	63 46	57 59	50 38
16	79 12	75 5	70 41	65 37	59 1	73	50	69 49	65 30	60 33	54 20
18	79 22	75 45	71 53	67 27	61 43	74	5	70 33	66 46	62 26	57 0
20	79 30	76 16	72 44	68 .52	63 47	74	16	71 6	67 44	63 52	59 3
22	79 35	76 40	73 33	69 59	65 25	74	24	71 32	68 29	65 0	60 40
24	79 39	76 59	74 9	70 54	66 44	74	30	71 53	69 6	65 56	61 59
			20° Blank						25° Blank		
6	53° 57'	39° 39′	23° 18'			47°	0′	34° 6'	19° 33'		
8	62 46	53 45	43 53	31° 53′	14° 31'	56	36	48 8	38 55	27° 47'	11° 33'
10	65 47	59 4	51 50	43 18	32 1	60	2	53 40	46 47	38 43	27 47
12	67 12	61 49	56 2	49 18	40 40	61	42	56 33	51 2	44 38	36 10
14	68 0	63 29	58 39	53 4	46 0	62	38	58 19	53 41	48 20	41 22
16	68 30	64 36	60 26	55 39	49 38	63	13	59 29	55 29	50 53	44 57
18	68 50	65 24	61 44	57 32	52 17	63	37	60 19	56 48	52 46	47 34
20	69 3 69 14	65 59	62 43	58 58	54 18	63	53	60 56	57 47	54 11	49 33
22 24	69 14 69 21	65 28 66 49	63 30 64 7	60 7 61 2	55 55 57 12	64 64	5 14	61 25	58 34	55 19	51 9
24	09 21	00 49	30° Blank	01 2	37 12	64	14	61 47	59 12 35° Blank	56 13	52 26
6	40° 54'	29° 22'	16° 32'			340	32'	25° 19'	14° 3′	1	
8	50 46	42 55	34 24	24° 12'	10° 14'	45	17	38 5	30 18	21° 4'	8° 41'
10	54 29	48 30	42 3	34 31	24 44	49	7	43 33	37 35	30 38	21 40
12	56 18	51 26	46 14	40 12	32 32	51	3	46 30	41 39	36 2	28 55
14	57 21	53 15	48 52	43 49	37 27	52	9	48 19	44 12	39 28	33 33
16	58 0	54 27	50 39	45 19	40 52	52	50	49 20	45 56	41 51	36 45
18	58 26	55 18	51 57	48 7	43 20	53	18	50 21	47 12	43 36	39 8
20	58 44	55 55	52 56	49 30	45 15	53	38	50 59	48 10	44 57	40 57
22	58 57	56 24	53 42	50 36	46 46	53	53	51 29	48 56	46 1	42 24
24	59 8	56 48	54 20	51 30	48 0	54	4	51 53	49 32	46 52	43 35

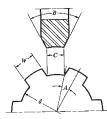
Angles of Elevation for Milling Straight Teeth in 40-, 45-, 50-, 55-, 60-, 65-, 70-, and 75-degree Blanks Using Single-Angle Fluting Cutters

No. of					Angle of F	luting Cutter	r.			
Teeth	90°	80°	70°	60°	50°	90°	80°	70°	60°	50°
	40° Blank					45° Blank				
6	30° 48'	21° 48′	11° 58′			26° 34'	18° 43'	10° 11'		
8	40 7	33 36	26.33	18° 16'	7° 23′	35 16	29 25	23 8	15° 48'	5° 58'
10	43 57	38 51	33 32	27 3	18 55	38 58	34 21	29 24	23 40	16 10
12	45 54	41 43	37 14	32 3	25 33	40 54	37 5	33 0	28 18	22 13
14	47 3	43 29	39 41	35 19	29 51	42 1	38 46	35 17	31 18	26 9
16	47 45	44 39	41 21	37 33	32 50	42 44	39 54	36 52	33 24	28 57
18	48 14	45 29	42 34	39 13	35 5	43 13	40 42	38 1	34 56	30 1
20	48 35	46 7	43 30	40 30	36 47	43 34	41 18	38 53	36 8	32 37
22	48 50	46 36	44 13	41 30	38 8	43 49	41 46	39 34	37 5	34 53
24	49 1	46 58	44 48	42 19	39 15	44 0	42 7	40 7	37 50	35 55
			50° Blank					55° Blank		
6	22° 45'	15° 58'	8° 38'		•	19° 17′	13° 30'	7° 15'		
8	30 41	25 31	19 59	13° 33'	5° 20'	26 21	21 52	17 3	11° 30'	4° 17'
10	34 10	30 2	25 39	20 32	I4 9	29 32	25 55	22 3	17 36	11 52
12	36 0	32 34	28 53	24 42	19 27	31 14	28 12	24 59	21 17	16 32
14	37 5	34 9	31 1	27 26	22 58	32 15	29 39	26 53	23 43	19 40
16	37 47	35 13	32 29	29 22	25 30	32 54	30 38	28 12	25 26	21 54
18	38 15	35 58	33 33	30 46	27 21	33 21	31 20	29 10	26 43	23 35
20	38 35	36 32	34 21	31 52	28 47	33 40	31 51	29 54	27 42	24 53
22	38 50	36 58	34 59	32 44	29 57	33 54	32 15	30 29	28 28	25 55
24	39 1	37 19	35 30	33 25	30 52	34 5	32 34	30 57	29 7	26 46
			60° Blank					65° Blank		
6	16° 6'	11° 12'	6° 2'			13° 7'	9° 8′	4° 53'		
8	22 13	18 24	14 19	9° 37'	3° 44′	18 15	15 6	11 42	7° 50'	3° 1'
10	25 2	21 56	18 37	14 49	10 5	20 40	18 4	15 19	12 9	8 15
12	26 34	23 57	21 10	17 59	14 13	21 59	19 48	17 28	14 49	11 32
14	27 29	25 14	22 51	20 6	16 44	22 48	20 55	18 54	16 37	13 48
16	28 5	26 7	24 1	21 37	18 40	23 18	21 39	19 53	17 53	15 24
18	28 29	26 44	24 52	22 44	20 6	23 40	22 11	20 37	18 50	16 37
20	28 46	27 11	25 30	23 35	21 14	23 55	22 35	21 10	19 33	17 34
22 24	29 0 29 9	27 34 27 50	26 2 26 26	24 17 24 50	22 8 22 52	24 6 24 15	22 53 23 8	21 36	20 8	18 20 18 57
24	29 9	27 50	70° Blank	1	22 52	24 15	20 8	75° Blank		18 51
6	10° 18'	7° 9′	3° 48'	T	T	7° 38'	5° 19'	2º 50'	T	1
8	14 26	11 55	9 14	6° 9'	2º 21'	10 44	8 51	6 51	4° 34'	1° 45'
10	16 25	14 21	12 8	9 37	6 30	12 14	10 40	9 1	7 8	4 49
12	17 30	15 45	13 53	11 45	9 8	13 4	11 45	10 21	8 45	6 47
14	18 9	16 38	15 1	13 11	10 55	13 34	12 26	11 13	9 50	8 7
16	18 35	17 15	15 50	14 13	12 13	13 54	12 54	11 50	10 37	97
18	18 53	17 42	16 26	14 59	13 13	14 8	13 14	12 17	11 12	9 51
20	19 6	18 1	16 53	15 35	13 59	14 18	13 29	12 38	11 39	10 27
22	19 15	18 16	17 15	16 3	14 35	14 25	13 41	12 53	12 0	10 54
24	19 22	18 29	17 33	16 25	15 5	14 31	13 50	13 7	12 18	11 18

798

and the second second

799


Angles of Elevation for Milling Straight Teeth in 80- and 85-degree Blanks UsingSingle-Angle Fluting Cutters

No.of		Angle of Fluting Cutter								
Teeth	90°	80°	70°	60°	50°	90°	80°	70°	60°	50°
			80° Blank	:		T		85° Blank		
6	5° 2'	3° 30'	1° 52'		T	2° 30′	1° 44′	0° 55'	Ţ	
8	7 6	5 51	4 31	3° 2'	1° 8'	3 32	2 55	2 15	1° 29'	0° 34'
10	8 7	7 5	5 59	4 44	3 11	4 3	3 32	2 59	2 21	1 35
12	8 41	7 48	6 52	5 48	4 29	4 20	3 53	3 25	2 53	2 15
14	9 2	8 16	7 28	6 32	5 24	4 30	4 7	3 43	3 15	2 42
16	9 15	8 35	7 51	7 3	6 3	4 37	4 17	3 56	3 30	3 1
18	9 24	8 48	8 10	7 26	6 33	4 42	4 24	4 5	3 43	3 16
20	9 31	8 58	8 24	7 44	6 56	4 46	4 29	4 12	3 52	3 28
20	9 36	9 6	8 35	7 59	7 15	4 48	4 33	4 18	3 59	3 37
24	9 40	19 13	8 43	8 11	7 30	4 50	4 36	4 22	4 5	3 45

24 [9 40 **[9** 13 **[8** 43 **[8** 11 **[7** 30 **[4** 50 **[4** 50 **[4** 22 **[4** 5 **]** 5 45 **] Spline-Shaft Milling Cutter.**—The most efficient method of forming splines on shafts is by hobbing, but special milling cutters may also be used. Since the cutter forms the space between adjacent splines, it must be made to suit the number of splines and the root diameter of the shaft. The cutter angle *B* equals 360 degrees divided by the number of splines. The following formulas are for determining the chordal width C at the root of the splines or the chordal width across the concave edge of the cutter. In these formulas, A = angle between center line of spline and a radial line passing through the intersection of the root circle and one side of the spline; W = width of spline; d = root diameter of splines.

$$\sin A = \frac{W}{d}$$
 $C = d \times \sin\left(\frac{180}{N} - A\right)$

Splines of involute form are often used in preference to the straight-sided type. Dimensions of the American Standard involute splines and hobs are given in the section on splines.

Cutter Grinding

Wheels for Sharpening Milling Cutters.—Milling cutters may be sharpened either by using the periphery of a disk wheel or the face of a cup wheel. The latter grinds the lands of the teeth flat, whereas the periphery of a disk wheel leaves the teeth slightly concave back of the cutting edges. The concavity produced by disk wheels reduces the effective clearance angle on the teeth, the effect being more pronounced for wheels of small diameter than for wheels of large diameter. For this reason, large diameter wheels are preferred

when sharpening milling cutters with disk type wheels. Irrespective of what type of wheel when sharpening milling cutters with disk type wheels. Irrespective of what type of wheel is used to sharpen a milling cutter, any burrs resulting from grinding should be carefully removed by a hand stoning operation. Stoning also helps to reduce the roughness of grind-ing marks and improves the quality of the finish produced on the surface being machined. Unless done very carefully, hand stoning may dull the cutting edge. Stoning may be avoided and a sharper cutting edge produced if the wheel rotates toward the cutting edge, which requires that the operator maintain contact between the tool and the rest while the wheel rotation is trying to move the tool away from the rest. Though slightly more difficult, this motion will a lowing the theol. this method will eliminate the burr.

Cutter		Gri	nding Wheel		
Material	Operation	Abrasive Material	Grain Size	Grade	Bond
Carbon	Roughing	Aluminum Oxide	46-60	K	Vitrified
Tool Steel	Finishing	Aluminum Oxide	100	Н	Vitrified
High-speed Steel:					
18-4-1 (Roughing	Aluminum Oxide	60	K,H	Vitrified
10-4-1 [Finishing	Aluminum Oxide	100	н	Vitrified
18-4-2	Roughing	Aluminum Oxide	80	F,G,H	Vitrified
10-4-2 1	Finishing	Aluminum Oxíde	100	Н	Vitrified
Cast Non-Ferrous	Roughing	Aluminum Oxide	46	H,K,L,N	Vitrified
Tool Material	Finishing	Aluminum Oxide	100-120	H	Vitrified
	Roughing				
Sintered	after	Silicon Carbide	60	G	Vitrified
Carbide	Brazing				
Caroluc	Roughing	Diamond	100	a	Resinoid
	Finishing	Diamond	Up to 500	a	Resinoid
Carbon Tool Steel	Roughing	Cubic Boron Nitride	80-100	R,P	Resinoid
and High-Speed Steel ^b	Finishing	Cubic Boron Nitride	100-120	S,T	Resinoid

Specifications of Grinding Wheels for Sharpening Milling Cutters

^aNot indicated in diamond wheel markings. ^bFor hardnesses above Rockwell C 56.

Wheel Speeds and Feeds for Sharpening Milling Cutters .- Relatively low cutting Wheel Speeds and Feeds for Sharpening Milling Cutters.—Relatively low cutting speeds should be used when sharpening milling cutters to avoid tempering and heat checking. Dry grinding is recommended in all cases except when diamond wheels are employed. The surface speed of grinding wheels should be in the range of 4500 to 6500 feet per minute for grinding milling cutters of high-speed steel or cast non-ferrous tool material. For sintered carbide cutters, 5000 to 5500 feet per minute should be used.

The maximum stock removed per pass of the grinding wheel should not exceed about 0.0004 inch for sintered carbide cutters; 0.003 inch for large high-speed steel and cast non-ferrous tool material cutters; and 0.0015 inch for narrow saws and slotting cutters of high-speed steel or cast non-ferrous tool material. The stock removed per pass of the wheel may be increased for backing-off operations such as the grinding of secondary clearance behind the teeth since there is usually a sufficient body of metal to carry off the heat.

the teeth since there is usually a sufficient body of metal to carry off the heat. **Clearance Angles for Milling Cutter Teeth.**—The clearance angle provided on the cut-ting edges of milling cutters has an important bearing on cutter performance, cutting effi-ciency, and cutter life between sharpenings. It is desirable in all cases to use a clearance angle as small as possible so as to leave more metal back of the cutting edges for better heat dissipation and to provide maximum support. Excessive clearance angles not only weaken the cutting edges, but also increase the likelihood of "chatter" which will result in poor fin-ish on the machined surface and reduce the life of the cutter. According to The Cincinnali Milling Mechine Co. milling cutters used for careered purposes work and having diameters Milling Machine Co., milling cutters used for general purpose work and having diameters

from $\frac{1}{6}$ to 3 inches should have clearance angles from 13 to 5 degrees, respectively, decreasing proportionately as the diameter increases. General purpose cutters over 3 inches in diameter should be provided with a clearance angle of 4 to 5 degrees. The land width is usually $\frac{1}{6}$, $\frac{1}{20}$, and $\frac{1}{16}$ inch, respectively, for small, medium, and large cutters.

The primary clearance or relief angle for best results varies according to the material being milled about as follows: low carbon, high carbon, and alloy steels, 3 to 5 degrees; cast iron and medium and hard bronze, 4 to 7 degrees; brass, soft bronze, aluminum, magnesium, plastics, etc., 10 to 12 degrees. When milling cutters are resharpened, it is customary to grind a secondary clearance angle of 3 to 5 degrees behind the primary clearance angle to reduce the land width to its original value and thus avoid interference with the surface to be milled. A general formula for plain milling cutters, face mills, and form relieved cutters which gives the clearance angle C, in degrees, necessitated by the feed per revolution F, in inches, the width of land L, in inches, the depth of cut d, in inches, the cutter diameter D, in inches, and the Brinell hardness number B of the work being cut is:

$$C = \frac{45860}{DB} \left(1.5L + \frac{F}{\pi D} \sqrt{d(D-d)} \right)$$

Rake Angles for Milling Cutters.—In peripheral milling cutters, the rake angle is generally defined as the angle in degrees that the tooth face deviates from a radial line to the cutting edge. In face milling cutters, the teeth are inclined with respect to both the radial and axial lines. These angles are called *radial* and *axial* rake, respectively. The radial and axial rake angles may be positive, zero, or negative.

Positive rake angles should be used whenever possible for all types of high-speed steel milling cutters. For sintered carbide tipped cutters, zero and negative rake angles are frequently employed to provide more material back of the cutting edge to resist shock loads.

Rake Angles for High-speed Steel Cutters: Positive rake angles of 10 to 15 degrees are satisfactory for milling steels of various compositions with plain milling cutters. For softer materials such as magnesium and aluminum alloys, the rake angle may be 25 degrees or more. Metal slitting saws for cutting alloy steel usually have rake angles from 5 to 10 degrees, whereas zero and sometimes negative rake angles are used for saws to cut copper and other soft non-ferros metals to reduce the tendency to "hog in." Form relieved cutters usually have rake angles of 0, 5, or 10 degrees. Commercial face milling cutters usually have 10 degrees positive radial and axial rake angles for general use in milling cast iron, forged and aloy steel, brass, and bronze; for milling castings and forgings of magnesium and free-cutting aluminum and their alloys, the rake angles may be increased to 25 degrees positive or difficult to machine aluminum alloys.

Cast Non-ferrous Tool Material Milling Cutters: Positive rake angles are generally provided on milling cutters using cast non-ferrous tool materials although negative rake angles may be used advantageously for some operations such as those where shock loads are encountered or where it is necessary to eliminate vibration when milling thin sections.

Sintered Carbide Milling Cutters: Peripheral milling cutters such as slab mills, slotting cutters, saws, etc., tipped with sintered carbide, generally have negative radial rake angles of 5 degrees for soft low carbon steel and 10 degrees or more for alloy steels. Positive axial rake angles of 5 and 10 degrees, respectively, may be provided, and for slotting saws and cutters, 0 degree axial rake may be used. On soft materials such as free-cutting aluminum alloys, positive rake angles of 10 to so degrees are used. For milling abrasive or difficult to machine aluminum alloys, small positive or even negative rake angles are used.

Eccentric Type Radial Relief,— When the radial relief angles on peripheral teeth of milling cutters are ground with a disc type grinding wheel in the conventional manner the ground surfaces on the lands are slightly concave, conforming approximately to the radius of the wheel. A flat land is produced when the radial relief angle is ground with a cup

801

. . . .

wheel. Another entirely different method of grinding the radial angle is by the eccentric method, which produces a slightly convex surface on the land. If the radial relief angle at the cutting edge is equal for all of the three types of land mentioned, it will be found that the land with the eccentric relief will drop away from the cutting edge a somewhat greater distance for a given distance around the land than will the others. This is evident from a study of Table entitled, "Indicator Drops for Checking Radial Relief Angles on Peripheral Teeth." This feature is an advantage of the eccentric type relief which also produces an excellent finish.

Indicator Drops for Checking the Radial	Relief Angle on Peripheral Teeth
manufactor proportor oncenting the running	Mener Marcon rempileran reem

	Recom.			Indicator Dr	ops, Inches		Recom.
	Range of Radial			nd Concave		centric	Max.
Cutter	Relief	Checking	Re	lief	Ro	lief	Primary Land
Diameter,	Angles.	Distance,					Width,
Inch	Degrees	Inch	Min.	Max.	Min.	Max.	Inch
1/16	20-25	.005	.0014	.0019	.0020	.0026	.007
3/20	16-20	.005	.0012	.0015	.0015	.0019	.007
1/8	15-19	.010	.0018	.0026	.0028	.0037	.015
5/10	13-17	.010	.0017	.0024	.0024	.0032	.015
3/16	12-16	.010	.0016	.0023	.0022	.0030	.015
7/12	11-15	.010	.0015	.0022	.0020	.0028	.015
1/4	10-14	.015	.0017	.0028	.0027	.0039	.020
%0	10-14	.015	.0018	.0029	.0027	.0039	.020
×16	10-13	.015	.0019	.0027	.0027	.0035	.020
11 _{/32}	10-13	.015	.0020	.0028	.0027	.0035	.020
∛8	10-13	.015	.0020	.0029	.0027	.0035	.020
13/2	9-12	.020	.0022	.0032	.0032	.0044	.025
7/16	9-12	.020	.0022	.0033	.0032	.0043	.025
5/2	9-12	.020	.0023	.0034	.0032	.0043	.025
12	9-12	.020	.0024	.0034	.0032	.0043	.025
9/16	9-12	.020	.0024	.0035	.0032	.0043	.025
-1/8	8-11	.020	.0022	.0032	.0028	.0039	.025
11/16	8-J1	.030	.0029	.0045	.0043	.0059	.035
34	8-11	.030	.0030	.0046	.0043	.0059	.035
13/16	8-11	.030	.0031	.0047	.0043	.0059	.035
7 <u>6</u>	8-11	.030	.0032	.0048	.0043	.0059	.035
15/16	7-10	.030	.0027	.0043	.0037	.0054	.035
1	7-10	.030	.0028	.0044	.0037	.0054	.035
11%	7-10	.030	.0029	.0045	.0037	.0053	.035
11/4	6-9	.030	.0024	.0040	.0032	.0048	.035
1%	6-9	.030	.0025	.0041	.0032	.0048	.035
11/2	6-9	.030	.0026	.0041	.0032	.0048	.035
1%	6-9	.030	.0026	.0042	.0032	.0048	.035
13/4	6-9	.030	.0026	.0042	.0032	.0048	.035
1%	69	.030	.0027	.0043	.0032	.0048	.035
2 2¼	6-9 5-8	.030 .030	.0027	.0043 .0038	.0032	.0048	.035
2%	5-8	.030	.0022		.0026	.0042	.040
	5-8	.030	.0023	.0039	.0026	.0042	.040
2¾ 3	5-8	.030	.0023	.0039	.0026 .0026	.0042 .0042	.040 .040
31%	5-8	.030	.0023	.0039	.0026	.0042	.040
4	5-8	.030	.0024	.0040	.0026	.0042	.047
5	4-7	.030	.0019	.0035	.0021	.0037	.047
6	47	.030	.0019	.0035	.0021	.0037	.047
7	4-7	.030	.0020	.0036	.0021	.0037	.060
10	47 47	.030 .030	.0020	.0036 .0036	.0021	.0037 .0037	.060 .060
12	4-7	.030	.0020	.0036	.0021	.0037	.060
L	L			10000	10021	10007	1 .000

803

The setup for grinding an eccentric relief is shown in Fig. 2. In this setup he point of con-tact between the cutter and the tooth rest must be in the same plane as the centers, or axes, of the grinding wheel and the cutter. A wide face is used on the grinding wheel, which is trued and dressed at an angle with respect to the axis of the cutter. An alternate method is to tilt the wheel at this angle. Then as the cutter is traversed and rotated past the grinding wheel while in contact with the tooth rest, an eccentric relief will be generated by the angu-lar face of the wheel. This type of relief can only be ground on the peripheral teeth on mill-ing cutters having helical flutes because the combination of the angular wheel face and the twisting motion of the cutter is required to generate the eccentric relief. Therefore, an eccentric relief cannot be ground on the peripheral teeth of straight fluted cutters.

Table 4 is a table of wheel angles for grinding an eccentric relief for different combina-tions of relief angles and helix angles. When angles are required that cannot be found in this table, the wheel angle, W, can be calculated by using the following formula, in which R is the radial relief angle and H is the helix angle of the flutes on the cutter.

$\tan W = \tan R \times \tan H$

Table 4. Grinding Wheel Angles for Grinding Eccentric Type Radial Relief Angle
Table 4. Grinning wheel Angles for Grinning

Table 4. Gi	Build Helix Angle of Cutter Flutes, H, Degrees												
Radial			Helix				50	52					
Relief	12	18	20	30	40	45	00						
Angle, R, Degrees				Wheel Angl	e, W, Degree								
1	0°13′	0°19′	0°22'	0°35'	0°50'	1°00'	1°12′	1°17′					
2	0°26'	0°39'	0°44'	1°09'	1°41′	2°00'	2°23'	2°34'					
3	0°38'	0°59'	1°06'	1°44'	2°31'	3°00′	3°34'	3°50'					
4	0°51'	1°18'	1°27'	2°19′	3°21′	4°00'	4°46'	5°07′					
5	1°04'	1°38'	1°49'	2°53'	4°12'	5°00'	5°57′	6°23'					
3	1 104	1 20 1]		1	1	1					
	1°17'	1°57′	2°11'	3°28′	5°02'	6°00′	7°08'	7°40′					
6	1 1º30'	2°17'	2°34'	4°03'	5°53′	7°00′	8°19′	8°56'					
7	1°43′	2°37'	2°56'	4°38'	6°44'	8°00'	9°30′	10°12'					
8	1°56'	2°57'	3°18'	5°13′	7°34'	9°00′	10°41′	11°28'					
9	2°09'	2 37 3°17'	3°40'	5°49'	8°25'	10°00′	11°52'	12°43'					
10	2*09	311	2.40			Į							
	20204	3°37'	4°03′	6°24'	9°16′	11°00'	13°03'	13°58'					
1 11	2°22' 2°35'	3°57	4°25′	7°00'	10°07'	12°00'	14°13′	15°13'					
12	1	4°17′	4º48'	7°36'	10°58'	13°00′	15°23'	16°28′					
13	2°49'	4°38'	5°11′	8°11'	11°49'	14°00'	16°33'	17°42′					
14	3°02'	4°59'	5°34'	8°48'	12°40′	15°00'	17°43′	18°56′					
15	3°16′	4-39	1 3 34	1		{	ļ	ļ					
1			5°57'	9°24′	13°32'	16°00'	18°52'	20°09'					
16	3°29'	5°19'	6°21'	10°01'	14°23'	17°00'	20°01'	21°22′					
17	3°43′	5°40'	6°45'	10°37'	15°15′	18°00'	21°10′	22°35′					
18	3°57'	6°02′	7°09'	11º15'	16°07'	19°00′	22°19'	23°47'					
19	4°11'	6°23'	7°33'	11°52′	16°59'	20°00'	23°27′	24°59'					
20	4°25'	6°45'	1.33	11.52	10.55			1					
				12°30'	17°51'	21°00'	24°35'	26°10'					
21	4°40′	7°07'	7*57'	12*30	18°44'	22°00'	25°43'	27°21′					
22	4°55'	7°29'	8°22'	13°08	19°36'	23°00'	26°50'	28°31'					
23	5°09'	7°51′	8°47′	13°40 14°25'	20°29'	24°00'	27°57'	29°41'					
24	5°24′	8°14′	9°12'	14°25 15°04'	21°22'	25°00'	29°04'	30°50'					
25	5°40'	8°37′	9°38′	15*04	41 22		1						

ı.

Indicator Drop Method of Checking Relief and Rake Angles.—The most convenient and inexpensive method of checking the relief and rake angles on milling cutters is by the indicator drop method. Three tables, Tables, 5 and 6, of indicator drops are provided in this section, for checking radial relief angles on the peripheral teeth, relief angles on side and end teeth, and rake angles on the tooth faces.

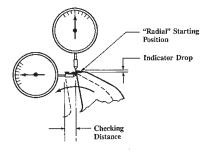


Fig. 1. Setup for Checking the Radial Relief Angle by Indicator Drop Method

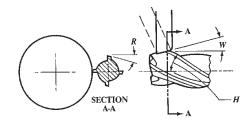
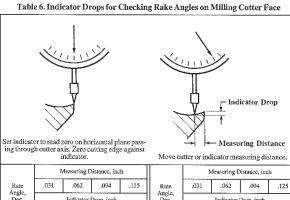
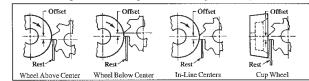



Fig. 2. Setup for Grinding Eccentric Type Radial Relief Angle

Table 5. Indicator Drops for Checking Relief Angles on Side Teeth and End Teeth

				Give	n Relief A	ngle							
Checking Distance,	1°	2°	3°	4°	5°	6°	7°	8°	9°				
Inch		Indicator Drop, inch											
.005	.00009	.00017	.00026	.00035	.0004	.0005	.0006	.0007	.0008				
.010	.00017	.00035	.00052	.0007	.0009	.0011	.0012	.0014	.0016				
.015	.00026	.0005	.00079	.0010	.0013	.0016	.0018	.0021	.0024				
.031	.00054	.0011	.0016	.0022	.0027	.0033	.0038	.0044	.0049				
.047	.00082	.0016	.0025	.0033	.0041	.0049	.0058	.0066	.0074				
.062	.00108	.0022	.0032	.0043	.0054	.0065	.0076	.0087	.0098				

				-				Actual of the			
Rate Angle,	.031	.062	.094	.125	Rate	.031	.062	.094	.125		
Deg.		Indicator I	Drop, înch		Angle, Deg.	Indicator Drop, inch					
1	.0005	.0011	.0016	.0022	11	.0060	.0121	.0183	.0243		
2	.0011	.0022	.0033	.0044	12	.0066	.0132	.0200	.0266		
3	.0016	.0032	.0049	.0066	13	.0072	.0143	.0217	.0289		
4	.002.2	.0043	.0066	.0087	14	.0077	.0155	.0234	.0312		
5	.0027	.0054	.0082	.0109	15	.0083	.0166	.0252	.0335		
6	.0033	.0065	.0099	.0131	16	.0089	.0178	.0270	.0358		
7	.0038	.0076	.0115	.0153	17	.0095	.0190	.0287	.0382		
8	.0044	.0087	.0132	.0176	18	.0101	.0201	.0305	.0406		
9	.0049	.0098	.0149	.0198	19	.0107	.0213	.0324	.0430		
10	.0055	.0109	.0166	.0220	20	.0113	.0226	.0342	.0455		


The setup for checking the radial relief angle is illustrated in Fig. 1. Two dial test indicators are required, one of which should have a sharp pointed contact point. This indicator is positioned so that the axis of its spindle is vertical, passing through the axis of the cutter. The cutter may be held by its shank in the spindle of a tool and cutter grinder workhead, or between centers while mounted on a mandrel. The cutter is rotated to the position where the vertical indicator contacts a cutting edge. The second indicator is positioned with its spindle axis horizontal and with the contact point touching the tool face just below the cutting edge. With both indicators adjusted to read zero, the cutter is rotated a distance equal to the checking distance, as determined by the reading on the second indicator. Then the indicator drop is read on the vertical indicator and checked against the values in the tables. The indicator drops for radial relief angles ground by a disc type grinding wheel and those ground with a cup wheel are so nearly equal that the values are listed together; values for the eccentric type relief are listed separately, since they are larger. A similar procedure is used to check the relief angles on the side and end teeth of milling cutters; however, only one indicator is used. Also, instead of rotating the cutter, the indicator or the cutter must be moved a distance equal to the checking distance in a straight line.

805

· .

CUTTER GRINDING

Various Set-ups Used in Grinding the Clearance Angle on Milling Cutter Teeth

Distance to Set Center of Wheel Above the Cutter Center (Disk Wheel)

Dia.		Desired Clearance Angle, Degrees											
of Wheel,	1	2	3	4	5	5	7	8	9	10	11	12	
Inches		"Distance to Offset Wheel Center Above Cutter Center, Inches											
3	.026	.052	.079	.105	.131	.157	.183	.209	.235	.260	.286	.312	
4	.035	.070	.105	.140	,174	.209	.244	.278	.313	.347	.382	.416	
5	.044	.087	.131	.174	.218	.261	.305	.348	.391	.434	.477	.520	
6	.052	.105	.157	.209	.261	.314	.366	,417	.469	.521	.572	.624	
7	.061	.122	.183	.244	.305	.366	.427	.487	.547	.608	.668	.728	
8	.070	.140	.209	.279	.349	.418	.488	.557	.626	.695	.763	.832	
9	.079	.157	.236	.314	.392	.470	.548	.626	.704	.781	.859	.936	
10	.087	.175	.262	.349	.436	.523	.609	.696	.782	.868	.954	1.040	

^aCalculated from the formula: Offset = Cutter Diameter $\times \frac{1}{2} \times Sine$ of Clearance Angle.

Distance to Set Center of Wheel Below the Cutter Center (Disk Wheel)

Dia.	Desired Clearance Angle, Degrees												
of Cutter,	1	2	3	4	5	6	7	8	9	10	11	12	
Inches		"Distance to Offset Wheel Center Below Cutter Center, Inches											
2	.017	.035	.052	.070	.087	.105	.122	.139	.156	.174	.191	.208	
3	.026	.052	.079	.105	.131	.157	.183	.209	.235	.260	.286	.312	
4	.035	.070	.105	.140	.174	.209	.244	.278	.313	.347	.382	.416	
5	.044	.087	.131	.174	.218	.261	.305	.348	.391	.434	.477	.520	
6	.052	.105	.157	.209	.261	.314	.366	.417	.469	.521	.572	.624	
7	.061	.122	.183	.244	.305	.366	.427	.487	.547	.608	.668	.728	
8	.070	.140	.209	.279	.349	.418	.488	.557	.626	.695	.763	.832	
9	.079	.157	.236	.314	.392	.470	.548	.626	.704	.781	.859	.936	
10	.087	.175	.262	.349	.436	.523	.609	.696	.782	.868	.954	1.040	

Distance to Set Tooth Rest Below Center Line of Wheel and Cutter.—When the clearance angle is ground with a disk type wheel by keeping the center line of the wheel in line with the center line of the cutter, the tooth rest should be lowered by an amount given by the following formula:

Offset = Wheel Diam. × Cutter Dia. × Sine of One-half the Clearance Angle Wheel Dia. + Cutter Dia.

Distance to Set Tooth Rest Below Cutter Center When Cup Wheel is Used.—When the clearance is ground with a cup wheel, the tooth rest is set below the center of the cutter the same amount as given in the table for "Distance to Set Center of Wheel Below the Cutter Center (Disk Wheel)."

REAMERS

Hand Reamers.—Hand reamers are made with both straight and helical flutes. Helical flutes provide a shearing cut and are especially useful in reaming holes having keyways or grooves, as these are bridged over by the helical flutes, thus preventing binding or chattering. Hand reamers are made in both solid and expansion forms. The American standard dimensions for solid forms are given in the accompanying table. The expansion type is useful whenever, in connection with repair or other work, it is necessary to enlarge a reamed hole by a few thousandths of an inch. The expansion form is split through the fluted section and a slight amount of expansion is obtained by screwing in a tapering plug. The diameter increase may vary from 0.005 to 0.008 inch for reamers up to about 1 inch diameter and from 0.010 to 0.012 inch for diameters between 1 and 2 inches. Hand reamers are tapered slightly on the end to facilitate starting them properly. The actual diameter of the shanks of commercial reamers may be from 0.002 to 0.005 inch under the reamer size. That part of the shank that is squared should be turned smaller in diameter than the shank itself, so that, when applying a wrench, no burr may be raised that may mar the reamed hole if the reamer size. That part of the shank that is guared should be turned smaller in diameter of the shank is the reamer is no set with relation to the center of the reamer blank.

When fluting reamers, the cutter is so set with relation to the center of the reamer blank that the tooth gets a slight negative rake; that is, the cutter should be set *ahead* of the center, as shown in the illustration accompanying the table giving the amount to set the cutter ahead of the radial line. The amount is so selected that a tangent to the circumference of the reamer at the cutting point makes an angle of approximately 95 degrees with the front face of the cutting edge.

Amount to Set Cutter Ahead of Radial Line to Obtain Negative Front Rake

Fluting Cutter B/ST	Size of Reamer	Dimen- sion a, Inches	Size of Reamer	Dimen- sion a, Inches	Size of Reamer	Dimen- sion <i>a</i> , Inches
	1/4	0.011	78	0.038	2	0.087
A -95	3%	0.016	1	0.044	21/4	0.098
	1/2	0.022	11/4	0.055	21/2	0.109
Reamer Blank	5/8	0.027	1½	0.066	2¾	0.120
	3⁄4	0.033	1¾	0.076	3	0.131

When fluting reamers, it is necessary to "break up the flutes"; that is, to space the cutting edges unevenly around the reamer. The difference in spacing should be very slight and need not exceed two degrees one way or the other. The manner in which the breaking up of the flutes is usually done is to move the index head to which the reamer is fixed a certain amount more or less than it would be moved if the spacing were regular. A table is given ashowing the amount of this additional movement of the index crank for reamers with different numbers of flutes. When a reamer is provided with helical flutes, the angle of spiral should be such that the cutting edges make an angle of about 10 or at most 15 degrees with the axis of the reamer.

The relief of the cutting edges should be comparatively slight. An eccentric relief, that is, one where the land back of the cutting edge is convex, rather than flat, is used by one or two manufacturers, and is preferable for finishing reamers, as the reamer will hold its size longer. When hand reamers are used merely for removing stock, or simply for enlarging holes, the flat relief is better, because the reamer has a keener cutting edge. The width of the land of the cutting edges should be about $\frac{1}{22}$ inch for a $\frac{1}{27}$ inch, $\frac{1}{26}$ inch for a 1-inch, and $\frac{3}{22}$ inch for a 3-inch reamer.

1....

REAMERS

Irregular Spacing of Teeth in Reamers

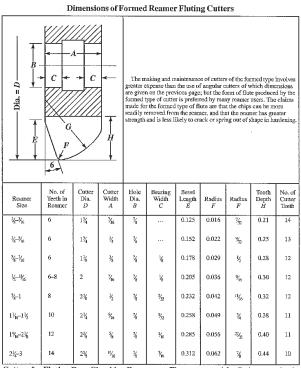
micguai Spacing of Feedmini feedminis													
Number of flutes in reamer	4	6	8	10	12	14	16						
Index circle to use	39	39	39	39	39	49	20						
Before cutting		Move Spindle the Number of Holes below More or Less than for Regular Spacing											
2d flute	8 less	4 less	3 less	2 less	4 less	3 less	2 less						
3d flute	4 more	5 more	5 more	3 more	4 more	2 more	2 more						
4th flute	6 less	7 less	2 less	5 less	1 less	2 less	1 less						
5th flute	•••	6 more	4 more	2 more	3 more	4 more	2 more						
6th flute		5 less	6 less	2 less	4 less	1 less	2 less						
7th flute	•••		2 more	3 more	4 more	3 more	1 more						
8th flute			3 less	2 less	3 less	2 less	2 less						
9th flute				5 more	2 more	1 more	2 more						
10th flute				1 less	2 less	3 less	2 less						
11th flute					3 more	3 more	1 more						
12th flute					4 less	2 less	2 less						
13th flute						2 more	2 more						
14th flute						3 less	1 less						
15th flute							2 more						
16th flute							2 less						

Threaded-end Hand Reamers.—Hand reamers are sometimes provided with a thread at the extreme point in order to give them a uniform feed when reaming. The diameter on the top of this thread at the point of the reamer is slightly smaller than the reamer itself, and the thread tapers upward until it reaches a dimension of from 0.003 to 0.008 inch, according to size, below the size of the reamer; at this point, the thread stops and a short neck about Y_{6r} inch wide separates the threaded portion from the actual reamer, which is provided with a short taper from Y_{6c} to Y_{6c} inch long up to where the standard diameter is reached. The length of the threaded portion and the number of threads per inch for reamers of this kind are given in the accompanying table. The thread employed is a sharp V-thread.

Sizes of Réamers	Length of Threaded Part	No. of Threads per Inch	Dia. of Thread at Point of Reamer	Sizes of Reamers	Length of Threaded Part	No. of Threads per Inch	Dia. of Thread at Point of Reamer
¹ / ₈ - ⁵ / ₁₆ ¹ / ₁₂ - ¹ / ₂ ¹ / ₃₂ - ³ / ₄ ² / ₈ -1	% 1/16 1∕2	32 28 24 18	Full diameter -0.006 0.006 -0.008 -0.008	$\begin{vmatrix} 1\frac{1}{32}-1\frac{1}{32}\\ 1\frac{1}{32}-2\\ 2\frac{1}{32}-2\frac{1}{32}\\ 2^{1}\frac{1}{32}-3 \end{vmatrix}$	% % % %	18 18 18 18	Full diameter -0.010 -0.012 -0.015 -0.020

Dimensions for Threaded-End Hand Reamers

Finted Chucking Reamers.—Reamers of this type are used in turret lathes, screw machines, etc., for enlarging holes and finishing them smooth and to the required size. The best results are obtained with a floating type of holder that permits a reamer to align itself with the hole being reamed. These reamers are intended for removing a small amount of metal, 0.005 to 0.010 inch being common allowances. Fluted chucking reamers are provided either with a straight shank or a standard taper shank. (See table for standard dimensions.)


Rose Chucking Reamers.—The rose type of reamer is used for enlarging cored or other holes. The cutting edges at the end are ground to a 45-degree bevel. This type of reamer will remove considerable metal in one cut. The cylindrical part of the reamer has no cutting

809

edges, but merely grooves cut for the full length of the reamer body, providing a way for the chips to escape and a channel for lubricant to reach the cutting edges. There is no relicf on the cylindrical surface of the body part, but it is slightly back-tapered so that the diame-ter at the point with the beveled cutting edges is slightly larger than the diameter farther back. The back-taper should not exceed 0.001 inch per inch. This form of reamer usually produces holes slightly larger than its size and it is, therefore, always made from 0.005 to 0.010 inch smaller than its nominal size, so that it may be followed by a fluted reamer for finishing. The grooves on the cylindrical portion are cut by a convex cutter having a width equal to from one-fifth to one-fourth the diameter of the reamer. The teeth at the end of the reamer are milled with a 75-degree angular cutter; the width of the land of the cutting edge should be about one-fifth the distance from tooth to tooth. If an angular cutter is preferred to a convex cutter for milling the grooves on the cylindrical portion, because of the higher cutting speed possible when milling, an 80-degree angular cutter slightly rounded at the point may be used.

	Fluting Cutters for Reamers												
	B												
Rean		Fluting Cutter Dia.	Fluting Cutter Thickness	Hole Dia. in Cutter	Radius between Cutting Faces	Reamer Dia.	Fluting Cutter Dia.	Fluting Cutter Thickness	Hole Dia. in Cutter	Radius hetween Cutting Faces			
	Ī	A	В	С	D		A	В	с	D			
4	í I	134	-3/16	3%	sharp corner, no radius	1 1½	21/4 21/4	1/2 1/2 1/6	1	%4 K15			
3	, 16	1¾	3/16	₹4	sharp corner, no radius	1½ 1¾	2¼ 2¼	% %	1 1	4 ₁₆ %a			
1 1	4	1¾	∛16	34	1/64	2	21/2	34	1	5/64			
1	%	2	4	3∕4	1/64	21/4	2½	3/4	1	%			
	4	2	⁵ ∕16	34	1/32	21/2	2½	3	1	∛i6			
	5/8	2	3%	34	1/32	23⁄4	21/2	⁷ 4	1	3/16			
	34	2	V16	3/4	₹4	3	21/2	1	1	∛16			

REAMERS

Cutters for Fluting Rose Chucking Reamers.—The cutters used for fluting rose chucking reamers on the end are 80-degree angular cutters for $\frac{1}{\sqrt{2}}$ and $\frac{3}{\sqrt{6}}$ inch diameter reamers; 75-degree angular cutters for $\frac{3}{\sqrt{2}}$ and $\frac{3}{\sqrt{6}}$ inch reamers; and 70-degree angular cutters for all larger sizes. The grooves on the cylindrical portion are milled with convex cutters of approximately the following sizes for given diameters of reamers: $\frac{3}{\sqrt{2}}$ inch convex cutter for $\frac{1}{\sqrt{2}}$ inch reamers; $\frac{3}{\sqrt{6}}$ inch cutter for 1-inch reamers; $\frac{3}{\sqrt{2}}$ inch cutters for 2-inch reamers; and $\frac{1}{\sqrt{2}}$ inch cutters for 2 $\frac{1}{\sqrt{2}}$ inch reamers. The smaller sizes of reamers, from $\frac{1}{\sqrt{2}}$ is choin diameter, are often milled with regular double-angle reamer fluting cutters having a radius of $\frac{1}{\sqrt{2}}$ inch reamer, and $\frac{1}{\sqrt{2}}$ inch for $\frac{1}{\sqrt{6}}$ inch for

Vertical Adjustment of Tooth-rest for Grinding Clearance on Reamers

Ver	Vertical Adjustment of Tooth-rest for Grinding Clearance on Reality												
Size of Reamon	Ĩ	Hand R for Steel. Clears Land 0.0 Wit	eamer Cutting ince 06 inch	Hand R for Cas and B Cutting C Land 0.6	eamer t Iron onze. learance	Chuck Reame Cast Iro Bronze, Clear Land 0.0 Wi	er for on and Cutting ance 125 inch	Rose Chucking Reamers for Steel					
Keamo		For Cutting Clearance	For Second Clearance	For Cutting Clearance	For Second Clearance	For Cutting Clearance	For Second Clearance	Clearance on Angular Edge at End					
1.		0.012	0.052	0.032	0.072	0.040	0.080	0.080					
14		0.012	0.062	0.032	0.072	0.040	0.090	0.090					
%		0.012	0.072	0.035	0.095	0.040	0.100	0.100					
34 76		0.012	0.082	0.040	0.120	0.045	0.125	0.125					
1 1		0.012	0.092	0.040	0.120	0.045	0.125	0.125					
11%		0.012	0.102	0.040	0.120	0.045	0.125	0.160					
11/4		0.012	0.112	0.045	0.145	0.050	0.160	0.175					
13%		0.012	0.122	0.045	0.145	0.050	0.100	0,175					
1%		0.012	0.132	0.048	0.168	0.055	0.175	0.200					
1%		0.012	0.142	0.050	0.170	0.060	0.200	0.200					
134		0.012	0.152	0.052	0.192	0.060	0.200	0.200					
1%		0.012	0.162	0.056	0.196	0.000	0.224	0,225					
2		0.012	0.172	0.056	0.216	0.064	0.224	0.225					
21%		0.012	0.172	0,063	0.223	0.064	0.224	0.225					
21/4		0.012	0.172	0.063	0.223	0.068	0.228	0.230					
2%		0.012	0.172	0.065	0.225	0.072	0.232	0,230					
21/2		0.012	0.172	0.065			0.235	0.235					
2%		0.012	0.172	0.065			0.237	0.240					
23/4		0.012	0.172	0.005			0.240	0,240					
2%	á.	0.012	0.172	0.072				0.240					
3		0.012		0.075									
31/8		0.012				3 0.083							
31/4		0.012		1	0.24	1 0.087							
33		0.012			4 0.24	4 0.090							
31/		0.012		0.08	7 0.24								
33	•	0.012		0.09									
37		0.012		2 0.09									
1 4		0.01											
4		0.01	2 0.17		1			·					
	-1/4	0.01				· · · ·	~ · .						
	*	0.01											
	142	0.01			1								
4	1%	0.01	1										
4	13%	0.01	1			· · ·							
	4%	0.01					·~ · ·						
5	5	0.0	0.13	72 0.1	10 0.2								

811

 $\epsilon = \rho$

Reamer Difficulties.—Certain frequently occurring problems in reaming require remedial measures. These difficulties include the production of oversize holes, bellmouth holes, and holes with a poor finish. The following is taken from suggestions for correction of these difficulties by the National Twist Drill and Tool Co. and Winter Brothers Co.*

Oversize Holes: The cutting of a hole oversize from the start of the reaming operations usually indicates a mechanical defect in the setup or reamer. Thus, the wrong reamer for the workpiece material may have been used or there may be inadequate workpiece support, inadequate or worn guide bushings, or misalignment of the spindles, bushings, or workpiece or runout of the spindle or reamer holder. The reamer itself may be defective due to chamfer runout or runout of the cutting end due to a bent or nonconcentric shank.

When reamers gradually start to cut oversize, it is due to pickup or galling, principally on the reamer margins. This condition is partly due to the workpiece material. Mild steels, certain cast irons, and some aluminum alloys are particularly troublesome in this respect.

Corrective measures include reducing the reamer margin widths to about 0.005 to 0.010 inch, use of hard case surface treatments on high-speed-steel reamers, either alone or in combination with black oxide treatments, and the use of a high-grade finish on the reamer faces, margins, and chamfer relief surfaces.

Bellmouth Holes: The cutting of a hole that becomes oversize at the entry end with the oversize decreasing gradually along its length always reflects misaligument of the cutting portion of the reamer with respect to the hole. The obvious solution is to provide improved guiding of the reamer by the use of accurate bushings and pilot surfaces. If this solution is not feasible, and the reamer is cutting in a vertical position, a flexible element may be employed to hold the reamer in such a way that it has both radial and axial float, with the hope that the reamer will follow the original hole and prevent the bellmouth condition.

In horizontal setups where the reamer is held fixed and the workpiece rotated, any misalignment exerts a sideways force on the reamer as it is fed to depth, resulting in the formation of a tapered hole. This type of bellmouthing can frequently be reduced by shortening the bearing length of the cutting portion of the reamer. One way to do this is to reduce the reamer diameter by 0.010 to 0.030 inch, depending on size and length, behind a short fulldiameter section, $\frac{1}{3}$ to $\frac{1}{2}$ inch long according to length and size, following the chamfer. The second method is to grind a high back taper, 0.008 to 0.015 inch per inch, behind the short full-diameter section. Either of these modifications reduces the length of the reamer tooth that can cause the belimouth condition.

Poor Finish: The most obvious step toward producing a good finish is to reduce the reamer feed per revolution. Feeds as low as 0.0002 to 0.0005 inch per tooth have been used successfully. However, reamer life will be better if the maximum feasible feed is used.

The minimum practical amount of rearning stock allowance will often improve finish by reducing the volume of chips and the resulting heat generated on the cutting portion of the chamfer. Too little reamer stock, however, can be troublesome in that the reamer teeth may not cut freely but will deflect or push the work material out of the way. When this happens, excessive heat, poor finish, and rapid reamer wear can occur.

Because of their superior abrasion resistance, carbide reamers are often used when fine finishes are required. When properly conditioned, carbide reamers can produce a large number of good-quality holes. Careful honing of the carbide reamer edges is very important.

*"Some Aspects of Reamer Design and Operation," Metal Cuttings, April 1963.

813

Dimensions of Centers for Reamers and Arbors

Dimensions of Centers for Realities and fit bors											
					Large Center Dia. B	Drill No. C	Hole Depth D	Arbor Dia. A	Large Center Dia. B	Drill No. C	Hole Depth D
l Aî				34	⅔	25	7/16	21/2	11/16	J	29/22
01	O VX///			13 _{/16}	™ <u>%</u>	20	1/2	2%	45/61	к	7%
	<i>←D→</i>			16	₹ ₁₆	17	1%2	2¾	<u>ny</u>	L	29%g
				15/16	15/20	12	%15	2%	4764	м	29 <u>/</u>
				1	烃	8	炎	3	34	N	¹⁵ / ₁₅
Arbor.	Large	Drill	Hole	11%	33/64	5	5%	31%	4%	N	³¹ /32
Dia.	Center Dia.	No.	Depth	1½	ⁱ⁷ / _{TP}	3	21/32	31/4	25 <u>4</u>	0	34/32
A	B	С	D	13%	³⁵ / ₆₄	2	31/32	3%	⁵¹ /64	0	1
				ıĶ	%	.1	11/16	3½	13/16	Р	1
14	1/8	55	5/32			Letter		3%	⁵³ /64	Q	1½
5% 16	%_	52	31 ₁₆	1%	37/64	A	²² Y ₃₂	33/4	27%	R	11/ ₁₆
-¾	∛16	48	<u>%</u>	1¾	19/22	В	21/2	3%	⁵⁵ /64	R	11/16
7/16	7 <u>4</u> 2	43	14	1%	³⁹ /64	С	34	4	⅔	s	11%
¥2	1/4	39	5% 56	2	5%	Е	34	41/4	29 <u>/30</u>	Т	11/8
%₀	%₂	33	₩2	2½	41/64	F	21/2	4½	15/16	v	$1\frac{3}{16}$
%	∛ ₁₆	30	36	21/4	²¹ /32	G	¹³ / ₁₆	4¾	31 <u>/5</u> 2	W	11/4
щ _{іб}	Щ.	29	ВĄ	2¾	43/64	н	₩_	5	1	х	1½

Straight Shank Center Reamers and Machine Countersinks ANSI B94.2-1983, R1988

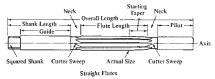
₽Ţ	<u>−</u> S−					T T	A
Cen	ster Reamers (S	hort Countersi	nks)		Machine C	ountersinks	
Dia. of Cut	Approx. Length Overall A	Length of Shank S	Dia. of Shank D	Dia. of Cut	Approx. Length Overall A	Length of Shank S	Dia. of Shank D
14	11/2	34	3⁄ ₁₆	1/2	31/8	21/4	Ř
3%g	1¾	7∕8	4	5%	4	21/4	¥2
1/2	2	1	∛≰	₹4	4¼	21/4	1/2
%	21/4	1	×,	75	4¼	2¼	1/2
∛4	25%	11/4	1/2	1	4¾	21⁄4	Ķ

All dimensions are given in inches. Material is high-speed steel. Reamers and countersinks have 3 or 4 flutes. Center reamers are standard with 60, 82, 90, or 100 degrees included angle. Machine countersinks are standard with either 60 or 82 degrees included angle.

Tolerances: On overall length A, the tolerance is $\pm \frac{1}{2}$ inch for center reamers in a size range of from $\frac{1}{2}$ to $\frac{3}{2}$ inch, incl., and machine countersinks in a size range of from $\frac{1}{2}$ to $\frac{3}{2}$ inch, incl., $\pm \frac{3}{2}$ inch for center reamers, $\frac{1}{2}$ to $\frac{3}{2}$ inch, incl.; and machine countersinks, $\frac{3}{2}$ to 1 inch, incl. On shank diameter D, the tolerance is -0.0005 to -0.002 inch. On shank length S, the tolerance is $\pm \frac{1}{2}$ inch.

REAMERS

Expansion Chucking Reamers—Straight and Taper Shanks ANSI B94.2-1983, R1988


					38	Ś			
			<				<i>←B→</i>		
Dia of	Longth,	Fine	Shank	Dia., D	Dia.of	Length,	Flute	Shank	Dia.,D
Reamer	A	Length,B	Max,	Min,	Reamer	A	Longth,B	Max.	Min.
*	7	34	0.3105	0.3095	13/32	10%	1%	0.8745	0.8730
% 12/12	7	- 24	0.3105	0.3095	11/2	11	11/4	0.8745	0.8730
1/16	7	****	0.3730	0.3720	13/20	11	11/4	0.8745	0.8730
746 1555 1558 1558 1558 1558 1558 1558 155	7	24	0.3730	0.3720	13/16	11	134	0.9995	0.9980
45	8	1	0.4355	0.4345	11/2	11	13/4	0.9995	0.9980
ıγ _n	8	1	0.4355	0.4345	11/4	11½	17%	0.9995	0.9980
%	8	11%	0.4355	0.4345	1%	11%	1%	0.9995	0.9980
ŵ.	8	11%	0.4355	0.4345	11%	12	2	0.9995	0.9980
% 31/2 11/16	9	11/4	0.5620	0.5605	17/16	12	2	1.2495	1.2480
24,	9	11/4	0.5620	0.5605	1%	12½	21%	1.2495	1.2480
11/16	9	11/4	0.5620	0.5605	$19_{16}^{-\mu}$	121	21%	1,2495	1.2480
24/20	9	1%	0.5620	0.5605	18	13	21/4	1.2495	1.2480
3/2	91/2	1%	0.6245	0.6230	11%6	13	21/4	1.2495	1.2480
34 75 <u>6</u>	9%	1%	0.6245	0.6230	1 13	131/2	2%	1.2495	1.2480
13/6	9%	1%	0.6245	0.6230	113/6	13%	2%	1.4995	1.4980
27/22	9%	1%	0.6245	0.6230	1%	14	21/3	1.4995	1.4980
1/4	10	1%	0.7495	0.7480	1 ¹⁵ /16	14	21/2	1.4995	1.4980
×.	10	11%	0.7495	0.7480	2	14	21/2	1.4995	1.4980
76 24/22 13/26	10	145 145 145 145 145	0.7495	0.7480	21/s ^b	14%	23/4		
31/2	10	11/2	0.7495	0.7480	2¼b	141/2	23/4		
1	101/2	1%	0.8745	0.8730	23%	15	3		
11/2	101/2	1%	0.8745	0.8730	21/2	15	3		
11/16	10%	1%	0.8745	0.8730					

^aStraight shank only. ^bTaper shank only.

Taper snaw only. All dimensions in inches. Material is high-speed steel. The number of flutes is as follows: $\frac{1}{2}$ to $\frac{1}{2}$ inch sizes, 4 to 6; $\frac{1}{2}$, to $\frac{3}{2}$ -inch sizes, 6 to 8; 1- to $\frac{1}{2}$ -inch sizes, 8 to 10; $\frac{1}{2}$ - to $\frac{1}{2}$ -inch sizes, 8 to 12; 2 - to $\frac{1}{2}$ -inch sizes, 10 to 12; $\frac{2}{2}$ - and $\frac{2}{2}$ -inch sizes, 10 to 14. The expansion feature of these reamers provides a means of adjustment that is important in reaming holes to close tolerances. When worn underszize, they may be expanded and reground to the original size. *Tolerances:* On reamer diameter, $\frac{3}{2}$ to 1-inch sizes, incl., ± 0.0001 to ± 0.0005 inch; over 1-inch size, ± 0.0002 to ± 0.0006 inch. On length A and flute length B, $\frac{3}{2}$ -to 1-inch sizes, incl., $\pm \frac{1}{2}$ -inch; $\frac{1}{2}$ - T

to 2-inch sizes, incl., $\pm \frac{3}{22}$ inch; over 2-inch sizes, $\pm \frac{1}{32}$ inch.

Taper is Morse taper. No. 1 for sizes $\frac{1}{3}$ to $\frac{1}{3}$ incl.; No. 2 for sizes $\frac{1}{3}$ to $\frac{2}{3}$ incl.; No. 3 for sizes $\frac{1}{3}$ to $\frac{1}{3}$ incl.; No. 5 for sizes $\frac{1}{4}$ to $\frac{2}{3}$ incl.; No. 5 for sizes $\frac{1}{4}$ to $\frac{2}{3}$ incl.; No. 6 for sizes $\frac{1}{4}$ to $\frac{1}{3}$ incl.; No. 7 for size $\frac{1}{4}$ to $\frac{1}{4}$

Hand Reamer, Pilot and Guide

5 (C -

815

Illustration of Terms Applying to Reamers-1

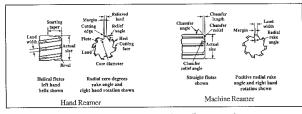


Illustration of Terms Applying to Reamers---2

Tang	
1,	Flute Length
Taper Shank	- Chamfer A Chamfer
	Helix Angle Angle Length
	Actual Actual
Straight Shank	Size
Shank Length -	Helical Flutes Body

American National Standard Fluted Taper Shank Chucking Reamers— Straight and Helical Flutes, Fractional Sizes ANSI B94.2-1983, R1988

	Ē				B-B-			в	
	Length	Flute	No. of Morse	No.		Length	Flute	No. of Morse	No.
Reamer Dia.	Overall A	Length B	Taper Shank ^a	of Flutes	Reamer Dia.	Overall A	Length B	Taper Shank ^a	of Flutes
1/2	6	IĶ	1	4106	<i>71/</i> 22	9%	21/2	2	8 to 10
14 5%6 1% 1%2 1%2	6	1½	1	4 to 6	2% 2%	10	2%	2	8 to 10
¥.	7	1¾	1	4 to 6	29/20	10	2%	2	8 to 10
7/16	7	1%	1	6108	1%	10	2%	3	01 ot 8
1/2	8	2	1	6 to 8	31/22	10	2%	3	8 to 10
17/22	8	2	1	6 to 8	1	10½	23/4	3	8 to 12
9%6 19%2	8	2	1	6 to 8	11/16	10½	23/4	3	8 to 12
19/12	8	2	1	6 to 8	11/8	11	2%	3	8 to 12
1 %	9	21/4	2	6 to 8	1%	11	2%_	3	8 to 12
21/2	9	21/4	2	6 to 8	1 1/4	11 1/2	3	4	8 to 12
% % 1%	9	21/4	2	6 to 8	11/16	11½	3	4	8 to 12
2%	9	24	2	6 to 8	1%	12	31/4	4	10 to 12
3/4 7/20 13/6	9½	21/3	2	6 to 8	17/16	12	31/4	4	10 to 12
71/2	9½	21/2	2	8 to 10	1½	12½	31/2	4	10 to 12
12/16	91 <u>5</u>	21/2	2	8 to 10					

1.1

REAMERS

1700	in Reame	15-5trangin					
		D +	<u> </u>			-	1
	† ≡		-1-5			5	
		- <u> </u>			P		1
1	+0	*	. 1+		J	-	
			A			- 1	
ì							
		D +	<u> </u>			а.	
1	1	<u> </u>				3	
	L				B		
1		C+I	A				
	H				- 1		
	Reamer Diam		Length	Flute Length	Square Length	Size of	No. of
Straight	Helical	Decimal Equivalent	Overall A	B	C	Square	Flutes
Flutes	Flutes	0.1250	3	11/2	3/10	0.095	4 to 6
1/8		0.12.0	31/4	1%	1 <u>1</u> 1 <u>4</u>	0.115	4 to 6
×2		0.1875	31/2	134	Ϋ́́	0.140	4 to 6
³ / ₁₆		0.2188	31/2	1%	14	0.165	4 to 6
7 <u>%</u> 2		0.2500	4	2	14	0.185	4 to 6
¥,	4	0.2812	4%	21/4	14	0.210	4 to 6
% <u>n</u>		0.3125	41/2	21/4	36	0.235	4 to 6
5/16	5%5	0.3438	43/4	23%	3,6	0.255	4 to 6
11 <u>/m</u>		0.3750	5	21/2	1 %	0.280	4 to 6
*	3%	0.4062	5%	2%	1 %	0.305	6 to 8
13/32		0.4375	5%	23/4	7/16	0.330	6 to 8
3	7/16	0.4688	534	27%	3/16	0.350	6 to 8
5/2		0.5000	6	3	1/2	0.375	6 to 8
1 1/2	1/2	0.5312	61/4	31/8	1/2	0.400	6 to 8
17/2	97	0.5625	61/2	31/4	9/16	0.420	6 to 8
%16	%6	0.5938	6¾	33%	%	0.445	6 to 8
¹⁹ /32	5/	0.6250	7	31/2	%	0.470	6 to 8
5% 21∕20	*	0.6562	73%	311/16	1%	0.490	6 to 8
1/32 11/16	 17/15	0.6875	79%	37%	146	0.515	6 to 8
23/32	^{.9} 16	0.7188	81%	41/16	11/16	0.540	6 to 8
	3/4	0.7500	8%	43/16	3/2	0.560	6 to 8
	13/15	0.8125	91/8	4%	13/16	0.610	8 to 10
1	- 1/16 1%	0.8750	93/4	41/8	1%	0.655	8 to 10
1%	15. 15.	0.9375	10%	5%	15/16	0.705	8 to 10
1	1 1	1.0000	10%	51/16	1	0.750	8 to 10
11%	1%	1,1250	11%	513/16	1	0.845	8 to 10
1%	11%	1,2500	121/4	61%	1	0.935	8 to 12
1%	1%	1.3750	12%	6%	1	1.030	10 to 12
	1%	1.5000	13	6%	1%	1.125	10 to 14
1½		inches Materia				k diameter D	is the sam

All dimensions in inches. Material is high-speed steel. The nominal shank diameter D is the same as the reamer diameter. Helical-flute hand reamers with left-hand helical flutes are standard. Reamers are tapered slightly on the end to facilitate proper starting.

ers are tapered slightly on the end to facilitate proper starting. Tolerances: On diameter of reamer, up to k_1 -inch size, incl., + .0001 to + .0004 inch; over k_2 to 1inch size, incl., +.0001 to + .0005 inch; over 1-inch size, +.0002 to +.0006 inch. On length over 14 and flute length B, k_2 to 1-inch size, incl., $\pm k_3$ inch; $1 \cdot k_2$ -inch k_2 inch. k_2 -inch. On shank diameter D, k_3 to 1-inch size, incl., $\pm k_3$ inch; $1 \cdot k_2$ -to $1 \cdot k_2$ -inch size, incl., $\pm k_3$ inch. On shank diameter D, k_4 to 1-inch size, incl., -.001 to -.005 inch; $1 \cdot k_2$ -to $1 \cdot k_2$ -inch size, incl., -.0015 to -.006 inch. On size of square, k_2 -to k_2 -inch size, incl., -.004 inch; $1 \cdot k_3$ -to 1-inch size, incl., -.006 inch; $1 \cdot k_2$ -to $1 \cdot k_2$ -inch size, incl., -.008 inch.

· . .

817

American National Standard Expansion Hand Reamers—Straight and Helical Flutes, Squared Shank ANSI B94.2-1983, R1988

-	+C+				B			
	+-C+	+ D +			B			
Reamer	Len Ove	rall	Fh Len H	igth	Length of Square	Shank Dia,	Size	Number of
Dia.	Max	Mîn	Max	Min	C	D	Square	Flutes
	·			Straigh	t Flutes			
4	43%	3¾	13/4	11/2	4	1/4	0.185	6 to 8
5/15	4%	4	1%	11/2	5/16	5/16	0.235	6 to 8
3∕8	53%	4¼	2	1¾	⅔	3%	0.280	6 to 9
7/15	5%	4½	2	13/4	7/16	746	0.330	6 to 9
1 1/2	6½	5	21/3	13/4	1/2	15	0.375	6 to 9
‱	6½	5%	21/2	1%	% 16	%	0.420	6 to 9
%	7	53/4	3	21/4	5%	5%	0.470	6 to 9
11/16	7%	6¼	3	21/2	11/16	ч ₁₆	0.515	6 to 10
3/4	8	6½	3½	25%	34	3∕4	0.560	6 to 10
74	9	7%	4	31%	7∕8	24	0.655	8 to 10
1	10	8%	45	31/8	1	I	0.750	8 to 10
11%	10½	9	4¾	31/2	1	1%	0.845	8 to 12
11/4	11	9¾	5	41/4	1	11/4	0.935	8 to 32
				Helica	Flutes			
4	4%	3%	1¾	1½	4	4	0.185	6 to 8
5/16	4%	4	134	1½	3%	₹%6	0.235	6 to 8
3%	61%	4¼	2	13/4	3%	-34	0.280	6 to 9
7/16	61/4	414	2	134	7/16	745	0.330	6 to 9
1/2	6%	5	21/3	13/2	ž		0.375	5 to 9
5%	8	6	3	21/4	×	5 %	0.470	6 to 9
34	8%	614	31/3	2%	3%	34	0.560	6 to 10
74	9%	71/2	4	31%	3	76	0.655	6 to 10
1	101/4	8%	41/2	31%	1	1	0.750	6 to 10
1½	11%	9%	5	41/4	1	1¼	0.935	8 to 12
			chee Ma		arbon steel F		helical flute	s that are left

All dimensions are given in inches. Material is carbon steel, Reamers with helical fluctus that are left hand are standard. Expansion hand reamers are primarily designed for work where it is necessary to enlarge reamed heles by a few thousandths. The pilots and guides on these reamers are ground undersize for clearance. The maximum expansion on these reamers is as follows: .006 inch for the $\frac{1}{2}$ to $\frac{1}{60}$ inch sizes. .010 inch for the $\frac{1}{2}$ to $\frac{1}{60}$ inch sizes and .012 inch for the 1- to $\frac{1}{2}$ the heis zes.

The sizes . Of the choice of the γ_2 to γ_2 the sizes and 0.12 inclusion to the 1-to $1\gamma_2$ -to $1\gamma_2$

REAMERS

Taper Shank Jobbers Reamers—Straight Flutes ANSI B94.2-1983, R1988

	······································				3
-		A		— B —	
Reamer	Diameter	Length	Length of	No. of Morse	No. of
Fractional Dec. Equiv.		Overall A	Flute B	Taper Shanka	Fluics
1/4	0.2500	5¾ ₁₆	2	1	6 to 8
¥10	0.3125	5½	21/4	1	6 to 8
ž	0.3750	5 ¹ %s	21/2	1	6 to 8
36	0.4375	61/6	23/4	1	6 to 8
1/2 1/6	0.5000	61/16	3	1	6 to 8
%j6	0.5625	6¾	31/4	1	6 to 8
¥.	0.6250	7%	31/2	2	6 to 8
11/16	0.6875	8	3%	2	8 to 10
∛₄	0,7500	8%	4¾ ₁₅	2	\$ to 10
13/16	0.8125	813/16	4%5	2	\$ to 10
76	0.8750	9¥ ₁₆	4%	2	8 to 10
15/15	0.9375	10	5½	3	8 to 10
1	1.0000	10%	57/ ₁₆	3	8 to 10
11/16	1.0625	10%	5%	3	8 to 10
1%	1.1250	10%	513/ ₈₆	3	8 to 10
13/16	1.1875	11%	6	3	8 to 12
14	1.2500	12%	6%	4	8 to 12
1號	1.3750	125%	6%	4	10 to 12
1%	1,5000	13%	6%	4	10 to 12

All dimensions in inches. Material is high-speed steel.

Tolerances: On reamer diameter, V_{4} to $1 \pm s_{2}$, -0.001 to +.0004 inch; over V_{4} to 1-inch size, incl., $\pm.0001$ to +.0005 inch; over 1_{4} -to 1-inch size, incl., $\pm.0001$ to +.0006 inch. On overall length A and length of flute B, V_{4} to 1-inch size, incl., $\pm.V_{16}$ inch; and $1V_{16}$ to $1V_{2}$ -inch size, incl., $\pm.V_{26}$ inch;

American National Standard Driving Slots and Lugs for Shell Reamers or Shell Reamer Arbors ANSI 894.2-1983, R1988

Arbor	Fitting		ig Slot		Arbor	Reamer						
Size	Reamer	Width	Depth	Width	Depth	Hole Dia. at						
No.	Sizes	W	ſ	L	М	Large End						
4	3/4	5/20	³⁄16	%4 ¹¹ ⁄64	‰	0,375						
5	¹³ / ₁₆ to 1	54 <u>32</u> 3∕16	1/4	11/64	7 ₃₂ 7 ₃₂	0.500						
6	11/16 to 11/4	3/15	1/2	14/64	1/20	0.625						
7	1% to 1%	1/4	5∕ ₁₆	15/64	%2	0.750						
8	1 ¹ % to 2	1 X	™16	15%64	¥22	1.000						
9	$1\frac{1}{16}$ to 2 $2\frac{1}{16}$ to $2\frac{1}{2}$	₹¥16	3%	19/64	11/32	1.250						

All dimension are given in inches. The hole in shell rearners has a taper of $\frac{1}{6}$ inch per foot, with arbors tapered to correspond. Shell rearner arbor tapers are made to permit a driving fit with the rearner.

+ 1×

819

Straight Shank Chucking Reamers—Straight Flutes, Wire Gage Sizes ANSI B94.2-1983, R1988

Mrec Gege Inch Inth Patter B Max Min Patters Wase Wase Wase Inch Inth Patter B Max Min Patters 60 04000 2½ ½ 0.390 0.380 4 49 0.700 3 ¼ 0.660 0.660 4 58 0.410 2½ ½ 0.390 0.380 4 47 0.770 3 ¾ 0.770 0.710 4 58 0.425 ½ 0.390 0.380 4 47 0.760 3 ¾ 0.770 0.710 4 56 0.465 2½ ½ 0.390 0.800 4 45 0.800 3 ¾ 0.810 0.800 4 53 0.520 2½ ½ 0.550 0.757 4 42 0.960 3½ ¾ 0.800 4 40 54 0.570 3 ¾ 0.660 0.550 4	r						1 894.2	-1905	, 1120	50				
A Resumer Diameter Light office Light office Shark office No. Office Resumer Diameter Light office Shark office No. Office Resumer Diameter Light office Light office Shark office No. Diameter No. Office Resumer Light office Shark office No. Diameter No. Office Resumer Light office Shark office No. No. Max Min Plutes 60 0400 2½ ½ 0.390 0.380 4 49 0.700 3 ½ 0.060 0.669 4 58 0410 2½ ½ 0.390 0.380 4 47 0.780 3 ½ 0.7701 0.701 4 56 0465 2½ ½ 0.939 0.980 4 445 0.820 3 ¾ 0.7711 0.701 4 53 0550 2½ ¼ 0.9510 0.500 4 42 0.980 3 ¾ 0.800 4		D									<i>_</i>		_	
A Resumer Virameter Light and Light Light of Dia. D Shaak of Dia. D No. of Dia. D Resumer Virameter Light of of Dia. D Shaak of Dia. D No. of Dia. D Resumer Virameter Light of Dia. D Shaak of Dia. D No. No. Max Min Future Filter Shaak of Dia. D No. No. Max Light of Dia. D Shaak of Dia. D No. No. Max Light of Dia. D Shaak of Dia. D No. No. Max No. Dia. D No. No. Max Light of Dia. D Shaak of Max No. Max No. Max Min Filter 60 0.400 2½ ½ 0.390 0.380 4 49 0.700 3 ½ 0.070 0.711 0.710 4 58 0.402 2½ ½ 0.390 0.380 4 45 0.802 3 ¾ 0.0701 0.711 0.701 4 55 0.520 2½ ½ 0.455 0.455 442 0.803 3 ¾ 0.800 4 51 0.670 3		ļ.	-{ -								4			-
A Resumer Diameter Light office Light office Shark office No. (Fight) Resumer Diameter Light office Shark office No. (Fight) Resumer Diameter Light office Shark office No. (Fight) Resumer Diameter Light office Shark Diameter No. (Fight) Resumer Diameter Light office Shark Diameter No. (Fight) No. (Fight) Resumer Light office Shark Diameter No. (Fight) No. (Fight) Resumer Light office Shark Diameter No. (Fight) No. (Fight)											ì		~	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-	- B	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-					A					•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Lath				No			Tath	Lgth.			NI-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	Over-				of			Over-				of
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Inch	80.74	В	Max	Min	Fintes		Inch	allA	В	Max	Min	Flutes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60	.0400	21/2	8	.0390	.0380	4	49	.0730	3	3/4	.0660	.0650	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		21/2	12	.0390	.0380	4	48	.0760	3	₹4	.0720	.0710	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58	.0420	21/2	1/2	.0390	.0380	4	47	.0785	3	*4	.0720	.0710	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57	.0430	21/2	К	.0390	.0380	4	46	.0810	3	34	.0771	.0701	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	- 1	K			4	45		3	¥,	.0771	.0761	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			21/2	k	.0510	.0500	4	44	.0860	3	34	.0810	.0800	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54	.0550	- 1	14	.0510	.0500	4	43	.0890	3	34	.0810	.0800	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0595	21/2	1/2	.0585	.0575	4	42	.0935	3	34	.0880	.0870	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	.0635	2½	1/2	.0585	.0575	4	41	.0960	31/2	3%	.0928	.0918	4ω6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	.0670	3	34	.0660	.0650	4	40	.0980	3½	34	.0928	.0918	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	.0700	3	34	.0660	.0650	4	39	.0995	3½	34	.0928	.0918	4106
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	.1015	31/2	×.	.0950	.0940	4 to 6	19	.1660	4½	1%	.1595	.1585	4 10 16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	.1040	3½	Ц.	.0950	.0940	4 to 6	18	.1695	4½	1%	.1595	.1585	4 lo 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36	.1065	3½	¥,	.1030	.1020	4 to 6	J7	.1730	41/2	1%	.1645	.1635	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	.1100	3½	¥,	.1030	.1020	4 to 6	16	.1770	4½	1%	.1704	.1694	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	.1110	31/2	⅔	.1055	.1045	4 to 6	15	.1800	4½	11%	.1755	.1745	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33	.1130	31/2	¥,	.1055	.1045	4 to 6	14	.1820	4½	11/2	.1755	.1745	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	.1160	3½	⅔	.1120	.1110	4 to 6	13	.1850	4½	1%	.1805	.1795	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	.1200	31/2	⅔	.1120	.1110	4 10 6	12	.1890	4½	JK	.1805	.1795	4 to 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	.1285	3½	×,	.1190	.1180	4 10 6	ш	.1910	5	11/4	.1860	.1850	4 to 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	.1360	4	1	.1275	.1265	4106	10	.1935	5	11/4	.1860	.1850	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	.1405	4	I	.1350	.1340	4 to 6	9	.1960	5	11/4	.1895	.1885	4 to 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	.1440	4	I	.1350	.1340	4 to 6	8	.1990	5	11/4	.1895	.1885	4 to 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	.1470	4	1	.1430	.1420	4 to 6	7	.2010	5	11/4	.1945	.1935	4 to 6
	25	.1495	4	1	.1430	.1420	4 to 6	6	.2040	5	11/4	.1945	.1935	4 το 6
23 1540 4 1 1460 450 4106 4 2000 5 12 2016 2006 410	24	.1520	4	1	.1460	.1450	4 to 6	5	.2055	5	11/4	.2016	.2006	4 to 6
	23	.1540	4	1	.1460	.1450	4 to 6	4	.2090	5	11/4	.2016	.2006	4 to 6
22 .1570 4 1 .1510 .1500 4 to 6 3 .2130 5 11/4 .2075 .2065 4 to	22	.1570	4	1	.1510	.1500	4 to 6	3	.2130	5	1½	.2075	.2065	4 to 6
21 .1590 41/2 11/4 .1530 .1520 4 to 6 2 2210 6 11/2 .2173 .2163 4 to	21	.1590	41/2	1%	.1530	.1520	4 to 6	2	2210	6	1½	.2173	.2163	4 ю б
20 .1610 41/2 11/2 .1530 .1520 4 to 6 1 .2280 6 11/2 .2173 .2163 4 to	20	.1610	41/2	1%	.1530	.1520	4 to 6	L	.2280	6	1½	.2173	.2163	4 to 6

All dimensions in inches. Material is high-speed steel.

Tolerances: On diameter of rearner, plus .0001 to plus .0004 inch. On overall length A, plus or minus $\frac{1}{16}$ inch. On length of flute B, plus or minus $\frac{1}{16}$ inch.

REAMERS

Straight Shank Chucking Reamers—Straight Flutes, Letter Sizes ANSI B94.2-1983, R1988

† D ∳							A				B		
Rea Diau	neter	Lgth. Over- all A	Lgth. of Flute	Sha Dù D	1.	No. of Flutes	Diar	mer neter	Lgth. Over- all A	Lgth. of Flute B	Sha Di L Max	a.	No. of Flutes
Letter	Inch	aun	В	Max	Min		Letter	Inch			0.2792	0.2782	4 to 6
A	0.2340	6	1½	0.2265	.2255	4 to 6	N	0.3020	6	1½		0.2782	4 to 6
в	0.2380	6	11/5	0.2329	.2319	4106	0	0.3160	• 6	1½	0.2792	0.2782	4 to 6
С	0.2420	6	1½	0.2329	.2319	4 to 6	Р	0.3230	6	1½		0.2782	4106
D	0.2460	6	1½	0.2329	.2319	4 to 6	Q	0.3320	6	1½	0.2792		4 to 6
E	0.2500	6	1½	0.2405	.2395	4 to 6	R	0.3390	6	1½	0.2792	0.2782	
F	0.2570	б	1½	0.2485	.2475	4 to 6	S	0.3480	7	134	0.3105	0.3095	4106
G	0.2610	6	11/2	0.2485	.2475	4 to 6	Т	0.3580	7	11/4	0.3105	0.3095	4 to 6
н	0.2660	6	115	0.2485	.2475	4 to 6	U	0.3680	7	134	0.3105	0.3095	4 to 6
1	0.2720	6	11/2	0.2485	.2475	4106	V V	0.3770	7	1%	0.3105	0.3095	4106
1	0.2770	6	1%	0.2485	.2475	4 to 6	W	0.3860	7	1¾	0.3105	0.3095	4 to 6
ĸ	0.2810	6	11%	0.2485	.2475	4 to 6) x	0.3970	7	1-34	0.3105	0.3095	4106
L	0.2900	6	11/2	0.2792	.2782	4 10 6	Y	0.4040	7	1%	0.3105	0.3095	4 to 6
М	0.2950	6	11/2	0.2792	.2782	4 to 6	z	0.4130	7	1¥	0.3730	0.3720	6 to 8

All dimensions in inches. Material is high-speed steel. Tolerances: On diameter of reamer, for sizes A to E, incl., plus .0001 to plus .0004 inch and for sizes Fto Z, incl., plus .0001 to plus .0005 inch. On overall length A, plus or minus $\frac{1}{36}$ inch. On length of flute B, plus or minus $\frac{1}{36}$ inch.

Straight Shank Chucking Reamers— Straight Flutes, Decimal Sizes ANSI B94.2-1983, R1988

+ D- +					A				B		ANN + +
Reamer	Lgth. Overall	Lgth. of	Sha Diamu		No. of	Reamer Dia.	Lgth. Overall	Lgth. of Flute	Sha Diam		No. of
Dìa.	A	Flute B	Max.	Min.	Flutes	Dia.	A	B	Max.	Min.	F]utes
0.1240	31/4	7%	0.1190	0.1180	4 to 6	0.3135	6	1½	0.2792	0.2782	4 to 6
0.1260	31/2	74	0.1190	0.1180	4 to 6	0.3740	7	1¾	0.3105	0.3095	6 to 8
0.1865	4½	1%	0.1805	0.1795	4 to 6	0.3760	7	13/4	0.3105	0.3095	6 to 8
0.1885	414	1%	0.1805	0.1795	4 to 6	0.4365	7	134	0.3730	0.3720	6 to 8
0.2490	6	1%	0.2405	0.2395	4 to 6	0.4385	7	1½	0.3730	0.3720	6 to 8
0.2510	6	1%	0.2405	0.2395	4 to 6	0.4990	8	2	0.4355	0.4345	6 to 8
0.3115	6	11/2	0.2792	0.2782	4 to 6	0.5010	8	2	0.4355	0.4345	6 to 8

All dimensions in inches. Material is high-speed steel. Tolerances: On diameter of reamer, for 0.124 to 0.249-inch sizes, plus .0001 to plus .0004 inch and for 0.251 to 0.501-inch sizes, plus .0001 to plus .0005 inch. On overall length A, plus or minus $\frac{1}{16}$ inch. On length of flute B, plus or minus $\frac{1}{16}$ inch.

821

American National Standard Straight Shank Rose Chucking and Chucking Reamers—Straight and Helical Flutes, Fractional Sizes ANSI B94.2-1983 (R1988)

		_				
1			~~~~	=- >		
70						
			B			₿
]		-A				
				Shapk L	Via D	No. of
Reamer L		Length	Flute Length B	Max	Min	Flutes
Chucking	Rose Chucking	Overall A		0.0455	0.0445	4
3/64		21/2	14 14 14 14 14 14 14 14 14	0.0585	0.0575	4
46		2½ 3	3%	0,0720	0.0710	4
[%] 61		3	1 1	0.0880	0.0870	4
964 X22 V64 X24 X44 X44		3%	1 2	0.1030	0.1020	4 to 6 4 to 6
64	18	31/2	16	0.1190	0.1180	4 to 6
28 97.	18	4	1	0.1350	0.1340 0.1500	4 to 6
764 56.		4		0.1510 0.1645	0.1635	4 to 6
12		4½	1%	0.1845	0.1795	4 to 6
764 3/16 12/64	3/6	4½	וא 1¼	0,1945	0.1935	4 to 6
EYG4		5	174	0.2075	0.2065	4 10 6
74 ₂₂ 1544		6	1項 1項 1項 1項 1項	0,2265	0.2255	4 to 6
1%4	1	6	11%	0,2405	0,2395	4 to 6
12/4 12/64	1/4	6	14	0.2485	0.2475	4106
17/64		6	1%	0.2485	0.2475	4 to 6 4 to 6
%32 1%64		6	11/2	0.2792	0.2782	4 to 6
¹⁷ 64	5/10	6	1½	0.2792	0.2782	4 to 6
% ™64		6	1½	0.2792 0.2792	0.2782	4 to 6
11/12	1.0	6	1½	0.2792	0.3095	4 to 6
2%4		7	1%	0.3105	0.3095	4 to 6
3/8 25/4	3gu	7	134	0.3105	0.3095	4 to 6
23/44		1	11/4	0.3105	0.3095	4 to 6
13/20		1 7	14	0.3730	0.3720	6 to 8
21/64	1/0	1 7	13/4	0.3730	0.3720	6 to 8
74 27/54	7 ₁₆ a	7	1%	0.3730	0.3720	6 to 8 6 to 8
-%4 1%32		7	1%	0.3730	0.3720	6 to 8
31 31/4	1	8	2	0.4355	0.4345 0.4345	6 to 8
764 K	1/2	8	2	0.4355	0.4345	6 10 8
1/2		8	2	0.4355	0.4345	6 to 8
16	1	8	2	0.4355	0.4345	6 6 6 6
1%;		8	21/4	0.5620	0.5605	6108
54 21 <u>/21</u>		9	2%	0.5620	0.5605	6 to 1
21/22		9	21/4	0.5620	0.5605	6 10
4/16		9	21/4	0.5620	0.5605	6 to
24/2		9%	21/2	0.6245	0.6230	8 10 1
×4 3%2		942	21/2	0.6245	0.6230	8 to 1
13/16		91/2	21/2	0.6245 0.6245	0.6230	8 to 1
1/10		9½	21/2	0.7495	0.7480	8 to
2,		10	2%	0.7495	0,7480	8 to
29/		10	2% 2%	0.7495	0.7480	8 to
15/16		10	2%	0.7495	0.7480	\$ to
		10%	234	0.8745	0.8730	8 to
1		10%	2%	0.8745	0.8730	810
11/16		102	2%	0.8745	0.8730	8 to
1%		11	2%	0.9995	0.9980	8 to 8 to
1%n		1113	3	0.9995	0,9980	10 10
1½ 1%		111/2	3	0.9995	0,9980 0,9980	10 to
1%		12	31/4	0.9995	1.2480	10 to
17 ₁₆		12	31/4	1.2495	1.2480	10 0
115		12%	3%	1		1

REAMERS

^aReamer with straight flutes is standard only.

⁶ Reamer with helical flucts is standard only. ⁸ Reamer with helical flucts is standard only. All dimensions are given in inches. Material is high-speed steel. Chucking reamers are end cutting on the chamfer and the relief for the outside diameter is ground in back of the margin for the full length of land. Lands of rose chucking reamers are not relieved on the periphery but have a relatively lenge amount of back taper. large amount of back taper.

 $Tolerances: On reamer diameter, up to \frac{1}{2} - inch size, incl., + .0001 to + .0004 inch; over \frac{1}{2} - to 1 - inch size, incl., + .0001 to + .0005 inch; over 1 - inch size, + .0002 to + .0006 inch. On length overall A and the total of the total and to$ flute length B, up to 1-inch size, incl., $\pm \frac{1}{16}$ inch; $1\frac{1}{16}$ to $1\frac{1}{2}$ inch size, incl., $\pm \frac{3}{32}$ inch.

Helical flutes are right- or left-hand helix, right-hand cut, except sizes $1\frac{1}{16}$ through $1\frac{1}{2}$ inches, which are right-hand helix only.

	uners Serai		ai Fintes 70701		
				-A	
Diameter of Reamer	Length Overall A	Flute Length B	Hole Diameter Large End H	Fitting Arbor No.	Number of Flutes
			0.375	4	8 to 10
祥	21/4	1½	0.500		8 to 10
7g 15/16*	2½ 2½ 2½ 2¾ 2¾ 2¾	1월	0.500	5 5	8 to 10
1/1/16	2%2	1%	0.500	5	8 to 10
	2%	1¾ 2	0.625	6	8 to 12
11/16	2%	2	0.625	6	8 to 12
1%	2%	2	0.625	6	8 to 12 8 to 12
13/16	2%	2	0.625	6	8 to 12 8 to 12
11/4	2¾ 3		0.825	7	8 to 12 8 to 12
15/16	3	2¼		7	8 to 12 8 to 12
136	3	21/4	0.750	7	
13/16	3	21/4	0.750	7	8 to 12
1½	3	2%	0.750		10 to 14
1%		21/4	0.750	7	10 to 14
1%	3	21/4	0.750	7	10 to 14
111/16	3½ 3½	2½	1.000	8	10 to 14
134	3½	2½	1.000	8	12 to 14
1%	31/2	21/2	1.000	8	12 to 14
1%	31/2	21/2	1.000	8	12 to 14
11%	31/2	2½	1.000	8	12 to 14
2	31/2	2½ 2½	1.000	8	12 to 14
2 ¹ / ₁₆ ⁴	334	2¾	1.250	9	12 to 16
21/8	384	2¾	1.250	9	12 to 16
23 ₁₆ "	3%	23/4	1.250	9	12 to 16
21/4	3%	2%	1.250	9	12 to 16
$2\frac{1}{8}$	3%	23/4	1.250	9	14 to 16
2½	31/4	2%	1.250	9	14 to 16

Shell Reamers—Straight and Helical Flutes ANSI B94.2-1983, R1988

"Helical flutes only.

+ 1.

All dimensions are given in inches. Material is high-speed steel. Helical flute shell reamers with left-hand helical flutes are standard. Shell reamers are designed as a sizing or finishing reamer and are held on an arbor provided with driving lugs. The holes in these reamers are ground with a taper of $\frac{1}{2}$ inch per foot.

 $\label{eq:constraints} \begin{array}{l} \hline Tolerances: \mbox{ On diameter of reamer, } \ensuremath{\chi_{\rm r}}\ to 1\ \mbox{ inch, } + .0001\ \mbox{ to } + .0005\ \mbox{ inch, } over 1\ \mbox{ inch, } \ensuremath{\chi_{\rm g}}\ \mbox{ inch, } \mbox{ over 1\ \mbox{ inch, } + .0001\ \mbox{ to } + .0005\ \mbox{ inch, } \mbox{ over 1\ \mbox{ inch, } \mbox{$

823

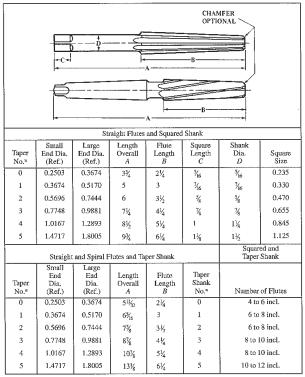
American National Standard Arbors for Shell Reamers— Straight and Taper Shanks ANSI B94.2-1983, R1988

	₿ —		2							
A										
			~~~~~							
	-(	<u>}t</u>								
	-		4	+						
	Overall	Approximate	Reamer	Taper	Straight Shan					
Arbor Size No.	Length A	Length of Taper L	Size	Shank No."	Dia, D					
4	9	21/4	- *4	$\frac{2}{2}$	2					
	91/2	2½ 2¼	¹³ / ₁₆ to 1	3	78 32					
5			1/1610 1/4	1 2						
5 6	10	274		3						
5 6 7	10	3	1% to 1%	3	1 12					
5 6 7 8		274 3 3½ 3½	1%6 to 1% 1%6 to 2 2%6 to 2%	3	5 8 1 8 1 8 1 8					

All dimensions are given in inches. These arbors are designed to fit standard shell reamers (see table). End which fits reamer has taper of ½ inch per foot.

Stub Screw Machine Reamers—Helical Flutes ANSI B94.2-1983, R1988

Serics	Diameter Range	Length Over- all	Length of Flutz	Dia. of Shank	Size of Hole	Flute No.	Scries No.	Diametor Range	Length Over- all	Length of Flute	Dia. of Shank	Size of Hole	Flate No.
. 10.	rung.	A	В	D	H				A	B	D	11 3/15	6
00	.0600066	1¾	14	1%	1/16	4	12	.3761407	21/2	11/4	14	216 376	6
0	.0661074	134	14	<u>%</u>	1/16	4	13	.4071439	2½	11/4	14		6
1	.0741084	134	12	1%	1/15	4	14	,4391470	2½	11/4	12	*16	6
2	.0841096	13/4	1/2	1/4	Y16	4	15	.4701505	21/2	11/4	12	3/16	i -
3	.0961126	2	- %	1 %	1/16	4	16	.5051567	3	11/2	1∕8	4	6
4	.1261158	21/4		14	3/2	4	17	.5671630	3	1½	*	1/4	6
5	.1581-188	21/4	1	14	3/20	4	18	.6301692	3	11/2	₩,	14	6
6	.1881219	21/4	1	1 14	3/2	6	19	.6921755	3	1½	14	×16	8
7	2191-251	21/4	1	14	36	6	20	.7551817	3	11/2	34	⁵ / ₁₆	8
8	.2511282	· ·		34	1 %	6	21	.8171880	3	1½	-1/4	3/16	8
	.2821313	214		1	14	6	22	.8801942	3	1½	34	$-\frac{3}{2}_{16}$	8
9	.3131344	1 .	1%	3	14	6	23	.9421-1.010	3	11/2	34	3/16	8
11	.3441376	1 *	1%	1	14	6	1					,	


All dimensions in inches. Material is high-speed steel. These reamers are standard with right-hand cut and left-hand helical flutes within the size ranges shown.

shown. Tolerances: On diameter of reamer, for sizes 00 to 7, incl., plus .0001 to plus .0004 inch and for sizes 8 to 23, incl., plus .0001 to plus .0005 inch. On overail length A, plus or minus  $V_{k}$  inch. On length of flute B, plus or minus  $V_{k}$  inch. On diameter of shank D, minus .0005 to minus .002 inch.

····r·

#### REAMERS

#### American National Standard Morse Taper Finishing Reamers ANSI B94.2-1983, R1988



^aMorse. For amount of taper see Table 1b on page 908.

All dimension are given in inches. Material is high-speed steel. The chamfer on the cutting end of the resmer is optional. Squared shank reamers are standard with straight flutes. Tapered shank reamers are standard with straight or spiral flutes. Spiral flute reamers are standard with left-had spiral flutes.

Tolerances: On overall length A and flute length B, in taper numbers 0 to 3, incl.,  $\pm V_{45}$  inch, in taper numbers 4 and 5,  $\pm 3 \frac{1}{20}$  inch. On length of square C, in taper numbers 0 to 3, incl.,  $\pm V_{45}$  inch; in taper numbers 4 and 5,  $\pm 3 \frac{1}{20}$  inch. On shark diameter  $D_1 - .0005$  to -.002 inch. On size of square, in taper numbers 0 and 1, -.004 inch; in taper numbers 2 and 3, -.006 inch; in taper numbers 4 and 5, -.008 inch.

825

Taper Pipe Reamers-Spiral Flutes ANSI B94.2-1983, R1988

		oeter .	Length	Flute	Square	Shank	Size			
Nom. Síze	Large End	Small End	Overail A	Length B	Length C	Dia- cter D	of Square	No. of Flutes		
¥	0.362	0.316	21/8	3/4	3%	0.4375	0.328	4 to 6		
4	0.472	0.406	21/16	11/16	7/16	0.5625	0.421	4 to 6		
36	0.606	0.540	2%	11/16	14	0.7000	0.531	4 to 6		
14	0.751	0.665	31/2	1%	5%	0.6875	0.515	4 to 6		
14 74	0.962	0.876	31/4	1%	11/16	0.9063	0.679	6 to 10		
1	1.212	1.103	3¾	13/4	3/16	1.1250	0.843	6 to 10		
U%	1.553	1.444	4	13/4	15/16	1.3125	0.984	6 to 10		
18	1.793	1.684	41/4	13/4	1	1.5000	1.125	6 to 10		
2	2.268	2.159	4½	13%	11/3	1.8750	1.406	8 to 12		

All dimensions are given in inches. These reamers are tapered inch per foot and are intended for reaming holes to be tapped with American National Standard Taper Pipe Turead taps. Material is high-speed steel. Reamers are standard with left-hand spiral flutes.

Ingle-speed steer. Kealnets are standard with releation spin at nucles. *Tolerancess*: On length overall A and flute length B, ½ to ½ inch size, incl., ±½ inch; 1- to 1½-inch size, incl., ±½ inch; 2-inch size, ±½ inch. On length of square C, ½- to ½ inch size, incl., ±½ inch; 1to 2-inch size, incl., ±½ inch. On shank diameter D, ½ inch size, -..0015 inch; ½- to 1-inch size, incl., -..002 inch; 1½- to 2-inch size, incl., -..003 inch. On size of square, ½ inch size, -..004 inch; ½ to ½inch size, incl., -..006 inch; 1- to 2-inch size, incl., -..008 inch.

в	& S Taper	Reamers-S	Straight and	Spiral Flutes	Squared Shank

	-			-	-	-		
Taper No."	Dia., Small End	Dia., Large End	Overall Length	Square Length	Flute Length	Dia. of Shank	Size of Square	No. of Flutes
1	0.1974	0.3176	43/4	1/4	2%	<u>%</u>	0.210	4 to 6
2	0.2474	0.3781	51%	×16	31%	砦	0.255	4 to 6
3	0.3099	0.4510	5½	36	33%	%₂	0.305	4 to 6
4	0.3474	0.5017	5%	7/16	311/16	7/16	0.330	4 to 6
5	0.4474	0.6145	6%	1/2	4	%₀	0.420	4 to 6
6	0.4974	0.6808	6%	*	4%	*	0.470	4 to 6
7	0.5974	0.8011	71/2	3/4	4%	∛₄	0.560	6 to 8
8	0.7474	0.9770	81%	13/16	5%	13/16	0.610	6 to 8
9	0.8974	1.1530	8%	74	6%	1	0.750	6 to 8
10	1.0420	1.3376	9¾	1	6%	11/8	0.845	6 to 8

^aFor taper per foot, see Table 10 on page 916.

#### These reamers are no longer ANSI Standard.

All dimensions are given in inches. Material is high-speed steel. The chamfer on the cutting end of the reamer is optional. All reamers are finishing reamers. Spiral flute reamers are standard with lefthand spiral flutes. (Tapered reamers, especially those with left-hand spirals, should not have circular lands because cutting must take place on the outer diameter of the tool.) B & S taper reamers are designed for use in reaming out Brown & Sharpe standard taper sockets.

 $Tolerances: On length overall A and flute length B, taper nos. 1 to 7, incl., \pm 1/a inch; taper nos. 8 to 10, incl., \pm 3/a inch. On length of square C, taper nos. 1 to 9, incl., \pm 1/a inch; taper no. 10, \pm 3/a inch. On shank diameter D, -.0005 to -.002 inch. On size of square, taper nos. 1 to 3, incl., -.004 inch; taper nos. 4 to 9, incl., -.006 inch; taper no. 10, -.008 inch.$ 

### 826

### REAMERS

### American National Standard Die-Maker's Reamers ANSI B94.2-1983, R1988

			-			Œ	20 - А — В	0	2	$\approx$	>			
Letter	Dian	neter	Ler	igth	Letter	Diar	neter	Ler	igth	T	Diar	neter	Lct	igth
Size	Small End	Large End	A	В	Size	Small End	Large End	A	В	Letter Size	Small End	Large End	A	В
AAA	0.055	0.070	21/4	11%	G	0.135	0.158	3	1%	0	0.250	0.296	5	31/2
AA	0.065	0.080	$2\frac{1}{4}$	1%	н	0.145	0.169	31/4	1%	Р	0.275	0.327	51/2	4
A	0.075	0.090	21/4	1%	I	0.160	0.184	31/4	1%	0	0.300	0.358	6	4½
в	0.085	0.103	$2\frac{3}{2}$	1%	1	0.175	0.199	31/4	1%	R	0.335	0.397	6%	4%
С	0.095	0.113	21/2	1%	ĸ	0.190	0.219	31/2	21/4	S	0.370	0.435	6%	5
D	0.105	0.126	2%	1%	L	0.205	0.234	31/2	21/4	Т	0.405	0.473	7	51/4
Ε	0,115	0.136	23/4	1%	M	0.220	0.252	4	216	U	0.440	0.511	71/2	5%
F	0.125	0.148	3	1¾	N	0.235	0.274	4½	3					

All dimensions in inches. Material is high-speed steel. These reamers are designed for use in die-making, have a taper of ³/₄ degree included angle or 0.013 inch per inch, and have 2 or 3 flutes. Ream-ers are standard with left-hand spiral flutes. Tip of reamer may have conical end.

Tolerances: On length overall A and flute length B,  $\pm \frac{1}{16}$  inch.

# Taper Pin Reamers ---- Straight and Left-Hand Spiral Flutes, Squared Shank; and Left-Hand High-Spiral Flutes, Round Shank ANSI B94.2-1983, R1988

		D4	<u></u>				
		-c-i 1	<u> </u>	R			
		J	A-				
No. of	Diameter	Diameter	Overall	Length	Length	Diameter	
Taper	at Large End	at Small End	Lengthof	പ	of	of	Size
Pin	of Reamer	of Reamer	Reamer	Flute	Square	Shank	of
Reamer	(Ref.)	(Ref.)	A	B	C	D	Square ^a
8/0 ^b	0.0514	0.0351	堵	21/22		46	
7/0	0.0666	0.0497	113/16	13/16		- 10 %a	0.060
6/0	0.0806	0.0611	115/16	15/16	5	- 16 - 16	0.070
5/0	0.0966	0.0719	23/16	13/16	54	764	0.080
4/0	0.1142	0.0869	25/6	1%	*	1 12	0.095
3/0	0.1302	0.1029	2%	1%	5	×.	0.105
2/0	0.1462	0.1137	2%	1%	12 Vin	54	0.115
0	0.1638	0.1287	215/16	111/16	x.	1/2 1/2 1/2	0.130
3	0.1798	0.1447	21%	111/16	76	-31 -3/4	0.140
2	0.2008	0.1605	33/16	15%	1/4	3/6 1%1	0.150
3	0.2294	0.1813	311/16	2%	14	15/64	0.175
4	0.2604	0.2071	4%	23%	v.	1%	0.200
5	0.2994	0.2409	4%	213/6	ž.	3/16	0.235
6	0.3540	0.2773	57/16	311/16	-%	2%	0.270
7	0.4220	0.3297	6%	4%	***************************************	1%2	0.305
8	0.5050	0.3971	73/16	53/6	- ×.	7/16	0.330
9	0.6066	0.4805	$8N_{16}$	61/16	%	%	0.420
10	0.7216	0.5799	99%	613/16	N TE	% %	0.470

 10
 0.7216
 0.5799
 9%
 64%
 32
 33
 0.470

 *Not applicable to high-spiral flute reamers.
 *Not applicable to straight and left-hand spiral fluted, squared shank reamers.
 All dimensions in inches. Reamers have a taper of  $\frac{1}{2}$  inch per foot and are made of high-speed steel.

 Straight flute reamers of carbon steel are also standard. The number of flutes is as follows; 3 or 4, for 70 to 4/0 sizes; 4 to 6, for 30 to 0 sizes; 5 or 6, for 1 to 5 sizes; 6 to 8, for 6 to 9 sizes; 7 or 8, for the 10 size in the case of straight- and spiral-flute reamers; and 2 or 3, for 8/0 to 8 sizes; 7 or 8, for the 9 and 10 sizes in the case of high-spiral flute reamers.

 Tolerances: On length overall A and flute length B,  $\pm \frac{1}{16}$  inch. On length of square C,  $\pm \frac{1}{29}$  inch. On shank diameter D, -000 inch for straight- and spiral-flute reamers and -.000 inch for 8 to 10 sizes.

# TWIST DRILLS AND COUNTERBORES

Twist drills are rotary end-cutting tools having one or more cutting lips and one or more straight or helical flutes for the passage of chips and cutting fluids. Twist drills are made with straight or tapered shanks, but most have straight shanks. All but the smaller sizes are ground with "back taper," reducing the diameter from the point toward the shank, to prevent binding in the hole when the drill is worn.

Straight Shank Drills: Straight shank drills have cylindrical shanks which may be of the same or of a different diameter than the body diameter of the drill and may be made with or without driving flats, tang, or grooves.

Taper Shark Drills: Taper shark drills are preferable to the straight shark type for drilling medium and large size holes. The taper on the shank conforms to one of the tapers in the American Standard (Morse) Series.

American National Standard.—American National Standard B94.11M-1993 covers nomenclature, definitions, sizes and tolerances for High Speed Steel Straight and Taper Shank Drills and Combined Drills and Countersinks, Plain and Bell types. It covers both inch and metric sizes. Dimensional tables from the Standard will be found on the following

Definitions of Twist Drill Terms .- The following definitions are included in the Standard.

Axis: The imaginary straight line which forms the longitudinal center of the drill.

Back Taper: A slight decrease in diameter from point to back in the body of the drill. Body: The portion of the drill extending from the shank or neck to the outer corners of the

cutting lips. Body Diameter Clearance: That portion of the land that has been cut away so it will not rub against the wall of the hole.

Chisel Edge: The edge at the ends of the web that connects the cutting lips. Chisel Edge Angle: The angle included between the chisel edge and the cutting lip as viewed from the end of the drill.

Clearance Diameter: The diameter over the cutaway portion of the drill lands.

Clearance Diameter: The diameter over the cutaway portion of the drill lands. Drill Diameter: The diameter over the margins of the drill measured at the point. Flutes: Helical or straight grooves cut or formed in the body of the drill to provide cut-ting lips, to permit removal of chips, and to allow cutting fluid to reach the cutting lips. Helix Angle: The angle made by the leading edge of the land with a plane containing the string the drill.

axis of the drill. Land: The peripheral portion of the drill body between adjacent flutes.

Land Width: The distance between the leading edge and the heel of the land measured at a right angle to the leading edge.

Lips—Two Flute Drill: The cutting edges extending from the chisel edge to the periph-

Lips-Three or Four Flute Drill (Core Drill). The cutting edges extending from the botery.

Lips—Inree or Four Fille Drive (Core Drive). The change ages extending from the order tom of the changer to the periphery. Lip Relief: The axial relief on the drill point. Lip Relief/Angle: The axial relief angle at the outer corner of the lip. It is measured by projection into a plane tangent to the periphery at the outer corner of the lip. (Lip relief angle is usually measured across the margin of the twist drill.)

angle is usually measured across the margin of the twist drill.) Margin: The cylindrical portion of the land which is not cut away to provide clearance. Neck: The section of reduced diameter between the body and the shank of a drill. Overall Length: The length from the extreme end of the shank to the outer corners of the cutting lips. It does not include the conical shank end often used on straight shank drills, nor does it include the conical cutting point used on both straight and taper shank drills. (For core drills with an external center on the cutting end it is the same as for two-flute

11

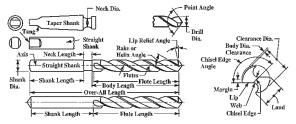
### 828

### TWIST DRILLS

drills. For core drills with an internal center on the cutting end, the overall length is to the extreme ends of the tool.)

*Point:* The cutting end of a drill made up of the ends of the lands, the web, and the lips. In form, it resembles a cone, but departs from a true cone to furnish clearance behind the cutting lips.

Point Angle: The angle included between the lips projected upon a plane parallel to the drill axis and parallel to the cutting lips.


Shank: The part of the drill by which it is held and driven.

Tang: The flattened end of a taper shank, intended to fit into a driving slot in the socket. Tang Drive: Two opposite parallel driving flats on the end of a straight shank.

Web: The central portion of the body that joins the end of the Jands. The end of the web forms the chisel edge on a two-flute drill.

Web Thickness: The thickness of the web at the point unless another specific location is indicated.

Web Thinning: The operation of reducing the web thickness at the point to reduce drilling thrust.



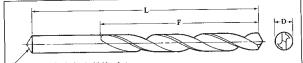
ANSI Standard Twist Drill Nomenclature

Types of Drill.—Drills may be classified based on the type of shank, number of flutes or hand of cut.

Straight Shank Drills: Those having cylindrical shanks which may be the same or different diameter than the body of the drill. The shank may be with or without driving flats, tang, grooves, or threads.

Taper Shank Drills: Those having conical shanks suitable for direct fitting into tapered holes in machine spindles, driving sleeves, or sockets. Tapered shanks generally have a driving tang.

Two-Flute Drills: The conventional type of drill used for originating holes,


Three-Flute Drills (Core Drills): Dril commonly used for enlarging and finishing drilled, cast or punched holes. They will not produce original holes.

Four-Flue Drills (Core Drills): Used interchangeably with three-flute drills. They are of similar construction except for the number of flutes.

Right-Hand Cut: When viewed from the cutting point, the counterclockwise rotation of a drill in order to cut.

Left-Hand Cut: When viewed from the cutting point, the clockwise rotation of a drill in order to cut.

. . . . .



Conical Point Optional with Manufacturer Table 7. ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine Length through 25.4 mmDiameter ANSUASME B94.11M-1993

_	Drill Dia	meter, D ^a		Jo	bbers I	ength			Taper I	ength			w Mach		
		Equiva	lent	Flut	c	Over	rall	Flu	ite	Ove	rall	Flu		Over	
Fraction		Decimal		F		L		F	2	L		F	-	L	
No. or Lir.	mm	In	mm	Ín.	mm	In.	mm	In.	mm	In,	mm	In.	mm	Iu.	mm
97	0.15	0.0059	0.150	1/16	1.6	-34	19								•••
96	0.16	0.0063	0.160	1/6	1.6	34	19				•••				
95	0.17	0.0067	0.170	V16	1.6	34	19								***
94	0.18	0.0071	0.180	1/16	1.6	*	19								
93	0.19	0.0075	0.190	1/16	1.6	×4	19								
92	0.20	0.0079	0.200	1/16	1.6	∛4	19								***
91	ļ	0.0083	0.213	3/4	2.0	34	19								
90	0.22	0.0087	0.221	₹ <u>64</u>	2.0	34	19								
89	1	0.0091	0.231	5%	2.0	3/4	19								
88	1	0.0095	0.241	%	2.0	34	19								
	0.25	0.0098	0.250	24	2.0	24	19								
87	{	0.0100	0.254	₹4	2.0	34	19				····				•••
86		0.0105	0.267	1/2	2.4	34	19								
85	0.28	0.0110	0.280	3/20	2.4	*4	19								
84	1	0.0115	0.292	3∕2	2.4	34	19								
	0.30	0.0118	0.300	1/2	2.4	34	19						1 !		
83	1	0.0120	0.305	1/2	2.4	X	19								
82		0.0125	0.318	3/2	2.4	34	19								
	0.32	0.0126	0.320	3%	2.4	1 %	19					1			
81	1	0.0130	0.330	*,	2.4	34	19								
80		0.0135	0.343	ų,	3	34	19		1				1	1	
ļ	0.35	0.0138	0.350	1/2	3	14	19			1	1				
79		0.0145	0.368	16	3	14	19								···
	0.38	0.0150	0.380	36	5	34	19					1			1 ~~
1/44		0.0156	0.396	3/6	5	34	19								
	0.40	0.0157	0.400	7,6	5	*	19		1						
78	ł	0.0160	0.406	3/16	5	1 %	22								
	0.42	0.0165	0.420	3/16	5	1%	22		1					1	
	0.4	5 0.0177	0.450	3/16	5	1%	22					1		···	
77		0.0180	0.457	3/16	5	1%	22								
	0.4	6 0.0189	0.480		5	1%	22		1					1	
1	0.5	0.0197	0.500		5	1 %	22								] ~
76		0.0200	0.508		5	36	22							1	··
75		0.0210	0.533		6	1	25					1			1.
	0.5	5 0.0217	0.550	14	6	11	25								·
74		0.0225	0.572	14	6	1	25		1			1	1	1	·
	0.6	0 0.0236	0.600	36	8	11%	29						10		1.

830

		ngth th							Taper 1					ne Leng	ա
	Drill Dia				obbers l			Fu		.ength Over	co11	Flu		Overa	
Fraction		Equiva	lent	Fiu		Over		FIL		L		F		L	
No. or		Decimal In		In.	mm	In.	mm	ln.	mm	In.	trama	In.	mm	In.	mm
Ltr. 73	mm	0.0240	0.610	ш. ⁵ / ₁₆	8	11/4	29								
72		0.0250	0.635	716 5%	8	1%	29								
12	0.65	0.0256	0.650	216 3%	10	11/4	32						}		
71	0.00	0.0260	0.660	*	10	1%	32								
11	0.70	0.0276	0.700	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	11/4	32								
70	1 0.10	0.0250	0.711	*	01	1%	32								
69		0.0292	0.742	1/2	13	1%	35								
	0.75	0.0295	0.750	×.	13	1%	35								
68	0.15	0.0310	0.787	4	13	1%	35								
50 %a		0.0312	0.792	2 Ķ	13	1%	35							]	
22	0.80	0.0315	0.800	1/2	13	1%	35								
67	0.00	0.0320	0.813	ĸ	13	13%	35					1.0			
66		0.0330	0.838	1/2	13	1%	35						]		
<u>un</u>	0.85	0.0335	0.850	14	16	1%	38				] [				
65	0.00	0.0350	0.889	-10 -14	16	13	38		1						
05	0.90	0.0354	0.899	5%	16	1%	38								
64	0170	0.0360	0.914	1 %	16	11/2	38		l						
63	1	0.0370	0,940	5	16	1%	38								
047	0.95	0.0374	0.950	5	16	1%	38			1					
62	1	0.0380	0.965	1%	16	1%	38	1							
61		0.0390	0.991	11/46	17	1%	41			Į	1				
51	1.00	0.0394	1.000	11%	17	1%	41	1%	29	2%	57	14	13	1%	35
60	1.00	0.0400	1.016	11/16	17	1%	41	1%	29	21/4	57	12	13	13%	35
59		0.0410	1.041	11/16	17	1%	41	1%	29	21/4	57	1/2	13	1%	35
	1.05		1,050	1%	17	1%	41	1%	29	21/4	57	١ <u>۲</u>	13	1%	35
58		0.0420	1.067	11/16	17	1%	41	1%	29	21/4	57	<u>k</u>	13	1%	35
57		0.0430	1.092		19	11%	44	11%	29	21/4	57	14	13	1%	35
	1.10		1.100	1 7	19	1%	44	11%	29	21/4	57	1/2	13	1浅	35
	1.15		1.150	1 7	19	134	44	1%	29	21/4	57	1/2	13	邗	35
56		0.0465	1.181	1 1	19	1%	44	1%	29	21/4	57	14	13	1%	3:
1/4		0.0469	1.191		19	13/	44	11/8	29	21/4	57	1/2	13	1%	3:
) ^{***}	1.20	0.0472	1.200		22	1%	48	11%	44	3	76	%	16	1%	4
	1.2	1	1.250		2.2	1%	48	13/4	44	3	76	ž	16	1%	4
1	1.3		1.300		22	1%	48	1%	44	3	76	*	16	1%	4
55		0.0520	1.32		22	1%	48	134	44	3	76	*	16	1%	4
	1.3	5 0.0531	1.35		22	1%	48	11%	44	3	76	%	16	增	4
54		0.0550	1.39		22	1%	48	1%	44	3	76	1%	16	1%	4
	1.4	0.0551	1.40		22	17%	48	134	44	3	76	⅔	16	1%	4
1	1.4		1.45		22	1%	48	1%	44	3	76	×.	16	1%	4
	1.5		1.50		22	1%	48	13/	44	3	76	%	16	1%	4
53		0.0595		1 .	22	11%		13/4	44	3	76	3%	16	1%	4
	1.5		1		22	174		1%	44	1 3	76	3	16	1%	4
1/16		0.0625			22			1%	44	1 3	76	*	16	1%	4
1 16	1.6				22			2	51	1 334	95	11/16	17	口嘴	
52	1	0.0635			22			2	5	33/2	95	5%		11%	
1	1.6	1			25		51	2	5	1 3%	95	1%	17	11%	5 4

#### Table 7. (Continued) ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine Length through 25 4 mmDiameter ANSI/ASME 894.11M-1993

831

### Table 7. (Continued) ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine J. et describe 52 Arm Diameter ANSI/ASME B94.11M-1993

		- 17	.5 D eng	th thr	ough	25.	4 m	mD	iam	eter	r A	NSI	ÍAS	ME	E B9	4.1	IM-	-19	93				
		Drill Dia				_		bers L			7		Taper	Len	gth		S	crew	Mach			_	
_		Drill Dia		r, D ^r Equivale	Ine	-	Fiute		Ove	rall	1-	Flu	te	Т	Over	all		Fiut	8		rall	4	
	action					_	F	+	L	,		F	_		L		L.,	F			L	-	
	o.or Ltr.	mm		cimal In.	nun	In.	в	um	Jn.	mi	<u> </u>	տ.	mea	_	ín.	mma	In	_	mn	In.	mn 43		
-		1.70		0669	1.700	1	1	25	2	51	1		51	1	134	95	14		17	11/16	43		
	51		0.	0670	1.702	1		25	2	53		2	51		3%	95	14		17	11% 13%			
ļ		1.75	0.	0689	1.750	J		25	2	51		2	51		3%	95	1,	·· I	17	11%	1		
	50		0.	0700	1.778	1		25	2	51	· •	2	51		3¾	95 95	1		17	11/1			
Ì.		1.80	0.	.0709	1,500	1		25	2	51	_ I	2	51	- L	3¾	95 95	1 13	96   Ke	17	11%	۱.		
		1.85	0.	.0728	1.850	ι		25	2	51	·	2	51 51		3¾	95	ι.	16 Ke	17	1%	E) -	1	
ļ	49	l	0.	.0730	1.854	1		25	2	51	- 1	2	51		3¾ 3¾	95		16 16	17	1%		3	
		1.90		.0748	1.900	1	- 1	25	2	51	- L	2	51	- 1	3% 3%	95		16 1/16	17	11%		3	
Ì.	48	1	1	.0760	1.930	י		25	2	5		2	51		274 334	95		16 1/16	17	11%		3	
Į.		1.95		.0768	1.950			25	2			2	51	- I	3%	95		116 1/16	17	1%	" <b>1</b>	3	
	×	Į		0.0781	1.984	1 1		25	2	5	· •	21/2	57	- I	41/4	108		Y ₄₆	17	112		13	
	47			0.0785	1.994		1	25 25	2	5		2%	5	- L	41/4	108		1/15	17	11,	16	\$3	
		2.0		),0787	2,000			25 29	2%	1	4	214	5		4%	108	1	34	19	11%		44	
		2.0		0.0807	2.050		16	29	21/8	1.	i4	21/4	5	- I.	41/4	108		×	19	1%	1	44	
	46	Ļ		0.0810	2.057	1	1/2	29	21/6		54	21/4	5	7 ]	41/2	108	1	34	19	13/		44	
	45		1	0.0820	2.10		1%	29	2%		54	21/4	5	7	41/4	108		¥4	19	13		44	
Ì		2.1	· I	0.0827 0.0846	2.15		1%	29	2%		54	21/4	5	7	41/4	108		*4	19	15	۰ı.	44	
ł		2.1	- 1	0.0840	2.13		1%	29	2%		54	21/4	5	7	41/4	108		¥4	19	13	¥	44	
	44	2.2	- 1	0.0866	2,20	1	1%	32	2%		57	21/4	5	7]	4¼	108	s Į.	∛4	19	13	4 I	44	l
		2.3		0.0886	2.25		1%	32	2%		57	21/4	5	7	4¼	10	- I	34	19	15	· .	44	
1	43	1 2		0.0890	2.26		1%	32	21/		57	21/4	1.5	57	41/4	10	8	34	19			44	ł
ļ	45	2.	~	0.0906	2.30	- I	1%	32	21/2	1	57	21/4	1 :	57	41/4	10	· 1	34	19		· I	44	Į
Į		2.	- N	0.0925	2.35		11/4	32	23	4	57	21/4		57	44	10	1	×4	119		· 1	44 44	L
	42	1 -		0.0935	2.31	5	1%	32	23	4	57	21/4		57	• 4%		)8	34	19		· •	44	Ì
Ì	36	1 I		0.0938	2.3	3	114	32	2	4	57	21/4	· •	57	41/4	1	38	4	19		×4 1%6	46	ł
	12	2.	40	0.0945	2.4	20	1%	35	2	8	60	21/3		64	4%		17 17	14 16			¹² 16 13 ₄₆	46	ļ
ļ	41	ļ	1	0.0960	2.4	38	١%	35	2	%	60	25		64	4%	· · ·	17	17 ₁₆ 17 ₆	· I		15	46	
		2	.46	0.0965	2.4	- I	1%	35	2		60	21/	- 1	64	4%	۰ı	17	-716 14/1			17/16	46	ì
	40			0.0980	2.4	1	1%	35	. L	*	60	21/	4	64 64	47	۰L	17	13 ₁₁			13/16	46	
		2	.50	0.0984	1		1¾	35		3	60 60	21/2		64	47	×	17	54	, I		13/16	46	
	39		- ì	0.0995			1%	35		34	64	25 21		64	45	^ I	17	1 %			13/16	46	
	38			0.1015			1%	37	1 1	12	64	22	- U	64	4	8 1	117	3			13%	46	1
			.60	0.1024	1	00	17/16			当時	64	2		64	4		117	13/		21	113/16	46	
	37			0.1040		42	1%			2% 2%	64	2		64	4	-	117	1%			11%	46	
	{	- 1	2.70	0.1063		700	1%	1.		2% 2%	64		8	64	4		117	13		21	13%	46	
	36			0,106		705 779	1%	3		2%	67		3	64	4	8	117	13	16	21	113/16	46	
	- %a			0.109		794	1%	3		2%	67		34	70			130	1%		22	1%	48	
	35			0.110		794 800	1%	1.1		-/8 2%	67			70	5	1/4	130	1%		22	1%	48	
	1		2.80	0.110		819	1%	1	1	2%	67	- 1 -	34 34	70		×	130	×,		22	1%	48	
	34			0.111	1	870	1%	1.	· .	2%	67		8	70	15	1%	130	1 %		22	1%	48	
	33		2.90	0.115	1	.900	13			2%	70		14	70	1	1/6	130	3	6	22	1%	48	
		- 1	4.90	0,114		.946	15		11	2%	71	)   :	234	70	) [ :	51%	130	13		22	1%	48	
	33	-	3.00	0.118		.000	15	۰ <b>۱</b>	11	2½	70	5   :	2%	70		5%	130	1.1		22	1%	4	
	3	.	5.00	0.120		.048	13		11	21/4	70	o   :	234	70		51%	130	13	6	22	1%	4	ð
	L	<u> </u>			!			<u> </u>									-						

and the second second

1. A. (1997)

832

	Drill Dia	meter, D ^a		1	lobbers	Length			Taper I	Longth		Sere	w Mael	tine Let	igth
с!		Equiv	alent	Flu		Ove		Flu		Ove		Fh		Ove	
Fraction No. or	[	Decimal		F	7	1		1		1		- F		1	
Ltr.	mm	Jn.	ಗಾಗಗ	In.	mm	In.	mm	In.	nım	In.	mm	In.	ınm	In.	mm
	3.10	0.1220	3.100	1%	41	2¾	70	2¾	70	51/8	130	⅔	22	17/3	48
1/2		0.1250	3,175	12%	41	2¾	70	2¾	70	51%	130	%	22	1%	48
	3.20	0.1260	3.200	1%	41	2¾	70	3	76	5¾	137	15%	24	115/16	49
30		0.1285	3.264	1%	41	23/4	70	3	76	5¾	137	1%	24	11%	49
	3.30	0.1299	3,300	1%	44	2%	73	3	76	5%	137	15/15	24	1%	49
	3.40	0.1339	3.400	1¾	44	2%	73	3	76	5%	137	15 _{/16}	24	1%	49
29		0.1360	3.454	1¾	44	2%	73	3	76	5%	137	15% 16	24	115/16	49
	3.50	0.1378	3.500	1¾	44	2%	73	3	76	5%	137	15/16	24	11%	
28		0.1405	3.569	1%	44	27/8	73	3	76	5%	137	15%	24	115/16	49 49
‰		0.1406	3.571	1%	44	2%	73	3	76	53%	137	¹⁵ /16	24	1 ¹⁵ / ₁₆	
	3.60	0.1417	3.600	1%	48	3	76	3	76	5%	137	1	25	21/ ₁₆	52
27		0.1440	3.658	1%	48	3	76	3	76	5%	137	1	25	2½	52
	3.70	0.1457	3,700	1%	48	3	76	3	76	5%	137	1	25 25	21/16	52 52
26		0.1470	3.734	1%	48	3	76	3	76	5%	137	1		2½	1 · ·
25		0.1495	3.797	1%	48	3	76	3	76	5×	137	1	25 25	21/16	52
	3.80	0.1496	3.800	۱¾	48	3	76	3	76	5%	137		25	21/ ₁₆	52 52
24		0.1520	3.861	2	51	31/6	79	3	76	5%	137	1	25	2½	52
	3.90	0.1535	3.900	2	51	31/8	79 70	3	76	51%	137 137		25	21/16	52
23	1	0.1540	3.912	2	51	31/2	79	3	76	5%	137		25	21/16	54
×2		0.1562	3.967	2	51	3%	79		86	5%	137	L .	25	21/16	54
22		0.1570	3.988	2	51	3%	1	3%	80 86	51/4	140	11/16	27	2¼ 2¼	54
	4.00	0.1575	4.000	2%	54	31/4	83 83	33%	86 86	5%	140	11/16	27	2% 2%	54
21		0.1590	4.039 4.089	21/8	54 54	31/4	83	3%	86	5¾ 5¾	146	11/16	27	2% 2%	54
20	4.10	0.1610	4.089	21/g	54 54	31/4	83	3%	86	5%	146	11%	27	2%	54
	1	0.1614		21/8	54	34	83	3%	86	1 7	146	11/16 11/16	27	21%	54
	4.20	0.1654	4.200	21/3	54	314	83	3%	86	5¾ 5¾	146		27	2%	54
19	4.30	0.1660	4.216	2%	54	31/4	83	3%	86	5%	146	11/16	27	2%	54
18	4.30	0.1693	4.300	2¼ 2¼	54	3¼ 3%	83	3% 3%	86	5%	140	1716	27	2% 2%	54
		0.1695	4.366	2% 2%	54	31/4	83	3%	86	5%	146	17/16	27	2%	54
17 17	1	0.1719	4.394	2%	56	3%	86	33%	86	5%	146	1%	29	2.78 2.3%	56
17	4.40	0.1730	4.400		56	3%	86	3%	86	5%	146	1%	29	2%	5
16	4.40	0.1770	4.496	2 ³ / ₁₆	56	3%	86	3%	86	5%	146	1%	29	23/16	5
10	4.50	0.1772	4.500	2% 2 ³ / ₁₆	56	3%	86	3%	86	5%	146	1%	29	23/15	56
15	4.00	0.1800	4.572	2% 2¾	56	3%	86	3%	86	5%	146	1%	29	23/16	50
10	4.60	0.1800	4.600	2% 23/16	56	3%	86	3%	86	5%	146	1%	29	23/16	50
14	1 4.00	0.1811	4,623	23/16 23/16	56	3%	86	3%	86	51/4	146	1%	29	23/16	50
13	4.70	0.1020	4,700	23/16	59	3%	89	3%	86	5%	146	1%	29	234	50
	1	0.1830	4.762	2%16 25/16	59	31/2	89	3%	86	5%	146	1%	29	2%	5
∛i6 12	4.80	0.1875	4.800	27 ₁₆ 25/ ₁₆	59	3%	89	3%	92	6	152	1%	30	21/4	5
11		0.1910	4.851	25/16	59	31/2	89	3%	92	6	152	1%	30	2%	5
	4,90	0.1910	4.900	2715	62	3%	92	3%	92	6	152	13/16	30	2%	5
10	4.50	0.1925	4,900	2%	62	3%	92	3%	92	6	152	13/16	30	21/4	5
9		0.1955	4,978	2%	62	3%	92	3%	92	6	152	13/16	30	2%	5
	5.00	0.1969	5.000	2%	62	3%	92	3%	92	6	152	1716	30	21/4	5
8	3.00	0.1909	5.054	2% 2%	62	3%	92	3%	92	6	152	13/16	30	21/4	5

### Table 7. (Continued) ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine Length through 25.4 mmDiameter ANSI/ASME B94.11M-1993

833

### Table 7. (Continued) ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine Longth through 25 4 mm Diameter ANSI/ASME B94.11M-1993

		17	.5 I 202	nm, 1 ,th thr	ough	25.4	4 m	mD	iam	ete	r A	NS	VAS.	ME	B9	4.11	<u>M</u> -	199	)3			-1
							Toh	ers L	ength	-	Τ		Taper	Leng	gch		- 50	crew	Mach		eagth	
<u> </u>		orill Die	eneto	Equivale	nt	Ī	lute	1	Ove	rall	+	Fh	te		Over	all		Flute		0	verall	-
Frac	tion					-	F	-†	L		-1-	1			L			F			L	4
No.	or			cimal In.	mm	In.	Īm	m	In.	mp		Íø.	mm	b	n.	min	In.	-	mn.	In.	m	
	а. 	mm 5.10		2008	5.100	2%		2	3%	92	: 1	3%	92	6		152	13	6	30	214	51	
Ι.	. 1	5.10	s	.2010	5,105	2%		52	3%	92	2	35%	92	6	ા	152	13		30	21/4	5	
	- 1			.2031	5.159	2%	1	52 L	3%	92	2	3%	92	6		152	13		30	21/4	5	
	Ka			2040	5.182	21/		54	3%	95	5	3%	92	6	1	152	13	· ·	32	23%	6	- 1
1	6	5.20		2047	5.200	21/	· I ·	64 Ì	3¾	9	5	3%	92	6	;	152	11	4	32	2%	6	
	5	Ş.20		2055	5.220	2%		64	31/4	9	5	$3\frac{3}{8}$	92	E	5	152	13	· •	32	2%		50
1 1	э '	5,30	1	2087	5.300	25		64	3¾	9	5	3%	92			152	1	· •	32	$2\frac{1}{B}$		50
1		3,30	1	0.2090	5.309	25	- 1	64	334	9	5	3%	92	- L 1	5	152	1	· 1	32	2%	- 1	- 1
Į	4	5.40		0.2126	5,400	21		64	3%	9	5	3%	92	1	5	152	1		32	21/8		50
	4	5.4		0.2130	5.410	21		64	33/4	) 9	5	3%	92	1	6	152		4	32	2%		60
1	3	5.50	- 1	0.2165	5,500	2		64	3¾	9	95	3%	92	_ I	6	152		4	32	2%	۰ I	60
1	7,	1 3.00		0.2188	5.558	2	- 1	64	3%	1 9	¥5	3%	92		6	152		4	32	23	1	60 62
	7 <u>1</u> 2	5.6		0,2205	5.600			67	3%	19	98	3¾	9:		61/8	150		316	33	27	6	62
	2	1	- I -	0,2210	5.613			67	31/8	1	98	3∛₄	9:	1	6¼	150		5/16	33	23	ь	62
	-	5.7	- i -	0.2244	5.700		%	67	3%	1	98	3¾	9		6%	154	1	l% ₁₆	33	23	20	62
	1	1		0.2280	5.79	2	s,	67	3%	1	98	3¾	9	· I	6%	15	1	1%	33	27	16	62
Ì	1	5.8		0.2283	5.80		8	67	3%		98	3¾	9	-	6%	15		1%	33	23		62
1		5.5	- I	0.2323	5.90	2	8	67	3%		98	3%	9	5	61/8	15		1%6	33		16	62
	A	1.0		0.2340	5.94	4 :	%	67	374	i L	98	1		-		1		1%	33		V16	62
	15%4			0.2344	5.95	4 :	2%	67	33/	5	98	3½		15	61/8	15	- Y	1%	35		Ke K	64
	⁷ 64	6.0	00	0.2362	6.00	이 :	234	70	4		102	33/	19	5	6%	15	<u>ا</u>	1%	35	_ I	⁷² %	64
1	в			0.2380	6.04	5	2¾	70	4	- I	102		· I ·	": Ì		1:		1%	35	- 1	32	64
1	-	6.	10	0.2402	6.10	0	2¾	70	4	_ I	102	33	•   `	¥5	61/8	1:	- I	1%	3	- 1-	1/2	64
- 1	с		1	0.2420	6.14	17	2¾	70	4	<u>۱</u>	102	1 *				1	- 1	1% 1%	3		12 15	64
		6.	20	0.2441	6.2	10	2¾	70	4	- L	102	1	•	95	6%		56	13	3		2 2%	64
	D		_ [	0.2460	6.2	18	2¾	70	14		102		· 1				56	1%	3		2%	64
		6	.30	0.2480	6.3	30	$2\frac{3}{4}$	70	4		102		+ (	95  95	6%	۰I.	56	1%	3	- 11	2%	64
1	E, 54	1		0.2500	6.3		2¾	70		· 1	102		4	95 98	6½ 6½	• •	59	1%	1.1	· 1	2%	67
- {		6	.40	0.2520	6.4	i 1	2%	73	- 1	*	105		8	98 98	61	4 L	59	11%	<u>ا</u> ۱	- L	2%	67
		6	.50	0.2559			$2\frac{1}{8}$	73		1/8	103	1		98	02	*		1%	·   `		2%	67
1	F			0.2570			2%	73		K,	10:	1						174	<u>۱</u>	- 1	2%	67
		[ é	i.60	0.2598			2%	73		1%	10.							1%		37	2%	67
	G			0.2610			2%	73		4½ 41/	10				1			1%		37	2%	67
1			5.70	0.263		100	2%	T.	1	4% 41/2	10		74	98	6		159	17		37	2%	67
- 1	1764			0.265		146	2%	7		4%   4%	10	- 1 -			1			1½		38	2 ¹⁴ / ₄₆	68
	н	1		0.266		756	2%	17		₩% 4%	10	- L	3%	98			159	13		38	$2^{1}$ %	68
		1	6.80	0.267		800	2%	1 7		4% 4%	10							B	1	38	$2^{11}\!/_{16}$	68
			6.90	0.271		900 909	2%	- t		4% 4%					1.			13	5	38	2 ¹¹ /16	68
1	Ĩ			0.272	- 1	909 j .000	2% 2%			4% 4%	1	1	3%	98		34	159	13	4	38	211/16	68
			7.00			.000	2%			4% 4%	1.1	05				.] [	•••	1.1	K	38	2 <i>W</i> ₁₆	68
	2			0.275	-	.036 .100	2%		15	4% 4%		08				]		11	8	38	211/36	68
	Į		7.10			.100	2%	e 1 -	15	774 4%		08						1	1/2	38	211/36	68
	) K	1		0.28	· .	.157	24	10	75		1	08	37%	98	1	614	159	1	1/2	38	211/16	
	1 %	2			- 1	.142	219		75	41/4		08	4	10	2	6%	162	1	%	40	23/4	70
			7.20	<u> </u>		.300	25	10	75	41/4		08		]				1	%	40	23/4	70
	1	1	7.3	0 0.48	/+		1.27	16	-		_											

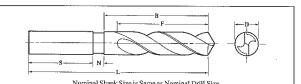
834

	Drill Dia	meter D ^a		Jo	bbers ]	length			Taper L	ength		Screw	v Mach	ine Lor	
	Dria Dia	Equiva	lent	Flut		Over	:11	Flu		Ove	rall	Flu	te	Оче	ណា
Fraction	}			F	-	L	- 1	F		L	,	F		L	
No. or Lur.	mm	Decimal In.	mm	In.	mm	In.	mm	lπ.	DUTS	In.	mm.	In.	mm	In.	шm
L		0.2900	7.366	24%	75	41/4	108					$1\%_{16}$	40	2%	70
-	7.40	0,2913	7.400	31/16	78	4%	111					1%	40	2¾	70
м		0.2950	7,493	31/6	78	43%	ш					1%	40	23/4	70
	7,50	0.2953	7.500	31/16	78	4%	111	4	102	$6\frac{3}{8}$	162	$1\%_{16}$	40	234	70
1%		0.2969	7.541	31/15	78	43%	111	4	102	6%	162	1%	40	2¾	70
164	7.60	0.2992	7,600	31/16	78	4%	111					1%	41	2 ¹³ Y ₃₆	71
N		0.3020	7.671	31/16	78	4%	111					1%	41	$2^{1}_{16}$	71
	7.70	0.3031	7.700	3%	81	4½	114					1%	41	$2^{1}Y_{16}$	71
	7,80	0.3071	7.800	31/6	81	4%	114	4	102	6¾	162	1%	41	21%	71
	7.90	0.3110	7.900	33/16	81	414	114					1%	41	2 ¹ ¥ ₁₆	71
5/15	1	0.3125	7.938	31/6	81	4½	114	4	102	6%	162	1%	41	$2^{10}/_{16}$	71
/15	8.00	0.3150	8.000	33%	81	4%	114	4%	105	6½	165	111/16	43	215/16	75
0	0.00	0.3160	8.026	33/16	81	414	114		l	]		111/16	43	2 ¹ Y ₁₆	75
Û	8,10	0.3189	8.100	35%	84	4%	117					111/16	43	21%	75
	8.20	0.3228	8.200	33/16	84	4%	117	41%	105	6½	165	111/16	43	21%	-75
Р	0.20	0.3230	8.204	33/16	84	4%	117		1			111/16	43	21%	75
r	8.30	0.3268	8.300	35/16	84	4%	117					111/16	43	2 ¹⁵ / ₁₆	75
30	0.00	0.3281	8,334	3%	84	4%	117	4%	105	6%	165	11%	43	24/16	75
21/64	8.40	0.3307	8,400	3%	87	434	121					11%	43	3	70
	0.40	0.3320	8,433	3746	87	434	121				1	1%	43	3	7
Q	8,50	1	8.500	3%	87	434	121	41%	105	61/2	165	11%	43	3	70
	8.60		8.600	3%	87	4%	121			]	1	111/16	43	3	7
R	0.00	0,3390	8.611	31/16	87	4%	121					14%		3	7
I K	8.70		8,700	31/16	87	43/4	121			1		111/16		3	7
	0.70	0.3438	8.733	37/16	87	434	121	4%	105	61%	165	11%		3	7
11/32	8,80		8.800	3%	89	4%	124	4½	108	6%	171	1%	44	31/16	7
	0.00	0.3480	8.839	3%	89	4%	124		1		1	134	44	31/16	7
S	8.90		8.900		89	4%	124		l			13/4	44	31/16	7
	9.00		9,000		89	4%	124	41/4	108	6%	171	1%	44	346	7
	9.00	0.3580	9.093		89	4%	124					1%	44	31/16	17
Т		1	9.100		89	4%	124			1		13	44	31/6	17
	9.10	0.3594	9.100		1 89	4%	124	41/4	108			1%	44	31/16	1 7
23%4	9.2	1	9.200		92	5	127	41/4	108	1		1%	46	31/8	1:
	9.3		9.300	1	92	l s	127					143		3%	1
1	9.3	0.3680	1		92	5	127					1%		3%	
U	9.4		1	1	92	5	127		ļ		1	13		1 .	
			í		92	5	127	4%						31%	
	9.5	0 0.3740			92	5	127	41/2							
×,		0.3750	1		92	15	127	424				1%			
V		1			92	51/2						1%			1
	9.6			1 "	1	5%			1			1%			
1	9.7						,				17			1.4	
	9.8			1.1.2	1.1		` I			· [ ·		1 7			
W		0.3860		1		1	s					1 _			
1	9.9			1			8	1			17			1	
=1/64	10.1	0.390					<u> </u>		·	- I	17				_ I

#### Table 7. (Continued) ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine Length through 25.4 mmDiameter ANSI/ASME B94.11M-1993

835

# Table 7. (Continued) ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine Length through 25.4 mmDiameter ANSI/ASME B94.11M-1993


	Le	ngth th	rough			_	eter								
	Drill Dia	meter, D ⁿ		1	obbers I				Taper L					ine Lor	-
		Equiva	lent	Flu		Ove		Flu		Ove.		Flu		Ove	
Fraction No. or		Decimal	ļ	F		L		F		L	-	F			
Ltr.	mm	ln.	חזות	In.	mm	In.	mun	In.	mm	In,	mm	ln.	mm	In.	mm 84
х		0.3970	10.084	33/4	95	51%	130		[			1%	49 49	3%	84
	10.20	0.4016	10.200	3%	98	514	133	43%	ш	7	178	1%	49	3%	84
Y		0.4040	10.262	3%	98	51/4	133				 178	115/16	49	3% 25/	84
₩32		0.4062	10.317	3%	98	5¼	133	43 ₈	111	7		1 ¹⁵ / ₁₆ 2	51	3¾ 3¾	86
Z		0.4130	10.490	3%	98	51/4	133		117		184	2	51	3% 3%	86
	10.50	0.4134	10.500	3%	98	51/4	133 137	4%	117	714	184	2	51	.37% 33%	86
27/64		0.4219	10.716	315/16	100	5%	140	4%	117	7¼ 7%	184	2%	52	37/6	87
	10.80	0.4252	10.800	41/16	103	5½	140	4%	117	71/4	184	2%	52	37/16	87
)	11.00	0.4331	11.000	41/16	103 103	5½	140	4% 4%	117	7%	184	2766 21/16	52	3%	87
?∕₁ĸ	1	0.4375	11,112	41/16		5½	140	4% 4%	121	7%	190	2%	54	3%	90
l	11.20	0.4409	11.200	4¾	106 106	5%	143	434	121	7%	190	21%	54	3%6	90
	11.50	0.4528	11.500	43/16	106	5% 5%	143	4% 4%	121	7%	190	21%	54	3%	90
2%		0.4531	11.509	41/16	110	5%	145	4%	121	7%	190	2%	54	3%	92
	11.80	0.4646	11.800 11.908	4%18	110	5¥	146	474	121	7%	190	2%	54	3%	92
1%2	1	0.4688		43/16	110	5%	140	4%	1 121	73/	197	23/16	56	311/16	94
	12.00	0.4724	12.000	4%	111	5%	149	4%	121	73/	197	23/6	56	34/10	94
1	J2.20	0.4803	12.200	4% 4%	111	5% 5%	149	434	121	7½	197	23/16	56	311/16	94
31/64	1	0.4844	12.500		114	5% 6	152	4%	121	7%	197	21/4	57	334	95
1 .	12.50	0.4921	12.700	4½ 4%	114	6	152	4%	121	7%	197	21/4	57	34	95
4	10.00	0.5039	12.700	4%	114	6	152	-474		14		2%	60	3%	98
	12.80	0.5118	13.000	4%	114	6	1.52					2%	60	3%	98
	13.00	0.5118	13.000	4% 4%	122	6%	168					2%	60	3%	98
⁷⁹ / ₆₄	13.20	0.5197	13.090	45%	122	6%	168					2%	60	3%	98
	15.20	0.5197	13.492	413/6	122	6%	168					2%	60	3%	98
1 1%2	13.50	0.5312	13.500	413/16	122	6%	168					23%	60	37/8	98
	13.80		13.800	413/16		6%	168					2%	64	4	102
1 15/	10.00	0.5469	13,891	41%	122	6%	168			1		2%	64	4	102
3%	14.00		14.000	413/16	122	6%	168					2%	64	4	102
	14.25		14.250		122	6%	168					2%	64	4	102
	19.40	0.5625	14.288	1 10		6%	168	1				2%	64	4	102
%₀	14.50		14.500			6%	168	l	1	1		25%	67	41%	105
37/64	1.1.1	0.5781	14.684			6%	168					2%	67	4%	105
-764	14.75		14.750		132	7%	181				1	2%	67	4%	105
	15.00		15.000		1	71%	181		]			2%	67	4%	105
1%	1000	0.5938	15,083	3 "		7%	181					2%	67	4½	105
~32	15.2	1	15.25			7%	181		1	1		234	70	4¼	108
37/64		0.6094	15.47	1		7%						23	70	41/4	108
164	15.5		15,50			7%		1				23/4	70	41/4	108
ļ	15.7		15.75			7%			1			23/4	70	41/4	108
1 %		0.6250	15.87	1		7%						23	70	4¼	108
1	16.0	0 0.6299	16.00			71	181	i <b>i</b>				2%	73	1.1	114
1	16.2	1	16.25					i		1		2%	73	4½	114
41/64		0.6406	16.27									2%	73		144
1 19	16.5		16.50					ı			1	2%	73	4½	114
21/22		0.6562	16.66	1 "		7%	18	ı				2%	73	$4\frac{1}{2}$	114
<u> </u>	_				-										

836

	17. Le	5 mm ngth t	, Tape hroug	r Len h 25.4	gth I mr	nD:	iam	eter	AN	SI/A	SM	IE B	94.1	IM	-19	93			
		meter, D ^a		τ-			cugth			Тар	er L	ength		1	SCIEW	Macu			4
	Drill Dia		valent	F	lute	Т	Over	rall	F	Jute	1		ग्रमा	$\perp$	Flut		0	erall	4
Fraction		Decima			F		L			F	4		L	+-		mm	Lu.		-
No. or Ltr.	າມກ	Decima.	ເ    ມກາ	In.	m	n	la.	mm	In.	mi	- +	In.	min	_	n. %	73	4%	11	_
	16.75	0.6594	16.7	0 5%	14	3	7%	194			<u>ا</u>		1		5%	73	4%	11	
Ì	17.00	0.6693	17.0	10 5%	14	3	7%	194		1	•			1	2%	73	4%	111	
43/64		0.6719	17.0	56 5%	14	3	7%	194	]	1 "	"]	•••			× 1	73	4%	1	1
-04	17.25	0.6791	17.2	50 5%	14	13	7%	194	1	1.					2%	73	4%	1 11	ì
11/16		0.6875	17.4	62 5%	14	13	$7\frac{5}{8}$	194	1	1.		***			2%	76	4%	12	· •
16	17.50	0.6890	17.5	00 53	1	43	7%	194	1	1.					3	76	4%	1	21
4%	[	0.703	1 17.8	59		]		]								76	- T	- L 1	21
761	18.00	0,708	7 18.0	. 00	.   .			1		-   -	•••		1 "		3		44		21
21	1	0.718	8 18.	258	.   .				··	.   .			1	1	3	76	41/4		27
2%2	18.50			500	. 1 .				]	• ] ·	•••		1	• [	3%	79	5		27
	10.20	0.734		554					1	- I		]		·	3%	79	5		<u> </u>
- ⁵⁷ /64	19.00	1	<u> </u>	. 1000	.				1.		•••	1		- [	3%	79	5	1	27
	15.00	0.750	1	050	.							1	·	•	31/2	79	5	- 1	27
14		0.76	· .	446 .			1					1		- ]	3¼	83	5%		130
+%		1	- L					1	.   .			<b> </b>	1.	- 1	3¼	83	51		130
	19.5	0.78						1	.   .				.   .	- 1	3¼	83	51	۰ L	130
25/12	1		-					1	.   .				.   .	{	3%	86	5%	•	133
1	20.0				- 1			1	. 1	]					31%	86	53	4	133
51/64		0.79		1	"				- 1			1.	. [		3%	86	5!	• I	133
ļ	20.5		· 1	1	-							1.			3%	86	5	4	133
13/16		0.81	· •	···· [	-		1		ļ			1.	. ]		31/2	89	5	4	137
	21.0				···				I.			- L	. 1		3%	89	5	% L	137
57/64		0.83		1.034		• • •	1								3%	85	5	%	137
1%2	1	0.8		1,433	··· ]	~~~	1 "								3%	89	3 5	∛8	137
1	21.:	50 0.8		1.500	~ 1		1 "	· { ·	···			·	.		3%	8	3 5	× ]	137
3%		0.8		1.829		•••	1 "	1							3%	8	9 3	34	137
1	22	.00 0.8		2.000		•••	1 "	- 1	~	•••					31/2		9 3	34	137
3%		0.8	750	2.225			1.0	• [				1			3%	· .	2	5%	143
	22	.50 0.8		2.500		***		· [	···		ŀ	1	···		33	1		5%	143
5%		0.8	3906	22.621			•   •		··· [		·	÷ 1			35	, I	- 1	5%	143
Ĩ	23	00 0.9	9055	23.000			·   ·	·· ]				-	···	•••	35	*	- 1	5%	143
2%	,	0.9	9062	23.017			·   ·	- 1	~ 1		L 1			•••	33	° ( .	- 1	5¾	146
5%		0.	9219	23.416	<i>.</i>	1	- 1 -	···		•••	1	"			33	° [ `		5% 5%	146
1°		3.50 0.	9252	23.500		1				•••	1					*   `	95	5% 5%	146
15/		1	9375	23.812		1 .						··· ]	]	•••	3	4	98	5% 5%	149
		4.00 0.	9449	24.000		1 -						]			3	°	98	5%	149
P)			.9531	24.209		<b>{</b> .		[			Ţ		•••			· s			149
		4.50 0	.9646	24,500		Į.	[									3	98 98	5%	145
4,			9688	24.608		Ι.									- i	%		5% 6	145
			0,9843	25.000		Ι.	]			]	1		•••		1.		102	1	15
			9844	25.004					•••		1		•••	"		1	102	6	1
	%4 1		1.0000	25,400										<u> </u>	• *	ŧ	102	6	15
		- 1			L	 	matri												
	^a Fracti	onal inc	ch, num	per, lei	uer, a	nd I	neur	0 3120	A.F.										

# Table 7. (Continued) ANSI Straight Shank Twist Drills — Jobbers Length through 17.5 mm, Taper Length through 12.7 mm, and Screw Machine

and the second second second





		meter of Drill		Ler	ute 1gth	Lei	erall agth	Lenş Bi	xly	Length		Maxi Length	imum ofNeck
1		Decimal	Millineter		v	] .	L	1	8		S	1	V.
Frac.	mm	Inch Equiv.	Equiv.	Inch	mm	Inch	num	Inch	mm	Inch	nm	Inch	mm
	12.80	0.5039	12.800	434	121	8	203	4%	124	2%	66	14	13
	13.00	0.5117	13,000	4%	121	8	203	41/8	124	23%	66	14	13
3%_₩		0.5156	13.096	434	121	8	203	4%	124	25%	66	1%	13
	13.20	0.5197	13.200	4¾	121	8	203	4%	124	25/	66	14	13
1%2		0.5312	13.492	4¾	121	8	203	4%	124	25%	66	15	13
	13.50	0.5315	J3.500	41/4	121	8	203	4%	124	25%	66	34	13
	13.80	0.5433	13.800	4%	124	81/4	210	5	127	21/4	70	14	13
3%		0.5419	13.891	4%	124	81/4	210	5	127	2%	70	14	13
	14.00	0.5512	14.000	41/2	124	81	210	5	127	21/4	70	14	13
	14.25	0.5610	14.250	4½	124	81	210	5	127	21/2	70	1/2	13
%		0.5625	14.288	4%	124	8%	210	5	127	23/4	70	14	13
	14.50	0.5709	14.500	4%	124	8%	222	5	127	31/2	79	-%	16
37/4		0.5781	14.684	4%	124	8%	222	5	127	31%	79	36	16
	14.75	0.5807	14.750	4%	124	8%	222	5	127	31/8	79	.%	16
	15.00	0.5906	15.000	4%	124	8%	222	5	127	3%	79	8	16
1%		0.5938	15.083	4%	124	8%	222	5	127	3%	79	1	16
-	15.25	0.6004	15.250	4%	124	8¾	222	5	127	31%	79	-2	16
3%		0.6094	15.479	4%	124	81/2	222	5	127	3%	79	-%	16
	15.50	0.6102	15.500	4%	124	8%	222	5	127	31%	79	*	16
	15.75	0.6201	15,750	4%	124	8%	222	5	127	31/2	79	*	16
%		0.6250	15.875	4%	124	8%	222	5	127	31/2	79	%	16
•	16.00	0.6299	16.000	5%	130	9	228	51/4	133	31%	79	5%	16
	16.25	0.6398	16.250	5%	130	9	228	5%	133	31/4	79	2	16
41/64		0.6406	16.271	51/8	130	9	228	5%	133	31%	79	×.	16
	16.50	0.6496	16.500	5%	130	9	228	51/4	133	31/6	79	-%	16
21/20		0.6562	16,667	5%	130	9	228	51/4	133	31%	79	*	16
	16.75	0.6594	16.750	5%	137	912	235	515	140	31/2	79	-%	16
	17.00	0.6693	17.000	5%	137	9½	235	515	140	31/2	79	*	16
-1%		0.6719	17.066	5%	137	9%	235	5%	140	3%	79	%	16
-	17.25	0.6791	17.250	5%	137	91/4	235	5%	140	31%	79	54	16
ш _{/16}		0.6875	17.462	5%	137	91/2	235	51/2	140	3%	79	*	16
	17.50	0.6890	17.500	5%	143	9%	241	51/4	146	31/8	79	5%	16
41/64		0.7031	17.859	5%	I43	9%	241	5%	146	31%	79	5%	16
	18.00	0.7087	18.000	5%	143	9%	241	5%	146	31/8	79	*	16
23/12		0.7188	18.258	5%	143	9%	241	5%	146	31%	79	*	16
	18.50	0.7283	18.500	5%	149	9%	247	6	152	31/8	79	5%	16
41/64		0.7344	18.654	51/4	149	9%	247	6	152	31/6	79	3%	16
	19.00	0.7480	19.000	5%	149	9%	247	6	152	31%	79	1/4	16
34		0.7500	19.050	5%	149	9%	247	6	152	3%	79	1	16
4%	· ·	0.7656	19.446	6	152	9%	251	61/4	156	3%	79	5%	16
	19.50	0.7677	19.500	6	152	9%	251	6%	156	3%	79	5%	16
25/20		0.7812	19.842	6	152	9%	251	6%	156	3%	79	52	16

837

and a second second

· . . ( · · ·

838

 Table 8. (Continued) ANSI Straight Shank Twist Drills — Taper Length — Over ½in.

 (12.7 mm) Dia., Fractional and Metric Sizes ANSI B94.11M-1993

	<u>u</u>	2.7 mm)]	oia., r ra										
	Dia	meter of Drill		Flu Ler		Ove Lei		Bo		Mini Leugth	mum of Shk.		mum ofNeck
1	2	Decimal	Millimeter		v		L	1	9		5		v
Frac.	mm	Inch Equiv.	Equiv.	Inch	nan	Inch	num	Inch	mm	Inch	mm	Inch	mm
	20.00	0.7874	20.000	6%	156	10	254	61/4	159	31/4	79	%	16
51/64		0.7969	20.241	61%	156	10	254	61/3	159	3%	79	8	16
	20.50	0.8071	20.500	61/2	156	10	254	61/4	159	3%	79	3%	16
13/16		0.8125	20.638	61/	156	10	254	61/4	159	3%	79	34	16
I.	21.00	0.8268	21.000	61/2	156	10	254	6½	159	3%	79	1/2	16
.sy ₆₄		0.8281	21.034	61/4	156	10	254	61%	159	3%	79	5%	16
1%2		0.8438	21.433	6%	156	10	254	61/4	159	3%	79	1/2	16
12	21.50	0.8465	21.500	6½	156	10	254	61/2	159	3%	79	- 16 - 16	16
5%	21.50	0.8594	21.829	61/6	156	10	254	61/2	159	3%	79	78 56	16
764	22.00	0.8661	22.000		156	10	254		159		79		16
74	22.00	0.8750	22.225	6%	156	10	254	6!4	159	3%	79	*	16
74				61/8		10		61/4		31%		*	
44.	22.50	0.8858	22.500	6½	156		254	61/4	159	3%	79	%	16
57/64		0.8906	22.621	61%	156	10	254	6¼	159	3%	79	**	16
	23.00	0.9055	23.000	61/8	156	10	254	6¼	159	31%	79	%	16
2% <u>n</u>		0.9062	23.017	6½	156	10	254	61/4	159	316	79	36	16
3%a		0.9219	23.416	6%	156	10¼	273	6¼	159	3%	98	%	16
	23.50	0.9252	23.500	61/8	156	$10\frac{1}{4}$	273	61/4	159	37%	98	-%	16
15/16		0.9375	23.812	6%	156	10¾	273	61/4	159	31%	98	-5/8	16
	24.00	0.9449	24.000	6%	162	11	279	61/2	165	3%	98	%	16
⁶¹ /64		0.9531	24.209	6%	162	11	279	61/2	165	3%	98	1%	16
	24.50	0.9646	24.500	6%	162	11	279	61/2	165	3%	98	-%	16
3%		0.9688	24.608	6%	162	11	279	61/5	165	3%	98	1 %	16
- 34	25.00	0.9843	25,000	6%	162	11	279	6%	165	3%	98	1 %	16
°‰		0.9844	25,004	6%	162	11	279	614	165	3%	98	14	16
1		1.0000	25,400	63%	162	11	279	614	165	3%	98	1	16
·	25.50	1.0039	25.500	61%	165	11%	282	6%	168	3%	98	34	16
1%		1.0156	25,796	61/2	165	11%	282	6%	168	3%	98	3	16
1 764	26.00	1.0136	26.000	64	165	11%	282	6%	168	3%	98	71 54	16
11/	10.00	1.0230	26.192		165	· ·	282	6%	168	3%	98		16
1½	26.50	1.0312	26.560	61/2	168	11%	286		172		98	1	16
	26.50		26.500	6%		11%		634	172	3%		1	
1%		1.0469		6½	168	11%	286	6%		3%	98	14	16
$1\frac{1}{16}$	07.00	1.0625	26.988	6%	168	11%	286	6¾	172	3%	98	×	16
	27.00	1.0630	27.000	6%	168	11%	286	6¾	172	3%	98	*	16
$1\frac{1}{64}$		1.0781	27.384	6%	175	11½	292	7	178	3%	98	%	16
	27.50	1.0827	27.500	6%	175	11%	292	7	178	3%	98	%	16
$1\frac{3}{32}$	}	1.0938	27.783	6%	175	$11\frac{11}{2}$	292	7	178	3%	98	-%	16
	28.00	1.1024	28.000	71/8	181	田装	298	74	184	3%	98	-%	16
1%		1.1094	28.179	7%	181	113/4	298	71/4	184	3%	98	%	16
	28.50	1.1220	28.500	7%	181	1134	298	7¼	184	3%	.98	3	16
11/8		1,1250	28.575	71/8	181	113/4	298	71/4	184	3%	98	5%	16
$1\%_{4}$		1.1406	28.971	71/4	184	11%	301	73/a	187	31%	98	-%	16
	29.00	1.1417	29.000	71/4	184	11%	301	73%	187	3%	98	-%	16
$1\frac{5}{22}$		1.1562	29.367	71/4	184	11%	301	73%	187	31%	98	-5%	16
	29.50	1.1614	29.500	73%	187	12	305	7%	191	3%	98	-5%	16
1%		1.1719	29.766	7%	187	12	305	71/2	191	3%	98	%	16
	30.00	1.1811	30.000	7%	187	12	305	7%	191	3%	98	1	16
13/16		1.1875	30.162	7%	187	12	305	7%	191	3%	98	3%	16
• 10	30.50	1.2008	30.500	71%	190	121/6	308	7%	194	3%	98	5%	16
11%	1	1.2031	30.559	71/2	190	12%	308	7%	194	374	98	5%	16
1%		1.2188	30.958	7%	190	12%	308	7%	194	3%	98		16
172	31.00	1.2205	31,000		200		317	1% 8	203		98	14	16
(15)	51.00	1.2205	31.354	7%	200	12½	317	8	203	3%	98	*	
11%4	21.50			71%		12%		8	203	3%	98	1	16
	31.50	1.2402	31.500	7%	200	12½	317	8	203	3%	98	*	16

# 121

Provide the provided statement of the provided statement

839

 Table 8. (Continued) ANSI Straight Shank Twist Drills — Taper Length — Over ½in.

 (12.7 mm) Dia., Fractional and Metric Sizes ANSI B94.11M-1993

	Din	meter of Drill		Eh Len		Ove Len		Leng Bo		Minir Length		Maxir Length o	ofNeck
E		Decimal	Millimeter	1		L		E		5	F	A	1
Frac.	mn	Inch Equiv.	Equiv.	Inch	ໝາ	Inch	mm	Inch	mm	Inch	תונת	Inch	mm
11/4	Ban	1.2500	31,750	7%	200	12%	317	8	203	31/8	98	*	16
174	32.00	1.2598	32.000	814	216	141/2	359	8%	219	4%	124	-%	16
h	32.50	1.2795	32,500	8%	216	14%	359	8%	219	$4\frac{7}{8}$	124	%,	16
1%,	20.00	1,2812	32.542	81/2	216	14%	359	8%	219	4%	124	-%	16
1%	33.00	1.2992	33,000	8%	219	14%	362	8¾	222	4%	124	14	16
	55.00	1.3125	33,338	8%	219	14%	362	8%	222	4%	124	*	16
15/36	33.50	1.3189	33,500	81/4	222	14%	365	8%	225	4%	124	∛8	16
	34.00	1.3386	34.000	8%	222	14%	365	8%	225	4%	124	%	16
11%	24.00	1.3438	34.133	81/4	222	14%	365	8%	225	4%	124	38	16
1.22	34.50	1.3583	34,500	8%	225	145	368	9	229	4%	124	34	16
1%	54.50	1.3750	34,925	8%	225	14%	368	9	229	41/8	124	₹%	16
1%	35.00	1,3780	35,000	9	229	14%	372	9%	232	4%	124	1%	16
	35.50	1,3976	35,500	9	229	14%	372	91%	232	4%	124	-%	16
11%	55.50	1.4062	35,717	9	229	14%	372	9%	232	4%	124	1%	16
1.9%	36.00	1.4)73	36.000	9%	232	14%	375	9%	235	41/2	124	₩	16
	36.50	1.4370	36,500	9%	232	14%	375	9%	235	4%	124	*	16
172	1 0.50	1.4375	36.512	9%	232	14%	375	9%	235	4%	124	1 %	16
17/16	37.00	1,4567	37.000	914	235	14%	378	9%	238	43%	124	%	16
11%	1 37.00	1.4688	37,308	91/4	235	14%	378	9%	238	4%	124	- %	16
1.20	37,50	1,4764	37,500	9%	238	15	381	9%	241	4%	124	₹%	16
	38.00		38,000	9%	238	15	381	91/2	241	4%	124	-5%	16
1½	1 20.00	1,5000	38.100	9%	238	15	381	91/2	241	4%	124	1%	16
1%	l	1.5625	39.688	9%	244	15%	387	934	247	4%	124	-%	16
瑞		1.6250	41.275	9%	251	15%	397	10	254	4%	124	1 34	19
1%		1.7500	44.450	10%	267	161/4	413	10%	270	4%	124	4	19

# Table 9. American National Standard Tangs for Straight Shank Drills ANSI/ASME B94.11M-1993

	K	$\sum$	$\leq$	S			⋺
Nominal Diame	er of Drill Shank		Thickness	of Tang		Leugth	
	4					<u>,                                    </u>	
		Incl		Millin Max.	Min.	Inches	Milli- meters
Inches	Millimeters	Max.	Min.				7,0
½ thru ¾	3.18 thru 4.76	0.094	0.090	2.39	2.29	[%] ₂	8.0
over 3/16 thru 1/4	over 4.76 thru 6.35	0.122	0.118	3.10	3,00	∜ ₈₆	
over 1/4 thru 3/16	over 6.35 thru 7.94	0.162	0.158	4.11	4.01	1%	8.5
over % thru %	over 7.94 thru 9.53	0.203	0.199	5.16	5.06	%	9.5
over ¼ thru 1%	over 9.53 thru 11.91	0.243	0.239	6.J7	6.07	746	11.0
over 1% thru %	over 11.91 thru 14.29	0.303	0.297	7.70	7.55	14	12.5
over % thru 21/2	over 14.29 thru 16.67	0.373	0.367	9.47	9.32	%	14.5
over 21/2 Linu 3/4	over 16.67 thru 19.05	0.443	0.437	11.25	11.10	*	16.0
over 3/2 thru 3/4	over 19.05 thru 22.23	0.514	0.508	13.05	12.90	11/16	17.5
	over 22.23 thru 25.40	0.609	0.601	15.47	15,27	3/4	19.0
over % thru I	pver 25.40 thru 30.16	0,700	0.692	17.78	17.58	13/16	20.5
over 1 thru 1½ over 1¾ thru 1¾	over 30.16 thru 34.93	0.817	0.809	20.75	20.55	%γ	22.0

over 1%, thro 1% over 30.16 thru 34.93 0.817 0 To fit split sleeve collet type drill drivers. See page 850.

and a second second

840

# TWIST DRILLS

# Table 10. American National Standard Straight Shank Twist Drills — Screw Machine Length — Over 1 in. (25.4 mm) Dia. ANSI/ASME B94.11M-1993

					~	_	-	+D-	
	-	-A	<u>Z</u>	$\leq$	5		2	KU-	
	-	†	L						
	Di	motor of Drill		Fb Ler		Ove Len		Shank Di	ameter
1	ט	Decimal			۶	1	5	A	
Frac.	mai	Inch Equivalent	Millimeter Equivalent	Inch	mm	Inch	nm	Inch	nm
	25.50	1.0039	25.500	4	102	6	152	0.9843	25.00
	26.00	1.0236	26.000	4	102	6	152	0.9843	25.00
1 1/ ₁₆		1.0625	26.988	4	102	6	152	1.0000	25.40
	28.00	1.1024	28.000	4	102	6	152	0.9843	25.00
1½		1.1250	28.575	4	102	6	152	1.0000	25.40
	30.00	1.1811	30.000	4¼	108	6%	168	0.9843	25.00
13%		1.1875	30.162	4¼	108	6¾	168	1.0000	25.40
11/4		1.2500	31.750	4%	111	6¾	171	1.0000	25.40
	32.00	1.2598	32.000	4¾	ш	7	178	1.2402	31.50
1%		1.3125	33.338	4%	111	7	178	1.2500	31.75
	34.00	1.3386	34.000	4½	114	7%	181	1.2402	31.50
1%		1.3750	34.925	4½	114	7%	181	1.2500	31.75
	36.00	1.4173	36.000	4¾	121	73%	187	1.2402	31.50
17/16		1.4375	36.512	4¾	121	73%	187	1.2500	31.75
	38.00	1.4961	38.000	4%	124	7¥	190	1.2402	31.50
1%		1.5000	38.100	4%	124	7½	190	1.2500	31.75
$1\%_{t6}$		1.5625	39.688	4%	124	7¾	197	1.5000	38.10
	40.00	1.5748	40.000	4%	124	7¾	197	1.4961	38.00
1%		1.6250	41.375	4%	124	7%	197	1.5000	38.10
	42.00	1.6535	42.000	51%	130	8	203	1.4961	38.00
111/16		1.6875	42.862	5%	130	8	203	1.5000	38.10
	44.00	1.7323	44.000	51%	130	8	203	1.4961	38.00
1¾		1.7500	44.450	51%	130	8	203	1.5000	38.10
	46.00	1.8110	46.000	5%	137	81/4	210	1.4961	38.00
$1^{1}$ ₁₆		1.8125	46.038	5%	137	8¼	210	1.5000	38,10
17%		1.8750	47.625	5%	137	81/4	210	1.5000	38.10
	48.00	1.8898	48.000	5%	143	8½	216	1.4961	38.00
i '%		1.9375	49.212	5%	143	8½	216	1.5000	38.10
	50.00	1.9685	50.000	5%	143	8½	216	1.4961	38.00
2		2.0000	50.800	5%	143	8½	216	1.5000	38.10

	۲					L							
						+		—F			+ D	)-+l	
	e				<u> </u>	+				_			
	+						-		-	$\leq$	-+>	(Ť	
	6						$\sim$				R	$\nu$	
	T-L	le 11.		NI.		1/10	CI.	I T	T I D		<b>T</b>		
	iad	le 11.	Ameri								Fract	tional	
			and	Vletrio	: Sizes	S ANS.	VASM	E B94	.11M-1	993			
	Drill D	iameter, D			Re	gular Sha	nk			Larger of	or Smalle	r Shank*	
	1	Equiv	alent	Morse	Fluie	Length	Overal]	Length	Morse		Length	Overal	Lengt
Frac-	1	Deci,		Taper		F		Ļ	Taper		F		L
цол	mm	Inch	mm	No.	Inch	ពាព	Inch	mm	No.	Inch	nım	Inch	mm
	3.00	0.1181	3.000	1	1%	48	51/3	130					
4	1	0.1250	3.175	3	1%	48	51/2	130					
	3.20	0.1260	3.200	1	216	54	5%	137		i		504	l
	3.50	0.1378	3.500	1	21%	54	5%	137		l			
%	1	0.1406	3.571	1	21%	54	5%	137		l			
	3.80	0.1496	3.800	1	2%	54	5¾	137	,				
%_		0.1562	3.967	L	21%	54	53%	137					
-12	4.00	0.1575	4.000	Î	2½	64	5¾	146					
	4.20	0.1654	4.200	î	21/2	64	5%	146					
₩64		0.1719	4.366	i	2%	64	5% 5%	146					
~64	4.50	0.1772	4,500	l i l	2%	64	5%	146					
¥16	1~0	0.1772	4.762	1	- 12 215	64	5% 5%	146					
×16	4.80	0.1890	4.800	1	2% 2%	70	524 6	152				•••	
	5.00	0.1850	5.000			70	6	152	•••				
127	5.00	0.1909	5.159		23/4	70	6			***	•••		
₩4	5.20	0.2031	5.200		2%			152			•••		
				1	2¾	70	6	152	•••		•••		
	5.50	0.2165	5.500	1	$2\frac{3}{4}$	70	6	152	•••				
强		0.2183	5.558	1	$2\frac{N}{4}$	70	6	152	•··•		:		
	5.80	0.2223	5.800	1	2%	73	6%	156					
15/64		0.2344	5.954	1	2%	73	6½	156					
	6.00	0.2362	6.000	1	2%	73	61/8	156					
	6.20	0.2441	6.200	1	2%	73	61/8	156	•••				
4		0.2500	6.350	1	2%	73	61/8	156					
	6.50	0.2559	6.500	1	3	76	6¼	159					
17/64		0.2656	6.746	1	3	76	6¼	159					
	6.80	0.2677	6.800	1	3	76	61/4	159					
	7.00	0.2756	7.000	1	3	76	61/4	159		,			
‰		0.2812	7.142	ι	3	76	6%	159					
	7.20	0.2835	7.200	1	31/4	79	6%	162					
	7.50	0.2953	7.500	1	3%	79	6%	162					
1%		0.2969	7.541	1	3%	79	6%	162					
.04	7.80	0.3071	7.800	1	3%	79	6%	162					
5∕ ₁₆		0.3125	7.938	Î.	314	79	6%	162					
16	8.00	0.3150	8.000	i	31/4	83	6½	165					
	8.20	0.3228	8.200	î	31/4	83	6½	165			•••		
21/64	00	0.3281	8.334	l i l	31/4	83	6%	165					
764	8,50	0.3281	8,500	1	3%	83		165					
W/	0~0	0.3340	8,733	1		83	6½	165					
ч <u>у</u> 2	8,80	0.3458	8,800	1	3¼	89	61/2		•••				
	9.00	0.3465		1	3½		6%	171	•••	:			
21.	9.00		9.000		3½	89	6%	171	•••				
23/64		0.3594	9.129	1	31/2	89	61/4	171		•••			
	9.20	0.3622	9.200	i	3½	89	6¾	171					
	9.50	0.3740	9.500	1	3 <u>K</u>	89	6¾	171					
*		0.3750	9.525	1	3½	89	6¾	171	2	3 <u>K</u>	89	7%	187
	9.80	0.3858	9.800	1	3%	92	7	178					
™~4		0.3906	9.921	1	3%	92	7	178	2	3%	92	71/2	190
	10.00	0.3937	10.000	1	3%	92	7	178					

841

examples and the second sec

842

# Table 11. (Continued) American National Taper Shank Twist Drills — Fractional and Metric Sizes ANSI/ASME B94.11M-1993

	Drill Di	omater		- T		-		r Shan	_		T	11241-	Larg		maller	Shar	ik ^a erall Le	noth
	DHILD	ameter, Ea	uivalen	<del>. 1</del> .			Long			11 Leng	gth	Morse	Fiu	ie Lo F	ogth	00	eran Le	ngu
		Deci			Morse Taper		F			L	_	Taper	Inc		mm	Jac		mma
Frac- tion	mm	Inch		m	No.	Inch		m	Inch	m	m. 18	No.	IIIC	_	1005	,		
	10.20	0.401	6 10	.200	1	3%		72	7	- 1	78	2	35		92	7	4	190
13/2		0.406	32   10	.320	1	3%		92	7		34		1 "	۴ Į		۱.,	~	
'32	10.50	0.413	34 10	500	1	3%		98	7%		5% B4	2	37	x I	98	7	8 L	197
7%		0.421	19 10	).716	1	3%		98	71/4		84	1	1	· .			· .	1
104	10.80	0.425	52 10	0.800	1	3%		98	7½		84   84		1	- 1		1.	. 1	
	11.00	0.433	31 1	1.000	1	3%		98	7%	- L -		2	1 .	8	98	7	k	197
$\frac{1}{16}$	l	0.43	75 1	1.112	1	3%		98	7%		84 90			<u>*</u>				
10	11,20	0.44	09 1	1.200	1	41/8		105	71/2		90 90	····	- I	1			- 1	
	11.50	0.45	28 1	1.500	ĩ	41%		105	71/2			2	1.	1/6	105	8		203
²⁹ ⁄64	1	0.45	31	11.509	1	41/8		105	7½		90	1	- 1	78		1		
·64	11.80	0.46	46	11.800	1	41/8		105	71/2		90	2		 1%	105	18		203
15/2	1	0.46	588	11.906	1	41/2		105	7½		190				111		3	197
7/2	12.00	0.47	124	12.000	2	4%		1)1	81/4		210			K	111			197
	12.20		803	12,200	2	4%	: L	111	81/4		210	1		1%	111		14	197
12	1	0.4	···	12.304	2	43		111	81/		210	1 !		稱	111		1%	197
31/64	12.50			12.500	2	43		111	81/		210	1		4%			1%	197
12	100		000	12.700	2	43		111	81/	4 1	210			4%		· •	1% 8	203
12	12.8		034	12,800	2	45		117	8%	ź	216	1		4%	117		8	203
{	12.8	· L · · ·	118	13,000	2	43		117	85		216	1		4%	117		8	203
	1 13.0		1156	13.096	2	45		117	84	4	216	1		4%	117			203
3%	1		· · ·	13,200	2	4		117	81	<u> </u>	216	1	1	4%	115	1	8	
1	13.2		5197	13.492	1 -	4		117	8		216	j i		4%	1 117	· .	8	203 203
17/32			5312	13.500		4		117	1 8		216	1 1	1	4%	117		8	
	13.5		5315	13.800		4		124	8		222	1	- 1	4%	12-		81/4	210
1	13.8		5433	13.891			78	124	8		222	1		4%	12		81/4	210
35/64	i I	1	5469		1		78	124	8		222	: ] ]		4%	12		81/4	210
1	14.6		5572	14.000			18 12	124		2	222		- 1	4%	12	4 ]	81/4	210
	14.		5610	14.25				124		2	222	1 1		4%	12	4	81/4	210
3/16			5625	14.28			%	124			222	21.			1	. L		
1	14.		.5709	14.50			1%	124		34	222		. 1		Į	- I		]
3%			.5781	14.68	L		\$%	124		334	223					- 1		
1	14.		5807	14.75			4%	124		574 8%	22				1	.		
	15		.5906	15.00			4%	124		574 B3%	22				1	.		
194	<u>,</u>		1,5938	15.08		· · ·	4%	124			22		1		1	.		]
	15		1.6004	15.24			4%	124		8¾ 8¾	22					.		1
3	64		0.6094	15.4	· I		4%	1			22	-			1	.		
			0.6102	15.5			4%	124		8¾ v3/	22	- 1			1.			
	15		0.6201	15.7		2	4%	124		8¾ 8%	22				Į.,			1
1	× (		0.6250	15.8	1	2	4%	13	- 1	9 9	22							1
1	- 10		0.6299	16.0		2	5%	13	-	9	- · · ·	29			1.			
			0.6398	16.2		2	5%			9		29	3	53		130	9%	24
4	1/4		0.6406	16.2		2	5%	13		9		29					1	1
	~ [ ]		0.6496	16.5		2	51/8	13	- 1	9		29	3	51		130	9%	24
2	×40	- {	0.6562	16.0		2	5%	13		-		35			° 1			1
	- 1 I	6.75	0.6594	16.		2	5%	13		9¼	1 -	35		1				
		7.00	0.6693	17.	000	2	5¾	12		9¼		235	3	5	· .	137	10	25
	41/64	1	0.6719	17.	066	2	5%		37	91/4		235			8			
	·04	7.25	0.6791	17.	250	2	5¥		37	91/4			3	5	° (	137	10	25
ļ	14/16	Į	0.6875	17.	462	2	5¾		37	9%		235			~ [			1.
	/16	7.50	0.6880		500	2	5%		43	9½		241				143	10	
Ì			0,7031		859	2	5%		43	<u>9½</u>		241	3		*	145	1	* L Ē
	45/ ₆₄	18.00	0.7087		000	2	5%	jι	43	91 <u>4</u>	- 1 - 1	241				143	10	1 2
			0.7188		.258	2	5%	1	43	9½		241	3		%		1	4
	™2	18.50	0.7283		.500	2	5%	1	49	9¾		248			<u> </u>	149	10	
		1000	0.734		654	2	5%	11	149	9%	1	248	3	1 4	5%	149		2

125

9 - 199

843

 
 Table 11. (Continued) American National Taper Shank Twist Drills --- Fractional and Metric Sizes ANSI/ASME B94.11M-1993

	Drill D	iameter, D			Ro	gular Sha	unik			Larger of	r Smalle	shank ^a	
		Equiv	alent	Morse	Flute		Overall	Longth	Morse	Flute 1	ength		Lengt
Frac-		Deci.		Taper		9	i		Taper	1	7		L
tion	mm	Inch	mm	No.	Inch	ອນກາ	Inch	mm	No,	Inch	mm	Inch	ាចា
	19.00	0.7480	19.000	2	5%	149	9线	248	3				
34		0.7500	19.050	2	5%	149	9%	248	3	5%	149	10½	267 270
**/64	10.50	0.7656	19.446	2	6	152	9%	251		6	152	10%	
<i></i>	19.50	0.7677	19.500	2	6	152	9%	251		17		•••	270
™11		0.7812	19.843	2	6	152	9%	251	3	6	152	10%	254
<i>a</i> .	20.00	0.7821	20.000	3	6½	156 156	10¾	273 273	2 2	6%	156 156	10 10	254
51/64	20.50	0.7969 0.8071	20.241 20.500	3	6%	156	10%	273	2	6%	156	10	25
	20.50	0.8125	20.500	3	6%	156	10%	273	2	6%	156	10	254
1%	21.00	0.8125	20.638	3	6%	156	10%	273	2	6%	156	10	254
	21.00	0.8268	21.000	3	6%	156	10%	273	2	6%	156	10	254
53 _{/64}	1	0.8438	21.034	3	6%	156	1034	273	2	6%	156	10	254
$\pi_{I_{\mathcal{R}}}$	21,50	0.8465	21.455		6%	156	10%	-	2	6%	156	10	254
se ,	21,50	0.8594		3	6%	156	10%	273 273	2	6%	156	10	254
⁵⁵ /64	22.00	0.8594	21.829 22.000	3	6%	156	10%	273	2	6%	156	10	254
	22.00	0.8750	22.000	3	61/8	1	10%		2	6%	156	10	254
76	22.50	0.8750	22.500	3	6½	156	10%	273	2	6¼	156	10	254
<i>.</i>	22.50		1	3	61%	156	10%	273	2	6%		10	25-
⁵⁷ 64		0.8906	22.621		6%	156	10%	273	2	6%	156	1	254
	23.00	0.9055	23.000	3	6%	156	101/4	273		6%	156	10	
2%,a		0.9062	23.017 23.416	3	6½	156 156	10%	273 273	2	6%	156	10	254
⁹ %	02.70			3	6½		10½			···			
	23.50	0.9252	23.500		61/8	156	10¾	273		···	•••		
15/16		0.9375	23.813	3	6½	156	10¾	273		····			
	24.00	0.9449	24.000	3	6%	162	11	279				<i></i>	
⁶¹ /4		0.9531	24.209	3	63%	162	11	279				•••	
	24.50	0.9646	24.500	3	6%	162	11	279	•••			***	
‰		0.9688	24.608	3	63/8	162	11	279				•••	
	25.00	0.9843	25.000	3	63/8	162	11	279					
⁶⁶ /44		0.9844	25.004	3	6%	162	11	279					
1		1.0000	25.400	3	6%	162	11	279	4	6¥	162	12	30
	25.50	1.0039	25.500	3	6½	165	111/8	283					
1%		1.0156	25,796	3	6½	165	11½	283					
	26.00	1.0236	26.000	3	6½	165	111/8	283				1	
$1\frac{1}{32}$		1.0312	26.192	3	6½	165	11%	283	4	6½	165	12%	30
	26.50	1.0433	26.500	3	6%	168	11½	286					
1%		1.0469	26.591	-	6%	168	11½	286					
$1\frac{1}{16}$	1 07.00	1.0625	26.988	3	6%	168	111/4	286 286	4	6%	168	12%	31
	27.00	1.0630	27.000	3	6%	168	11½						
$1\frac{1}{24}$		1.0781	27.384		6%	175	12½	318	3	6%	175	113	29
. 2.	27,50	1.0827	27.500	4	6%	175	121/2	318	3	6%	175 175	11½	29: 29:
$1\frac{3}{22}$	39.00	1.0938	27.783	4	6%	175	121/2	318	3	6%		11½	29
.7.	28.00	1.1024	28.000	4	7%	181	12%	324	3	7%	181	11%	29
1%	20.00	1.1094	28.179	4	71/8	181	12%	324	3	7%	181	1134	29
	28.50	1.1220	28.500	4	71/8	181	12%	324		71/8	181	11%	
1%	1	1.1250	28.575	4	71/8	181	12%	324	3	71%	181	11%	29
1%	0.00	1.1406	28.971	4	7¼	184	12%	327	3	74	184	11%	30
	29.00	1.1417	29.000	4	74	184	12%	327	3	74	184	11%	30
凫	1	1.1562	29.367	4	7½	184	12%	327	3	7¼	184	117%	30
	29.50	1.1614	29.500	4	7%	187	13	330	3	73%	187	12	30
11/4		1.1719	29.797	4	7%	187	13	330	3	7%	187	12	30
	30.00	1.1811	30.000	4	7%	187	13	330	3	7%	187	12	30
$1$ $\frac{1}{16}$		1.1875	30.162	4	7%	187	13	330	3	7%	187	12	30
	30.50	1.2008	30.500	4	7½	190	131%	333	3	7½	190	12%	- 30
14%	1	1.2031	30.559	4	7½	190	131/8	333	3	7½	190	12%	3(

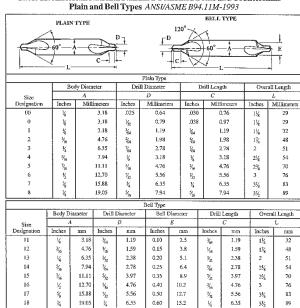
# Table 11. (Continued) American National Taper Shank Twist Drills — Fractional and Metric Sizes ANSI/ASME B94.11M-1993

			a	nd M	etric		_			- 09	7.11	-11-13	Larger of	Small.	or Sh	onka	
	Drill Di	ameter	r, D					Shan			_ _		Finte L			verall L	eneth
		E	quiva]er	nt	Morse	Flute	Leng	ih	Overall	Lengu		forse	TJUE D	ciigai	+	L	
Frac-	[	Deci			Taper		F m	-	Inch	mm		laper No.	Inch	mm	1	nch	mm
	ากก	Inch		mmi 0.958	No. 4	Inch 7½		10	13%	333		3	71/2	190	1	2%	308
11/20		1.218	~ I -	0.958	4	7%		00	13%	343		3	7%	200	1	121/2	318
1	31.00	1.220		1.354	4	7%	1	00	13%	343	1	3	7%	200	1	2½	318
11%				31.500	4	7%		00	13%	343		3	7%	200		121/2	318
	31.50	1.24	· .	31.750	4	7%		00	13%	343	3	3	7%	200	1	121/2	318
14		1.25		32.000	4	814	2	16	14%	359					1.	]	•••
	32.00	1.25		32.146	4	8%	2	16	14%	355	, [				ŀ	{	
$1\frac{1}{64}$	32.50	1.20		32,500	4	81/2	2	16	141/4	359	9						•••
	32.30	3.28		32.542	4	81/2	1 2	16	14%	35	9				1	··· ]	
i%_2		1.29	_	32,941	4	8%		219	1414	36	2	•••			- L		
11%	33.00	1.29		33.000	4	8%	1:	219	14¼	36	2						
	55.00	1.3		33,338	4	8%		219	14%	36	2						
1%16	33.50	1.31		33.500	4	834		222	143	36	5						
	55.50	1.3	- 1	33.734	4	83/4	1:	222	14%	36	5	•••	***	····	1		144
121/64	34.00			34,000	4	83/4	1.	222	14%	36	5		1	···	ļ		•••
	54.00	13	I	34.133	4	83/		222	143/8	36	5	•••					
11%	34.50		583	34.500	4	8%		225	14%	1 36	58				- 1		
1 171	54.50		594	34.529	4	8%		225	14%	34	58		1				••••
1 ²³ / _{éi}	1		750	34,925	4	8%	1	225	14%	30	58			1	· ]		
1%	35.00		3780	35,000	4	9	1	229	14%	3	71		1		· {		
	35.00		3906	35.321	4	9		229	14%	3	71					•••	
12%	35.50		3976	35,500	4	9	1	229	14%	3	71			1	٠١	•••	
1	1 33.55		4062	35.717	4	9		229	14%	3	71		1		٠l		
113/22	36.0	- N	4173	36.000	4	91		232	143/	3	75	***		1 "	·	~~	
1.77	30.0		4219	36.116		93		232	143	3	75		]		- 1	•••	
12%	36.5		4370	36.500		9	4	232	143	3	75			1	·		
17/	1 30.3		4375	36.512		91		232	143	( ] 3	175			1		•••	
17/16	l.		4531	36,909		9		235	143	6 3	378		1		- 1		
1%4	37.0	- I -	4567	37.000		9		235	143	4 3	378			1.		•••	
1.157	1	- I ·	4688	37.30		9		235	143	8 3	378			1	. 1		
14%	37.5		.4764	37.50		9		238	15		381						Į
1.11/			.4844	37.70		9	21	238	15		381						···
13%	1 38.0		,4961	38.00	0 4	9		238	15		381		1	1.			- 04
1 14	30.4		,5000	38.10			%	238	15		381						201
1%			.5156	38.49			}					4	93	4 I	38	15	381
13%			.5312	38.89		9	χl	238	16	8 1	416	4	9	8 -	38	15	381
1%	2 39/		1.5354	39.00	-		ŝ,	244	16	%	422	4	9	8	244	15%	38
13%	1		1.5469	39.29	· I	1			1.	1		4	9	18	244	151/4	38
			1.5625	39.68	1	:   :	1%	244	16	34	422	4	9	10	244	15%	39
1%	⁶ 40.		1.5748	40.00	x0 :	5 9	1%	251	L 16	3	429	4		8	251	15%	39
137	1		1.5781	40.01		1					•••	4			251	15%	39
19			1.5938	40.4		5 .	9%	25	1 16	5%	429	4		~	251	15%	
139			1.6094	40.8	79 .			)		1		4	10		254	15%	1
1 13	64		1.6142	41.0		5	10	25		•	432	4	10		254 254	15%	
13			1.6250	41.2		5	10	25	4 i'	7	432	4	10			15%	
19			1.6406	41.6	71			· · ·				4	10		257	15%	
1 13	⁽⁶⁴ _ <u>4</u> 7		1.6535	42.0	00	5	10%	25		7%	435	4			257 257	15%	
12	V.e		1,6562	42.0		5	10%	25	7 1	7%	435	4		~~ I		153	+ I
		- 1	1.6719	1								4	1	9%	257	153	۰I
				1		5	10%	25	57 ] 1	7½	435						4 I ·
1	⁷¹⁶ A	1001				5	10%	25	57 ] 1	7%	435						4 [ .
1.																	4
	764 137					5	$10\frac{1}{8}$	25	57 1	17%	435						
r	70	4 00				5	10%	2	57 1	17%	435	4	1	0%	264	16	4 4
1	1%4 1%2	3.00 4.00	1.6719 1.6875 1.6929 1.7031 1.7188 1.7323	42.8 43.0 43.1 43.1	362 300 259 558	5 5 	10% 10%  10%	25 25  25	57 1 57 1 	7% 7%  .7%	435 435  435		- 10 - 10 - 10 - 10	0% 0% 0% 0%	257 257 257 257 257 257 264	7	7 153 7 153 7 153

845

 
 Table 11. (Continued) American National Taper Shank Twist Drills — Fractional and Metric Sizes ANSI/ASME B94.11M-1993

	Drill D	ameter, D			Re	gular Shi	ink		1	Larger	r Smalle	r Shank ^a	
		Equiv	alcai		Flute I		Overall	Length		Flute			1 Length
-			acht	Morse	TIGK		- Cruna		Morse	1100			L
Frac- tion	mm	Deci. Inch	mm	Taper No.	Inch	ແນກ	Inch	mm	Taper No.	Inch	RIRO	Inch	1000
14%4	TIPR 1	1.7344	44.054						4	10%	264	16%	413
134		1.7500	44,450	5	10%	257	17%	435	4	10%	264	16%	413
1.4	45.00	1.7717	45.000	5	10%	257	17%	435	4	10%	264	16%	413
123/40	45.00	1.7812	45.242	5	10%	257	17%	435	4	10%	264	16%	413
1-232	46.00	1.8110	46.000	5	10%	257	17%	435	4	10%	264	16%	413
1.124	40.00	1.8125	46.038	Ś	10%	257	17%	435	4	10%	264	16%	413
111/16				5				435	4		264		413
$1^{27}$	17.00	1.8438	46.833		10%	257	17%	435	4	10%	264	16%	415
	47.00	1.8504	47.000	5	10%	264	$17\frac{1}{8}$			10½		16½	
1%		1.8750	47.625	5	10%	264	17%	441	4	10½	267	16%	419
	48.00	1.8898	48.000	5	10%	264	17%	441	4	10½	267	16½	419
1兆		1.9062	48.417	5	10%	264	17%	441	4	10½	267	16½	419
	49.00	1.9291	49.000	5	10%	264	17%	441	4	10%	270	16%	422
1 ¹⁵ / ₁₆		1.9375	49.212	5	10%	264	17%	441	4	10%	270	16%	422
	50.00	1.9625	50.000	5	10%	264	17%	441	4	10%	270	16%	422
$1^{3}$ /2		1.9688	50.008	5	10%	264	17%	441	4	10%	270	16%	422
2		2.0000	50.800	5	10%	264	17%	441	4	10%	270	16%	422
	51.00	2.0079	51.000	5	10%	264	17%	441	l	l"			
2K_	{	2.0312	51.592	5	10%	264	17%	441		l			
27 <u>0</u>	52.00	2.0472	52.000	5	1014	260	17%	441					
21/16		2.0625	52,388	5	101/4	260	17%	441					
2/16	53.00	2.0866	53,000	5	101/4	260	17%	441					
a1/	5,5.00	2.0938	53.183	5	10%	260	17%	441					
2½		2.1250	53.975	5		260		441		1 °			
21%	64.00				10½	1	17%						
	54.00	2.1260	54.000	5	10¼	260	17%	441					
2%2		2.1562	54.767	5	101/4	260	17%	441					
	55.00	2.1654	55.000	5	10¼	260	17%	441		···			
$2\frac{1}{16}$	[	2.1875	55.563	5	10½	260	17¾	441					
	56.00	2.2000	56.000	5	$10\frac{1}{8}$	257	173	441					
$2\frac{7}{2}$		2.2188	56.358	5	101%	257	17%	441				•••	
	57.00	2.2441	57.000	5	10%	257	17%	441					
21/4		2.2500	57.150	5	10%	257	17%	441					
	58.00	2.2835	58.000	5	10%	257	17%	441					
25/16		2.3125	58.738	5	10%	257	17%	441					
- 10	59.00	2.3228	59.000	5	10%	257	17%	441				1	
	60.00	2.3622	60.000	5	10%	257	17%	441					
23/8		2.3750	60.325	5	10%	257	17%	441					1
	61.00	2.4016	61.000		11%	286	18%	476		1			
27/16	02.00	2.4375	61.912	5	11/2	286	18%	476					
27/6	62.00	2,4409	62.000		1124	286	18%	476					1
	63.00	2.4409	63.000		1	286		476		1		1	
a1/	0,00	2.5000	63.500		11%	286	18%	476					I
2½	1 4 400				11%		18%	4/6				~~	I
	64.00	2.5197	64.000		11%	302	19%						- ···
	65.00	2.5591	65.000		11%	302	19%	495					
$2\%_{16}$		2.5625	65.088		11%	302	19%	495					
	66.00	2.5984	66.000		11%	302	19½	495				1	10
$2\frac{2}{3}$	1	2.6250	66.675		11%	302	19½	495				117	
	67.00	2.6378	67.000		123/4	324	203%	518					
	68.00	2.6772	68.000	5	1234	324	20%	518		1			
21%	1	2.6875	68.262	5	1234	324	20%	518					
- 85	69.00	2.7165	69.000	5	1234	324	20%	518					
2¾		2.7500	69.850		121/4	324	20%	518					
- 4	70.00	2.7559	70.000	1	13%	340	21%	537					
	71.00	2.7953	71.000	1	13%	340	21%	537					
2112	1 1.00	2.8125	71.438		13%	340		537					
$2^{1}_{16}$	1	2.0120	1 11.458	1 1	1 13%	.740	211/8	1 35/		***			


Table 11. (Continued) American National Taper Shank Twist Drills -- Fractional and Metric Sizes ANSUASME B94.11M-1993

	Drill D	iameter, D			Re	gular Shi	mk			Larger c	or Smaller	r Shank ^u	
		Equiv	/alent	Morse	Flute 1	Longth	Overall	Longth	Morse	Flute I	Length	Overal	l Longth
Frac-		Deci.		Taper	1	r.		L	Taper	1	<u>द</u>		L
tion	mm	Inch	ការបា	No.	Inch	mm	Inch	nm	No.	Inch	mm	Inch	ார
	72.00	2.8346	72.000	5	13%	340	21%	537					
	73.00	2.8740	73.000	5	13%	340	21%	537					
2%		2.8750	73.025	5	13%	340	21%	537					
	74.00	2.9134	74.000	5	14	356	21%	552					
2 ¹ %		2.9375	74.612	5	14	356	21¾	552					
	75.00	2.9528	75.000	5	14	356	21¾	552					
	76.00	2.9921	76.000	5	14	356	2134	552					
3		3.0000	76.200	5	14	356	21%	552					
	77.00	3.0315	77.000	6	14%	371	24½	622	5	14¼	362	22	559
	78.00	3.0709	78.000	6	14%	371	241/2	622	5	14½	362	22	559
31/2		3.1250	79.375	6	14%	371	241/2	622	5	14%	362	22	559
314		3.2500	82.550	6	15½	394	251/2	648	5	15%	387	23	584
31/2		3.5000	88.900						5	16½	413	24	610

^aLarger or smaller than regular shank.

846





### Table 13. American National Standard Three- and Four-Flute Taper Shank Core Drills — Fractional Sizes Only ANSU/ASME 894.11M-1993

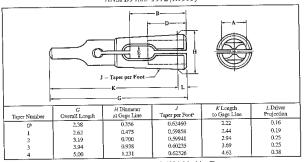
		JIE DI M				0.14.9 7	1,971	ADME D	, <u>, , , , , , , , , , , , , , , , , , </u>			
				_	7-1-1	~ -	-		<u> </u>	_		
		+			1-1-	2	~		ιís°-∤}	- ṕ		
			~		┹╼┹╞╴		-		$\prec$	<u>+</u>		
		A			-		—-F					
									+			
			Drill D	hameter 1	1/32" (8	i.737 mm	) and S	maller				
								1	N E			
	(				1			118°	Ň	ŧ		
	-				C	5		Chamfe	1-1	P		
		A					_	1	71	60% of		
					-		-F			Drill		
	7		Drill Dian	neter 3/8'	(9.525	mm) and	Larger			Diame	ter	
D	rill Diame	1	1		-Flute Dri	,			E	lute Dr	UH -	
		ivalent	Morse	Flute 1		Overall 1	enath	Morse	Flute L		UIS Overall I	anath
}			Taper			OVGIAILI	Longui	Тарст	FIRE L	cagui	Overall	rengin
	Deci.		No.		7	L		No.	F		L	
Inch	luch	mm	A	Inch	mm	Inch	mm	A	Inch	mm	Inch	mm
4	0.2500	6.350 7.142		2% 3	73 76	6%	156 159			•••		
%⊥ %i	0.2612	7.938	1	31%	70	6¼ 6¾	159		•••			
4/2	0.3438	8.733	1	31/4	83	61/2	165					
*	0.3750	9.525	i	31/4	89	63/4	171					
1/2	0.4062	10.319	1	3%	92	7	178					
3/6	0.4375	11.112	1	37/	98	71/4	184					
%	0.4688	11.908	1	41/8	105	7½	190					
Ķ.	0.5000	12.700	2	4%	111	81/4	210	2	4%	111	81/4	2J0
™ <u>∞</u>	0.5312	13.492	2	4%	117	8½	216	2	4%	117	8½	216
%₀	0.5625	14.288	2	4%	124	834	222	2	$4\frac{7}{8}$	124	8¾	222
%	0.5938 0.6250	15.083 15.815	2	4%	124	834	222 222	2	4%	124	834	222
*	0.6562	16.668	2	4% 5%	124 130	8%	222	2 2	4%	124 130	8½ 9	222 229
1/20	0.6875	17.462	2	5%	137	91/4	235	2	5% 5%	130	9%	235
24/20	0.7188	18.258	2	5%	143	9%	241	2	5%	143	9%	241
*	0.7500	19.050	2	5%	149	934	248	2	5%	149	91/2	248
25%	0.7812	19.842	2	6	152	9%	251	2	6	152	9%	251
13/16	0.8125	20.638	3	61/4	156	10¾	273	3	61	156	101/4	273
₽%2	0.8438	21.433	3	61/8	156	10%	273	3	61/2	156	10½	273
4	0.8750	22.225	3	61/8	156	10%	273	3	614	156	10¾	273
-2% ₇₂	0.9062	23.019 23.812	3	61/4	156	10¾	273	3	61%	156	10¼	273
1% 34/	0.9375 0.9688	23.812 24.608	3	61/8	156 162	10%	273 279	3 3	6%	156	101/4	273
***	1.0000	24.608	3	6¾ 6¾	162		279	3	6% 67/	162 162	н п	279 279
1%	1.0312	26.192	3	6½	165	11%	2/9	3	6% 6%	162	11%	2/9
1%	1.0625	26.988	3	6%	168	11%	286	3	6%	168	11%	286
1½	1.0938	27.783	4	6%	175	12%	318	4	6%	175	12%	318
1%	1.1250	28.575	4	71/4	181	12%	324	4	71	181	123/4	324
1%_	1.1562	29.367	4	71/4	184	12%	327	4	754	184	12%	327
13/16	1.1875	30.162	4	73%	187	13	330	4	7%	187	13	330
1%_	1.2188	30.958	4	71/2	190	131%	333	4	7½	190	131/8	333
14	1.2500	31.750	4	7%	200	13½	343	4	7%	200	131/2	343
1%	1.2812	32.542						4	81/2	216	141/	359
1%	1.3125	33.338 34.133	•••					4	8%	219	1414	362
1 ¹¹ / ₃₂ 1½	1.3458	34.133					•••	4	8¾ 8%	222 225	14%	365 368
1/8		341740	· ···				•••	*	0%	دغم ا	14½	

847

130

and the second second

and the second second


### 848

### TWIST DRILLS

D	rill Diane	er. D		Three-	Flute Dri	lls			Four-F	lute Dri		
		ivalent	Morse	Flute L	ength	Overall I	cngth	Morse	Flute La	ngth	Overall L	cngth
	Deci.		Taper No.	F	,	L		Taper No.	F		L	
Inch	Inch	uum	A	Inch	mm	Inch	mm	A	Inch	mm	Inch	mm
11%	1.4062	35,717				,		4	9	229	14%	371
176	1,4375	36.512						4	9%	232	1434	375
1%	1.4688	37.306						4	914	235	14%	378
1½	1.5000	38,100						4	9%	238	15	381
1%	1.5312	38.892						5	9%	238	16%	416
1%	1.5675	39,688					۱ I	5	9%	244	16%	422
1%2	1.5938	40,483						5	9%	251	16%	429
1%	1.6250	41.275						5	10	254	17	432
1214	1.6562	42.067						5	10%	257	$17\frac{1}{2}$	435
1%	1.6875	42.862						5	101%	257	17%	435
123/2	1.7188	43.658						5	10%	257	17%	435
1%	1,7500	44,450						5	10%	257	17%	435
12%	1.7812	45.244					1	5	10%	257	17%	435
11%	1.8125	46.038						5	10%	257	17%	435
12%2	1.8438	46.833						5	10%	257	17%	435
1%	1.8750	47.625				1		5	10%	264	17%	441
17%	1.9062	48.417					1	5	10%	264	17%	441
115%	1.9375	49.212				1		5	10%	264	17%	44
13%	1.9688	50.008						5	10%	264	17%	443
2	2.0000	50.800						5	10%	264	17%	44
2%	2.1250	53.975						5	10%	260	17%	44
2% 2¼	2.2500	57.150						5	10%	257	17%	44
	2.3750	60,325						5	10%	257	17%	44
2% 2%	2.5000	63,500					1	5	11%	286	18%	47

**British Standard Combined Drills and Countersinks (Center Drills)**.—BS 232: Part 2: 1972 (1990) provides dimensions of combined drills and countersinks for center holes. Three types of drill and countersink combinations are shown in this standard but are not given here. These three types will produce center holes without protecting chamfers, with protecting chamfers, and with protecting chamfers of radius form.





^aTaper rate in accordance with ANSI/ASME B5.10-1994, Machine Tapers. ^b Size 0 is not an American National Standard but is included here to meet special needs.

All dimensions are in inches.

1 (rec. 1)

#### Table 14. ANSI Three- and Four-Flute Straight Shank Core Drills — Fractional Sizes Only ANSI/ASME B94.11M-1993 -118°þ -F - L -Drill Diameter 11/32" (8.733 mm) and Smaller 118° þ 2-Chamfer 1 - 60% of Drill Diameter ~F л. Drill Diameter 3/8" (9.525 mm) and Larger Nominal Shank Size is same as Nominal Drill Size Four-Flute Drills Three-Flute Drills Drill Diameter, D Fiute Length Overall Longth Flute Length Equival Deci. Inch Inch mili Inch тт 95 Inch mm Inch mm Incl 156 159 3¾ 3¾ 4 各點難遇着強強強差強難幾強點對強強強強強強強強 6.350 7.142 7.938 98 0.2812 102 162 ... $\cdots$ $\cdots$ $\cdots$ $\cdots$ $7\frac{3}{4}$ $8\frac{1}{4}$ $8\frac{1}{4}$ $8\frac{1}{4}$ $8\frac{1}{4}$ $9\frac{1}{4}$ $9\frac{1}{4}$ $9\frac{1}{4}$ $9\frac{1}{4}$ $9\frac{1}{4}$ $9\frac{1}{4}$ 1010···· 0.3125 105 105 165 0.3438 8.733 $4\frac{1}{4}$ ... ... 173 9.525 4% 4% 4% 4% 4% 4% 4% 4% 4% 5% 0.3750 10.317 11.112 111 117 178 0.4062 184 190 ... ... 197 0.4375 0,4688 11.908 121 121 ... 121 197 12,700 0.5000 121 124 124 124 124 130 137 143 149 152 156 156 156 156 156 156 156 203 210 121 124 203 0.5312 13.492 210 222 0.5625 0.5938 14.288 210 222 222 229 235 124 124 15.083 222 0.6250 15,875 229 235 0.6562 16.667 130 137 0.6875 17.462 233 241 248 251 18.258 .... 2**48** ... 5% 934 ------------------------... 149 0.7500 0.7812 19.050 19.842 ···· ··· ··· ··· ··· ··· 254 0.8125 20.638 21.433 ... ... 254 254 254 273 279 279 283 0.8438 0.8750 22.225 23.017 0.9062 10¾ 11 11 0.9375 23.812 24.608 0.9688 ... 162 25.400 26.192 1.0000 165 11% 1.0312 1½ 1½ 1½ 1½ 1% 168 175 181 11% 11% 11% 286 292 1.0625 26.988 1.0938 27.783 298 318 28.575 31.750 1.1250 200 12% 1.2500

TWIST DRILLS

### DRILL DRIVERS

Drill Drivers—Split-Sleeve, Collet Type,—American National Standard ANSI B94.35-1972 (R1995) covers split-sleeve, collet-type drivers for driving straight shank drills, reamers, and similar tools, without tangs from 0.0390-inch through 0.1220-inch diameter, and with tangs from 0.1250-inch through 0.7500-inch diameter, including metric sizes.

For sizes 0.0390 through 0.0595 inch, the standard taper number is 1 and the optional taper number is 0. For sizes 0.0610 through 0.1875 inch, the standard taper number is 1, first optional taper number is 0, and second optional taper number is 2. For sizes 0.1890 through 0.2520 inch, the standard taper number is 1, first optional taper number is 2, and second optional taper number is 0. For sizes 0.2570 through 0.3750 inch, the standard taper number is 1 and the optional taper number is 2. For sizes 0.3860 through 0.5625 inch, the standard taper number is 2. For sizes 0.3860 through 0.5625 inch, the standard taper number is 3 and the optional taper number is 3. For sizes 0.5781 through 0.7500 inch, the standard taper number is 3 and the optional taper number is 4.

The depth *B* that the drill enters the driver is 0.44 inch for sizes 0.0390 through 0.0781 inch; 0.50 inch for sizes 0.0785 through 0.0938 inch; 0.56 inch for sizes 0.0960 through 0.1094 inch; 0.62 inch for sizes 0.1100 through 0.1220 inch; 0.75 inch for sizes 0.1250 through 0.1875 inch; 0.88 inch for sizes 0.1890 through 0.2520 through 0.3125 inch; 1.12 inches for sizes 0.3600 through 0.3750 inch; 1.25 inches for sizes 0.3600 through 0.4688 inch; 1.31 inches for sizes 0.4844 through 0.5625 inch; 1.47 inches for sizes 0.5781 through 0.6562 inch; and 1.62 inches for sizes 0.6719 through 0.7500 inch.

British Standard Metric Twist Drills.—BS 328: Part I: 1959 (incorporating amendments issued March 1960 and March 1964) covers twist drills made to inch and metric dimensions that are intended for general engineering purposes. ISO recommendations are taken into account. The accompanying tables give the standard metric sizes of Morse taper shank twist drills and core drills, parallel shank jobbing and long series drills, and stub drills.

All drills are right-hand cutting unless otherwise specified, and normal, slow, or quick helix angles may be provided. A "back-taper" is ground on the diameter from point to shank to provide longitudinal clearance. Core drills may have three or four flutes, and are intended for opening up cast holes or enlarging machined holes, for example. The parallel shank jobber, and long series drills, and stub drills are made without driving tenons.

Morse taper shank drills with oversize dimensions are also listed, and Table 15 shows metric drill sizes superseding gage and letter size drills, which are now obsolete in Britain. To meet special requirements, the Standard lists nonstandard sizes for the various types of drills.

The limits of tolerance on cutting diameters, as measured across the lands at the outer corners of a drill, shall be h8, in accordance with BS 1916, Limits and Fits for Engineering (Part I, Limits and Tolerances), and Table 3 shows the values common to the different types of drills mentioned before.

The drills shall be permanently and legibly marked whenever possible, preferably by rolling, showing the size, and the manufacturer's name or trademark. If they are made from high-speed steel, they shall be marked with the letters H.S. where practicable.

Drill Elements: The following definitions of drill elements are given.

Axis: The longitudinal center line.

Body: That portion of the drill extending from the extreme cutting end to the commencement of the shank.

Shank: That portion of the drill by which it is held and driven.

Flutes: The grooves in the body of the drill that provide lips and permit the removal of chips and allow cutting fluid to reach the lips.

850

. .

851

Web (Core): The central portion of the drill situated between the roots of the flutes and extending from the point end toward the shank; the point end of the web or core forms the chisel edge.

*Lands:* The cylindrical-ground surfaces on the leading edges of the drill flutes. The width of the land is measured at right angles to the flute helix.

Body Clearance: The portion of the body surface that is reduced in diameter to provide diametral clearance.

Heel: The edge formed by the intersection of the flute surface and the body clearance.

Point: The sharpened end of the drill, consisting of all that part of the drill that is shaped to produce lips, faces, flanks, and chisel edge.

Face: That portion of the flute surface adjacent to the lip on which the chip impinges as it is cut from the work.

Flank: The surface on a drill point that extends behind the lip to the following flute.

Lip (Cutting Edge): The edge formed by the intersection of the flank and face.

*Relative Lip Height:* The relative position of the lips measured at the outer corners in a direction parallel to the drill axis.

Outer Corner: The corner formed by the intersection of the lip and the leading edge of the land.

Chisel Edge: The edge formed by the intersection of the flanks.

Chisel Edge Corner: The corner formed by the intersection of a lip and the chisel edge. Table 15. British Standard Drills — Metric Sizes Superseding Gauge and Letter Sizes BS 328: Part 1: 1959 Appendix B

Obsolete Drill Size	Recom- mended MetricSize (mm)	Obsolete Drill Size	Recom- mended Metric Size (mm)	Obsolete Drill Size	Recom- mended Metric Size (mm)	Ohsolete Drill Size	Recom- mended Metric Size (mm)	Obsolete Drill Size	Recom- mended Metric Size (mm)
80	0.35	58	1.05	36	2.70	14	4.60	I	6.90
79	0.38	57	1.10			13	4.70	J	7.00
78	0.40	56	‰in.	35	2.80	12	4.80		
77	0.45			34	2.80	11	4.90		
76	0.50			33	2.85			K	%; in.
		55	1.30	33	2.85			L	7.40
		54	1.40	32	2.95	10	4.90	M	7.50
75	0.52	53	1.50	31	3.00	9	5.00	N	7.70
74	0.58	52	1.60			8	5.10	0	8.00
73	0,60	51	1.70	30	3.30	7	5.10		
72	0.65			29	3.50	6	5.20		
71	0.65			28	%; in.				
		50	1.80	27	3.70			P	8.20
		49	1.85	26	3.70	5	5.20	Q	8.40
70	0.70	48	1.95			4	5.30	R	8.60
69	0.75	47	2.00	25	3.80	3	5.40	S	8.80
68	½in.	46	2.05	24	3.90	2	5.60	Т	9.10
67	0.82			23	3.90	1	5.80		
66	0.85	45	2.10	22	4.00			U	9.30
		44	2.20	21	4.00	A	1% in,	v	Kin.
65	0.90	43	2.25			в	6.00	W	9.80
64	0.92	42	∛₂in.	20	4.10	С	6.10	X	10.10
63	0.95	41	2.45	19	4.20	D	6.20	Y	10.30
62	0.98			18	4.30	E	1/4 in.	z	10.50
61	1,00	40	2.50	17	4.40				
		39	2,55	16	4,50	F	6.50		
60	1.00	38	2.60			G	6.60		
59	1.05	37	2.65	15	4.60	н	™ ₆₄ in.		

Gauge and letter size drills are now obsolete in the United Kingdom and should not be used in the production of new designs. The table is given to assist users in changing over to the recommended standard sizes.

134

е. ₁. с

Table 1. British Standard Morse Taper Shank Twist Drills and Core Drills — Standard Metric Sizes *BS 328: Part 1: 1959* 

		Standar	d Metric Siz	es BSD.	.o. 1 un	1, 1959		
	Flute	Overall		Flute Length	Overall Length	Diameter	Flute Length	Overall Length
Diameter	Length	Length	Diameter 16.25	Lengui	Longur	29.50		
3.00	33	114 117	16.20	. 1		29.75	175	296
3.20 3.50	36 39	120	16.75	125	223	30.00		
3,80			17.00			30.25		
4.00	43	123	17.25			30.50	( )	1
4,20			17.50	130	228	30.75 31.00	180	301
4.50	47	128	17.75			31.25	1	1
	· · · · ·	Γi	18.00			31.50		
4.80	52	133	18.25	l				_
5.00 5.20	1 22		18.50	135	233	31.75	185	306
5.20		+	18.75		~~~	32.00		
5.50	{	i I	19.00			32.50	1	
5.80	57	138		1		33.00	185	334
6.00	1		19.25		1	33,50	1	l '
	T		19.30	140	238	34.00		
6.20 6.50	63	144	20.00	Į		34.50	190	339
6.50			20,25			35.00	1	
7.00		150	20.50	145	243	35.50		
7,20	69	150	20.75	1.0	1	36.00	1	1
7.50			21.00			36.50		
7.80			21.25		1	37.00	195	344
8.00	75	156	21.23	1	Į	37.50		}
8.20 8.50			21.75	150	248			
8.30		+	22.00			38.00	1	1
8,80			22.25			38.50	200	349
9.00	81	162			1	39.50	-00	
9.20	1 1	102	22.50	155	253	40.00		Į
9.50			22.75	100	1 200	40.50		
9,80			23.25	1	276	41.00		}
10.00 10.20	87	168	23.50	155	2/6	41.50	205	354
10.20	1	1				42.00		1
10.50	+		23.75			42.50		
10.80			24.00		1	43.00		
11.00			24.25	160	281	43,50	210	359
31.20	94	175	24.50		1	44.00	210	335
11.50	1	1	25.00	1		44.50		
11.80			1			45.00	<u> </u>	
12.00			25.25			45.50 46.00	Į	1
12.20		ļ	25.50			46.50	215	364
12.50	101	182	25.75	165	286	47.00	1	
12.80	101		26.00	1		47.50		
13.00			26.50		1			
13.20	$\rightarrow -$					48.00		1
13.80	108	189	26.75	ļ		48.50	220	369
14.00			27.00			49.00 49.50	420	209
			27.25	170	291	50.00		-
14.25	l		27.50			50.50	225	374
14.50	114	212	27.75					-
14.75		Į	28.25			51.00		
15.00		-+	28.50	1		52.00	225	412
15.20	1	218	28.75	175	296			
15.75	12	218	29.00		1	54.00	230	417
16.00	1	1	29.25					

853

### Table 1. British Standard Morse Taper Shank Twist Drills and Core Drills — Standard Metric Sizes BS 328: Part 1: 1959

Diameter	Flute Longth	Overall Length	Diameter	Flute Length	Overall Length	Diameter	Flote Length	Overall Length
56.00	230	417	71.00	250	437	86.00		
57.00			72.00			87.00		
58.00	235	422	73.00	255	442	88.00	270	524
59.00	235	422	74.00	200	442	89.00		
60.00			75.00			90.00	1	
61.00		1	76.00	260	477	91.00	1	
62.00	240	427				92.00		
63.00	1	)	77.00			93.00	275	529
64.00	í		78.00	260	514	94.00		
65.00		432	79.00			95.00		
66.00	245	432	80.00		1 1			
67.00			81.00	1	1	96.00		
			\$2.00	1	1 1	97.00		
68.00			83.00	265	519	98.00	280	534
69.00	250	437	84.00		1	99.00	-	1
70.00	1	1 1	85.00	1	1	100.00	1	1

Table 2, shows twist drills that may be supplied with the shank and length oversize, but they should be regarded as nonpreferred.

The Morse taper shanks of these twist and core drills are as follows: 3.00 to 14.00 mm diameter, M.T. No. 1; 14.25 to 23.00 mm diameter, M.T. No. 2; 23.25 to 31.50 mm diameter, M.T. No. 3; 31.75 to 50.50 mm diameter, M.T. No. 4; 51.00 to 76.00 mm diameter, M.T. No. 5; 77.00 to 100.00 mm diameter, M.T. No. 6.

Table 2. British Standard Morse Taper Shank Twist Drills ----Metric Oversize Shank and Length Series BS 328: Part 1: 1959

Dia. Range	Overali Length	M, T. No.	Dia. Range	Overall Length	M. T. No.	Dia, Range	Overall Length	M. T. No.
12.00 to 13.20	199	2	22.50 to 23.00	276	3	45.50 to 47.50	402	5
13.50 to 14.00	206	2	26.75 to 28.00	319	4	48.00 to 50.00	407	5
18.25 to 19.00	256	3	29.00 to 30.00	324	4	50.50	412	5
19.25 to 20.00	251	3	30.25 to 31.50	329	4	64.00 to 67.00	499	6
20.25 to 21.00	266	3	40.50 to 42.50	392	5	68.00 to 71.00	504	6
21.25 to 22.25	271	3	43.00 to 45.00	397	5	72.00 to 75.00	509	6

Diameters and lengths are given in millimeters. For the individual sizes within the diameter ranges given, see Table 1.

This series of drills should be regarded as non-preferred.

Table 3. British Standard Limits of Tolerance on Diameter for
Twist Drills and Core Drills - Metric Series BS 328: Part 1: 1959

Drill Size (Diameter measured across lands at outer corners)	Tolerance (h8)
0 to 1 inclusive	Plus 0.000 to Minus 0.014
Over 1 to 3 inclusive	Plns 0.000 to Minus 0.014
Over 3 to 6 inclusive	Plus 0.000 to Minus 0.018
Over 6 to 10 inclusive	Phis 0.000 to Minus 0.022
Over 10 to 18 inclusive	Plus 0.000 to Minus 0.027
Over 18 to 30 inclusive	Plus 0.000 to Minus 0.033
Over 30 to 50 inclusive	Plus 0.000 to Minus 0.039
Over 50 to 80 inclusive	Plus 0.000 to Minus 0.046
Over 80 to 120 inclusive	Plus 0.000 to Minus 0.054

All dimensions are given in millimeters.

1 - T.C.

136

. С. р.

854

Table 4. British Standard Parallel Shank Jobber Series Twist Drills — Standard Metric Sizes *BS 328: Part 1: 1959* 

			S	tandar	d M	etric	Sizes	B	\$ 328.	: Pa	rt I:	1939		<u> </u>		-	—ı
Djameter	- Tirde	Length	Overall Length	Diameter	Hute	Length	Overall Length		Diameter	Flute		Overall Length	_	Diameter	Flute Length		Dverall
0.20 0.22 0.25	+-	2.5	19	1.75 1.80 1.85	2	2	46		5.40 5.50 5.60 5.70	57		93	1	0.20 0.30 0.40 0.50	87		133
0.28	1	4.0	19	1.90 1.95 2.00	$\vdash$	+	-1		5.80 5.90					0.60		-	
0.32	-	4	19	2.05		24	49	-	6.00		_+			.0.70 .0.80 .0.90			
0.40	2	5	20	2.15 2.20 2.25 2.30		27	53		6.20 6.30 6.40 6.50 6.60	6	3	101		11.00 11.10 11.20 11.30 11.40	94		142
0,50		6	22	2.35 2.40 2.45	+				6,70	ļ	_		11	11.50 11.60			
0.5	5	7	24	2.50 2.55		30	57	ŀ	6.80 6.90 7.00		-1		1)  }-	11.70 11.80			
0.6	2	8	26	2.60 2.65 2.70	+				7.10 7.20	'	59	109	ľ	11.90 12.00			
0.6	58 70 72	9	28	2.75 2.80 2.85 2.90		33	61		7.30 7.40 7.50 7.60					12.10 12.20 12.30 12.40			
0.1	78 80	10	30	2.95 3.00	+			╢	7.70 7.80 7.90 8.00					12.50 12.60 12.70 12.80	1"	01	151
0.0	85		+	3.10		36	65		8.10 8.20		75	117		12.90 13.00 13.10			
0.	.90 .92	11	32	3.40 3.50 3.61	1	39 39	70	╢	8.30 8.40 8.50					13.20			
0.	.95 .98 .00 .05	12	34	3.70	+				8.60 8.70					13.30 13.40 13.50 13.60			
1	.10	14	36	4.0	0	43	75		8.80 8.90 9.00	ļ	81	12	5	13.70 13.80 13.90		108	160
1	1.20 1.25 1.30	16	38	4.3			<b>—</b>		9.10 9.20 9.30					14.00	<u>}</u>		
F	1.35	+	+-	4.5	60 60	47	80		9.40 9.50			_	_	14.2 14.5 14.7	5	114	169
Ì	1.40 1.45 1.50	18	3 40	4.1	30 90		-		9.60 9.70 9.8	эļ				15.0			+
	1.55 1.60 1.65	21	0 4	5.		52	8	6	9.8 9.9 10.0	0 )0	87	1:	33	15.5 15.7 16.0	0 5	120	) 178
	1.70					L	!	-	<u></u>					able 3			

All dimensions are in millimeters. Tolerances on diameters are given in Table 3.

9 D

855

Table 5. British Standard Parallel Shank Long Series Twist Drills — Standard Metric Sizes BS 328; Part 1: 1959

		Standa	rd Metric Si	zes BS 3	28; Part	1:1959		
Diameter	Flute Length	Overal1 Length	Diameter	Flute Length	Overall Length	Diameter	Flute Length	Overall Length
2.00 2.05 2.10 2.15	56	85	6.80 6.90 7.00 7.10	102	156	12,70 12.80 12.90 13.00	134	205
2.20 2.25 2.30 2.35	59	90	7.20 7.30 7.40 7.50			13.10 13.20 13.30 13.40		
2,40 2,45 2,50 2,55 2,60 2,65	62	95	7.60 7.70 7.80 7.90 8.00 8.10	109	165	13.50 13.60 13.70 13.80 13.90 14.00	140	214
2.70 2.75 2.80 2.85	66	100	8.20 8.30 8.40 8.50			14.25 14.50 14.75 15.00	144	220
2.90 2.95 3.00 3.10			8.60 8.70 8.80 8.90			15.25 15.50 15.75 16.00	149	227
3.20 3.30 3.40 3.50	69	106	9.00 9.10 9.20 9.30	115	175	16.25 16.50 16.75 17.00	154	235
3.60 3.70 3.80	73	112	9.40 9.50 9.60			17.25 17.50 17.75	158	241
3.90 4.00 4.10 4.20	78	119	9.70 9.80 9.90 10.00 10.10	121	184	18.00 18.25 18.50 18.75 19.00	162	247
4.30 4.40 4.50 4.60 4.70	82	126	10.20 10.30 10.40 10.50 10.60	121	104	19.25 19.50 19.75 20.00	166	254
4.80 4.90 5.00 5.10 5.20	87	132	10.70 10.80 10.90 11.00 11.10			20.25 20.50 20.75 21.00 21.25	171	261
5.20 5.30 5.40 5.50 5.60			11.10 11.20 11.30 11.40 11.50	128	195	21.25 21.50 21.75 22.00 22.25	176	268
5.70 5.80 5.90 6.00	91	139	11.60 11.70 11.80 11.90			22.50 22.75 23.00 23.25	180	275
6.10 6.20 6.30 6.40 6.50 6.60 6.70	97	148	12.00 12.10 12.20 12.30 12.40 12.50 12.60	134	205	23.50 23.75 24.00 24.25 24.50 24.75 25.00	185	282

 0.00
 12.50
 24.75

 6.70
 12.60
 25.00

 All dimensions are in millimeters. Tolerances on diameters are given in Table 3.

and the second second

856

### TWIST DRILLS

Table 6. British Standard Stub Drills --- Metric Sizes BS 328: Part 1: 1959

Diancler	Flute Length	Overall Length	Diameter	Flute Lcugth	Overall Length	Diameter	Flute Length	Overall Length	Diameter	Flute Length	Overall Length
0.50	3	20	5.00	26	62	9.50	40	84	14.00	54	107
0.80	5	24	5.20	20	02	9.80			14.50	56	111
1.00	6	26	5.50			10.00	43	89	15.00		
1.20	8	30	5.80	28	66	10.20	1		15.50 16.00	58	115
1.50	9	32	6.00			10.50			10,00		
1.80 2.00 2.20	11 12 13	36 38 40	6.20 6.50	31	70	10.80 11.00			16.50 17.00	60	119
2.50	14	43	6.80 7.00			11.20 11.50	47	95	17.50 18.00	62	123
3.00	16	46	7.20	34	74	11.80			18.50 19.00	64	127
3.20	18	49 52	7.50			12.00		i 1	19.00	ļ	
3.50	20		7.80 8.00	27	79	12.50	51	102	20.00	66	131
3.80		ļ	8.20	37	19	12.80	51	102	21.00	68	136
4.00	22	55	8.50			13.00			22.00	70	141
4.20		1	8.80	1		13.20			23.00	72	146
4.50 4.80	24 26	58 62	9.00 9.20	40	84	13.50 13.80	54	107	24.00 25.00	75	151

All dimensions are given in millimeters. Tolerances on diameters are given in Table 3.

Steels for Twist Drills.—Twist drill steels need good toughness, abrasion resistance, and ability to resist softening due to heat generated by cutting. The amount of heat generated indicates the type of steel that should be used.

### Carbon Tool Steel: may be used where little heat is generated during drilling.

High-Speed Steel: is preferred because of its combination of red hardness and wear resistance, which permit higher operating speeds and increased productivity. Optimum properties can be obtained by selection of alloy analysis and heat treatment.

Cobalt High-Speed Steel: alloys have higher red hardness than standard high-speed steels, permitting drilling of materials such as heat-resistant alloys and materials with hardness greater than Rockwell 38 C. These high-speed drills can withstand cutting speeds beyond the range of conventional high-speed-steel drills and have superior resistance to abrasion but are not equal to tungsten-carbide tipped tools.

Accuracy of Drilled Holes.—Normally the diameter of drilled holes is not given a tolerance; the size of the hole is expected to be as close to the drill size as can be obtained.

The accuracy of holes drilled with a two-fluted twist drill is influenced by many factors, which include: the accuracy of the drill point; the size of the drill; length and shape of the chisel edge; whether or not a bushing is used to guide the drill; the work material; length of the drill; runnout of the spindle and the chuck; rigidity of the machine tool, workpiece, and the setup; and also the cutting fluid used, if any.

The diameter of the drilled holes will be oversize in most materials. The table following provides the results of tests reported by The United States Cutting Tool Institute in which the diameters of over 2800 holes drilled in steel and cast iron were measured. The values in this table indicate what might be expected under average shop conditions; however, when the drill point is accurately ground and the other machining conditions are correct, the resulting hole size is more likely to be between the mean and average minimum values given in this table. If the drill is ground and used incorrectly, holes that are even larger than the average maximum values can result.

### COUNTERBORES

### **Oversize Diameters in Drilling**

Drill Dia.	Amo	unt Oversize,	Inch	Drill Dia.,	Amo	aut Oversize, In	ch
Inch	Average Max.	Mean	Average Min.	Inch	Average Max.	Mcan	Average Min.
1/16	0.002	0.0015	0.001	14	0.008	0.005	0.003
14	0.0045	0.003	0.001	24	0.008	0.005	0.003
14	0.0065	0.004	0.0025	1	0.009	0.007	0.004

Courtesy of The United States Cutting Tool Institute

Some conditions will cause the drilled hole to be undersize. For example, holes drilled in light metals and in other materials having a high coefficient of thermal expansion such as plastics, may contract to a size that is smaller than the diameter of the drill as the material surrounding the hole is cooled after having been heated by the drilling. The elastic action of the material surrounding the hole may also cause the drilled hole to be undersize when drilling high strength materials with a drill that is dull at its outer corner.

The accuracy of the drill point has a great effect on the accuracy of the drilled hole. An inaccurately ground twist drill will produce holes that are excessively over-size. The drill point must be symmetrical; i.e., the point angles must be equal, as well as the lip lengths and the axial height of the lips. Any alterations to the lips or to the chiel edge, such as thinning the web, must be done carefully to preserve the symmetry of the drill point. Adequate relief should be provided behind the chiel edge to prevent heel drag. On conventionally ground drill points this relief can be estimated by the chiel edge angle.

When drilling a hole, as the drill point starts to enter the workpiece, the drill will be unstable and will tend to wander. Then as the body of the drill enters the hole the drill will tend to stabilize. The result of this action is a tendency to drill a bellmouth shape in the hole at the entrance and perhaps beyond. Factors contributing to bellmouthing are: an unsymmetrically ground drill point; a large chisel edge length; inadequate relief behind the chisel edge; runout of the spindle and the chuck; using a slender drill that will bend easily; and lack of rigidity of the machine tool, workpiece, or the setup. Correcting these conditions as required will reduce the tendency for bellmouthing to occur and improve the accuracy of the hole diameter and its straightness. Starting the hole with a short stiff drill, such as a center drill, will quickly stabilize the drill that follows and reduce or eliminate bellmouthing; this procedure should always be used when drilling in a lathe, where the work is rotating. Bellmouthing can also be eliminated almost entirely and the accuracy of the hole improved by using a close fitting drill jig bushing placed close to the workpiece. Although specific recommendations cannot be made, many cutting fluids will help to increase the accuracy of the diameters of drille holes. Double margin twist drills, available in the smaller sizes, will drill a more accurate hole than conventional twist drills, available in the smaller sizes, will drill a more accurate hole than conventional twist drills, available, a set especially useful in drilling intersecting off-center holes. Single and double margin step drills, also available in the smaller sizes, will produce very accurate drilled holes, which are usually less than 0.002 inch larger than the drill size.

**Counterboring.**—Counterboring (called spot-facing if the depth is shallow) is the enlargement of a previously formed hole. Counterbores for screw holes are generally made in sets. Each set contains three counterbores: one with the body of the size of the screw head and the pilot the size of the hole to admit the body of the screw; one with the body the size of the hole of the screw and the pilot the size of the tap drill; and the third with the body of the screw and the pilot the size of the tap drill. Counterbores are usually provided with helical flutes to provide positive effective rake on the cutting edges. The four flutes are so positioned that the end tech cut ahead of center to provide a shearing action and eliminate chatter in the cut. Three designs are most common: solid, two-piece, and three-piece. Solid designs have the body, cutter, and pilot all in one piece. Two-piece designs have an integral shank and counterbore cutter, with an interchangeable pilot, and provide try of the cut diameter with the shank, but allowing use of various

### COUNTERBORES

pilot diameters. Three-piece counterbores have separate holder, counterbore cutter, and pilot, so that a holder will take any size of counterbore cutter. Each counterbore cutter, in turn, can be fitted with any suitable size diameter of pilot. Counterbores for brass are fluted straight.

		=[	- F - (		D + E +		
No. of Holder	No. of Morse Taper Shank	Range of Cutter Diameters, A	Range of Pilot Diameters, B	Total Length, Č	Length of Cutter Body, D	Length of Pilot, E	Dia. of Shank, F
1	1 or 2	¥_1½	4-4	71/4	L	*	₹4
2	2 or 3	11/6-11/16	$1\frac{1}{16}\frac{1}{16}$	91/2	1%	7∕8	11/8
3	3 or 4	1%-21/16	%1%	121/2	134	1½	1%
4	4 or 5	2%-3%	1-21/8	15	21/4	1%	21%

Counterbores with Interchangeable Cutters and Guides

		ilot Diameters		Straight Shank	Overall	Length
Counterbore Diameters	Nominal	+1/64	+1/2	Diameter	Short	Long
цу	14	17/64	%	¥8	31/2	5½
15	3/16	21/61	1½	%	31/2	51/2
12	*	1. 1.	132	14	4	6
1/16	V _{tr}	2%	15/32	1/2	4	6
21/2	15	11/64	17/32	1/2	5	7
0.110	0.060	0.076		764	21/2	
0.133	0.073	0.089		4 1	2½	
0.155	0.086	0.102		5 <u>%</u>	2½	
0.176	0.099	0.115		1%	21/2	
0.198	0.112	0.128		3/16	21/2	
0.220	0.125	0.141		3%	21/2	
0.241	0.138	0.154		⅔2	2½	.,,
0.285	0.164	0.180		4	2½	
0.327	0.190	0.206		%2	2½	····
0.372	0.216	0.232		7/16	23/4	

Solid Counterbores with Integral Pilot

All dimensions are in inches.

er per

Small counterbores are often made with three flutes, but should then have the size plainly stamped on them before fluting, as they cannot afterwards be conveniently measured. The flutes should be deep enough to come below the surface of the pilot. The counterbore should be relieved on the end of the body only, and not on the cylindrical surface. To facilitate the relieving process, a small neck is turned between the guide and the body for clearance. The amount of clearance on the cutting edges is, for general work, from 4 to 5 degrees. The accompanying table gives dimensions for straight shank counterbores.

Three Piece Counterbores.—Data shown for the first two styles of counterbores are for straight shank designs. These tools are also available with taper shanks in most sizes. Sizes of taper shanks for cutter diameters of  $\frac{1}{4}$  to  $\frac{9}{16}$  in. are No. 1, for  $\frac{19}{20}$  to  $\frac{9}{10}$  in., No. 2; for  $\frac{15}{16}$  to  $\frac{13}{4}$  in., No. 3; for  $\frac{11}{2}$  to  $\frac{2}{10}$  in., No. 4; and for  $\frac{2}{8}$  to  $\frac{2}{10}$  in., No. 5.

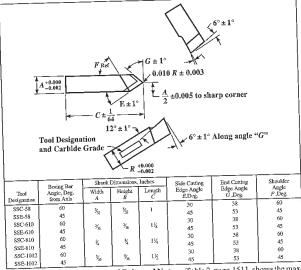

# STANDARD CARBIDE BORING TOOLS

Table 1. American National Standard Sintered Carbide Boring Tools — Style Designations ANSI B212.1-1984 (R1997)

859

Side Cutting	Edua Angle E	1	Boring To	iol Styles	
Degrees	Designation	Solid Square (SS)	Tipped Square (TS)	Solid Round (SR)	Tipped Round (TR)
Depos	A		TSA		l .
0	в		TSB		
10 30	Ĩ	SSC	TSC	SRC	TRC
30 40	a a	ļ	TSD		
40	l R	SSE	TSE	SRE	TRE
43	F	4	TSF		
90 (0° Raite)	G		l	Ì	TRG
90 (10° Rake)	н	1			TRH

Table 2. American National Standard Solid Carbide Square Boring Tools—Style SSC for 60° Boring Bar and Style SSE for 45° Boring Bar *ANSI B212.1-1984 (R1997)* 



**Counterbore Sizes for Hex-head Bolts and Nuts.**—Table 2, page 1511, shows the maximum socket wrench dimensions for standard  $\frac{1}{2}$ ,  $\frac{1}{2}$  and  $\frac{3}{2}$ -inch drive socket sets. For a given socket size (nominal size equals the maximum width across the flats of nut or bolt head), the dimension K given in the table is the minimum counterbore diameter required to provide socket wrench clearance for access to the bolt or nut.

**Sintered Carbide Boring Tools.**—Industrial experience has shown that the shapes of tools used for boring operations need to be different from those of single-point tools ordinarily used for general applications such as lathe work. Accordingly, Section 5 of American National Standard ANSI B212.1-1984 (R1997) gives standard sizes, styles and

### STANDARD CARBIDE BORING TOOLS

860

designations for four basic types of sintered carbide boring tools, namely: solid carbide square; carbide-tipped square; solid carbide round; and carbide-tipped round boring tools. In addition to these ready-to-use standard boring tools, solid carbide round and square unsharpened boring tool bits are provided.

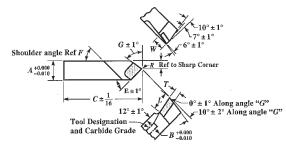



Table 3. American National Standard Carbide-Tipped Square Boring Tools — Styles TSA and TSB for 90° Boring Bar, Styles TSC and TSD for 60° Boring Bar, and Styles TSE and TSF for 45° Boring Bar ANSI B212.1-1984 (R1997)

Tool Designa- tion	Bor. Bar Angle- from Axis, Deg.	Shank Dimensions, Inches				SideCut. Edge	End Cut. Edge	Shoul- der		Tip Dimensions, Inches		
		A	B	С	R	Angle E, Deg.	Angle G, Deg.	Angle F, Deg.	Tip No.	T	₩	L
TSA-5	90	×16	¥16	1½	$\begin{pmatrix} \frac{i_{64}}{\pm} \\ 0.005 \end{pmatrix} \begin{pmatrix} \frac{i_{64}}{\pm} \\ 0.005 \end{pmatrix}$	0	8	90	2040	¥2	¥16	4
TSB-5	90	×16	⅔6	1½		10	8	90	2040	⅔2	3∕16	%
TSC-5	60	%₀	%i6	1½		30	38	60	2040	3‰	¥6	3% 84
TSD-5	60	3 ₁₆	%₀	11/2		40	38	60	2040	猃	∛16	\$%
TSE-5	45	ž	9 ₁₆	1½		45	53	45	2040	3⁄2	3/16	\$∕ ₁₆
TSF-5	45	%s	$\frac{3}{16}$	1½		55	53	45	2040	32	∛16	⅔6
T5A-6	90	*	×	1¾		U	8	90	2040	⅔2	¥16	³ /16
TSB-6	90	¥	*	1%		10	8	90	2040	3≦	3∕16	5%
TSC-6	60	긟	3	1¾		30	38	60	2040	%	3∕16	5% 5/16
TSD-6	60	H.	%	134		40	38	60	2040	× <u>n</u>	36	⅔16
TSE-6	45	3	*	1¾		45	53	45	2040	∛32	∛ ₁₆	¥16
TSF-6	45	3	34	1¾		55	53	45	2040	验	∛(6	5%

and the second second

# STANDARD CARBIDE BORING TOOLS

861

Tip Dimensions, Inches Shoul-der Angle F, Deg. End Cut. Bor. Bar Angle-from Axis, Dog. SideCut Shank Dimensions, Inches Tool Design tion Edge Angle E, Deg. Edge Angle G. Deg. Tip No. w L Т С R В А 8 90 2060 ⅔ 14 ∛6 90  $\%_{16}$ 2½ TSA-7 3/16  $\frac{1}{32}$ ± 2060 <u>k</u> ⅔ 8 90 ⅔2 10 90  $\gamma_{16}$ 2½ TSB-7  $\gamma_{16}$ 0.010 ∛≰ 38 60 2060 ¥2  $\underline{N}_{4}$ 30 TSC-7 60  $\frac{\gamma_{16}}{\gamma_{16}}$  $V_{16}$ 25 4 і 2060 ¾ 60 7/16 21/2 40 38 60 346 TSD-7 45 53 45 2060 ⅔ 14 ¥, TSE-7 45 ¥6  $\frac{1}{16}$  $2\frac{1}{2}$ 45 2060 ¥2 14 ⅔ 55 53 25% 34 6 TSF-7 45 ‰ 2150 ⅓ 5⁄16  $\frac{7}{16}$ 90 0 8 TSA-8 90 Ķ K 21/2 ( 32 ) ±  $\frac{5}{16}$ 74s 8 90 2150 ¥ Ķ ¥2 2½ 10 TSB-8 90 0.010, K6 2150 1/6 ¥15 ½ **2**½ 30 38 60 60 Ķ TSC-8 40 38 60 2150 ₩  $S_{16}$  $\gamma_{\rm l6}$ 2½ TSD-8 60 ¥<u>2</u> <u>½</u> 2150 1/6 %  $v_{16}$ 53 45 2½ 45 45 14 ½ TSE-8 53 45 2150  $\frac{1}{8}$  $\frac{1}{16}$ 74 55 TSF-8 45 ¥2 羟  $2\frac{1}{2}$ 2220 ¥<u>n</u> ×, %₁₅ 3 Û 8 90 TSA-10 90 % % У32 ± 2220 ∛6 % 8 90 ‰ ⅔ 3 10. TSB-10 90 * 0.010. 30 38 60 2220 ⅔2 ⅔  $\%_{15}$ 3 TSC-10 60 % % 2220 4 % ¥22 38 60 3 40 TSD-10 60 ⅔ ¥  $\frac{1}{16}$ 53 45 2220 %₁ X 3 45 TSE-10 45 ¥ %; ×, % 16 2220 55 53 45 ‰ % 3 TSF-10 45 ¥ 90 2300 ∛/16 746 ×, 0 8 TSA-12 90 ∛4 ∛₄ 3½ ( ¹/₃₂ ± 746 % 10 8 90 2300  $Y_{16}$ 34 TSB-12 90 ¾ 3½ 0.010, 2300 ¥16  $\frac{1}{16}$ % 60 38 TSC-12 60 ∛4 34 3K 30 40 38 60 2300 ∛16  $\frac{1}{16}$ ⅔ 31/2 TSD-12 60 ¾ 34 %, 2300  $\hat{\gamma}_{16}$ K₁₆ 45 53 45 ₹4 ₹4 3½ TSE-12 45 55 53 45 2300 ∛16 X6 ⅔ 31/2 TSF-12 45 ⅔ ⅔

Table 3. (Continued) American National Standard Carbide-Tipped Square Boring Tools—Styles TSA and TSB for 90° Boring Bar, Styles TSC and TSD for 60° Boring Bar, and Styles TSE and TSF for 45° Boring Bar ANSI B212.1-1984 (R1997)

 $(x_{1},x_{2},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{3},x_{$ 

#### STANDARD CARBIDE BORING TOOLS

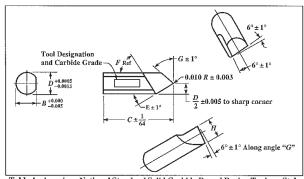


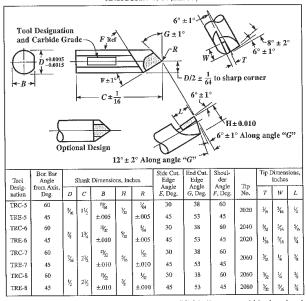

Table 4. American National Standard Solid Carbide Round Boring Tools — Style SRC for 60° Boring Bar and Style SRE for 45° Boring Bar *ANSI B212.1-1984 (R1997)* 

	Bor, Bar		Sha	ink Dime	nsions, Inc	hes	Side Cut.	End Cut.	
Tool Designation	Angle from Axis, Deg,	Dia. D	Length C	Dim. Over Flat B		Nose Height H	Edge Angle E,Deg.	Edge Angle G ,Deg.	Shoulder Angle F ,Deg.
SRC-33	60	¾	%	0.088	0.070	г+0.000 ₁	30	38	60
SRE-33	45	⅔	⅔	0.088	0.070	L-0.005	45	53	45
SRC-44	60	Kg	1/2	0.118	0.094	r+0.000j	30	38	60
SRE-44	45	₩	1/2	0.118	0.094	L-0.005	45	53	45
SRC-55	60	%₂	5%	0.149	0.117	$\pm 0.005$	30	38	60
SRE-55	45	猃	*	0.149	0.117	$\pm 0.005$	45	53	45
SRC-66	60	∛15	34	0.177	0.140	$\pm 0.005$	30	38	60
SRE-66	45	3%	34	0.177	0.140	$\pm 0.005$	45	53	45
SRC-88	60	1/4	1	0.240	0.187	$\pm 0.005$	30	38	60
SRE-88	45	1/4	1	0.240	0.187	$\pm 0.005$	45	53	45
SRC-1010	60	\$/16	1¼	0.300	0.235	$\pm 0.005$	30	38	60
SRE-1010	45	5% 16	11/4	0.300	0.235	$\pm 0.005$	45	53	45

Style Designations for Carbide Boring Tools: Table 1 shows designations used to specify the styles of American Standard sintered carbide boring tools. The first letter denotes solid (S) or tipped (T). The second letter denotes square (S) or round (R). The side cutting edge angle is denoted by a third letter (A through H) to complete the style designation. Solid square and round bits with the mounting surfaces ground but the cutting edges unsharpened (Table 7) are designated using the same system except that the third letter indicating the side cutting edge angle is omitted.

Size Designation of Carbide Boring Tools: Specific sizes of boring tools are identified by the addition of numbers after the style designation. The first number denotes the diameter or square size in number of  $\frac{1}{32}$  ads for types SS and SR and in number of  $\frac{1}{30}$  the for types

862


and the second second

#### STANDARD CARBIDE BORING TOOLS

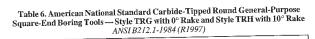
863

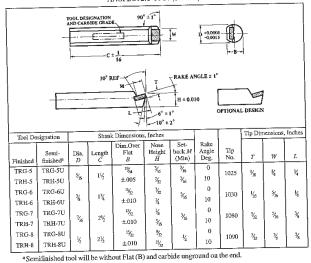
TS and TR. The second number denotes length in number of 1/8ths for types SS and SR. For styles TRG and TRH, a letter "U" after the number denotes a semi-finished tool (cutting edges unsharpened). Complete designations for the various standard sizes of carbide boring tools are given in Tables 2 through 7. In the diagrams in the tables, angles shown without tolerance are  $\pm 1^\circ$ .

Table 5. American National Standard Carbide-Tipped Round Boring Tools — Style TRC for 60° Boring Bar and Style TRE for 45° Boring Bar ANSI B212.1-1984 (R1997)



Examples of Tool Designation: The designation TSC-8 indicates: a carbide-tipped tool (T); square cross-section (S); 30-degree side cutting edge angle (C); and  $\frac{8}{16}$  or  $\frac{1}{2}$  inch square size (8).


The designation SRE-66 indicates: a solid carbide tool (S); round cross-section (R); 45 degree side cutting edge angle (E);  $\frac{4}{20}$  or  $\frac{3}{16}$  inch diameter (6); and  $\frac{4}{9}$  or  $\frac{3}{4}$  inch long (6).


The designation SS-610 indicates: a solid carbide tool (S); square cross-section (S);  $\frac{4}{36}$  or  $\frac{3}{6}$  inch square size (6);  $\frac{16}{36}$  inch square size (7) in  $\frac{16}{36}$  in  $\frac{16}{36}$ 

It should be noted in this last example that the absence of a third letter (from A to H) indicates that the tool has its mounting surfaces ground but that the cutting edges are unsharpened.

## STANDARD CARBIDE BORING TOOLS

864

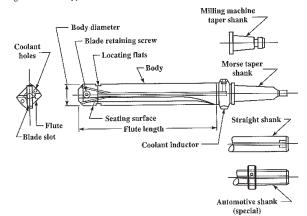




	002	SOLJ B	ORIN	RBIDE SQI G TOOL BI TYLE SS	JARI TS		D _{~.0015}		BORD	CARBIDE R NG TOOL B STYLE SR		
Su	nare Bi	s					Round	Bits				
Tool	uare Bi		c	Tool	D	с	Round Tool Designation	Bits D	c	Tool Designation	D	С
Tool Designation	A	В			U %	c ¾	Tool		С %		D 14	С 1
Tool Designation SS-58	А ¾	в ¥ ₃₂	C 1	Tool Designation	_		Tool Designation	D		Designation		C 1 11/2
Tool Designation SS-58 SS-610	A %1 %6	в ⁵ / ₃₂ 3/ ₁₆	C 1 1¼	Tool Designation SR-33	×.	34	Tool Designation SR-55	D %2	2	Designation SR-88	1/4	1
Tool Designation SS-58	А ¾	в ¥ ₃₂	C 1	Tool Designation SR-33 SR-34	% %	36 16	Tool Designation SR-55 SR-64	D %2 %6	% K	Designation SR-88 SR-810	¥ ¥	1

m 21. 7. C-114 Cawbide Square and Round Boring Tool Bits

All dimensions are in inches.


12

 $\label{eq:constraint} \textit{Tolerance on Length: Through 1 inch, + } \begin{matrix} + y_{22} - 0; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textit{over 1 inch, + } \end{matrix} \\ \textbf{y}_{26} - \textbf{0}; \textbf{v}_{26} - \textbf{0}; \textbf{v}$ 

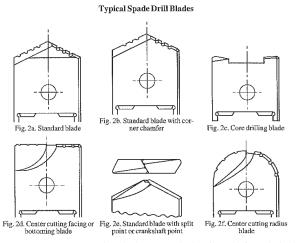
#### SPADE DRILLS

#### Spade Drills and Drilling

Spade drills are used to produce holes ranging in size from about 1 inch to 6 inches diam-eter, and even larger. Very deep holes can be drilled and blades are available for core drill-ing, counterboring, and for bottoming to a flat or contoured shape. There are two principal parts to a spade drill, the blade and the holder. The holder has a slot into which the blade fits; a wide slot at the back of the blade engages with a tongue in the holder slot to locate the blade fits; a wide slot at the blade blade blade blade blades are the blade rate of the blade b fits; a wide slot at the back of the blade engages with a tongue in the holder slot to locate the blade accurately. A retaining screw holds the two parts together. The blade is usually made from high-speed steel, although cast nonferrous metal and cemented carbide-tipped blades are also available. Spade drill holders are classified by a letter symbol designating the range of blade sizes that can be held and by their length. Standard stub, short, long, and extra long holders are available; for very deep holes, special holders having wear strips to support and guide the drill are often used. Long, extra long, and many short length holders have coolant holes to direct cutting fluid, under pressure, to the cutting edges. In addition to its function in cooling and lubicating the tool, the cutting fluid also flushes the chips out of the hole. The shank of the holder may be straight or tapered; special automotive shanks are also used. A holder and different shank designs are shown in Fig. 1; Figs. 2a through Fig. 2 (show some tynical blades. Fig, 2f show some typical blades.



#### Fig. 1. Spade Drill Blade Holder


Fig. 1. Spade Drill Blade Holder **Spade Drill Geometry.**—Metal separation from the work is accomplished in a like man-ner by both twist drills and spade drills, and the same mechanisms are involved for each. The two cutting lips separate the metal by a shearing action that is identical to that of chip formation by a single-point cutting tool. At the chisel edge, a much more complex condi-tion exists. Here the metal is extruded sideways and at the same time is sheared by the rota-tion of the blunt wedge-formed chisel edge. This combination accounts for the very high thrust force required to penetrate the work. The chisel edge of a twist drill is slightly rounded, but on spade drills, it is a straight edge. Thus, it is likely that it is more difficult for the chisel edge is shorter in length than on twist drills and the thrust for spade drilling is less. less.

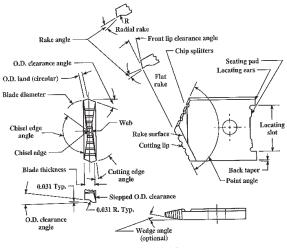
865

÷. р

866

SPADE DRILLS




Basic spade drill geometry is shown in Fig. 3. Normally, the point angle of a standard tool is 130 degrees and the lip clearance angle is 18 degrees, resulting in a chisel edge angle of 108 degrees. The web thickness is usually about  $\frac{1}{4}$  to  $\frac{1}{46}$  as thick as the blade thickness. Usually, the cutting edge angle is selected to provide this web thickness and to provide the necessary strength along the entire length of the cutting lip. A further reduction of the chisel edge length is sometimes desirable to reduce the thrust force in drilling. This reduction can be accomplished by grinding a secondary rake surface at the center or by grinding a split point, or crankshaft point, on the point of the drill.

The larger point angle of a standard spade drill—130 degrees as compared with 118 degrees on a twist drill—causes the chips to flow more toward the periphery of the drill, thereby allowing the chips to enter the flutes of the holder more readily. The rake angle facilitates the formation of the chip along the cuting lips. For drilling materials of average hardness, the rake angle should be 10 to 12 degrees; for hard or tough steels, it should be 5 to 7 degrees; and for soft and ductile materials, it can be increased to 15 to 20 degrees. The rake surface may be flat or rounded, and the latter design is called radial rake. Radial rake is usually ground so that the rake angle is maximum at the periphery and decreases uniformly toward the center to provide greater cutting edge strength at the center. A flat rake surface is recommended for drilling hard and tough materials in order to reduce the tendency to chipping and to reduce heat damage.

A most important feature of the cutting edge is the chip splitters, which are also called chip breaker grooves. Functionally, these grooves are chip dividers; instead of forming a single wide chip along the entire length of the cutting edge, these grooves cause formation of several chips that can be readily disposed of through the flutes of the holder. Chip splitters must be carefully ground to prevent the chips from packing in the grooves, which greatly reduces their effectiveness. Splitters should be ground perpendicular to the cutting lip and parallel to the surface formed by the clearance angle. The grooves on the two cut-

867

ting lips must not overlap when measured radially along the cutting lip. Fig. 4 and the accompanying table show the groove form and dimensions.



## Fig. 3. Spade Drill Blade

Fig. 3. Spade Drill Blade On spade drills, the front lip clearance angle provides the relief. It may be ground on a drill grinding machine but usually it is ground flat. The normal front lip clearance angle is 8 degrees; in some instances, a secondary relief angle of about 14 degrees is ground below the primary clearance. The wedge angle on the blade is optional. It is generally ground on thicker blades having a larger diameter to prevent heel dragging below the cutting lip and to reduce the chistel dege length. The cutside-diameter land is circular, serving to support and guide the blade in the hole. Usually it is ground to have a back taper of 0.001 to 0.002 inch per inch per side. The width of the land is approximately 20 to 25 per cent of the blade thickness. Normally, the outside-diameter clearance angle behind the land is 7 to 10 degrees. On many spade drill blades, the outside-diameter clearance surface is stepped about 0.030 inch below the land.

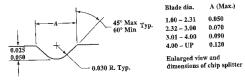



Fig. 4. Spade Drill Chip Splitter Dimensions

Spade Drilling .- Spade drills are used on drilling machines and other machine tools where the cutting tool rotates; they are also used on turning machines where the work

rotates and the tool is stationary. Although there are some slight operational differences, the methods of using spade drills are basically the same. An adequate supply of cutting fluid must be used, which serves to cool and lubricate the cutting edges; to cool the chips, thus making them britle and more easily broken; and to flush chips out of the hole. Flood cooling from outside the hole can be used for drilling relatively shallow holes, of about one to two and one-half times the diameter in depth. For deeper holes, the cutting fluid should be injected through the holes in the drill. When drilling very deep holes, it is often helpful to blow compressed air through the drill in addition to the cutting fluid to facilitate ejection of the chips. Air at full shop pressure is throttled down to a pressure that provides the most efficient ejection. The cutting fluids used are light and medium cutting oils, water-soluble oils, and synthetics, and the type selected depends on the work material.

Starting a spade drill in the workpiece needs special attention. The straight chisel edge on the spade drill has a tendency to wander as it starts to enter the work, especially if the feed is too light. This wander can result in a mispositioned hole and possible breakage of the drill point. The best method of starting the hole is to use a stub or short-length spade drill holder and a blade of full size that should penetrate at least ½ inch at full diameter. The holder is then changed for a longer one as required to complete the hole to depth. Difficulties can be encountered if spotting with a center drill or starting drill is employed because the angles on these drills do not match the 130-degree point angle of the spade drill. Longer spade drills can be started without this starting procedure if the drill is guided by a jig bushing and if the holder is provided with wear strips.

Chip formation warrants the most careful attention as success in spade drilling is dependent on producing short, well-broken chips that can be easily ejected from the hole. Straight, stringy chips or chips that are wound like a clock spring cannot be ejected properly; they tend to pack around the blade, which may result in blade failure. The chip spliters must be functioning to produce a series of narrow chips along each cutting edge. Each chip must be broken, and for drilling ductile materials they should be formed into a "C" or "figure 9" shape. Such chips will readily enter the flutes on the holder and flow out of the hole.

Proper chip formation is dependent on the work material, the spade drill geometry, and the cutting conditions. Brittle materials such as gray cast iron seldom pose a problem because they produce a discontinuous chip, but austenitic stainless steels and very soft and ductile materials require much attention to obtain satisfactory chip control. Thinning the web or grinding a split point on the blade will sometimes be helpful in obtaining better chip control, as these modifications allow use of a heavier feed. Reducing the rake angle to obtain a tighter curl on the chip and grinding a corner chamfer on the tool will sometimes help to produce more manageable chips.

In most instances, it is not necessary to experiment with the spade drill blade geometry to obtain satisfactory chip control. Control usually can be accomplished by adjusting the cutting conditions; i.e., the cutting speed and the feed rate.

Normally, the cutting speed for spade drilling should be 10 to 15 per cent lower than that for an equivalent twist drill, although the same speed can be used if a lower tool life is acceptable. The recommended cutting speeds for twist drills on Tables 17 through 23, starting on page 1030, can be used as a starting point; however, they should be decreased by the percentage just given. It is essential to use a heavy feed rate when spade drilling to produce a thick chip, and to force the chisel edge into the work. In ductile materials, a light feed will produce a thin chip that is very difficult to break. The thick chip on the other hand, which often contains many rupture planes, will curl and break readily. Table 1 gives suggested feed rates for different spade drill sizes and materials. These rates should be used as a starting point and some adjustments may be necessary as experience is gained.

## Table 1. Feed Rates for Spade Drilling

Tal	ble 1. Feed	l Rates f	or Spade	e Drillin	g		
			Fe	ed-Inches	per Revoluti	un	]
			Sp	ade Drill Dia	uneter-Incl	nes	
Material	Hardness, Bhn	1-11/4	11/4-2	2-3	3-4	4-5	5-8
	100-240	0.014	0.016	0.018	0.022	0.025	0.030
Free Machining Steel	240-325	0.010	0.014	0.016	0.020	0.022	0.025
	100-225	0.012	0.015	0.018	0.022	0.025	0.030
Plain Carbon Steels	225-275	0.010	0.013	0.015	0.018	0.020	0.025
	275-325	0.008	0.010	0.013	0.015	0.018	0.020
	150-250	0.014	0.016	0.018	0.022	0.025	0.030
Free Machining Alloy Steels	250325	0.012	0.014	0.016	0.018	0.020	0.025
	325-375	0.010	0.010	0.014	0.016	0.018	0.020
	125-180	0.012	0.015	0.018	0.022	0.025	0.030
Alloy Steels	180-225	0.010	0.012	0.016	0.018	0.022	0.025
Anoy succes	225325	0.009	0.010	0.013	0.015	0.018	0.020
	325-400	0.006	0.008	0.010	0.012	0.014	0.016
Tool Steels							
Water Hardening	150-250	0.012	0.014	0.016	0.018	0.020	0.022
Shock Resisting	175-225	0.012	0.014	0.015	0.016	0.017	0.018
Cold Work	200-250	0.007	0.008	0.009	0.010	0.011	0.012
Hot Work	150-250	0.012	0.013	0.015	0.016	0.018	0.020
Mold	150-200	0.010	0.012	0.014	0.016	0.018	0.018
Special-Purpose	150-225	0.010	0.012	0.014	0.016	0.016	0.018
High-Speed	200-240	0.010	0.012	0.013	0.015	0.017	0.018
	130-160	0.020	0.022	0.026	0.028	0.030	0.034
	160-190	0.015	0.018	0.020	0.024	0.026	0.028
Gray Cast Iron	190-240	0.012	0.014	0.016	0.018	0.020	0.022
	240-320	0.010	0.012	0.016	0.018	0.018	0.018
	140-190	0.014	0.016	0.018	0.020	0.022	0.024
Ductile or Nodular Iron	190-250	0.012	0.014	0.016	0.018	0,018	0.020
	250-300	0.010	0.012	0.016	0.018	0.018	0.018
Maileable Iron							
Ferritic	110-160	0.014	0.016	0.018	0.020	0.022	0.024
	160-220	0.012	0.014	0.016	0.018	0.020	0.020
Pearlitic	220280	0.010	0.012	0.014	0.016	0.018	0.018
Free Machining Stainless Steel							
Ferritie		0.016	0.018	0.020	0.024	0.026	0.028
Austenitic		0.016	0.018	0.020	0.022	0.024	0.026
Martensitic		0.012	0.014	0.016	0.016	0.018	0.020
Stainless Steel							
Ferritic		0.012	0.014	0.018	0.020	0.020	0.022
Austenitic	,	0.012	0.014	0.016	0.018	0.020	0.020
Martensitic		0.010	0.012	0.012	0.014	0.016	0.018
Aluminum Alloys		0.020	0.022	0.024	0.028	0.030	0.040
÷	(Soft)	0.016	0.018	0.020	0.026	0.028	0.030
Copper Alloys	(Hard)	0.010	0.012	0.014	0.016	0.018	0.018
Titanium Alloys		0.008	0.010	0.012	0.014	0.014	010.0
High-Temperature Alloys		0.008	0.010	0.012	0.012	0.014	0.014
· · ·····							0.01

869

 $\tau = \rho$ 

**Power Consumption and Thrust for Spade Drilling.**—In each individual setup, there are factors and conditions influencing power consumption that cannot be accounted for in a simple equation; however, those given below will enable the user to estimate power consumption and thrust accurately enough for most practical purposes. They are based on experimentally derived values of unit horsepower, as given in Table 2. As a word of caution, these values are for sharp tools. In spade drilling, it is reasonable to estimate that a dult tool will increase the power consumption and the thrust by 25 to 50 per cent. The unit horsepower values in the table are for the power consumed at the cutting edge, to which must be added the power required to drive the machine tool itself, in order to obtain the horsepower required by the machine tool motor. An allowance for power to drive the machine is provided by dividing the horsepower at the cutter by a mechanical efficiency factor,  $e_m$ . This factor can be estimated to be 0.90 for a direct spindle drive with a belt, 0.75 for a back gear drive, and 0.70 to 0.80 for geared head drives. Thus, for spade drilling the formulas are

$$\begin{split} hp_c &= uhp \left(\frac{\pi D^2}{4}\right) f N \\ B_s &= 148,500 \ uhp f D \\ hp_m &= \frac{hp_c}{e_m} \\ f &= \frac{f_m}{N} \end{split}$$

where  $hp_c =$  horsepower at the cutter

 $hp_m$  = horsepower at the motor

 $B_s$  = thrust for spade drilling in pounds

uhp = unit horsepower

D = drill diameter in inches

f = feed in inches per revolution

 $f_m =$  feed in inches per minute

N = spindle speed in revolutions per minute

 $e_m$  = mechanical efficiency factor

Table 2. Unit Horsepower for Spade Drilling

Material	Hardness	uhp	Material	Hardness	uhp
	85-200 Bhn	0.79	Titanium Alloys	250-375 Bha	0.72
Dista Cashan and Allen	200-275	0.94	High-Temp Alloys	200-360 Bhu	1.44
Plain Carbon and Alloy Steel	275-375	1.00	Aluminum Alloys		0.22
Steel	375-425	1.15	Magnesium Alloys		0.16
	45-52 Rc	1.44	C 411	20-80 Rb	0.43
Cast Irons	110-200 Bha	0.5	Copper Alloys	80-100 Rb	0.72
Cast frons	200-300	1.08			
Stainless Steels	135-275 Bhn	0.94			
Stamess Steels	30-45 Rc	1.08			

**Example:** Estimate the horsepower and thrust required to drive a 2-inch diameter spade drill in AISI 1045 steel that is quenched and tempered to a hardness of 275 Bhn. From Table 17 on page 1030, the cutting speed, V, for drilling this material with a twist drill is 50 feet per minute. This value is reduced by 10 per cent for spade drilling and the speed selected is thus  $0.9 \times 50 = 45$  feet per minute. The feed rate (from Table 1, page 869) is 0.015 in/rev. and the unit horsepower from Table 2 above is 0.94. The machine efficiency factor is estimated to be 0.80 and it will be assumed that a 50 per cent increase in the unit horsepower must be allowed for dull tools.

870

ſ.

#### TREPANNING

871

Step 1. Calculate the spindle speed from the following formula:

$$N = \frac{12V}{\pi D}$$

where: N = spindle speed in revolutions per minute

V = cutting speed in feet per minute

D = drill diameter in inches

Thus: 
$$N = \frac{12 \times 45}{\pi \times 2} = 86$$
 revolutions per minute

Step 2. Calculate the horsepower at the cutter:

$$hp_{c} = uhp\left(\frac{\pi D^{2}}{4}\right) fN = 0.94\left(\frac{\pi \times 2^{2}}{4}\right) 0.015 \times 86 = 3.8$$

Step 3. Calculate the horse power at the motor and provide for a 50 per cent power increase for the dull tool:

$$hp_m = \frac{hp_c}{e_m} = \frac{3.8}{0.80} = 4.75 \text{ horsepower}$$

hp_m (with dull tool) =  $1.5 \times 4.75 = 7.125$  horsepower

Step 4. Estimate the spade drill thrust:

 $B_s = 148,500 \times \text{uhp} \times fD = 148,500 \times 0.94 \times 0.015 \times 2$ 

$$B_{s} = 1.5 \times 4188$$

= 6282 lb (for dull tool)

**Trepanning.**—Cutting a groove in the form of a circle or boring or cutting a hole by removing the center or core in one piece is called trepanning. Shallow trepanning, also called face grooving, can be performed on a lathe using a single-point tool that is similar to a grooving tool but has a curved blade. Generally, the minimum outside diameter that can be cut by this method is about 3 inches and the maximum groove depth is about 2 inches. Trepanning is probably the most economical method of producing deep holes that are 2 inches, and larger, in diameter. Fast production rates can be achieved. The tool consists of a hollow bar, or stem, and a hollow cylindrical head to which a carbide or high-speed steel, single-point cutting tool is attached. Usually, only one cutting tool is used although for some applications a multiple cutting fluid applied from the outside. For starting the cut, a tool that cutting fluid applied from the cutside. For starting the cut, a tool that cuts a starting groove in the work must be used, or the trepanning tool can be used. Often, an ordinary drill press is satisfactory; deeper holes should be machined on a lathe with the work rotating. A hole diameter tolerance of  $\pm 0.001$  inch has sometimes been held. Hole runout can be held to  $\pm 0.003$  inch per foot and, at times, to  $\pm 0.001$  inch per foot. On heat-treated metal, a surface finish of 125 to 150  $\mu$ m AA can be obtained and on annealed metals 100 to 250  $\mu$ m AA is common.

### TAPS AND THREADING DIES

General dimensions and tap markings given in the ASME/ANSI Standard B94.9-1987 for straight fluted taps, spiral pointed taps, spiral pointed only taps, spiral fluted taps, fast spiral fluted taps, thread forming taps, pulley taps, nut taps, and pipe taps are shown in the tables on the pages that follow. This Standard also gives the thread limits for taps with cut threads and ground threads. The thread limits for cut thread and ground thread taps for screw threads are given in Tables 3 through 7 and Tables 8a and 8b; thread limits for cut thread and ground thread taps for pipe threads are given in Tables 9a through 10c. Taps recommended for various classes of Unified screw threads are given in Tables 11 a through 14 in numbered sizes and Table 12 for nuts in fractional sizes.

Types of Taps.—Taps included in ASME/ANSI B94.9-1987 are categorized either by the style of fluting or by the specific application for which the taps are designed. The following types 1 through 6 are generally short in length, and were originally called "Hand Taps" but this design is generally used in machine applications. The remaining types have special lengths, which are detailed in the tables.

The thread size specifications for these types may be fractional or machine screw inch sizes, or metric sizes. The thread form may be ground or cut (unground) as further defined in each table. Additionally, the cutting chamfer on the thread may be Bottoming (B), Plug (P), or Taper (T).

(1) Straight Flute Taps: These taps have straight flutes of a number specified as either standard or optional, and are for general purpose applications.

(2) Spiral Pointed Taps: These taps are made with the spiral point feature only (3) Spiral Pointed Taps: These taps are made with the spiral point feature only

without longitudinal flutes. These taps are especially suitable for tapping thin materials. (4) Spiral Fluted Taps: These taps have right-hand helical flutes with a helix angle of 25 to 35 deg. These features are designed to help draw chips from the hole or to bridge a keyway.

(5) Fast Spiral Fluted Taps: These taps are similar to spiral fluted taps, except the helix angle is from 45 to 60 deg.

(6) Thread Forming Taps: These taps are fluteless except as optionally designed with one or more lubricating grooves. The thread form on the tap is lobed, so that there are a finite number of points contacting the work thread form. The tap does not cut, but forms the thread by extrusion.

(7) Pulley Taps: These taps have shanks that are extended in length by a standard amount for use where added reach is required. The shank is the same nominal diameter as the thread.

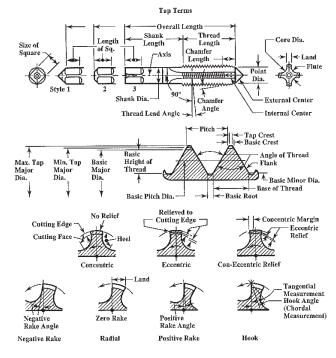
(8) Nut Taps: These taps are designed for tapping nuts on a low-production basis. Approximately one-half to three-quarters of the threaded portion has a chamfered section, which distributes the cutting over many teeth and facilitates entering the hole to be tapped. The length of voerail, the length of the thread, and the length of the shank are appreciably longer than on a regular straight fluted tap.

(9) *Pipe Taps*: These taps are used to produce standard straight or tapered pipe threads. **Definitions of Tap Terms.**—The definitions that follow are taken from ANSI/ASME B94.9 but include only the more important terms. Some tap terms are the same as screw thread terms; therefore, see *Definitions of Screw Threads* starting on page 1707.

BackTaper: A gradual decrease in the diameter of the thread form on a tap from the chamfered end of the land toward the back, which creates a slight radial relief in the threads.

Base of Thread: Coincides with the cylindrical or conical surface from which the thread projects.

Chamfer: Tapering of the threads at the front end of each land or chaser of a tap by cut-ting away and relieving the crest of the first few teeth to distribute the cutting action over several teeth.


Chamfer Angle: Angle formed between the chamfer and the axis of the tap measured in an axial plane at the cutting edge.

Chamfer Relief Angle: Complement of the angle formed between a tangent to the relieved surface at the cutting edge and a radial line to the same point on the cutting edge. Core Diameter: Diameter of a circle which is tangent to the bottom of the flutes at a given point on the axis.

First Full Thread: First full thread on the cutting edge back of the chamfer. It is at this point that rake, hook, and thread elements are measured.

Crest Clearance: Radial distance between the root of the internal thread and the crest of the external thread of the coaxially assembled design forms of mating threads.

Class of Thread: Designation of the class that determines the specification of the size, allowance, and tolerance to which a given threaded product is to be manufactured. It is not applicable to the tools used for threading.



Flank Angle: Angle between the individual flank and the perpendicular to the axis of the thread, measured in an axial plane. A flank angle of a symmetrical thread is commonly termed the "half angle of thread."

Flank-Leading: 1) Flank of a thread facing toward the chamfered end of a threading tool; and 2) The leading flank of a thread is the one which, when the thread is about to be assembled with a mating thread, faces the mating thread. *Flank—Trailing:* The trailing flank of a thread is the one opposite the leading flank.

Flutes: Longitudinal channels formed in a tap to create cutting edges on the thread pro-file and to provide chip spaces and cutting fluid passages. On a parallel or straight thread tap they may be straight, angular or helical; on a taper thread tap they may be straight, angular or spiral.

Flute-Angular: A flute lying in a plane intersecting the tool axis at an angle. Flute-Helical: A flute with uniform axial lead and constant helix in a helical path around

the axis of a cylindrical tap. Flute-Spiral: A flute with uniform axial lead in a spiral path around the axis of a conical

tap. Flute Lead Angle: Angle at which a helical or spiral cutting edge at a given point makes

with an axial plane through the same point.

Flute-Straight: A flute which forms a cutting edge lying in an axial plane. Front Taper: A gradual increase in the diameter of the thread form on a tap from the leading end of the tool toward the back.

Heel: Edge of the land opposite the cutting edge. Hook Angle: Inclination of a concave cutting face, usually specified either as Chordal Hook or Tangential Hook.

Hook-Chordal Angle: Angle between the chord passing through the root and crest of a thread form at the cutting face, and a radial line through the crest at the cutting edge. Hook-Tangential Angle: Angle between a line tangent to a hook cutting face at the cut-

ting edge and a radial line to the same point.

Interrupted Thread Tap: A tap having an odd number of lands with alternate teeth in the thread helix removed. In some designs alternate teeth are removed only for a portion of the thread length.

Land: One of the threaded sections between the flutes of a tap.

Lead: Distance a screw thread advances axially in one complete turn. Lead Error: Deviation from prescribed limits.

Lead Deviation: Deviation from the basic nominal lead.

Progressive Lead Deviation: (1) On a straight thread the deviation from a true helix where the thread helix advances uniformly. (2) On a taper thread the deviation from a true spiral where the thread spiral advances uniformly.

Length of Thread: The length of the thread of the tap includes the chamfered threads and the full threads but does not include an external center. It is indicated by the letter "B" in the illustrations at the heads of the tables.

Limits: The limits of size are the applicable maximum and minimum sizes.

Major Diameter: On a straight thread the major diameter is that of the major cylinder. On a taper thread the major diameter at a given position on the thread axis is that of the major cone at that position.

Minor Diameter: On a straight thread the minor diameter is that of the minor cylinder. On a taper thread the minor diameter at a given position on the thread axis is that of the minor cone at that position.

Pitch Diameter (Simple Effective Diameter: On a straight thread, the pitch diameter is the diameter of the imaginary coaxial cylinder, the surface of which would pass through the thread profiles at such points as to make the width of the groove equal to one-half the basic pitch. On a perfect thread this coincidence occurs at the point where the widths of the thread and groove are equal. On a taper thread, the pitch diameter at a given position on the thread axis is the diameter of the pitch cone at that position.

Point Diameter: Diameter at the cutting edge of the leading end of the chamfered section.

*Rake:* Angular relationship of the straight cutting face of a tooth with respect to a radial line through the crest of the tooth at the cutting edge. Positive rake means that the crest of the cutting face is angularly ahead of the balance of the cutting face of the tooth. Negative rake means that the crest of the cutting face is angularly behind the balance of the cutting face of the tooth. Zero rake means that the cutting face is directly on a radial line.

Relief: Removal of metal behind the cutting edge to provide clearance between the part being threaded and the threaded land.

Relief-Center: Clearance produced on a portion of the tap land by reducing the diameter of the entire thread form between cutting edge and heel.

Relief-Chamfer: Gradual decrease in land height from cutting edge to heel on the chamfered portion of the land on a tap to provide radial clearance for the cutting edge.

Relief-Con-eccentric Thread: Radial relief in the thread form starting back of a concentric margin.

Relief-Double Eccentric Thread: Combination of a slight radial relief in the thread form starting at the cutting edge and continuing for a portion of the land width, and a greater radial relief for the balance of the land.

Relief-Eccentric Thread: Radial relief in the thread form starting at the cutting edge and continuing to the heel.

Relief-Flatted Land: Clearance produced on a portion of the tap land by truncating the thread between cutting edge and heel.

Relief-Grooved Land: Clearance produced on a tap land by forming a longitudinal groove in the center of the land.

Relief-Radial: Clearance produced by removal of metal from behind the cutting edge. Taps should have the chamfer relieved and should have back taper, but may or may not have relief in the angle and on the major diameter of the threads. When the thread angle is relieved, starting at the cutting edge and continuing to the heel, the tap is said to have "eccentric" relief. If the thread angle is relieved back of a concentric margin (usually onethird of land width), the tap is said to have "con-eccentric" relief.

Size-Actual: Measured size of an element on an individual part.

Size-Basic: That size from which the limits of size are derived by the application of allowances and tolerances.

Size-Functional: The functional diameter of an external or internal thread is the pitch diameter of the enveloping thread of perfect pitch, lead and flank angles, having full depth of engagement but clear at crests and roots, and of a specified length of engagement. It may be derived by adding to the pitch diameter in an external thread, or subtracting from the pitch diameter in an internal thread, the cumulative effects of deviations from specified profile, including variations in lead and flank angle over a specified length of engagement. The effects of face, out-of-roundness, and surface defects may be positive or negative on either external or internal threads.

Size-Nominal: Designation used for the purpose of general identification.

Spiral Flute: See Flutes.

Spiral Point: Angular fluting in the cutting face of the land at the chamfered end. It is formed at an angle with respect to the tap axis of opposite hand to that of rotation. Its length is usually greater than the chamfer length and its angle with respect to the tap axis is usually made great enough to direct the chips ahead of the tap. The tap may or may not have longitudinal flutes.

Thread Lead Angle: On a straight thread, the lead angle is the angle made by the helix of the thread at the pitch line with a plane perpendicular to the axis. On a taper thread, the lead angle at a given axial position is the angle made by the conical spiral of the thread, with the plane perpendicular to the axis, at the pitch line.

# Table 3. ANSI Standard Fraction-Size Taps — Cut Thread Limits ASME/ANSI B94.9-1987

[	Th	reads per In	ch	м	ajor Diamet	er	Р	itch Diamet	ar
Tap Sizc	NC UNC	NF UNF	NS UNS	Basic	Min.	Max.	Basîc	Min.	Max.
¥			40	0.1250	0.1266	0.1286	0.1088	0.1090	0.1105
%			32	0.1563	0.1585	0.1605	0.1360	0.1365	0.1380
			24	0.1875	0.1903	0.1923	0.1604	0.1609	0.1624
			32	0.1875	0.1897	0.1917	0.1672	0.1677	0.1692
14	20			0.2500	0.2532	0.2557	0.2175	0.2180	0.2200
14		28		0.2500	0.2524	0.2549	0.2268	0.2273	0.2288
5/16	18			0.3125	0.3160	0.3185	0.2764	0.2769	0.2789
5/16		24		0.3125	0.3153	0.3178	0.2854	0.2859	0.2874
34	16			0.3750	0.3789	0.3814	0.3344	0.3349	0.3369
34		24		0.3750	0.3778	0.3803	0.3479	0.3484	0.3499
V16	14			0.4375	0.4419	0.4449	0.3911	0.3916	0.3941
7/16		20		0.4375	0.4407	0.4437	0.4050	0.4055	0.4075
K	13			0.5000	0.5047	0.5077	0.4500	0.4505	0.4530
1/2		20		0.5000	0.5032	0.5062	0.4675	0.4680	0.4700
×16	12			0.5625	0.5675	0.5705	0.5084	0.5089	0.5114
%15		18		0.5625	0.5660	0.5690	0.5264	0.5269	0.5289
-%	11			0.6250	0.6304	0.6334	0.5660	0.5665	0.5690
-%		18		0.6250	0.6285	0.6315	0.5889	0.5894	0.5914
-34	10			0.7500	0.7559	0.7599	0.6850	0.6855	0.6885
14		16		0.7500	0.7539	0.7579	0.7094	0.7099	0.7124
7%	9			0.8750	0.8820	0.8860	0.8028	0.8038	0.8068
74		14		0.8750	0.8799	0.8839	0.8286	0.8296	0.8321
ı°	8			1.0000	1.0078	1.0118	0.9188	0.9198	0.9228
1		12		1.0000	1.0055	1.0095	0.9459	0.9469	0.9494
1			14	1.0000	1.0049	1.0089	0.9536	0.9546	0.9571
11/8	7			1.1250	1.1337	1.1382	1.0322	1.0332	1.0367
11%		12	•••	1.1250	1.1305	1.1350	1.0709	1.0719	1.0749
11/4	7			1.2500	1.2587	1.2632	1.1572	1.1582	1.1617
1%		12		1.2500	1.2555	1.2600	1.1959	1.1969	1.1999
13%	6			1.3750	1.3850	1.3895	1.2667	1.2677	1.2712
13%		12		1.3750	1.3805	1.3850	1.3209	1.3219	1.3249
1½	6			1.5000	1.5100	1.5145	1.3917	1.3927	1.3962
11/2		12		1.5000	1.5055	1.5100	1.4459	1.4469	1.4499
11/4	5			1.7500	1.7602	1.7657	1.6201	1.6216	1.6256
2	4½			2.0000	2.0111	2.0166	1.8557	1.8572	1.8612

		5 ^b & mits	Max.	0.2200	0.2288#	0.2789 ^b	0.2874 ^u	0.3369b	0.34994	0.3936	0.4075 ^b	0.4525 ^b	0.4700 ^b	0.5109 ^b	0.5289 ⁶	0.5685 ^b	0.5914 ^b	÷	:	0.6875 ¹	0.7119	0.805S ^c	:	0.9218 ^c	;	:	
		H4,ª H5 ^b & H6 ^e Limits	Mia.	0.2195 ^b	0.2283*	$0.2784^{b}$	0.2869	0.3364 ^b	0.3494	0.3931 ^b	0.4070 ⁶	0.4520b	0.4695 ^b	0.5104 ^b	0.5284 ^b	0.5680 ^b	46065.0	:	;	0.6870 ^b	0.7114 ^b	0.8053	:	0.92130	:	:	
-1987		H4° úts	Max.	0.2190	0.2283	0.2779	0.2869	0.3359	0.3494	0.3926	0.4065	0.4515	0.4690	0.5099	0.5279	0.5675	0.5904	0.6300	0.6484	0.6865	0.7109	0.8048"	0.8306*	0.9208	0.9479 ^a	0.9556ª	
VSI B94.9	mits	H3 & H4° Limits	Min.	0.2185	0.2278	0.2774	0.2864	0.3354	0.3489	0.3921	0.4060	0.4510	0.4685	0.5094	0.5274	0.5670	0.5899	0.6295	0.6479	0.6860	0.7104	0.8043*	0.8301*	0.9203"	0.9474ª	0.9551*	
ASME/AI	Pitch Diameter Limits	imit	Max.	0.2185	0.2278	0.2774	0.2864	0,3354	0.3489	0.3921	:	0.4510	0.4685	:	0.5274	0.5670	0.5899		;	0.6860	0.7104	:	0.8296	:			
I Limits	Pitch	H2 Limit	Min.	0.2180	0.2273	0.2769	0.2859	0.3349	0.3484	0.3916	;	0.4505	0.4680	:	0.5269	0.5665	0.5894	:	;	0.6855	0.7099	:	0.8291	:	:	•••	
d Thread		imît	Max.	0.2180	0.2273	0.2769	0.2859	0.3349	0.3484	:	:	0.4505	0.4680	;	÷	÷	:	:	:	:	0.7099	:	ī	;	:	:	
Table 4. ANSI Standard Fractional-Size Taps — Ground Thread Limits ASME/ANSI B94.9-1987		III Limit	Min.	0.2175	0.2268	0.2764	0.2854	0.3344	0.3479	÷	÷	0.4500	0.4675	:	:		:	:	:	:	0.7094		ł	:	:	:	
ize Taps-		Basic Ditch	Dia	0.2175	0.2268	0.2764	0.2854	0.3344	0.3479	0.3911	0.4050	0.4500	0.4675	0.5084	0.5264	0.5660	0.5889	0.6285	0.6469	0.6850	0.7094	0.8028	0.8286	0.9188	0.9459	0.9536	
ctional-Si	ter		Max.	0.2565	0.2546	0.3197	0.3179	0.3831	0.3804	0.4468	0.4440	0.5100	0.5065	0.5733	0.5697	0.6368	0.6322	0.6993	0.6956	0.7630	0.7581	0.8894	0.8843	1.0162	1.0108	1.0093	
ard Fra	Major Diameter		Min.	0.2533	0.2523	0.3161	0.3152	0.3790	0.3777	0.4422	0.4408	0.5050	0.5033	0.5679	0.5661	0.6309	0.6286	0.6934	0.6915	0.7565	0.7540	0.8822	0.8797	1.0081	1.0054	1.0047	
SI Stand	N	1	Basic	0.2500	0.2500	0.3125	0.3125	0.3750	0.3750	0.4375	0.4375	0.5000	0,5000	0.5625	0.5625	0.6250	0.6250	0.6875	0.6875	0,7500	0.7500	0.8750	0.8750	1,0000	1.0000	1.0000	
le 4. AN	nch		SND	:	:	:	:	:	÷		:	:	:	:	3	:	;	Π	16	:	:	:	:	:	:	14	
Tab	Threads per Inch		AND AND	:	28	:	24	:	24	:	20	:	20	:	18	:	81	:	:	:	91	:	14	:	12	:	
	Ľ			20	:	18	:	91	:	14	:	13	: :	12	:	Π	:	:	:	9	:	6	:	ac	:	÷	*H4 limit value. ^b H5 limit value. cH6 li.
			Size	2	7 2		° %	* *	• >4	. 2	9. %	. >	r 2	7.76	a %	² ×	° >>	, ² / ₁ / ₁	". 	* ×	5 22	* >>	. >>	•	-	1	*H4 lin ^b H5 lin ^b H6 li.

878

## Table 5. ANSI Standard Fractional -Size Taps-Ground Thread Limits

(ASME/ANSI 694.9-1987)	
------------------------	--

Th	reads per In	ich	M	lajor Diamet	er	Pitch	Diameter L	imits.
						Basic	H4 I	imit
NC UNC	NF UNF	NS UNS	Basic	Min.	Max.	Pitch Dia.	Min.	Max.
7			1,1250	1.1343	1.1436	1.0322	1.0332	1.0342
	12		1.1250	1.1304	1.1358	1.0709	1.0719	1.0729
7			1.2500	1.2593	1.2686	1.1572	1.1582	1.1592
	12	1	1.2500	1.2554	1.2608	1.1959	1.1969	1.1979
6			1.3750	1.3859	1.3967	1.2667	1.2677	1.2687
	12		1.3750	1.3804	1.3858	1.3209	1.3219	1.3229
6			1.5000	1.5109	1.5217	1.3917	1.3927	1.3937
	12		1.5000	1.5054	1.5108	1.4459	1.4469	1.4479
	NC UNC 7  6  6	NC NF UNC UNF 7 12 7 12 6 12 6 12 6 12	UNC         UNF         UNS           7              12            7              12             12             12             12             12            6             12             12	NC         NF         NS         Basic           7          1.1250         1.1250            12          1.1250           7          1.2500         1.1250           7          1.2500         1.1250            12          1.2500            12          1.3750            12          1.3750           6          1.5000         1.5000	NC         NF         NS         Basic         Min.           7          1.1250         1.1343            12          1.1250         1.1343            12          1.2500         1.3943           7          1.2500         1.3593         1.2593            12          1.2500         1.2594           6           1.3750         1.3859            12          1.3750         1.3859            12          1.5000         1.5109	NC         NF         NS         Basic         Min.         Max.           7          1.1250         L.1343         1.1436            12          1.1250         L.1343         1.1436           7          1.1250         1.1344         1.1358         1.364           7          1.2500         1.2593         1.2686         1.2564         1.2696            12          1.2500         1.2554         1.2696            12          1.3750         1.3804         1.3967            12          1.3750         1.3804         1.3858           6           1.3700         1.5009         1.5217           12          1.5000         1.5019         1.5217	NC         NF         NS         Dasie         Min.         Basic         Basic         Pitch           7          1.1250         1.1343         1.1436         1.0322            12          1.1250         1.1343         1.1436         1.0322           7          1.1250         1.1344         1.1436         1.0322            12          1.2500         1.2593         1.2686         1.1572            12          1.2500         1.2593         1.2666         1.1572            12          1.3750         1.3854         1.30967         1.2667           6          1.3750         1.3859         1.32967         1.2667           6          1.5370         1.3858         1.3209         1.2667           1.2         1.3750         1.3804         1.3858         1.3209         1.2667           1.12         1.3750         1.3804         1.3858         1.3209         1.5217         1.3919           6          1.5000         1.5109         1.5217         1.3919         1.4459 <td>NC         NF         NS         Junc         Basic         Min.         Max.         Dia.         H41           VINC         UNF         UNS         Basic         Min.         Max.         Dia.         Min.         Min.           7          1.1250         1.1343         1.1436         1.0322         1.0332            12          1.1250         1.1304         1.1435         1.0709         1.07199           7          1.2500         1.2693         1.1686         1.1572         1.1582            12          1.2500         1.2593         1.2686         1.1572         1.1582            12          1.2500         1.3581         1.0797         1.2667         1.2677            12          1.3750         1.3859         1.3209         1.3219         1.3219         1.3219           6           1.5000         1.5109         1.5217         1.3917         1.3927           12          1.5000         1.5109         1.5218         1.4348         1.4368</td>	NC         NF         NS         Junc         Basic         Min.         Max.         Dia.         H41           VINC         UNF         UNS         Basic         Min.         Max.         Dia.         Min.         Min.           7          1.1250         1.1343         1.1436         1.0322         1.0332            12          1.1250         1.1304         1.1435         1.0709         1.07199           7          1.2500         1.2693         1.1686         1.1572         1.1582            12          1.2500         1.2593         1.2686         1.1572         1.1582            12          1.2500         1.3581         1.0797         1.2667         1.2677            12          1.3750         1.3859         1.3209         1.3219         1.3219         1.3219           6           1.5000         1.5109         1.5217         1.3917         1.3927           12          1.5000         1.5109         1.5218         1.4348         1.4368

All dimensions are given in inches.

Lead Tolerance: Plus or minus 0.0005 inch within any two threads not farther apart than one inch. Angle Tolerance: Plus or minus 25 min. in half angle for 6 to 9 threads per inch; plus or minus 30 min. in half angle for 10 to 28 threads per inch.

For an explanation of the significance of the H4 limit value range see Standard System Tap Thread Limits and Identification for Unified Inch Screw Threads, Ground Thread starting on page 896.

 Table 6. ANSI Standard Machine Screw Taps — Ground Thread Limits

 ASME/ANSI B94.9-1987

		Threads per Inch		Ma	jor Diame	ter			Pitch I	Diameter L	.îmit <i>s</i> a		
							Basic	H1 (	imit	H2L	imit	H3 L	imit
Si zc	NC UNC	NF UNF	NS UNS	Basic	Min.	Max.	Pitch Dia	Min.	Max.	Mîn.	Max.	Min.	Max.
0		80		0.0600	0.0605	0.0616	0.0519	0.0519	0.0524	0.0524	0.0529		
I	64			0.0730	0.0736	0.0750	0.0629	0.0629	0.0634	0.0634	0.0639		
1		72	.,.	0.0730	0.0736	0.0748	0.0640	0.0640	0.0645	0.0645	0.0650		
2	56			0.0860	0,0867	0.0883	0.0744	0.0744	0.0749	0.0749	0.0754		
2		64		0.0860	0.0866	0.0880	0.0759			0.0764	0.0769		
3	48			0.0990	0.0999	0.1017	0.0855	0.0855	0.0860	0.0860	0.0865		
3		56		0.0990	0.0997	0.1013	0,0874	0.0874	0.0879	0.0879	0.0884	~~	
4			36	0.1120	0.1135	0.1156	0.0940			0.0945	0.0950		
4	40			0.1120	0.1133	0.1152	0.0958	0.0958	0.0963	0.0963	0.0968		
4		48		0.1120	0.1129	0.1147	0.0985	0.0985	0.0990	0.0990	0.0995		
5	40			0.1250	0.1263	0.1282	0.1088	0.1088	0.1093	0.1093	0.1098		
5		44		0.1250	0.1263	0.1280	0.1102			0.1107	0.1112		
6	32			0.1380	0.1401	0.1421	0.1177	0.1177	0.1182	0.1182	0.1187	0.1187	0.1192
6		40		0.1380	0.1393	0.1412	0.1218	0.1218	0.1223	0.1223	0.1228		
8	32			0.1640	0.1661	0.1681	0.1437	0.1437	0.1442	0.1442	0.1447	0.1447	0.1452
8		36		0.1640	0.1655	0.1676	0.1460			0.1465	0.1470		
10	24			0.1900	0.1927	0.1954	0.1629	0.1629	0.1634	0.1634	0.1639	0.1639	0.1644
10		32		0.1900	0.1921	0,1941	0.1697	0.1697	0.1702	0.1702	0.1707	0.1707	0.1712
12	24			0.2160	0.2187	0.2214	0.1889					0.1899	0,1904
12		28		0.2160	0.2183	0.2206	0,1928	•				0.1938	0.1943

^a H7 limits (formerly designated as G) apply to same threads as H3 limits with the exception of the 12–24 and 12–28 threads. H7 limits have minimum and maximum major diameters 0.0020 inch larger than shown and minimum and maximum pitch diameters 0.0020 inch larger than shown for H3 limits. All dimensions are given in inches.

Lead Tolerance: Plus or minus 0.0005 inch within any two threads not farther apart than one inch.

Angle Tolerance: Plus or minus 30 min. in half angle for 20 to 80 threads per toch. For an explanation of the significance of the limit value ranges see Standard System Tap Thread Limits and Identification for Unified Inch Screw Threads, Ground Thread starting on page 896.

879

# Table 7. ANSI Standard Machine Screw Taps — Cut Threads Limits ASME/ANSI B94.9-1987

	T	hreads per Inc	ch	M	lajor Diameta	er.	P	itch Diamete	r
Size	NC UNC	NF UNF	NS UNS	Basic	Mín.	Мах,	Basic	Min.	Max.
0		80		0.0600	0.0609	0.0624	0.0519	0.0521	0.0531
1	64			0.0730	0.0740	0.0755	0.0629	0.0631	0.0641
L		72		0.0730	0.0740	0.0755	0.0640	0.0642	0.0652
2	56			0.0860	0.0872	0.0887	0.0744	0.0746	0.0756
2		64		0.0860	0.0870	0.0885	0.0759	0.0761	0.0771
3	48			0.0990	0.1003	0.1018	0.0855	0.0857	0.0867
3		56		0.0990	0.1002	0.1017	0.0874	0.0876	0.0886
4		1	36	0.1120	0.1137	0.1157	0.0940	0.0942	0.0957
4	40			0.1120	0.1136	0.1156	0.0958	0.0960	0.0975
4		48	,	0.1120	0.1133	0.1153	0.0985	0.0987	0.1002
5	40			0.1250	0.1266	0.1286	0.1088	0.1090	0.110
6	32			0.1380	0.1402	0.1422	0.1177	0.1182	0.119
6			36	0.1380	0.1397	0.1417	0.1200	0.1202	0.121
6		40		0.1380	0.1396	0,1416	0.1218	0.1220	0.123
8	32			0.1640	0.1662	0.1682	0.1437	0.1442	0.145
8		36	1	0.1640	0.1657	0.1677	0.1460	0.1462	0.147
8	1		40	0.1640	0.1656	0.1676	0.1478	0.1480	0.149
10	24			0.1900	0.1928	0.1948	0.1629	0.1634	0.164
10		32		0.1900	0.1922	0.1942	0.1697	0.1702	0.171
12	24			0.2160	0.2188	0.2208	0.1889	0.1894	0.190
12		28		0.2160	0,2184	0.2204	0.1928	0.1933	0.194
14			24	0.2420	0.2448	0.2473	0.2149	0.2154	0.217

 14
 1
 1
 24
 0.2420
 0.2448
 0.2473
 0.2149
 0.2154
 0.2174

 All dimensions are given in inches.
 Lead Tolerance: Plus or minus 0.003 inch per inch of thread. Angle Tolerance: Plus or minus 45
 min. in half angle and 68 min. in full angle for 20 to 28 threads per inch; plus or minus 60 min. in half angle and 90 min. in full angle for 30 or more threads per inch.

## Table 8a. ANSI Standard Metric Tap Ground Thread Limits in Inches — M Profile ASME/ANSI 894.9-1987

Nominal Diam	Pitch,	2	/lajor Diameter (Inches)			Pitch Diameter (inches)	
mm	mm	Basic	Min	Max	Basic	Min	Max
1.6	0.35	0.06299	0.06409	0.06508	0.05406	0.05500	0.05559
2	0.4	0.07874	0.08000	0.08098	0.06850	0.06945	0.07004
2.5	0.45	0.09843	0.09984	0.10083	0.08693	0.08787	0.08846
3	0.5	0.11811	0.11969	0.12067	0.10531	0.10626	0.10685
3.5	0.6	0.13780	0.13969	0.14067	0.12244	0.12370	0.12449
4	0.7	0.15748	0.15969	0.16130	0.13957	0.14083	0.14161
4.5	0.75	0.17717	0.17953	0.18114	0.15799	0.15925	0.16004
5	0.8	0.19685	0.19937	0.20098	0.17638	0.17764	0.17843
6	1	0.23622	0.23937	0.24098	0.21063	0,21220	0.21319
7	1	0.27559	0.27874	0.28035	0.25000	0.25157	0.25256
8	1.25	0.31496	0.31890	0.32142	0.28299	0.28433	0.28555
10	1.5	0.39370	0.39843	0.40094	0.35535	0.35720	0.35843
12	1.75	0.47244	0.47795	0.48047	0.42768	0.42953	0.43075
14	2	0.55118	0.55748	0,56000	0.50004	0.50201	0.50362
16	2	0.62992	0.63622	0.63874	0.57878	0.58075	0.58236
20	2.5	0.78740	0.79538	0.79780	0.72346	0.72543	0.72705
24	3	0.94488	0.95433	0.95827	0.86815	0.87063	0.87224
30	3.5	1,18110	1.19213	1.19606	1.09161	1.09417	1.09622
36	4	1.41732	1.42992	1.43386	1.31504	1.31760	1.31965

 36
 4
 1.41732
 1.42992
 1.43886
 1.31764
 1.31765

 Basic pitch diameter is the same as minimum pitch diameter of internal thread, Class 6H as shown in table starting on page 1769.
 Pitch diameter fimits are designated in the Standard as D3 for 1.6 to 3 mm diameter sizes, incl.; D4 for 3.5 to 5 mm sizes, incl.; D5 for 6 and 8 mm sizes; D6 for 10 and 12 mm sizes; D7 for 14 to 20 mm sizes, incl.; D8 for 24 mm size; and D9 for 30 and 36 mm sizes.
 Angle tolerances are plus or minus 30 minutes in half angle for pitches ranging from 0.35 through 2.5 mm, incl. and plus or minus 25 minutes in half angle for pitches ranging from 3 to 4 mm, incl. A maximum deviation of plus or minus 0.0005 inch within any two threads not farther apart than one inch is permitted.

#### 880

## TAPS AND THREADING DIES

# M Profile ASSE ANSI Standard Metric Tap Ground Thread Limits in Millimeters---

Nominal	Pitch.	Maj	or Diameter (m	n)	Pit	ch Diameter (m	m)
Diam, mrs	mm	Basic	Min	Max	Basic	Min	Max
1.6	0.35	1.600	1.628	1.653	1.373	1.397	1.412
2	0.4	2.000	2.032	2.057	1.740	1.764	1.779
2.5	0.45	2.500	2.536	2.561	2,208	2.232	2.247
3	0.5	3.000	3.040	3.065	2.675	2.699	2.714
3.5	0.6	3.500	3.548	3.573	3.110	3.142	3.162
4	0.7	4.000	4.056	4.097	3,545	3.577	3.597
4.5	0.75	4,500	4.560	4.601	4.013	4.045	4.065
5	0.8	5.000	5.064	5.105	4.480	4.512	4.532
6	1	6.000	6.080	6.121	5.350	5.390	5.415
7	1	7.000	7.080	7,121	6.350	6.390	6.415
8	1.25	8.000	8.100	8.164	7.188	7.222	7.253
10	1.5	10.000	10.120	10.184	9.026	9.073	9.104
12	1.75	12.000	12.140	12.204	10.863	10.910	10.941
14	2	14.000	14.160	14.224	12.701	12.751	12.792
16	2	16.000	16.160	16.224	14.701	14.751	14.792
20	2.5	20.000	20.200	20.264	18.376	18,426	18.467
24	3	24.000	24.240	24.340	22.051	22.114	22.155
30	3.5	30.000	30.280	30.380	27.727	27.792	27.844
36	4	36.000	36.320	36,420	33.402	33.467	33.519

Basic pitch diameter is the same as minimum pitch diameter of infernal thread, Class 6H as shown in table starting on page 1769. Pitch diameter limits are designated in the Standard as D3 for 1.6 to 3 mm diameter sizes, incl. D4 for 3.5 to 5 mm sizes, incl.; D5 for 6 and 8 mm sizes; D6 for 10 and 12 mm sizes; D7 for 14 to 20 mm sizes, incl.; D8 for 24 mm size; and D9 for 30 and 36 mm sizes. Angle tolerances are plus or minus 30 minutes in half angle for pitches ranging from 0.35 through 2.5 mm, incl. and plus or minus 25 minutes in half angle for pitches ranging from 0.45 through A maximum lead deviation of plus or minus 0.013 mm within any two threads not farther apart than 25 mm is permitted.

Table 9a. ANSI Standard Taper Pipe Taps --- Cut Thread Tolerances for NPT and Ground Thread Tolerances for NPT, NPTF, and ANPT ASME/ANSI B94.9-1987

	Threads	Gaj	ze Measurem	ant ^a		Taper per F	oot, Inches	
	per Inch		Tolerance E	lus or Minus	Cut T	hread	Ground	Thread
Nominal Size	NPT, NPTF, or ANPT	Projection Inches	Cut Thread	Ground Thread	Min.	Max.	Min.	Max,
16	27	0.312	1/16	46	23/2	7/2	23/12	2%
%	27	0.312	K.	1/16	23/12	3% <u>n</u>	21/32	3%2
4	18	0.459	1/26	1/16	<u>"</u> 1/ ₃₂	21/30	™	25/32
3	18	0.454	1/10	1/16	1%	Ξ½	<u>21/20</u>	23/10
14	14	0.579	1/16	1/16	Σ <u>γ</u> n	13/ ₁₆	ZY <u>33</u>	25/22
3/4	14	0.565	Y16	5/16	2 <u>3</u> 33	¹³ /16	23y22	25/32
1	11%	0.678	1/2	%_	23/32	14/16	23 _{/32}	24/32
1½	11%	0.686	1/2	3/2	23/30	13/16	23/22	*%_
15	11%	0.699	3/20	3/2	23/12	13/16	21/12	™
2	111/2	0.667	3/32	3/22	™/2	13/16	™_2	21/20
21%	8	0.925	₹,2	1/20	47/64	51/64	⁴⁷ /64	27 <u>/30</u>
3	8	0.925	*2	¥2	47% 54	51/61	⁵⁷ /64	25y,
3½	8	0.938	- K	<u>%</u>	47%4	51/64	\$%4	25 _{/32}
4	8	0.950	14	¥.	47/64	54	41/64	⇒%,2

"Distance that small end of tap projects through L1 taper ring gage (see ANSI B1.20.3).

All dimensions are given in inches. Lead Tolerance: Plus or minus 0.003 inch per inch of cut thread and plus or minus 0.0005 inch per inch of ground thread. Angle Tolerance: Plus or minus 40 min. in half angle and 60 min. in full angle for 8 cut threads per

inch; plus or minus 45 min. in half angle and 68 min. in full angle for 11% to 27 cut threads per inch; plus or minus 25 min. in half angle for 8 ground threads per inch; and plus and minus 30 min. in half angle for 11% to 27 ground threads per inch.

881

# Table 9b. ANSI Standard Taper Pipe Thread — Widths of Flats at Tap Crests and Roots for Cut Thread NPT and Ground Thread NPT, ANPT, and NPTF ASME/ANSI B94.9-1987

Threads per	Tap Flat Width	NPT-Cut and	umn I Ground Thread ound Thread	Column II NPTP—Cut and Ground Thread			
Juch	at	Minimum ^a	Maximum	Minimum ^a	Maximum		
27	{ Major Diameter	0.0014	0.0041	0.0040	0.0055		
27	[ Minor Diameter		0.0041		0.0040		
18	{ Major Diameter	0.0021	0.0057	0.0050	0.0065		
18	{ Minor Diameter		0.0057		0.0050		
14	{ Major Diameter	0.0027	0.0064	0.0050	0.0065		
14	{ Minor Diameter		0.0064		0.0050		
11½	{ Major Diameter	0.0033	0.0073	0.0060	0.0083		
11%	{ Minor Diameter		0.0073		0.0060		
8	{ Major Diameter	0.0048	0.0090	0.0080	0.0103		
D.	{ Minor Diameter		0.0090		0.0080		

^aMinimum minor diameter falts are not specified. May be sharp as practicable.

-Minimum minor duringer fails are not specified. May be smap as practicable. All dimensions are given in inches. *Note:* Cut Thread taps made to Column I are marked NPT but are not recommended for ANPT applications. Ground Thread taps made to Column I are marked NPT and may be used for NPT and ANPT applications. Ground Thread taps made to Column II are marked NPTF and used for Dryseal application.

# Table 10a. ANSI Standard Straight Pipe Taps (NPSF—Dryseal)—Ground Thread Limits ASME/ANSI B94.9-1987

		Major D	iameter		Pitch D	iameter	
Nominal Size, Inches	Threads per Inch	Min. G	Max. H	Plug at Gaging Notch E	Mín. K	Max. L	Minor ^a Dia. Flat, Max,
1/15	27	0.3008	0.3018	0.2812	0.2772	0.2777	0.004
1/8	27	0.3932	0.3942	0.3736	0.3696	0.3701	0.004
1/4	18	0.5239	0.5249	0.4916	0.4859	0.4864	0.005
3∕2	18	0.6593	0.6603	0.6270	0.6213	0.6218	0.005
1/2	14	0.8230	0.8240	0.7784	0.7712	0.7717	0.005

1.0345

0.9889

0.9817

0.9822

0.005

*As specified or sharper.

14

1.0335

		Formula	For American	Dryseal (I	NPSF) Gr	ound Thro	ad Taps	
Nominal		Majo	r Diameter			Pitch Di	ameter	Max.
Size, Inches		lin. G	Max. H		Mi	in. K	Max. L	Minor Dia.
4/16	H	0.0010	K + Q = 0.0	0005	L = 0.0005		E-F	M - Q
1/8	H-1	0.0010	K + Q - 0.0	0005	L - 0.	.0005	E - F	M - Q
14	H-1	0.0010	K + Q = 0.0005		L = 0	.0005	E - F	M-Q
3%	H = 0.0010		K + Q = 0.0005		L = 0	.0005	E-F	M-Q
1/2	H	0.0010	K + Q = 0.0005		L-0.	.0005	E - F	M - Q
34	H-0	K + Q = 0.0		0005	L - 0.	.0005	E - F	M - Q
			Values	to Use in	a Formulas			
Threads per	Inch		E	1	F		М	Q
27			h diameter	0.0	035		(a) measured	0.0251
18			f plug at	0.0			al measured	0.0395
14		gag	ing notch	0.0	067	1 Pro	-n cannolet	0.0533

All dimensions are given in inches. Lead Tolerance: Plus or minus 0.0005 inch within any two threads not farther apart than one inch. Angle Tolerance: Plus or minus 30 min. in half angle for 14 to 27 threads per inch.

## Table 10b. ANSI Standard Straight Pipe Taps (NPS)—Cut Thread Limits ASME/ANSI B94.9-1987

	Threads		Pitch D	iameter	Values	to Use in Fo	rmulas	
Nominal Size	per Inch, NPS, NPSC	Size at Gaging Notch	Min.	Max.	Α	В	С	
1/8	27	0.3736	0.3721	0.3751	0.0267	0.0296	0.0257	
1/4	18	0.4916	0.4908	0.4938	10000	0.0444	0.0401	
3%	18	0.6270	0.6257	0.6292	} 0.0408	0.0444	0.0401	
1/2	14	0.7784	0.7776	0.7811	10.0535	0.0571	0.0525	
3/4	14	0.9889	0.9876	0.9916	} 0.0535	0.0571	0.0525	
1	111%	1.2386	1.2372	1,2412	0.0658	0.0696	0.0647	
The followir	ig are approxi	nate formula:	s, in which A	A = measure	d pitch diam	eter in inche	s:	
	Major dia., n	$\min = M + A$						
	Major dia.,	$\max = M + $	B		Minor dìa., r	$\max = M - 0$	C	

All dimensions are given in inches.

882

Lead Tolerance: Plus or minus 0.003 inch per inch of thread.

Angle Tolerance: All pitches, plus or minus 45 min. in half angle and 68 min. in full angle. Taps made to these specifications are to be marked NPS and used for NPSC thread form.

## Table 10c. ANSI Standard Straight Pipe Taps (NPS)—Ground Thread Limits ASME/ANSI B94.9-1987

	Threads	М	ajor Diamete	r	Pi	itch Diamete	r
Nominal Size, Inches	per Inch, NPS, NPSC, NPSM	Plug at Gaging Notch	Min. G	Max. H	Plug at Gaging Notch E	Min. K	Max. L
1/8	27	0.3983	0.4022	0.4032	0.3736	0.3746	0.3751
1/4	18	0.5286	0.5347	0.5357	0.4916	0.4933	0.4938
3%	18	0.6640	0.6701	0.6711	0.6270	0.6287	0.6292
4	14	0.8260	0.8347	0.8357	0.7784	0.7806	0.7811
3/4	14	1.0364	1.0447	1.0457	0.9889	0.9906	0.9916
1	11½	1.2966	1.3062	1.3077	1.2386	1.2402	1.2412
		Formulas	for NPS Gro	und Thread	Taps ^a		
Nominal		Major Diam	eter	Minor Día.	Threads per Inch	A	В
Size	Min. G	. ]	Max. H	Max.	27	0.0296	0.0257
i					1	0.0114	0.0401

1/8	H = 0.0010	(K+A) = 0.0010	M - B	18	0.0444	0.0401
1/2 to 3/2	H = 0.0010	(K+A) = 0.0020	M - B	14	0.0571	0.0525
1	H - 0.0015	(K+A) = 0.0021	M - B	11½	0.0696	0.0647
The maximum	Pitch Diameter	of tap is based upon an	allowance	deducted fr	om the maxi	mum prod-
	uct pitch d	iameter of NPSC or NP	SM, which	ever is smal	ler.	

The minimum Pitch Diameter of tap is derived by subtracting the ground thread pitch diameter tolerance for actual equivalent size.

^aIn the formulas, M equals the actual measured pitch diameter.

All dimensions are given in inches.

Lead tolerance: Plus or minus 0.0005 inch within any two threads not farther apart than one inch. Angle Tolerance: All pitches, plus or minus 30 min. in half angle. Taps made to these specifications are to be marked NPS and used for NPSC and NPSM.

883

# Sizes ASME/ANSI B94.9-1987

					D - D - C I+ STAN	+ 		OF FLU		-				
						1								
				Æ	D	D		mmm		~				
				, v⊂				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mula /					
					c ⊨	-	†	<b>4</b> −−−−Β						
					077	IONALN		OF FLU	TES					
	<u> </u>	The	eads per I:	nch			Dja Limîts						5	
	Basic		eads per a	1011	No.	11001	Dia cinac	ind chu			Length of Thread	Length of Square	Diameter of Shank	
	Major Diam	NC	NF	NS	of Flute					Length Overall	la ne	Son	Sha	
Size	eter	UNC	UNF	UNS	8	H1	H2	H3	H7	A	5.	2	Ď	Ε
0	0.060		80		2	TPB	PB			1%	·1/16	3/10	0.141	0.110
1	0.073	64			2	TPB	Р			111/16	∛6	∛16	0.141	0.110
1	0.073		72		2	TPB	PB			111/16	⅔	3∕36	0.141	0.110
2	0.086	56			2 ^b		PB	···	•••	1%	3/16	₹16	0.141	0.110
2	0.086	56			3	TPB	TPB		•	1¾	746	$Y_{16}$	0.141	0.110
2	0.086		64		3		TPB			1¾	7/16	3/16	0.141	0.110
3	0.099	48			20	•••	PB			11%	14	$y_{16}$	0.141	0.110
3	0.099	48			3	P	TPB			11%	14	3/16	0.141	0.110
3	0.099		56		3		TPB			113/16	12	3/16	0.141	0.110
4	0.112			36	3		TPB	•••		1%	%	¥16	0.141	0.110
4	0.112	40			2 ^b	Р	PB			1%	₹16	¥16	0.141	0.110
4	0.112	40		i	3	•	TPB			1%	% ₆	3/6	0.141	0.110
4	0.112		48		3		TPB PB	***		1%	%	3/16	0.141	0.11
5	0.125	40			2° 3	 P	TPB			11%	14 14	∛16 ∛16	0.141	0.11
5 5	0.125	40	44		3		TPB	•••		11%16	-78 -5%	716	0.141	0.11
	0.125	 32			20	 P	PB	PB		2	11/16	716 X6	0.141	0.110
6 6	0.138	32			3	ТРВ	TPB	TPB	 PB	2	11/16	346	0.141	0.11
6	0.138		40		26		P			2	11/16	716 3716	0.141	0.11
6	0.138		40		3	P	TPB			2	10	316 3√16	0.141	0.11
8	0.164	32			20	P	PB	PB		21%	34	14	0.168	0.13
8	0,164	32			31		PB	PB	PB	21/8	14	8	0.168	0.13
8	0.164	32			4	TPB	TPB	TPB	PB	21/2	14	14	0.168	0.13
8	0.164		36		4		TPB			21/8	1 34	14	0.168	0.13
10	0.190	24			2*		PB	PB		23%	1%	14	0.194	0.15
10	0.190	24			35		P	РВ		23%	7%	14	0.194	0.15
10	0.190		32		Zb	Р	PB	PB	1	23%	1/8	14	0.194	0.15
10	0.190		32		36		PB	PB	PB	2%	<i>%</i>	14	0.194	0.15
10	0.190	24	32		4	TPB	TPB	TPB	PB	23%	1%	14	0.194	0.15
12	0.216	24		]	4			TPB		2%	15/16	%₂	0.220	0.16
12	0.216		28		4			TPB		23%	15/16	1%	0.220	0.16

^aChanfer designations are: T = taper, P = plug, and B = bottoming. ^bOptional number of flutes. All dimensions are given in inches. These taps are standard as high-speed steel taps with ground threads, with standard and optional number of flutes and pitch diameter limits and chamfers as given in the table. These are style 1 taps and have external centers on thread and shank ends (may be removed on thread end of bottoming taps). For standard thread limits see Table 6. For eccentricity tolerances see Table 25. *Tolerances:* Numbers 0 to 12 size range  $-A, \pm \frac{1}{25}; B, \pm \frac{1}{26}; c, \pm \frac{1}{25}; D, -0.0015; E, -0.004.$ 

# Table 11b. ANSI Standard Cut Thread Straight Fluted Taps — Machine Screw Sizes ASME/ANSI 894.9-1987

		+ D 	A STYL		B			C	+ 	A YLE 2	— B ———	
				eads per l						Dimension:	s	
	Basic	C	arbon Ste	cl	HS	Steel	Num-		Length	Length		Size
	Major Diame-	NC	NF	NS	NC	NF	ber of	Length Overall.	of Thread,	of Square,	Diameter of Shank.	of Square,
Size	ter	UNC	UNF	UNS	UNC	UNF	Flutes	A	В	C	D	E
0	0.060		80 ^a				2	1%	×16	∛l6	0.141	0.110
1	0.073	64ª	724				2	11/1/16	*	₹6	0.141	0.110
2	0.086	56	64 ⁴			10	3	1%	7/ ₁₆	₹6	0.141	0.110
3	0.099	484	561				3	113/16	8	16	0.141	0.110
4	0.112	40	48ª	36ª	40ª		3	1%	%	3∕16	0.141	0.110
5	0.125	40			40ª		3	1 ¹¹ / ₁₆	*	₹16	0.141	0.110
6	0.138	32	40ª	36 ^µ	32		3	2	11/16	-1/16	0.141	0.110
8	0.164	32	36ª	40 ^µ	32		4	21/3	34	14	0.168	0.131
10	0.190	24	32		24	32	4	23%	7 <u>4</u>	4	0.194	0.152
12	0.216	24	28ª		24		4	$2\frac{3}{8}$	15/16	%	0.220	0.165
14	0.242		•••	24*			4	21/2	1	¥16	0.255	0.191

^aThese taps are standard with plug chamfer only. All others are standard with taper, plug or bottom-ing chamfer.

	Ta	lerances for Ge	meral Dimensions		
Élement	Range	Tolerance	Element	Rauge	Tolerance
Length Overall, A	0 to 14 incl	±1/32	Diameter of Shank, D	0 to 12 incl	-0.004
Leueth of Thread. B	0 to 12 incl	=%4	Evidences of public, in	14	-0.005
5	14	±1/16	Size of Square, E	0 to 14 incl	-0.004
Length of Square, C	0 to 14 incl	11/32	0120 02 04 march 12	010141861	0.004

884

All dimensions are given in inches. Styles 1 and 2 cut thread taps have optional style centers on thread and shank ends. For standard thread limits see Table 7. For eccentricity tolerances see Table 25.

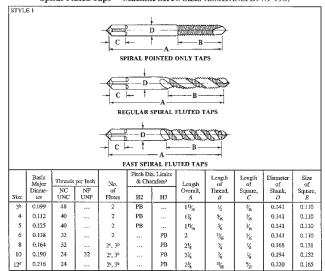
Table 12. ANSI Standard Nut Taps ASME/ANSI B94.9-1987

		C			-B		-	
Dia. of Tap	Threads per Inel NC,UN	n of	Length Overali, A	Length of Thread, B	Leng of Squ C		Diameter of Shank, D	Size of Square, E
14 5/16	20 18	4	5 5½	1% 11%	% %		0.185 0.240	0.139 0.180
% %	16 13	4	6 7	2 2½	11/16 76		0.294 0.400	0.220
			Tolerances f	or General Dime	nsions			
Elemen	t D	iameter Range	Tolerance	Elen	ncat.	Diamete	r Range	Tolerance
Overall Len	gth, A	¼ to ½	±1/16	Shank Di	ameter,D	41	01/2	-0.005
Thread Leng	gih, B	1/4 to 1/2	±1/16	Size of S	quare,E	¼ to ½		-0.004
Square Leng	rth, C	1/4 to 1/2	±½					

All dimensions are given in inches. These ground thread high-speed steel taps are standard in H3 limit only. All taps have an internal center in thread end. For standard limits see Table 4.

Chamfer J is made  $\frac{1}{2}$  ro  $\frac{3}{4}$  the thread length of B.

885


# Table 13. ANSI Standard Spiral-Pointed Taps—Machine Screw Sizes $\ensuremath{\textit{ASME/ANSI B94.9-1987}}$

				-	- c	₽ ₽ 	-D-		11111111 —————————————————————————————	malm	<b>}</b> −					
					-			-A			ł					
								TYLE 1								
		r i	hreads p					Taps with a. Limits a		hreads			<b></b>			1
	Basic Major	'	Inch		No. of			imfers†	111	Length		ngth of	Leng		Diame- ter of	Size of
Size	Diam- cter	NC UNC	NF UNF	NS UNS	Flute	ні	H2	H3	H7	Overal A	l   Th	read B	Squ C	аге	Shank D	
0	0.060		80	0110	2	PB	PB			1%	_	5 7 ₁₆	34		0.141	0.110
ĩ	0.073	64	72		2	P	P			11/16		716 36	34	6	0.141	0.110
2	0.086	56			2	PB	PB			13/4		46 K	1		0.141	0.110
2	0.086		64		2		Р			13/4		16	3/		0.141	0.110
3	0.099	48		1.14	2	141	PB			111%		14 12	1 %		0.141	0.110
3	0.099		56	1.4	2	P	P			113/16		52 1 <u>4</u>	36		0.141	0.110
4	0.112			36	2		P			1%		12 16	3		0.141	0.110
4	0.112	40			2	P	PB			1%		16 16	3		0.141	
4	0.112		48		2	P	PB			11%		чњ Чб	4		0.141	
5	0.125	40			2	P	PB			11/15		16 %	4		0.141	
5	0.125		44		2		P			1 1 1%		18 %	3/		0.141	
6	0.138	32			2	P	PB	PB	PB	2		78 1/16	3		0.141	
6	0.138		40		2	l	PB			2		715 V ₁₆	7   ¥		0.141	
8	0.164	32			2	 P	PB	PB	PB	2%			1   ½		0.168	
8	0.164	I	36	1	2	· ·	P		rb			ない			0.168	
10	0.104	24	1		2	 P	PB	 PB	 P	2%		4	1/2		0.108	
10	0.190		32	···	2	PB	PB PB	PB	P	2%		¥	1		0.194	
i			1	···					-	2%		3	1		{	
12	0.216	24	28		2			PB		2% 2%		346 346	8 8		0.220	1
			1		1E-1 6	igh-Speed and Carbon Steel Taps with Cut Thread						~JB	1	ų		1
				23		•	no Cardo	n Steel Ia	ps with C	.ut Inte	us	,				
		- F	Carbo	n Steel	ids per l	HS St				Le	agth		ngth	Di	ameter	Size
	Ba Ma		NC	NF	x	IC I	NF	No. of	Lengti Overal		of ead.		of mre,		of bank.	of
Size	Dian		UNC	UNF		NC	UNF	Flutes	Overal A		eau, 8		tare, C	5	D	Square, E
4	0.1	_		0.1	_	10		2	1%			3/	-	6	0.141	0.110
5	0.1	_						2	115%	1		7 3			1.141	0.110
6	0.1	f	32			12		2	2	1		2			141	0.110
8	0.1		32			12		2	21/4	1		2 2			0.168	0.131
10	0.1		24	32		4	32	2	2%	10		24 12			0.194	0.151
12	0.2		24			4	-14	2	2%		16	24		1	0.220	0.152
											16	4	2	1		
								r General i	Dimensio	ens I					be at	
						lerance		41					L		Toleran	
'n	lement		Size Range		Ground Chread	1	Cut Ihread	т	lement		Siz Ran			roun hrea		Cut Thread
				-		+	±½			- D	_	-	-		_	
	ll Lengt) d Length		0 to 12 0 to 12		±½ ±¾	—	± ³ / ₆₄	Shank	Diamete	r, D	0 to	14	-	0.001	2	-0.004
	u Lengu e Length	·	0 to 12		±1/2	+	±1%	Size	of Square	E	0 to	12	-	0.00	4	0.004

All dimensions are in inches. Chamfer designations are: P = plug and B = bottoming. Cut thread taps are standard with plug chamfer only. Style 1 ground thread taps have external centers on thread and shank ends (may be removed on thread end of bottoming taps). Style 1 cut thread taps have optional style centers on thread anak nends. Standard thread limits for ground threads are given in Table 6 and for cut threads in Table 7. For eccentricity tolerances see Table 25.

886

#### Table 14. ANSI Standard Spiral Pointed Only and Regular and Fast Spiral-Fluted Taps — Machine Screw Sizes ASME/ANSI B94.9-1987



*Bottom chamfer applies only to regular and fast spiral-fluted machine screw taps. ^b Applies only to fast spiral-fluted machine screw taps.
^c Does not apply to fast spiral-fluted machine screw taps.

D o o o b not appro	to regular optimi	material material of the	mapor,

	Tolerances for General Dimensions											
Element	Size Range	Тојегалсе	Element	Size Range	Tolerance							
Overall Length, A	3 to 12	$\pm V_{2}$	Shank Diameter,	3 to 12	-0.0015							
Thread Length, B	3 to 12	±¾	D Size of									
Square Length, C	3 to 12	±1/32	Square, E	3 to 12	-0.004							

All dimensions are given in inches. These standard taps are made of high-speed steel with ground threads. For standard thread limits see Table 6. For eccentricity tolerances see Table 25.

Spiral Pointed Only Taps: These taps are standard with plug chamfer only. They are provided with a spiral point only; the balance of the threaded section is left unfluted. These Style 1 taps have external centers on thread and shank ends.

Regular Spiral Fluted Taps: These taps have right-hand spiral flutes with a helix angle of from 25 to 35 degrees.

Fast Spiral Fluted Taps: These taps have right-hand spiral flutes with a helix angle of from 45 to 60 degrees.

Both regular and fast spiral-fluted Style 1 taps have external centers on thread and shank ends (may be removed on thread end of bottoming taps).

Chamfer designations: P = plug and B = bottoming.

887

# Table 15a. ANSI Standard Ground Thread Straight Fluted Taps— Fractional Sizes ASME/ANSI B94.9-1987

				 D 	- A -	]	B		<b>-</b>	C -	+	-A	B	
1				ST	YLE				\$1	YLE 3				
		Thre per 1					h Diarno and Cha		1			Dimensions		ļ
ł	Dia.	per	ncn	No. of		Laures	anu çna			Length	Length	Length	Dia.of	Sizeof
	of	NC	NF	Flute			ļ			Overail,	ofThread,	of Square,	Shank,	Square, E
	Тар	UNC	UNF	s	HI	H2	H3	H4	H5	A	В	С		0.191
1	1/4	20	<i></i>	4	TPB	TPB	TPB		PB	2 1/2	1	5/16	0.255	0.191
	4		28	4	₽B	PB	TBP	PB		2 1/2	1	5/16	0.255	0.191
	3/16	18		4	PB	PB	TPB		PB	$2^{2}Y_{12}$	1 1/8	×.	0.318	0.238
I.	×16		24	4	PB	P	TPB	PB		2 ² / <u>32</u>	1%	∛≰	0.314	0.286
	₩,	16		4	PB	PB	TPB		PB	2 ¹⁵ / ₁₆	114	7 ₁₆	0.381	0.286
	36		24	4	PB	РВ	TPB	PB	•••	2 ¹⁵ / ₁₆	11/4	⁷ / ₁₆	0.381	0.242
	$V_{16}$	14	20	4	***	'	TPB		PB	3½ <u>2</u>	11/16	1 <u>%</u>	0.325	0.242
1	14	13	-15	4	P		TPB		PB	3 %	1 21/32	7 ₁₆	0.367	0.275
	14		20	4	PB		TPB		2	3%	121/32	7/16	0.567	0.322
	%	12		4		•••	TPB		Р	31%	1 1 2/2	<u>4</u>	0.429	0.322
1	%₀		18	4		Р	TPB		P	31%	11%	14	0.429	0.360
	5∕8	11		4		P	TPB		PB	3 ¹ ¥ ₁₆	11%	%16	0.480	0.360
	5%		18	4		P	TPB	]	PB	313/16	11%	%	0.542	0.405
1	11/16 =			4			TPB		PB	41/2	1 ¹ / ₁₆	* %	0.590	0.442
	34	10		4		P	TPB	···	PB	41/4	2	1/16	0.590	0.442
	3/4	···	16	4	P	P	TPB	TPB	· -	41/4	274,	-16	0.697	0.523
1	74 b	9		4						411/16	2%	74 32	0.697	0.523
	76		14	4		Р	•	TPB TPB		411/16	21/2	13/16	0.800	0.600
	1 ^b	8	1	14	···			TPB		5%	2%	13/16	0.800	0.600
- {	1		12	4	···			TPB		5½ 5½	21/2	13/16	0.800	0,600
	1°	1 2		4				TPB TPB		5% 5%	2%	716	0.896	0.672
	1%	7	12		1			TPB		5%	2% 2%	1	1.021	0.766
-{	1½	6	124	4				TPB		61/16	3	11/16	1.108	0.831
	1%	6	12 ^d	4		1		TPB		6¾	3	11/4	1.233	0.925
	1½	0	1 124	1 *	1			1110		378	<u> </u>	1	1	· · · ·

^aThis size has 11 or 16 threads per inch NS-UNS. ^bThese sizes are also available with plug chamfer in H6 pitch diameter limits. ^cThis size has 14 threads per inch NS-UNS. ^dIn these sizes NF-UNF thread taps have six flutes.

Tolerances for Ge eral Dimeu Element Length Overall, A Length of Thread, B Length of Square, C Diameter Range Element Diameter Range Tolerance Tolerance Diameter Range ¹/₄ to 1 incl ¹/₈ to 1¹/₂ incl ¹/₄ to 1¹/₅ incl ¹/₄ to 1¹/₅ incl ¹/₄ to 1¹/₅ incl ¹/₄ to 1¹/₅ incl ±½ ±½ ¼ to ⅔ incl 11/16 to 11/2 incl Diameter of Shank, D -0.0015 -0.002 ±1/16 ±3/20 ±3/20 ±3/20 ±3/20 ±3/26 ¼ to ½ incl % to 1 incl 1¼ to 1½ incl -0.004 Size of Square, E -0.006 -0.008

f diameter of snams. Style 3 taps, larger than ³/₄ inch, have internal center in thread and shank ends. For standared thread limits see Table 4. For eccentricity tolerances see Table 25.

888

# Table 15b. ANSI Standard Cut Thread Straight Fluted Taps— Fractional Sizes ASME/ANSI 894.9-1987

$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
	Threads Per Inch Dimensions													
Dia.	Carbon Steel         HS Steel         Length         Length         Dia.         Size           Dia.              of         of         of													
of Tap	of NC NF NS NC NF of Overall, Thread, Square, Shank, Square, Tap UNC UNF UNS UNC UNF Fines A B C D E													
1/2	014C 0142 0143 014C 0141 11403 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
×2			32			4	2 1/	34	1/4	0.168	0.131			
3/16			24, 32			4	2%	76	1/4	0.194	0.152			
14	20	28		20	28	4	$2\frac{1}{2}$	1	₹%6	0.255	0.191			
\$16	18	24		18	24	4	$2^{23}_{12}$	J½	-∛8	0.318	0.238			
34	16	24		16	24	4	215/16	11/4	7/16	0.381	0.286			
7/6	14	20		14	20	4	33/32	17/16	1%	0.323	0.242			
4	13	20		13	20	4	33%	$1^{21}/_{22}$	7/16	0.367	0.275			
1 %	12	18		12		4	31%	121/20	12	0.429	0.322			
- %	11	18		11	18	4	313/16	113/15	%₀	0.480	0.360			
34	10	16	i	10	16	4	4½	2	11/15	0.590	0.442			
1 x	9	14		9	14	4	411/16	23/32	34	0.697	0.523			
1	8		14ª	8		4	51/8	21/2	1/16	0.800	0.600			
1%	7	12				4	51/16	2%	7	0.896	0.672			
11/4	7	126				4	53/4	2%	1	1.021	0.766			
1%	6ª	12 ^{ba}				4	61/16	3	11/16	1.108	0.831			
11%														
13%														
2	4½ =					6	7%	3%16	13%	1.644	1.233			
a \$1/2	andord in	n nhug ch	amferoi	, 										

^a Standard in plug chamfer only. ^bIn these sizes NF-UNF thread taps have six flutes.

		Tolerances for G	eneral Dimensions		
Elements	Range	Tolerance	Elements	Range	Tolerance
Leogth Overall, A	½6 to 1 1½ to 2	±½ ±½	Diameter	%s to ¾ ¼ το 1	-0.004 -0.005
Length of	¼ to ½	±1%4 ±1/16	of Shank, D	1% to 2	-0.007
Thread, B	%6 to 1½ 1% to 2	±½ ±½	Size of	Ч ₆ to ½ % ₆ to 1	0.004
Length of	16 to 1	±½	Square, E	% to 2	-0.008
Square, C	11% to 2	±1/16		.8 -5 -5	

 Square, C
 1½ to 2
 ½%

 All dimensions are given in inches.

 These taps are standard in carbon steel and high-speed steel.

 Except where indicated, these taps are standard with taper, plug, or bottoming chamfer.

 Cut thread taps, sizes ½ inch and smaller have optional style center on thread and shank ends; sizes

 larger than 3½ inch have internal centers in thread and shank ends.

 For standard thread limits see Table 3. For eccentricity tolerances see Table 25.

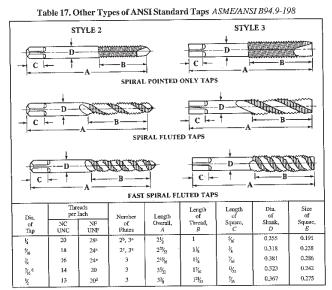
889

# Table 16. ANSI Standard Straight Fluted (Optional Number of Flutes) and Spiral Pointed Taps—Fractional Sizes ASME/ANSI B94.9-1987

			D-	ST	YLE 2				D-	STYLE 3			
				+		under se							
1							-		-+10+-1	, I P			
			+10+		<u> </u>	B +					<u> </u>		
				STRAD	GHŤ FL	UTED	APS (OF	TIONA	1. NUMBER	OF FEUTESI			
									D-3				
								INTED 1	TAPS				
	Threads nor- No. Pitch Diameter												
Dia.	Inc		of		Limits :	and Cha	unfers ^{ab}		Length	Length	Longth	Dia. of	Size of
of	NC I	NF	Flute		_				Overall,	of Thread,	of Square,	Shank,	Square,
Tap	UNC	UNF	s	HI	H2	H3	H4 1	HS	A	В	C	D	E
				Gro	and Th	read Hi	ch-Spea	sd-Steel	i Straight F	luted Taps			
1	20		2			PB			21/2	1	3/16	0.255	0.191
- 14	20 20		3	 Р	 P	PB		 р	21/2	î	5/16	0,255	0.191
14	20		2,3	-	-	PB		-	214	1	5/16	0.255	0.191
14 15/16		28						•••		1%	716	0.318	0.238
×16	18		2		***	PB			21/32		34 76 76	0.318	0.238
₹⁄ ₁₆	18		3		***	PB	***		2 ² / ₃₂	11/8	18	0.318	0.238
57.16 57.16		24	3			PB			2 ² / ₂₂	11/8		0.318	0.286
1 %	16		3	•••		PB		•••	2%	11/4	16		0.286
14 746		24	3	•••		PB			215/16	11/4	746	0.381	
1/16	14		3			Р			33/32	17/16	13/12	0.323	0.242
7/16		20	3			Р			35%2	17/16	3/2	0.323	0.242
16	13		3			PB			3%	121/32	7/16	0.367	0.275
14	1 1	20	3			P			31%	121/2	7/6	0.367	0.275
-2		Gro	and Thu	cul Hig	h-Speed	-Steel	and Cut	Thread	High-Spee	d-Steel Spira	d Pointed Tay	08	
	_20		2	P		PB		1 12	21/2		- × ₁₆	0.255	0.191
14 14=	20		3		<u>.</u>	Р		Р	215	3	₹,	0.255	0.191
24		28	2	P	P	PB	P	Ľ.	21/2	1	×	0.255	0.191
14 14*	1 ··· `	28	3		P		P		21/2	1 1	5/16	0.255	D.191
24	18		2	 q	P	PB		P	22%	1%		0.318	0.238
3/16	18		3	1 ⁻	1.	P	1	P	22%	1%	32	0.318	0.238
-5/16 T	1	24	2	 P	 P	PB	 P	-	23/32	1%	18 3/	0.318	0.238
%				1 -	P	I PB	P		$2 - \frac{32}{2}$	1%	-18 3/	0.318	0.238
·16 "	1	24	3	1		P	1 °	 P	2 ⁻² 32 2 ¹ %		****	0.381	0.286
36	16		3	P	P			1 -		14	216 V16	0.381	0,286
₩		24	3	P	P	P	P	1	215/16	11/4	716 112	0.323	0.242
7/16	14	20	3		P ^c	P		P	35/20	17/16	13/32	0.323	0.242
12	13	20 ^a	3	P	P	P		P	3¾	121/20	746	0.367	0.275
54 54	11	18	3		1	P		Pd	313/18	113/16	% 11/16	0.480	0.560
3 <u>4</u> *	10	16	3			P		Pr	41/4	2	1/16	1 0.590	0.442

Applies only to ground thread high-speed-steel taps.
 ^bCut thread high-speed-steel taps are standard with plug chamfer only.
 ^cApplies only to ⁷/₄₀-14 tap.

d Applies only to %-11 tap.


^aApplies ony to  $\frac{3}{4}$ -10 tap. For eccentricity tolerances see Table 25.

	Tolerances for treneral Dimensions												
	Diameter	Toleran	ce		Diameter	Tolerance							
Element	Range	Ground Thread	Cut Thread	Element	Range	Ground Thread	CutThread						
Overali- Length, A	¼ to ¾	±1/32	±½	ShankDiameter,D	¼ to % %	-0.0015 0.0020	-0.005						
Thread- Length, B	¼ to ½ % to ½	±¥16 ±1/22	±1⁄16	Size of Square, E Square Length, C	¼ to ½ ⅔ to ¾ ¼ to ¾	-0.0040 -0.0060 ±½	-0.004						

All dimensions are given in inches. P = plug and B = bottoming. Ground thread taps — Style 2,  $\frac{3}{4}$  inch and smaller, have external center on thread end (may be removed on bottoming taps) and external partial cone center on shank end, with length of cone approximately  $\frac{1}{4}$  of shank diameter. Ground thread taps—Style 3, larger than  $\frac{3}{4}$  inch, have internal center in thread and shank ends. Cut thread-taps,  $\frac{3}{4}$  inch and smaller have optional style center on thread and shank ends; sizes larger than  $\frac{3}{4}$  inch have internal centers in thread and shank ends. For standard thread limits see Tables 3 and 4.

## 890

## TAPS AND THREADING DIES



"Does not apply to spiral pointed only taps.

^b Does not apply to spiral fluted taps or to spiral fluted taps with 28 threads per inch.
 ^c Applies only to spiral pointed only taps.
 ^d Applies only to fast spiral fluted taps.

		Tolerances for G	eneral Dimensions		
Element	Diameter Range	Tolerance	Element	Diameter Range	Tolerance
Overail Length, A	1/4 to 1/2	πt.V ₃₂	Shank Diameter,	1/4 to 1/2	-0.0015
Thread Length, B	1/4 to 1/2	±1/16	D Size of	1	
Square Length, C	1/4 to 1/2	±1/32	Square, E	1/4 to 1/2	-0.004

 Leagth, C
 4 w 2
 -28
 E

 All dimensions are given in inches. These standard taps are made of high-speed steel with ground threads. For standard thread limits see Table 4.
 Spiral Fointed Only Taps: These taps are standard with plulg chamfer only in H3 limit. They are provided with spiral point only. The balance of the threaded section is left unfluted.

 Spiral Fluted Taps: These taps are standard with plug or bottoming chamfer in H3 limit and have right-hand spiral flutes with a helix angle of from 25 to 35 degrees.

 Fast Spiral Fluted Taps: These taps are standard with plug or bottoming chamfer in H3 limit and have right-hand spiral flutes with a helix angle of from 25 to 35 degrees.

 Fast Spiral Fluted Taps: These taps are standard with plug or bottoming chamfer in H3 limit and have right-hand spiral flutes with a helix angle of from 45 to 60 degrees.

 Style 2 taps, ½ inch and smaller, have external center on thread end (may be removed on bottoming)

Style 2 taps, % inch and smaller, have external center on thread end (may be removed on bottoming taps) and external partial cone center on shank end with cone length approximately 1/4 shank diameter.

Style 3 taps larger than 3% inch have internal center in thread and shank ends.

For standard thread limits see Table 4. For eccentricity tolerances see Table 25.

891

## Table 18. ANSI Standard Pulley Taps ASME/ANSI B94.9-1987

	$C \xrightarrow{\models -T^{*} \rightarrow \downarrow} D \xrightarrow{\downarrow} A \xrightarrow{\models -K^{**}} B \xrightarrow{\models}$												
Dia. of Tap	Threads per Inch NC UNC	Number of Flutes	Length Overall, A	Length of Thread, <i>B</i>	Length of Square, <i>C</i>	Dia. of Shank, D	Length of Close Toler- ance, T ^a	Size of Square, E	Length of Neck, K ^b				
4∕4	20	4	6,8	I	⁵ ∕ ₁₆	0.255	1½	0.191	3%				
5∕16	18	4	6,8	$1\frac{1}{8}$	3∕8	0.318	1%	0.238	⅔				
⅔	16	4	6,8,10	11/4	7/16	0.381	15%	0.286	3∕8				
7/16	14	4	6	17/16	¥2	0,444	111/16	0.333	$V_{16}$				
₩2	13	4	6,8,10,12	121/32	% ₁₆	0.507	11/16	0.380	¥2				
5∕8	11	4	6,8,10	113/16	11/16	0.633	2	0.475	5%				
⅔	10	4	10	2	∛₄	0.759	21/4	0.569	₹4				

 $^{\rm a}\,T$  is minimum length of shank which is held to eccentricity tolerances.  $^{\rm b}K$  neck optional with manufacturer.

		Tolerances for Ge	neral Dimensions			
Element	Diameter Range	Tolerance	Element	Diameter Range	Tolerance	
Overall Length, A	¥ 10¥	±1/16	Shank Diameter,	¼ to ¾	-0.005	
Thread Length, B	¹ ⁄ ₄ to ³ ⁄ ₄	$\pm V_{16}$	D Size of	I/ to I/	0.001	
Square Length, C	¼ to ¾	±1/32	Square, E	½ to ½ % to ¾	-0.004 -0.006	

All dimensions are given in inches. These ground thread high-speed steel taps are standard with plug chamfer in H3 limit only. All taps have an internal center in thread end. For standard thread lim-its see Table 4. For eccentricity tolerances see Table 25.

 Table 19. ANSI Standard Ground Thread Spark Plug Taps—Metric Sizes

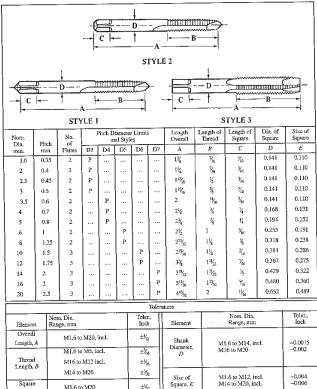
 ASME/ANSI B94.9-1987

Tap Diameter, mm	Pitch, mm	Number of Flutes	Overall Length, In. A	Thread Length, In. B	Square Length, In. C	Shank Dia., In. D	Square Size, In. E
14	1.25	4	31%2	121/32	<u>k</u>	0.429	0.322
18	1.50	4	4 ¹ / ₃₂	11%	5∕8	0.542	0.406

These are high-speed steel Style 3 taps and have internal center in thread and shank ends. They are standard with plug chamfer only, right-hand threads with 60-degree form of thread. Tolerances: Overall length,  $\pm \frac{1}{20}$  inch; thread length,  $\pm \frac{1}{20}$  inch; square length,  $\pm \frac{1}{20}$  inch; shank diameter, 14 mm, -0.0015 inch, 18 mm, -0.0020 inch; and size of square, -0.0040 inch.

892

## Table 20a. ANSI Standard Ground Thread Straight Fluted Taps — M Profile — Metric Sizes ASME/ANSI B94.9-1987


-	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
	STYLE 1 STYLE 3													
Nom. Dia	Dia. Pitch of and Chamfers Overall Thread Square Square Square													
mm.	mm	Flutes	D3	D4	D5	D6	D7	D8	D9	A	B	С	D	Ľ
1.6	0.35	2	PB							1%	⁵ / ₁₆	∛16	0.141	0.110
2	0.4	3	PB							11/4	7/16	3/16	0.141	0.110
2,5	0.45	3	PB		•••					1%	14	3/16	0.141	0.110
3	0.5	3	PB							11%	34	¥16	0.141	0.110
3.5	0.6	Э		PB						2	11/16	3∕16	0.141	0.110
4	0.7	4		PB						21%	-34	4	0.168	0.131
4.5	0.75	4		PB						2%	1%	14	0.194	0.152
5	0.8	4		PB						2%	74	14	0.194	0.152
6	1	4			PB					213	1	*4 */16	0.255	0.191
7	1	4			PB					22%	1%	*	0.318	0.238
8	1.25	4			PB					22%	1%	X	0.318	0.238
1 10	1.5	4				PB				2532	1%	78 746	0.381	0.286
10	1.75	4	•••			PB		1		3%	124 121/2	716 716	0.367	0.280
14		4	•••				PB		1				0.429	0.322
	2	4				•	PB	*		31%2	121/32	1/2	0.429	0.322
16	2	4					PB	•••		313/16	1 ¹¹ / ₁₆	%i6	0.480	0.300
20		1 1	•••				1			41%		11/16	0.652	0.489
24	3	4	••••					PB		43%	21/32	*4	1.021	0.570
30	3.5	4					***	•••	PB	57/ ₁₆	2%6	1		
36	4	4		•••				•••	PB	6½	3	1%	1.233	0.925
								Tolen	inces					
	1		Noni.				Tole:			i		m. Dia.	T	Toler.,
Elem	Element Range, mm						Incl		Elei	ment	Rai	ige, mm		Inch
Over	Overall M1.6 to M24, incl.													
Lengt	h, A		0 and 2				±1/10			ank noter,		MI4, incl.	.	-0.0015
	MI.6 to M5, incl.						±%			5	M16 to	M36		-0.002
	Thread M6 to M12 incl.						±¼	5						
M14 to M36					±½				MI.6 u	> M12, incl.	. 1	-0.004		
Square M1.6 to M24, iacl.							±ķ	_	Size of Square, E		f Midta M24 incl		-0.006	
Lengt	h, C	M3	0 and 1	436			±½	- 1	i nda		M30 ar	nd M36		-0.008

Length, C  $\frac{1}{1000}$  M30 and M36  $\frac{1000}{1000}$  M30 and M36 -0.008All dimensions are in inches except where otherwise stated. Chamfer Designation: P—Plug, B—Bottoming. These taps are high-speed steel. Style 1 taps, sizes M1.6 through M5, have external center on thread and shank ends (may be removed on thread end of bottoming taps). Style 2 taps, sizes M6, M7, M8, and M10, have external center on thread end (may be removed on bottoming taps) and external partial cone center on shank end with length of cone approximately  $\frac{1}{2}$ of diameter of shank.

Style 3 taps, sizes larger than M10 have external center on thread and shank ends. For standard thread limits see Tables 8a and 8b. For eccentricity tolerances of tap elements see Table 25.

893

#### Table 20b. ANSI Standard Spiral Pointed Ground Thread Taps ----M Profile — Metric Sizes ASME/ANSI B94.9-1987



All dimensions are in inches except where otherwise stated.

Chamfer Designation: P --- Plug. These taps are high-speed steel.

Style 1 taps, sizes M1.6 through M5, have external center on thread and shank ends.

±½

Style 2 taps, sizes M6, M8 and M10, have external center on thread end and external partial cone center on shank end with length of cone approximately 1/4 of diameter of shank.

Style 3 taps, sizes larger than M10 have external center on thread and shank ends.

For standards thread limits see Table 8a and 8b.

M1.6 to M20

Square

Length, C

For eccentricity tolerances of tap elements see Table 25.

## 894

## TAPS AND THREADING DIES

•											
	TAPER PIPE TAP STRAIGHT PIPE TAP										
	Threads	per Inch	Number	of Flutes			Dimensions				
Nominal Size	Carbon Steel	High- Speed Steel	Regular	Interrupted	Length Overall, A	Length of Thread, B	Length of Square, C	Diameter of Shank, D	Size of Square, <i>E</i>		
				Taper P	pe Taps						
1/16*		27	4		21/8	11/16	*	0.3125	0.234		
1/8	27	27	4	5	21/8	34	** ** 716	0.3125	0.234		
1/4	27	27	4	5	$2\frac{1}{8}$	% %	*	0.4375	0.328		
V,	18	18	4	5	21/16	11/16	7/16	0.5625	0,421		
1/6	18	18	4	5	2%	1%6	¥2 %	0.7000	0.531		
14	14	14	4	5	31/2	1%	%	0.6875	0.515		
14 14	14	14	5	5	31/4	1%	11/16	0.9063	0.679		
1	11%	11%	5	5	31/4	134	13/16	1.1250	0.843		
11/4	บน้	111/2	5	5	4	134	15/16	1.3125	0.984		
1%	1115	нķ	7	750	41/4	13/4	1	1.5000	1.125		
2	111/2	าเรื	7	700	41/2	1%	15%	1.8750	1.406		
2½°	8		8		51/2	2%	1½	2.2500	1.687		
3°	8		8		6	2%	13%	2.6250	1.968		
				Straight	Pipe Taps			A.,			
<u> </u>		27	4		24	1/4	*8	0.3125	0.234		
4		27	4		21/3	1/4	34	0.4375	0.328		
1/4		18	4		27/16	11/16	3/16	0.5625	0.421		
3%		18	4		2%	11/16	1/2 1/6	0.7000	0.531		
1 14	·	14	4		31/4	13/8	16	0.6875	0.515		
3/4		14	5		31/4	1%	ily ₁₆	0.9063	0.679		
1		11½	5		33/4	134	17/16	1.1250	0.843		

Table 21. ANSI Standard Taper and Straight Pipe Taps ASME/ANSI B94.9-1987

^aGround thread taps only. ^bStandard in NPT form of thread only. ^cCut thread taps only.

Tolerances for General Dimensions									
	Diameter Tolerance				Diameter	Tolerance			
Element			Ground Thread	Element	Range	Cut Thread	Ground Thread		
Overall	1/15 to 3/4	±1/22	±1/32		1/16 to/8		-0.0015		
Length, A	1 to 3	±1/16	± 1/6	Shank	½ to ½	-0.007			
	У ₁₆ ко У,	=1/16	±1/16	Diameter,	½ to 1		-0.002		
Thread Length, B	1 to 11/4	=3/22	±1/2	D	¾ to 3	-0.009			
Congui, D	1½ to 3	±½	±1%		11/4 to 2		0.003		
Scruare	1/16 to 3/4	±1/32	±1/32	Size of	1/16 to 1/8	-0.004	-0.004		
Length, C	1 to 3	±1/16	±1/16	Square,	1/4 to 1/4	-0.006	0.006		
	1.05	- 76	/16	E	1 to 3	-0.008	-0.008		

All dimensions are given in inches. These taps have an internal center in the thread end. Taper Pipe Threads: The  $\frac{1}{2}_{4}$  inch pipe tap is furnished with large size shank unless the small shank is specified. These taps have 2 to  $\frac{3}{2}_{4}$  threads chamfer. The first few threads on interrupted thread pipe taps are left full. The following styles and sizes are standard:  $\frac{1}{2}_{6}$  to 2 inches regular ground thread, NPT, NPTF and ANPT:  $\frac{1}{2}_{6}$  to 2 inches high-speed steel, regular cut thread, NPT,  $\frac{1}{2}_{6}$  to 1  $\frac{1}{2}_{6}$  inches regular cut thread, NPT,  $\frac{1}{2}_{6}$  to 2 inches high-speed steel, regular cut thread, NPT,  $\frac{1}{2}_{6}$  to 1  $\frac{1}{2}_{6}$  inches speed steel interrupted cut thread, NPT. For standard thread limits see Tables 9a and 9b. Straight Pipe Threads. The  $\frac{1}{2}_{-1}$  inch pipe tap is furnished with large size shank unless the small size is specified. These taps are standard with plug chamfer only. The following styles and sizes are standard: NPSC and NPSM;  $\frac{1}{2}_{6}$  to 1 inch, NPSC are tables 10a, 10b, and 10c. For eccentricity toler ances see Table 25.

895

T	Threads	per Inch	Recommended Tap	For Class of Thread		r Limits For Clas			
ł					Min All	Max	Max		
I	NC	NF	Class	Class	Classes	Class	Class		
Size	UNC	UNF	2Bª	3B	(Basic)	2B	3B		
Machine Screw Numbered Size Taps									
0		80	G H2	G H1	0.0519	0.0542	0.0536		
i	64		GH2	G H1	0.0629	0.0655	0.0648		
1		72	G H2	GHI	0.0640	0.0665	0.0659		
2	56		G H2	G HI	0.0744	0.0772	0.0765		
2		64	G H2	G H1	0.0759	0.0786 0.0885	0.0779 0.0877		
3	48		G H2	GHI	0.0855	0.0902	0.0895		
3		56	G H2	G HI G H2	0.0874 0.0958	0.0991	0.0982		
4	40		G H2	GH1 GH1	0.0985	0.1016	0.1008		
4)		48	G H2 G H2	GH2	0.1088	0.1121	0.1113		
5	40	44	GH2	GHI	0.1102	0.1134	0.1126		
5 6	32		GH3	G H2	0.1177	0.1214	0.1204		
6		40	G H2	G H2	0.1218	0.1252	0.1243		
8	32	40	G H3	GH2	0.1437	0.1475	0.1465		
8		36	GH2	G H2	0.1460	0.1496	0.1487		
10	24		G H3	G H3	0.1629	0.1672	0.1661		
10		32	G H3	G H2	0.1697	0.1736	0.1726		
12	24		G H3	G B3	0.1889	0.1933	0.1922		
12		28	G H3	GH3	0.1928	0.1970	0.1959		
				ctional Size Taps					
14	20		G H5	G H3	0.2175	0.2224	0.2211		
4		28	· G H4	j GHB	0.2268	0.2311	0.2300		
-4 -5/16	18	1	G H5	G H3	0.2764	0,2817	0.2803		
700 F16		24	G H4	G H3	0.2854	0.2902	0.2890		
16 *	16		G H5	G H3	0.3344	0.3401	0.3387		
	1	24	G H4	GH3	0.3479	0.3528	0.3516		
*			GHS	G H3	0.3911	0.3972	0.3957		
36	1 14			G H3	0.4050	0.4104	0.409		
7 ₁₅		20	G H5		0.4500	0.4565	0.4548		
12	13	1	G H5	G H3		0.4731	0.4717		
4		20	G H5	G H3	0.4675				
%	12		G H5	G H3	0.5084	0.5152	0.5135		
%		18	G H5	G H3	0.5264	0.5323	0.5308		
-16 -16	11	1	G H5	G H3	0.5660	0.5732	0.5714		
×.		18	GHS	G H3	0.5889	0.5949	0.5934		
14 34	10		G H5	G H5	0.6850	0.6927	0.6901		
74 34		16	GHS	GH3	0.7094	0.7159	0.7143		
			G H6 ^b	G H4	0.8028	0.8110	0.808		
K	1			G H4	0.8286	0.8356	0.833		
尨		14	G H6 ⁵		0.9188	0.9276	0.925		
1	8		G H6 ^b	G H4 G H4	0.9188	0.9535	0.923		
I.		12	G H6 ^b		0.9439	0.9609	0.959		
1		4NS	G H6 ^b	GH4		1.0416	1.039		
$1\frac{1}{8}$	7		G H8 ^b	G H4	1.0322	1.0416	1.039		
$1\frac{1}{8}$		12	G H6 ^b	G H4	1.0709	1.1668	1.164		
11/4	7		G H8 ^b	G H4	1.1572		1.104		
1½		12	G H6 ⁵	G H4	1.1959	1,2039			
	6		G H8 ^b	G H4	1.2667	1.2771	1.274		
1%				G H4	1.3209	1.3291	1.327		
1% 1%	1	12	G H6 ^b	0.04					
1% 1% 1%	6	12	G H6 ^b G H8 ^b	G H4 G H4	1.3917	1.4022	1.399 1.452		

## 

^aCut thread taps in all fractional sizes and in numbered sizes 3 to 12 NC and NF may be used under normal conditions and in average materials to produce tapped holes in this classification. ^bStandard G H4 taps are also suitable for this class of thread.

-standard O rive taps are also suitable for this class of thread.
All dimensions are given in inches.
The above recommended taps normally produce the class of thread indicated in average materials when used with reasonable care. However, if the tap specified does not give a satisfactory gage fit in the work, a choice of some other limit tap will be necessary.

Standard System of Tap Marking.—Ground thread taps, inch screw threads, are marked with the nominal size, number of threads per inch, the proper symbol to identify the thread form, "HS" for high-speed steel, "G" for ground thread, and designators for tap pitch diameter and special features, such as left-hand and multi-start threads.

Cut thread taps, inch screw threads, are marked with the nominal size, number of threads per inch, and the proper symbol to identify the thread form. High-speed steel taps are marked "HS," but carbon steel taps need not be marked.

Ground thread taps made with metric screw threads, M profile, are marked with "M," followed by the nominal size and pitch in millimeters, separated by "x." Marking also includes "HS" for high-speed steel, "G" for ground thread, designators for tap pitch diameter and special features, such as left-hand and multi-start threads.

Thread symbol designators are listed in the accompanying table. Tap pitch diameter designators, systems of limits, special features, and examples for ground threads are given in the following section.

Standard System Tap Thread Limits and Identification for Unified Inch Screw Threads, Ground Thread.—H or LLimits: For Unified inch screw threads, when the maximum tap pitch diameter is over basic pitch diameter by an even multiple of 0.0005 in. or the minimum tap pitch diameter limit is under basic pitch diameter by an even multiple of 0.0005 in., the taps are marked "H" or "L," respectively, followed by a limit number, determined as follows:

H limit number =Amount maximum tap PD limit is over basic PD divided by 0.0005 L limit number =Amount minimum tap PD limit is under basic PD divided by 0.0005

#### **Table 23. Thread Series Designations**

	Table 25. Thread Series Designations							
Standard	Product							
Tap	Thread							
Marking	Designation	Third Series						
М	М	Metric Screw Threads-M Profile, with basic ISO 68 profile						
M	MJ	Metric Screw Threads-M Profile, with rounded root of radius 0.15011P to 0.18042P						
		Class 5 interference-fit thread						
NC	NC ₅ IF	Entire ferrous material range						
NC	NC _s INF	Entire nonferrous material range						
NPS	NPSC	American Standard straight pipe threads in pipe couplings						
NPSF	NPSF	Dry seal American Standard fuel internal straight pipe threads						
NPSH	NPSH	American Standard straight hose coupling threads for joining to American Standard taper pipe threads						
NPS1	NPSI	Dryseal American Standard intermediate internal straight pipe threads						
NPSL	NPSL	American Standard straight pipe threads for loose-fitting mechanical joints with locknuts						
NPS	NPSM	American Standard straight pipe threads for free-fitting mechanical joints for fixtures						
NPT	NPT	American Standard taper pipe threads for general use						
NPTF	NPTF	Dryseal American Standard taper pipe threads						
NPTR	NPTR NPTR American Standard taper pipe threads for railing joints							
		Unified Inch Screw Thread						
N	UN	Constant-pitch series						
NC	UNC	Coarse pitch series						
NF	UNF	Fine pitch series						
NEF	UNEF	Extra-fine pitch series						
N	UNJ	Constant-pitch series, with rounded root of radius 0.15011P to 0.18042P (ext. thd. only)						
NC	UNJC	Coarse pitch series, with rounded root of radius 0.15011P to 0.18042 P (ext. thd. only)						
NF	UNJF	Fine pitch series, with rounded root of radius 0.15011P to 0.18042P (ext. thd. only)						
NEF	UNJEF	Extra-fine pitch series, with rounded root of radius 0.15011P to 0.18042P (ext. thd. only)						
N	UNR	Constant-pitch series, with rounded root of radius not less than 0.108P (ext. thd. only)						
NC	UNRC	Coarse thread series, with rounded root of radius not less than 0.108P (ext. thd. only)						
NF	UNRF	Fine pitch series, with rounded root of radius not less than 0.108P (ext. tbd. only)						
NEF	UNREF	Extra-fine pitch series, with rounded root of radius not less than 0.108P (ext. thd. only)						
NS	NS UNS Special diameter pitch, or length of engagement							

The PD limits for various H limit numbers are given in Table 4. The PD limits for L limit numbers are determined as follows. The minimum tap PD equals the basic PD minus the number of half-thousandths (0.0005 in.) represented by the limit number. The maximum tap PD equals the minimum PD plus the PD tolerance given in Table 24.

Table 24. PD Tolerance for Unified Inch Screw Threads— Ground Thread ASME/ANSI B94.9-1987

Threads per Inch	To L in., incl.	Over 1 in. to 1½ in., incl.	Over 11/2 to 21/2 in., incl.	Over 2 ½ in.
80-28	0.0005	0.0010	0.0010	0.0015
24-18	0.0005	0.0010	0.0015	0.0015
16-18	0.0005	0.0010	0.0015	0.0020
7-6	0.0010	0.0010	0.0020	0.0025
5%-4	0.0010	0.0015	0.0020	0.0025

Examples: ¾-16 NC HS H1

Max. tap PD = 0.3349Min. tap PD = 0.3344

3%-16 NC HS GL2

Min. tap PD = Basic PD -0.0010 in. = 0.3344 - 0.0010 = 0.3334

Max. tap PD = Min. Tap PD + 0.0005 = 0.3334 + 0.0005 = 0.3339

Oversize or Undersize: When the maximum tap PD over basic PD or the minimum tap PD under basic PD is not an even multiple of 0.0005, the tap PD is usually designated as an amount oversize or undersize. The amount oversize is added to the basic PD to establish the minimum tap PD. The amount undersize is subtracted from the basic PD to establish the minimum tap PD. The PD tolerance in Table 24 is added to the minimum tap PD to establish the lish the maximum tap PD for both.

*Example* :  $?_{16}$ -14 NC plus 0.0017 HS G Min, tap PD = Basic PD + 0.0017 in, Max. tap PD = Min. tap PD + 0.0005 in.

Whenever possible for oversize or other special tap PD requirements, the maximum and minimum tap PD requirements should be specified.

Special Tap Pitch Diameter: Taps not made to H or L limit numbers, to Table 25, or to The formula for oversize or undersize taps, may be marked with the letter "S" enclosed by a circle or by some other special identifier. *Example*:  $\frac{1}{2}$ -16 NC HS G.

Table 25. ANSI Standard Eccentricity Tolerances of Tap Elements When Tested on
Dead Centers ASME/ANSI B94.9-1987

	Range Sizes are Inclusive			Cut Thread		Ground Thread	
Element	Hand, Mch.	Metric	D	Eccentric-	tiv ^a	Eccentric-	
Element	Screw	MCUTC	Pipe	ity	uγ°	ity	tiva
Square	#0-1/2 "	M1.6M12	16-16"	0.0030	0.0060	0.0030	0.0060
(at central point)	1½-4″	M14M100	14-4"	0.0040	0.0080	0.0040	0.0080
Shank	#05 ₁₆ "	MI.6M8	V16 "	0.0030	0.0060	0.0005	0.0010
Snank	11/32-4"	M10M100	1/4-4"	0.0040	0.0080	0.0008	0.0016
Major Diameter	#0%i6 "	M1.6-M8	5/16"	0.0025	0.0050	0.0005	0.0010
Major Diameter	¹ / ₃₂ -4"	M10-M100	¥_4″	0.0040	0.0080	0.0008	0.0016
Pitch Diameter	#0=5/16 "	M1.6-M8	1/16"	0.0025	0.0050	0.0005	0.0010
(at first full thread)	11/ ₃₂ -4"	M10-M100	1/6-4"	0.0040	0.0080	0.0008	0.0016
67. C b	#0-½"	M1.6-M12	1/16-1/8"	0.0020	0.0040	0.0010	0.0020
Chamfer ^b	1%4″	M14-M100	1/4-4"	0.0030	0.0060	0.0015	0.0030

"tiv = total indicator variation. Figures are given for both eccentricity and total indicator variation to avoid misunderstanding.

^bChamfer should preferably be inspected by light projection to avoid errors due to indicator contact points dropping into the thread groove.

All dimensions are given in inches.

Left-Hand Taps: Taps with left-hand threads are marked "LEFT HAND" or "LH." Example: 3/8-16 NC LH HS G H3.

Multiple-Start Threads: Taps with multiple-start threads are marked with the lead desig-nated as a fraction, also "Double," "Triple," etc. The Unified Screw Thread form symbol is always designated as "NS" for multiple-start threads. *Example*: %-16 NS Double ½ Lead HS GH5.

Standard System of Ground Thread Tap Limits and Identification for Metric Screw Threads — M Profile.—All calculations for metric taps use millimeter values. When U.S. customary values are needed, they are translated from the three-place millimeter tap diameters only after the calculations are completed.

Table 26. PD Tolerance for Metric Screw Threads-M Profile—Ground Threads ASME/ANSI B94.9-1987

Millonic Ground Antenas Institute of												
Pitch, P (mm)	M1.6 to M6.3, incl.	Over M6.3 to M25, incl.	Over M25 to M90, incl.	Over M90								
0.3	0.015	0.015	0.020	0.020								
0.35	0.015	0.015	0.020	0.020								
0.4	0.015	0,015	0.020	0.025								
0.45	0.015	0.020	0.020	0.025								
0.5	0.015	0.020	0.025	0.025								
0.6	0.020	0.020	0.025	0.025								
0.7	0.020	0.020	0.025	0.025								
0.75	0.020	0.025	0.025	0.031								
0.8	0.020	0.025	0.025	0.031								
0.9	0.020	0.025	0.025	0.031								
1	0.025	0.025	0.031	0.031								
1.25	0.025	0.031	0.031	0.041								
1.5	0.025	0.031	0,031	0.041								
1.75		0.031	0.041	0.041								
2		0.041	0.041	0.041								
2.5		0.041	0.041	0.052								
3		0.041	0.052	0.052								
3.5		0.041	0.052	0.052								
4	•••	0.052	0.052	0.064								
4.5		0.052	0.052	0.064								
5			U.064	0.064								
5.5			0.064	0.064								
6			0.064	0.064								

D or DU Limits: When the maximum tap pitch diameter is over basic pitch diameter by an even multiple of 0.013 mm (0.000512 in reference), or the minimum tap pitch diameter limit is under basic pitch diameter by an even multiple of 0.013 mm, the taps are marked with the letters "D" or "DU," respectively, followed by a limit number. The limit number is determined as follows:

D limit number = Amount maximum tap PD limit is over basic PD divided by 0.013

DU limit number = Amount minimum tap PD limit is under basic PD divided by 0.013 The PD limits for various D limit numbers are given in Table 8b. The PD limits for DU limit numbers are determined as follows. The minimum tap PD equals the basic PD minus the number of millimeters represented by the limit number (multiples of 0.013 mm). The maximum tap PD equals the minimum tap PD plus the PD tolerance given in Table 26. E

899

Table 27. Dimensions of Acme Threads Taps in Sets of Three Taps

	A = C $iST TAP IN SET   - D -   - E = I$ ROOT DIA0.010" $E = I + D -   - E = I$ ROOT DIA0.010" $F = I + G = I$ ROOT DIA0.010"												
Nominal Dia.	А	В	с	D	E	F	G	Н	,	ĸ			
<u>14</u>	4¼	1%	2%		1%	%	134	7∕8	1½	0.520			
¥16	4%	21%	2¾	%6	$2Y_{16}$	34	2	1	1¾	0.582			
%	5½	$2\frac{3}{8}$	31%	%	21/2	16	21/4	1%	2	0.645			
11/ ₂₆	б	2½	3½	3 ¹³ %6	2 ¹ ‰	13/16	2%	1¼	21/4	0.707			
4	6½	$2^{11}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	3 ¹³ /16	17/16	31/2	1	2 ¹³ %	1%	$2\overline{\gamma}_{16}$	0.770			
ц _{Ин}	6%	2¹∛ ₁₅	4½	∛₄	3Ý ₁₆	11/16	3	1%	2%	0.832			
×	7¼	3	4¼	34	31/2	11%	3%	1½	2¾	0.895			
¹⁵ У16	7% ₁₆	31/8	$4\%_{16}$	13/16	3%	1.Ý ₁₆	31/4	1%	21%	0.957			
1	7%	3¼	4%	17 ₁₆	313/16	11/4	3帳	1%	3	1.020			
11%	8½	3%16	4 ¹⁵ / ₁₆	4	$4\frac{1}{16}$	$1\%_{16}$	3%	1¾	3∛ ₁₆	1.145			
11/4	9	3¾	51/4	15/16	4¾ ₁₆	1¾	3%	17/8	3¾	1.270			
1%	9½	4	5½	1	4½	17/16	4¼	2	3½	1.395			
1½	10	4¼	534	1	474	1½	$4V_{4}$	21%	3%	1.520			
1%	10½	4½	6	1	5	ıłź	4½	2¼	31%	1.645			
1¾	11	4¾	6¼	11/16	$5\%_{16}$	1%	4 ¹¹ / ₁₆	2¼	4	1.770			
1%	11¾	4%	6½	$1\frac{1}{16}$	5%	1%	4 ¹⁵ /16	21/4	41⁄4	1.895			
2	11¾	5	6¾	1½	5%	1%	5¼	2¾	4¾	2.020			
21/4	12½	51/4	71/4	11%	6¼	13/16	51/2	2½	4¾	2.270			
2½	131/4	5½	73/4	13/4	6¾6	1%	51%	23%	5½	2.520			
2∛4	14	5¾	84	11/4	7	2	6¼	2¾	5½	2.770			
3	15	6¼	8¾	11/4	7½	2	6¾	3	5¾	3.020			

900

Metric oversize or undersize taps, taps with special pitch diameters, and left-hand taps follow the marking system given for inch taps. *Examples*:

M12×1.75+0.044 HS G

 $M10 \times 1.5$  HS G

M10×1.5LHHSGD6

Multiple-Start Threads: Metric taps with multiple-start threads are marked with the lead designated in millimeters preceded by the letter "L," the pitch in millimeters preceded by the letter "P," and the words "(2 starts)," "(3 starts)," etc.

Examples: M16×L4-P2 (2 starts) HS G D8 M14×L6-P2 (3 starts) HS G D7

Acme and Square-Threaded Taps.—These taps are usually made in sets, three taps in a set being the most common. For very fine pitches, two taps in a set will be found sufficient, whereas as many as five taps in a set are used for coarse pitches. The table on the next page gives dimensions for proportioning both Acme and square-threaded taps when made in sets. In cutting the threads of square-threaded taps, one leading tap maker uses the follow-ing rules: The width of the groove between two threads is made equal to one-half the pitch of the thread, less 0.004 inch. The depth of the thread is made equal to 0.45 times the follows 0.0025 inch. This latter rule produces a thread that for all the ordinarily used pitches for square-threaded taps has a depth less than the generally accepted standard depth, this latter depth being equal to one-half the pitch. The object of this shallow thread is to some that more that for the thread, is to be threaded ty the tap is not bored out so as to provide clearance at the bottom of the thread, the tap will cut its own clearance. The hole should, however, always be drilled out large enough so that the cutting of the clearance is not required of the tap.

The table, Dimensions of Acme Threads Taps in Sets of Three Taps, may also be used for the length dimensions for Acme taps. The dimensions in this table apply to single-threaded taps. For multiple-threaded taps or taps with very coarse pitch, relative to the diameter, the length of the chamfered part of the thread may be increased. Square-threaded taps are made to the same table as Acme taps, with the exception of the figures in column K, which for square-threaded taps stops the set apply to be equal to the nominal diameter of the tap, no oversize allow-ance being customary in these taps. The first tap in a set of Acme taps (not square-threaded taps size at the bottom of the thread for a distance of about one-quarter of the length of the threaded part. The taper should be so selected that the root diameter is about  $\frac{1}{20}$  inch smaller at the point than the proper root diameter of the tap. The first tap is should preferably be provided with a short pilot at the point. For very coarse pitches, the chamfered portion on all the taps in the set. When the taps are used as machine taps, rather than as hand taps, they should be relieved on the taps should also always be relieved on the form taps should also always be relieved on the form taps should also always be relieved on the fourt side of the thread of the thread of the chamfered portion. Acme taps should also always be relieved on the fourt side of the thread to within  $\frac{1}{20}$  inch of the custing edge.

Adjustable Taps: Many adjustable taps are now used, especially for accurate work. Some taps of this class are made of a solid piece of tool steel that is split and provided with means of expanding sufficiently to compensate for wear. Most of the larger adjustable taps have inserted blades or chasers that are held rigidly, but are capable of radial adjustment. The use of taps of this general class enables standard sizes to be maintained readily.

901

# Table 28. Proportions of Acme and Square-Threaded Taps Made in Sets

		R -0.01	0" A				
		liameter of le depth of f		$\frac{1}{D} = \text{full diameter of tap}$	- - -		
Kind of Tap	No. of Taps in Set	Order of Tap in Sct	Α	В	с		
	2	1st	R + 0.65T	R+0.010	%L το ½ L		
	2	24	D	A on 1st tap - 0.005	肾L to 肾L		
		l st.	R+0.45T	R+0.010	½L to ½L		
	3	2d	R + 0.80T	A on 1st tap ~ 0.005	16L to 14L		
		3d	D	A on 2d tap - 0.005	¼L to ⅓L		
		1st	R÷ 0.40T	R+0.010	1/8 L		
Acme Thread	4	2d	R = 0.70T	A on 1st tap - 0.005	%L		
Taps		4	4	4	3d	R = 0.90T	A on 2d tap - 0.005
		4th	D	A on 3d tap - 0.005	1/4 to 1/4 L		
		İst	$R \div 0.37T$	R - 0.010	1%L		
			2đ	R + 0.63T	A on 1st tap - 0.005	16L	
	5	3d	R + 0.82T	A on 2d tap - 0.005	14L		
		41h	R + 0.94T	A on 3d tap - 0.005	%L to 1/4 L		
		5th	D	A on 4th tap = 0.005	1/4 L to 1/4 L		
	2	İst	R + 0.67T	R	½L to ½L		
		2d	D	A on 1st tap – 0.005	1/4 L 10 1/3 L		
		İst	R + 0.41T	R	½ <i>L</i> to <i>%L</i>		
	3	2đ	R + 0.080T	A on 1st tap - 0.005	1/2 to 1/2 L		
		3d	D	A on 2d tap - 0.005	1/4 L to 1/4 L		
		lst	R + 0.32T	R	1/8 L		
Square-	4	2d	R + 0.621'	A on 1st tap = 0.005	16L		
Threaded Taps	1	3d	R + 0.90T	A on 2d tap - 0.005	1/5L		
		4th	D	A on 3d tap - 0.005	1/4 L to 1/3 L		
		1st	R = 0.26T	R	%L		
		2d	R - 0.50T	A on 1st tap - 0.005	%L		
	5	3ð	$R \neq 0.72T$	A on 2d tap - 0.005	15 L		
		4th	R = 0.92T	A on 3d tap - 0.005	15L to 16L		
		5th	D	A on 4th tap - 0.005	1/4 L to 1/3 L		

# Drill Hole Sizes for Acme Threads

Many tap and die manufacturers and vendors make available to their customers computer programs designed to calculate drill hole sizes for all the Acme threads in their ranges from the basic dimensions. The large variety and combination of dimensions for such tools prevent inclusion of a complete set of tables of tap drills for Acme taps in this Handbook. The following formulas (dimensions in inches) for calculating drill hole sizes for Acme

threads are derived from the American National Standard, ASME/ANSI B1.5-1988, Acme Screw Threads.

To select a tap drill size for an Acme thread, first calculate the maximum and minimum To select a tap drift size for all Actine unear, first calculate the maximum line internal product minor diameters for the thread to be produced. (Dimensions for general purpose, centralizing, and stub Acme screw threads are given in the Threads and Thread-ing section, starting on page 1792.) Then select a drill that will yield a finished hole some-where between the established maximum and minimum product minor diameters. Consider staying close to the maximum product limit in selecting the hole size, to reduce the amount of material to be removed when cutting the thread. If there is no standard drill size that matches the hole diameter selected, it may be necessary to drill and ream, or bore the hole to size, to achieve the required hole diameter.

Diameters of General-Purpose Acme screw threads of Classes 2G, 3G, and 4G may be calculated from:

minimum diameter = basic major diameter - pitch maximum diameter = minimum minor diameter +  $0.05 \times \text{pitch}$ pitch = 1/number of threads per inch

902

For example,  $\frac{1}{2}$ -10 Acme 2G, pitch = 1/10 = 0.1

minimum diameter = 0.5 - 0.1 = 0.4maximum diameter =  $0.4 + (0.05 \times 0.1) = 0.405$ drill selected = letter X or 0.3970 + 0.0046 (probable oversize) = 0.4016

Similarly, diameters of Acme Centralizing screw threads of Classes 2C, 3C, and 4C may be calculated from:

minimum diameter = basic major diameter  $-0.9 \times pitch$ maximum diameter = minimum minor diameter  $+0.05 \times \text{pitch}$ pitch = 1/number of threads per inch

For example,  $\frac{1}{2}$ -10 Acme 2C, pitch = 1/10 = 0.1: minimum diameter =  $0.5 - (0.9 \times 0.1) = 0.41$ maximum diameter =  $0.41 + (0.05 \times 0.1) = 0.415$ .drill selected =  $\frac{13}{32}$  or 0.4062 + 0.0046(probable oversize) = 0.4108.

Diameters for Acme Centralizing screw threads of Classes 5C and 6C (not recommended for new designs) may be calculated from:

minimum diameter = [basic major diameter - (0.025  $\sqrt{\text{basic major diameter}}$ ] - 0.9 × pitch;

maximum diameter = minimum minor diameter  $+0.05 \times pitch$ pitch = 1/number of threads per inch.

For example,  $\frac{1}{2}$ -10 Acme 5C, pitch = 1/10 = 0.1minimum diameter =  $[0.5 - (0.025 \vee 0.5)] - (0.9 \times 0.1) = 0.3923$ maximum diameter =  $0.3923 + (0.05 \times 0.1) = 0.3973$ drill selected =  $\frac{2\%}{4}$  or 0.3906 + 0.0046 (probable oversize) = 0.3952

British Standard Screwing Taps for ISO Metric Threads.—BS 949: Part 1: 1976 pro-vides dimensions and tolerances for screwing taps for ISO metric coarse-pitch series threads in accordance with BS 3643: Part 2; and for metric fine-pitch series threads in accordance with BS 3643; Part 3.

Table 1 provides dimensional data for the cutting portion of cut-thread taps for coarseseries threads of ISO metric sizes. The sizes shown were selected from the first-choice combinations of diameter and pitch listed in BS 3643:Part 1:1981 (1998). Table 16 provides similar data for ground-thread taps for both coarse- and fine-pitch series threads of ISO metric sizes.

 Table 1. British Standard Screwing Taps for ISO Metric Threads; Dimensional Limits for the Threaded Portion of Cut Taps—Coarse Pitch Series BS 949: Part 1: 1976

903

		Major Diameter		Pitch Diameter		Tolerance on Thread Angle,
Designation	Pitch	Minimuma	Basic	Max.	Mîn.	Degrees
MI	0.25	1.030	0.838	0.875	0.848	4.0
M1.2	0.25	1.230	1.038	1.077	1.048	4.0
ML6	0.35	1.636	1.373	1.417	1.385	3.4
M2	0.40	2.036	1.740	1.786	1.752	3.2
M2.5	0.45	2.539	2.208	2.259	2.221	3.0
M3	0.50	3.042	2.675	2.730	2.689	2.9
M4	0.70	4.051	3.545	3.608	3.562	2.4
MS	0.80	5.054	4.480	4.547	4.498	2.3
M6	1.00	6.060	5.350	5.424	5.370	2.0
M8	1.25	8.066	7,188	7.270	7.210	1.8
MI0	1.50	10.072	9.026	9.116	9.050	1.6
M12	1.75	12.078	10.863	10.961	10.889	1.5
M16	2.00	16.084	14.701	J4.811	14.729	1.4
M20	2.50	20.093	18.376	18,497	18,407	1.3
M24	3.00	24.102	22.051	22.183	22.085	1.2
M30	3.50	30.111	27.727	27.874	27.764	1.1
M36	4.00	36.117	33.402	33.563	33.441	1.0

^aSce notes under Table 2.

## Table 2. British Standard Screwing Taps for ISO Metric Threads; Dimensional Limits for the Threaded Portion of Ground Taps---Coarse-and Fine-Pitch BS 949: Part 1: 1976

Thread				Class	I Taps	Class 2	Taps	Class 3	Toler-				
Nominal		Min.	Basic	Pirch Diameter									
Major Dia. (basic) d	Pitch p	Major Dia. d _{mia} *	Dia. Dia.		d ₂ max	$d_2$ min	d ₂ max	$d_2$ min	d ₂ max	on ½ Thơ Angle			
COARSE-PITCH THREAD SERIES													
1	0.25	1.022	0.838	0.844	0.855			•••		=60'			
1.2	0.25	1.222	1.038	1.044	1.055				•••	±60'			
1.6	0.35	1.627	1.373	1.380	1.393	1.393	1.407			±50'			
2	0.40	2.028	1.740	J.747	1.761	1.761	1.776			±40'			
2.5	0.45	2.530	2.208	2.216	2.231	2.231	2.246			±38′			
3	0.50	3.032	2.675	2.683	2.699	2.699	2.715	2.715	2.731	=36'			
4	0.70	4.038	3.545	3.555	3.574	3.574	3.593	3.593	3.612	±30'			
5	0.80	5.040	4,480	4.490	4.510	4.510	4.530	4.530	4.550	±26'			
6	1.00	6.047	5.350	5.362	5.385	5.385	5.409	5.409	5.433	±24'			
8	1.25	8.050	7.188	7.201	7.226	7,226	7.251	7.251	7.276	±22'			
10	1.50	10.056	9.026	9.040	9.068	9.068	9.096	9.096	9.124	=20'			
12	1.75	12.064	10.863	10.879	10.911	10.911	10.943	10.943	10.975	±19'			
16	2.00	16.068	14.701	14.718	14.752	14.752	14.786	14.786	14.820	±18'			
20	2.50	20.072	18.376	18.394	18.430	18.430	18.466	18.466	18.502	±16'			
24	3.00	24.085	22.051	22.072	22.115	22.115	22.157	22.157	22.199	±14'			
	Nominal Major Dia. (basic) d 1 1.2 1.6 2 2.5 3 4 5 6 8 10 10 12 16 20	Noninal Major Dia. (basic)         Pitch P           1         0.25           1.2         0.25           1.6         0.35           2         0.40           2.5         0.40           2.5         0.40           2.5         0.40           5         0.80           6         1.00           8         1.25           10         1.50           12         1.75           16         2.00           20         2.50	Immed         of T           Major Dia, (d)         pinch         Major (d)         Maior (d)           1         0.25         1.022           1.2         0.25         1.222           1.6         0.35         1.627           2         0.40         2.028           2.5         0.45         2.530           3         0.50         3.032           4         0.70         4.038           5         0.80         5.040           6         1.00         6.047           10         1.55         8.050           110         1.50         10.056           12         1.75         12.064           16         2.00         4.608           20         2.50         2.50	Nominal Major Dia, cbasic) d         Min. Pich p         Min. Major Major d         Basic Pich Dia. d           1         0.25         1.022         0.838           1.2         0.25         1.222         1.038           1.6         0.35         1.627         1.373           2         0.40         2.028         1.740           2.5         0.45         2.530         2.208           3         0.50         3.032         2.675           4         0.70         4.038         3.545           5         0.80         5.040         4.480           6         1.00         6.047         5.350           8         1.25         8.050         7.188           10         1.50         10.056         9.026           12         1.75         12.064         10.683           16         2.00         16.068         1.4701           20         2.50         2.072         18.376	$\begin{array}{ c c c c c } & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} & \mbox{if} &$	$\begin{array}{ c c c c c c } & \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox{if} \mbox$	$\begin{array}{ c c c c c c } \hline \mbox{Trues} & \mbox{Class} & \mbox{Trues} & \mbox{Class} \\ \hline \mbox{Class} & \mbox{Trues} & \mbox{Class} & \mbox{Trues} & \mbox{Class} & \mbox{Trues} & \mbox{Class} & \mbox{Trues} & \mbox{Class} & \mbox{Trues} & \mbox{Trues} & \mbox{Class} & \mbox{Trues} $	$ \begin{array}{ c c c c c c } \hline \mbox{Higher} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} & \mbox{Field} $	$ \begin{array}{ c c c c c c } & \mbox{Class I Tape} & \mbox{Class 2 Tups} & \mbox{Class I Tape} & \mbox{Class 2 Tups} & \mbox{Class 2 Tups} & \mbox{Class 2 Tups} & \mbox{Class I Tape} & \mbox{Class 2 Tups} & \mbox{Class I Tape} & \mbox{Class 2 Tups} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & \mbox{Class I Tape} & $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			

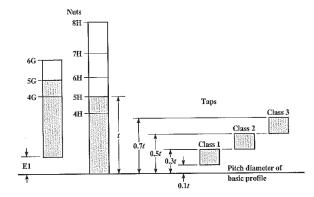
## 904

# TAPS AND THREADING DIES

# Table 2. (Continued) British Standard Screwing Taps for ISO Metric Threads; Dimensional Limits for the Threaded Portion of Ground Taps-Coarse-and Fine-Pitch BS 949: Part 1: 1976

r	Thread		All CI of Ti		Class	1 Taps	Class 2	Taps	Class :	3 Taps	Toler-	
	Nominal		Min. Major	Basic Pitch	Pitch Diameter						ance ou ½	
Designation	Major Dia. (basic) d	Pitch P	Dia. d _{min} *	Dia. d ₂	$d_2$ min	d ₂ max	$d_1 \min$	$d_2$ max	d ₂ min	$d_2$ max	Thd Angle	
M30	30	3.50	30.090	27.727	27.749	27,794	27.794	27.839	27.839	27.884	±13′	
M36	36	4,00	36.094	33.402	33.426	33.473	33.473	33.520	33.520	33.567	±12'	
FINE-PITCH THREAD SIZES												
$M1 \times 0.2$	d1×0.2 1 0.20 1.020 0.870 0.875 0.885											
$MJ.2 \times 0.2$	1.2	0.20	1.220	1,070	1.075	1.085					±70'	
MI.6×0.2	1.6	0.20	1.621	1.470	1.475	1.485			•••		±70'	
M2×0.25	2	0.25	2.024	1.838	1,844	1.856					±60'	
$M2.5 \times 0.35$	2.5	0.35	2.527	2.273	2.280	2.293	2.293	2.307			±50'	
$M3 \times 0.35$	3	0.35	3.028	2.773	2.780	2_794	2.794	2.809			±50′	
$M4 \times 0.5$	4	0.50	4.032	3.675	3.683	3.699	3.699	3.715	3.715	3.731	±36'	
$M5 \times 0.5$	5	0.50	5.032	4.675	4.683	4.699	4.699	4,715	4.715	4.731	±36'	
M6×0.75	6	0.75	6.042	5.513	5.524	5.545	5.545	5.566	5.566	5.587	±28'	
$M8 \times I$	8	1.00	8.047	7.350	7.362	7,385	7.385	7.409	7,409	7.433	±24'	
MI0×1.25	10	1,25	10.050	9.188	9.201	9.226	9.226	9.251	9.251	9.276	±22'	
M12×1.25	12	1.25	12.056	11.188	11.202	11.230	11.230	11.258	11.258	11.286	±22'	
M16×1.5	16	1.50	16.060	15.026	15.041	15.071	15.071	15.101	15.101	15.131	±20	
M20×1.5	20	1.50	20.060	19.026	19.041	19.071	19.071	19.101	19.101	19.131	±20	
$M24 \times 2$	24	2.00	24.072	22.701	22.719	22.755	22,755	22.791	22.791	22.827	±18	
M30 × 2	30	2,00	30.072	28.701	28.719	28.755	28.755	28,791	28.791	28.827	±18	

" The maximum tap major diameter, d max, is not specified and is left to the manufacturer's discre-


All dimension are in millimeters. The thread sizes in the table have been selected from the pre-ferred series shown in BS 3643-part 1:1981 (1998). For other sizes, and for second and third choice combinations of diameters and pitches, see the Standard.

Tolerance Classes of Taps: Three tolerance classes (class 1, class 2, and class 3) are used for the designation of taps used for the production of nuts of the following classes:

nut classes 4H, 5H, 6H, 7H, and 8H, all having zero minimum clearance;

nut classes 4G, 5G, and 6G, all having positive minimum clearance.

The tolerances for the three classes of taps are stated in terms of a tolerance unit t, the value of which is equal to the pitch diameter tolerance,  $T_{\rm D2}$ , grade 5, of the nut. Thus, t = $T_{\rm D2}$ , grade 5, of the nut. Taps of the different classes vary in the limits of size of the tap pitch diameter. The tolerance on the tap pitch diameter,  $T_{d2}$ , is the same for all three classes of taps (20 percent of t), but the position of the tolerance zone with respect to the basic pitch diameter depends upon the lower deviation value Em which is: for tap class 1, Em = +0.1t; for tap class 2, Em = +0.3t; and for tap class 3, Em = +0.5t.



The disposition of the tolerances described is shown in the accompanying illustration of nut class tolerances compared against tap class tolerances. The distance EI shown in this illustration is the minumum clearance, which is zero for H classes and positive for G classes of nuts.

Choice of Tap Tolerance Class: Unless otherwise specified, class 1 taps are used for nuts of classes 4H and 5H; class 2 taps for nuts of classes 6H, 4G, and 5G; and class 3 taps for nuts of classes 7H, 8H, and 6G. This relationship of tap and nut classes is a general one, since the accuracy of tapping varies with a number of factors such as the material being tapped, the condition of the machine tool used, the tapping attachment used, the tapping speed, and the lubricant.

Tap Major Diameter: Except when a screwed connection has to be tight against gaseous or liquid pressure, it is undesirable for the mating threads to bear on the roots and crests. By avoiding contact in these regions of the threads, the opposite flanks of the two threads are allowed to make proper load bearing contact when the connection is tightened. In general, the desired clearance between crests and roots of mating threads is obtained by increasing the major and minor diameters of the internal thread. Such an increase in the minor diameter is already provided on threads such as the ISO metric thread, in which there is a basic clearance between the crests of minimum size nuts and the roots of maximum size bolts. For this reason, and the fact that taps are susceptible to wear on the crests of their threads, a minimum size is specified for the major diameter of new taps which provides a reasonable margin for the wear of their crests and at the same time provides the desired clearance at the major diameter of the hole. These minimum major diameters for taps are shown in Tables 1 and 16. The maximum tap major diameter is not specified and is left to the manufacturer to take advantage of this concession to produce taps with as liberal a margin possible for wear on the major diameter.

**Tapping Square Threads.**—If it is necessary to tap square threads, this should be done by using a set of taps that will form the thread by a progressive cutting action, the taps varying in size in order to distribute the work, especially for threads of comparatively coarse pitch. From three to five taps may be required in a set, depending upon the pitch. Each tap should have a pilot to steady it. The pilot of the first tap has a smooth cylindrical end from 0.003 to 0.005 inch smaller than the hole, and the pilots of following taps should have teeth.

#### STANDARD TAPERS

#### Standard Tapers

Certain types of small tools and machine parts, such as twist drills, end mills, arbors, lathe centers, etc., are provided with taper shanks which fit into spindles or sockets of corresponding taper, thus providing not only accurate alignment between the tool or other part and its supporting member, but also more or less frictional resistance for driving the tool. There are several standards for "self-holding" tapers, but the American National, Morse, and the Brown & Sharpe are the standards most widely used by American manufacturers.

The name *self-holding* has been applied to the smaller tapers—like the Morse and the Brown & Sharpe—because, where the angle of the taper is only 2 or 3 degrees, the shank of a tool is so firmly seated in its socket that there is considerable frictional resistance to any force tending to turn or rotate the tool relative to the socket. The term "self-holding" is used to distinguish relatively small tapers from the larger or *self-releasing* type. A milling machine spindle having a taper of  $3\frac{1}{2}$  inches per foot is an example of a self-releasing taper. The included angle in this case is over 16 degrees and the tool or arbor requires a positive locking device to prevent slipping, but the shank may be released or removed more readily than one having a smaller taper of the self-holding type.

**Morse Taper.**—Dimensions relating to Morse standard taper shanks and sockets may be found in an accompanying table. The taper for different numbers of Morse tapers is slightly different, but it is approximately  $\frac{5}{6}$  inch per foot in most cases. The table gives the actual tapers, accurate to five decimal places. Morse taper shanks are used on a variety of tools, and exclusively on the shanks of twist drills. Dimensions for Morse Stub Taper Shanks are given in Table 1a.

**Brown & Sharpe Taper.**—This standard taper is used for taper shanks on tools such as end mills and reamers, the taper being approximately  $\frac{1}{2}$  inch per foot for all sizes except for taper No. 10, where the taper is 0.5161 inch per foot. Brown & Sharpe taper sockets are used for many arbors, collets, and machine tool spindles, especially milling machines and grinding machines. In many cases there are a number of different lengths of sockets corresponding to the same number of taper; all these tapers, however, are of the same diameter at the small end.

**Jarno Taper**.— The Jarno taper was originally proposed by Oscar J. Beale of the Brown & Sharpe Mfg. Co. This taper is based on such simple formulas that practically no calculations are required when the number of taper is known. The taper per foot of all Jarno taper sizes is 0.600 inch on the diameter. The diameter at the large end is as many eighths, the diameter at the small end is as many tenths, and the length as many half inches as are indicated by the number of the taper. For example, a No. 7 Jarno taper is  $\frac{1}{2}$  inch in diameter at the large end;  $\frac{1}{2}_0$ , or 0.700 inch at the small end; and  $\frac{1}{2}$ , or  $\frac{3}{2}$  inches long; hence, diameter at large end = No. of taper + 8; diameter at small end = No. of taper + 10; length of taper = No. of taper + 2. The Jarno taper is used on various machine tools, especially profiling machines and die-sinking machines. It has also been used for the headstock and tailstock spindles of some lathes.

American National Standard Machine Tapers: This standard includes a self-holding series (Tables 2, 3, 4, 5 and 7a) and a steep taper series, Table 6. The self-holding taper series consists of 22 sizes which are listed in Table 7a. The reference gage for the self-holding tapers is a plug gage. Table 7b gives the dimensions and tolerances for both plug and ring gages applying to this series. Tables 2 through 5 inclusive give the dimensions for self-holding taper shanks and sockets which are classified as to (1) means of transmitting torque from spindle to the tool shank, and (2) means of retaining the shank in the socket. The steep machine tapers consist of a preferred series (bold-face type, Table 6) and an intermediate series (light-face type). A self-holding taper is defined as "a taper with an

907

angle small enough to hold a shank in place ordinarily by friction without holding means. (Sometimes referred to as slow taper,)" A steep taper is defined as "a taper having an angle sufficiently large to insure the easy or self-releasing feature." The term "gage line" indicates the basic diameter at or near the large end of the taper.

Table 1a. Morse Stub Taper Shanks TAPER  $1\frac{3}{4}$ PER FT Shank Tang Dia. End of Socket, ^a A Small End of Plug, ^b D Total Length, B No. of Taper Taper per Foot^a Taper per Inch^b Depth, C Thickness, E Length, 11% ×16 0.475 15/16 13% 0.4314 1 0.59858 0.049882  $7_{16}$ 0.6469 0.700  $1^{1}N_{16}$  $1\%_{16}$ 1% M 0.049951 2 0.59941 25_{/64} ‰ 0.60235 0.050196 0.8753 0.938 2 13/4 3 2%  $2\frac{1}{16}$ ±‰ 11/16 1.231 4 0.62326 0.051938 1.1563 叭 1.748 3 2¹¹/₁₆  $\tilde{Y}_4$ 1.6526 0.052626 5 0.63151 Tang Slot Socket Tang Min. Depth of Tapered Hole Socket End to Tang Slot, M No. of Taper Radius of Mill, *G* Drilled X Reamed Y Width, N Length, O Diameter, H Piug Depth P 29/<u>32</u> %_ ¥2 29. 32 1 ∛16 13/32 76 %16 1% ¹⁵/₁₆ 5∕16 15/16  $1\frac{1}{16}$ 1%2 2 <u>%</u> ³⁹⁄64 13/32 1% 13/16 1¼  $1\frac{1}{8}$ 1%  $1\frac{1}{16}$ %₃₂ 3 17/32 13%  $1\frac{1}{2}$ 1∛₁₆ 17/16 1% ¾ 1½ 4  $1\frac{3}{4}$ 1% 17/16 25y 32 11%  $1\frac{13}{16}$ 5 % 6  $1\frac{15}{2}$ 

^aThese are basic dimensions. ^bThese dimensions are calculated for reference only.

All dimensions in inches.

Radius J is  $\frac{3}{4}$ ,  $\frac{1}{16}$ ,  $\frac{5}{44}$ ,  $\frac{3}{32}$ , and  $\frac{1}{8}$  inch respectively for Nos. 1, 2, 3, 4, and 5 tapers.

		Т	able 1b. M	Iorse Stand	ard Taper	Shanks						
	H H H H H H H H H H H H H H H H H H H											
	No. of Taper	Taper per Foot	Taper per Inch	Small End of Plug D	Diameter End of Socket A	Sha Length B	nk Depth S	Depth of Hole H				
┢	0	0.62460	0.05205	0.252	0.3561	211/32	21/32	21/ ₃₂				
	1	0.59858	0.04988	0.369	0.475	2% ₁₆	27/ ₁₆	2¾ <u>2</u>				
	2	0.59941	0.04995	0.572	0.700	31/8	2 ¹⁵ / ₁₆	23%				
	3	0.60235	0.05019	0.778	0.938	31%	3 ¹¹ / ₁₅	31⁄4				
	4	0.62326	0.05193	1.020	1.231	4%	4¾	41 <u>/</u> 8				
	5	0.63151	0.05262	1.475	1.748	61/8	5%	5¼				
	6	0.62565	0.05213	2.116	2.494	8% ₁₆	8¼	$7^{21}_{64}$				
	7	0.62400	0.05200	2.750	3.270	115%	111/4	10%				
ł	Dia a		Tang o	r Tongue		Key	way	Keyway				
ļ	Plug Depth P	Thickness t	Length T	Radius R	Dia.	Width W	Length L	to End K				
ļ	2	0.1562	1/4	5/32	0.235	11/64	%	115/16				
	21/8	0.2031	3%	3∕16	0.343	0.218	34	2½				
	2%	0.2500	⅔6	₩4	17/32	0.266	¥8	21/2				
	3¾	0,3125	%15	%2	23/32	0.328	1¾6	31/16				
	41/16	0.4687	%	⁵⁄15	³¹ / ₃₂	0.484	11⁄4	3%				
	5¾ ₁₆	0.6250	34	⅔	113/32	0.656	1½	415/16				
	7½	0.7500	11%	1/2	2	0.781	1¾	7				
	10	1.1250	1%	34	2%	1.156	2%	9½				

STANDARD TAPERS

# Table 2. American National Standard Taper Drive with Tang, Self-Holding Tapers ANSI/ASME B5.10-1994

		Gage Lin K — G — C — B —	A A			1 3/4 in. pe	er ft.					
		S	hank		Ta	ng						
No. of Taper	Diameter at Gage Line (1) A	Total Length of Shank B	Gage Line to End of Shank <i>C</i>	Thickness E	Length F	Radius of Mill G	Diameter H					
0.239	0.23922	1.28	1.19	0.125	0.19	0.19	0.18					
0.299	0.29968	1.59	1.50	0.156	0.25	0,19	0.22					
0.375	0.37525	1.97	1.88	0.188	0.31	0.19	0.28					
1	0.47500	2.56	2.44	0.203	0.38	0.19	0.34					
2	0.70000	3.13	2.94	0.250	0.44	0.25	0.53					
3	0.93800	3.88	3.69	0.312	0.56	0.22	0.72					
4	1.23100	4.88	4.63	0.469	0.63	0.31	0.97					
41/3	1.50000	5.38	5.13	0.562	0.69	0.38	1,20					
5	1.74800	6.12	5.88	0.625	0.75	0.38	1.41					
6	2.49400	8.25	8.25	0.750	1.13	0.50	2.00					
			Socket	I		Tang Slo	ot					
No. of	Radius	Min. De	pth of Hole K	Gage Line to Tang Slot	Width	Length	Shank End to Back of Tang Slot					
Taper	J	Drilled	Reamed	М	N	0	p					
0.239	0.03	1.06	1.00	0.94	0.141	0.38	0.13					
0.299	0.03	1.31	1.25	1.17	0.172	0.50	0.17					
0.375	0.05	1.63	1.56	1.47	0.203	0.63	0.22					
1	0.05	2.19	2.16	2.06	0.218	0.75	0.38					
2	0.06	2.66	2.61	2.50	0.266	0.88	0.44					
3	0.08	3.31	3.25	3.06	0.328	1.19	0.56					
4	0.09	4.19	4.13	3.88	0.484	1.25	0.50					
4½	0.13	4.62	4.56	4.31	0.578	1.38	0.56					
5	0.13	5.31	5.25	4.94	0.656	1.50	0.56					
6	0.16	7.41	7.33	7.00	0.781	1.75	0.50					
	6         0.16         7.41         7.33         7.00         0.781         1.75         0.50           All dimensions are in inches         (1) See Table 7b for plug and sing ages dimensions         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)											

All dimensions are in inches. (1) See Table 7b for plug and ring gage dimensions. Tolerances: For shank diameter A at gage line, +0.002 - 0.000; for hole diameter A, +0.000 - 0.002. For tang thickness E up to No. 5 inclusive, +0.000 - 0.006; No. 6, +0.000 - 0.008. For width Nof tang slot up to No. 5 inclusive, +0.000; -0.000, No. 6, +0.000 - 0.008. For centrality of tang E with center line of taper, 0.0025 (0.005 total indicator variation). These centrality to the tang slot N. On rate of taper, all sizes 0.002 per foot. This tolerance may be applied on sharks only in the direction which hiereases for two-decimal dimensions are plus or minus 0.010, unless otherwise specified.

909

,

910

			;	Self	Ho	lding Ta	pers A	NSI	ASME B	5.10	)-19	94			
	B C				Ga	K ge Line –	M	P F X Y' Gage L	ine		I I			per n. per ft.	
		Shank Tang												Socket	
No. of	Dia. at Gage Line (1)		otai mgth	Gag Lin to Enc	ine to End Thicknes		ickness Length E F		dius of lill Djameter G H		Radius			Depth Hole K	Gage Line to Tang Slot M
Taper 3	A 0.938		B 3.88		69	0.312	0.56	0.28				.08	3.31		3.06
4	1.231		4.88		63	0.469	0.63	0.31	0.9	0.97		.09	4.19	4.13	3.88
4%	1.500		5.38	5.	13	0.562	0.69	0.38	1.2	1.20		.13	4.63	4.56	4.32
5	1.748	ļ	6.13	5.	.88	0.625	0.75	0.38	3 1.4	1	0.13		5.3	5.25	4.94
6	2.494		8.56	8.	.25	0.750	1.13	0.50	2.0	0	0.	.16	7.4	7.33	7.00
7	3.270	L	11.63	11.	.25	1.125	1.38	0.75	5 2.6	3	0	.19	10.1	5 10.08	9.50
			Ta	ng Sl	ot		K	eeper S	lot in Shan	ık.			Keeper	Slot in Se	ocket
No. of Taper	Wid N		Leng O			ank End Back of Slot P	Gage I to Bot of S1 Y	tom	Length X		dth ⁄'	Li	age ne to tont Slot Y	Length Z	Width N
3	0.32	28	1.1	9		0.56	1.0	3	1.13	0.2	266	1	.13	1.19	0.266
4	0.48	34	1.2	5	0.50		1.4	1	1.19	0.3	891	1	.50	1.25	0.391
4½	0.57	78	1.3	8		0.56	1.7	2	1.25	0.4	153	1	.81	1.38	0.453
5	0.65	56	1.5	0		0.56	2.0	0	1.38	0.:	516	2	.13	1.50	0.516
6	0.78	81	1.7	5		0.50	2.1	3	1.63	0.0	0.641		2.25	1,75	0.641
7	1 11	56	2.6	3		0.88	2.5	0	1.69	0.1	766	1 2	2.63	1.81	0.766

Table 3. American National Standard Taper Drive with Keeper Key Slot, Seft-Holding Tapers, ANSUASME 85, 10-1994

00.7011.150.502.151.050.0472.151.050.04171.1562.630.882.501.690.7662.631.810.766All dimensions are in inches. (1) See Table 7b for plug and ring gage dimensions.Tolerances: For shank diameter A at gage line,  $\pm 0.002$ , -0; for hole diameter A,  $\pm 0$ , -0.002. Fortang thickness E up to No. 5 inclusive,  $\pm 0$ , -0.006; larger than No. 5,  $\pm 0$ , -0.008. For width of slots Nand N' up to No. 5 inclusive,  $\pm 0.006$ , -0; larger than No. 5,  $\pm 0.008$ , -0. For centrality of tang E withcenter line of taper 0.0025 (0.005 total indicator variation). These centrality tolerances also apply toslots N and N'. On rate of taper, see footnote in Table 2. Tolerances for two-decimal dimensions are $\pm 0.010$  unless otherwise specified.

911

# Table 4. American National Standard Nose Key Drive with Keeper Key Slot, Self-Holding Tapers ANSI/ASME B5.10-1994

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
-			ر											
200 250 300 350 450 500 600 1200 1200 1200 1200 250 250 250 250 250 250 250 250 250	2.000 2.500 3.000 4.500 5.000 5.000 8.000 10.000 12.000 D 1.241 1.66 1.66 1.66 2.25 2.50 2.75 3.00 3.25 3.75	5.13 5.88 6.63 7.44 8.19 9.00 9.75 11.31 14.38 17.44 20.50 <i>D</i> * 0.375 0.375 0.375 0.375 0.375 0.375 0.375	Min 0.003 Max 0.035 for all sires w 3.44 3.69 4.06 4.88 5.31 5.88 6.44 7.44	0.25 0.25 0.31 0.38 0.44 0.50 0.63 0.75 <i>X</i> 1.56 1.56 1.56 2.00 2.25 2.44 2.63 3.00	1.38 1.38 1.63 2.00 2.13 2.38 2.50 3.00 3.50 4.530 7.538 <i>N'</i> 0.781 1.031 1.031 1.031 1.031 1.281	1.63 2.06 2.50 2.94 3.31 4.25 5.19 7.00 8.75 10.50 <i>R'</i> 1.000 2.000 2.000 2.000 3.000 3.000	1.010 1.010 2.010 2.010 2.010 3.010 3.010 3.010 4.010 4.010 4.010 5'' 0.50 0.50 0.50 0.50 0.55 0.75	0.562 0.562 0.562 0.562 0.562 0.812 0.812 0.812 1.062 1.062 1.062 T T 4.75 5.50 6.25 6.94 7.69 8.38 9.13 10.56						
800	4.75	0.500	9.56	4.00	1.781	4.000	1.00	13.50						
1000			11.50	4.75	2.031	4.000	1.00	16.31						
1200			13.75	5.75	2.031	4.000	1.00	19.00						
Taper	U	V	м	N	0	P	r	Z						
200	1.81	1.00	4.50	0.656	1,56	0.94	2.00	1.69						
250	2.25	1.00	5.19	0.781	1.94	1.25	2.25	1.69						
300	2.75	1.00	5.94	1.031	2.19	1.50	2.63	1.69						
350	3.19	1.25	6.75	1.031	2.19	1.50	3.00	2.13						
400	3.63	1.25	7.50	1.031	2.19	1.50	3.25	2.38						
450	4.19	1.50	8.00	1.031	2,75	1.50	3.63	2.56						
500	4.63	1.50	8.75	1.031	2.75	1.75	4.00	2.75						
600	5.50	1.75	10.13	1.281	3.25	2.06	4.63	3.25						
800	7,38	2.00	12.88	1.781	4.25	2.75	5.75	4.25						
1000	9.19	2.50	15.75	2.031	5.00	3.31	7.00	5.00						
1200	11.00	3.00	18.50	2.531	6.00	4.00	8.25	6.00						
L	11.00	5.00	10.00	A Second	1410		0.00	0.00						

"Thread is UNF-2B for hole; UNF-2A for screw. (1) See Table 7b for plug and ring gage dimensions.

stons. All dimensions are in inches. AE is 0.005 greater than one-half of A. Width of drive key R'' is 0.001 less than width R'' of keyway. Tolerances: For diameter A of hole at gage line, +0, -0.002; for diameter A of shank at gage line, +0.002, -0; for width of dive keyway R' in socket, +0, -0.001; for width of dive keyway R in shak, 0.010, -0; for centrality of slots N and A', +0.003, -0; for centrality of slots N and A' with center line of spindle, 0.007; for centrality of keyway R in shak, 0.010, -0; for centrality of slots N and A' with center line of spindle, 0.007; for centrality of slots N and A' with center line of spindle, 0.007; for centrality of keyway with spindle center line: for R, 0.004 and for R', 0.002 T.I.V. On rate of taper, see footnote in Table 2. Two-decimal dimensions,  $\pm 0.010$  unless otherwise specified.

# Table 5. American National Standard Nose Key Drive with Drawbolt, Self-Holding Tapers ANSI/ASME B5.10-1994

$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
Dia,         Server Holes         Dir.           at         Center Line         UNP 228         Line to         Dia.         Depth         Dm           No.         Gage         If the to         Dia.         Depth         Dm         Dm         Depth         Dm           No.         Gage         If the to         Dia.         Depth         Dm         Dm         Depth         Dm           of         Line to         Center Hole UNF         Front of of of Bo         Depth         Edit         Relief         Rel												
Taper         A ³ D         D'         R''         S'         T         U         V         d           200         2000         1.41         0.38         0.999         1.000         0.50         4.75         1.81         1.000         1.02           250         2200         1.66         0.38         0.999         1.000         0.50         5.50         2.25         1.000         1.00												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
350 350 2.50 0.38 1.999 2.000 0.50 6.94 3.19 1.25 1.J												
400 4000 2.75 0.38 1.999 2.000 0.50 7.69 3.63 1.25 1.6												
450 4500 3.00 0.50 2.999 3.000 0.75 8.38 4.19 1.50 1.6												
500 5000 3.25 0.50 2.999 3.000 0.75 9.13 4.63 1.50 1.6												
600 6000 3.75 0.50 2.999 3.000 0.75 10.56 5.50 1.75 2.2												
800 8000 4.75 0.50 3.999 4.000 1.00 13.50 7.38 2.00 2.3												
1000 10000 3.999 4.000 1.00 16.31 9.19 2.50 2.2												
$1000  1000  \dots  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  10000  1000  1000  1000  1000  1000  10$												

^a See Table 7b for plug and ring gage dimensions.

912

	Shanks													
				Drawha	r Hole				Drive Keyw	ay				
No. of Taper	Length from Gage Line B'	Dia. UNC-2B AL	Depth of Drilled Hale E	Depth of Thread AP	Dia, of Counter Bore G	Gage Line to First Thread AO	Depth of 60° Chamfer J	Width R	Depth S	Center Line to Bottom of Keyway AE				
200	5.13	%_9	2.44	1.75	0.91	4.78	0.13	1.010	0.562	1.005				
250	5.88	34-9	2.44	1.75	0.91	5.53	0.13	1.010	0.562	1.255				
300	6.63	1-8	2.75	2.00	1.03	6.19	0.19	2.010	0.562	1.505				
350	7.44	J8	2.75	2.00	1.03	7.00	0.19	2.010	0.562	1.755				
400	8.19	1½-6	4.00	3.00	1.53	7.50	0.31	2.010	0.562	2.005				
450	9.00	1½-6	4.00	3.00	1.53	8.31	0.31	3.010	0.812	2.255				
500	9.75	1½-6	4.00	3.00	1.53	9.06	0.31	3.010	0.812	2.505				
600	11.31	2-4½	5.31	4.00	2.03	10.38	0.50	3.010	0.812	3.005				
800	14.38	2-4½	5.31	4.00	2.03	13.44	0.50	4.010	1.062	4.005				
1000	17.44	2-41/2	5.3I	4.00	2.03	16.50	0.50	4.010	1.062	5.005				
1200	20.50	2-41/2	5.31	4.00	2.03	19.56	0.50	4.010	1.062	6.005				

All dimensions in inches.

Exposed length C is 0.003 minimum and 0.035 maximum for all sizes.

Drive Key D' screw sizes are 3/2-24 UNF-2A up to taper No. 400 inclusive and 1/2-20 UNF-2A for

Drive Key D' screw sizes are  $\frac{2}{3}$ -24 UNF-2A up to taper No. 400 inclusive and  $\frac{1}{2}$ -20 UNF-2A for larger tapers. Tolerances: For diameter A of hole at gage line, +0.000, -0.002 for all sizes; for diameter A of shank at gage line, +0.002, -0.000; for all sizes; for width of drive keyway R' in socket, +0.000, -0.001; for width of drive keyway R in shank, +0.010, -0.000; for centrality of drive keyway R', with center line of shank, 0.004 total indicator variation, and for drive keyway R', with center line of spin-dle, 0.002. On rate of taper, see footnote in Table 2. Tolerances for two-decimal dimensions are ±0.010 unless otherwise specified.

913

# Table 6. ANSI Standard Steep Machine Tapers ANSI/ASME B5.10-1994

No. of Taper	Taper per Foot ^a	Dia. at Gage Line ^b	Length Along Axis	No. of Taper	Taper per Fool®	Dia.at Gage Line ^b	Length Along Axis
5	3.500	0.500	0.6875	35	3.500	1.500	2,2500 2,5625
10	3,500	0.625	0.8750	40	3.500	1.750 2.250	3.3125
15	3.500	0.750	1.0625	45	3.500 3.500	2.230	4.0000
20	3.500	0.875	1.3125	55	3.500	3,500	5.1875
25 30	3.500 3.500	1.000 1.250	1.5625	60	3.500	4.250	6.3750

^a This taper corresponds to an included angle of 16°, 35′, 39.4″. ^b The basic diameter at gage line is at large end of taper.

All dimensions given in inches. The tapers numbered 10, 20, 30, 40, 50, and 60 that are printed in heavy-faced type are designated as the "Preferred Series." The tapers numbered 5, 15, 25, 35, 45, and 55 that are printed in light-faced type are designated as the "Intermediate Series."

# Table 7a. American National Standard Self-holding Tapers — Basic Dimensions ANSI/ASME B5.10-1994

No. of Taper	Taper per Foot	Dia.at Gage Linc ^a A	Means of Driving and Holding ^a	Origin of Series
.239	0.50200	0.23922		
.299	0.50200	0.29968	Tang Drive With Shank Held in by Friction	Brown &
.375	0.50200	0.37525	(See Table 2)	Sharpe Taper
1	0.59858	0.47500		Series
2	0.59941	0,70000		
3	0.60235	0.93800		
4	0.62326	1.23100		
4½	0.62400	1.50000	Tang Drive With Shank Held in by Key	Morse
5	0.63151	1.74800	(See Table 3)	Taper Series
6	0.62565	2.49400		Series
7	0.62400	3,27000		
200	0.750	2.000	Key Drive With Shank Held in by Key (See Table 4)	
250	0.750	2.500	(bee facto i)	
300	0,750	3.000		
350	0.750	3.500		3/ Inch
400	0.750	4.000		per
450	0.750	4.500	Key Drive With Shank Heldin by Draw-bolt	Foot
500	0.750	5.000	(See Table 5)	Taper Series
600	0.750	6.000		
800	0.750	8.000		
1000	0.750	10.000	1	
1200	0.750	12.000		

"See illustrations above Tables 2 through 5.

All dimensions given in inches.

#### Ł ŧ $\mathbf{A}'$ À Gage Line A' Gage Line Å Depth of Gaging-Notch, Length Gage Lin to End L Tol ces for Diameter A¹ ameter a Small End A' No. of Tape Gage Line A Class X Class Y Class Z Plug Gage per Foot Gage 0.00010 0.00010 0.00010 Gag Ga 0.048 0.048 0.048 0.040 0.040 0.040 0.00004 0.0000. 0.2000 0.94 1.19 1.50 2.13 2.56 3.19 0.2392 0.50200 0.239 0.299 0.25000 0.29968 0.50200 0.50200 0.00004 0.00007 0.375 0.37525 0.00007 0.59858 0.47500 0.00004 0.00007 0.00010 0.36900 1 2 3 4 0.00004 0.00006 0.00006 0 5994 0.70000 0.00007 0.00010 0.57200 0.77800 0.93800 1.23100 1.50000 0.60235 0.00009 0.00012 0.60235 0.62326 0.62400 0.00009 0.00012 1.02000 4.06 0.038 0.00009 0.00009 0.00012 0.00012 0.00012 0.00012 0.00016 0.00016 1.26600 1.47500 2.11600 2.75000 0.038 0.038 0.038 0.038 0.038 -4½ 0.00006 4.50 5.19 7.25 10.00 4.75 5.50 6.25 7.00 7.75 8.50 9.25 10.75 13.75 16.75 5 6 7 0.00008 0.63151 1.74800 2.49400 3.27000 2.00000 2.50000 3.00000 4.00000 4.50000 5.00000 6.00000 8.00000 0.62565 0.62400 0.75000 0.75000 0.75000 0.75000 0.75000 0.75000 0.75000 0.75000 0.75000 0.75000 0.00010 0.00008 0.00008 0.00010 0.00010 0.00010 0.00010 0.00013 0.00013 0.00015 0.00020 200 250 300 350 400 450 500 600 800 0.00012 0.00016 1.703 0.032 0.00012 0.00012 0.00015 0.00015 0.00015 0.00015 0.00015 0.00019 0.00019 0.00016 2.156 0.032 2.609 0.032 0.00020 0.00020 0.00020 0.00020 0.00025 0.00025 0.032 0.032 0.032 0.032 0.032 0.032 0.032 3.063 3.516 3.969 4.422 5.328 7.141 0.00016 0.00024 0.00032 1000 0.75000 10.00000 0.00020 0.00030 0.00040 8.953 1200 0,75000 12.00000 0.00020 0.00030 0.00040 10.766 19.75 0.032

Table 7b. American National Standard Plug and Ring Gages for the Self-Holding Taper Series ANSI/ASME B5.10-1994

^aThe taper per foot and diameter A at gage line are basic dimensions. Dimensions in Column A' are calculated for reference only.

^bTolerances for diameter A are plus for plug gages and minus for ring gages.

All dimensions are in inches.

914

The amount of taper deviation for Class X, Class Y, and Class Z gages are the same, respectively, as the amounts shown for tolerances on diameter A. Taper deviation is the permissible allowance from true taper at any point of diameter in the length of the gage. On taper *plug* gages, this deviation may be applied only in the direction which *decreases* the rate of taper. On taper *ring* gages, this deviation and be applied only in the direction which *increases* the rate of taper. Tolerances on two-decimal dimensions are  $\pm 0.010$ .

British Standard Tapers.—British Standard 1660: 1972, "Machine Tapers, Reduction Sleeves, and Extension Sockets," contains dimensions for self-holding and self-releasing tapers, reduction sleeves, extension sockets, and turret sockets for tools having Morse and metric 5 per cent taper shanks. Adapters for use with  $\frac{1}{24}$  tapers and dimensions for spindle noses and tool shanks with self-release tapers and cotter slots are included in this Standard.

# Table 8. Dimensions of Morse Taper Sleeves

Table 6. Dimensions of Alartic Tap-												
	A = No. Morse Taper Outside											
				-	L→ +-			K		1		
	- G-+											
	F $M$ $B = No.$ Morse Taper Inside $D$ $F$											
Ì												
	-+  E											
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
A	B	3%	0.700	*	14	₹ ₁₆	23/16	0.475	21/16	3/4	0.213	
2	1	3 ¹⁵ /16	0.938	78 1/4	~4 \$1 ₆	~16 %16	2 ³ / ₁₆	0.475	21/16	3/4	0.213	
3	2	3-716 47/16	0.938	14 3/4	216 ∋‱	% 16	2%	0.700	21/3	7%	0.260	
		4%	1.231	14	16	-16 5%	23/16	0.475	21/16	3/4	0.213	
	2	4%	1.231	4	15%	*	2%	0.700	21/2	74	0.260	
4	3	4% 5%	1.231	14 34	132 1542	** **	31/4	0.938	31/16	13/16	0.322	
4		5% 6%	1.748	74 1/4	-32 - %	24 24	23/10	0.475	21/16	34	0.213	
5	2	6%	1.748	4 14	78 58	34	25%	0.700	21/2	76	0.260	
5	3	6% 6%	1.748	4 14	3 -%	34	31/4	0.938	31/16	13%	0,322	
5		0% 6%	1.748	4 34	* *{	34	4%	1.231	31/2	11/2	0.478	
6		8%	2.494	14 3%	34	1%	23/16	0.475	21/16	34	0.213	
1	2	8%	2.494	~~ -%	34	1%	2%	0,700	25	74	0.260	
6	3	8%	2.494	34	34	1%	31/4	0.938	31/16	13/16	0.322	
6	4	8%	2.494	3%	34	1%	41%	1.231	3%	11/4	0.478	
6	5	8%	2.494	- * - %	34	11%	51/4	1.748	415%	1½	0.635	
7	3	11%	3.270	-'8 -1/4	1%	1%	31/4	0.938	31/16	13/15	0.322	
7	4	11%	3.270	* %	11%	1%	41/4	1.231	37/8	11%	0.478	
	4	11%	3.270	18 3/8	1%	1%	514	1,748	415/16	145	0.635	
7	6	121/2	3.270	78 11/4	11/8	1%	7%	2.494	7	134	0.760	
17	0	12%	3.270	1.4	1.18	1 * /8	1 . 18	1				

# Table 9. Morse Taper Sockets — Hole and Shank Sizes

							$\bigcirc$	
	Morse	Taper		Morse	Taper		Morse	Taper
Size	Hole	Shank	Size	Hole	Shank	Size	Holc	Shank
1 by 2	No. 1	No. 2	2 by 5	No. 2	No. 5	4 by 4	No. 4	No. 4
1 by 3	No. 1	No. 3	3 by 2	No. 3	No. 2	4 by 5	No. 4	No. 5
1 by 4	No. 1	No. 4	3 by 3	No. 3	No. 3	4 by 6	No. 4	No. 6
1 by 5	No. 1	No. 5	3 by 4	No. 3	No. 4	5 by 4	No. 5	No. 4
2 by 3	No. 2	No. 3	3 by 5	No. 3	No. 5	5 by 5	No. 5	No. 5
2 by 4	No. 2	No. 4	4 by 3	No. 4	No. 3	5 by 6	No. 5	No. 6

# Table 10. Brown & Sharpe Taper Shanks

	Drill P D Reamer K S Plug Depth $\frac{1}{16}$ $\frac{1}{16}$											
		Dia. of Plug at	PI	ag Depth, Mill	P	Keyway from		Length of	Width of	Length of	Diame- ter of Arbor	Thick- ness of Arbor
Num- ber of	Taper per Foot	Small End	B & S ⁵ Stan-	Mach. Stan-	Miscell	End of Spindle K	Shank. Depth	Key- waya L	Key- way W	Arbor Tongue T	Arbor Tongue d	Arbor Tongue
Taper	(inch)	D	dard	dard		15%	13/16	*	.135	∛16	.170	1/8
15	.50200	.20000	146			1% 1%	1%	78 12	.165	716 1/4	.220	
2°	.50200	.25000	13/16		•••	1.% 1.5%	1%	72 - 54 - 54	.197	3/16	.282	·
		~~~~~	1½	•••	 134	1 ² %_2	21%	18 14	.197	- 16 %6	.282	3∕16
30	.50200	.31250	····		2	13%	2%	- %	.197	- 10 %	.282	3/16
<u> </u>				 1½		11364	121/20	11/16	.228	11/2	.320	
4	.50240	.35000	111/16	174		14%1	2%2	11/16	.228	N _L	.320	1/2
			1.516	11%		11/16	2%	10	,260		.420	14
5	.50160	.45000		• 4	2	11%	21/16	×4	.260	34	.420	4
[°]			216			21/16	2%	34	.260	X	.420	14
6	.50329	.50000	2%			21%	21%	36	.291	7/16	.460	¥32
	20023	100000			21/2	213/3	31/22	15/16	.322	15/22	.560	%6
7	.50147	.60000	2%			2233	313/32	15/16	.322	15/22	.560	%₁6
1				3		2%	31%	1%16	.322	15/22	.560	⁵ ∕ ₁₆
8	.50100	.75000	3%j6			321/64	41/8	1	.353	1/2	.710	1%2
		0001-	315	4		37%	4%	11/8	.385	%15	.860	×
9	.50085	.90010	41/4	\		4%	41/8	11%	.385	%15	.860	₹ĸ
	1		5			4 ²⁷ / ₃₂	5 ²³ / ₃₂	13/16	.447	21/ <u>52</u>	1.010	3/16
10	.51612	1.04465		5446		51 <u>%</u>	6 ¹ ½	1%	.447	24/32	1.010	%
1					632	6½	6 ¹⁵ /15	13/16	.447	21/32	1.010	7/16
<u> </u>	50100	1.24995	5 ¹⁵ / ₁₆			5 ²⁵ / ₃₂	621/2	1%16	,447	24/32	1.210	7/16
11	.50100	1.24995		634	,	6 ¹ %2	7½	17/16	.447	21/20	1,210	7/16
12	.49973	1.50010	71/2	71/4		615/16	715/16	11/2	.510	4	1.460	1/2
12	.49973	1.30010			6¼							
13	.50020	1.75005	7%			7%16	8% ₁₆	1½	.510	74	1.710	1/2
14	.50000	2.00000	8¼	8¼		81/32	9% <u>n</u>	111/16	.572	2%32	1.960	%
15	.5000	2.25000	834			813	9 ²¹ /2	1.11/16	.572	274 ₃₂	2.210	16
16	.50000	2.50000	91/4		_ ···	9	10¼	1%	,635	15/16	2.450	*
17	.50000	2.75000	9%						····			
18	.50000	3.00000	10¼									1

a pecial lengths of keyway are used instead of standard lengths in some places. Standard lengths need not be used when keyway is for driving only and not for admitting key to force out tool.
b*B & S Standard' Plug Depths are not used in all cases.
c Adopted by American Standards Association.

917

Table 11. Jarno Taper Shanks

THOR IN JUNITO A HEAT DOWNING											
	_	1.11.11.1									
($\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $										
		taper C =	no. of taper B	no. of taper							
Number	D - 8	Length	10 Diameter	2 Diameter	Тарег						
of Taper	Length A	B	C	Diameter	per foot						
2	1%	1	0.20	0.250	0.600						
3	1%	1½	0.30	0.375	0.600						
4	2¾	2	0.40	0.500	0.600						
5	2 ¹¹ / ₁₆	21/2	0.50	0.625	0.600						
6	33/16	3	0.60	0.750	0.600						
7	3 ¹¹ / ₁₆	315	0.70	0.875	0.600						
8	4¾ ₆	4	0.80	1.000	0.600						
9	4 ¹ / ₁₅	4½	0.90	1.125	0.600						
10	51/4	5	1.00	1.250	0.600						
11	5¾	5 <u>½</u>	1.10	1.375	0.600						
12	6¼	6	1.20	1.500	0.600						
13	6¾	6½	1.30	1.625	0.600						
14	7%	7	1.40	1.750	0.600						
15	7¾	7½	1.50	1.875	0.600						
16	8%	8	1.60	2.000	0.600						
17	8 ¹³ /16	8½	1.70	2.125	0.600						
18	9% ₁₆	9	1.80	2.250	0.600						
19	9 ¹³ /n	9½	1.90	2.375	0.600						
20	10%	10	2.00	2.500	0.600						

Tapers for Machine Tool Spindles.—Most lathe spindles have Morse tapers, most milling machine spindles have American Standard tapers, almost all smaller milling machine spindles have R8 tapers, and large vertical milling machine spindles have American Standard tapers. The spindles of drilling machines and the taper shanks of twist drills are made to fit the Morse taper. For lathes, the Morse taper is generally used, but lathes may have the Jartto, Brown & Sharpe, or a special taper. Of 33 lathe manufacturers, 20 use the Morse taper; 5, the Jarno; 3 use special tapers of their own; 2 use modified Morse (longer than the standard but the same taper); 2 use Reed (which is a short Jarno); 1 uses the Brown & Sharpe standard. For grinding machine centers, Jarno, Morse, and Brown & Sharpe tapers are used. Of ten grinding machine manufacturers, 3 use Brown & Sharpe; 3 use Morse; and 4 use Jarno. The Brown & Sharpe taper is used extensively for milling machine and dividing head spindles. The standard milling machine spindle adopted in 1927 by the milling machine manufacturers of the National Machine Tool Builders' Association (now The Association for Manufacturing Technology [AMT]), has a taper of 3½ inches per foot. This comparatively steep taper was adopted to ensure easy release of arbors.

918

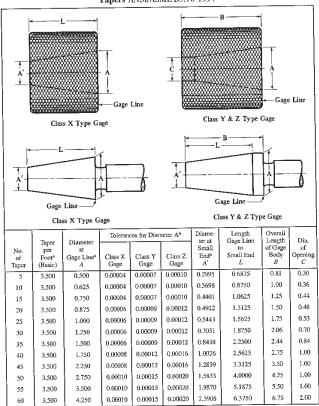


 Table 12. American National Standard Plug and Ring Gages for Steep Machine

 Tapers ANSI/ASME B5.10-1994

"The taper per foot and diameter A at gage line are basic dimensions. Dimensions in Column A' are calculated for reference only.

^bTolerances for diameter A are plus for plug gages and minus for ring gages.

All dimensions are in inches.

An understons are in incluse. The amounts of taper deviation for Class X, Class Y, and Class Z gages are the same, respectively, as the amounts shown for tolerances on diameter A. Taper deviation is the permissible allowance from true taper at any point of diameter in the length of the gage. On taper *plug* gages, this deviation may be applied only in the direction which *decreases* the rate of taper. On taper *ring* gages, this devi-ation may be applied only in the direction which *increases* the rate of taper. Tolerances on two-deci-mal dimensions are ±0.010.

919

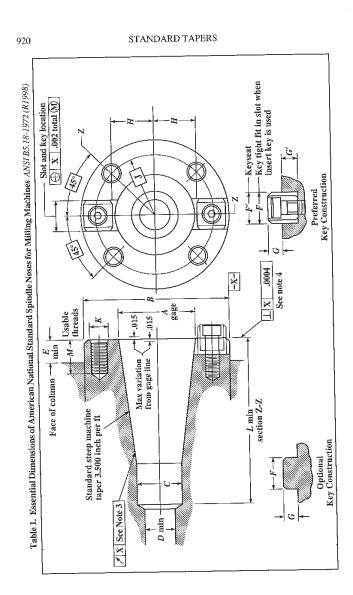
Table 13. Jacobs Tapers and Threads for Drill Chucks and Spindles

		-c	B			Ameri	H can Stand	ard Thread	Form
Taper Series	A	В	с	Taper per FL	Taper Series	А	В	с	Taper per Ft.
No. 0 No. 1 No. 2 No. 2 ⁹ No. 3	0.2500 0.3840 0.5590 0.5488 0.8110	0.22844 0.33341 0.48764 0.48764 0.74610	0.43750 0.65625 0.87500 0.75000 1.21875	0.59145 0.92508 0.97861 0.97861 0.63898	No. 4 No. 5 No. 6 No. 33	1.1240 J.4130 0.6760 0.6240	1.0372 1.3161 0.6241 0.5605	1.6563 1.8750 1.0000 1.0000	0.62886 0.62010 0.62292 0.76194
"Thes	e dimensi	ons are for	the No. 2 *	'short" tape	er.				

hese dimensions are for	the No. 2 ":	short" taper.	
-------------------------	--------------	---------------	--

Thread	Die	ameter D			Dian	Diameter E				Dimension F		
Size	Max.	Min.		Max		M	tin.	У	fax.	М	in.	
‰-24	0.531	0,516		0.324	5	0.3	3195	0.	135	0.1	15	
₹/6-24	0.633	0.618		0.324	5	0.3	195	0.	.135	0.1	15	
34-24	0.633	0.618		0.385		0.3	80	0.	.135	0.1	15	
1/2-20	0.860	0.845		0.510		0.4	505	0	135	0.1	115	
3%-11	1.125	1,110		0.635		0.6	530	0	.166		146	
5%-16	1.125	1.110		0.635		0.6	530	U	.166	0.1	L46	
45/4-16	1.250	1.235		0.713		0.7	708	0	166		146	
34-16	1.250	1.235		0.760)	0.3	755		166		146	
1-8	1.437	1.422		1.036			026		.281		250	
1-10	1.437	1.422		1.036			026		281		250	
1½-8	1.871	1.851		1,530	5	1.	526		0.343		312	
Thread*	0	7			P	lug Gage	Pitch Dia.			ige Pitch		
Size	Max	Min		ЦФ	(Jo	Net Go		Go	<u> </u>	lot Go	
5⁄ ₁₆ −24	0.3114	0.3042		0.437°	0.1	854	0.2902		0.2843	1 .	.2806	
⅔-24	0.3739	0.3667		0.5624	0.3	479	0.3528	1	0.3468		.3430	
%-20	0.4987	0.4906		0.562	0.4	1675	0,4731		0.4662		.4619	
%-11	0.6234	0.6113		0.687	0.:	5660	0.5732		0.5644		1.5589	
%16	0.6236	0.6142		0.687		5844	0.5906	ļ	0.5830		.5782	
45/64-16	0.7016	0.6922	1	0.687		5625	0.6687		0.6610).6561	
34-16	0.7485	0.7391		0.687		7094	0.7159		0.7079		0.7029	
18	1.000	0.9848		1.000		9188	0.9242		0.9188 0.9350),9134),9305	
1-10	1.000	0.9872	ļ	1.000		9350 4188	1,424Z		1.4188		1,4134	
1%-8	1.500	1.4848	1	1.000	1 1/	1100	3,92.92		A. PIUG			

 1½-8
 1.500
 1.4448
 1.000
 1.4185
 1.4242
 1.4185
 1.4433


 a Except for 1-8, 1-10, 1½-8 all threads are now manufactured to the American National Standard Unified Screw Thread System, Internal Class 2B, External Class 2A. Effective date 1976.
 b
 b

 b Tolerances for dimension *H* are as follows: 0.030 inch for thread sizes $\frac{1}{16}$ -24 to $\frac{3}{4}$ -16, inclusive and 0.125 inch for thread sizes 1-8 to 1½-8, inclusive.
 c
 Length for Jacobs 085/16 chuck is 0.375 inch, length for 1B5/16 chuck is 0.437 inch.

 d Length for Jacobs No. 1BS chuck is 0.437 inch.
 C
 Length for Jacobs No. 25 for Comercian Class 2A. Structure No. 25 for Class No. 185 chuck is 0.437 inch.

Usual Chuck Capacities for Different Taper Series Numbers: No. 0 taper, drill diameters, 0-5/32 inch; No. 1, $0-\frac{1}{4}$ inch; No. 2, $0-\frac{1}{2}$ inch; No. 2 "Short," $0-\frac{1}{2}$ inch; No. 3, $0-\frac{1}{2}$, $\frac{1}{4}$,

 $\begin{array}{l} & \gamma_{16} \mod (\gamma, 0, 4, \gamma_{8}-\gamma_{4}) \min(\gamma, 0, 5, \gamma_{8}-1; (\gamma, 0, 2, 0, -\gamma_{2}) \min(\gamma, 0, 5), 0+\gamma_{2}) \min(\gamma$

_ 1				STAN	JDAR1	D TAF	PERS
(R1998)	Depth of Usable Thread for Bolt M	0.62	0.81	0.81	00.1	1.25	
35,18-1972	Full Depth of Arbor Hole in Spindle Min, L	2,88	3.88	4.75	5.50	8.62	
nes ANSI1	Size of Threads for Bolt Hole UNC-2B	0.375-16	0.500-13	0.500-13	0.625-11	0.750-10	
ng Machi	Radius of Bolt Holc Circle J	1.0625 (Note 1)	1.3125 (Note I)	1.500 (Note I)	2,000(Nole 2)	3.500 (Note 2)	
s for Milli	Distance fromConter to Driving Keys H	0.660 0.654	0.910	1.160	1,410 1.404	2.420 2.414	
ndle Nose:	Minimum Depth of Kaysent	0.31	16.0	0.38	0.50	0.50	
Table 1. (Continued) Essential Dimensions of American National Standard Spindle Noses for Milling Machines ANSI R5. 18-1972 (R1998)	Minximum Height of Driving Key G	0.31	0.31	0.38	0.50	0.50	
ional Sta	Width of Kcyscat	0.624 0.625	0.624 0.625	0.749 0.750	0.999 1.000	000'I	
ican Nat	Width of Driving Koy F	0.6255 0.6252	0.6255 0.6252	0.7505 0.7502	1.0006 1.0002	1.0006 1.0002	
as of Amer	Minfman Dimension Spindle End to Column	0.50	0.62	0.62	0.75	1.50	
Dimensio	Clearance 110ie for Draw-in Bolt Min. D	0.66	0.66	0.78	90'T	1.38	
ssential	Pilot Dia. C	0.692 0.685	1.005 0.997	1,286	1,568 1,559	2.381 2.371	n in inches
tinued) E	Dia.of Spindle B	2.7493 2.7488	3,4993 3,4988	5999.5 39988	5.0618	8.7180 8.7175	All dimensions are given in inches
: 1. (Coni	Gage Dia.of 'laper'	1.250	1.750	2.250	2.750	4.250	dimension
Table	Size No.	30	40	45	50	60	Alldin

Tolerances:

Two-digit decimal dimensions \pm 0.010 unless otherwise specified. A-Tapee: Tolerance on rate of taper to be 0.001 inch per foot applied only in direction which decreases rate of taper. F'-Centrality of keyway with axis of taper 0.002 total at maximum material condition. (0.002 Total indicator variation) F-Centrality of solid key with axis of taper 0.002 total at maximum material condition. (0.002 Total indicator variation) F-Centrality of solid key with axis of taper 0.002 total at maximum material condition. (0.002 Total indicator variation) Note L: Holes spaced as shown and located within 0.010 inch diameter of ture position.

Note 3: Maximum turnout on test plug: 0.0004 at 1 linch projection from gage line. 0.0010 at 12 inch projection from gage line.

Note 4: Squareness of mounting face measured near mounting bolt hole circle.

922

STANDARD TAPERS

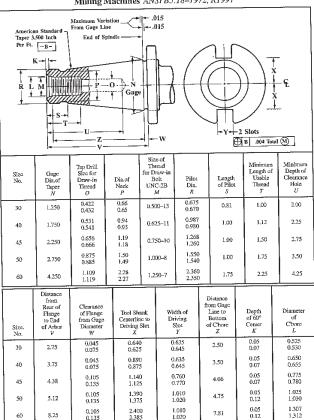


Table 2. Essential Dimensions of American National Standard Tool Shanks for Milling Machines ANSI B5.18–1972, R1991

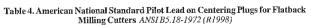
All dimensions are given in inches.

Tolerances: Two digit decimal dimensions ± 0.010 inch unless otherwise specified.

M-Permissible for Class 2B "NoGo" gage to enter five threads before interference.

N- Taper tolerance on rate of taper to be 0.001 inch per foot applied only in direction which increases rate of taper.

Y--Centrality of drive slot with axis of taper shank 0.004 inch at maximum material condition. (0.004 inch total indicator variation)


923

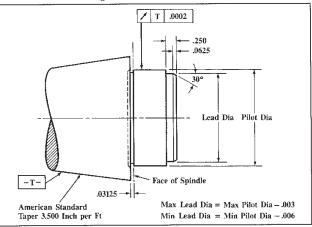

٦

Table 3. American National Standard Draw-in Bolt Ends ANSI B5.18–1972, R1991

-	{				† D +
Size No.	Length of Small End A	Length of Usable Thread at Small End B	Length of Usable Thread on Large Diam- eter C	Size of Thread for Large End UNC-2A M	Size of Thread for Small End UNC-2A D
30	1.06	0.75	0.75	0.500-13	0.375-16
40	1.25	1.00	1.12	0.625-11	0.500-13
45	1.50	1.12	1.25	0.75010	0.625-11
50	1.50	1.25	1.38	1.000–8	0.625-11
60	1.75	1.37	2.00	1.250-7	1.000-8

All dimensions are given in inches.

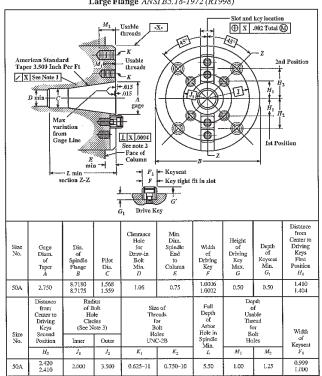


Table 5. Essential Dimensions for American National Standard Spindle Nose with Large Flange ANSIB5.18-1972 (R1998)

All dimensions are given in inches.

924

Tolerances: Two-digit decimal dimensions ± 0.010 unless otherwise specified.

A—Tolerance on rate of taper to be 0.001 inch per foot applied only in direction which decreases rate of taper.

F--Centrality of solid key with axis of taper 0.002 inch total at maximum material condition. (0.002 inch Total indicator variation)

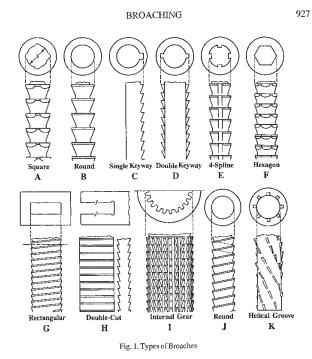
 F_1 —Centrality of keyseat with axis of taper 0.002 inch total at maximum material condition. (0.002 inch Total indicator variation)

Note 1: Maximum runout on test plug: 0.0004 at 1 inch projection from gage line. 0.0010 at 12 inch projection from gage line.

Note 2: Squareness of mounting face measured near mounting bolt hole circle.

Note 3: Holes located as shown and within 0.010 inch diameter of true position.

							9	1 2 3	111	,,,,,											_				_
	Length of Point when	Included Angle =118°	0.113	0.117	0.122	0.127	0,131	0.136	0.141	0.145	0.150	0,155	0.159	0.164	0.169	0.173	0.178	0.183	0.188	0.192	0.197	0.202	0.206	0.216	0.225
Length of Point on Twist Drills and Centering Tools	Length of Point when	Included Angle =90°	0.188	0.195	0.203	0.211	0.219	0.227	0.234	0,242	0.250	0.258	0.266	0.273	0.281	0.289	0.297	0.305	0.313	0.320	0.328	0.336	0.344	0.359	0.375
		Decimal Equivalent	0.3750	0,3906	0.4063	0.4219	0.4375	0.4531	0.4688	0.4844	0.5000	0.5156	0.5313	0.5469	0.5625	0.5781	0.5938	0.6094	0.6250	0.6406	0.6563	0.6719	0.6875	0.7188	0,7500
		Dia. Drill	*	₩,	[%] a	20/64	9 ¹ /2	29 29	15/	3/64	х,	19% Pr	26	9%	3%	3%4	97. 20.	3% ⁶⁹	₩	4) ₆₄	$\frac{2}{2}$	24 19	39 91	×2 2	*
		Included Angle =118°	0.055	0.056	0.057	0.057	0.058	0.059	0.060	0.060	0.061	0.062	0.063	0.064	0.067	0.068	0.070	0.075	0.080	0,084	0.089	0.094	0.098	0.103	0.108
	Longth of Point when	Included Angle ~90°	160.0	0,093	0.095	D.096	0.097	0.098	0.100	0.101	0.102	£0T.0	0.105	0.107	0,111	0.114	0.117	0.125	0.133	0.141	0,148	0.156	0.164	0.171	0.180
		Decimal Equivalent	0.1820	0.1850	0.1890	0161.0	0.1935	0961.0	0661'0	0.2010	0.2040	0.2055	0.2090	0.2130	0.2210	0.2280	0.2344	0.2500	0.2656	0.2813	0.2969	0.3125	0.3281	0.3438	0.3594
		Size or Dia.	+	13	12	=	10	6	00	7	6	5	4	6	۲۹	_	12/1	2	ц. 14	**	%	% 6	n a	Å	23/4
	Length of Point	Angle	0.031	0.032	0.033	0.033	0.034	0.035	0.036	650.0	0.041	0.042	0.043	0.044	0.045	0.046	0.046	0.047	0.048	0.048	0.050	0.051	0.052	0.053	0.054
	Length of Point	when Included Angle	0.052	0.054	0.055	0.056	0.057	0.058	0.060	0.065	0.068	0.070	0.072	0.074	0.075	0.076	0.077	0.079	0.080	0.081	0.083	0.085	0.087	0.089	0,090
		Decimal	01040	0.1065	0.1100	01110	0.1130	0.1160	0.1200	0.1285	0.1360	0.1405	0.1440	0.1470	0.1495	01520	01540	01570	01500	0.1610	0.1660	n 1695	0.1730	0.1770	0.1800
		Size	5	2 %	32	\$	33	32	31	30	29	28	1 16	Ĭ	3 F	1 2	t r	3 5	1 5	1	2	: =	: :	. 4	15
	Leugth of Point	when Included Angle	0110	0.012	0.013	0.013	0.014	0.016	0.017	0.018	610.0	0,000	1000	1000	77070		47070	*50.0	7000	0.007	0.028		10,000	0000	0,030
	Length of Point	when Included Angle	- 165	12010	12010	6000	0.023	0.026	0.028	0.030	0.032	7004	2000	1000	450.0	0000	0.040	140.0	14010	10.01	C+0-0		01010	0.050	0.051
		Decimal	Equivalent	0.0400	0.0420	0.0430	0.0465	0.0520	0.0550	20200	0.0635	ULYU U	0/0/00	00/070	001010	0.070	C9/070	0.0810	0.0520	0.0000	0.680.0	0200 G	006010	106010	5101 U
		Size	Drill	8 1	60 S	9 5	'n¥	3 ¥	3 2	5 8	3 \$	7	ñ (8	4	8	4	4	6 :	4 :	4 :	747	4	€ ;	6. 8
	<u> </u>		-					_					_	_											


BROACHES AND BROACHING

BROACHES AND BROACHING

The Broaching Process.—The broaching process may be applied in machining holes or other internal surfaces and also to many flat or other external surfaces. Internal broaching is applied in forming either symmetrical or irregular holes, grooves, or slots in machine parts, especially when the size or shape of the opening, or its length in proportion to diameter or width, make other machining processes impracticable. Broaching originally was utilized for such work as cutting keyways, machining round holes into square, hexagonal, or other shapes, forming splined holes, and for a large variety of other internal operations. The development of broaching machines and broaches finally resulted in extensive application of the process to external, flat, and other surfaces. Most external or surface broaching is done on machines of vertical design, but horizontal machines are also used for some classes of work. The broaching process is very rapid, accurate, and it leaves a finish of good quality. It is employed extensively in automotive and other plants where duplicate parts must be produced in large quantities and frequently to given dimensions within small tolerances.

Types of Broaches.—A number of typical broaches and the operations for which they are intended are shown by the diagrams, Fig. 1. Broach A produces a round-cornered, square hole. Prior to broaching square holes, it is usually the practice to drill a round hole having a diameter *d* somewhat larger than the width of the square. Hence, the sides are not completely finished, but this unfinished part is not objectionable in most cases. In fact, this clearance space is an advantage during the broaching operation in that it serves as a channel for the broaching lubricant; moreover, the broach has less metal to remove. Broach *B* is for finishing round holes. Broaching is superior to reaming for some classes of work, because the broach will hold its size for a much longer period, thus insuring greater accuracy. Broaches *C* and *D* are for cutting single and double keyways, respectively. Broach *B* is for forcing hexagonal holes. Rectangular holes are finished by broach as public ways, the substance of the side of the stronger than it would be if the tech were opposite and parallel to each other; thin work cannot drop between the inclined iteeth, as it tends to do when the teeth are at right angles, because at least two teeth are always cutting; the inclination in opposite directions neutralizes the lateral thrust. The teeth on the edges are staggered, the teeth on one side being midway between the teeth on the other solues line. Actual line. A double cut broach is stronger the stry is for finishing, simultaneously, both sides *f* of a slot, and for similar work. Broach *I* is the style used for forming the teeth in internal gears. It is practically a series of gear-shaped cutters, the outside diameters of which gradually increase toward the finishing end of the broach. *B* for roundholes but differs from style *B* in that it has a continuous helical cutting edge. Some prefer this form because it gives a shearing cut. Broach *I* is the style used for forming the teeth in internal gears. It is practically a series of

In addition to the typical broaches shown in Fig. 1, many special designs are now in use for performing more complex operations. Two surfaces on opposite sides of a casting or forging are sometimes machined simultaneously by twin broaches and, in other cases, three or four broaches are drawn through a part at the same time, for finishing as many duplicate holes or surfaces. Notable developments have been made in the design of broaches for external or "surface" broaching.

Pitch of Broach Teeth.—The pitch of broach teeth depends upon the depth of cut or chip thickness, length of cut, the cutting force required and power of the broaching machine. In the pitch formulas which follow

- L = length, in inches, of layer to be removed by broaching
- d = depth of cut per tooth as shown by Table 1 (For internal broaches, d = depth of cut as measured on one side of broach or one-half difference in diameters of successive teeth in case of a round broach)
- F = a factor. (For brittle types of material, F = 3 or 4 for roughing teeth, and 6 for finishing teeth. For ductile types of material, F = 4 to 7 for roughing teeth and 8 for finishing teeth.)
- b = width of inches, of layer to be removed by broaching
- P = pressure required in tons per square inch, of an area equal to depth of cut times width of cut, in inches (Table 2)
- T =usable capacity, in tons, of broaching machine = 70 per cent of maximum tonnage

928

BROACHING

	Depth of C Tooth, Ir		Face Angle	Clearance Angle, Degrees			
Material to be Broached	Roughing ^a	Finishing	or Rake, Degrees	Roughing	Finishing		
Steel, High Tensile Strength	0.0015-0.002	0.0005	10-12	1.53	0.5-1		
Steel, Medium Tensile Strength	0.00250.005	0.0005	14-i8	1.5-3	0.5-1		
Cast Steel	0.00250.005	0.0005	10	1.53	0.5		
Mallcable Iron	0.0025-0.005	0.0005	7	1.5-3	0.5		
Cast Iron, Soft	0.006 -0.010	0.0005	10-15	1.5-3	0.5		
Cast Iron, Hard	0.003 -0.005	0.0005	5	1.5-3	0.5		
Zinc Die Castings	0.005 -0.010	0.0010	12 ^b	5	2		
Cast Bronze	0.010 -0.025	0.0005	8	0	0		
Wrought Aluminum							
Alloys	0.005 -0.010	0.0010	15 ^b	3	1		
Cast Aluminum Alloys	0.005 -0.010	0.0010	12 ^b	3	1		
Magnesium Die Castings	0.0100.015	0.0010	205	3	1		

Table 1. Designing Data for Surface Broaches

^aThe lower depth-of-cut values for roughing are recommended when work is not very rigid, the tol-erance is small, a good finish is required, or length of cut is comparatively short. ^bIn broaching these materials, smooth surfaces for tooth and chip spaces are especially recommended.

Table 2. Broaching Pressure P for Use in Pitch Formula (2)

	D	epth d of	Pressure P.			
	0.024	0.010	0.004	0.002	0.001	Side-cutting
Material to be Broached	Pre	ssure P in	Broaches			
Steel, High Ten. Strength				250	312	200004"cut
Steel, Med. Ten. Strength			158	185	243	143006"cut
Cast Steel	,,,,	***	128	158		115006" cut
Malleable Iron			108	128		100006" cut
Cast Iron		115	115	143		115020" cut
Cast Brass		50	50			
Brass, Hot Pressed	1	85	85			
Zinc Die Castings		70	70			
Cast Bronze	35	35]			
Wrought Aluminum	1	70	70			
Cast Aluminum		85	85			
Magnesium Alloy	35	35				

The minimum pitch shown by Formula (1) is based upon the receiving capacity of the chip space. The minimum, however, should not be less than 0.2 inch unless a smaller pitch is required for exceptionally short cuts to provide at least two teeth in contact simultaneously, with the part being broached. A reduction below 0.2 inch is seldom required in surface broaching but it may be necessary in connection with internal broaching.

Minimum pitch = $3\sqrt{LdF}$

(1)

Whether the minimum pitch $= S_A E E^A$ (1) Whether the minimum pitch may be used or not depends upon the power of the available machine. The factor F in the formula provides for the increase in volume as the material is broached into chips. If a broach has adjustable inserts for the finishing teeth, the pitch of the finishing teeth may be smaller than the pitch of the roughing teeth because of the smaller depth d of the cut. The higher value of F for finishing teeth prevents the pitch from becom-ing too small, so that the spirally curled chips will not be crowded into too small a space.

BROACHING

The pitch of the roughing and finishing teeth should be equal for broaches without separate inserts (notwithstanding the different values of d and F) so that some of the finishing teeth may be ground into roughing teeth after wear makes this necessary.

Allowable pitch =
$$\frac{dLbP}{r}$$
 (2)

929

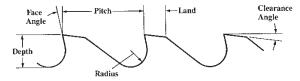
If the pitch obtained by Formula (2) is larger than the minimum obtained by Formula (1), this larger value should be used because it is based upon the usable power of the machine. As the notation indicates, 70 per cent of the maximum tonnage *T* is taken as the usable capacity. The 30 per centreduction is to provide a margin for the increase in broaching load resulting from the gradual dulling of the cutting edges. The procedure in calculating both minimum and allowable pitches will be illustrated by an example.

Example: Determine pitch of broach for cast iron when L=9 inches; d=0.004; and F=4.

Minimum pitch =
$$3\sqrt{9 \times 0.004 \times 4} = 1.14$$

Next, apply Formula (2). Assume that b = 3 and T = 10; for cast iron and depth d of 0.004, P = 115 (Table 2). Then,

Allowable pitch =
$$\frac{0.004 \times 9 \times 3 \times 115}{10} = 1.24$$


This pitch is safely above the minimum. If in this case the usable tonnage of an available machine were, say, 8 tons instead of 10 tons, the pitch as shown by Formula (2) might be increased to about 1.5 inches, thus reducing the number of teeth cutting simultaneously and, consequently, the load on the machine; or the cut per tooth might be reduced instead of increasing the pitch, especially if only a few teeth are in cutting contact, as might be the case with a short length of cut. If the usable tonnage in the preceding example were, say, 15, then a pitch of 0.84 would be obtained by Formula (2); hence the pitch in this case should not be less than the minimum of approximately 1.14 inches.

Depth of Cut per Tooth.—The term "depth of cut" as applied to surface or external broaches means the difference in the heights of successive teeth. This term, as applied to internal broaches for round, hexagonal or other holes, may indicate the total increase in the diameter of successive teeth; however, to avoid confusion, the term as here used means in all cases and regardless of the type of broach, the depth of cut as measured on one side.

In broaching free cutting steel, the Broaching Tool Institute recommends 0.003 to 0.006 inch depth of cut for surface broaching; 0.002 to 0.003 inch for multispline broaching; and 0.0007 to 0.0015 inch for round hole broaching. The accompanying table contains data from a German source and applies specifically to surface broaches. All data relating to depth of cut are intended as a general guide only. While depth of cut is based primarily upon the machinability of the material, some reduction from the depth thus established may be required particularly when the work supporting fixture in surface broaching is not sufficiently rigid to resist the thrust from the broaching operation. In some cases, the pitch and cutting length may be increased to reduce the thrust force. Another possible remedy in surface broaching certain classes of work is to use a side-cutting broach instead of the ordinary depth cutting type. A broach designed for side cutting section is followed by teeth arranged for depth cutting to obtain the required. The side cutting section is followed by teeth arranged for depth cutting from the proaching require a reduced cut per tooth to minimize work deflection resulting from the pressure of the cut. See *Cutting Speed for Broaching*.

930

Terms Commonly Used in Broach Design

Face Angle or Rake.—The face angle (see diagram) of broach teeth affects the chip flow and varies considerably for different materials. While there are some variations in practice, even for the same material, the angles given in the accompanying table are believed to represent commonly used values. Some broach designers increase the rake angle for finishing teeth in order to improve the finish on the work.

Clearance Angle.—The clearance angle (see illustration) for roughing steel varies from 1.5 to 3 degrees and for finishing steel from 0.5 to 1 degree. Some recommend the same clearance angles for cast iron and others, larger clearance angles varying from 2 to 4 or 5 degrees. Additional data will be found in Table 1.

Land Width.—The width of the land usually is about $0.25 \times$ pitch. It varies, however, from about one-fourth to one-third of the pitch. The land width is selected so as to obtain the proper balance between tooth strength and chip space.

Depth of Broach Teeth.—The tooth depth as established experimentally and on the basis of experience, usually varies from about 0.37 to 0.40 of the pitch. This depth is measured radially from the cutting edge to the bottom of the tooth fillet.

Radius of Tooth Fillet.—The "gullet" or bottom of the chip space between the teeth should have a rounded fillet to strengthen the broach, facilitate curling of the chips, and safeguard against cracking in connection with the hardening operation. One rule is to make the radius equal to one-fourth the pitch. Another is to make it equal 0.4 to 0.6 the tooth depth. A third method preferred by some broach designers is to make the radius equal one-third of the sum obtained by adding together the land width, one-half the tooth depth, and one-fourth of the pitch.

Total Length of Broach.—After the depth of cut per tooth has been determined, the total amount of material to be removed by a broach is divided by this docimal to ascertain the number of cutting teeth required. This number of teeth multiplied by the pitch gives the length of the active portion of the broach. By adding to this dimension the distance over three or four straight teeth, the length of a pilot to be provided at the finishing end of the broach, and the length of a shank which must project through the work and the faceplate of the machine to the draw-head, the overall length of the broach is found. This calculated length is often greater than the stroke of the machine, or greater than is practical for a broach enter the stroke of the diameter required. In such cases, a set of broaches must be used.

Chip Breakers.—The teeth of broaches frequently have rounded chip-breaking grooves located at intervals along the cutting edges. These grooves break up wide curling chips and prevent them from clogging the chip spaces, thus reducing the cutting pressure and strain on the broach. These chip-breaking grooves are on the roughing teeth only. They are staggered and applied to both round and flat or surface broaches. The grooves are formed by a round edged grinding wheel and usually vary in width from about $\frac{1}{2}_{21}$ to $\frac{1}{2}_{21}$ inch depending upon the size of broach. The more ductile the material, the wider the chip breaker grooves should be and the smaller the distance between them. Narrow slotting broaches may have the right- and left-hand corners of alternate teeth beveled to obtain chip-breaking action.

BROACHING

Shear Angle.—The teeth of surface broaches ordinarily are inclined so they are not at right angles to the broaching movement. The object of this inclination is to obtain a shearing cut which results in smoother cutting action and an improvement in surface finish. The shearing cut also tends to eliminate troublesome vibration. Shear angles for surface broaches are not suitable for broaching slots or any profiles that resist the outward movement of the chips. When the teeth are inclined, the fixture should be designed to resist the resulting thrusts unless it is practicable to incline the teeth of right- and left-hand sections in opposite directions to neutralize the thrust. The shear angle usually varies from 10 to 25 desrees.

Types of Broaching Machines.—Broaching machines may be divided into horizontal and vertical designs, and they may be classified further according to the method of operation, as, for example, whether a broach in a vertical machine is pulled up or pulled down in forcing it through the work. Horizontal machines usually pull the broach through the work in internal broaching but short rigid broaches may be pushed through. External surface broaching is also done on some machines of horizontal design, but usually vertical machines are employed for flat or other external broaching. Although parts usually are broached by traversing the broach itself, some machines are designed to hold the broach or broaches stationary during the actual broaching operation. This principle has been applied both to internal and surface broaching.

Vertical Duplex Type: The vertical duplex type of surface broaching machine has two slides or rams which move in opposite directions and operate alternately. While the broach connected to one slide is moving downward on the cutting stroke, the other broach and slide is returning to the starting position, and this returning time is utilized for reloading the fixture on that side; consequently, the broaching operation is practically continuous. Each ram or slide may be equipped to perform a separate operation on the same part when two operations are required.

Pull-up Type: Vertical hydraulically operated machines which pull the broach or broaches up through the work are used for internal broaching of holes of various shapes, for broaching bushings, splined holes, small internal gears, etc. A typical machine of this kind is so designed that all broach handling is done automatically.

Pull-down Type: The various movements in the operating cycle of a hydraulic pulldown type of machine equipped with an automatic broach-handling slide, are the reverse of the pull-up type. The broaches for a pull-down type of machine have shanks on each end, there being an upper one for the broach-handling slide and a lower one for pulling through the work.

Hydraulic Operation: Modern broaching machines, as a general rule, are operated hydraulically rather than by mechanical means. Hydraulic operation is efficient, flexible in the matter of speed adjustments, low in maintenance cost, and the "smooth" action required for fine precision finishing may be obtained. The hydraulic pressures required, which frequently are 800 to 1000 pounds per square inch, are obtained from a motor-driven pump forming part of the machine. The cutting speeds of broaching machines frequently are between 20 and 30 feet per minute, and the return speeds often are double the cutting speed, or higher, to reduce the idle period.

Broaching Difficulties.—The accompanying table has been compiled from information supplied by the National Broach and Machine Co. and presents some of the common broaching difficulties, their causes and means of correction.

BROACHING

932

Causes of Broaching Difficulties

-

Broaching Difficulty	Possible Causes
Stuck broach	Insufficient machine capacity; dulled teeth; clogged chip gullets; failure of power during cutting stroke. To remove a struck broach, workpiece and broach are removed from the machine as a unit; never try to back out broach by reversing machine. If broach does not loosen by tapping workpiece lightly and trying to slide it off its starting end, mount workpiece and broach in a lathe and turn down workpiece to the tool surface. Workpiece may be sawed longitudinally into several sections in order to free the broach. Check broach design, perhaps tooth relief (back off) angle is too small or depth of cut per tooth is too great.
Galling and pickup	Lack of homogeneity of material being broached—uneven hardness, porosity; improper or insulficient coolant; poor broach design, mutilated broach; dull broach; improperly sharpened broach; improperly designed or outworn fixtures. Good broach design will do away with possible chip build-up on tooth faces and excessive heating. Grinding of teeth should be accurate so that the correct gullet contour is maintained. Contour should be fair and smooth.
Broach breakage	Overloading; broach dullness; improper sharpening; interrupted cutting stroke; backing up broach with workpiece in fixture; allowing broach to pass entirely through guide hole; ill fitting and/or sharp edged key; crooked holes; untrue locating surface; excessive hardness of workpiece; insufficient clearance angle; sharp corners on pull end of broach. When grinding bevels on pull end of broach use wheel that is not too pointed.
Chatter	Too few teeth in cutting contact simultaneously; excessive hardness of material being broached; loose or poorly constructed tooling; surging of ram due to load variations. Chatter can be alleviated by changing the broaching speed, by using shear cutting teeth instead of right angle teeth, and by changing the coolant and the face and relief angles of the teeth.
Drifting or misalignment of tool during cutting stroke	Lack of proper alignment when broach is sharpened in grinding machine, which may be caused by dirt in the female center of the broach; inadequate support of broach during the cutting stroke, on a horizontal machine espe- cially; body diameter too small; cutting resistance variable around LD. of hole due to lack of symmetry of surfaces to be cut; variations in hardness around I.D. of hole; too few teeth in cutting contact.
Streaks in broached surface	Lands too wide; presence of forging, casting or annealing scale; metal pickup; presence of grinding burrs and grinding and cleaning abrasives.
Rings in the broached hole	Due to surging resulting from uniform pitch of teeth; presence of sharpen- ing burrs on broach; tooth clearance angle too large; locating face not smooth or square; broach not supported for all cutting teeth passing through the work. The use of differential tooth spacing or shear cutting teeth helps in preventing surging. Sharpening burrs on a broach may be removed with a wood block.

TOOL WEAR

Tool Wear

Metal cutting tools wear constantly when they are being used. A normal amount of wear should not be a cause for concern until the size of the worn region has reached the point where the tool should be replaced. Normal wear cannot be avoided and should be differentiated from abnormal tool breakage or excessively fast wear. Tool breakage and an excessive rate of wear indicate that the tool is not operating correctly and steps should be taken to correct this situation.

There are several basic mechanisms that cause tool wear. It is generally understood that tools wear as a result of abrasion which is caused by hard particles of work material plowing over the surface of the tool. Wear is also caused by diffusion or alloying between the work material and the tool material. In regions where the conditions of contact are favor-able, the work material reacts with the tool material causing an attrition of the tool material. The rate of this attrition is dependent upon the temperature in the region of contact and the reactivity of the tool and the work materials with each other. Diffusion or alloying also occurs where particles of the work material are welded to the surface of the tool. These welded deposits are often quite visible in the form of a built-up edge, as particles or a layer weided deposits are often quite visible in the form of a contrapt edge, as particles to a rayed of work material inside a crater or as small mounds attached to the face of the tool. The dif-fusion or alloying occurring between these deposits and the tool weakens the tool material below the weld. Frequently these deposits are again rejoined to the chip by welding or they are simply broken away by the force of collision with the passing chip. When this happens, a small amount of the tool material may remain attached to the deposit and be plucked from a smart another of the tool, to be carried away with the chip. This mechanism can cause chips to be broken from the cutting edge and the formation of small craters on the tool face called pull-outs. It can also contribute to the enlargement of the larger crater that sometimes forms behind the cutting edge. Among the other mechanisms that can cause tool wear are severe thermal gradients and thermal shocks, which cause cracks to form near the cutting edge, ultimately leading to tool failure. This condition can be caused by improper tool grinding procedures, heavy interrupted cuts, or by the improper application of cutting flu-ids when machining at high cutting speeds. Chemical reactions between the active constit-uents in some cutting fluids sometimes accelerate the rate of tool wear. Oxidation of the heated metal near the cutting edge also contributes to tool wear, Datication of the heated metal near the cutting edge also contributes to tool wear, particularly when fast cut-ting speeds and high cutting temperatures are encountered. Breakage of the cutting edge caused by overloading, heavy shock loads, or improper tool design is not normal wear and when the temperature of the statement of t should be corrected.

The wear mechanisms described bring about visible manifestations of wear on the tool which should be understood so that the proper corrective measures can be taken, when required. These visible signs of wear are described in the following paragraphs and the corrective measures that might be required are given in the accompanying Tool Trouble-Shooting Check List. The best procedure when trouble shooting is to try to correct only one condition at a time. When a correction has been made it should be checked. After one condition has been corrected, work can then start to correct the next condition.

Flank Wear: Tool wear occurring on the flank of the tool below the cutting edge is called flank wear. Flank wear always takes place and cannot be avoided. It should not give rise to concern unless the rate of flank wear is too fast or the flank wear land becomes too large in size. The size of the flank wear is no be measured as the distance between the top of the cutting edge and the bottom of the flank wear land. In practice, a visual estimate is usually made instead of a precise measurement, although in many instances flank wear is ignored and the tool wear is "measured" by the loss of size on the part. The best measure of tool wear, however, is flank wear. When it becomes too large, the rubbing action of the wear land against the workpiece increases and the cutting edge must be replaced. Although there are many exceptions, as a rough estimate, high-speed steel tools should be replaced when the width of the flank wear land reaches 0.005 to 0.010 inch

for finish turning and 0.030 to 0.060 inch for rough turning; and for cemented carbides 0.005 to 0.010 inch for finish turning and 0.020 to 0.040 inch for rough turning.

Under ideal conditions which, surprisingly, occur quite frequently, the width of the flank wear land will be very uniform along its entire length. When the depth of cut is uneven, such as when turning out-of-round stock, the bottom edge of the wear land may become somewhat slanted, the wear land being wider toward the nose. A jagged-appearing wear land usually is evidence of chipping at the cutting edge. Sometimes, only one or two sharp depressions of the lower edge of the wear land will appear, to indicate that the cutting edge has chipped above these depressions. A deep notch will sometimes occur at the "depth of cut line," or that part of the cutting opposite the original surface of the work. This can be caused by a hard surface scale on the work, by a work-hardened surface layer on the work, or when machining high-temperature alloys. Often the size of the wear land get in this region. Under certain conditions, when machining with carbides, it can be an indication of deformation of the cutting edge in the region of the nose.

When a sharp tool is first used, the initial amount of flank wear is quite large in relation to the subsequent total amount. Under normal operating conditions, the width of the flank wear land will increase at a uniform rate until it reaches a critical size after which the cutting edge breaks down completely. This is called catastrophic failure and the cutting edge should be replaced before this occurs. When cutting at slow speeds with high-speed steel tools, there may be long periods when no increase in the flank wear can be observed. For a given work material and tool material, the rate of flank wear is primarily dependent on the cutting speed and then the feed rate.

Cratering: A deep crater will sometimes form on the face of the tool which is easily recognizable. The crater forms at a short distance behind the side cutting edge leaving a small shelf between the cutting edge and the edge of the crater. This shelf is sometimes covered with the built-up edge and at other times it is uncovered. Often the bottom of the crater is obscured with work material that is welded to the tool in this region. Under normal operating conditions, the crater will gradually enlarge until it breaks through a part of the cutting edge. Usually this occurs on the end cutting edge just behind the nose. When this takes place, the flank wear at the nose increases rapidly and complete tool failure follows shortly. Sometimes cratering cannot be avoided and a slow increase in the size of the crater is considered normal. However, if the rate of crater growth is rapid, leading to a short tool life, corrective measures must be taken.

Cutting Edge Chipping: Small chips are sometimes broken from the cutting edge which accelerates tool wear but does not necessarily cause immediate tool failure. Chipping can be recognized by the appearance of the cutting edge and the flank wear land. A sharp depression in the lower edge of the wear land is a sign of chipping and if this edge of the wear land has a jagged appearance it indicates that a large amount of chipping is filled up with work material that is tightly welded in place. This occurs very rapidly when chipping is caused by a built-up edge on the face of the tool. In this manner the damage to the cutting edge is healed; however, the width of the wear land below the chip is usually increased and the tool life is shortened.

Deformation: Deformation occurs on carbide cutting tools when taking a very heavy cut using a slow cutting speed and a high feed rate. A large section of the cutting edge then becomes very hot and the heavy cutting pressure compresses the nose of the cutting edge, thereby lowering the face of the tool in the area of the nose. This reduces the relief under the nose, increases the width of the wear land in this region, and shortens the tool life.

Surface Finish: The finish on the machined surface does not necessarily indicate poor cutting tool performance unless there is a rapid deterioration. A good surface finish is, however, sometimes a requirement. The principal cause of a poor surface finish is the

built-up edge which forms along the edge of the cutting tool. The elimination of the builtup edge will always result in an improvement of the surface finish. The most effective way to eliminate the built-up edge is to increase the cutting speed. When the cutting speed is increased beyond a certain critical cutting speed, there will be a rather sudden and large improvement in the surface finish. Cemented carbide tools can operate successfully at higher cutting speeds, where the built-up edge does not occur and where a good surface finish is obtained. Whenever possible, cemented carbide tools should be operated at cutting speeds where a good surface finish will result. There are times when such speeds are not possible. Also, high-speed tools cannot be operated at the speed where the built-up edge does not form. In these conditions the most effective method of obtaining a good surface finish is to employ a cutting fluid that has active sulphur or chlorine additives.

Cutting tool materials that do not alloy readily with the work material are also effective in obtaining an improved surface finish. Straight titanium carbide and diamond are the two principal tool materials that fall into this category.

The presence of feed marks can mar an otherwise good surface finish and attention must be paid to the feed rate and the nose radius of the tool if a good surface finish is desired. Changes in the tool geometry can also be helpful. A small "flat," or secondary cutting edge, ground on the end cutting edge behind the nose will sometimes provide the desired surface finish. When the tool is in operation, the flank wear should not be allowed to become too large, particularly in the region of the nose where the finished surface is produced.

Sharpening Twist Drills.— Twist drills are cutting tools designed to perform concurrently several functions, such as penetrating directly into solid material, ejecting the removed chips outside the cutting area, maintaining the essentially straight direction of the advance movement and controlling the size of the drilled hole. The geometry needed for these multiple functions is incorporated into the design of the twist drill in such a manner that it can be retained even after repeated sharpening operations. Twist drills are resharpened many times during their service life, with the practically complete restitution of their original operational characteristics. However, in order to assure all the benefits which the design of the twist drill is capable of providing, the surfaces generated in the sharpening process must agree with the original form of the tool's operating surfaces, unless a change of shape is required for use on a different work material.

The principal elements of the tool geometry which are essential for the adequate cutting performance of twist drills are shown in Fig. 1. The generally used values for these dimensions are the following:

Point angle: Commonly 118°, except for high strength steels, 118° to 135°; aluminum alloys, 90° to 140°; and magnesium alloys, 70° to 118°.

Helix angle: Commonly 24° to 32°, except for magnesium and copper alloys, 10° to 30°. Lip relief angle: Commonly 10° to 15°, except for high strength or tough steels, 7° to 12°.

The lower values of these angle ranges are used for drills of larger diameter, the higher values for the smaller diameters. For drills of diameters less than $\frac{1}{2}$ inch, the lip relief angles are increased beyond the listed maximum values up to 24°. For soft and free

machining materials, 12° to 18° except for diameters less than $\frac{1}{4}$ inch, 20° to 26°.

Relief Grinding of the Tool Flanks.—In sharpening twist drills the tool flanks containing the two cutting edges are ground. Each flank consists of a curved surface which provides the relief needed for the easy penetration and free cutting of the tool edges. In grinding the flanks, Fig. 2, the drill is swung around the axis A of an imaginary cone while resting in a support which holds the drill at one-half the point angle B with respect to the face of the grinding wheel. Feed f for stock removal is in the direction of the drill axis. The relief angle is usually measured at the periphery of the twist drill and is also specified by that value. It is not a constant but should increase toward the center of the drill.

The relief grinding of the flank surfaces will generate the chisel angle on the web of the twist drill. The value of that angle, typically 55° , which can be measured, for example, with the protractor of an optical projector, is indicative of the correctness of the relief grinding.

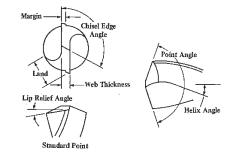


Fig. 1. The principal elements of tool geometry on twist drills.

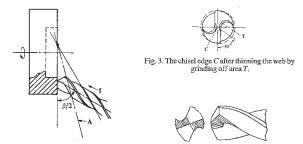


Fig. 2. In grinding the face of the twist drill the tool is swung around the axis A of an imaginary cone, while resting in a support tilted by half of the point angle β with respect to the face of the grinding wheel. Feed f for slock removal is in the direction of the drill axis.

936

Fig. 4. Split point or "crankshaft" type web thinning.

or the drift axis. **Drill Point Thinning.**—The chisel edge is the least efficient operating surface element of the twist drill because it does not cut, but actually squeezes or extrudes the work material. To improve the inefficient cutting conditions caused by the chisel edge, the point width is often reduced in a drill-point thinning operation, resulting in a condition such as that shown in Fig. 3. Point thinning is particularly desirable on larger size drills and also on those which become shorter in usage, because the thickness of the web increases toward the shaft of the twist drill, thereby adding to the length of the chisel edge. The extent of point thinning is limited by the minimum strength of the web needed to avoid splitting of the drill point under the influence of focuting forces.

Both sharpening operations—the relieved face grinding and the point thinning—should be carried out in special drill grinding machines or with twist drill grinding fixtures mounted on general-purpose tool grinding machines, designed to assure the essential accu-

racy of the required tool geometry. Off-hand grinding may be used for the important web thinning when a special machine is not available; however, such operation requires skill and experience.

Improperly sharpened twist drills, e.g. those with unequal edge length or asymmetrical point angle, will tend to produce holes with poor diameter and directional control.

For deep holes and also drilling into stainless steel, titanium alloys, high temperature alloys, nickel alloys, very high strength materials and in some cases tool steels, split point grinding, resulting in a "crankshaft" type drill point, is recommended. In this type of pointing, see Fig. 4, the chisel edge is entirely eliminated, extending the positive rake cutting edges to the center of the drill, thereby greatly reducing the required thrust in drilling. Points on modified-point drills must be restored after sharpening to maintain their increased drilling efficiency.

Sharpening Carbide Tools.—Cemented carbide indexable inserts are usually not resharpened but sometimes they require a special grind in order to form a contour on the cutting edge to suit a special purpose. Brazed type carbide cutting tools are resharpened after the cutting edge has become worn. On brazed carbide cutting tools are resharpened should not be allowed to become excessive before the tool is re-sharpened. One method of determining when brazed carbide tools need resharpening is by periodic inspection of the flank wear and the condition of the face. Another method is to determine the amount of production which is normally obtained before excessive wear has taken place, or to determine the equivalent period of time. One disadvantage of this method is that slight variations in the work material will often cause the wear rate not to be uniform and the number of parts machined before regrinding will not be the same each time. Usually, sharpening should not require the removal of more than 0.005 to 0.010 inch of carbide.

General Procedure in Carbide Tool Grinding: The general procedure depends upon the kind of grinding operation required. If the operation is to resharpen a dull tool, a diamond wheel of 100 to 120 grain size is recommended although a finer wheel—up to 150 grain size—is sometimes used to obtain a better finish. If the tool is new or is a "standard" design and changes in shape are necessary, a 100-grit diamond wheel is recommended for rough grind the carbide with a vitrified silicon carbide wheel, the finish grinding being done with a diamond wheel. A final operation commonly designated as lapping may or may not be employed for obtaining an extra-fine finish.

Wheel Speeds: The speed of silicon carbide wheels usually is about 5000 feet per minute. The speeds of diamond wheels generally range from 5000 to 6000 feet per minute; yet lower speeds (550 to 3000 fpm) can be effective.

Offhand Grinding: In grinding single-point tools (excepting chip breakers) the common practice is to hold the tool by hand, press it against the wheel face and traverse it continuously across the wheel face while the tool is supported on the machine rest or table which is adjusted to the required angle. This is known as "offhand grinding" to distinguish it from the machine grinding of cutters as in regular cutter grinding practice. The selection of wheels adapted to carbide tool grinding is very important.

Silicon Carbide Wheels.—The green colored silicon carbide wheels generally are preferred to the dark gray or gray-black variety, although the latter are sometimes used.

Grain or Grit Sizes: For roughing, a grain size of 60 is very generally used. For finish grinding with silicon carbide wheels, a finer grain size of 100 or 120 is common. A silicon carbide wheel such as C60-I-7V may be used for grinding both the steel shank and carbide tip. However, for under-cutting steel shanks up to the carbide tip, it may be advantageous to use an aluminum oxide wheel suitable for grinding softer, carbon steel.

Grade: According to the standard system of marking, different grades from soft to hard are indicated by letters from A to Z. For carbide tool grinding fairly soft grades such as G, H, I, and J are used. The usual grades for roughing are I or J and for finishing H, I, and J. The

grade should be such that a sharp free-cutting wheel will be maintained without excessive grinding pressure. Harder grades than those indicated tend to overheat and crack the carbide.

Structure: The common structure numbers for carbide tool grinding are 7 and 8. The larger cup-wheels (10 to 14 inches) may be of the porous type and be designated as 12P. The standard structure numbers range from 1 to 15 with progressively higher numbers indicating less density and more open wheel structure.

Diamond Wheels.—Wheels with diamond-impregnated grinding faces are fast and cool cutting and have a very low rate of wear. They are used extensively both for resharpening and for finish grinding of carbide tools when preliminary roughing is required. Diamond wheels are also adapted for sharpening multi-tooth cutters such as milling cutters, reamers, etc., which are ground in a cutter grinding machine.

Resinoid bonded wheels are commonly used for grinding chip breakers, milling cutters, reamers or other multi-tooth cutters. They are also applicable to precision grinding of carbide dies, gages, and various external, internal and surface grinding operations. Fast, cool cutting action is characteristic of these wheels.

Metal bonded wheels are often used for offhand grinding of single-point tools especially when durability or long life and resistance to grooving of the cutting face, are considered more important than the rate of cutting. Vitrified bonded wheels are used both for roughing of chipped or very dull tools and for ordinary resharpening and finishing. They provide rigidity for precision grinding, a porous structure for fast cool cutting, sharp cutting action and durability.

Diamond Wheel Grit Sizes.—For roughing with diamond wheels a grit size of 100 is the most common both for offhand and machine grinding.

Grit sizes of 120 and 150 are frequently used in offhand grinding of single point tools 1) for resharpening; 2) for a combination roughing and finishing wheel; and 3) for chip-breaker grinding.

Grit sizes of 220 or 240 are used for ordinary finish grinding all types of tools (offhand and machine) and also for cylindrical, internal and surface finish grinding. Grits of 320 and 400 are used for "lapping" to obtain very fine finishes, and for hand hones. A grit of 500 is for lapping to a mirror finish on such work as carbide gages and boring or other tools for exceptionally fine finishes.

Diamond Wheel Grades.— Diamond wheels are made in several different grades to better adapt them to different classes of work. The grades vary for different types and shapes of wheels. Standard Norton grades are H, J, and L, for resinoid bonded wheels, grade N for metal bonded wheels and grades J, L, N, and P, for vitrified wheels. Harder and softer grades than standard may at times be used to advantage.

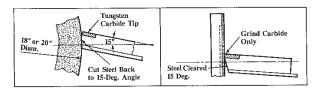
Diamond Concentration.—The relative amount (by carat weight) of diamond in the diamond section of the wheel is known as the "diamond concentration." Concentrations of 100 (high), 50 (medium) and 25 (low) ordinarily are supplied. A concentration of 50 represents one-half the diamond content of 100 (if the depth of the diamond is the same in each case) and 25 equals one-fourth the content of 100 or one-half the content of 50 concentration.

100 Concentration: Generally interpreted to mean 72 carats of diamond/in.³ of abrasive section. (A 75 concentration indicates 54 carats/in.³.) Recommended (especially in grit sizes up to about 220) for general machine grinding of carbides, and for grinding cutters and chip breakers. Vitrified and metal bonded wheels usually have 100 concentration.

50 Concentration: In the finer grit sizes of 220, 240, 320, 400, and 500, a 50 concentration is recommended for offhand grinding with resinoid bonded cup-wheels.

25 Concentration: A low concentration of 25 is recommended for offhand grinding with resinoid bonded cup-wheels with grit sizes of 100, 120 and 150.

Depth of Diamond Section: The radial depth of the diamond section usually varies from $\frac{1}{16}$ to $\frac{1}{4}$ inch. The depth varies somewhat according to the wheel size and type of bond.


Dry Versus Wet Grinding of Carbide Tools.—In using silicon carbide wheels, grinding should be done either absolutely dry or with enough coolant to flood the wheel and tool. Satisfactory results may be obtained either by the wet or dry method. However, dry grinding is the most prevalent usually because, in wet grinding, operators tend to use an inadequate supply of coolant to obtain better visibility of the grinding operation and avoid getting wet; hence checking or cracking in many cases is more likely to occur in wet grinding.

Wet Grinding with Silicon Carbide Wheels: One advantage commonly cited in connection with wet grinding is that an ample supply of coolant permits using wheels about one grade harder than in dry grinding thus increasing the wheel life. Plenty of coolant also prevents thermal stresses and the resulting cracks, and there is less tendency for the wheel to load. A dust exhaust system also is unnecessary.

Wet Grinding with Diamond Wheels: In grinding with diamond wheels the general practice is to use a coolant to keep the wheel face clean and promote free cutting. The amount of coolant may vary from a small stream to a coating applied to the wheel face by a felt pad.

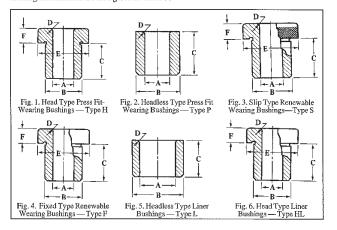
Coolants for Carbide Tool Grinding.—In grinding either with silicon carbide or diamond wheels a coolant that is used extensively consists of water plus a small amount either of soluble oil, sal soda, or soda ash to prevent corrosion. One prominent manufacturer recommends for silicon carbide wheels about 1 ounce of soda ash per gallon of water and for diamond wheels kerosene. The use of kerosene is quite general for diamond wheels and usually it is applied to the wheel face by a felt pad. Another coolant recommended for diamond wheels consists of 80 per cent water and 20 per cent soluble oil.

Peripheral Versus Flat Side Grinding.— In grinding single point carbide tools with silicon carbide wheels, the roughing preparatory to finishing with diamond wheels may be done either by using the flat face of a cup-shaped wheel (side grinding) or the periphery of a "straight" or disk-shaped wheel. Even where side grinding is preferred, the periphery of a straight wheel may be used for heavy roughing as in grinding back chipped or broken tools (see left-hand diagram). Reasons for preferring peripheral grinding include faster cutting with less danger of localized heating and checking especially in grinding broad surfaces. The advantages usually claimed for side grinding are that proper rake or relief angles are easier to obtain and the relief or land is ground flat. The diamond wheels used for tool sharpening are designed for side grinding. (See right-hand diagram.)

Lapping Carbide Tools.—Carbide tools may be finished by lapping, especially if an exceptionally fine finish is required on the work as, for example, tools used for precision boring or turning non-ferrous metals. If the finishing is done by using a diamond wheel of very fine grif (such as 240, 320, or 400), the operation is often called "lapping." A second lapping method is by means of a power-driven lapping disk charged with diamond dust, Norbide powder, or silicon carbide finishing compound. A third method is by using a hand lap or hone usually of 320 or 400 grit. In many plants the finishes obtained with carbide tools meet requirements without a special lapping operation. In all cases any feather edge which may be left on tools should be removed and it is good practice to bevel the edges of roughing tools at 45 degrees to leave a chamfer 0.005 to 0.010 inch wide. This is done by hand honing and the object is to prevent crumbling or flaking off at the edges when hard scale or heavy chip pressure is encountered.

Hand Honing: The cutting edge of carbide tools, and tools made from other tool materials, is sometimes hand honed before it is used in order to strengthen the cutting edge. When interrupted cuts or heavy roughing cuts are to be taken, or when the grade of carbide is slightly too hard, hand honing is beneficial because it will prevent chipping, or even possibly, breakage of the cutting edge. Whenever chipping is encountered, hand honing the cutting edge before use will be helpful. It is important, however, to hone the edge lightly and only when necessary. Heavy honing will always cause a reduction in tool life. Normally, removing 0.002 to 0.004 inch from the cutting edge is sufficient. When indexable inserts are used, the use of pre-honed inserts is preferred to hand honing although sometimes an additional amount of honing is required. Hand honing of carbide tools in between cuts is sometimes done to defer grinding or to increase the life of a cutting edge on an indexable insert. If correctly done, so as not to change the relief angle, this procedure is sometimes helpful. If improperly done, it can result in a reduction in tool life.

Chip Breaker Grinding.—For this operation a straight diamond wheel is used on a universal tool and cutter grinder, a small surface grinder, or a special chipbreaker grinder. A resinoid bonded wheel of the grade J or N commonly is used and the tool is held rigidly in an adjustable holder or vise. The width of the diamond wheel usually varies from $\frac{1}{6}$ to $\frac{1}{4}$ inch. A vitrified bond may be used for wheels as thick as $\frac{1}{4}$ inch, and a resinoid bond for relatively narrow wheels.


Summary of Miscellaneous Points.—In grinding a single-point carbide tool, traverse it across the wheel face continuously to avoid localized heating. This traverse movement should be quite rapid in using silicon carbide wheels and comparatively slow with diamond wheels. A hand traversing and feeding movement, whenever practicable, is generally recommended because of greater sensitivity. In grinding, maintain a constant, moderate pressure. Manipulating the tool so as to keep the contact area with the wheel as small as possible will reduce heating and increase the rate of stock removal. Never cool a hot tool by dipping it in a liquid, as this may crack the tip. Wheel rotation should preferably be *against* the cutting edge or from the front face toward the back. If the grinder is driven by a reversing motor, opposite sides of a cup wheel can be used for grinding right-and left-hand tools and with rotation against the cutting edge. If it is necessary to grind the top face of a single-point tool, this should precede the grinding of the side and front relief, and top-face grinding should be minimized to maintain the tip thickness. In wachine grinding with a diamond wheel, limit the feed per traverse to 0.001 inch for 100 to 120 grit; 0.0005 inch for 150 to 240 grit; and 0.0002 inch for 320 grit and finer.

JIGS AND FIXTURES

Material for Jig Bushings.—Bushings are generally made of a good grade of tool steel to ensure hardening at a fairly low temperature and to lessen the danger of fire cracking. They can also be made from machine steel, which will answer all practical purposes, provided the bushings are properly caschardened to a depth of about V_{16} inch. Sometimes, bushings for guiding tools may be made of cast iron, but only when the cutting tool is of such a design that no cutting edges come within the bushing itself. For example, bushings used simply to support the smooth surface of a boring-bar or the shank of a reamer might, in some instances, be made of cast iron, but nardened steel bushings should always be used for guiding drills, reamers, taps, etc., when the cutting edges come in direct contact with the diameter of the cutside diameter of the bushing is very large, as compared with the diameter of the bushing can sometimes be reduced by using an outer cast-iron body and inserting a hardened tool steel bushing.

When tool steel bushings are made and hardened, it is recommended that A-2 steel be used. The furnace should be set to 1750°F and the bushing placed in the furnace and held there approximately 20 minutes after the furnace reaches temperature. Remove the bushing and cool in still air. After the part cools to 100–150°F, immediately place in a tempering furnace that has been heated to 300°F. Remove the bushing after one hour and cool in still air. If an atmospherically controlled furnace is unavailable, the part should be wrapped in stainless foil to prevent scaling and oxidation at the 1750°F temperature.

American National Standard Jig Bushings.— Specifications for the following types of jig bushings are given in American National Standard B94.33-1974 (R1986). Head Type Press Fit Wearing Bushings, Type H (Fig. 1 and Tables 1 and 3); Headless Type Press Fit Wearing Bushings, Type P (Fig. 2 and Tables 1 and 3); Slip Type Renewable Wearing Bushings, Type S (Fig. 2 and Tables 1 and 3); Slip Type Renewable Wearing Bushings, Type S (Fig. 2 and Tables 1 and 3); Slip Type Renewable Wearing Bushings, Type S (Fig. 3 and Tables 4 and 5); Fixed Type Renewable Wearing Bushings, Type F (Fig. 4 and Tables 5 and 6); Headless Type Liner Bushings, Type L (Fig. 5 and Table 7); and Head Type Liner Bushings, Type HL (Fig. 6 and Table 8). Specifications for locking mechanisms are also given in Table 9.

Table 1. American National Standard Head Type Press Fit Wearing Bushings — Type H ANSI B94.33-1974, R1986

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Wearing Bushings — Type H ANSI B94.33-1974, R1986												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Bod	y Diamet									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Unfin	ished	Fini	hed		Radius		Thickness F			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Nom	Max	Min	Max	Min					Number		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} u \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$							0.250				H-10-4		
$ \begin{array}{c} 0.0623 \\ 0.0623 \\ 0.0630 \\ 0.0023 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.213 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.204 \\ 0.204 \\ 0.204 \\ 0.204 \\ 0.375 \\ 0.375 \\ 0.375 \\ 0.375 \\ 0.375 \\ 0.375 \\ 0.375 \\ 0.312 \\ 0.312 \\ 0.312 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.251 \\ 0.$		0.154	0.166	0.161	0.1579	0 1575	0.312	0.016	0.250	0.094			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	including	0.156	0.166	0.161	0.1378	0.1375		0.010	0.250	0.094			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0625												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.000	0.010	0.000	0.2046	0.0042		0.016	0.212	0.004			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.203	0.213	0.208	0.2040	0.2045		0.010	0.512	0.074			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0995												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											H-16-4		
$ \begin{array}{c} 10 \\ 0.1405 \\ 0.1405 \\ 0.1406 \\ 0.1405 \\ 0.1406 \\ 0.312 \\ 0.312 \\ 0.312 \\ 0.312 \\ 0.312 \\ 0.312 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.327 \\ 0.322 \\ 0.3141 \\ 0.3138 \\ 0.310 \\ 0.3138 \\ 0.500 \\ 0.500 \\ 0.570 \\ 1.000 \\ 1.375 \\ 0.500 \\ 0.590 \\ 0.031 \\ 0.438 \\ 0.125 \\ 1-206 \\ 1-266 \\ 1$	0.1015								i i				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.250	0.260	0.255	0.2516	0.2513		0.016	0.375	0.094			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1405							1		l			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1406				l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	0.312	0.327	0.322	0.3141	0.3138		0.031	0.438	0.125			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1875												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ì	ļ					ļ		H-20-16		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			í —				0.250						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						Į							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1%0	l				ĺ				Į			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.406	0.421	0.416	0.4078	0.4075		0.031	0.531	0.156			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.2500			1					ļ				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1		1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2570												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.500	0.520	0.515	0.5017	0.5014		0.047	0.625	0.219			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3125	ł			1	1				1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1					1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									+				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			1					ì				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1			0.500	1		ļ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.675	0.645	0.640	0.6267	0.6264		0.047	0.812	0.219			
$ \begin{bmatrix} 0 & 1.375 \\ 1.750 \\ 2.125 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.751 \\ 0.751 \\ 0.7518 \\ 0.7518 \\ 0.7515 \\ 0.7518 \\ 0.7515 \\ 1.375 \\ 1.375 \\ 1.375 \\ 1.375 \\ 0.1515 \\ 0.500 \\ 0.62 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.219 \\ 1.482 \\ $		0.025	0.045	0.040	0.0201	0.0204		0.017	0.012				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									{				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1		+			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.7516		0.040	0.019	0.010			
0.5156 0.875 0.895 0.890 0.8768 0.8768 0.8765 1.375 0.062 0.125 0.148-34 0.5156 0 0.875 0.895 0.890 0.8768 0.8765 1.375 0.062 0.125 0.4876 1.456-12 1.625.0 0.875 0.895 0.890 0.8768 0.8765 1.375 0.062 0.125 0.250 H-56-12 1.625.0 1.625.0 1.750 2.125 H-56-32 H-56-34		0.750	0.770	0.765	0.7518	0.7515	1.375	0.002	0.938	0.219			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5000	1								1			
$ \left \begin{array}{c} 0.5156 \\ \omega \\ 0.6250 \\ 0.6250 \\ \end{array} \right 0.895 \\ 0.895 \\ 0.895 \\ 0.896 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.8768 \\ 0.175 \\ 0.062 \\ 0.125$													
$ \left[\begin{array}{cccc} 0.5156 \\ \omega \\ 0.6250 \\ 0.6250 \\ \end{array} \right] 0.875 0.895 0.890 0.8768 0.8768 0.8768 \begin{array}{ccccc} 1.000 \\ 1.375 \\ 1.375 \\ 2.125 \\ 1.750 \\ 2.125 \\ \end{array} \right] 0.062 0.125 0.250 \begin{array}{ccccc} H-56-16 \\ H-56-28 \\ H-56-28 \\ H-56-34 \\ H-56-34 \\ \end{array} \right] $					1								
0.4575 0.6250 0.6250 0.875 0.895 0.895 0.890 0.8768 0.8765 1.375 0.062 0.125 0.6250 H-56-22 H-56-22 H-56-23 H-56-24 H-													
0.6250 0.657		0.875	0.805	0.800	0.8769	0.8765		0.062	0.125	0.250			
2.125 R-56-34		0.8/5	0.695	0.690	0.0700	0.0705		0.002	1				
	0.0000												
	1										H-56-40		

943

Table 1. (Continued) American National Standard Head Type Press Fit Wearing Bushings — Type H ANSI B94.33-1974, R1986

Range		Bod	y Diamet	er B				Head	Head	
of Hole		Unfin	ished	Finis	shed	Body	Radius	Diam. E	Thickness F	
Sizes	Nom	Max	Min	Max	Min	Leagth C	D	Max	Max	Number
A	TROM	IVLAN.	Ivitin	max		0.500	2		,	H-64-8
						0.750				H-64-12
0.6406						1.000				H-64-16
0.0400 to	1.000	1.020	1.015	1.0018	1.0015	1.375	0.094	1.250	0.312	H-64-22
0.7500	1.000	1.020	1.015	1.0010	1,0010	1.750	0103 1			H-64-28
						2.125				H-64-34
						2.500				H-64-40
	——					0.750				H-88-12
						1.000				H-88-16
0.7656		1 205	1 200	1.3772	1.3768	1.375	0.094	1.625	0.375	H-88-22
to 1.0000	1.375	1.395	1.390	1.5114	1.5708	1.750	0.094	1.025	0.575	H-88-28
1.0000						2.125	1	i i		H-88-34
					İ	2.500		ļ		H-88-40
						1.000				H-112-16
1.0157						1.375				H-112-22
1.0156 Ko	1.750	1.770	1.765	1.7523	1.7519	1.750	0.094	2.000	0.375	H-112-28
1.3750	1.750	1.770	1.705	1.1525	1.1.517	2.125	0.034	2.000	0.575	H-112-34
1.0,00						2.500				H-112-40
						3.000		1		H-112-48
				1	1	1.000				H-144-16
1,3906						1.375				H-144-22
1.3900	2.250	2.270	2.265	2.2525	2.2521	1.750	0.094	2.500	0.375	H-144-28
1,7500		1				2.125			1	H-144-34
			ļ			2.500	Į	Į		H-144-40
		L			l	3.000		1		H-144-48

All dimensions are in inches. See also Table 3 for additional specifications.

Table 2. American National Standard Headless Type Press Fit Wearing Bushings — Type P ANSI B94.33-1974, R1986

Range	1	Во	dy Diamete					
of Hole		Unfin	ished	Fini	shed	Body Length	Radius	
Sizes A	Nom	Max	Min	Max	Mîn	C	D	Number
0.0135 up to and including 0.0625	0.156	0.166	0.161	0,1578	0.1575	0.250 0.312 0.375 0.500	0.016	P-10-4 P-10-5 P-10-6 P-10-8
0.0630 to 0.0995	0.203	0.213	0.208	0.2046	0.2043	0.250 0.312 0.375 0.500 0.750	0.016	P-13-4 P-13-5 P-13-6 P-13-8 P-13-12
0.1015 to 0.1405	0.250	0.260	0.255	0.2516	0,2513	0.250 0.312 0.375 0.500 0.750	0.016	P-16-4 P-16-5 P-16-6 P-16-8 P-16-12
0.1406 to 0.1875	0.312	0.327	0.322	0.3141	0.3138	0.250 0.312 0.375 0.500 0.750 1.000	0.031	P-20-4 P-20-5 P-20-6 P-20-8 P-20-12 P-20-16

944

Range	L		dy Diamete			nt.		
of Hole Sizes		Unfir	nished.	Fini	shed	Body Length	Radius	
A	Nom	Max	Min	Max	Min	C	D	Numbe
	1					0.250		P-26-4
						0.312	1 1	P-26-5
0.1890						0.375		P-26-6
to	0.406	0.421	0.416	0.4078	0.4075	0.500	0.031	P-26-8
0.2500			01110	011010	011012	0.750		P-26-12
	1					1.000		P-26-16 P-26-22
	1					1.375 1.750		P-26-22 P-26-28
		·				0.312	1 1	P-32-5
						0.375	1 1	P-32-6
0.2570						0.500	1 1	P-32-8
to	0.500	0.520	0.515	0.5017	0.5014	0.750	0.047	P-32-12
0.3125						1.000	1 1	P-32-16
						1.375	1 1	P-32-22
						1.750		P-32-28
						0.312 0.375	1 1	P-40-5 P-40-6
						0.570		P-40-8
0.3160	0.026	orie	0.000	0.000	0.000	0.750	0.000	P-40-12
to 0.4219	0.625	0.645	0.640	0.6267	0.6264	1.000	0.047	P-40-10
0.4219						1.375		P-40-22
						1.750		P-40-21
						2.125		P-40-34
						0.500		P-48-8
0.4375 to			1			0.750 1.000		P-48-12 P-48-16
0.5000	0.750	0.770	0.765	0.7518	0.7515	1.375	0.062	P-48-22
0			1			1.750		P-48-2
						2.125		P-48-3
			Í			0.500	1	P-56-8
						0.750		P-56-12
0.5156						1.000		P-56-10
to 0.6250	0.875	0.895	0.890	0.8768	0.8765	1.375	0.062	P-56-22
0.6250				1		1.750 2.125		P-56-21 P-56-34
						2.500		P-56-40
						0.500		P-64-8
	1					0.750		P-64-12
0.6406	1					1.000		P-64-10
to	1.000	1.020	1.015	1.0018	1.0015	1.375	0.062	P-64-2
0.7500	i					1.750		P-64-2
						2.125 2.500		P-64-3 P-64-4
	ł			· · · ·		0.750		P-88-1:
						1.000		P-88-1
0.7656 to	1.375	1,395	1.390	1.3772	1.3768	1.375	0.094	P-88-2
1.0000	1.5/5	1.393	1.590	1.5//2	1.3705	1.750	0.094	P-88-2
1.0000						2.125		P-88-3-
				<u> </u>		2.500		P-88-4
	1	1				1.000		P-112-
1.0156	1	1				1.375 1.750		P-112-3 P-112-3
to	1.750	1.770	1.765	1.7523	1.7519	2.125	0.094	P-112-
1.3750	1					2.500		P-112-
	1					3.000		P-112-
		Í				1.000		P-144
1.3906	1					1.375		P-144-:
1.3900 to	2.250	2.270	2.265	2.2525	2.2521	1.750	0.094	P-144-2
1.7500	1		1			2.125		P-144-
	1		1			2.500 3.000	1	P-144-4
	1					5.000	1	P-144-4

Table 2. American National Standard Headless Type Press Fit

Table 3. Specifications for Head Type H and Headless Type P Press Fit Wearing Bushings ANSIB94.33-1974, R1986

Size and type of chandler on Lead end to be manufacturer's option. The length, C, is the overall length for the beades type and length underhead for the head type. The head design shall be in accordance with the manufacturer's practice. Diameter A, for antimished bashings is larger than the nonvinal diameter in order to provide grinding stock for fittin jig plate holes. The grinding allowance is: 0.005 to 0.010 in. for sizes 0.156, 0.203 and 0.250 in. 0.011 to 0.010 in. for sizes 0.312 and 0.406 in. 0.011 to 0.020 in. for sizes 0.300 in, and the bashings. The maximum and minimum values of the hole size, A, shall be as follows: Nominal Size of Hole Maximum Above 0.015 to 0.2500 in, incl. Nominal + 0.0005 in. Above 0.0150 to 0.500 in, incl. Nominal + 0.0001 in. Above 0.0150 to 0.500 in, incl. Nominal + 0.0001 in. Above 0.2500 to 0.500 in, incl. Nominal + 0.0005 in. Above 0.500 to 0.500 in, incl. Nominal + 0.0001 in. Above 0.5100 to 1.5000 in, incl. Nominal + 0.0000 in. Above 0.500 to 1.5000 in, incl. Nominal + 0.0000 in. Bushings without coanterbore are optional and will be functioned to provide for laborication and chip eleannee. Bushings without coanterbore are optional and will be functioned to below ince. The size of the coanterbore thall be inviked inmeter of	Size and The leng The head Diamete The bod	d type of ch gth, C, is th id design sh er A must b dy diameter, olcs. The g	anifer on le overall all be in a c concent , B, for un	Icad end t length for accordance tric to dian	o be mann the beadle with the	facturer's ss type ar	option.	otherwise	specified :	chall be +f		Tress Til (Treating Businings MUSTD)7-55-177-5, K1980													
The length, C, is the overall length for the bendless type and length underhead for the head type. The head design shall be in accordance with the namelianturry's practice. Diameter A must be concentric to diameter M within 00005 TLV on finish proved bushings. The body diameter, B, for unfinished bushings is larger than the normal diameter in order to provide grinding stock for fittin jig plate holes. The printing allowance is: 0.005 to 0.010 in, for sizes 0.156, 0.023 and 0.250 in. 0.010 to 0.015 in. for sizes 0.312 and 0.406 in. 0.015 to 0.020 in, for sizes 0.500 jn, and up. Hole sizes are in accordance with A mandrat Twist Drill Sizes. The maximum and minimum values of the hole size, A, shall be as follows: Nominal Size of Hole Above 0.0135 to 0.2500 in, incl. Nominal + 0.0005 in. Nominal + 0.0005 in. Above 0.1500 to 1.5000 in, incl. Nominal + 0.0005 in. Nobove 0.1500 to 1.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0005 in. Nobove 0.1500 to 1.5000 in, in	The leng The head Diamete The bod	gth, C, is th id design sh er A must b dy diameter, oles. The gr	ie overall iall he in a c concent , B, for un	length for accordance tric to dian	the beadle with the	ess type ar			All dimensions given in inches. Tolerance on dimensions where not otherwise specified shall be ±0.010 inch.																
The bend design shall be in accordance with the manufacturrs's practice. Diameter A, for mfinished bushings is larger than the nonviral diameter in order to provide grinding stock for fittin 10.005 11. Von finish ground bushings. The body diameter A, for mfinished bushings is larger than the nonviral diameter in order to provide grinding stock for fittin 10.005 11. Von finish ground bushings. Date body diameter A, for mfinished bushings is larger than the nonviral diameter in order to provide grinding stock for fittin 0.005 11. Von finish ground bushings. OUID to 0.015 m. for sizes 0.312 and 0.406 in. 0.015 m O205 in. for sizes 0.500 in, and up. Hole sizes are in accordance with American National Standard Twist. Drill Sizes. The maximum and minimum values of the hole size, A, shall be as follows: Neurinal Size of Hole Maximum Above 0.0135 to 0.2500 in., incl. Nominal + 0.0005 in. Above 0.500 to 0.500 in, incl. Nominal + 0.0005 in. Above 0.500 to 0.500 in, incl. Nominal + 0.0005 in. Above 0.500 to 1.5000 in, incl. Nominal + 0.0005 in. Above 0.500 to 0.1000 in, incl. Nominal + 0.0005 in. Bushings without counterboxer and will be finished upon request. The size of the counterboxer and will be finished upon request. The size of the counterboxer shall be in sized will be 118 deg. 5.2 deg. The size of the counterboxer shall be in size duance with dust belin below to pr	The head Diamete The bod	td design sh er A must b ly diameter, oles. The gr	all be in a c concent , B, for un	accordance tric to dian	e with the																				
Diameter A must be concentrive to diameter <i>H</i> within 0.0005 TLV on finish ground bushings. The body diameter, <i>B</i> , for unfinished bashings is larger than the normal diameter in order to provide grinding stock for fittin jig plate holes. The grinding allowance is: 0.0005 to 0.010 in, for sizes 0.156, 0.203 and 0.250 in. 0.010 to 0.015 in. for sizes 0.312 and 0.406 in. 0.010 to 0.015 in. for sizes 0.312 and 0.406 in. 0.010 to 0.015 in. for sizes 0.312 and 0.406 in. 0.011 to 0.015 in. for sizes 0.312 and 0.406 in. 0.011 to 0.015 in. for sizes 0.312 and 0.406 in. Notice in accordance with American National Strandard Twist Drill Sizes. The maximum and minimum values of the hole size, A, shall be as follows: Minimum Above 0.0135 to 0.2500 in., incl. Nominal +0.0005 in. Nominal +0.0001 in. Above 0.0135 to 0.2500 in., incl. Nominal +0.0005 in. Nominal +0.0001 in. Above 0.7500 to 0.7500 in., incl. Nominal +0.0005 in. Nominal +0.0002 in. Above 1.5000 in. Nominal +0.0005 in. Nominal +0.0002 in. Bushings without counterbore are optional and will be formisdie upon request. Nominal +0.0002 in. Bushings without counterbore shall be inske diameter of the bushing +0.031 inch. Nominal +0.0003 in. The included angle at the bottom of the counterbore shall be in 18 deg. ± 2 deg. The included angle at the bottom of the countendwore shall be in a labe hels Nuc to provide adequate drill bear	Diamete The bod	er A must b ly diameter, oles, The g	c concent B, for un	trie to dian		mansferde																			
The body diameter, <i>B</i> , for unfinished bushings is larger than the nominal diameter in order to provide grinding stock for fittin jig plate holes. The grinding allowance is: 0.0005 to 0.010 in, for sizes 0.156, 0.203 and 0.250 in. 0.0101 to 0.015 in for sizes 0.500 in, and up. Old to 0.020 in, for sizes 0.500 in, and up. 0.010 to 0.015 in for sizes 0.500 in, and up. 0.010 to 0.020 in, for sizes 0.500 in, and up. Hole sizes are in accordance with American National Standard Twist Drill Sizes. The maximum and miniatum values of the bole size, A, shall be as follows: Notatial Size of Hole Musimum Minimum Above 0.2500 to 0.2500 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.2500 to 0.2500 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.1500 to 1.5000 in, incl. Nominal + 0.0002 in. Nominal + 0.0003 in. Bushings without counterbore see optional and will be funished upon request. Nominal + 0.0003 in. Nominal + 0.0003 in. Bushings without counterbore shall be in accordence with the ubishes body to provide adeptate drill bearing. The included angle at the bottom of the counterbore shall be 118 deg. ± 2 deg. The depth of the counterbore shall be in accordence with the ubishes body to provide adeptate drill bearing. On111 Bushing Hole Size On113 Bushing Vold Size.	The bod	ly diameter, oles. The g	B, for un		neter <i>R</i> wit																				
jig plate holes. The grinding allowance is: 0.005 to 0.016 in, for sizes 0.156, 0.203 and 0.250 in. 0.010 to 0.015 in, for sizes 0.050 in, and typ. Hole sizes are in accordance with American National Standard Twist Drill Sizes. The maximum and minimum values of the hole size, 4, shull be as follows: Nominal Size of Holes Nominal Size of Holes Above 0.0135 to 0.2500 in, incl. Nominal + 0.0004 in. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.7500 to 1.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Bushings in the size range from 0.0135 through 0.3125 will be constructed to provide for lubrication and chip cleanance. Bushings without counterbore are optional and will be furnished upon request. The size of the counterbore shall be insold diameter of the bushing + 0.031 incl. The included angle at the bottom of the counterbore shall be 118 deg. ± 2 deg. The depth of the counterbore shall be insold diameter of the bushing Hole Size 0.01135 to 0.1500 in 0.0500 in. 101135 will be 100000 in. The included angle at the bottom of the counterbore shall be 118 deg. ± 2 deg. The depth of the counterbore shall be insold diameter of the bushing Hole Size 0.01135 to 0.0500 in 0.01015 to 0.01405 to 0.01405 to 0.01890 to 0.2570 to 0.	The bod ig plate ho	oles, The g	B, for un																						
0.010 to 0.015 in, for sizes 0.312 and 0.406 in, 0.015 to 0.020 in, for sizes 0.500 in, and up. Hole sizes are in accordance with American National Standard Totist Drill Sizes. The maximum and minimum values of the hole size, A, shall be as follows: Notatial Size of Hole Minimum National Size of Hole Maximum Above 0.0135 to 0.2500 in, incl. Nominal + 0.0004 in, Above 0.7500 to 1.5000 in, incl. Nominal + 0.0001 in, Above 0.7500 to 1.5000 in, incl. Nominal + 0.0000 in, Above 0.7500 to 1.5000 in, nel. Nominal + 0.0000 in, Nominal + 0.0003 in, Bushings without coanterbore are optional and will be formished upon request. The size of the counterbore shall be instead diments of the low be rowide negative rowide neg		ig plate holes. The grinding allowance is: 0.005 to 0.010 in, for sizes 0.156, 0.203 and 0.250 in.																							
0.015 to 0.020 in. for sizes 0.500 in. and up. Hole sizes are in accordance with American National Standard Twist Drill Sizes. The maximum and minimum values of the hole size, A, shall be as follows: Nominal Size of Hole Maximum Mound Size of Hole Maximum Above 0.0135 to 0.2000 in., incl. Nominal + 0.0005 in. Above 0.2500 to 0.7500 to 1.5000 in., incl. Nominal + 0.0005 in. Nobuve 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Nabove 1.5000 in. Nominal + 0.0005 in. Bushings induce counterbore are optional and will be functioned reported to provide for hubrication and chip clearance. Bushing Woldwore counterbore shall be in accordinate with the table below to provide adeptate drill bearing.																									
Hole sizes are in accordance with American National Standard Texis Dell Sizes. The maximum and minimum values of the hole size, A, shall be as follows: Maintain Minimum Above 0.0135 to 0.2500 in, incl. Nominal + 0.0004 in. Nominal + 0.0001 in. Above 0.0135 to 0.2500 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.7500 to 1.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.7500 to 1.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0003 in. Babings in the size range from 0.0135 through 0.3125 will be conserviced to provide for lubrication and chip cleannec. Bushings induce counterbore are optional and will be furnished upon request. The rise of the counterbore shall be inside dismeter of the bushing + 0.031 inch. The included angle at the bottom of the counterbore will be inside dismeter of the botting. Out 11 be 118 deg, ± 2 deg. The degth of the counterbore shall be in according will be inside bortw to provide negater drill bearing. On'll Bushing Hole Size 0.0185 to 0.0490 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.0155 to 0.01405 to 0.01405 to 1.01550 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.02570 to 1.0155 to 1.01405 to 1.01405 to 1.01405 to 1.01560 to 1.01560 to 1.01560 to 1.01560 to 1.01560 to 1.01560 to 1.01560 to 1.01560 to 1.01560 to 1.015670 to 1.02570 to 1.01570 to 1.015670 to 1.02570 to 1.01570 to 1	0.010 to 0.015 in. for sizes 0.312 and 0.406 in.																								
The maximum and minimum values of the bole size, A, shall be as follows: Maximum Minimum Above 0.0135 to 0.2500 Ia, incl. Nominal +0.0004 in. Nominal +0.0001 in. Above 0.0135 to 0.2500 Ia, incl. Nominal +0.0005 in. Nominal +0.0001 in. Above 0.2500 to 0.7500 to 1.5000 in., incl. Nominal +0.0005 in. Nominal +0.0003 in. Above 1.5000 in. Nominal +0.0007 in. Nominal +0.0003 in. Bushings in the size range from 0.0135 through 0.312 swill be consterefored to provide for lubrication and chip clearnece. Bushings in the size range from 0.0135 through 0.312 swill be consterefored to provide for lubrication and chip clearnece. Bushings in the size range from 0.0135 through 0.312 swill be consterefored to provide for lubrication and chip clearnece. The size of the counterbore sheal be invide diameter of the bushing +0.031 incl. The size of the counterbore sheal be in accordance will the table below to provide adequate drill bearing. The depth of the counterbore sheal be in accordance will the table below to provide adequate drill bearing. The depth of the counterbore sheal be in accordance will the table blow to provide adequate drill bearing. Onill Bushing Bloe Size 0.0135 to 0.01405 to 0.1860 to 0.2570 to	0.015 to 0.020 in. for sizes 0.500 in, and up.																								
Notatial Size of Hols Maximum Minimum Above 0.0135 to 0.2500 in, incl. Nominal + 0.0004 in. Nominal + 0.0001 in. Above 0.2500 to 0.500 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.2500 to 1.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.2500 to 1.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0003 in. Bubwing without counterboxe one optional and will be funsified upon reguest. Nominal + 0.0003 in. Nominal + 0.0003 in. Bushing without counterboxe one optional and will be funsified upon reguest. The rise of the counterboxe shall be instead eight be table g + 0.031 inch. The cirk of the counterboxe shall be in accordinate with the table below to provide acquate drill bearing. The eight of the counterboxe shall be in accordinate with the table below to provide acquate drill bearing. Onill Bushing Biole Size 0.0135 to 0.1406 to 0.18500 to 0.2570 to																									
Notatial Size of Hols Maximum Minimum Above 0.0135 to 0.2500 in, incl. Nominal + 0.0001 in. Nominal + 0.0001 in. Above 0.2500 to 0.5500 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.2500 to 0.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0001 in. Above 0.2500 to 1.5000 in, incl. Nominal + 0.0005 in. Nominal + 0.0003 in. Baboling without counterboare on optional and will be functished upon regues. Bushing without counterboare shall be instead will be functished upon regues. The included angle at the bottom of which diameter of the bushing + 0.031 inch. The ciph of the counterboare shall be in according to the low to provide adeptate drill bearing. The ciph of the counterboare shall be in according with the table below to provide adeptate drill bearing. On11 Bishing Hole Size 0.0135 to 0.0630 to 0.0186 to 0.1860 to 0.2570 to	The may	ximum and	minimuo	n values o	f the hole :	size, A. sh	all be as fo	ilows:																	
Above 0.0135 to 0.2500 in, incl. Norninal + 0.0001 in. Norninal + 0.0001 in. Above 0.2500 to 0.7500 in., incl. Norninal + 0.0005 in. Norninal + 0.0001 in. Above 0.2500 to 0.7500 in., incl. Norninal + 0.0005 in. Norninal + 0.0001 in. Above 0.7500 to 1.5000 in., incl. Norninal + 0.0005 in. Norninal + 0.0003 in. Above 0.7500 to 1.0000 in., incl. Norninal + 0.0007 in. Norninal + 0.0003 in. Bushings in the size rauge from 0.0135 through 0.3125 will be connerbored to provide for labirention and chip clearance. Bushings without counterbore are optional and will be furnished upon request. The size of the counterbore shall be list de g, ± 2 dg. The size of the counterbore shall be invice shall be list dg, ± 2 dg. The depth of the counterbore shall be in accordance with the table below to provide adequate drill bearing. Orill Bushing Bole Size 0.0135 to 0.0406 to 0.18500 to 0.2570 to						, .					Mini	mum													
Above 0.7500 to 1.5000 in., incl. Nominal + 0.0006 in. Nominal + 0.0002 in. Above 1.5000 in., Nominal + 0.0007 in. Nominal + 0.0003 in. Bushings in the size ratege from 0.0135 through 0.3125 will be counterbored to provide for lubrication and chip clearance. Bushings in the size ratege from 0.0135 through 0.3125 will be counterbored to provide for lubrication and chip clearance. Bushings without counterbore shall be inside diameter of the bushing + 0.031 inch. The size of the counterbore shall be inside diameter of the bushing + 0.031 inch. The size of the counterbore shall be in secondance with the table below to provide adequate drill bearing. Drill Bushing Hole Size 0.0135 to 0.0630 to 0.1655 to 0.1406 to 0.1890 to 0.2570 to		Above 0.0	135 to 0.	2500 in., i	ncl.		Nominal	+ 0.0004 i	ı.				n.												
Above 1.5000 in. Nominal + 0.0003 in. Bushings in the size range from 0.0135 through 0.3125 will be connectored to provide for lubification and chip clearnece. Bushings without coanterbore are optional and will be furnished upon request. The size of the counterbore shall be inside, diameter of the bushing + 0.031 inch. The size of the counterbore shall be inside, diameter of the bushing + 0.031 inch. The inside of angle at the bottom of the counterbore shall be in R20 educe with the tuble below to provide adequate drill bearing. On111 Bushing Hole Size 0.0135 to 0.0630 in 0.0105 to 0.1406 to 0.18500 to 10.2570 to		Above 0.2	500 to 0.1	7500 in., i	ncl,		Nominal -	+ 0.0005 in	n.		Nominal	+ 0.0001 i	n.												
Bushings in the size range from 0.0135 through 0.3125 will be connectioned to provide for lubrication and chip cleanance. Bushings without counterbore are optional and will be furnished upon request. The size of the counterbore shall be invide diameter of the bushing + 0.031 i.e.h. The included angle at the bottom of the counterbore shall be 118 deg, ± 2 deg. The depth of the counterbore shall be in according to the bottw to provide adequate drill bearing. Drill Bushing Hole Size 0.0135 to 0.0630 to 0.01015 to 0.01466 to 0.01890 to 0.2570 to		Above 0.7	500 to 1.:	5000 in., i	ncl.		Nominal -	+ 0.0006 in	n.		Nominal -	+ 0.0002 E	a.												
Busings without counterbore are optional and will be furnished upon request. The size of the counterbore shall be inside diameter of the bushing + 0.031 itch. The included angle at the bottom of the counterbore shall be it 18 deg, ± 2 deg. The depth of the counterbore shall be in secondance with the table below to provide adequate drill bearing. Onli Bushing Hole Size 0.0135 to 0.0630 to 0.1015 to 0.1406 to 0.1890 to 0.2570 to		Above 1.5	i000 in.				Nominal	+ 0.0007 i	n.		Nominal -	+ 0.0003 1	n.												
Busings without counterbore are optional and will be furnished upon request. The size of the counterbore shall be inside diameter of the bushing + 0.031 itch. The included angle at the bottom of the counterbore shall be it 18 deg, ± 2 deg. The depth of the counterbore shall be in secondance with the table below to provide adequate drill bearing. Onli Bushing Hole Size 0.0135 to 0.0630 to 0.1015 to 0.1406 to 0.1890 to 0.2570 to	Bushing	as in the siz	e rauge fr	rom 0.013;	5 through	0.3125 wi	I be coun	erbored to	provide (or lubrica	tion and cl	hio clearur													
The included angle at the bottom of the counterbore shall be 118 deg, ± 2 deg. The depth of the counterbore shall be in accordance with the table below to provide adequate drill bearing. Drill Bushing Hole Size 0.0135 to 0.0630 to 0.1015 to 0.1406 to 0.1890 to 0.2570 to																									
The included angle at the bottom of the counterbore shall be 118 deg, ± 2 deg. The depth of the counterbore shall be in accordance with the table below to provide adequate drill bearing. Drill Bushing Hole Size 0.0135 to 0.0630 to 0.1015 to 0.1406 to 0.1890 to 0.2570 to	The size	e of the cou	nterbore s	shall be in	side diame	ter of the	bushing -	- 0.031 inc	h.																
Drill Bushing Hole Size 0.0135 to 0.0630 to 0.1015 to 0.1406 to 0.1890 to 0.2570 to																									
Drill Bushing Hole Size 0.0135 to 0.0630 to 0.1015 to 0.1406 to 0.1890 to 0.2570 to	The dept	oth of the co	unterbora	c shall be j	in accorda	nce with t	be table by	low to pro	wide aden	nate drill	beating.														
0.0135 to 0.0630 to 0.1015 to 0.1406 to 0.1890 to 0.2570 to																									
		0.013	5 to	0.06	30 to					0.18	01 OP	0.25	7010												
0.0625 0.0995 0.1405 0.1875 0.2500 0.3125	i	0.06	525	0.0	995	0.1	405	0.1	875	0.2	500	0.3	125												
		0.0625 0.0995 0.1405 0.1875 0.2500 0.3125																							
Length Minimum Drill Bearing Length—Inch	Body	P	Н	P	н		Th. 175 Th.	tring Leng	th-Inch																
0.250 X 0.250 X X X X X X X X X X X X			Н	P	н																				
	Length 0.250	P X	0.250	x	x	X	х	X																	
	Length 0.250 0.312	P X X	0.250 0.250	x	x x	X X	X X	X X	х	Х	х														
	Length 0.250 0.312 0.375	P X X 0.250	0.250 0.250 0.250	X X X	x x x	X X X	X X X	X X X	X X	X X	X X	х	х												
	Length 0.250 0.312 0.375 0.500	P X X 0.250 0.250	0.250 0.250 0.250 0.250	X X X X	X X X 0.312	X X X X	X X X 0,312	X X X X	X X 0.375	X X X	X X X	X X	X X												
	Length 0.250 0.312 0.375 0.500 0.750	P X X 0.250 0.250 +	0.250 0.250 0.250 0.250 +	X X X X 0,375	X X 0.312 0.375	X X X 0.375	X X 0.312 0.375	X X X X X X	X X 0.375 0.375	X X X X	X X X X	X X X	X X X												
1.750 + + + + + + + + + + 0.625 0.625 0.625 0.625	Length 0.250 0.312 0.375 0.500 0.750 1.000	P X 0.250 0.250 + +	0.250 0.250 0.250 0.250 + +	X X X 0,375 +	X X 0.312 0.375 +	X X X 0.375 ÷	X X 0,312 0.375 +	X X X X X 0.625	X X 0.375	X X X	X X X	X X	X X												

All dimensions are in inches.

X indicates no counterbore.

+ indicates not American National Standard

Table 4. American National Standard Slip Type Renewable Wearing Bushings—Type S ANSI B94.33-1974, R1986

Range of Hole	B	ody Diamete	r B	Length		Head	Head	
Sives A	Nom	Max	Min	Under- Head C	Radius D	Diam. E Max	Thickness F Max	Number
0.0135 up to and including 0.0469	0.188	0.1875	0.1873	0.250 0.312 0.375 0.500	0.031	0.312	0.188	S-12-4 S-12-5 S-12-6 S-12-8
0.0492 to 0.1562	0.312	0.3125	0.3123	0.312 0.500 0.750 1.000	0.047	0.562	0.375	S-20-5 S-20-8 S-20-12 S-20-16
0.1570 to 0.3125	0.500	0.5000	0.4998	0.312 0.500 0.750 1.000 1.375 1.750	0.047	0.812	0.438	S-32-5 S-32-8 S-32-12 S-32-16 S-32-22 S-32-28
0.3160 to 0.5000	0.750	0.7500	0.7498	0.500 0.750 1.000 1.375 1.750 2.125	0.094	1.062	0.438	S-48-8 S-48-12 S-48-16 S-48-22 S-48-28 S-48-28 S-48-34

ЛGS AND FIXTURES

Table 4. (Continued) American National Standard Slip Type Renewable Wearing Bushings—Type S ANSI B94.33-1974, R1986

Range	B	ody Diamete	r <i>B</i>	Longth		Head	Head	
of Hole Sizes	Nom	Max		Under- Bead	Radjus	Dianı. E	Thickness F	
A	iNOID	iviax.	Min	С	D	Max	Max	Number
0.5156 to 0.7500	1.000	1.0000	0.9998	0.300 0.750 1.000 1.375 1.750 2.125 2.500	0.094	1.438	0.438	S-04-8 S-64-12 S-64-16 S-64-22 S-64-28 S-64-28 S-64-34 S-64-40
0.7656 to 1.0000	1.375	1.3750	1.3747	0.750 1.000 1.375 1.750 2.125 2.500	0.094	I.812	0.438	S-88-12 S-88-16 S-88-22 S-88-28 S-88-34 S-88-34 S-88-40
1.0156 to 1.3750	1,750	1.7500	1.7497	1.000 1.375 1.750 2.125 2.500 3.000	0.125	2.312	0.625	S-112-16 S-112-22 S-112-28 S-112-34 S-112-34 S-112-40 S-112-48
1.3906 to 1.7500	2.250	2.2500	2.2496	1.000 1.375 1.750 2.125 2.500 3.000	0.125	2.812	0.625	S-144-16 S-144-22 S-144-28 S-144-34 S-144-40 S-144-48
All dimen	sions are i	n inches. S	ee also 1:	ble 5 for a	dditional	specificat	ons.	010.40

Wearing Bushings ANSI B94.33-1974, R1986

Tolerance on dimensions where not otherwise specified shall be plus or minus 0.010 inch. Bole sizes are in accordance with the American Standard Twist Drill Sizes. The maximum and minimum values of hole size, A, shall be us follows: Nominal Size of Hole

Nothing Sive of Hole	.viaximum	Manamum
ove 0.0135 to 0.2500 in. incl.	Nominal - 0.0004 in.	Nominal + 0.0001 in.
ove 0.2500 to 0.7500 in. incl.	Nominal + 0.0005 in.	Nominal + 0.0001 in.
ove 0.7500 to 1.5000 in. incl.	Nominal + 0.0006 in.	Nominal + 0.0002 in.
ove 1.5000	Nominal + 0.0007 in.	Nominal + 0.0003 in.
head design shall be in accordance with	in the manufacturer's practice.	
of slip type is usually knurled.		
n remarshie wearing bushings are use	d with liner buchings of the head tune i	the langeh works the band will still

	izes are in accordance with the American Standard Twist Drill Sizes.													
The maxi	minar and minimum values of hole size, A, shall be as follows: minal Size of Hole Maximum Minimum													
					Ma	ximum			Mir	ນ່າກມະນ				
	.0135 to 0				Nominal	$1 \div 0.0004$	in.		Nominal	+0.0001	in.			
	1.2500 to 0				Nominal	+0.0005	in.		Nominal	+0.0001	in.			
Aboye ()	.7500 to 1	.5000 in. i	incl,		Nominal	+0.0006	in.		Nominal	+0.0002	in.			
Above 1					Nominal	+0.0007	in.		Nominal	+0.0003	in.			
The head	design sha	dl be in ac	cordance	with the n	unufactur	er's practi	xe.							
Head of sl	lip type is	usually kr	nucled.											
When ren	in renewable wearing bushings are used with liner bushings of the head type, the length under the head will still be could to													
the thick	thickness of the jig plate, because the head of the liner bushing will be countersunk into the jig plate,													
Diameter.	e thickness of the jig plate, because the head of the liner bushing will be countersunk into the jig plate, uncler A must be concentric to diameter B within 0.0005 T.I.R. on finish ground bushings.													
Size and t	ype of cha	mfer on h	cad end to	be manuf	enturer's o	ption,	-		-					
Bushings	in the size	range from	m 0.0135	through 0.	3125 will	be counte	rbored to 1	movide fo	r Iubricati	on and chi	n clearanc			
	size and type of chamfer on lead end to be manufacturer's option. Sushings in the size range from 0.0135 through 0.3125 will be counterbored to provide for lubrication and chip clearance.													
The size of the counterbore are optional and will be furnished upon request. The size of the counterbore shall be inside diameter of the bushings plus 0.031 inch.														
Bushings The size o	of the cour	mulerhore derbore sh	are optici all be insi	nal and wi de diamet	ll be furni er of the b	shed upon ushings pl	request. us 0.031 ir	och.			p clearait			
Bushings The size o The inclu	if the cour ited angle :	muterbore derbore sh at the bott	are option all be insi om of the	nal and wi de diamet counterbo	ll be furni er of the b re shall be	shed upon ushings pl 118 deg.,	request. us 0.031 in plus or m	nch. inus 2 des	2.		p cicataic			
Bushings The size o The inclu	if the cour ited angle :	muterbore derbore sh at the bott	are option all be insi om of the	nal and wi de diamet counterbo	ll be furni er of the b re shall be	shed upon ushings pl 118 deg.,	request. us 0.031 in plus or m	nch. inus 2 des	2.		p creatine			
Bushings The size o	if the cour ited angle :	muterbore derbore sh at the bott	are option all be insi om of the	nal and wi de diamet counterbo	ll be furni er of the b re shall be se with the	shed upon ushings pl 118 deg.,	request. us 0.031 it plus or m ow to prov	nch. inus 2 deg ide adequ	2.					
Bushings The size o The inclu	of the count ited angle : of the cou	muterbore derbore sh at the bott	are option all be insi om of the shall be in	nal and wi de diamet counterbo	II be furni er of the b re shall be se with the D	shed upon ushings pl e 118 deg., e table bel	request. us 0.031 it plus or m ow to prov g Hole Sit	nch. inus 2 deg ide adequ ze	s. ate drill b	्धानेषडू.				
Bushings The size o The inclu	of the count ded angle : of the count 0.01	ninicrhore derbore sh at the bott interbore :	are option all be insi om of the shall be in 0.06	nal and wi de diamet counterbo accordan	II be furni er of the b re shall be se with the D 0.10	shed upon ushings pl e 118 deg., e table bel orill Bearin	request. us 0.031 it plus or m ow to prov g Hole Sit	nch. inus 2 deg ide adequ ze D6 to	s. ate drill b 0.18		0.25	00 to		
Bushings The size o The inclu	of the count ded angle : of the count 0.01	sunterbore sh at the botts interbore s 35 to	are option all be insi om of the shall be in 0.06	nal and wi de diamet counterbo accordan 30 to	II be furni er of the b re shall be se with the D 0.10	shed upon ushings pl 118 deg., e table bel orill Bearin 15 to	request. us 0.031 it plus or m ow to prov g Hole Si 0.14	nch. inus 2 deg ide adequ ze D6 to	s. ate drill b 0.18	saring, 90 to	0.25			
Bushings The size of The inclu The depth	of the count ded angle : of the count 0.01 0.0	sunterbore sh at the botto interbore s interbore s 35 to 625	are option all be insi- om of the shall be in 0.06 0.0	nal and wi de diamet counterbo accordan 30 to 995	II be furni er of the b re shall be se with the 0.10 0.1 S	shed upon ushings pl 118 deg., e table bel orill Bearin 15 to 405	request. us 0.031 in plus or m ow to prov g Hole Si 0.14 0.1 S	nch. inus 2 deg ide adequ ze D6 to 875 F	;. iate drill b 0.18 0.2	earing, 90 to 500	0.25	00 to 125		
Bushings The size of The incluing The depth Body Length 0.250	of the count ded angle : of the count 0.01 0.0	at the botto interbore sh at the botto interbore s 35 to 625 F 0.250	are option all be insi- om of the shall be in 0.06 0.0	nal and wi de diamet counterbo accordan 30 to 995	II be furni er of the b re shall be se with the 0.10 0.1 S	shed upon ushings pl 118 deg., e table bel rill Bearin 15 to 405 F	request. us 0.031 in plus or m ow to prov g Hole Si 0.14 0.1 S	nch. inus 2 deg ide adequ ze D6 to 875 F	;. iate drill b 0.18 0.2	earing, 90 to 500	0.25 0.3 S	00 to 125 F		
Boshings The size of The incluin The depth Body Length 0.250 0.312	0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00	at the botto at the botto interbore : 35 to 625 F	are option all be insi om of the shall be in 0.06 0.0 S	nal and wi de diamet counterbo accordan 30 to 995 F	II be furni er of the b re shall be se with the D 0.10 0.1 S Minir	shed upon ushings pl e 118 deg., e table bel orill Bearin 15 to 405 F mum Drill	request. us 0.031 in plus or m ow to prov g Hole Si 0.14 0.15 S Bearing I,	nch. inus 2 deg ide adequ ze D6 to 875 F ength	5. ate drill b 0.18 0.2 S	2217ing. 90 to 500 F	0.25	00 to 125 F		
Boshings The size of The inclu The depth Body Length 0.250 0.312 0.375	0.01 0.00 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0	at the botto interbore sh at the botto interbore s 35 to 625 F 0.250	all be insi om of the shall be in 0.06 0.0 S 0.375	nal and wi de diamet counterbo accordane 30 to 995 F 0.375	II be furni er of the b re shall be se with the D 0.10 0.1 S Minir X	shed upon ushings pl 118 deg., e table bel orill Bearin 15 to 405 F mum Drill X	request. us 0.031 in plus or m ow to prov g Hole Si 0.14 0.15 S Bearing L X	nch. inus 2 deg ide adequ ze D6 to 875 F ength X	ate drill b 0.18 0.2 S	90 to 500 F	0.25 0.3 S	00 to 125 F		
Boshings The size of The incluin The depth Body Length 0.250 0.312	0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00	at the botto at the botto interbore s at the botto interbore s 35 to 625 F 0.250 0.250	all be insi om of the shall be in 0.06 0.0 S 0.375 0.375	nal and wi de diamet counterbo accordane 30 to 995 F 0.375 0.375	II be furni er of the b re shall be as with the D 0.10 0.1 S Minir X 0.375	shed upon ushings pl 118 deg., e table bel orill Bearin 15 to 405 F mum Drill X 0.375	request us 0.031 in plus or m ow to prov g Hole Si 0.14 0.1 S Bearing L X 0.375	nch. inus 2 deg ide adequ ze D6 to 875 F 	ate drill b 0.18 0.2 8 X 0.375	20 to 500 F X 0.375	0.25 0.3 S X X X X	00 to 125 F X X X X		
Boshings The size of The inclu The depth Body Length 0.250 0.312 0.375	0.01 0.00 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0	0.250 0.250 0.250	0.06 0.375 0.375 0.375	nal and wi de diamet counterbo accordane 30 to 995 F 0.375 0.375 0.375	II be furni er of the b re shall be se with the 0.10 0.1 S Minir X 0.375 0.375	shed upon ushings pl 118 deg., e table bel rill Bearin 15 to 405 F num Drill X 0.375 0.375	request us 0.031 in plus or m ow to prov g Hole Si 0.14 0.1 S Bearing L X 0.375 0.375	nch. inus 2 deg ide adequ ze D6 to 875 F ength X 0.375 0.375	x 0.375 0.375	20 to 500 F X 0.375 0.375	0.25 0.3 S X X X X X X	00 to 125 F X X X X X X		
Bushings The size o The incluin The depth Body Length 0.250 0.312 0.375 0.500	0.250 0.250 0.250	0.11/2/hore sh at the bott interbore sh 35 to 625 F 0.250 0.250 0.250 0.250 0.250	all be insi orm of the shall be in 0.06 0.0 S 0.375 0.375 0.375 0.375	nal and wi de diamet counterbo accordan 30 to 995 F 0.375 0.375 0.375 0.375	11 be furni rr of the b re shall be 2e with the D 0.10 0.11 S Minir X 0.375 0.375 0.375	shed upon ushings pl 118 deg., e table bel vrill Bearin 15 to 405 F num Drill X 0.375 0.375 0.375	request. us 0.031 in plus or m ow to prov g Holo Si 0.14 0.1 S Bearing L X 0.375 0.375 0.375	nch. inus 2 deg ide adequ ze D6 to 875 F congth X 0.375 0.375 0.375 0.375	x 0.18 0.2 8 X 0.375 0.375 0.375 0.375	2aring, 90 to 500 F 0.375 0.375 0.375 0.375	0.25 0.3 S X X X X X X X 0.625	00 to 125 F X X X X X 0.62		
Bushings The size of The incluin The depth Body Length 0.250 0.312 0.375 0.500 0.750	ff the cour ded angle : of the cour 0.01 0.00 S 0.250 0.250 0.250 0.250 0.250 0.250	unlarhore terbore sh at the bott interbore s 35 to 625 F 0.250 0.250 0.250 0.250 0.250 0.250	are option all be insi om of the shall be in 0.06 0.0 S 0.375 0.375 0.375 0.375	nal and wi de diamet counterbo accordane 30 to 995 F 0.375 0.375 0.375 0.375 0.375	11 be furni cr of the b re shall be be with the D 0.10 0.1.1 S Minir X 0.375 0.375 0.375 0.375	shed upon ushings pl 118 dog., e 118 dog., e 118 dog., e 120 dog., f num Drill Bearin 15 to 405 F num Drill X 0.375 0.375 0.375	request. us 0.031 in plus or m w to prov g Hole Si 0.14 0.11 S Bearing I. X 0.375 0.375 0.375	nch. inus 2 deg ide adequ ze D6 to 875 F congth X 0.375 0.375 0.375	2. ate drill b 0.18 0.2 S 0.375 0.375 0.375 0.375	20 to 500 F X 0.375 0.375 0.375	0.25 0.3 S X X X X X X	00 to 125 F X X X X		

All dimensions are in inches.

X indicates no counterbore.

+ indicates not American National Standard length.

947

٦

Table 6. American National Standard Fixed Type Renewable Wearing Bushings — Type F ANSI B94.33-1974, R1986

Range of	Bo	ndy Diameter	t B	Length Under		Head Diam.	Head Thickness	
Hole Sizes				Head	Radius	E	F	
A	Nom	Max	Min	С	D	Max	Max	Number
0.0135				0.250				F-12-4
up to and	0.188	0.1875	0.1873	0.312	0.031	0.312	0.188	F-12-5
including 0.0469				0.375				F-12-6
010 102				0.500				F-12-8
				0.312				F-20-5
0.0492 to	0.312	0.3125	0.3123	0.500	0.047	0.562	0.250	F-20-8
0.1562				0.750				F-20-12
				1.000				F-20-16
				0.312				F-32-5
0.1570	i			0.500				F-32-8
to	0.500	0.5000	0.4998	0.750	0.047	0.812	0.250	F-32-12
0.3125				1.000				F-32-16
			ł	1.375				F-32-22
		ļ		1.750				F-32-28 F-48-8
				0.500				F-48-8 F-48-12
0.3160				1.000				F-48-12 F-48-16
to	0.750	0.7500	0.7498	1.375	0.094	1.062	0,250	F-48-22
0.5000				1.375				F-48-22 F-48-28
	1			2.125				F-48-34
				0.500				F-64-8
				0.750	1			F-64-12
				1.000			Ì	F-64-16
0.5156 to	1.000	1.0000	0.9998	1.375	0.094	1.438	0.375	F-64-22
0.7500		1	1	1.750				F-64-28
				2.125				I7-64-34
				2,500				I7-64-40
				0.750				F-88-12
				1.000				F-88-16
0,7656				1.375				F-88-22
to 1.0000	1.375	1.3750	1.3747	1.750	0.094	1.812	0.375	F-88-28
1.0000				2.125				F-88-34
		1		2.500		1		F-88-40
		Í	1	1.000		<u> </u>	i	F-112-16
				1.375				F-112-32
1.0156	1.770	1.7600	1.7407	1.750	0.105	0.712	0.275	F-112-28
10 1,3750	1.750	1.7500	1.7497	2.125	0.125	2.312	0.375	F-112-34
				2,500				F-112-40
				3.000				F-112-48
	1	1		1.000				F-144-16
				1.375			Į.	F-144-22
1.3906	2.250	2.2500	2.2496	1.750	0.125	2.812	0.375	F-144-28
1.7500	2.2.50	2	2.2490	2.125	0.125	2.012	0.575	F-144-34
				2.500			1	F-144-40
		1	1	3.000				F-144-48

All dimensions are in inches. See also Table 5 for additional specifications.

JIGS AND FIXTURES

Table 7. American National Standard Headless Type Liner Bushings — Type L ANSI B94.33-1974, R1986

				D > 1	3-1974	,	-				
Range of					Body	Diamete	r B	_		1	
Hole Sizes	Insid	e Diameter	A	- 1	Unfinit	shed	Finis	hed	Over- all	Radius	
Renewable Bushings	Nom	Max	Min	Norà	Max	Min	Max	Min	Length C	D	Number
2.00.0											
							_		0.250		L-20-4
0.0135 up to and				0.312	0.3341	0.3288	0.3141	0.3138	0.312	0.031	L-20-5
including	0.188	0.1879	0.1876	0.512	0.55+1	0.5200	0.5144	010100	0.375		L-20-6
0.0469				1					0.500		L-20-8
									0.312		L-32-5 L-32-8
0.0492		0.3129	0.3126	0.500	0.520	0.515	0.5017	0,5014	0.500	0.047	L-32-3 L-32-12
0.1562	0,312	0.3129	0.3120	0.000	0.520	0.010	0.000		0.750		L-32-12 L-32-16
0.1504				1					1.000		L-32-16 L-48-5
									0.312		L-48-8
							Į '		0.500		L-48-12
0.1570	0.500	0.5005	0.5002	0.750	0.770	0,765	0,7518	0.7515	0.750	0.062	L-48-16
to 0.3125	0.500	0.3003	0.0004	0.750				l			L-48-22
0.0120		1	ļ				1		1.375 1.750		L-48-28
									0.500		L-64-8
	1						1		0.750		L-64-12
					ļ !			ļ	1.000	{	L-64-16
0.3160	0,750	0.7506	0.7503	1.000	1,020	1.015	1.0018	1.0015	1.375	0.062	L-64-22
to 0.5000	0.750	0.7500	0.1505	1.000					1.750	ļ	L-64-22
0.5000							ļ	Ì	2.125		L-64-34
				L					0.500		L-88-8
								1	1,750		L-88-12
	1			1	Ļ				1.000	1	L-88-16
0.5156		ļ			1.395	1.390	1.3772	1.3768		0.094	L-88-22
to	1.000	1.0007	1.0004	1.375	1.395	1.590	1.3116	1.5/0	1.750		L-88-28
0.7500		Į.				1	1		2,125		L-88-34
	1		1	1	1				2,500		L-88-40
						<u> </u>			0,750	<u>+</u> _	L-112-12
			1	{	l I				1.000		L-112-16
0.7656		l				1		1	1.375	0.094	J112-22
10	1.375	1.3760	1,3756	1.750	1.770	1.765	1.7523	1.751	9 1.750	0.094	L-112-28
1,0000					1			ļ	2.125		L-112-34
		1	1	ļ	ļ				2.500		L-112-40
								+	1.000	-	L-144-16
	1	1	1	Į	l				1.375		L-144-22
1.0156						1	2,252	5 2.252	1.750	0.094	L-144-28
to	1.750	1.7512	1.7508	2.250	2.270	2.265	1 2.252	" ^{2.232}	2.125		L-144-34
1.3750					1	1		1	2.500		L-144-40
		1	1	l	l		1		3.000		L-144-48
<u> </u>				1			-		1.000		L-176-16
		1	-	Į	ļ		1		1,375		L-176-22
1.3906			0.051/	2.750	2,770	2.76	5 2.752	6 2.75	1.750		1,-176-28
10 1 7500	2.250	2.2515	2.2510	1 2.750	1 2/10	2.70.	5 2.152	.]	2,12		L-176-34
1.7500				1	1				2.50		L-176-40 L-176-48
1	1	1	1	1	1		1	1	3.00)	L-1/0-48

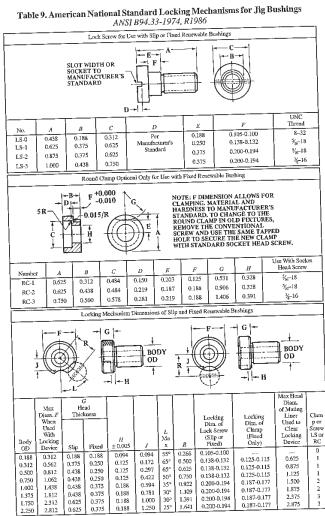
All dimensions are in inches.

Tolerances on dimensions where otherwise not specified are ± 0.010 in.

The body diameter, B, for unfinished bushings is 0.015 to 0.020 in. larger than the nominal diameter in order to provide grinding stock for fitting to jig plate holes.

Diameter A must be concentric to diameter B within 0.0005 T.I.R. on finish ground bushings.

949


Table 8. American National Standard Head Type Liner Bushing — Type HL ANSI B94.33-1974, R1986

able		Body Diameter B									s		
folc		Inside Diameter			Unfin		Fini	hed				kines	
of) n Re		Diamon			- Clark	- mea			Overall	9	Head	hic.	
Range of Hole Sizes in Renewable Bushings	Молт	Max	Min	Nom	Мал	Min	Max	Mia	Length C	Radius D	Dia. E	Heud Thickness F Max	Number
									0.312				HL-32-5
0.0135	0.312	0.3129	0.3126	0.500	0.520	0.515	0.5017	0.5014	0.500	0.047	0.625	0.094	HL-32-8
to 0.1562	0.512	0.5129	0.5120	0.500	0.520	0.515	0.5011	0.5014	0.750	0.047	0.0	0.094	HL-32-12
									1.000				HL-32-16
									0.312				HL-48-5
									0.500				HL-48-8
0.1570	0.500	0.5005	0.5002	0.750	0.770	0.765	0.7518	0.7515	0.750	0.062	0.875	0.094	HL-48-12
ю 0.3125	0.500	0.5005	0.5002	0.750	0.770	0.765	0.7518	0.7515	1.000	0.062	0.873	0.094	HL-48-16
									1.375				HL-48-22
									1.750				HL-48-28
									0.500				HL-64-8
									0.750				HL-64-12
0.3160								1.0015	1.000	0.062	1.125	0.125	HL-64-16
to 0.5000	0.750	0.7506	0.7503	1.000	1.020	1.015	1.0018	1.0015	1.375	0.052	1.125	0.125	HL-64-22
									1,750	ļ			HL-64-28
1									2.125				HL-64-34
									0.500				HL-88-8
									0.750				HL-88-12
0.5156									1.000				HL-88-16
to	1.000	1.0007	1.0004	1.375	1.395	1.390	1.3772	1.3768	1.375	0.094	1.500	0.125	HL-88-22
0.7500									1.750				HL-88-28
		1						· ·	2,125				HL-88-34
ļ						ĺ		Í	2.500				HL-88-40
<u> </u>						1			0.750				HL-112-12
									1.000				HL-112-16
0.7656								1.0510	1.375		1.076	0.700	HL-112-22
to 1.0000	1.375	1.3760	1.3756	1.750	1.770	1.765	1.7523	1.7519	1.750	0.094	1.875	0.188	HL-112-28
									2.125				HL-112-34
				!			ĺ		2.500				HL-112-40
	<u> </u>	1		1	·····	1			1.000	1	i –	í –	HL-144-16
						i i			1,375				HL-144-22
1.0156						0.047	0.000-		1.750			0.000	HL-144-28
to 1.3750	1.750	1.7512	1.7508	2.250	2.27	2.265	2.2525	2.2521	2.125	0.094	2.575	0.188	HL-144-34
									2,500			l	HL-144-40
									3.000				HL-144-48
	t	···			1	1			1.000	í	1	1	HL-176-16
	İ								1.375				HL-176-22
1.3906		1							1.750				HL-176-28
1.7500	2.250	2.2515	2.2510	2.750	2.770	2.765	2.7526	2.7522	2.125	0.125	2.875	0.188	HL-176-34
									2.500				IEL-176-40
					1				3.000				HL-176-48
L	.I			L	1	1	1	1	1	1	1	L	

All dimensions are in inches.

See also footnotes to Table 7.

JIGS AND FIXTURES

All dimensions are in inches.

ЛG BUSHINGS

Jig Bushing Definitions.—*Renewable Bushings*: Renewable wearing bushings to guide the tool are for use in liners which in turn are installed in the jig. They are used where the bushing will wear out or become obsolete before the jig or where several bushings are to be interchangeable in one hole. Renewable wearing bushings are divided into two classes, "Fixed" and "Slip." Fixed renewable bushings are installed in the liner with the intention of leaving them in place until worn out. Slip renewable bushings are interchangeable in a given size of liner and, to facilitate removal, they are usually made with a knurled head. They are most frequently used where two or more operations requiring different inside diameters are performed in a single jig, such as where drilling is followed by reaming, tapping, spot facing, counterboring, or some other secondary operation.

Press Fit Bushings: Press fit wearing bushings to guide the tool are for installation directly in the jig without the use of a liner and are employed principally where the bushings are used for short production runs and will not require replacement. They are intended also for short center distances.

Liner Bushings: Liner bushings are provided with and without heads and are permanently installed in a jig to receive the renewable wearing bushings. They are sometimes called master bushings.

Jig Plate Thickness.—The standard length of the press fit portion of jig bushings as established are based on standardized uniform jig plate thicknesses of $\frac{1}{16}$, $\frac{3}{6}$, $\frac{1}{2}$, $\frac{3}{4}$, 1, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{2}{6}$, $\frac{2}{4}$, and 3 inches.

Jig Bushing Designation System.—Inside Diameter: The inside diameter of the hole is specified by a decimal dimension.

Type Bushing: The type of bushing is specified by a letter: S for Slip Renewable, F for Fixed Renewable, L for Headless Liner, HL for Head Liner, P for Headless Press Fit, and H for Head Press Fit.

Body Diameter: The body diameter is specified in multiples of 0.0156 inch. For example, a 0.500-inch body diameter = 0.500/0.0156 = 32.

Body Length: The effective or body length is specified in multiples of 0.0625 inch. For example, a 0.500-inch length = 0.500/0.0625 = 8.

Unfinished Bushings: All bushings with grinding stock on the body diameter are designated by the letter U following the number.

Example: A slip renewable bushing having a hole diameter of 0.5000 inch, a body diameter of 0.750 inch, and a body length of 1.000 inch would be designated as .5000-S-48-16.

Definition of Jig and Fixture.—The distinction between a jig and fixture is not easy to define, but, as a general rule, it is as follows: A jig either holds or is held on the work, and, at the same time, contains guides for the various cutting tools, whereas a fixture holds the work while the cutting tools are in operation, but does not contain any special arrangements for guiding the tools. A fixture, therefore, must be securely held or fixed to the machine on which the operation is performed—hence the name. A fixture is sometimes provided with a number of gages and stops, but not with bushings or other devices for guiding the cutting tools.

Jig Borers.—Jig borers are used for precision hole-location work. For this reason, the coordinate measuring systems on these machines are designed to provide longitudinal and transverse movements that are accurate to 0.0001 in. One widely used method of obtaining this accuracy utilizes ultraprecision lead screws. Another measuring system employs precision end measuring rods and a micrometer head that are placed in a trough which is parallel to the table movement. However, the purpose of all coordinate measuring systems used is the same: to provide a method of a ligning the spindle at the precise location where a hole is to be produced. Since the work table of a jig borer moves in two directions, the coordinate system of dimensioning is used, where dimensions are given from two perpen-

JIG BORING

952

dicular reference axes, usually the sides of the workpiece, frequently its upper left-hand corner. See Fig. 1C.

Jig-Boring Practice.—The four basic steps to follow to locate and muchine a hole on a jig borer are: 1) align and clamp the workpiece on the jig-borer table; 2) locate the two reference axes of the workpiece with respect to the jig-borer spindle; 3) locate the hole to be machined; and 4) drill and bore the hole to size.

Align and Clamp the Workpiece: The first consideration in placing the workpiece on the jig-borer table should be the relation of the coordinate measuring system of the jig borer to the coordinate dimensions on the drawing. Therefore, the coordinate measuring system is designed so that the readings of the coordinate measurements are direct when the table is moved toward the left and when it is moved toward the column of the jig borer. The result would be the same if the spindle were moved toward the right and away from the column, with the workpiece situated in such a position that one reference axis is located at the left and the other axis at the back, toward the column.

If the holes to be bored are to pass through the bottom of the workpiece, then the workpiece must be placed on precision parallel bars. In order to prevent the force exerted by the clamps from bending the workpiece the parallel bars are placed directly under the clamps, which hold the workpiece on the table. The reference area of the workpiece must also be aligned with respect to the transverse and longitudinal table movements before it is firmly clamped. This alignment can be done with a dial-test indicator held in the spindle of the jig borer and bearing against the longitudinal reference edge. As the table is traversed in the longitudinal direction, the workpiece is adjusted until the dial-test indicator readings are the same for all positions.

Locate the Two Reference Axes of the Workpiece with Respect to the Spindle: The jigborer table is now moved to position the workpiece in a precise and known location from where it can be moved again to the location of the holes to be machined. Since all the holes are dimensioned from the two reference axes, the most convenient position to start from is where the axis of the jig-borer spindle and the intersection of the two workpiece reference axes are aligned. This is called the starting position, which is similar to a zero reference position. When so positioned, the longitudinal and transverse measuring systems of the jig borer are set to read zero. Occasionally, the reference axes are located outside the body of the workpiece: a convenient edge or hole on the workpiece is picked up as the starting position, and the dimensions from this point to the reference axes are set on the positioning measuring system.

Locate the Hole: Precise coordinate table movements are used to position the workpiece so that the spindle axis is located exactly where the hole is to be machined. When the measuring system has been set to zero at the starting position, the coordinate readings at the hole location will be the same as the coordinate dimensions of the hole center.

The movements to each hole must be made in one direction for both the transverse and longitudinal directions, to eliminate the effect of any backlash in the lead screw. The usual table movements are toward the left and toward the column.

The most convenient sequence on machines using micrometer dials as position indicators (machines with lead screws) is to machine the hole closest to the starting position first and then the next closest, and so on. On jig borers using end measuring rods, the opposite sequence is followed: The farthest hole is machined first and then the next farthest, and so on, since it is easier to remove end rods and replace them with shorter rods.

953

Drill and Bore Hole to Size: The sequence of operations used to produce a hole on a jig borer is as follows: 1) a short, stiff drill, such as a center drill, that will not deflect when cutting should be used to spot a hole when the work and the axis of the machine tool spindle are located at the exact position where the hole is wanted; 2) the initial hole is made by a twist drill; and 3) a single-point boring tool that is set to rotate about the axis of the machine tool spindle is then used to generate a cut surface that is concentric to the axis of rotation.

Heat will be generated by the drilling operation, so it is good practice to drill all the holes first, and then allow the workpiece to cool before the holes are bored to size.

Transfer of Tolerances.—All of the dimensions that must be accurately held on precision machines and engine parts are usually given a tolerance. And when such dimensions are changed from the conventional to the coordinate system of dimensioning, the tolerances must also be included. Because of their importance, the transfer of the tolerances must be done with great care, keeping in mind that the sum of the tolerances of any pair of dimensions in the coordinate system must not be larger than the tolerance of the dimension that they replaced in the conventional system. An example is given in Fig. 1.

The first step in the procedure is to change the tolerances given in Fig. 1A to equal, bilateral tolerances given in Fig. 1B. For example, the dimension 2.125^{+002}_{-001} has a total tolerance of 0.004. The equal, bilateral tolerance would be plus or minus one-half of this value, or ± 002 . Then to keep the limiting dimensions the same, the basic dimension must be changed to 2.126, in order to give the required values of 2.128 and 2.124. When changing to equal, bilateral tolerances, if the upper tolerance is decreased (as in this example), the basic dimension must be increased by a like amount. The upper tolerance was decreased by 0.003 – 0.002 = 0.001; therefore, the basic dimension was increased by 0.001 to 2.126. Conversely, if the upper tolerance is increased, the basic dimension is decreased.

The next step is to transfer the revised basic dimension to the coordinate dimensioning system. To transfer the 2.126 dimension, the distance of the applicable holes from the left reference axis must be determined. The first holes to the right are 0.8750 from the reference axis. The second hole is 2.126 to the right of the first holes. Therefore, the second hole is 0.8750 + 2.126 = 3.0010 to the right of the reference axis. This value is then the coordinate dimension for the second hole, while the 0.8750 value is the coordinate dimension for the second holes. This procedure is followed for all the holes to find their distances from the two reference axes. These values are given in Fig. 1C.

The final step is to transfer the tolerances. The 2.126 value in Fig. 1B has been replaced by the 0.8750 and 3.0010 values in Fig. 1C. The 2.126 value has an available tolerance of ± 0.002 . Dividing this amount equally between the two replacement values gives 0.8750 ± 0.001 and 3.0010 ± 0.001 . The sum of these tolerances is .002, and as required, does not exceed the tolerance that was replaced. Next transfer the tolerance of the 0.502 dimension. Divide the available tolerance, ± 0.002 , equally between the two replacement values gives 0.8750 $\pm 0.001 \pm 0.001$ and 3.5030 ± 0.001 . The sum of these two tolerances equals the replaced tolerance, as required. However, the 1.125 value of the last hole to the right (coordinate dimension 4.6280 in.) has a tolerance of only ± 0.001 . Therefore, the sum of the tolerance equally would give 3.5030 $\pm .0005$ and 4.6280 ± 0.0005 . This new, smaller tolerance replaces the ± 0.001 tolerance on the 3.5030 value in order to satisfy all tolerance sum requirements. This example shows how the tolerance of a coordinate value is affected by more than one other dimensional requirement.

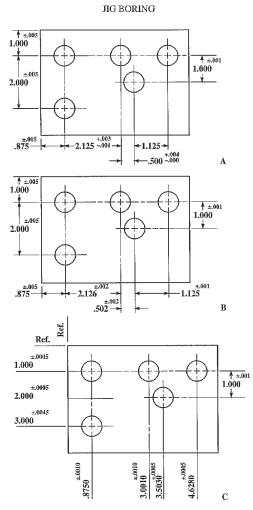


Fig. 1. (A) Conventional Dimensions, Mixed Tolerances; (B) Conventional Dimensions, All Equal, Bilateral Tolerances; and (C) Coordinate Dimensions

JIG BORING

955

The following discussion will summarize the various tolerances listed in Fig. 1C. For the 0.8750 \pm 0.0010 dimension, the \pm 0.0010 tolerance together with the \pm 0.0010 tolerance on the 3.0010 dimension is required to maintain the \pm 0.002 tolerance of the 2.126 dimension. The \pm 0.005 tolerance on the 3.5030 and 4.2680 dimensions are required to maintain the \pm 0.001 tolerance of the 1.125 dimension, at the same time as the sum of the \pm .0005 tolerance on the 3.5030 dimension and the \pm 0.001 tolerance on the 3.0010 dimension des not exceed the \pm 0.002 tolerance on the \pm 0.001 tolerance on the 3.0000 values maintain the \pm 0.001 tolerance on the 1.0000 values maintain the \pm 0.001 tolerance on the 1.0000 values maintain the \pm 0.001 tolerance on the 1.0000 dimension of Fig. 1A. The \pm 0.0045 tolerance on the 3.0000 dimension to gether with the \pm 0.0005 tolerance on the 1.0000 dimensions in Fig. 1C. Each of these values could have had a tolerance of \pm 0.0025, except that the tolerance on the 1.0000 dimension on the left in Fig. 1A is also bound by the \pm 0.001 tolerance on the 1.0000 dimension on the left in Fig. 0.0005 tolerance on the 3.0000 dimension on the left in Fig. 0.000 and 3.0000 dimensions in Fig. 1C. Each of these values could have had a tolerance of \pm 0.0025, except that the tolerance on the 1.0000 dimension on the left in Fig. 0.0005 tolerance value is used. This procedure requires the tolerance on the 3.0000 value to be increased to \pm 0.0005 tolerance on the 3.0000 dimension on the left in Fig. 1A is bound by the \pm 0.001 tolerance on the 1.0000 value to tolerance on the 1.0000 value scould have had a tolerance of \pm 0.0025, except that the tolerance on the 1.0000 dimension on the left in Fig. 1A is also bound by the \pm 0.001 tolerance on the 1.0000 dimension on the left in Fig. 1A is also bound by the \pm 0.001 tolerance on the 1.0000 dimension on the right, thus the \pm 0.0005 tolerance value is used. This procedure requires the tolerance on the 3.0000 value

Lengths of Chords for Spacing Off the Circumferences of Circles

On the following pages are given tables of the lengths of chords for spacing off the circumferences of circles. The object of these tables is to make possible the division of the periphery into a number of equal parts without trials with the dividers. The first table is calculated for circles having a diameter equal to 1. For circles of other diameters, the length of chord given in the table should be multiplied by the diameter of the circle. This first table may be used by toolmakers when setting "buttons" in circular formation. Assume that it is required to divide the periphery of a circle of 20 inches diameter into thirty-two equal parts. From the table the length of the chord is found to be 0.098017 inch, if the diameter of the circle were 1 inch. With a diameter of 20 inches the length of the chord for one division would be $20 \times 0.098017 = 1.9603$ inches. Another example in metric units: For a 100 millimeter fluxing 5 equal divisions, the length of the chord for one division would be $100 \times 0.587785 = 58.7785$ millimeters.

The two following pages give an additional table for the spacing off of circles, the table, in this case, being worked out for diameters from $\frac{1}{16}$ inch to 14 inches. As an example, assume that it is required to divide a circle having a diameter of $6\frac{1}{2}$ inches into seven equal parts. Find first, in the column headed "6" and in line with 7 divisions, the length of the chord for a 6-inch circle, which is 2.603 inches. Then find the length of the chord for a $\frac{1}{2}$ inch diameter circle, 7 divisions, which is 0.217. The sum of these two values, 2.603 + 0.217 = 2.820 inches, is the length of the chord required for spacing off the circumference of a $6\frac{1}{2}$ -inch circle into seven equal divisions.

As another example, assume that it is required to divide a circle having a diameter of 9^{2}_{32} inches into 15 equal divisions. First find the length of the chord for a 9-inch circle, which is 1.871 inch. The length of the chord for a 2^{3}_{32} -inch circle can easily be estimated from the table by taking the value that is exactly between those given for 1^{1}_{6} and $\frac{3}{4}$ inch. The value for $\frac{1}{4}$ inch is 0.143, and for $\frac{3}{4}$ inch, 0.156. For 2^{3}_{32} the value would be 0.150. Then, 1.871 + 0.150 = 2.021 inches.

JIG BORING

Lengths of Chords for Spacing Off the Circumferences of Circles with a Diameter Equal to 1 (English or metric units)

No. of Spaces	Length of Chord	No. of Spaces	Length of Chord	No. of Spaces	Length of Chord	No. of Spaces	Length of Chord
3	0.866025	22	0.142315	41	0.076549	60	0.052336
4	0.707107	23	0.136167	42	0.074730	61	0.051479
5	0.587785	24	0.130526	43	0.072995	62	0.050649
6	0.500000	25	0.125333	44	0.071339	63	0.049846
7	0.433884	26	0.120537	45	0.069756	64	0.049068
8	0.382683	27	0.116093	46	0.068242	65	0.048313
9	0.342020	28	0.111964	47	0.066793	66	0.047582
10	0.309017	29	0.108119	48	0.065403	67	0.046872
11	0.281733	30	0.104528	49	0.064070	68	0.046183
12	0.258819	31	0.101168	50	0.062791	69	0.045515
13	0.239316	32	0.098017	51	0.061561	70	0.044865
14	0.222521	33	0.095056	52	0.060378	71	0.044233
15	0.207912	34	0.092268	53	0.059241	72	0.043619
16	0.195090	35	0.089639	54	0.058145	73	0.043022
17	0.183750	36	0.087156	55	0.057089	74	0.042441
18	0.173648	37	0.084806	56	0.056070	75	0.041876
19	0.164595	38	0.082579	57	0.055088	76	0.041325
20	0.156434	39	0.080467	58	0.054139	77	0.040789
21	0.149042	40	0.078459	59	0.053222	78	0.040266

For circles of other diameters, multiply length given in table by diameter of circle.

Hole Coordinate Dimension Factors for Jig Boring.— Tables of hole coordinate dimension factors for use in jig boring are given in Tables 1 through 4 starting on page 959. The coordinate axes shown in the figure accompanying each table are used to reference the tool path; the values listed in each table are for the end points of the tool path. In this machine coordinate system, a positive Y value indicates that the effective motion of the tool with reference to the work is toward the front of the jig borer (the actual motion of the jig borer table is toward to eld with respect to the work is toward the right (the actual motion of the jig borer table is toward the left). When entering data into most computer-controlled jig borers, current practice is to use the more familiar Cartesian coordinate axis system in which the positive Y values in the tables, it is important to determine the coordinate system. The computer will automatically change the signs of the entered Y values to the signs that they would have in the machine coordinate system is to be used. If a Cartesian coordinate system is to be used for the tool path, then the sign of the Y values in the tables must be changed, from positive to negative and from negative to positive. For example, when programming for a three-hole type A circle using Cartesian coordinates 3.2000.

ЛG BORÍNG

		14		12.124	9.899	8.229	7.000	6.074	5.358	4.788	4.326	3.944	3.623	3.350	3.115	2.911	2.731	2.572	2.431	2.304	2.190	2.087	I.992	1.906	1.827	1.755	1.688	1.568	1.463	1.372
		13		11.258	9,192	7,641	6.500	5.640	4.975	4,446	4.017	3.663	3.365	3.111	2.893	2.703	2.536	2.389	2.257	2.140	2.034	866'T	1.850	1.770	1.697	1.629	1.567	1.456	1.359	1,274
		12		10.392	8.485	7.053	6.000	5.207	4.592	4,104	3.708	3.381	3.106	2.872	2.670	2.495	2.341	2,205	2,084	1.975	1.877	1.789	1.708	1.634	1.566	1.504	1.446	1344	1.254	1.176
		11		9.526	7.778	6.466	5.500	4,773	4.210	3.762	3.399	3.099	2.847	2.632	2.448	2.287	2,146	2.021	0161	11811	1,721	1.639	1.565	1.498	1.436	1,379	L.326	1,232	1.150	1.078
		10		8.660	7.071	5.878	5.000	4.339	3.827	3.420	3.090	2.817	2,588	2,393	2.225	2.079	1.951	1.837	1.736	1.646	1.564	I.490	l.423	1.362	1.305	1.253	1.205	1.120	1,045	0.980
ircles	10ff	6		7.794	6.364	5.290	4.500	3.905	3.444	3.078	2.781	2.536	2.329	2.154	2.003	1.871	1.756	1.654	1.563	1.481	8051	146.1	1.281	1.225	1.175	1.128	1.085	1.008	0.941	0.882
Table for Spacing Off the Circumferences of Circles	Diumeter of Circle to be Spaced Off	-20	f Chord	6.928	5.657	4.702	4.000	3.471	3.061	2,736	2.472	2.254	2.071	1.915	1.780	1.663	1.561	1.470	L.389	1.317	1.251	1.192	1.139	1.089	1.044	1.003	0.964	0.896	0.836	0.784
umferen	ster of Circle	4	Length of Chord	6.062	4.950	4.114	3.500	3.037	2.679	2.394	2,163	1.972	1.812	1.675	1.558	1,455	1.366	1.286	1.216	1.152	1.095	1.043	0.996	0.953	0.914	0.877	0.844	0.784	0.732	0.686
the Circ	Diam	9		5.196	4.243	3.527	3.000	2.603	2.296	2.052	L.854	1.690	1.553	L.436	1.335	1.247	1,171	1.102	1.042	0.988	0.939	0.894	0.854	0.817	0.783	0.752	0.723	0.672	0.627	0.588
ing Off		5		4.330	3.536	2.939	2.500	2.169	1.913	1,710	1.545	1.409	1,294	1.197	1.113	1.040	0.975	0.919	0.868	0.823	0.782	0.745	0.712	0.681	0.653	0.627	0,603	0.560	0.523	0.490
for Space		4		3.464	2.828	2.351	2,000	1.736	1.531	1.368	L236	1.127	1.035	0.957	0.890	0.832	0.780	0.735	0.695	0.658	0.626	0.596	0.569	0.545	0.522	0.501	0.482	0.448	0.418	0.392
Table		9		2.598	2.121	1.763	1.500	1.302	1.148	1.026	0.927	0.845	0.776	0.718	0.668	0.624	0.585	0.551	0.521	0.494	0.469	0.447	0.427	80+.0	0.392	0.376	0.362	0.336	0.314	0.294
		62		1,732	1.414	1.176	1.000	0.868	0.765	0.684	0.618	0.563	0.518	0.479	0.445	0.416	0.390	0.367	0.347	0,329	0.313	0.298	0.285	0.272	0.261	0,251	0,241	0,224	0.209	0.196
				0.866	0.707	0.588	0.500	0,434	0.383	0.342	0209	0.282	0.259	0.239	0.223	0.208	0.195	0.184	0,174	0.165	0.156	0.149	0.142	0.136	0.131	0.125	0.121	0.112	0,105	0,098
		Degrees		071	06	72	09	51%	45	40	36	32%	30	27%	25%	24	22½	$213_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P_$	20	181%	81	174	164	151%	15	1435	13141	12%	12	1194
		No. of	DIVISIONS	6	4	ŝ	. 9	7	60	6	10	Ξ	12	F1	4	15	16	17	8	19	20	21	22	23	24	25	26	28	30	32

JIG BORING

JIG BORING

959

Table 1. Hole Coordinate Dimension Factors for Jig Boring — Type "A" Hole Circles (English or Metric Units)

2	Ref	3_		5))	Holos	y are <u>p</u> are for Dimer circle	given in the (r holes num) nsions given of, say, 3-in	table fi bered î are ba ch or 2	or hole circle n a countere sed upon a h l-centimeter	s of fr lockwi ole cir diame	a 5-hole circ om 3 to 28 h isc direction cle of unit di ter, multiply 8 Holes	oles. E (as sho ameter, table v	imension wn), . For a hol
	Holes		Holes		Holes		Holes		Holes			-	
хl	0.50000	x1	0.50000	<i>x</i> 1	0.50000	<i>x</i> 1	0.50000	xl	0.50000	хI	0.50000	хI	0.5000
y1	0.00000	уI	0.00000	уl	0.00000	yt	0.00000	y1	0.0000	yl	0.00000	yl	0.0000
x2	0.06699	<i>x</i> 2	0.00000	x2	0.02447	x2	0.06699	x2	0.10908	x2	0.14645	x2	0.1786
y2	0.75000	y2	0.50000	у2	0.34549	y2	0.25000	<u>3</u> 2	0.18826	y2	0.14645	y2	0.1169
x3	0.93301	13	0.50000	x3	0.20611	x3	0.06699	x3	0.01254	£λ	0.00000	x3	0.0076
y3	0.75000	33	1.00000	<u>y</u> 3	0.90451	y3	0,75000	y3	0.61126	у3	0.50000	у3	0.4131
		x4	1.00000	<i>x</i> 4	0.79389	x4	0.50000	x4	0.28306	<i>x</i> 4	0.14645 0.85355	<i>x</i> 4	0.0669
		y4	0.50000):4 x5	0.90451	34 35	0.93301	¥ر تئ	0.95048	374 325	0.85355)4 ಸ್	0.7500
		1		х <u>э</u> у5	0.97553	х5 у5	0.95501	یں 5ر	0.95048	دد. 5ر	1.00000	تد 5ز	0.969
				<i>y</i> 3	0.54549	35	0.93301	35 26	0.98746	36	0.85355	26	0.671
						70 76	0.25000	20 26	0.61126	ло 36	0.85355	16	0.969
								x7	0.89092	уч х7	1.00000	x7	0.933
				1				y7	0.18826	37	0.50000	γ7	0.750
								2.		28	0.85355	x8	0,992
										y8	0.14645	y8	0.413
												29	0.821
												y9	0.116
10) Holes	11	l Holes	1	2 Holes	13	3 Holes	1	4 Holes	1	5 Holes	1	6 Holes
xl	0.50000	xl	0.50000	x1	0.50000	xl	0,50000	хl	0.50000	x]	0.50000	хI	0.5000
3'I	0.00000	yi	0.00000	y1	0.00000	51	0.00000	yl	0.00000	y1	0.00000	yl	0.000
x2	0.20611	x2	0.22968	x2	0.25000	32	0.26764	x2	0.28306	x2	0,29663	x2	0.308
32	0.09549	y2	0.07937	y2	0.06699	y2	0.05727	y2	0.04952	y2	0.04323	y2	0.038
x3	0.02447	x3	0.04518	x3	0.06699	x3	0.08851	x3	0.10908	x3	0.12843	x3	0.146
у3	0.34549	y3	0.29229	y3	0.25000	y3	0.21597	у3	0.18826	у3	0.16543	y3	0.146
	0.02447	x4	0.00509	x4	0.00000	x4	0.00365	x 4	0.01254	x4	0.02447	x4	0.038
x4				54	0.50000	34	0.43973	<u>3</u> 4	0.38874	34	0.34549	y4	0.308
)#	0.65451	y4	0.57116										
)4 x5	0.65451 0.20611	x5	0.12213	25	0.06699	x5	0.03249	35	0.01254	35	0.00274	x5	
)# x5 35	0.65451 0.20611 0.90451	່ ແລ້ ງາວົ	0.12213 0.82743	15 35	0.06699 0.75000	15)5	0.67730	35 35	0.01254 0.61126	y5	0.00274 0.55226	x5 35	0.500
)4 x5 y5 x6	0.65451 0.20611 0.90451 0.50000	້.x.5 ງ:5 .x6	0.12213 0.82743 0.35913	15 15 16	0.06699 0.75000 0.25000	15)5 26	0.67730 0.16844	15 35 16	0.01254 0.61126 0.10908	у5 .xб	0.00274 0.55226 0.06699	x5)5 x6	0.500
y4 x5 y5 x6 y6	0.65451 0.20611 0.90451 0.50000 1.00000	2x5 275 2x6 276	0.12213 0.82743 0.35913 0.97975	25 15 26	0.06699 0.75000 0.25000 0.93301	15 15 16 16	0.67730 0.16844 0.87426	15 35 16 36	0.01254 0.61126 0.10908 0.81174	у5 26 уб	0.00274 0.55226 0.06699 0.75000	35 35 36 36	0.500 0.038 0.691
)4 x5 x5 x6 y6 x7	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389	x5 35 36 36 36 47	0.12213 0.82743 0.35913 0.97975 0.64087	25 35 26 26 27	0.06699 0.75000 0.25000 0.93301 0.50000	15 15 15 15 16 16	0.67730 0.16844 0.87426 0.38034	15 35 16 36 27	0.01254 0.61126 0.10908 0.81174 0.28306	у5 хб уб х7	0.00274 0.55226 0.06699 0.75000 0.20611	x5 y5 x6 y6 x7	0.500 0.038 0.691 0.146
)4 x5 x5 x6 x7 y7	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 0.90451	x5 y5 x6 y6 x7 y7	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975	25 35 26 26 27 27	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000	25 35 26 36 36 27 37	0.67730 0.16844 0.87426 0.38034 0.98547	x5 y5 x6 y6 x7 y7	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048	y5 x6 y6 x7 y7	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451	x5 y5 x6 y6 x7 y7	0.500 0.038 0.691 0.146 0.853
)4 x5 x6 y6 x7 y7 x8	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 0.90451 0.97553	x5 y5 x6 y6 x7 y7 x8	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787	25 25 26 26 27 27 27 28	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000 0.75000	15 15 15 16 16 17 17 18	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966	15 15 16 16 17 17 17 18	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000	y5 x6 y6 x7 y7 x8	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.39604	x5 x6 x6 x7 y7 x8	0.500 0.038 0.691 0.146 0.853 0.308
)4 x5 y5 x6 y7 x7 y7 x8 y8	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 0.90451 0.97553 0.65451	x5 x6 x6 x7 y7 x8 y8	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743	25 25 26 27 27 27 28 28	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000 0.75000 0.93301	15 15 15 16 17 17 18 18	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547	15 15 16 16 17 17 17 18	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000	y5 x6 y6 x7 y7 x8 y8	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.39604 0.98907	x5 y5 x6 y7 x7 y7 x8 y8	0.500 0.038 0.691 0.146 0.853 0.308 0.308
14x55x659x77x838	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553	x5 y5 x6 y7 x7 y7 x8 y8 y8	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491	15 15 16 17 17 18 18 19 19	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000 0.75000 0.93301 0.93301	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156	15 35 16 37 37 37 37 37 38 38 39	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694	y5 x6 y6 x7 y7 x8 y8 x9	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.39604 0.98907 0.60396	x5 y5 x6 x7 y7 x8 y8 x9	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500
42566977898999	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549	x5 35 36 37 37 37 37 37 38 38 39 39 39	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116	25 25 26 27 27 27 28 29 29 29	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000 0.75000 0.93301 0.93301 0.75000	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.87426	15 35 15 15 15 15 15 15 15 15 15 15 15 15 15	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694 0.95048	y5 x6 y6 x7 y7 x8 y8 x9 y9	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.39604 0.98907 0.60396 0.98907	x5 5 x6 y6 x7 y7 x8 y8 y9 y9	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000
14 x5 x6 x6 x7 x8 x8 x9 y9 x10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y7 x7 y7 x8 y8 x9 y9 x10	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482	15 15 16 17 17 18 18 19 19 10	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000 0.75000 0.93301 0.93301 0.75000 1.00000	15 15 15 16 17 17 18 19 19 10	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.87426 0.96751	15 15 16 15 16 17 17 18 18 19 10	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694 0.95048 0.89092	y5 x6 y6 x7 y7 x8 y8 x9 y9 x10	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.39604 0.98907 0.60396 0.98907 0.79389	x5 y5 x6 y7 x7 y7 x8 y8 x9 y9 x10	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691
14 x5 x6 x6 x7 x8 x8 x9 y9 x10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549	x5 y5 x6 y7 x7 y7 x8 y8 x9 y9 x10 y10	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116	25 25 26 27 27 27 28 29 29 29	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000 0.75000 0.93301 0.93301 0.75000	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.87426	15 35 15 15 15 15 15 15 15 15 15 15 15 15 15	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694 0.95048	y5 x6 y6 x7 y7 x8 y8 x9 y9	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.39604 0.98907 0.60396 0.98907	x5 5 x6 y6 x7 y7 x8 y8 y9 y9	0.500 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691 0.961
14 x5 x6 x6 x7 x8 x8 x9 y9 x10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y7 x7 y7 x8 y8 x9 y9 x10	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229	25 25 26 26 27 27 28 29 210 210 210	0.06699 0.75000 0.25000 0.93301 0.50000 1.00000 0.75000 0.93301 0.75000 1.00000 0.50000	25 25 26 26 27 27 27 27 28 29 29 210 210 210	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.87426 0.96751 0.67730	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694 0.95048 0.89092 0.81174	y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10	0.00274 0.55226 0.06699 0.75000 0.20611 0.39604 0.98907 0.60396 0.98907 0.79389 0.90451	x5 y5 x6 y7 x7 y7 x8 y8 x9 y9 x10 y10	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691 0.961 0.853
14 x5 x6 x6 x7 x8 x8 x9 y9 x10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 27 27 27 28 29 210 210 210 211	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.75000 0.93301 0.75000 1.00000 0.50000 0.93801	25 25 26 26 27 27 27 28 29 29 210 210 211	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.83156 0.87426 0.96751 0.67730 0.99635	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694 0.95048 0.89092 0.81174 0.98746	y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.98907 0.60396 0.98907 0.79389 0.90451 0.93301	x5 y5 x6 y6 x7 y7 x8 y9 x10 y10 x11	0.0001 0.5001 0.0381 0.691: 0.146 0.8533 0.3081 0.5001 1.0000 0.691: 0.9619 0.8533 0.8533 0.8533
14 15 15 16 16 17 17 18 19 19 10 10 10 10 10 10 10 10 10 10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 26 27 27 28 29 210 210 211 211	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.93301 0.75000 1.00000 0.50000 0.50000 0.93801 0.25000	15 15 15 15 15 15 15 15 15 15	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.87426 0.96751 0.67730 0.99635 0.43973	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694 0.89092 0.81174 0.98746 0.61126	y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.98907 0.60396 0.98907 0.79389 0.90907 0.79389 0.90451 0.93301 0.75000	x5 y5 x6 y6 x7 y7 x8 y9 x10 y10 x11 y11	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691 0.961 0.853 0.853
14 15 15 16 16 17 17 18 19 19 10 10 10 10 10 10 10 10 10 10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 27 27 28 29 210 210 211 211 212	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.93301 0.75000 1.00000 0.50000 0.50000 0.93801 0.25000 0.75000	15 15 15 16 17 17 18 19 10 11 11 11 12	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.87426 0.96751 0.67730 0.99635 0.43973 0.91149	15 15 16 17 17 18 18 19 10 11 11 11 12	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 1.00000 0.71694 0.95048 0.89092 0.81174 0.98746	y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.39604 0.98907 0.60396 0.98907 0.79389 0.90451 0.93301 0.75000 0.75000 0.99726	x5 x5 x6 y6 x7 y7 x8 y8 x9 x10 y10 x11 y11 x12	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.961 0.961 0.961 0.853 0.853 0.853 0.853
14 x5 x6 x6 x7 x8 x8 x9 y9 x10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 27 27 28 29 210 210 211 211 212	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.93301 0.75000 1.00000 0.50000 0.50000 0.93801 0.25000 0.75000	15 15 15 16 17 18 19 10 11 12 12 12	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.83156 0.87426 0.96751 0.67730 0.99633 0.43973 0.91149 0.21597	15 35 16 37 37 37 37 37 37 37 37 37 37 37 37 37	0.01254 0.61126 0.10908 0.81174 0.28306 0.95048 0.50000 0.71694 0.50080 0.95048 0.89092 0.81174 0.98746 0.6126 0.98746	y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12	0.00274 0.55226 0.06699 0.75000 0.20611 0.39604 0.39604 0.98907 0.79389 0.90451 0.39307 0.79389 0.90451 0.93301 0.75000 0.99726 0.55226	x5 y5 x6 y6 x7 y7 x8 y8 x9 x10 y10 x11 y11 x12 y12	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691 0.961 0.853 0.853 0.853 0.961 0.691
y7 x8 y8 x9	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 27 27 28 29 210 210 211 211 212	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.93301 0.75000 1.00000 0.50000 0.50000 0.93801 0.25000 0.75000	25 35 36 37 37 37 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.87156 0.97521 0.67730 0.99535 0.43773 0.99535 0.43773 0.91497 0.21597 0.21597	15 35 16 37 37 37 37 37 37 37 37 37 37 37 37 37	0.01254 0.61126 0.1908 0.81174 0.28306 0.95048 0.95048 0.95048 0.95048 0.81074 0.95048 0.81074 0.81174 0.98746 0.61126 0.98746 0.38874 0.38874	y5 x6 y6 y7 y7 x8 y8 y9 y10 y11 y112 y12 y12 y13 y14	0.00274 0.55226 0.75000 0.20611 0.39604 0.98907 0.60396 0.99301 0.93301 0.93301 0.93301 0.97500 0.97553 0.355226 0.97553 0.34545	x5 y5 x6 y7 x7 y7 x8 y9 x10 y10 x11 y11 x12 y12 x13	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691 0.961 0.853 0.853 0.853
14 x5 x6 x6 x7 x8 x8 x9 y9 x10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 27 27 28 29 210 210 211 211 212	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.93301 0.75000 1.00000 0.50000 0.50000 0.93801 0.25000 0.75000	25 35 36 37 37 37 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.87156 0.97521 0.67730 0.99535 0.43773 0.99535 0.43773 0.91497 0.21597 0.21597	x5 x5 x6 x7 x7 x8 x9 x10 x11 x12 x13 x13	0.01254 0.61126 0.10908 0.81174 0.23306 0.95048 0.50040 1.00000 0.71694 0.95048 0.89092 0.81174 0.95048 0.89092 0.81174 0.98746 0.61126 0.98746 0.38874 0.88992 0.81874 0.88952 0.8874 0.88952 0.8874 0.88952 0.8874 0.88952 0.8874 0.88952 0.8874 0.88952 0.8874 0.8874 0.88952 0.8874 0.8874 0.8874 0.8874 0.8874 0.8874 0.8874 0.8874 0.8974 0.8974 0.8874 0.8874 0.8874 0.8874 0.8874 0.8874 0.89740 0.89740 0.89740 0.89740 0.89740 0.89740 0.89740 0.89740 0.89740 0.89740 0.8974000000000000000000000000000000000000	y5 x6 y7 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12 x13 y13	0.00274 0.55226 0.06699 0.20611 0.39604 0.39604 0.98907 0.98907 0.93890 0.998907 0.9389 0.90451 0.93301 0.75000 0.99726 0.55226 0.975226 0.34549	x5 y5 x6 y7 x7 y7 x8 y9 x10 y10 x11 x12 y12 x13 y13	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691 0.961 0.853 0.961 0.853 0.961 0.691 1.000 0.691
14 x5 x6 x6 x7 x8 x8 x9 y9 x10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 27 27 28 29 210 210 211 211 212	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.93301 0.75000 1.00000 0.50000 0.50000 0.93801 0.25000 0.75000	25 35 36 37 37 37 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.87156 0.97521 0.67730 0.99535 0.43773 0.99535 0.43973 0.9149 0.21597 0.21597	x5 x6 x6 x7 y7 x8 y8 y9 x10 y11 x12 y12 x13 x14	0.01254 0.61126 0.1908 0.81174 0.23306 0.95048 0.50000 1.00000 0.71694 0.81070 0.81174 0.98746 0.61126 0.98746 0.98746 0.98746 0.98746 0.98874 0.988746 0.989746 0.987746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.9977746 0.9977746 0.997746 0.997746 0.9977666 0	y5 x6 y6 y7 y7 x8 y8 y9 y10 y11 y112 y12 y12 y13 y14	0.00274 0.55226 0.06699 0.75000 0.20611 0.90451 0.99451 0.998907 0.998907 0.998907 0.998907 0.998907 0.998907 0.99389 0.90451 0.993301 0.97530 0.955226 0.355226 0.355226 0.37553 0.34549 0.37157 0.16543 0.70337	x5 y5 x6 y7 y7 x8 y8 y9 x10 y11 x12 y13 x14 y14 x15	0.500 0.038 0.691 0.146 0.853 0.308 0.961 0.500 1.000 0.691 0.853 0.961 1.000 0.500 0.500 0.961 1.000 0.500
14 15 15 16 16 17 17 18 19 19 10 10 10 10 10 10 10 10 10 10	0.65451 0.20611 0.90451 0.50000 1.00000 0.79389 D.90451 0.97553 0.65451 0.97553 0.34549 0.79389	x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11	0.12213 0.82743 0.35913 0.97975 0.64087 0.97975 0.87787 0.82743 0.99491 0.57116 0.95482 0.29229 0.77032	25 25 26 27 27 27 28 29 210 210 211 211 212	0.06699 0.75000 0.25000 0.93301 0.50000 0.75000 0.93301 0.75000 1.00000 0.50000 0.50000 0.93801 0.25000 0.75000	25 35 36 37 37 37 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	0.67730 0.16844 0.87426 0.38034 0.98547 0.61966 0.98547 0.87156 0.97521 0.67730 0.99535 0.43773 0.99535 0.43973 0.9149 0.21597 0.21597	x5 x6 x6 x7 y7 x8 y8 y9 x10 y11 x12 y12 x13 x14	0.01254 0.61126 0.1908 0.81174 0.23306 0.95048 0.50000 1.00000 0.71694 0.81070 0.81174 0.98746 0.61126 0.98746 0.98746 0.98746 0.98746 0.98874 0.988746 0.989746 0.987746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.997746 0.9977746 0.9977746 0.997746 0.997746 0.9977666 0	y5 x6 y7 y7 x8 y9 x10 y10 x11 y11 y11 y11 y11 x12 y13 y14 y14	0.00274 0.65226 0.75000 0.20611 0.90451 0.39604 0.98907 0.79389 0.90451 0.98907 0.79389 0.90451 0.93301 0.75000 0.99726 0.55226 0.97553 0.34549 0.87553 0.34549	x5 y5 x6 y6 x7 y7 x8 y8 y9 x10 y10 x11 x12 x12 x13 x14 y14	0.500 0.038 0.691 0.146 0.853 0.901 1.000 0.691 0.961 0.853 0.853 0.853 0.961 0.691 1.000 0.500 0.501 0.591

JIG BORING

Table 1. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "A" Hole Circles (English or Metric Units)

		<u>-x</u> (Ref									
	YC:	5	$\frac{1}{1}$	5		y are ş are fo Dime	given in the t r holes numt asions given	able fi bered i are ba	type "A" circ or hole circle n a counterel sed upon a h	s of fr lockwi ole ciri	om 3 to 28 h se direction cle of unit dir	oles. E as sho imeter	oimensions (wn). (For a hole
	kei.	3_	4)		círele	of, say, 3-in	sh or 3	-centimeter	diame	ter, multiply	table v	alues by 3.
17	Hules	18	Holes	15	Holes	20	Holes	2	1 Holes	2	2 Holes	2	3 Holes
x1	0.50000	x1	0.50000	xl	0.50000	xl	0.50000	x1	0.50000	xl	0.50000	хI	0.50000
y1	0.00000	yl	0.00000	yl	0.00000	y1	0.00000	уI	0.00000	yl	0.00000	51	0.0000
x2	0.31938	x2	0.32899	x2	0.33765	хZ		x2	0.35262	x2	0.35913	x2	0.36510
y2	0.03376	y2	0.03015	y2	0.02709	y2		у2	0.02221	y2	0.02025	y2	0.0185
х3	0.16315	x3	0.17861	x3	0.19289	x3		хЗ	0.21834	x3	0.22968	x3	0.2402
y3	0.13050	у3	0.11698	y3	0.10543	y3	0.09549	y3	0.08688	33	0.07937	y3	0.0727
x4	0.05242	x4	0.06699	x4	0.08142	x4	0.09549	x4	0.10908	x4	0.12213	24	0.1345
y4	0.27713 0.00213	34 x5	0.25000	ూ4 ూర	0.22653 0.01530	4ر جد	0.20611 0.02447	374 XS	0.18826 0.03456	ງ:4 <i>x</i> ວິ	0.17257 0.04518	¥د 25	0.1567
x5 15	0.00213 0.45387	хэ у5	0.00760	ين 25	0.01530	хо y5	0.02447 0.34549	хэ 35	0.05456	ມ ງ5	0.29229	,5 у5	0.2699
у <u>э</u> хб	0.01909	y5 x6	0.00760	20	0.00171	35 26	0.00000	у0 лб	0.00140	,x6	0.00509	,x6	0.0104
лб уб	0.63683	310 315	0.58682	уб	0.54129	y6		36	0,46263	y6	0.42884	y6	0.3982
ло х7	0.10099	x7	0.06699	x7	0.04211	x7	0.02447	x7	0.01254	x7	0.00509	x7	0.0011
y7	0.80132	y7	0.75000	y7	0.70085	y7	0.65451	y7	0.61126	y7	0.57116	37	0.5341
x8	0.23678	x8	0.17861	.x8	0.13214	x8	0.09549	x8	0.06699	x8	0.04518	18	0.0288
y8	0.92511	у8	0.88302	y8	0.83864	y 8	0.79389	318	0.75000	8ر	0.70771	8ر	0.6674
29	0.40813	19	0.32899	29	0.26203	x9	0.20611	x9	0.15991	29	0.12213	x9	0.0915
y9	0.99149	y9	0.96985	39	0.93974	y9	0.90451	y9	0.86653	29	0.82743	39	0.7883
x10	0.59187	x10	0.50000	x10	0.41770	r10	0.34549	x10	0.28306	x10	0.22968	x10	0.1844
y10	0.99149	y10	1.00000	y10	0.99318	y10	0.97553	уЮ	0.95048	y10	0.92063	y10	0.8878
x11	0.76322	x11	0.67101	xil	0.58230	x11	0.50000	x11	0.42548	x11	0.35913	x11	0.3008
y11	0.92511	yH	0.96985	y11	0.99318	ÿ11	1.00000	yH	0.99442	y11	0.97975	y11	0.9586
x12	0.89901	x12	0.82139	x12	0.73797	x12	0.65451	x12	0.57452	xI2	0.50000	<i>x</i> 12	0.4319
y12	0.80132	y12	0.88302	y12	0.93974	y12	0.97553	y12	0.99442	y12	1.00000	312	0.9953
x13	0.98091	x13	0.93301	x13	0.86786	x13	0.79389	x13	0.71694	x13	0.64087 0.97975	x13	0.5680
y13	0.63683	y13	0.75000	y13	0.83864	y13 x14	0.90451	y13 x14	0.95048 0.84009	y13	0.97973	y13 x14	0.9933
x14	0.99787 0.45387	x14	0.99240 0.58682	x14	0.70085	y14	0.90431	y14	0.84009	y14	0.92063	y14	0.9586
y14 x15	0.43587	y14 x15	0.99240	y14 x15	0.99829	x15	0.97553	x15	0.93301	x15	0.92003	x15	0.8155
515 515	0.94738	y15	0.41318	v15	0.54129	y15	0.65451	y15	0.75000	y15	0.82743	y15	0.8878
x16	0.27713	x16	0.93301	x16	0.98470	x16	1.00000	x16	0.98746	x16	0.95482	x16	0.9084
y16	0.13050	y16	0.25000	y16	0.37726	v16	0.50000	y16	0.61126	y16	0.70771	y16	0.7883
x17	0.68062	x17	0.82139	x17	0.91858	x17	0.97553	x17	0.99860	x17	0.99491	x17	0.9711
y17	0.03376	y17	0.11698	y17	0.22658	y17	0.34549	y17	0.46263	y17	0.57116	y17	0.6674
	0.000070	x18	0.67101	x18	0.80711	r18	0.90451	x18	0.96544	x18	0.99491	x18	0.9988
		y18	0.03015	y18	0.10543	y18	0.20611	y18	0.31733	y18	0.42884	81 ر	0.534
		<u> </u>		x19	0.66235	x19	0.79389	x19	0.89092	x19	0.95482	x19	0.9895
				y19	0.02709	y19	0.09549	y19	0.18826	19ر	0.29229	y19	0.3982
						x20	0.65451	x20	0.78166	x20	0.87787	x20	0.9439
				1		y20	0.02447	y20	0.08688	320	0.17257)20	0.2699
				1				x21	0.64738	x21	0.77032		0.8654
				1		1		y21	0.02221	521	0.07937	y21	0.1587
		I.		1		1				x22	0.64087	x22	0.7591
		1								y22	0.02025	y22 x23	0.0727 0.6349
								l		1		x23 y23	0.6349
,	4Holes		5 Holes	1 2	26 Holes	<u>-</u> 2	7 Holes		28 Holes	-		340	0.0183
x1	0.50000	x1	0,50000	x1	0.50000	x1	0.50000	xl -	0.50000	+		1	
	0.00000	x1 y1	0.50000	x1 y]	0.00000	x1 y1	0.00000	x1 y1	0.00000	ŀ			
	0.00000				0.38034	x2	0.38469	x2	0.38874	1			
y1 22	0.32050												
y1 x2 y2	0.37059 0.01704	x2 y2	0.37566 0.01571	x2 y2	0.01453	32 32	0.01348	32	0.01254				

961

Table 1. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "A" Hole Circles (English or Metric Units)

	Kef	-×())]	ųΖ	<u>Ref</u> 5) /		y are g are for Dimen	iven in the t holes numb isions given	able for scred in are bas	r hole circles a counterelo ed upon a hol	c for a S-hole circle. Coordinates x, of from 3 to 28 holes. Dimensions existes afterciclen (as shown) le circle of unit diameter. For a hole iameter, multiply table values by 3.
y3	0.06699	y 3	0.06185	y3	0.05727	y3		y3	0.04952	
x4	0.14645	x 4	0.15773	x4	0.16844	x4	0.17861	<i>x</i> 4	0.18826	
y4		y4	0.13552	<u>3</u> 4	0.12574)#	0.11698	<u>3</u> 4	0.10908	
хS	0.06699	xS	0.07784	x5	0.08851	x5	0.09894	<u>ئ</u> ر	0.10908	
y5	0.25000	32	0.23209	y5	0.21597	y5	0.20142	y5 	0.18826 0.04952	
26	0.01704	зб	0.02447	x6	0.03249	лб 	0.04089 0.30196	ж рб	0.28306	
y6		36	0.34549 0.00099	уб х7	0.32270	уб x7	0.00760	37	0.01254	
x1 v7	0.00000	x7 y7	0.46860	y7	0.43973	y7	0.41318	y7	0.38874	
x8	0.01704	,, x8	0.00886	x8	0.00365	.18	0.00085	x8	0.00000	
38 38	0.62941	y8	0.59369	y8	0.56027	378	0.52907	y8	0.50000	
x9	0.06699	29	0.04759	39	0.03249	x9	0.02101	19	0.01254	
39	0.75000	y9	0.71289	y9	0.67730	39	0.64340	y9	0.61126	
x10	0.14645	x10	0.11474	x10	0.08851	x10	0.06699	x10	0.04952	
y10	0.85355	y10	0.81871	y10	0.78403	yIO	0.75000	y10	0.71694	
x11	0.25000	x11	0.20611	x11	0.16844	x11	0.13631	x11	0.10908	
yI1	0.93301	уH	0.90451	y11	0.87426	ylt	0.84312	y11	0.81174	
x12	0.37059	x12	0.31594	x12	0.26764	л12	0.22525	x12	0.18826	
y12		y12	0.96489	y12	0.94273	y12	0.91774	y12 x13	0.89092 0.28306	
x13	0.50000	x13	0.43733	x13	0.38034	x13	0.32899 0.96985	y13	0.95048	
yI3	1.00000	y13	0.99606	y13	0.98547 0.50000	y13 x14	0.96985	x14	0.38874	
x14	0.62941 0.98296	x14 y14	0.56267 0.99606	x14 y14	1.00000	yI4	0,99662	y14	0.98746	
y14 x15	0.98290	x15	0.68406	x15	0.61966	x15	0.55805	x15	0.50000	
y15	0.93301	y15	0.96489	y15	0.98547	y15	0.99662	y15	1.00000	
x16	0.85355	x16	0.79389	x16	0,73236	x16	0.67101	x16	0.61126	
y16	0.85355	y16	0.90451	y16	0.94273	y16	0.96985	y16	0.98746	
x17	0.93301	x17	0.88526	x17	0.83156	x17	0.77475	x17	0.71694	
yI7	0.75000	y17	0.81871	y17	0.87426	y17	0.91774	y17	0.95048	
x18	0.98296	x18	0.95241	x18	0.91149	x18	0.86369	x18	0.81174	
y18	0.62941	y18	0.71289	y18	0.78403	yI8	0.84312	y18	0.89092	
x19	1.00000	x19	0.99114	x19	0.96751	x19	0.93301	x19	0.89092	
y19	0.50000	<u>919</u>	0.59369	y19	0.67730	y19	0.75000	y19	0.81174 0.95048	
.£20	0.98296	.20	0.99901	x20	0.99635	x20 y20	0.97899 0.64340	x20 y20	0.71694	
y20	0.37059	y20	0.46860	y20 x21	0.56027 0.99635	y20 x21	0.99915	x21	0.98746	
x21	0.93301 0.25000	x21 γ21	0.97553 0.34549	y21	0.43973	y21	0.52907	y21	0.61126	
y21 x22	0.25000	x22	0.92216	x22	0.96751	122	0.99240	x22	1.00000	
x22 y22	0.14645	y22	0.92210	y22	0.32270		0,41318	y22	0.50000	
x23	0.75000	123	0.84227	x23	0.91149		0.95911	x23	0.98746	
y23	0.6699	y23	0.13552	y23	0.21597		0.30196	y23	0.38874	
x24	0.62941	x24	0.74088	x24	0.83156	x24	0.90106	x24	0.95048	ļ
y24	0.01704		0.06185	3/24	0.12574		0.20142		0.28306	1
Ë-		x25	0.62434	x25	0.73236		0.82139		0.89092	1
1		y25	0.01571	y25	0.05727		0,11698		0.18826	1
1				x26	0.61966		0.72440		0.81174	L
1		1		y26	0.01453		0.05318		0.10908 0.71694	
						x27	0.61531 0.01348		0.71694 0.04952	
1				1		y27	0.01.348	228	0.61126	
1				1		1		y28	0.01120	1

	Y /			Ref	-	y are g are for Dimer	given in the r holes num nsions given	table f hered i are ba	or hole circle n a countere sed upon a h	s of fr lockwi ole cir	a 5-holc circ om 3 to 28 h ise direction cle of unit di ter, multiply	oles. E (as sho ameter	oimension wn). . For a hol
	Ref	<u> </u>	3/										
3	Holes	4	Holes	5	Holes	6	Holes	- 2	'Hules	5	8 Holes		Holes
хI	0.06699	xł	0.14645	xl	0.20611	xl	0.25000	хI	0.28306	xL	0.30866	xl	0.3289
y1	0.25000	y1	0.14645	y1	0.09549	y1	0.06699	yI	0.04952	3.I	0.03806	уl	0.0301
x2	0.50000	x2	0.14645	.x2	0.02447	x2	0.00000	x2	0.01254	x2	0.03806	x2	0.0669
y2 x3	1.00000 0.93301	y2 x3	0.85355 0.85355	y2 x3	0.65451 0.50000	y2 x3	0.50000	y2 x3	0.38874 0.10908	32 x3	0.30866 0.03806	y2 x3	0.2500
	0.93301	лэ уЗ	0.85355	13	1.00000	x3	0.23000	лэ уЗ	0.81174	33 3	0.69134	y3	0.5868
<u>3</u> 3	0.2.5000	x4	0.85355	x4	0.97553	x4	0.75000	x4	0.50000	x4	0.30866	x4	0.1786
		34	0.14645	34	0.65451	24 24	0.93301	y4	1.00000	34	0.96194):4	0.8830
		<u> </u>	3.1.1043	.c5	0.79389	15 15	1.00000	x5	0.89092	:5	0.69134	x5	0.5000
				35	0.09549	<u>3</u> 5	0.50000	y5	0.81174	y5	0.96194	35	1.0000
				<u> </u>		.16	0.75000	16	0.98746	26	0.96194	x6	0.8211
						36	0.06699	36	0.38874	y6	0.69134	36	0.8830
						ŕ		x7	0.71694	x7	0.96194	x7	0.9924
								y7	0.04952	y7	0.30866	y7	0.5868
										хă	0.69134	x8	0.9330
										y8	0.03806	y8	0.2500
												-19	0.6710
												y9	0.0301
1) Holes	- 11	Roles	Ľ	2 Holes	1.	Holes	1	4 Hoies	1	5 Hoics	1	0.030 6 Holes
	0 Holes 0.34549	11 x1	Holes 0.35913	L' ri	2 Holes 0.37059	1. x1	3 Holes 0.38034	1 x1	4 Holes 0.38874	1 x1	5 Holes 0.39604	1	
,r]												, 1	6 Holes 0.4024
x1 y1 x2	0.34549 0.02447 0.09549	x1 y1 x2	0.35913 0.02025 0.12213	r1 y1 r2	0.37059 0.01704 0.14645	x1 y1 x2	0.38034 0.01453 0.16844	x1 y1 x2	0.38874 0.01254 0.18826	x1 y1 x2	0.39604 0.01093 0.20611	1 xi yi x2	6 Holes 0.402 0.009 0.222
x1 y1 x2 y2	0.34549 0.02447 0.09549 0.20611	x1 y1 x2 y2	0.35913 0.02025 0.12213 0.17257	x1 y1 x2 y2	0.37059 0.01704 0.14645 0.14645	x1 y1 x2 y2	0.38034 0.01453 0.16844 0.12574	x1 y1 x2 y2	0.38874 0.01254 0.18826 0.10908	x1 yI x2 y2	0.39604 0.01093 0.20611 0.09549	1 x1 y1 x2 y2	6 Holes 0.402- 0.0094 0.2222 0.0843
x1 y1 x2 y2 x3	0.34549 0.02447 0.09549 0.20611 0.00000	x1 y1 x2 y2 x3	0.35913 0.02025 0.12213 0.17257 0.00509	x1 y1 x2 y2 x3	0.37059 0.01704 0.14645 0.14645 0.01704	x1 y1 x2 y2 x3	0.38034 0.01453 0.16844 0.12574 0.03249	x1 y1 x2 y2 x3	0.38874 0.01254 0.18826 0.10908 0.04952	x1 y1 x2 y2 x3	0.39604 0.01093 0.20611 0.09549 0.06699	1 x1 y1 x2 y2 x3	6 Holes 0.4024 0.0094 0.2222 0.0842 0.0842
x1 y1 x2 y2 x3 y3	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000	x1 y1 x2 y2 x3 y3	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884	rl y1 r2 y2 x3 y3	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059	x1 y1 x2 y2 x3 y3	0.38034 0.01453 0.16844 0.12574 0.03249 0.32270	x1 y1 x2 y2 x3 y3	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306	x1 y1 x2 y2 x3 y3	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000	1 x1 x2 y2 x3 y3	6 Holes 0.402 0.009 0.222 0.084 0.084 0.222
x1 y1 y2 y2 y3 y3 y4	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549	x1 y1 x2 y2 x3 y3 x4	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704	x1 y1 x2 y2 x3 y3 x4	0.38034 0.01453 0.16844 0.12574 0.03249 0.32270 0.00365	x1 y1 x2 y2 x3 y3 x4	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000	x1 y1 x2 y2 x3 y3 x4	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000 0.25000 0.00274	1 x1 y1 x2 y2 x3 y3 x4	6 Holes 0.402 0.009 0.222 0.084 0.084 0.222 0.084
x1 y1 y2 y2 y3 y3 y4 y4	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549 0.79389	x1 y1 x2 y2 x3 y3 x4 y4	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771	11 11 12 12 12 12 12 12 12 12	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941	x1 y1 x2 y2 x3 y3 x4 y4	0.38034 0.01453 0.16844 0.12574 0.32270 0.00365 0.56027	x1 y1 x2 y3 y3 y4 y4	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000 0.50000	x1 yI x2 y2 x3 y3 x4 y4	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000 0.00274 0.44774	1 x1 y1 x2 y2 x3 y3 x4 y4	6 Holes 0.4024 0.0094 0.2222 0.0842 0.0842 0.2222 0.0094 0.4024
x1 y1 y2 y2 y3 y3 y4 y4 y4	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549 0.79389 0.34549	x1 y1 x2 y2 x3 y3 x4 y4 x5	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771 0.22968	xi y1 x2 y2 x3 y3 x4 y4 x5	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.14645	x1 y1 x2 y2 x3 y3 x4 y4 x5	0.38034 0.01453 0.16844 0.12574 0.03249 0.32270 0.00365 0.56027 0.08851	xl yl x2 y2 x3 y3 y4 y4 x5	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000 0.50000 0.04952	x1 yl x2 y2 x3 y3 x4 y4 x5	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000 0.00274 0.44774 0.02447	1 x1 y1 x2 y2 x3 y3 x4 y4 x5	6 Holes 0.402 0.009 0.222 0.084 0.284 0.222 0.084 0.222 0.009 0.402 0.009
x1 11 12 12 12 12 12 12 12 12 12 12 12 12	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549 0.79389 0.34549 0.97553	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771 0.22968 0.92063	11 12 12 12 13 13 14 14 15 15	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.14645 0.85355	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5	0.38034 0.01453 0.16844 0.12574 0.03249 0.32270 0.00365 0.56027 0.08851 0.78403	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000 0.50000 0.04952 0.71694	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000 0.00274 0.44774 0.02447 0.65451	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5	6 Holes 0.402 0.009 0.222 0.084 0.222 0.084 0.222 0.099 0.402 0.099 0.402 0.099 0.597
x1 y1 y2 y2 x3 y3 x4 y4 x5 x6	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549 0.79389 0.34549 0.97553 0.65451	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771 0.22968 0.92063 0.50000	11 11 12 12 12 12 12 12 12 12	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.14645 0.85355 0.37059	x1 y1 x2 y2 y3 y4 y4 x5 y5 x6	0.38034 0.01453 0.16844 0.12574 0.32270 0.00365 0.56027 0.08851 0.78403 0.26764	x1 y1 x2 y2 y2 y3 y4 y4 y5 y5 x6	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000 0.50000 0.04952 0.71694 0.18826	x1 yI x2 y2 x3 y3 x4 y4 x5 y5 x6	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000 0.00274 0.44774 0.02447 0.65451 0.12843	1 x1 x2 x2 x3 x4 x4 x5 x5 x6	6 Holes 0.402 0.0094 0.222 0.084 0.222 0.084 0.222 0.0094 0.402 0.0096 0.402 0.0096 0.597 0.084
x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549 0.79389 0.34549 0.97553 0.65451 0.97553	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771 0.22968 0.92063 0.50000 1.00000	11 11 12 12 12 13 13 14 14 15 15 16 16	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.162941 0.14645 0.85355 0.37059 0.98296	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	0.38034 0.01453 0.16844 0.12574 0.32270 0.00365 0.56027 0.08851 0.78403 0.26764 0.94273	x1 y1 x2 y2 x3 y3 4 y4 x5 x5 x6 y6	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000 0.04952 0.71694 0.18826 0.89092	x1 yI x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	0.39604 0.01093 0.20611 0.09549 0.25000 0.00274 0.44774 0.02447 0.65451 0.12843 0.83457	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	6 Holes 0.402 0.0094 0.2222 0.0842 0.0842 0.0094 0.4024 0.0096 0.4024 0.0096 0.5973 0.0842 0.7777
21 11 22 23 33 44 15 15 16 16 27	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549 0.34549 0.34549 0.34549 0.345451 0.97553 0.90451	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771 0.22968 0.92063 0.50010 1.00000 0.77032	11 11 12 12 12 13 13 14 14 15 15 16 16 17	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.14645 0.85355 0.37059 0.98296 0.62941	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7	0.38034 0.01453 0.16844 0.12574 0.03249 0.32270 0.00365 0.56027 0.08851 0.78403 0.26764 0.94273 0.50000	x1 y1 x2 y2 3 y3 44 y4 x5 x5 x6 y6 x7	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000 0.50000 0.04952 0.71694 0.18826 0.89092 0.38874	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7	0.39604 0.01093 0.20611 0.09549 0.25000 0.00274 0.44774 0.02447 0.02447 0.65451 0.12843 0.83457 0.29663	1 x1 y2 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7	6 Holes 0.4024 0.0094 0.2222 0.0842 0.0842 0.2225 0.0842 0.2225 0.0099 0.4022 0.0099 0.5973 0.0842 0.7777 0.2225
x1 11 12 12 13 13 14 14 15 15 16 15 17 17	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.30549 0.34549 0.97553 0.65451 0.97553 0.90451 0.79389	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 y7	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.92063 0.92063 0.50000 0.7032 0.92063	11 11 12 12 12 13 13 14 14 15 15 16 16	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.14645 0.85355 0.37059 0.98296	x1 y1 x2 y2 y2 y3 y4 y4 x5 y5 x6 y6 x7 y7	0.38034 0.01453 0.16844 0.12574 0.03249 0.32270 0.00365 0.56027 0.08851 0.78403 0.26764 0.94273 0.50000 1.00000	x1 y1 x2 y2 x3 y4 y4 x5 y5 x6 y6 77 y7	0.38874 0.01254 0.18826 0.10908 0.04952 0.28305 0.00000 0.50000 0.04952 0.71694 0.18826 0.89092 0.38874 0.98746	x1 yI x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	0.39604 0.01093 0.20611 0.09549 0.25000 0.00274 0.44774 0.65451 0.12843 0.83457 0.29663 0.95677	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	6 Holes 0.402- 0.094 0.222 0.084 0.222 0.094 0.222 0.099 0.402- 0.099 0.597
x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y5 x7 y7 x8	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.97553 0.97553 0.97553 0.97553 0.97553 0.97553 0.979389 1.00000	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771 0.22968 0.92063 0.50000 1.00000 0.77032 0.92063 0.92063	11 11 12 12 13 14 14 15 15 16 17 17 18	0.37059 0.01704 0.14645 0.14645 0.14645 0.37059 0.01704 0.62941 0.14645 0.85355 0.37059 0.62941 0.98296 0.62941 0.98296	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x5 y6 x7 y7 x8	0.38034 0.01453 0.16844 0.12574 0.32270 0.00365 0.56027 0.08851 0.78403 0.25764 0.94273 0.50000 0.50000 0.73236	x1 y1 x2 y2 x3 x4 y4 x5 y5 x6 y6 x7 y7 x8	0.38874 0.01254 0.18826 0.1908 0.04952 0.28306 0.00000 0.50000 0.04952 0.71694 0.18826 0.89092 0.38874 0.98746 0.61126	x1 y1 x2 y2 x3 x4 y4 x5 y5 x6 y7 y7 x8	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000 0.00274 0.44774 0.65451 0.12843 0.83457 0.29663 0.95677 0.50000	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 x6 y6 x7 y7 x8	6 Holes 0.402- 0.094 0.2222 0.084 0.2222 0.094 0.2222 0.0094 0.402- 0.099 0.5973 0.094 0.5973 0.094 0.7777 0.2222 0.915 0.402-
x1 11 12 12 13 13 14 14 15 15 16 15 17 17	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.30549 0.34549 0.97553 0.65451 0.97553 0.90451 0.79389	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 y7	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.92063 0.92063 0.50000 0.7032 0.92063	11 y1 12 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.14645 0.85355 0.37059 0.98296	x1 y1 x2 y2 y2 y3 y4 y4 x5 y5 x6 y6 x7 y7	0.38034 0.01453 0.16844 0.12574 0.03249 0.32270 0.00365 0.56027 0.08851 0.78403 0.26764 0.94273 0.50000 1.00000	x1 y1 x2 y2 x3 y4 y4 x5 y5 x6 y6 77 y7	0.38874 0.01254 0.18826 0.10908 0.04952 0.28305 0.00000 0.50000 0.04952 0.71694 0.18826 0.89092 0.38874 0.98746	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 y7	0.39604 0.01093 0.20611 0.09549 0.25000 0.00274 0.44774 0.65451 0.12843 0.83457 0.29663 0.95677	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 y7	6 Holes 0.4024 0.0094 0.2222 0.0842 0.0842 0.0094 0.4020 0.0099 0.5973 0.0842 0.7777 0.2222 0.9152 0.4024 0.9900
x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8	0.34549 0.02447 0.09549 0.20611 0.00000 0.50000 0.09549 0.79389 0.354549 0.97553 0.97553 0.91451 0.79389 1.00000 0.50000	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x7 y7 x8 y8	0.35913 0.02025 0.12213 0.17257 0.00509 0.42884 0.04518 0.70771 0.92063 0.50000 1.00000 0.77032 0.92063 0.950452 0.70771 0.92063 0.95482 0.70771	11 y1 22 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.45455 0.37059 0.98296 0.85355 0.37059 0.98296 0.98296 0.85355 0.98296 0.85355	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8	0.38034 0.01453 0.16844 0.12574 0.32270 0.00365 0.56027 0.08851 0.25764 0.26764 0.94273 0.50000 1.00000 0.73236 0.73236	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8	0.38874 0.01254 0.18826 0.10908 0.04952 0.28306 0.00000 0.50000 0.50000 0.50000 0.50000 0.4952 0.71694 0.18826 0.89092 0.38874 0.61126 0.98746 0.81174	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x7 y7 x8 y8	0.39604 0.01093 0.20611 0.09549 0.66699 0.25000 0.00274 0.44774 0.02447 0.02447 0.2543 0.83457 0.29663 0.95677 0.50000 1.00000	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 x6 y7 x8 y8	6 Holes 0.4024 0.0094 0.2222 0.0842 0.0842 0.0944 0.4022 0.0094 0.4029 0.5973 0.0842 0.7777 0.2222 0.915 0.4022 0.9900 0.5973
21 11 22 12 13 13 14 14 15 15 16 16 17 17 18 18 19	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x7 y7 x8 y9 x10	0.35913 0.02025 0.12213 0.17257 0.05039 0.42884 0.04518 0.70771 0.22968 0.92063 0.50000 1.00000 0.77032 0.92063 0.95482 0.70771 0.92484 0.70771 0.92482 0.70771 0.92487 0.92563 0.95482 0.70771 0.92487 0.927777 0.9267 0.92777777777777777777777777777777777777	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.01704 0.62941 0.14645 0.37059 0.98296 0.62941 0.98296 0.85355 0.85355 0.85355 0.85355	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 y9 y10	0.38034 0.01453 0.16844 0.12574 0.32270 0.00365 0.56027 0.08851 0.78403 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 1.00000 0.73236 0.94273 0.71149 0.78403 0.94273	北山ないないないないないないないない	0.38874 0.01254 0.18826 0.04952 0.23305 0.04952 0.23305 0.04952 0.50000 0.04952 0.71694 0.18826 0.89092 0.38874 0.98746 0.61126 0.98746 0.81174 0.829092	x1 y1 z2 z3 334 44 55 55 66 97 77 88 89	0.39604 0.01093 0.20611 0.09549 0.25000 0.00274 0.02447 0.02447 0.24474 0.22447 0.32457 0.32653 0.95657 0.29663 0.95677 0.50000 1.00000 0.050000 0.050070 0.50000 0.05010 0.05010 0.05010 0.05010 0.05010 0.05010 0.05010 0.05010 0.05010 0.05010 0.05010 0.05010 0.05451 0.05451 0.05451 0.05451 0.05451 0.05451 0.05451 0.05451 0.05451 0.05451 0.05451 0.05000 0.050000 0.0500000000	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 y9	6 Holes 0.402 0.0094 0.222 0.084 0.222 0.084 0.222 0.0094 0.402 0.0099 0.402 0.0099 0.597 0.222 0.915 0.402 0.990 0.597 0.990
211222333444555665777888999	0.34549 0.02447 0.09549 0.20611 0.00080 0.00080 0.09549 0.34549 0.34549 0.345451 0.97553 0.65451 0.97553 0.65451 0.97389 1.00000 0.50000 0.50000 0.90451	x1 y1 x2 y2 x3 y3 x4 y4 x5 yx6 y7 x7 y7 x8 y8 y9 y9	0.35913 0.02025 0.12213 0.07059 0.00509 0.42884 0.02968 0.92063 0.50000 0.77032 0.92063 0.92063 0.92063 0.92063 0.97071 0.99491 0.42884 0.87787 0.17257	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 y9 y9	0.37059 0.01704 0.14645 0.01704 0.14645 0.01704 0.62941 0.01704 0.62941 0.37059 0.98296 0.62941 0.98296 0.9826	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y5 x7 y7 x8 y8 y9 y9	0.38034 0.01453 0.16844 0.12574 0.032470 0.032570 0.00365 0.560277 0.50000 1.00000 0.73236 0.94273 0.91149 0.78403 0.94273	1112222334495556677788899	0.38874 0.01254 0.1254 0.19088 0.04952 0.23305 0.00000 0.50000 0.50000 0.4952 0.38074 0.48826 0.4952 0.48826 0.4952 0.48826 0.4952 0.48826 0.4952 0.48826 0.4952 0.48826 0.4952 0.48826 0.4952 0.48826 0.4952 0.4952 0.48826 0.4952 0.48826 0.4952 0.48826 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.49876 0.499766 0.499766 0.499766 0.499766 0.499766 0.499766 0.499766 0.499766 0.499766 0.499766 0.499766 0.499766 0	x1 y1 z2 z3 33 44 44 55 75 76 76 77 77 88 78 99 99	0.39604 0.01093 0.20611 0.09549 0.06699 0.25000 0.00274 0.44774 0.44774 0.22447 0.22447 0.22643 0.12843 0.328437 0.29663 0.95677 0.50000 1.00000 0.70337 0.95677 0.87157 0.83457	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 y7 y7 x8 y8 y9 y9	6 Holes 0.402 0.0094 0.222 0.084 0.844 0.222 0.0094 0.402 0.099 0.597 0.084 0.777 0.222 0.915
x1122233X4455667778899910	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.95060 0.50000 0.07032 0.95080 0.92063 0.95482 0.70771 0.929481 0.929481 0.929482 0.70771 0.929481 0.929482 0.70771 0.929481 0.929481 0.92948484 0.92948484 0.929484848484 0.92948484848484848484	11 11 12 12 12 12 12 12 12 12 12 12 12 1	0.37059 0.01704 0.14645 0.14645 0.01704 0.37059 0.62941 0.14645 0.85355 0.98296 0.62941 0.98296 0.85355 0.98396 0.62941 0.98296 0.62941 0.98296 0.62941 0.98296 0.62941	111122233444555万万万万万8889月10111	0.38034 0.01453 0.16844 0.32270 0.03249 0.32270 0.00365 0.56027 0.08851 0.56027 0.08851 0.56027 0.08403 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.941473 0.50027 0.94151	x1 1 2 2 2 3 3 4 14 3 5 5 6 6 7 7 7 8 8 8 9 9 10 0 11	0.38874 0.01254 0.01254 0.10908 0.04952 0.23305 0.0000 0.04952 0.50000 0.04952 0.50000 0.4952 0.8874 0.8874 0.8874 0.81126 0.81126 0.8114 0.8116 0.8116 0.8116 0.5016 0.5016 0.5016 0.5016 0.5000 0.50000 0.4952 0.50500 0.50500	x1 y1 y2 y2 y2 y2 y3 y4 y4 y5 y5 6 y7 y7 y8 y9 y9 10 0 x11 y1 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2	0.39604 0.0193 0.20611 0.09549 0.66699 0.25000 0.60274 0.624477 0.02447 0.02447 0.02447 0.25451 0.12843 0.383457 0.29663 0.95677 0.50000 1.00006 0.70337 0.850157 0.87157 0.87157	1 x1 y1 x2 y2 x3 y3 x4 y4 y5 x6 x7 y7 x8 y8 y9 y10 x11 x11 x2 y2 x3 y3 x4 y4 y5 x6 y7 x7 y7 x8 y8 y7 x8 y7 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 y7 x8 x9 y7 x8 x9 x10 x10 x11 x11 x11 x11 x11 x11	6 Holes 0.402- 0.0094 0.222 0.084: 0.084: 0.222: 0.0090 0.402- 0.0090 0.597: 0.084 0.7777 0.222: 0.915 0.402- 0.990 0.597: 0.995 0.915
x1122233X4455667778899910	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y9 y10 y10	0.35913 0.02025 0.12213 0.07059 0.00509 0.42884 0.02968 0.92063 0.50000 0.77032 0.92063 0.92063 0.92063 0.92063 0.97071 0.99491 0.42884 0.87787 0.17257	11 11 12 12 12 12 12 12 12 12 12 12 12 1	0.37059 0.01704 0.14645 0.01704 0.37059 0.01704 0.62941 0.98296 0.62941 0.98296 0.62941 0.98296 0.85355 0.37059 0.98296 0.85355 0.38255 0.38256 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.3705	x1 1122233444555555778889900011111	0.38034 0.01453 0.12574 0.03249 0.32270 0.03265 0.56027 0.08851 0.56027 0.08851 0.5764 0.94273 0.50000 0.73236 0.50000 0.94273 0.91149 0.78403 0.94235 0.94235 0.94232 0.94	11 11 22 22 23 24 24 25 25 76 76 77 78 88 28 95 10 10 11 11	0.38874 0.01254 0.18826 0.19908 0.04952 0.28306 0.00000 0.04952 0.38074 0.18826 0.61926 0.61926 0.61126 0.98746 0.81092 0.98746 0.81174 0.88174 0.98746 0.61126 0.98746 0.99746 0.98746 0.98746 0.98746 0.98746 0.98746 0.98746 0.98746 0.98746 0.99746 0.98746 0.98746 0.98746 0.99766 0.9976	x1 y12 y22 y23 y24 y45 y56 y67 y78 x8 y89 y910 y711 y11	0.39604 0.01093 0.20611 0.09549 0.66699 0.25000 0.022447 0.44774 0.44774 0.22447 0.565451 0.12843 0.95677 0.50000 0.70337 0.95677 0.50000 0.70337 0.95677 0.5753 0.87157 0.87157	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 y10 x11 y10 x1 y1 x2 y2 x3 y3 x4 y5 x6 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 x7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 y7 x8 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7	6 Holes 0.402- 0.094 0.222 0.084: 0.84: 0.222: 0.0094 0.402- 0.0099 0.597; 0.084: 0.777 0.222: 0.915 0.402- 0.990; 0.597; 0.990; 0.777 0.915 0.777
x1122233X4455667778899910	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 12 12 12 12 12 12 12 12 12	0.37059 0.1704 0.14645 0.14645 0.14645 0.37059 0.4704 0.485355 0.37059 0.485355 0.485355 0.85355 0.85355 0.85355 0.85355 0.85355 0.852941 0.98296 0.82941 0.98296 0.37059 0.85355 0.46445 0.46445	11 11 12 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	0.38034 0.01453 0.16844 0.03249 0.32270 0.03369 0.56027 0.08851 0.56027 0.08851 0.56027 0.078403 0.56020 0.50000 0.50000 0.50020 0.91149 0.78403 0.96151 0.32270 0.83156	x1 y12 y2 y2 y2 y3 y4 y4 y5 y5 x5 x5 x5 x5 x5 x5 x5 y7 x7 y7 x8 y8 y9 y9 10 y10 y12 y2 y2 y3 y4 y4 y5 y5 y5 y4 y4 y5 y5 y5 y5 y4 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5	0.38874 0.1254 0.18826 0.19908 0.04952 0.23306 0.00000 0.50000 0.49522 0.71694 0.8826 0.64125 0.61126 0.61126 0.61126 0.8174 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.9874 0.99000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.900000000	x1 y1 y2 y2 x3 y3 x4 y4 y5 y5 x6 y7 y7 x8 y9 y10 y11 x12 x12 y1 x12 y2 x3 y2 x3 y2 x4 y4 y5 y2 x5 y2 x5 y2 x5 y2 x5 y2 x5 y2 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 x5 y5 y5 x5 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5 y5	0.39604 0.0193 0.20611 0.09549 0.66699 0.25000 0.00274 0.624477 0.624477 0.624477 0.624477 0.62447 0.32467 0.32963 0.93667 0.500000000	1 x1 y1 y2 y2 x3 y3 x4 y4 y5 x6 y6 x7 x8 y9 y10 x12 x12 x12 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x7 y7 x8 y7 x9 y7 x9 x9 y7 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9	6 Holes 0.402- 0.0094 0.222: 0.0842 0.0842 0.0842 0.0094 0.402- 0.0094 0.597: 0.9915 0.402- 0.990 0.597: 0.9915 0.9915 0.9717 0.915 0.9715
x1 11 22 12 23 13 14 14 15 15 16 16 17 17 18 18 19 19 10	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 11 12 12 12 12 12 12 12 12 12 12 12 1	0.37059 0.01704 0.14645 0.01704 0.37059 0.01704 0.62941 0.98296 0.62941 0.98296 0.62941 0.98296 0.85355 0.37059 0.98296 0.85355 0.38255 0.38256 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.85355 0.37059 0.3705	x1 y1 y2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 x9 y9 x10 y10 x11 y12 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y5 x9 y1 x9 y2 x3 y3 x4 y1 x5 y5 x6 y5 x6 y5 x7 y2 x3 y3 x4 y1 x5 y5 x6 y5 x6 y5 x7 y7 x7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 x7 y7 x7 x7 y7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7	0.38034 0.01453 0.12574 0.02574 0.03249 0.32270 0.00365 0.56027 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.50000 0.73236 0.5427 0.50000 0.73236 0.5427 0.55000 0.73236 0.55000 0.73236 0.5274 0.55000 0.53156 0.550000 0.550000 0.550000 0.550000 0.550000 0.550000 0.550000000000	x 1 2 2 2 3 44 14 55 55 65 16 77 17 88 98 99 90 10 0 11 11 12 12	0.38874 0.01254 0.19808 0.04952 0.28306 0.00000 0.50000 0.71694 0.18825 0.38874 0.38874 0.38874 0.51126 0.98746 0.51126 0.51126 0.51174 0.59592 0.38874 0.51174 0.51174 0.59594 8 0.71694 1.00000 0.500000 0.500000000	x1 y1 y2 y2 x3 y3 x4 y4 x5 y5 x6 y7 y7 x8 y9 y10 y111 y112 y12 y10 y10 y111 y12 y2 x3 y2 x4 y4 y1 x5 y5 x6 y1 y12 y2 y2 x3 y1 x4 y1 y2 y2 x3 y1 x4 y1 y2 y2 x3 y1 x4 y1 y2 y2 x5 y1 x4 y1 y2 y1 x5 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1	0.39604 0.01093 0.20611 0.09549 0.66699 0.25000 0.00274 0.42774 0.02447 0.02447 0.02447 0.12443 0.83457 0.95677 0.50000 0.70337 0.95677 0.50000 0.70337 0.95677 0.50000 0.70337 0.95673 0.687157 0.87157 0.87157 0.97553 0.68451 0.99726	1 x1 y1 y2 y2 x3 y3 x4 y4 x5 y6 x7 y7 x8 y9 y10 y11 y12 y12 y1 y2 x3 y3 x4 y4 x5 y5 x6 y7 x7 y2 x3 y3 x4 y5 x6 y7 y7 x8 y7 x7 y7 x8 y7 y7 x8 y7 x8 y7 y7 x7 x7 x7 x7 x7 x8 x9 y7 x7 x7 x7 x7 x7 x8 x9 y7 x7 x7 x7 x7 x7 x7 x8 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9	6 Holes 0.402- 0.0094 0.2222 0.0844 0.2222 0.0844 0.2222 0.0090 0.402- 0.0099 0.402- 0.0990 0.5977 0.915 0.777 0.915 0.777 0.915 0.777 0.915 0.777 0.9597
x1 11 22 12 23 13 14 14 15 15 16 16 17 17 18 18 19 19 10	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 12 12 12 12 12 12 12 12 12	0.37059 0.1704 0.14645 0.14645 0.14645 0.37059 0.4704 0.485355 0.37059 0.485355 0.485355 0.85355 0.85355 0.85355 0.85355 0.85355 0.852941 0.98296 0.82941 0.98296 0.37059 0.85355 0.46445 0.46445	11 11 12 12 12 13 13 14 14 15 15 16 16 16 17 17 18 18 19 19 10 11 11 12 12 12 13 14 14 15 15 16 16 16 17 17 18 19 19 18 19 18 19 18 19 18 19 18 19 19 18 19 18 19 18 19 18 19 18 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	0.38034 0.01453 0.12574 0.02574 0.03249 0.32270 0.00365 0.56027 0.9403 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50027 0.83156 0.12574 0.32270 0.83156 0.12574	x1 y2 y2 y2 y2 y3 y4 y4 y5 x5 x6 y6 x7 y7 x8 y8 y9 y2 y10 y10 y10 y10 y10 y10 y10 y10 y10 y10	0.38874 0.1254 0.18826 0.10908 0.04952 0.23305 0.00000 0.50000 0.50000 0.88074 0.61126 0.98746 0.61126 0.98746 0.81174 0.81174 0.50000 0.55048 0.25306 0.50000 0.55048 0.28306 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.58174 0.59048 0.58000 0.55048 0.55058 0.55	x1 y1 y2 y2 x3 y3 x4 y4 x5 y5 x6 y6 y7 y7 x8 y9 y10 y11 y112 y12 y12 y2 x3 y3 x4 y4 x5 y5 x6 y6 y7 y1 x8 y9 x10 y12 y2 x3 y3 x4 y1 x5 y5 x6 y5 x6 y6 y7 x7 y2 x3 y3 x4 y1 x5 y5 x6 y6 y7 x7 y2 x7 y2 x7 y2 x7 y7 y7 x7 y7 y7 x7 y7 y7 x7 y7 y7 x7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7	0.39604 0.0193 0.20611 0.09549 0.66699 0.25000 0.00274 0.44774 0.65451 0.328457 0.50000 1.00010 0.50000 1.00010 0.50000 1.00010 0.55077 0.55000 1.00010 0.7553 0.87157 0.87157 0.87157 0.87457 0.97553 0.99725 0.44774 0.63301 0.99725 0.44774 0.99725 0.44774 0.99725 0.44774 0.99725 0.99725 0.44774 0.99725 0.99	1 x1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 y10 x11 x12 x12 x13 x4 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y1 x9 x10 x1 y2 x3 y3 x4 y1 x10 x10 y1 x4 y1 x5 y2 x5 y7 x6 y1 y1 x4 y1 x5 y5 x6 x7 y7 x8 y8 y1 x10 y1 y1 x10 y1 y1 x4 y1 y1 x4 y1 y1 x5 y5 x6 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 y1 x10 y1 x10 y1 x10 y1 x11 x12 x13 x13 x13 x13 x13 x13 x13 x13	6 Holes 0.402 0.0940 0.2222 0.0844 0.0844 0.0844 0.0844 0.0222 0.0844 0.0222 0.0844 0.0222 0.0844 0.0222 0.0094 0.
x1122233X4455667778899910	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 12 12 12 12 12 12 12 12 12	0.37059 0.1704 0.14645 0.14645 0.14645 0.37059 0.4704 0.485355 0.37059 0.485355 0.485355 0.85355 0.85355 0.85355 0.85355 0.85355 0.852941 0.98296 0.82941 0.98296 0.37059 0.85355 0.46445 0.46445	x1 y1 y2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 x9 y9 x10 y10 x11 y12 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y5 x9 y1 x9 y2 x3 y3 x4 y1 x5 y5 x6 y5 x6 y5 x7 y2 x3 y3 x4 y1 x5 y5 x6 y5 x6 y5 x7 y7 x7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 y7 x7 x7 y7 x7 x7 y7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7	0.38034 0.01453 0.12574 0.02574 0.03249 0.32270 0.00365 0.56027 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 1.00000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.50000 0.73236 0.5427 0.50000 0.73236 0.5427 0.55000 0.73236 0.55000 0.73236 0.5274 0.55000 0.53156 0.550000 0.550000 0.550000 0.5500000 0.550000000000	x1 y2 y2 y2 y3 y4 y4 y5 y5 x6 y6 x7 y7 8 8 8 9 y5 y10 y11 y10 y10 y10 y10 y10 y10 y10 y10	0.38874 0.01254 0.18826 0.19908 0.04952 0.23305 0.00000 0.04952 0.50000 0.04952 0.50000 0.04952 0.71694 0.18825 0.89992 0.38874 0.98746 0.61126 0.98746 0.81074 0.81074 0.81174 0.95048 0.28306 0.50000 0.590048 0.28306 0.590048 0.28306 0.590048 0.595048 0.28306 0.590048 0.595048 0.28306 0.595048 0.595	x1 y1 y2 y2 x3 y3 x4 y4 x5 yx6 y67 y7 x8 y8 y9 y10 y11 y112 y13 y13 x11 y12 y2 x3 y3 x4 y3 x4 y2 x5 y5 x6 y6 y7 y12 y2 x3 y3 x4 y12 y2 x3 y3 x4 y12 y2 x3 y3 x4 y5 x5 y5 x6 y6 y7 y12 y2 x3 y3 x4 y12 y12 y12 y12 y12 y12 y12 y12 y13 y14 y15 y16 y16 y17 y17 y17 y17 y17 y17 y17 y17 y17 y17	0.39604 0.01093 0.20611 0.09549 0.66699 0.25000 0.00274 0.02447 0.02447 0.02447 0.28463 0.95677 0.50000 0.70337 0.95677 0.50000 0.70337 0.87157 0.87157 0.87157 0.8745451 0.997256 0.44774 0.99256 0.44774 0.93301 0.92500	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x77 x8 y8 y9 x10 y10 x11 y12 y12 x3 y3 x4 y4 x5 y5 x6 y6 y7 x8 y8 y1 y1 x9 y2 x3 y3 x4 y4 x5 y6 y7 x8 y8 y9 x10 y1 y1 x8 y1 y1 x8 y1 y2 x8 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 x10 y1 y1 y1 x10 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1	6 Holes 0.402- 0.0994 0.22225 0.0844 0.0844 0.02225 0.0844 0.02225 0.0099 0.0099 0.0099 0.02225 0.9151 0.9151 0.9252 0.91510 0.91510 0.91510 0.91510 0.91510000000000000000000000000000000000
x1122233X4455667778899910	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 12 12 12 12 12 12 12 12 12	0.37059 0.1704 0.14645 0.14645 0.14645 0.37059 0.4704 0.485355 0.37059 0.485355 0.485355 0.85355 0.85355 0.85355 0.85355 0.85355 0.852941 0.98296 0.82941 0.98296 0.37059 0.85355 0.46445 0.46445	11 11 12 12 12 13 13 14 14 15 15 16 16 16 17 17 18 18 19 19 10 11 11 12 12 12 13 14 14 15 15 16 16 16 17 17 18 19 19 18 19 18 19 18 19 18 19 18 19 19 18 19 18 19 18 19 18 19 18 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	0.38034 0.01453 0.12574 0.02574 0.03249 0.32270 0.00365 0.56027 0.9403 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50027 0.83156 0.12574 0.32270 0.83156 0.12574	A 以2 22 23 33 44 14 25 25 75 76 78 78 78 99 90 10 11 11 12 22 13 13 14	0.38874 0.01254 0.18826 0.19908 0.04952 0.28306 0.04952 0.38074 0.18826 0.38874 0.38874 0.38874 0.5126 0.38874 0.5126 0.5126 0.81174 0.89092 0.95048 0.28306 0.50000 0.95048 0.28306 0.5126 0.51176	x1 y1 y2 y2 x3 y3 x4 y4 x5 y5 x6 y6 y7 y7 x8 y8 y9 y10 y711 y12 y13 y14 y12 y13 y14 y12 y13 y14 y12 y13 y14 y14 y12 y13 y14 y14 y15 y15 y16 y16 y16 y16 y16 y16 y16 y16 y16 y16	0.39604 0.01093 0.20611 0.09549 0.25000 0.25000 0.25000 0.00274 0.02447 0.65451 0.12843 0.29665 0.29665 0.29665 0.29665 0.30000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05000 0.05000 0.05000 0.05000 0.050500 0.050500 0.050500000000	1 x1 y1 x2 y2 x3 x4 y4 x5 y6 x7 y7 x8 y8 y9 y10 y11 x12 y12 x13 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 y9 x10 y1 x10 x12 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 y9 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x111 x110 x10 x	6 Holes 0.402- 0.094 0.2222 0.0843 0.094 0.094 0.0990 0.2222 0.0990 0.0222 0.0990 0.0222 0.0990 0.0099 0.0099 0.0099 0.007777 0.2222 0.9900 0.77777 0.915 0.77777 0.915 0.77777 0.915 0.915 0.77777 0.915 0.
x1122233X4455667778899910	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 12 12 12 12 12 12 12 12 12	0.37059 0.1704 0.14645 0.14645 0.14645 0.37059 0.4704 0.485355 0.37059 0.485355 0.485355 0.85355 0.85355 0.85355 0.85355 0.85355 0.852941 0.98296 0.82941 0.98296 0.37059 0.85355 0.46445 0.46445	11 11 12 12 12 13 13 14 14 15 15 16 16 16 17 17 18 18 19 19 10 11 11 12 12 12 13 14 14 15 15 16 16 16 17 17 18 19 19 18 19 18 19 18 19 18 19 18 19 19 18 19 18 19 18 19 18 19 18 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	0.38034 0.01453 0.12574 0.02574 0.03249 0.32270 0.00365 0.56027 0.9403 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50027 0.83156 0.12574 0.32270 0.83156 0.12574	x1 y2 y2 y2 y3 y4 y4 y5 y5 x6 y6 x7 y7 8 8 8 9 y5 y10 y11 y10 y10 y10 y10 y10 y10 y10 y10	0.38874 0.01254 0.18826 0.19908 0.04952 0.23305 0.00000 0.04952 0.50000 0.04952 0.50000 0.04952 0.71694 0.18825 0.89992 0.38874 0.98746 0.61126 0.98746 0.81074 0.81074 0.81174 0.95048 0.28306 0.50000 0.590048 0.28306 0.590048 0.28306 0.590048 0.595048 0.28306 0.590048 0.595048 0.28306 0.595048 0.595	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y67 y7 x8 y9 y910 y111 x112 y112 x113 y14 y14	0.39604 0.01093 0.20611 0.09549 0.26502 0.00274 0.00274 0.00274 0.00274 0.00274 0.25430 0.25430 0.95677 0.50000 0.00337 0.95657 0.50000 0.00337 0.95657 0.50000 0.00337 0.95567 0.470337 0.95755 0.4774 0.97553 0.99726 0.44774 0.9339 0.97553	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 x6 y6 x7 y7 x8 y8 y9 x10 y10 x11 y12 x12 x3 y3 x4 y4 x5 x6 y7 x10 x1 y2 x3 y3 x4 y4 x5 y7 x6 y7 x6 y7 x6 y7 x6 y7 x6 y7 x7 x7 x7 x6 y7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x	6 Holes 0.402- 0.094 0.2222 0.08444 0.0242 0.0054 0.0222 0.0054 0.0222 0.0059 0.0222 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0222 0.915 0.0222 0.915 0.
x1122233X4455667778899910	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 12 12 12 12 12 12 12 12 12	0.37059 0.1704 0.14645 0.14645 0.14645 0.37059 0.4704 0.485355 0.37059 0.485355 0.485355 0.85355 0.85355 0.85355 0.85355 0.85355 0.852941 0.98296 0.82941 0.98296 0.37059 0.85355 0.46445 0.46445	11 11 12 12 12 13 13 14 14 15 15 16 16 16 17 17 18 18 19 19 10 11 11 12 12 12 13 14 14 15 15 16 16 16 17 17 18 19 19 18 19 18 19 18 19 18 19 18 19 19 18 19 18 19 18 19 18 19 18 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	0.38034 0.01453 0.12574 0.02574 0.03249 0.32270 0.00365 0.56027 0.9403 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50027 0.83156 0.12574 0.32270 0.83156 0.12574	A 以2 22 23 33 44 14 25 25 75 76 78 78 78 99 90 10 11 11 12 22 13 13 14	0.38874 0.01254 0.18826 0.19908 0.04952 0.28306 0.04952 0.38074 0.18826 0.38874 0.38874 0.38874 0.5126 0.38874 0.5126 0.5126 0.81174 0.89092 0.95048 0.28306 0.50000 0.95048 0.28306 0.5126 0.51176	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y9 x10 y11 y12 y13 x14 y4 x5 y5 x6 y6 y7 y10 y10 y11 y12 y2 x3 y3 y4 y4 y4 x5 y5 x6 y6 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7	0.39604 0.01093 0.20611 0.09549 0.26500 0.25000 0.00274 0.25000 0.44774 0.2447 0.2447 0.29653 0.29653 0.29653 0.29653 0.29653 0.29653 0.29653 0.29653 0.29653 0.29557 0.50000 0.070337 0.87157 0.87457 0.97553 0.65451 0.44774 0.433301 0.25680 0.79389 0.09349 0.09349	1 x1 y1 x2 y2 x3 y3 x4 y4 y5 y5 y6 y7 x8 y8 y9 y10 x11 x12 x13 y13 x14 y2 x3 y3 x4 y4 y5 y6 x6 y7 y7 x8 y8 y9 y10 x1 y1 x4 y2 x5 y7 x6 y7 y7 x6 y7 y7 x8 y8 y9 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 y10 x10 x10 x10 x10 x10 x10 x10 x	6 Holes 0.402 0.094 0.2222 0.084 0.024 0.084 0.094 0.024 0.005 0.004 0.005 0.004 0.005 0.0
x1 11 22 12 23 13 14 14 15 15 16 16 17 17 18 18 19 19 10	0.34549 0.02447 0.09549 0.20611 0.00000 0.09549 0.34549 0.34549 0.34549 0.34549 0.37553 0.97553 0.97553 0.97451 0.79389 1.00000 0.50000 0.50000 0.90451 0.20611	x1 1 1 2 12 23 13 24 14 25 15 26 16 27 17 28 18 29 19 10 10 10 11	0.35913 0.02025 0.12213 0.07257 0.00509 0.42884 0.0509 0.42884 0.070771 0.23968 0.92063 0.92063 0.95040 0.97072 0.92063 0.95482 0.70771 0.929481 0.929482 0.70771 0.929482 0.70771 0.929482 0.70771 0.929484 0.87787 0.17257 0.64087	11 12 12 12 12 12 12 12 12 12	0.37059 0.1704 0.14645 0.14645 0.14645 0.37059 0.4704 0.485355 0.37059 0.485355 0.485355 0.85355 0.85355 0.85355 0.85355 0.85355 0.852941 0.98296 0.82941 0.98296 0.37059 0.85355 0.46445 0.46445	11 11 12 12 12 13 13 14 14 15 15 16 16 16 17 17 18 18 19 19 10 11 11 12 12 12 13 14 14 15 15 16 16 16 17 17 18 19 19 18 19 18 19 18 19 18 19 18 19 19 18 19 18 19 18 19 18 19 18 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	0.38034 0.01453 0.12574 0.02574 0.03249 0.32270 0.00365 0.56027 0.9403 0.25764 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.50000 0.73236 0.94273 0.56027 0.56027 0.56027 0.56027 0.56027 0.56027 0.56125 0.56027 0.5625 0.5627 0.5625 0.5627 0.5625 0.5627 0.5625 0.5627 0.5625 0.5627 0.5625 0.5627 0.5627 0.5625 0.56027 0.56027 0.56027 0.5625 0.56027 0.56257 0.56257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.5257 0.56027 0.5257 0.56027 0.5257 0.5257 0.5557 0.5557 0.5557 0.5557 0.5557 0.5557 0.5557 0.5557 0.5557 0.5557 0.5557 0.5557 0.555777 0.555777 0.5557777 0.55577777 0.5557777777777777777777777777777777777	A 以2 22 23 33 44 14 25 25 75 76 78 78 78 99 90 10 11 11 12 22 13 13 14	0.38874 0.01254 0.18826 0.19908 0.04952 0.28306 0.04952 0.38074 0.18826 0.38874 0.38874 0.38874 0.5126 0.38874 0.5126 0.5126 0.81174 0.89092 0.95048 0.28306 0.50000 0.95048 0.28306 0.5126 0.51176	x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y67 y7 x8 y9 y910 y111 x112 y112 x113 y14 y14	0.39604 0.01093 0.20611 0.09549 0.26502 0.00274 0.00274 0.00274 0.00274 0.00274 0.25430 0.25430 0.95677 0.50000 0.00337 0.95657 0.50000 0.00337 0.95657 0.50000 0.00337 0.95567 0.470337 0.95755 0.4774 0.97553 0.99726 0.44774 0.9339 0.97553	1 x1 y1 x2 y2 x3 y3 x4 y4 x5 x6 y6 x7 y7 x8 y8 y9 x10 y10 x11 y12 x12 x3 y3 x4 y4 x5 x6 y7 x10 x1 y2 x3 y3 x4 y4 x5 y7 x6 y7 x6 y7 x6 y7 x6 y7 x6 y7 x7 x7 x7 x6 y7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x	6 Holes 0.402- 0.094 0.2222 0.08444 0.0242 0.0054 0.0222 0.0054 0.0222 0.0059 0.0222 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0222 0.915 0.0222 0.915 0.

963

Table 2. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "B" Hole Circles (English or Metric Units)

			x j	Ref							,		
		Ð) \ 4		y are gi are for Dimen	iven in the ta holes numb sions siven a	able fo cred is are bas	ype "B" circl a hole circles a a countercle sed upon a ho -conthneter t	of tro ockwis de circl	n 5 to 2a no 2 direction (a le of unit dia:	nes. Dru 18 show meter. I	nensious n). for a hole
	Ref	\geq	3 /									- 13	Holes
17	Holes	18	Holes		Holes		Holes		l Holes		Holes		0.43192
x1		xl		x1		x1		x1 y1		xi yl		xl yl	0.00466
yl		51		y1		y1 x2		x2	0.28306	x2		x2	0.30080
x2		x2		x2 y2		х2 у2		у2 у2	0.04952	y2		y2	0.04139
y2		y2 x3	0.000399	x3		x3		33	0.15991	13		x3	0.18446
x3		y3		y3		33		v3		у3		y3	0.11214
у3 х4		y5 x4	0.03015	x4		x4		x4	0.06699	x4		x4	0.09152
x4 y4		34 34	0.32899	34		y4		y4	0.25000	y 4	0.22968	34	0.21166
,4 ,5	0.00213	స	0.00000	x5		, 15	0.00616	x5	0.01254	ð.	0.02025	x5	0.02887
y5	0.54613	y5	0.50000	ŗő	0.45871	y5		yS	0.38874) ⁵	0.35913	yS	0.33256
x6	0.05242	лб	0.03015	16	0.01530	хб		хб	0.00140	ж	0.00000	<i>х</i> б	0.00117
y6	0.72287	36	0.67101	y6	0.62274	y6		y : 6	0.53737	36	0.50000	y6	0,46588
x7	0.16315	x7	0.11698	x7	0.08142	х7	0.05450	x7	0.03456	x7	0.02025	x7 7	0.01040
y7	0.86950	у7	0.82139	y7	0.77347	y7		y7	0.68267	y7	0.64087 0.07937	y7 x8	0.0560
.r8	0.31938	28	0.25000	.x8	0.19289	x8	0.14645	л 8	0.10908	28 	0.07937	х8 у8	0.7300
y8	0.96624):8	0.93301	3.8	0.89457	у8	0.85355	3:8	0.81174 0.21834	38 29	0.17257	,78 ,29	0.1345
л9	0.50000	£9	0.41318	x9	0.33765	29	0.27300	9د 9ر	0.91312	39	0.87787	19	0.8412
39	1,00000	39	0.99240	39	0.97291)9 -10	0.94550 0.42178	x10	0.35262	110	0.29229	x10	0.2402
x10	0.68062	x10	0.58682	x10	0.50000	л10 у10	0.99384	r10	0.97779	y10	0.95482	y10	0.9272
y10	0.96624	y10	0.99240	y10 x11	0.66235	x11	0.57822	xIJ	0.50000	x11	0.42884	x11	0.3651
x11	0.83685	x11	0.75000	y11	0.97291	yII	0.99384	511	1.00000	y11	0.99491	y11	0.9814
y11	0.86950 0.94758	y]] x12	0.88302	x12	0.80711	x12	0.72700	x12	0.64738	x12	0.57116	x12	0.5000
x12	0.94738	y12	0.83302	y12	0.89457	y12	0.94550	y12	0.97779	y12	0.99491	y12	1.0000
y12 x13	0.99787	x13	0.96985	x13	0.91858	x13	0.85355	x13	0.78166	x13	0.70771	x13	0.6349
y13	0.54613	yJ3	0.67101	y13	0.77347	y13	0.85355	y13	0.91312	y13	0.95482	y13	0.9814
1x14	0.98091	x14	1.00000	x14	0.98470	x14	0.94550	x14	0.89092	x14	0.82743	x14	0.7597
y14	0.36317	y14	0.50000	y14	0.62274	y14	0.72700	y 1 4	0.81174	y14	0.87787	y14	0.9272
x15	0.89901	x15	0.96985	x15	0.99829	x15	0.99384	x15	0.96544	x15	0.92063	x15	0.8654
y15	0.19868	y15	0.32899	y15	0.45871	y15	0.57822	y15	0.68267	y15	0.77032	y15	0.8412
x16	0.76322	x16	0.88302	x16	0.95789	x16	0.99384	x16	0.99860	x16	0.97975	x16	0.9439
y16	0.07489	y16	0.17861	y16	0.29915	y16	0.42178	516	0.53737	y16	0.64087	y16 x17	0.9895
x17	0.59187	x17	0.75000	x17	0.86786	x17	0.94550	x17	0.98746 0.38874	x17	0.50000	x17 y17	0.6017
y17	0.00851	317	0.06699	y17	0.16136	y17	0.27300 0.85355	y17 x18	0.38874 0.93301	y17 x18	0.97975	x18	0.9988
		x18	0.58682	x18	0.73797 0.06026	x18 y18	0.85355	y18	0.93301	y18	0.35913	y18	0.4658
1		y18	0.00760	518 x19	0.06026	x19	0.14643	x19	0.84009	x19	0,92063	119	0.971
1		1		y19	0.00682	y19	0.05450	y19	0.13347	y19	0.22968	y19	0.332
1		1		1,13	0.00002	x20	0.57822	x20	0.71694	120	0.82743	x20	0.908
		1		1		y20	0.00616	320	0.04952	y20	0.12213	y20	0.211
1		1		1		l'		x21	0.57452	x21	0.70771	x21	0.815
1		1		1		1		y21	0.00558		0.04518	>21	0.112
1		1		1						x22	0.57116	x22	0.699
		1		1						y22	0.00509	y22	0.04139
		1		1		1		1		1		x23	0.56808
1						_		+				323	0.0046
	24 Holes		25 Holes		26 Holes		27 Holes	\perp	28 Holes			1	
x1	0.43474	xl	0.43733		0.43973		0.44195		0.44402				
171	0.00428	y1	0.00394		0.00365		0.00338		0.00314				
x2	0,30866	x2	0.31594		0.32270		0.32899		0.33480				
y2	0.03806		0.03511		0.03245 0.21597		0.03015		0.02806				
1x3	0,19562	2 23	0.2061	1 x3									

JIG BORING

Table 2. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "B" Hole Circles (English or Metric Units)

	¥ /		x 	Ref	-	y are g are fo Dimen	given in the r holes num nsions given	table fo bered is are ba	n hole circle a a counterel sed upon a ho	le for a 5-hole circle. Coordinates x s of from 3 to 28 holes. Dianeasions of wirse direction (a s shown), ale circle of unit diameter. For a hole liumeter, multiply table values by 3
	Ref		3/							
y3	0.10332	y3	0.09549	3 تر	0.08851	у3	0.08226	y3	0.07664	
x4	0.10332	<i>x</i> 4	0.11474	<i>x</i> 4	0.12574	<i>x</i> 4	0.13631	<i>x</i> 4	0.14645	
<u>y</u> 4	0.19562	y4	0.18129	3*4	0.16844)4	0.15688	y4	0.14645	
15	0.03806	λ5	0.04759	x5	0.05727	x5	0.06699	15	0.07664 0.23398	
y5	0.30866	y5	0.28711	y5	0.26764	y5	0.25000	y5	0.023398	
x6	0.00428	x6	0.00886	x6	0.01453 0.38034	x6	0.02101 0.35660	x6	0.33486	
уб х7	0.43474 0.00428	уб х7	0.40631 0.00099	уб х7	0.00000	y6 x7	0.00085	уб x7	0.00314	
хт у7	0.56526	хл у7	0.53140	37	0.50000	y7	0.00083	177	0.44402	
,y7 .x8	0.03806	,1 x8	0.02447	.x8	0.01453	x8	0.00760	31 38	0.00314	
38 3	0.69134	78 78	0.65451	38	0.61966	y8	0.58682	y8	0.55598	
,0 ,9	0.10332	19	0.07784	19	0.05727	19	0.04089	19	0.02806	
y9	0.80438	39	0.76791	39	0.73236	39	0.69804	<u>,9</u>	0.66514	
x10	0.19562	x10	0.15773	x10	0.12574	x10	0.09894	x10	0.07664	
y10	0.89668	y10	0.86448	y10	0.83156	yIO	0.79858	y10	0.76602	
x11	0.30866	x11	0.25912	x11	0.21597	x11	0.17861	x11	0.14645	
уIJ	0.96194	y11	0.93815	yII	0.91149	y11	0.88302	y11	0.85355	
x12	0.43474	x12	0.37566	x12	0.32270	x12	0.27560	x12	0.23398	
y12	0.99572	y12	0.98429	y12	0.96751	y12	0.94682	y12	0.92336	
x13	0.56526	x13	0.50000	x13	0.43973	x13	0.38469	x13	0.33486	
y13	0.99572	y13	1.00000	y13	0.99635	y13	0.98652	y13	0.97194	
x14	0.69134	x14	0.62434	x14	0.56027	x14	0.50000	x14	0.44402	
y]4	0.96194	y14	0.98429	y14	0.99635	y14	1.00000	y14	0.99686	
x15	0.80438	x15	0.74088	x15	0.67730	x15	0.61531	x15	0.55598	
y15	0.89668	y15	0.93815	y15	0.96751	y15	0.98652	y15	0.99686	
x16	0,89668	x16	0.84227	x16	0.78403	x16	0.72440	x16	0.66514	
y16	0.80438	y16	0.86448	y16	0.91149	y16	0.94682	y16	0.97194	
x17	0.96194	x17	0.92216	x17	0.87426	x17	0.82139	x17	0.76602	
y17	0.69134	y17	0.76791	y17	0.83156 0.94273	y17	0.88302 0.90106	y17 x18	0.92336	
x18	0.99572	x18	0.97553	x18	0.94273	x18 y18	0.90108	y18	0.85355	
y18 x19	0.56526 0.99572	y18 x19	0.65451	y18 x19	0.75256	x19	0.95911	219	0.92336	
x19 y19	0.99572	y19	0.53140	y19	0.98547	y19	0.69804	y19	0.76602	
.x20	0.95194	x20	0.99114	x20	1.00000	x20	0.99240	x20	0.97194	
y20	0.30154	320	0.40631	3'20	0.50000	320	0.58682	520	0.66514	
x21	0.89668	1:21	0.95241	:21	0.98547	x21	0.99915		0.99686	1
3:21	0.19562	y21	0.28711	y21	0.38034	121	0.47093	y21	0.55598	
x22	0.80438	x22	0.88526	x22	0.94273	x22	0.97899	x22	0.99686	
r22	0,10332	y22	0.18129	y22	0.26764	y22	0.35660	y22	0.44402	
x23	0.69134	x23	0.79389	x23	0.87426	x23	0.93301	x23	0.97194	
y23	0.03806	323	0.09549	y23	0.16844	y23	0.25000	y23	0.33486	
x24	0,56526	x24	0.68406	x24	0.78403	x24	0.86369	x24	0.92336	
y24	0.00428	324	0.03511	324	0.08851	y24	0.15688	y24	0.23398	ļ
		x25	0.56267	x25	0.67730	x25	0.77475	x25	0.85355	1
		y25	0.00394	y25	0.03249	y25	0.08226	325	0.14645	
l				x26	0.56027	x26	0.67101	1:26	0.76602	
1		1		y26	0.00365	y26	0.03015	526	0.07664	
		1				x27	0.55805	x27	0.66514	
		1		1		y27	0.00338	y27	0.02806	
								x28	0.55598	
		1		1		1		328	0.00314	1

JIG BORING

965

Table 3. Hole Coordinate Dimension Factors for Jig Boring — Type "A" Hole Circles, Central Coordinates (English or Metric Units)

) - x +) +	$\frac{1}{Y} \operatorname{Ref} ($	5))		y are gi are for Dimen	wen in the ta holes numb	ible fo cred in ore has	ype "A" circls r hole circles a countercle red upon a ho centimeter d	of from the circle	m 3 to 28 ho e direction (s e of unit dia	les. Di 15 shov meter.	mensions wn), For a hole
3	Holes	4	Holes	5	Holes	6 1	Holes	7	Holes	8	Holes	9	Holes
			0.00000	x1		xl		xl		x1	0.00000	x1	0.0000
d –		x1 yl		xı yl		y1		yi		y1	-0.50000	y1	-0.5000
4		x2	-0.50000			x2		x2		x2	0.35355	x2	-0.3213
r2 v2		y2		y2)2	-0.25000	y2	-0.31174	y2	-0.35355	y2	-0.3830
y2 x3	+0.43301	x3		x3		x3		.13	-0.48746	x3	-0.50000	х3	-0.4924
		х3 уЗ	+0.50000		-0.40451	y3		y3	+0.11126	33	0.00000	y3	-0.0868
y3	+0.2000	x4	+0.50000	x4		x4		x4	-0.21694	x4	-0.35355	x4	-0.4330
	1	34 34	0.00000	y4	+0.40451	y4	+0.50000	4ر	+0.45048	34	+0.35355	<u>)</u> 4	+0.2500
		<u>, , , , , , , , , , , , , , , , , , , </u>	0.0000	15	-0.47553	15	+0.43301	x5	+0.21694	x5	0.00000	х5	-0.1710
				35 3	-0.15451	¥5		y5	+0.45048	y5	+0.50000	y5	-0.469
				<u> </u>		x6	+0.43301	26	+0.48746	36	+0.35355	хб	+0.1710
						y6	-0.25000	ურ	+0.11126	56	+0.35355	y 6	+0.469
				1		ŕ		x7	+0.39092	x7	~0.50000	x7	-0.433
								y7	-0.31174	y7	0.00000	y7	+0.250
										8x.	+0.35355	x8	+0.492
		ļ				l				y8	-0.35355	38	-0.086
												9د	+0.321
						1				i		y9	-0.383
1	0 Holes	1	1 Holes	1	2 Holes	13	5 Holes	1	4 Holes	1	5 Holes		6 Holes
	0.00000	xi	0.00000	\$1	0.00000	x1	0.00000	хI	0.00000	1 x	0.00000	хI	0.000
xl vl	0.00000		-0.5000	y I	-0.50000	11	-0.50000	y1	-0.50000]yi	-0.50000	y1	-0.500
y1	-0.50000	y1	-0.5000		-0.50000	y1 x2	-0.50000	x2	-0.21694	x2	-0.20337	12	-0.191
y1 x2	-0.50000 -0.29389	ار x2		x2					-0.21694 -0.45048	x2 y2	-0.20337 -0.45677	x2 y2	-0.191 0.461
y1 x2 y2	-0.50000 -0.29389 -0.40451	y1	-0.5000 -0.27032	x2 y2	-0,25000	x2 y2 x3	-0.23236 -0.44273 -0.41149	x2 y2 x3	-0.21694 -0.45048 -0.39092	x2 y2 x3	-0.20337 -0.45677 -0.37157	x2 y2 x3	-0.191 0.461 0.353
y1 x2 y2 x3	-0.50000 -0.29389 -0.40451 0.47553	y1 x2 y2	0.5000 0.27032 0.42063	x2 y2 x3	-0.25000 -0.43301	x2 y2 x3	-0.23236 -0.44273 -0.41149 -2.28403	x2 y2 x3	-0.21694 -0.45048 -0.39092 -0.31174	x2 32 x3 33	-0.20337 -0.45677 -0.37157 -0.33457	x2 y2 x3 y3	-0.191 0.461 0.353
y1 x2 y2 x3 y3	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451	yl x2 y2 x3	-0.5000 -0.27032 -0.42063 -0.45482	x2 y2 x3 y3	-0,25000 -0,43301 -0,43301	x2 y2 x3 y3	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635	x2 y2 x3 y3 x4	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746	x2 y2 x3 y3 x4	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553	x2 y2 x3 y3 r4	-0.191 0.461 0.353 0.353
y1 x2 y2 x3 y3 x4	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771	x2 y2 x3 y3 x4	-0.25000 -0.43301 -0.43301 -0.25000	x2 y2 y3 y3 x4 y4	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027	x2 y2 x3 y3 x4 y4	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126	x2 32 x3 33 x4 34	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451	12 12 12 12 12 12 12 12 12 12 12 12 12 1	-0.191 0.461 0.353 0.353 0.461 0.193
yl x2 y2 x3 y3 y4 y4	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451	y1 x2 y2 x3 y3 x4 y4	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116	x2 x2 x3 y3 x4 y4	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000	x2 y2 y3 y3 x4 y4 x5	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027 -0.46751	x2 y2 x3 y3 x4 y4 x5	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746	x2 y2 y3 y3 x4 y4 x5	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451 -0.49726	x2 x2 x3 x3 x4 y4 x5	-0.191 0.461 0.353 0.353 0.461 0.193 0.50
11 12 12 12 13 13 14 14 15	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451	y1 x2 y2 x3 y3 x4 y4 x5	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491	x2 y2 y3 y3 x4 y4 x5	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 0.00000	x2 y2 y3 y3 x4 y4 x5	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027 -0.46751 +0.17730	x2 y2 x3 y3 x4 y4 x5 y5	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 +0.11126	x2 y2 x3 y3 x4 y4 x5	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.47553 -0.15451 -0.49726 5 +0.05226	x2 y2 x3 y3 r4 y4 x5 y5	-0.191 0.461 0.353 0.353 0.461 0.193 0.500 0.000
y1 x2 y2 x3 y3 x4 y4 x5 y5	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.29389	y1 x2 y2 x3 y3 x4 y4 x5 y5	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787	x2 x3 y3 x4 y4 x5 y5	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 0.00000 -0.43301	x2 y2 y3 y3 x4 y4 x5 y5	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027 -0.46751 +0.17730 -0.33156	x2 y2 x3 y3 x4 y4 x5 y5 x6	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746 +0.11126 -0.39092	x2 y2 y3 y3 x4 y4 x5 y4 x5	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301	x2 y2 x3 y3 r4 y4 x5 y5 x6	-0.191 -0.461 -0.353 -0.353 -0.461 -0.193 -0.500 0.000 -0.46
11 12 12 12 13 13 14 14 15	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.29389 +0.40451	yl x2 y2 x3 y3 x4 y4 x5 y5 x6	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743	x2 y2 x3 y3 x4 y4 x5 y5 x6	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 -0.43301 +0.25000 -0.25000 +0.43301	x2 y2 y3 y3 x4 y4 x5 y5 k6 y6	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027 -0.46751 +0.17730 -0.33156 +0.37426	12 12 13 13 14 15 15 16	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746 +0.11126 -0.39092 +0.31174	x2 y2 y3 y4 y4 x5 y6 y7	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000	12 12 23 13 14 14 25 15 26 16	-0.191 -0.461 -0.353 -0.353 -0.461 -0.193 -0.500 0.000 -0.46 +0.19
11 12 12 13 13 14 14 15 15 16	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.47553 +0.15451 -0.29389 +0.40451 0.00000	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087	x2 x2 x3 x3 x4 y4 x5 y5 x6 y6 x7	-0,25000 -0,43301 -0,43301 -0,25000 -0,50000 -0,43301 +0,25000 -0,25000 +0,43301 -0,25000 +0,43301 0,00000	x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027 -0.46751 +0.17730 -0.33156 +0.37426 -0.11966	12 12 13 13 14 14 15 15 16 17 17	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746 +0.11126 -0.39092 +0.31174 -0.21694	x2 y2 x3 y3 x4 y4 x5 y4 x5 y4 x7	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389	12 12 23 13 14 14 25 15 26 16 17	-0.191 0.461 0.353 0.461 0.193 0.500 0.000 0.46 +-0.19 0.35
11 22 23 23 44 44 55 56 16 17	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.29389 +0.40451 0.00000 +0.50000	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.14087 +0.47975	x2 x2 x3 x3 x4 y4 x5 x6 x7 y7	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 -0.43301 +0.25000 -0.25000 +0.43301 0.00000 +0.50000	x2 y2 y3 y4 y4 y5 x6 y6 y7	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027 -0.46751 +0.17730 -0.33156 +0.37426 -0.11966 +0.48547	12 12 13 13 14 14 15 15 16 17 17	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746 +0.11126 -0.39092 +0.31174 -0.21694 +0.45048	x2 y2 x3 y3 x4 y4 x5 y4 x5 y7 x7 y7	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451	12 12 23 13 14 14 25 75 26 16 77 77	-0.191 -0.353 -0.353 -0.461 -0.193 -0.504 -0.193 -0.504 -0.466 +0.19 -0.35 +0.355 +0.355
1 12 12 13 13 14 14 15 15 16 16 17 18	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.29389 +0.40451 0.00000 +0.50000 +0.29389	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 6 x7 y7 x8	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.14087 +0.14087 +0.47975 +0.37785	x2 y2 y3 y4 y4 y5 x6 y6 y7 y8	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 -0.43301 +0.25000 -0.25000 +0.43301 0.00000 +0.50000 +0.25000 +0.25000	x2 y2 y3 y3 x4 y4 x5 y6 x7 y7 x8	-0.23236 -0.44273 -0.41149 -2.28403 -0.49635 -0.06027 -0.46751 +0.17730 -0.33156 +0.33156 +0.33426 +0.11966 +0.48547 +0.11966	12 12 13 13 14 15 16 17 18	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746 +0.11126 -0.39092 +0.31174 -0.21694 +0.45048 0.00000	x2 y2 y3 y3 x4 y4 x5 y7 x7 y7 x8	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451 -0.49726 -0.43301 5 +0.25000 -0.29389 +0.40451 -0.10396	12 12 23 13 14 14 25 35 x6 10 17 77 18	-0.191 -0.461 -0.353 -0.461 -0.193 -0.504 -0.193 -0.504 -0.466 +0.19 -0.466 +0.19 -0.35 +0.35 -0.19
1 12 12 13 13 14 14 15 15 16 16 17 17	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.29389 +0.40451 0.00000 +0.50000 +0.29389 +0.40451	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 fo x7 y7 x8	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.49975 +0.14087 +0.47975 +0.47975 +0.32743 +0.32743	x2 y2 y3 x4 y4 x5 x6 x7 y7 x8 y8	-0.25000 -0.43301 -0.43301 -0.50000 -0.50000 -0.43301 +0.25000 -0.25000 +0.43301 0.00000 +0.50000 +0.50000 +0.25000 +0.43301	x2 y2 x3 y3 x4 y4 x5 y6 y7 x7 y7 x8 y8	$\begin{array}{r} -0.23236\\ -0.44273\\ -0.44149\\ -2.28403\\ -0.49635\\ -0.06027\\ -0.46751\\ +0.17730\\ -0.33156\\ +0.37426\\ -0.11966\\ +0.48547\\ +0.11966\\ +0.48547\end{array}$	12 12 13 13 14 14 15 15 16 16 17 7 18 18	$\begin{array}{c} -0.21694\\ -0.45048\\ -0.39092\\ -0.31174\\ -0.48746\\ -0.11126\\ -0.48746\\ +0.11126\\ -0.39092\\ +0.31174\\ -0.21694\\ +0.45048\\ 0.0000\\ +0.50000\\ \end{array}$	x2 y2 y3 y3 x4 y4 x5 y7 y7 y7 y8	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451 -0.10396 +0.48907	12 12 23 13 14 14 15 15 16 10 17 17 18 18	-0.191 -0.461 -0.353 -0.461 -0.193 -0.500 -0.461 -0.500 -0.466 +0.19 -0.35 +0.35 +0.35 -0.19 +0.466
1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.29389 +0.40451 0.00000 +0.50000 +0.29388 +0.40451 +0.47553 +0.15451 +0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9	-0.5000 -0.27032 -0.42063 -0.42063 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.14087 +0.47975 +0.37787 +0.37787 +0.37787 +0.37787	x2 y2 y3 y4 y4 y5 y5 x6 y7 y8 y8 y9	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 -0.25000 +0.43301 +0.25000 +0.43301 +0.25000 +0.25000 +0.43301 +0.43301	x2 y2 x3 y3 x4 y4 x5 x6 y7 x7 y7 x8 y9 x8 y9	$\begin{array}{r} -0.23236\\ -0.44273\\ -0.44273\\ -0.41149\\ -2.28403\\ -0.49635\\ -0.49635\\ -0.66027\\ -0.66027\\ -0.64751\\ +0.17730\\ -0.33156\\ +0.37426\\ -0.11966\\ +0.48547\\ +0.48547\\ +0.433156\end{array}$	12 12 33 34 14 35 36 16 77 77 18 18 19	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746 +0.11126 -0.39092 +0.31174 -0.21694 +0.45048 0.00000 +0.20000 +0.21694	x2 y2 x3 y3 x4 y4 x5 y7 x6 y7 x7 y7 x8 y9 x9	-0.20337 -0.45677 -0.37157 -0.37157 -0.47553 -0.47553 -0.47553 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451 -0.4996 +0.4997 +0.10396	2223344555667778889	-0.191 -0.461 -0.353 -0.353 -0.466 -0.199 -0.500 -0.466 +0.19 -0.35 +0.35 -0.19 +0.466 0.000
11 12 12 23 23 14 14 25 25 16 16 77 78 8	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 +0.15451 -0.47553 +0.15451 0.00000 +0.29389 +0.40451 +0.40451 +0.47552 +0.15453	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x6 x7 y7 x8 y8 y9	-0.5000 -0.27032 -0.42063 -0.45482 -0.207711 -0.207711 -0.37787 +0.32743 -0.14087 +0.47975 +0.14087 +0.47975 +0.32743 +0.32743 +0.32743	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y9 y9	-0.25000 -0.43301 -0.43301 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 -0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43301 +0.43301 +0.43301	x2 y2 x3 y3 x4 y4 x5 x6 x7 x7 x8 y9 y9	$\begin{array}{r} -0.23236\\ -0.44273\\ -0.44149\\ -2.2804\\ -0.49635\\ -0.06027\\ -0.46751\\ +0.7730\\ -0.3156\\ +0.37426\\ -0.11966\\ +0.48547\\ +0.11966\\ +0.48547\\ +0.33156\\ +0.33156\\ +0.37426\end{array}$	12 12 3 3 44 15 15 16 16 17 7 18 8 19 19	-0.21694 -0.45048 -0.39092 -0.31174 -0.48746 -0.11126 -0.48746 +0.11126 -0.48746 +0.11126 -0.39192 +0.31174 -0.21694 +0.45048 0.00000 +0.21694 +0.45048	x2 y2 x3 y3 x4 y4 x5 y7 x7 y7 x8 y9 y9 y9	-0.20337 -0.45677 -0.37157 -0.33457 -0.47553 -0.47553 -0.49726 5 +0.05226 -0.43001 5 +0.25000 -0.29389 +0.40451 -0.10396 +0.48907 +0.10396 +0.48907	12 12 23 23 14 14 25 75 26 16 17 77 88 18 19 19	-0.191 -0.461 -0.353 -0.353 -0.461 -0.191 -0.500 -0.466 +0.19 -0.35 +0.35 -0.191 +0.466 0.000 +0.490 +0.466 -0.191 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.461 -0.500 -0.500 -0.461 -0.500 -0.500 -0.461 -0.500 -0.000 -0.461 -0.500 -0.500 -0.461 -0.500 -0.500 -0.500 -0.461 -0.5000 -0.5000 -0.50000 -0.50000 -0.5000 -0.5000 -0.5000 -0.50000 -0.5000 -
y1 x2 y2 x3 y3 y4 y4 x5 y5 x6 y6 x7 y7 x8 y8 y9	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y9 y9 x10	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.37785 +0.32743 +0.32743 +0.32745 +0.32745	x2 x2 x3 x4 y4 x5 x6 y6 x7 y7 x8 y9 x10	-0.25000 -0.43301 -0.43301 -0.50000 0.00000 -0.50000 -0.43301 +0.25000 +0.43301 -0.25000 +0.43301 -0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43301 +0.43301 +0.25000 +0.43301	x2 y2 y3 x4 y4 x5 x6 x7 y7 x8 y9 x10 x10	$\begin{array}{r} -0.23236\\ -0.44273\\ -0.41149\\ -2.28403\\ -0.49635\\ -0.06027\\ -0.46651\\ +0.17730\\ -0.3152\\ +0.37426\\ +0.37426\\ +0.48547\\ +0.11966\\ +0.48547\\ +0.3156\\ +0.37426\\ +0.37426\\ +0.48547\\ +0.48547\\ +0.3156\\ +0.37426\\ +0.48547\\ +0.46751\end{array}$	12 12 13 13 14 15 15 16 17 18 18 19 19 10 10 10 10 10 10 10 10 10 10	-0.21694 -0.45048 -0.39092 -0.31374 -0.48746 -0.11126 -0.48746 40.11126 -0.39092 +0.31174 +0.45048 -0.2169 +0.25040 +0.25040 +0.45048 +0.39092	x2 y2 y3 x4 y4 x5 y7 x6 y7 x7 y7 x8 y9 x10	-0.20337 -0.45677 -0.37457 -0.37457 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451 -0.10396 +0.48907 +0.10396 +0.48907 +0.10396	12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 10	-0.191 -0.461 -0.353 -0.353 -0.466 -0.193 -0.500 -0.466 +0.199 -0.355 +0.355 -0.199 +0.466 0.000 +0.500 +0.500 +0.199
12223344555607788899	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29389 +0.40451 +0.47553 +0.15451 +0.47555 +0.47555 +0.15451 +0.29385	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y9 y9 x10	-0.5000 -0.27032 -0.42063 -0.426482 -0.20771 -0.49491 -0.37787 +0.32743 -0.1087 +0.47975 +0.14087 +0.47975 +0.32743 +0.32785 +0.32785 +0.32785 +0.49499 +0.07110 +0.45482 -0.2077.	x2 y2 x3 y4 x5 y6 x7 y7 x8 y9 x10 y10	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 -0.25000 +0.43301 +0.25000 +0.43301 +0.25000 +0.43301 +0.25000 +0.43301	x2 y2 y3 y4 y4 x5 x6 x7 y7 x8 y9 x10 y10 y10	$\begin{array}{r} -0.23236\\ -0.44273\\ -0.41149\\ -2.28403\\ -0.49635\\ -0.06027\\ -0.49635\\ -0.06027\\ -0.4751\\ +0.4751\\ +0.4751\\ +0.1796\\ +0.48547\\ +0.13966\\ +0.48547\\ +0.33156\\ +0.37426\\ +0.37426\\ +0.37426\\ +0.47736\\ +0.1776\\ +0.1776\\ +0.$	x2 y2 x3 y3 x4 y4 x5 y5 x6 y5 y7 x8 y9 y9 y10 y10 y10 y10 y10 y10 y10 y10 y10 y10	-0.21694 -0.45048 -0.39082 -0.31174 -0.48746 +0.11126 -0.48746 +0.11126 -0.39092 +0.31174 +0.45048 +0.45048 +0.36000 +0.21694 +0.45048 +0.36048	x2 y2 y3 x4 y4 x5 y7 x6 y7 x7 y7 x8 y9 x10 y10	-0.20337 -0.45677 -0.37457 -0.37457 -0.37457 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451 +0.40451 +0.48907 +0.10396 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.40451	12 12 12 12 13 13 14 14 15 15 15 15 15 15 17 17 18 18 19 19 10 19 10 19 10 19 11 11	-0.191 -0.461 -0.353 -0.355 -0.466 -0.193 -0.500 -0.466 +0.19 -0.55 +0.35 +0.35 -0.19 +0.466 0.000 +0.50 +0.50 +0.519 +0.466
1 2 2 3 3 4 4 5 5 to 0 7 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.37787 +0.37781 +0.479491 +0.07111 +0.45483 -0.20777 +0.27033	x2 y2 y3 y4 y4 x5 y6 y7 x8 y8 y9 x10 y10 y10 y10 y10 y10 y11	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 -0.50000 -0.43301 -0.25000 -0.25000 +0.43000 +0.43000 +0.43000 +0.43301 +0.25000 +0.43301 +0.25000 +0.43301	x2 y2 y3 y4 y4 x5 x6 y7 x7 y7 x8 y9 y9 x10 y10 y10 y11	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.49635\\ -0.06027\\ -0.49635\\ -0.06027\\ -0.3156\\ +0.37426\\ -0.11966\\ +0.48547\\ +0.11966\\ +0.48547\\ +0.11966\\ +0.48547\\ +0.37426\\ +0.48547\\ +0.37426\\ +0.48547\\ +0.37426\\ +0.48547\\ +0.37426\\ +0.48547\\ +0.1773\\ +0.1966\\ +0.48547\\ +0.11966\\ +0.48547\\ +0.11966\\ +0.48547\\ +0.11966\\ +0.48547\\ +0.11966\\ +0.1196\\ +0$	x2 y2 x3 y3 x4 y4 x5 5 x6 6 x7 y7 8 y9 y9 y9 x111	-0.21694 -0.45048 -0.39092 -0.3174 -0.48746 -0.11126 -0.48746 +0.11126 -0.48746 +0.11126 -0.48746 +0.31174 +0.45048 -0.21694 +0.45048 +0.45048 +0.39992 +0.3174 +0.45746	x2 y2 y3 x4 y4 x5 y7 x7 y7 x8 y9 x10 y10 x11	-0.20337 -0.45677 -0.37167 -0.33457 -0.33457 -0.47553 -0.15451 -0.49726 5 +0.52060 -0.29389 +0.40451 -0.10396 +0.48907 +0.48907 +0.48907 +0.29385 +0.40451	22 22 23 23 24 24 25 25 26 27 27 28 29 29 29 20 27 20 27 27 27 27 27 27 27 27 27 27	-0.191 -0.461 -0.353 -0.353 -0.461 -0.191 -0.500 -0.466 +0.19 -0.355 -0.19 +0.466 0.000 +0.500 +0.500 +0.466 +0.466 +0.450 +0.466 +0.450 +0.450
1 2 2 3 3 4 4 5 5 to 0 7 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y8 y9 x10 y10	-0.5000 -0.27032 -0.42063 -0.426482 -0.20771 -0.49491 -0.37787 +0.32743 -0.1087 +0.47975 +0.14087 +0.47975 +0.32743 +0.32785 +0.32785 +0.32785 +0.49499 +0.07110 +0.45482 -0.2077.	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 x8 y8 y8 x9 y1 x9 x1 y10 x9 x1 y2 x3 y3 x4 y4 x5 y5 x6 y1 x7 y1 x8 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x7 y1 x8 y1 y2 x6 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 y1 y1 x8 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 -0.43301 +0.25000 -0.43301 +0.43301 -0.25000 +0.43301 +0.50000 +0.50000 +0.43301 +0.25000 +0.43301 -0.25000 +0.43301 +0.25000 +0.50000 +0.50000 +0.43301 +0.43301 -0.250000 -0.250000 -0.250000 -0.250000 -0.250000 -0.2500	x2 y2 y3 y4 y5 x6 y5 x6 y7 x8 y9 y9 y10 y10 y11	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.44273\\ -0.49635\\ -0.06027\\ -0.46751\\ +0.1730\\ -0.33156\\ +0.37426\\ -0.11966\\ +0.48547\\ +0.11966\\ +0.119$	x2 y2 y3 y3 x4 y4 x5 y5 x6 y7 x7 x8 y9 y10 y10 y10 y10 y10 y10 y10 y10 y10 y10	-0.21694 -0.45048 -0.36922 -0.31174 -0.48746 -0.11126 -0.48746 40.11126 -0.31074 -0.21694 +0.45048 0.00000 +0.21694 +0.45048 +0.309022 +0.31177 +0.48744 +0.11126	x2 y2 x3 y3 x4 y4 x5 y2 x3 y3 x4 y4 x5 y2 x6 y7 y7 x8 y8 x9 y10 x11 y11	-0.20337 -0.45677 -0.37157 -0.47157 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451 -0.10396 +0.48907 +0.10396 +0.48907 +0.29385 +0.40451 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.48907 +0.40451 +0.48907 +0.40451 +0.42508 +0.40451 +0.42508 +0.40451 +0.42508 +0.40451 +0.42508 +0.40451 +0.42508 +0.40451 +0.42508 +0.40451 +0.42508 +0.40451 +0.405250 +0.4055050 +0.4055050 +0.40550500 +0.40550500 +0.4055000 +0.4055000000000000000000000000000000000	22 22 23 23 24 14 25 25 26 27 27 28 29 29 29 20 27 27 27 27 27 27 27 27 27 27	$\begin{array}{c} -0.191\\ -0.461\\ -0.353\\ -0.353\\ -0.461\\ -0.191\\ -0.500\\ -0.461\\ +0.191\\ -0.500\\ +0.191\\ +0.453\\ +0.355\\ +0.35\\ +0.455\\ +0.35\\ +0$
1 2 2 3 3 4 4 5 5 to 10 17 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.37787 +0.37781 +0.47979 +0.37714 +0.45483 -0.20771 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y6 x10 y7 x8 y8 y1 x19 y111 x12 x12 x3 x4 y5 x6 y5 x17 y7 x8 y8 y1 x19 x19 x10 x10 x17 x17 x18 x19 x19 x10 x19 x10 x10 x17 x19 x10 x10 x10 x11 x19 x10 x10 x10 x11 x10 x10 x10 x10 x10 x11 x10 x10	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43300 +0.43301 +0.43301 +0.25000	x2 y2 y3 y4 y5 x6 y5 x6 y7 y8 y9 y1 y10 y10 y11 y11 y11 y11 y11 y11 y11	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.414273\\ -0.41649\\ -2.28403\\ -0.49635\\ -0.06027\\ -0.06027\\ +0.17730\\ -0.33156\\ +0.37426\\ +0.31966\\ +0.48547\\ +0.33155\\ +0.37426\\ +0.37426\\ +0.37426\\ +0.1773\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.1773\\ +0.48547\\ +0.1773\\ +0.1773\\ +0.1144\\ +0.114\\ +0.114\\$	x2 y2 y3 y3 x4 y4 x5 y5 x6 y7 x7 y7 x8 y9 y9 y10 y10 y11 y11 y11 y11 y11 y11 y11 y11	-0.21694 -0.45048 -0.36922 -0.31174 -0.48746 -0.41126 -0.48746 +0.11126 -0.39092 +0.31174 -0.21694 +0.30192 +0.45048 +0.45048 +0.45048 +0.39092 +0.45048 +0.	x2 y2 x3 y3 x4 y4 x5 y7 x7 y7 x8 y8 x9 y10 y10 y10 y11 x11 x12 x12 x12 x12 x12 x12 x13 x4 y2 x5 y2 x4 y3 x4 y4 y5 x4 y5 x4 y7 x5 x4 y7 x4 y7 x5 y7 x4 y7 x5 y7 x5 y7 x5 y7 x7 y7 y7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 x7	-0.20337 -0.45677 -0.37157 -0.37157 -0.47553 -0.47553 -0.47553 -0.47555 5 +0.25000 -0.49326 -0.49326 -0.49326 +0.48307 +0.40451 +0.403907 +0.40451 +0.40451 +0.40451 +0.43301 +0.23382	12 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15	-0.191 -0.461 -0.353 -0.353 -0.466 -0.193 -0.500 -0.466 +0.199 -0.355 +0.355 -0.199 +0.466 0.000 +0.500 +0.500 +0.466 +0.492 +0.455 +0.455 +0.455 +0.455 +0.455
1 2 2 3 3 4 4 5 5 to 0 7 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.37787 +0.37781 +0.47979 +0.37714 +0.45483 -0.20771 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 x8 y8 y8 x9 y1 x9 x1 y10 x9 x1 y2 x3 y3 x4 y4 x5 y5 x6 y1 x7 y1 x8 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x6 y1 y2 x7 y1 x8 y1 y2 x6 y1 y1 x8 y1 y1 x8 y1 y1 x8 y1 y1 y1 y1 x8 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1	-0.25000 -0.43301 -0.43301 -0.25000 -0.50000 -0.43301 +0.25000 -0.43301 +0.43301 -0.25000 +0.43301 +0.50000 +0.50000 +0.43301 +0.25000 +0.43301 -0.25000 +0.43301 +0.25000 +0.50000 +0.50000 +0.43301 +0.43301 -0.250000 -0.250000 -0.250000 -0.250000 -0.250000 -0.2500	x2 y2 y3 y4 y4 y5 x5 y5 x6 y7 x7 y7 x8 y8 y9 y9 y9 y10 0 y10 0 y12 y12 y2 y2 x4 y4 y4 y5 x5 x6 y7 y7 x7 y2 y3 x4 y4 y2 y3 y4 y4 y2 y3 y4 y4 y5 y5 y5 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.41497\\ -2.28403\\ -0.49635\\ -0.46751\\ +0.17730\\ -0.46751\\ +0.17730\\ -0.31565\\ +0.37426\\ +0.45847\\ +0.11966\\ +0.48547\\ +0.1733\\ +0.48547\\ +0.37426\\ -0.1733\\ +0.46537\\ +0.4751\\ +0.4751\\ +0.1743\\ +0.46537\\ -0.0602\\ -0.0602\\ -0.2840\\ -0.2$	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 y7 x8 y8 y9 x10 y10 y11 y11 y11 y12 x12 y12 y2 x3 y3 x4 y4 x5 y5 x6 y7 y7 x10 y7 y12 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 x10 y2 y2 x10 y2 x10 y2 y2 x10 y2 y2 y2 x10 y2 y2 x10 y2 y2 y2 x10 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2	$\begin{array}{c} -0.21694\\ -0.45048\\ -0.45048\\ -0.3692\\ -0.31174\\ -0.48746\\ -0.41126\\ -0.48746\\ +0.11126\\ -0.48746\\ +0.31174\\ -0.21694\\ +0.35000\\ +0.50000\\ +0.50000\\ +0.50000\\ +0.45048\\ +0.39952\\ +0.31174\\ +0.48744\\ +0.11122\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.11126\\ +0.48744\\ +0.4874\\ +0.48744\\ +$	x2 y2 x3 y3 x4 y4 x5 y7 x6 y7 x8 y7 x8 y7 x8 y9 y12 y12 y2 x10 y12 y12 y2 x11 y12 y12 y2 y2 y2 y2 y2 y2 y3 y3 x4 y4 y4 y7 x4 y7 x4 y7 x4 y7 x4 y7 x4 y7 x4 y7 x4 y7 x4 y7 x7 y7 x7 y7 x4 y7 x7 y7 x7 y7 x4 y7 x7 y7 x7 y7 x8 y7 x7 y7 x8 y7 x8 y7 x7 y7 x8 y7 x8 y7 x9 y7 x8 y7 x9 y7 x8 y7 x9 y7 x8 y7 x9 y7 x9 y7 x9 y7 x9 y7 x9 y7 x9 y7 x9 y7 x9 y7 x9 y7 x10 y7 y7 x10 y7 y7 x10 y7 y7 x10 y7 y7 x10 y7 y7 x10 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7	-0.20337 -0.45677 -0.37157 -0.37157 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47301 5 +0.52000 -0.29389 +0.40451 -0.10396 +0.404507 +0.404500 +0.404500 +0.404500 +0.404500 +0.40450000000000000000000000000	12 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15	-0.191 -0.461 -0.353 -0.466 -0.199 -0.500 -0.466 +0.199 -0.500 -0.466 +0.19 +0.466 -0.000 +0.519 +0.466 +0.519 +0.466 +0.525 +0.446 +0.355 +0.446 +0.455 +0.446 +0.455 +0.446 +0.455 +0.
1 2 2 3 3 4 4 5 5 to 0 7 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.37787 +0.37781 +0.47979 +0.37714 +0.45483 -0.20771 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y6 x10 y7 x8 y8 y1 x19 y111 x12 x12 x3 x4 y5 x6 y5 x17 y7 x8 y6 x19 x19 x10 x10 x17 x17 x8 x9 x19 x10 x17 x17 x18 x19 x19 x10 x17 x19 x10 x17 x19 x10 x17 x19 x10 x10 x10 x11 x19 x10 x10 x11 x10 x10 x11 x10 x10 x11 x10 x10	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43300 +0.43301 +0.43301 +0.25000	x2 y2 y3 x4 y4 y5 x6 y7 x8 y8 y9 y9 y9 y9 y9 y9 x10 0 y10 1 x11 1 y12 x3 x4 y4 y3 x4 y4 y4 y5 x6 y7 x8 y4 y4 y5 x6 y7 y7 x8 y7 y7 y7 y8 y8 y9 y9 y9 y9 y9 y9 y9 y9 y9 y9	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.41427\\ -0.41049\\ -2.28403\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.46751\\ +0.17730\\ -0.31426\\ -0.11966\\ +0.48547\\ +0.43542\\ +0.48547\\ +0.3156\\ +0.37426\\ -0.7402\\ -0.0602\\ +0.4144\\ -0.2323\\ \end{array}$	12 y2 x3 y3 x4 y4 x5 y6 y7 x8 y8 y9 x100 x101 x12 x13 x14 y5 x7 x8 y8 y9 x10 x10 x10 x10 x10 x10 x10 x10	-0.21694 -0.45048 -0.39052 -0.31174 -0.48746 -0.48746 -0.48746 -0.48746 -0.31174 -0.39092 +0.31174 -0.21694 +0.45048 -0.39092 +0.31177 +0.48744 -0.31172 +0.48744 -0.11122 +0.48744 -0.11122 +0.48744 -0.11122 +0.48744 -0.11122 +0.39093	x2 y2 x3 y3 x4 y4 x5 y7 x6 y7 x9 y7 x9 y10 y10 y10 y10 y10 y11 y12 y12 y12 y12 y12 y13 y14 y14 y14 y15 y17 y17 y19 y12 y13 y14 y14 y14 y14 y14 y15 y17 y14 y14 y14 y15 y17 y17 y17 y17 y17 y17 y17 y17 y17 y17	-0.20337 -0.45677 -0.37157 -0.37157 -0.477553 -0.477553 -0.477553 -0.47926 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451 +0.40397 +0.10396 +0.48907 +0.40391 +0.40391 +0.40391 +0.43301 +0.4301 +0.430	22 22 23 23 23 24 14 25 56 29 29 210 211 211 211 211 211 211 211	$\begin{array}{c} -0.191\\ -0.461\\ -0.352\\ -0.461\\ -0.352\\ -0.461\\ -0.192\\ -0.500\\ -0.46\\ +0.192\\ -0.492\\ +0.35\\ +0.35\\ +0.35\\ +0.35\\ +0.46\\ +0.35\\ +0.46\\ +0.35\\ +0.46\\ +0.46\\ +0.46\\ +0.46\\ +0.45\\ +0.46\\$
1 2 2 3 3 4 4 5 5 to 10 17 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.32743 +0.47975 +0.37787 +0.37781 +0.49499 +0.07111 +0.45483 -0.20777 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y6 x10 y7 x8 y8 y1 x19 y111 x12 x12 x3 x4 y5 x6 y5 x17 y7 x8 y6 x19 x19 x10 x10 x17 x17 x8 x9 x19 x10 x17 x17 x18 x19 x19 x10 x17 x19 x10 x17 x19 x10 x17 x19 x10 x10 x10 x11 x19 x10 x10 x11 x10 x10 x11 x10 x10 x11 x10 x10	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43300 +0.43301 +0.43301 +0.25000	x2 y2 y3 y4 y4 y5 x5 y5 x6 y7 x7 y7 x8 y8 y9 y9 y9 y10 0 y10 0 y12 y12 y2 y2 x4 y4 y4 y5 x5 x6 y7 y7 x7 y2 y3 x4 y4 y2 y3 y4 y4 y2 y3 y4 y4 y5 y5 y5 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.41497\\ -2.28403\\ -0.49635\\ -0.46751\\ +0.17730\\ -0.46751\\ +0.17730\\ -0.31565\\ +0.37426\\ +0.45847\\ +0.11966\\ +0.48547\\ +0.1733\\ +0.48547\\ +0.37426\\ -0.1733\\ +0.46537\\ +0.4751\\ +0.4751\\ +0.1743\\ +0.46537\\ -0.0602\\ -0.0602\\ -0.2840\\ -0.2$	x2 y2 x3 y3 x4 y4 x5 x6 y6 y7 x8 y8 y9 x10 y11 x12 y12 x7 y7 x8 y9 x10 y11 x12 y12 x7 y7 x8 y2 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y7 x7 y7 x8 y2 y2 y2 x7 y7 x7 y7 x8 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2	-0.21694 -0.45048 -0.39092 -0.3174 -0.47048 -0.4746 -0.48746 -0.48746 -0.3102 -0.48746 -0.3102 -0.21694 +0.43048 -0.21694 +0.45048 -0.21694 +0.45048 -0.30902 +0.21694 +0.45048 -0.30902 +0.3102 +0.48746 +0.31122 +0.48746 -0.3112 -0.48746 -0.3112 -0.48746 -0.3112 -0.48746 -0.3112 -0.48746 -0.3112 -0.48746 -0.3102 -0.3102 -0.3102 -0.3112 -0.48746 -0.3102 -0.3102 -0.3112 -0.3	x2 y2 x3 y3 x4 y4 x5 x7 y7 x8 y7 x9 y7 x9 y10 y10 y10 y10 y11 y12 y12 y12 y12 y12 y12 y13 y14 y14 y15 y12 y12 y14 y14 y14 y15 y17 y16 y17 y17 y17 y17 y17 y17 y17 y17 y17 y17	-0.20337 -0.45677 -0.37157 -0.37157 -0.37457 -0.47553 -0.15451 -0.49726 5 +0.25000 5 +0.25000 5 +0.25000 5 +0.25000 -0.29301 -0.29302 +0.49301 +0.49307 +0.4	22 22 23 23 23 24 14 25 56 25 25 25 25 25 25 25 25 25 25	$\begin{array}{c} -0.191\\ -0.461\\ -0.352\\ -0.461\\ -0.192\\ -0.500\\ -0.461\\ +0.192\\ -0.500\\ -0.461\\ +0.192\\ +0.355\\ -0.192\\ +0.462\\ -0.000\\ +0.192\\ +0.452\\ +0.352\\ +0.462\\ +0.352\\ +0.462\\ +0.452\\ +0.462\\ +0.192\\ +0.462\\$
1 2 2 3 3 4 4 5 5 to 10 17 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.32743 +0.47975 +0.37787 +0.37781 +0.49499 +0.07111 +0.45483 -0.20777 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y6 x10 y7 x8 y8 y1 x19 y111 x12 x12 x3 x4 y5 x6 y5 x17 y7 x8 y6 x19 x19 x10 x10 x17 x17 x8 x9 x19 x10 x17 x17 x18 x19 x19 x10 x17 x19 x10 x17 x19 x10 x17 x19 x10 x10 x10 x11 x19 x10 x10 x11 x10 x10 x11 x10 x10 x11 x10 x10	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43300 +0.43301 +0.43301 +0.25000	x2 y2 y3 x4 y4 y5 x6 y7 x8 y8 y9 y9 y9 y9 y9 y9 x10 0 y10 1 x11 1 y12 x3 x4 y4 y3 x4 y4 y4 y5 x6 y7 x8 y4 y4 y5 x6 y7 y7 x8 y7 y7 y7 y8 y8 y9 y9 y9 y9 y9 y9 y9 y9 y9 y9	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.41427\\ -0.41049\\ -2.28403\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.46751\\ +0.17730\\ -0.31426\\ -0.11966\\ +0.48547\\ +0.43542\\ +0.48547\\ +0.3156\\ +0.37426\\ -0.7402\\ -0.0602\\ +0.4144\\ -0.2323\\ \end{array}$	12 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 8 y9 y1 x10 y1 x12 x12 x12 x12 x12 x12 x12 x1	-0.21694 -0.45048 -0.39092 -0.3174 -0.48746 -0.41126 -0.48746 +0.11126 -0.48746 +0.31174 +0.31174 +0.45048 +0.45048 +0.45048 +0.45048 +0.45048 +0.31177 +0.45744 +0.11122 +0.48744 -0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.317	x2 y2 x3 y3 x4 y4 x5 y7 x8 y7 x8 y7 x8 y10 y10 y10 y10 y10 y10 y10 y10 y11 y12 x11 x11 x12 x12 x12 x13 x4 y7 x8 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x7 y7 x8 y7 y7 x7 y7 y7 x7 y7 y7 x7 y7 y7 y7 x7 y7 y7 x7 y7 y7 x7 y7 x7 y7 x7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 x8 y7 y7 y7 x8 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7 y7	-0.20337 -0.45677 -0.37157 -0.37157 -0.47553 -0.15451 -0.49726 5 +0.05226 -0.43301 5 +0.25000 -0.29389 +0.40451 +0.48039 +0.48031 +0.48039 +0.48031 +0.48039 +0.48031 +0.48039 +0.48031 +0.48729 +0.452500 +0.47555 -0.15451 +0.37154 +0.37155 +0.37155 +0.37155 +0.25000 +0.48729 +0.48729 +0.45250 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455500 +0.455000 +0.4555000 +0.4555000 +0.4555000 +0.45500000000 +0.4555000000000000000000000000000000000	22 22 23 23 24 24 25 25 25 25 25 25 25 25 25 25	-0.191 -0.461 -0.353 -0.363 -0.466 -0.193 -0.500 -0.500 +0.199 -0.355 +0.355 -0.19 +0.466 -0.000 +0.466 -0.000 +0.465 +0.464 +0.355 +0.465 +0.455 +0.465 +0.455 +0.465 +0.455 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.465 +0.455 +0.
1 2 2 3 3 4 4 5 5 to 10 17 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.32743 +0.47975 +0.37787 +0.37781 +0.49499 +0.07111 +0.45483 -0.20777 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y6 x17 y7 x8 y6 x19 y11 x12 x12 x3 x4 y5 x6 y5 x17 y7 x8 y5 x10 y12 x5 y5 x4 y5 x6 y5 x7 y7 x8 y5 x10 y5 x6 y5 x7 y7 x8 y5 x10 y5 y5 x10 x10 y5 x10 y5 x10 x10 y5 x10 y5 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43300 +0.43301 +0.43301 +0.25000	x2 y2 y3 x4 y4 y5 x6 y7 x8 y8 y9 y9 y9 y9 y9 y9 x10 0 y10 1 x11 1 y12 x3 x4 y4 y3 x4 y4 y4 y5 x6 y7 x8 y4 y4 y5 x6 y7 y7 x8 y7 y7 y7 y8 y8 y9 y9 y9 y9 y9 y9 y9 y9 y9 y9	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.41427\\ -0.41049\\ -2.28403\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.46751\\ +0.17730\\ -0.31426\\ -0.11966\\ +0.48547\\ +0.43542\\ +0.48547\\ +0.3156\\ +0.37426\\ -0.7402\\ -0.0602\\ +0.4144\\ -0.2323\\ \end{array}$	x2 y2 x3 y3 x4 y4 x5 x6 y6 y7 x8 y8 y9 x10 y11 x12 y12 x7 y7 x8 y9 x10 y11 x12 y12 x7 y7 x8 y2 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y2 x7 y7 x7 y7 x8 y2 y2 y2 x7 y7 x7 y7 x8 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2 y2	-0.21694 -0.45048 -0.39092 -0.3174 -0.48746 -0.41126 -0.48746 +0.11126 -0.48746 +0.31174 +0.31174 +0.45048 +0.45048 +0.45048 +0.45048 +0.45048 +0.31177 +0.45744 +0.11122 +0.48744 -0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.317	x2 y2 x3 y3 x4 y4 x5 y7 x8 y7 x8 y9 y10 y10 y11 y11 y11 y11 y11 y12 y12 y12 y12 y12	-0.20337 -0.45677 -0.37157 -0.33457 -0.45753 -0.45753 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47550 -0.43201 5 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.43201 -	22 22 33 34 14 55 55 157 77 71 14	$\begin{array}{c} -0.191\\ -0.4613\\ -0.4613\\ -0.355\\ -0.4613\\ -0.355\\ -0.4614\\ -0.191\\ -0.4614\\ -0.450\\ -0.461\\ -0.491\\ -0.461\\ +0.191\\ -0.450\\ -0.461\\ -0.191\\ -0.461\\ -0.191\\ -0.461\\ -0.191\\ -0.461\\ -0.191\\ -0.461\\ -0.191\\ -0.461\\ -0.191\\ -0$
1 2 2 3 3 4 4 5 5 to 10 17 7 8 8 9 9 10	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.32743 +0.47975 +0.37787 +0.37781 +0.49499 +0.07111 +0.45483 -0.20777 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y6 x17 y7 x8 y6 x19 y11 x12 x12 x3 x4 y5 x6 y5 x17 y7 x8 y5 x10 y12 x5 y5 x4 y5 x6 y5 x7 y7 x8 y5 x10 y5 x6 y5 x7 y7 x8 y5 x10 y5 y5 x10 x10 y5 x10 y5 x10 x10 y5 x10 y5 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43300 +0.43301 +0.43301 +0.25000	x2 y2 y3 x4 y4 y5 x6 y7 x8 y8 y9 y9 y9 y9 y9 y9 x10 0 y10 1 x11 1 y12 x3 x4 y4 y3 x4 y4 y4 y5 x6 y7 x8 y4 y4 y5 x6 y7 y7 x8 y7 y7 y7 y8 y8 y9 y9 y9 y9 y9 y9 y9 y9 y9 y9	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.41427\\ -0.41049\\ -2.28403\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.46751\\ +0.17730\\ -0.31426\\ -0.11966\\ +0.48547\\ +0.43542\\ +0.48547\\ +0.3156\\ +0.37426\\ -0.7402\\ +0.46751\\ +0.1773\\ +0.1173\\ +0.4665\\ -0.4144\\ -0.2323\\ +0.2322\\ +0.2323\\ +0.2322\\ +0.2$	12 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 8 y9 y1 x10 y1 x12 x12 x12 x12 x12 x12 x12 x1	-0.21694 -0.45048 -0.39092 -0.3174 -0.48746 -0.41126 -0.48746 +0.11126 -0.48746 +0.31174 +0.31174 +0.45048 +0.45048 +0.45048 +0.45048 +0.45048 +0.31177 +0.45744 +0.11122 +0.48744 -0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.317	x2 y2 x3 y3 x4 y4 x5 y7 x8 y7 x8 y7 x8 y7 x8 y10 i x11 i 5 x12 y12 x13 i x14 y12 x15 i x12 x12 x14 y10 i x14 x17 x17 x16 x17 x12 x12 x14 x17 x17 x17 x17 x17 x17 x17 x17 x17 x17	-0.20337 -0.45677 -0.35157 -0.37157 -0.33457 -0.47553 -0.47553 -0.47553 -0.47553 -0.49726 5 +0.5226 -0.43301 5 +0.5226 -0.43301 5 +0.5226 +0.40451 +0.49307 +0.49397 +0.40451 +0.49397 +0.40451 +0.49397 +0.40451+	12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15	$\begin{array}{rcl} -0.191\\ -0.4613\\ -0.4633\\ -0.4633\\ -0.463\\ -0.463\\ -0.463\\ -0.463\\ -0.463\\ -0.463\\ -0.463\\ -0.50\\ $
12223344455667778899910	-0.50000 -0.29389 -0.40451 -0.47553 -0.15451 -0.47553 -0.15451 -0.29389 +0.40451 -0.29388 +0.40451 +0.29388 +0.40451 +0.47553 -0.15451 -0.47553	y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 x7 y7 x8 y8 y9 x10 x11	-0.5000 -0.27032 -0.42063 -0.45482 -0.20771 -0.49491 +0.07116 -0.37787 +0.32743 -0.14087 +0.47975 +0.47975 +0.32743 +0.47975 +0.37787 +0.32743 +0.47975 +0.37787 +0.37781 +0.49499 +0.07111 +0.45483 -0.20777 +0.27033	x2 y2 x3 y3 x4 y4 x5 y5 x6 y7 x8 y6 x17 y7 x8 y6 x19 y11 x12 x12 x3 x4 y5 x6 y5 x17 y7 x8 y5 x10 y12 x5 y5 x4 y5 x6 y5 x7 y7 x8 y5 x10 y5 x6 y5 x7 y7 x8 y5 x10 y5 y5 x10 x10 y5 x10 y5 x10 x10 y5 x10 y5 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	-0.25000 -0.43301 -0.43301 -0.55000 -0.50000 -0.50000 -0.43301 +0.25000 +0.43301 +0.43301 +0.43301 +0.43301 +0.43300 +0.43301 +0.43301 +0.25000	x2 y2 y3 x4 y4 y5 x6 y7 x8 y8 y9 y9 y9 y9 y9 y9 x10 0 y10 1 x11 1 y12 x3 x4 y4 y3 x4 y4 y4 y5 x6 y7 x8 y4 y4 y5 x6 y7 y7 x8 y7 y7 y7 y8 y8 y9 y9 y9 y9 y9 y9 y9 y9 y9 y9	$\begin{array}{c} -0.23236\\ -0.44273\\ -0.44273\\ -0.41427\\ -0.41049\\ -2.28403\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.49635\\ -0.46751\\ +0.17730\\ -0.31426\\ -0.11966\\ +0.48547\\ +0.43542\\ +0.48547\\ +0.3156\\ +0.37426\\ -0.7402\\ +0.46751\\ +0.1773\\ +0.1173\\ +0.4665\\ -0.4144\\ -0.2323\\ +0.2322\\ +0.2323\\ +0.2322\\ +0.2$	12 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 8 y9 y1 x10 y1 x12 x12 x12 x12 x12 x12 x12 x1	-0.21694 -0.45048 -0.39092 -0.3174 -0.48746 -0.41126 -0.48746 +0.11126 -0.48746 +0.31174 +0.31174 +0.45048 +0.45048 +0.45048 +0.45048 +0.45048 +0.31177 +0.45744 +0.11122 +0.48744 -0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48744 +0.11122 +0.48744 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.48746 -0.3117 +0.317	x2 y2 x3 y3 x4 y4 x5 y7 x8 y7 x8 y9 y10 y10 y11 y11 y11 y11 y11 y12 y12 y12 y12 y12	-0.20337 -0.45677 -0.37157 -0.33457 -0.45753 -0.45753 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47553 -0.47550 -0.43201 5 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.43201 -	12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15	$\begin{array}{c} -0.191\\ -0.461\\ -0.463\\ -0.463\\ -0.453\\$

JIG BORING

Table 3. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "A" Hole Circles, Central Coordinates (English or Metric Units)

	Type	··· A							_					_	
			G	`											ł
		/	U	\sim		1							والمشتر الم	Even	instes r
	~		-Ŧ	>	~		The	diagram shu iven in the t	wys a	type "A" c	ircle :	01 8 3 (from	-noie encie	es Din	inacia x,
	(2)		- ¥	Ref (§	;)										
	\sim	v	ഷ	-+X	~		are tor Dimen	holes numb sions given	are b	ased upon a	hole	circle	of unit diar	neter. P	or a hole
	1-	<u> </u>	ſΨ	A	1		circle (stons given of, say, 3-ind	th or	3-centimet	er dia	meter,	multiply to	ble val	ucs by 3.
	1	_		-	ŧ.	- 1									
	6	3	+Y	(4)											
	0	1	~	20								20.1	Toles	23	Holes
17	Holes		18 Ho	oles	19	tioles	20	Holes		21 Holes		_	+		
		x1		00000	4	0.00000	<i>x</i> 1	0.0000000	xl	0.000				x1	0.00000
x1	0.00000	y1			1	-0.50000	yi	-0.50000	yì	-0.500				յլ	-0.50000
yI a	-0.30000	x2			2	-0.16235	x2	-0.15451	x2	-0.147				x2	-0.13490 -0.48146
x2	-0.46624	y2			v2	-0.47291	y2	-0.47553	y2	-0.477		-		y2	-0.25979
y2 x3	-0.33685	x3			3	-0.30711	13	-0.29389	x3	-0.281				x3 2	-0.42721
	-0.36950	3			r3	-0.39457	<u>5</u> 3	-0.40451	у3	-0.413				y3 x4	-0.36542
3'3 1x4	-0.44758	x4			r4	0.41858	x4	-0.40451	x4	-0.390			-0.37787 -0.32743	,74 34	-0.34128
y4	-0.22287	34			y4	-0.27347	¥ر	0.29389	4נ]	-0.311			-0.45482	,94 x5	-0.44394
10	-0.49787	j.s		0.49240	x5	-0.48470	15	-0.47553	15	0465		5	-0.20771	y5	-0.23003
y5	-0.04613	15			y5	-0.12274	y5	-0.15451	35	-0.182			-0.49491	y5 x6	-0.48954
16	-0.48091	36	-		х6	0.49829	4	-0.50000	36	-0.498		б б	-0.49491	36	-0.10173
36	+0.13683	36	+		y6	+0.04129	56	0,00000	56	-0.037 -0.487		ъ Л	-0,49491	x7	-0.49883
x7	-0.39901	x7	-		х7	-0.45789	x7	-0.47553	\$7	+0.11	· · · 1	7	-0.07116	y7	-0.03412
v7	+0.30132	y7	4	+0.25000	y7	+0.20085		÷0.15451	37	-0.43		17 18	-0.45482	18	-0.47113
18	-0,26322	81		-0.32139		-0.36786		-0.40451		+0.25		y8	+0.20771	58	+0.16744
38	+0.42511	3.8			у8	+0_33864		+0.29389		-0.34		:9	-0.37787	19	-0.40848
29	-0.09187	1.79	-	-0.17101	x9	-0.23797		-0.29389		+0.36		y9	+0.32743	19	+0.28834
39	+0.49149	1 39	-	+0.46985	у9	+0.43974	39	+0.40451				x10	-0.27032	210	-0.31554
x10	+0.0918			0.00000		-0.08230		-0.1545				v10	+0,42063	y10	+0.38786
510	+0.49149) yi		+0.50000		+0.49318		+0.4755		-		x11	-0.14087		-0.19920
x11	+0.2632			+0.17101	x11	+0.08230	Ux C	+0.5000				yII	+0.47975		+0.45863
y11	+0.4251			+0.46985	y11	+0.49311		+0.3000				xi2	0.00000		-0.06805
x12	+0.3990			+0.32139	x12	+0.2379		+0.4755			- 1	y12	+0.50000	y12	+0.49534
y12	+0.3013			+0.38302	512	+0.4397		+0.2938				x13	+0.14087	x13	+0.0680
x13	+0.4809			+0.43301	x13	+0.3678 +0.3386		+0.4045				y13	+0.47975		+0.4953
y13	+0.1368		13	+0.25000		+0.3380						x14	+0.27032	x14	-0.1992
x14			14	+0.49240		+0.4078				14 +0.31		y14	+0.42063		+0.4586
y14	-0.0461		14	+0.08682		+0.4982				15 +0.4	3301	x15	+0.3778	x15	÷0.3155
115			15	+0.49240		+0.0412				15 +0.2	5000	y15	+0.32743		+0.3878
y15			15	+0.43301		+0.4847				16 +0.4	8746	x16	+0.45483		+0.4084
x16			:16			-0.1227			10 y	16 +0.J	1126	y16	+0.2077		+0.2883
y16			16 17	+0.32139		+0.418				17 +0.4	9860	x17	+0.4949		+0.471
x17			17 17	-0.38302							3737	17 ر	+0.0711		+0.1674
y17	-0.466		c18	+0.1710							6544	x18	+0.4949		+0,4988
			v18	-0.46983				80.293			8267	318	-0.0711		+0.034
1		- 19	10	-0,-1090	1,19		35 x1	9 +0.293			9092	x19	+0.4548		+0.489
					y19			90.404			1174	19	-0.2077		-0.101 +0.443
		- 1			H		x2	0 +0.154			28166	x20	+0.3778		
		1					y2	0 -0.475			1312	y20	-0.3274		
											14738		+0.2702 -0.4206		
ł		1					l		Ŀ	<u>v21 -0.</u>	47779				
					1				- [X22			
1		1					l					y22	-0.4/9	13 32	
l		l										1		y2:	
												+			
	24 Holes	-1	2	15 Holes	-	26 Holes		27 Holes		28 Ho	_	1_			
			x1	0.000)0 x1	0.00	000 x	1 0.00	000	x1 0.	0000	5			
x			x1 y1	-0.500					000	yı —0	.5000	2]			
	1 -0.50	000	-								.1112	6			
y:	-	0.44													
x	2 -0.12		x2	-0.124					652	v2 -0	4874	6			
	2 -0.12	296	x2 y2 x3	-0.124 -0.484 -0.240	29 52	-0.48	547 y	2 -0.48			4874				

JIG BORING

967

Table 3. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "A" Hole Circles, Central Coordinates (English or Metric Units)

	2	/(($\frac{1}{Y} \operatorname{Ref}_{Y}$	5		y are gi are for	ven in the ta holes numbe	ble fo god ù ga ba	ype "A" circle is hole circles o i a countercloc sed upon a hole -centimeter dia	cwise direction	nores, Dirich n (as shown). finmeter, For a	hole
		~	-0,43815	y3	-0.44273	y3	-0.44682	3	-0.45048			
· · ·		y3 x4		y5 x4				x4	-0.31174			
		,4 19		34 34		34		y4	-0.39092			
× ·)+ x5		x5		15		λ5	-0.39092			
		y5		y5		y5	-0.29858	y5	-0.31174			
		у <u>с</u> хб		л б		x6	-0.45911	х6	-0.45048			
y6		y6		уб	-0.17730	y:6	-0.19804	y6	-0.21694			
x7		x7		x7	-0.49635	x7		x7	-0.48746			
y7		y7	-0.03140	y7	-0.06027	у7		y7	-0.11126			
18		x8	-0.49114	x8	-0.49635	х8		x8	-0.50000			
y8		y8	+0.09369	58	+0.06027	y8		у8	0.00000			
1.9	-0.43301	x9	-0.45241	9د	-0.46751	.s9		λ9	-0.48746			
39	+0.25000	39	+0.21289	у9	+0.17730	39		y9	+0.11126			
x10	-0.35355	x10	-0.38526	x10	-0.41149	xi0		x10	-0.45048 +0.21694			
y10	+0.35355	10ىر	+0.31871	y10	+0.28403			y10	-0.39092			
лH	-0.25000	хП	0.29389	x]1	-0.33156	x11		x11	+0.31174			
y11	+0.43301	y11	+0.40451	y11	-0.37426	y11	+0.34312 -0.27475	y11 x12	-0.31174			
x12	-0.12941	x12	-0.18406	x12	-0.23236		+0.41774		+0.39092			
y12	+0.48296	y12	+0.46489	y12	-0.44273		-0.17101		-0.21694			
x13	0.00000	x13	-0.06267	x13	-0.11966 +0.48547		+0.46985	513	+0.45048			
y13	+0.50000	y13	+0.49606	y13	0.00000		-0.05805	x14	-0.11126			
x14	+0.12941	x14	+0.06267	x14	+0.50000		+0.49662	y14	+0.48746			
y14	+0.48296	y14 x15	+0.49606 +0.18406		+0.10000		÷0.05805	x15	0.0000.0			
x15	+0.25000 +0.43301	y15	+0.46489	y15	+0.48547		+0.49662		+0.50000			
y15 x16	+0.35355	x16	+0.29389	x16	-0.23236		± 0.17101	x16	+0.11126			
y16	+0.35355	y16	+0.40451	y16	+0.44273		+0.46985	y16	+0.48746			
x17	+0.43301	x17	+ 0.38526		+0.33156		+0.27475	x17	+0.21694			
y17	+0.25000		+0.31871		+0.37426		+0.41774	y17	+0.45048			
x18	+0.48296		+0.45241	1.18	+0.41149	x18	+0.36369	x18				
y18	+0.12941		+0.21289	y18	-0.28403	3 518	+0.34312					
x19	+0.50000		+0.49114		+0.4675	1 x19	+0.43301					
y19	0.00000		+0.09369	y19	-0.1773		$\div 0.25000$					
x20	+0.48296		+0.49901		+0.4963		+0.47899					
y20	-0.12941	y20	-0.03140		+0.0602		+0.14340					
x21	+0.43301		+0.47553		+0,4963		+0.49915					
y21	-0.25000		-0.1545		-0.0602		+0.02907					
x22	+0.35355				+0.4675		+0,49240					
y22	-0.3535						-0.08682 +0.4591					
x23	+0.2500						-0.1980					
y23	-0.4330					1.	-0.1980			l		
x24	+0.1294									1		
y24	-0.4829											
		x2:								1		
		32	, -0.4842	y y2.					-			
1				3/20						1		
		1		- Hain		x27						
1						y27		2 32	7 -0.45048	{		
						-		- X.				
1						1)s	8 -0.48746	1		

JIG BORING

Table 4. Hole Coordinate Dimension Factors for Jig Boring — Type "B" Hole Circles Central Coordinates (English or Metric units)

				· _	~ ~ ~	
3	—Y ↓_Ref	s) x) (4)	y are given in the are for holes num Dimensions giver	hows a type "B" cin table for hole circl bered in a countere a are based upon a h arch or 3-contimeter	es of from 3 to 28. lockwise direction ole circle of unit d	holes. Dimensions (as shown). fameter, For a hole
3 Holes	4 Holes	5 Holes	6 Holes	7 Holes	8 Holes	9 Holes
x1 -0.43301 y1 -0.25000 x2 0.00600 y2 +0.50000 x3 +0.43301 y3 -0.25000	x1 -0.33355 y1 -0.35355 y2 -0.35355 y2 +0.35355 y3 +0.35355 y3 +0.35355 y3 +0.35355 y4 -0.35355	$\begin{array}{rrrr} x1 & -0.29389\\ y1 & -0.40451\\ x2 & -0.47553\\ y2 & +0.15451\\ x3 & 0.0000\\ y3 & +0.50009\\ y3 & +0.50009\\ y4 & +0.15451\\ x5 & +0.29389\\ y5 & -0.40451\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} \mathbf{x} & -0.21694 \\ \mathbf{y} 1 & -0.45048 \\ \mathbf{z} & -0.48746 \\ \mathbf{y} 2 & -0.48746 \\ \mathbf{y} 2 & -0.11126 \\ \mathbf{x} 3 & -0.39092 \\ \mathbf{y} 3 & +0.31174 \\ \mathbf{x} 4 & 0.00000 \\ \mathbf{x} 5 & +0.39092 \\ \mathbf{y} 4 & +0.50000 \\ \mathbf{x} 5 & +0.39092 \\ \mathbf{y} 5 & +0.31174 \\ \mathbf{x} 6 & +0.48746 \\ \mathbf{y} 6 & -0.11126 \\ \mathbf{x} 7 & +0.21694 \\ \mathbf{y} 7 & -0.45048 \\ \end{array}$	$ \begin{array}{rrrr} x1 & -0.19134 \\ y2 & -0.46194 \\ y2 & -0.46194 \\ y2 & -0.46194 \\ y3 & +0.19134 \\ x4 & -0.19134 \\ x4 & -0.19134 \\ x5 & +0.46194 \\ y5 & +0.46194 \\ y5 & +0.46194 \\ y5 & +0.46194 \\ y7 & -0.19134 \\ x8 & +0.19134 \\ y8 & -0.46194 \end{array} $	$\begin{array}{rrrr} cl & -0.17101 \\ y1 & -0.46985 \\ z2 & -0.43301 \\ y2 & -0.25000 \\ y3 & -0.09240 \\ y3 & +0.08682 \\ x4 & -0.32139 \\ y4 & +0.38302 \\ x5 & +0.50000 \\ y5 & +0.50000 \\ y5 & +0.50000 \\ y5 & +0.50000 \\ x7 & +0.49240 \\ y7 & +0.08682 \\ x8 & +0.43301 \\ y8 & -0.25000 \end{array}$
				14 Holes	15 Holes	x9 +0.17101 y9 -0.46985 16 Holes
10 Holes	11 Holes	12 Holes	13 Holes	x1 -0.11126	x1 -0.10396	x1 -0.09755
$\begin{array}{l} 11 & -0.47553\\ 22 & -0.40451\\ 122 & -0.29389\\ 13 & -0.50000\\ 134 & -0.40451\\ 137 & -0.40451\\ 137 & -0.40451\\ 137 & +0.40451\\ 137 & +0.15451\\ 137 & +0.40451\\ 137 & -0.29389\\ 137 & -0.29389\\ 137 & -0.29389\\ 139 & -0.29389\\ 139 & -0.29389\\ 139 & -0.29389\\ 131 & -0.29389\\ 131 & -0.47553\\ 131 & -0.4755\\$	$\begin{array}{l} y = -0.47975\\ z = -0.37787\\ y 2 = -0.32743\\ z 3 = -0.04241\\ y 3 = -0.07116\\ z 4 = -0.45482\\ y 4 = -0.27032\\ y 4 = -0.27032\\ y 5 = -0.27032\\ y 5 = -0.27032\\ y 7 = -0.27032\\ y 7 = -0.27032\\ y 7 = -0.27032\\ y 7 = -0.27032\\ y 7 = -0.27032\\ y 7 = -0.27136\\ z 4 = -0.45482\\ y 8 = -0.07116\\ z 4 = -0.07116\\ z 4 = -0.07116\\ z 4 = -0.07116\\ z 4 = -0.07116\\ z 4 = -0.07176\\ z 1 = -0.07116\\ z 1 = -0.07176\\ y 1 = -0.47975\\ z 1 = -$	$\begin{array}{rrrr} 1 & -0.48296 \\ 2 & -0.35355 \\ 2^2 & -0.35355 \\ 2^3 & -0.12941 \\ 3^4 & -0.48296 \\ 3^3 & -0.12941 \\ 4^4 & -0.12941 \\ 4^5 & -0.35355 \\ 4^5 & -0.12941 \\ 5^7 & -0.12941 \\ 5^7 & -0.12941 \\ 5^7 & -0.12941 \\ 5^8 & +0.35355 \\ 18^8 & +0.35355 \\ 18^8 & +0.35355 \\ 18^8 & +0.35355 \\ 18^8 & +0.12941 \\ 10^8 & -0.12941 \\ 11^8 & -0.12941 \\ 11^8 & -0.12941 \\ 11^8 & -0.12941 \\ 11^8 & -0.12941 \\ 11^8 & -0.48296 \\ 10^8 & -0.12941 \\ 11^8 & -0.48296 \\ 10^8 & -0.12941 \\ 11^8 & -0.48296 \\ 10^8 & -0.12941 \\ 11^8 & -0.48296 \\ 10^8 & -0.12941 \\ 11^8 & -0.48296 \\ 10^8 & -0.12941 \\ 10^8 & -0.48296 \\ 10^8 & -0.12941 \\ 10^8 & -0.48296 \\ 10^8 & -0.12941 \\ 10^8 & -0.48296 \\ 10^8 & -0.12941 \\ 10^8 & -0.48296 \\ 10^8 & -0.12941 \\ 10^8 & -0.48296 \\ 10^8 & -0.12941 \\ 10^8 & -0.48296 \\ 1$	$\begin{array}{rrrr} 1 & -0.48547 \\ 2 & -0.33156 \\ 32 & -0.37426 \\ 33 & -0.46751 \\ 33 & -0.17730 \\ 34 & -0.49635 \\ 344 & -0.49635 \\ 355 & -0.41149 \\ 356 & -0.23236 \\ 356 & -0.42149 \\ 356 & -0.23236 \\ 356 & -0.42149 \\ 356 & -0.23236 \\ 356 & -0.42139 \\ 357 & -0.23236 \\ 356 & -0.42139 \\ 357 & -0.23236 \\ 356 & -0.41249 \\ 357 & -0.23236 \\ 357 & -0.2326 \\ 357 & -0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 11 & -0.48907\\ 22 & -0.29389\\ 22 & -0.29389\\ 22 & -0.49451\\ 33 & -0.43301\\ 33 & -0.25000\\ 34 & -0.49725\\ 44 & -0.05226\\ 55 & -0.47553\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 57 & -0.20337\\ 51 & -0.2037\\ 51 & -0.20337\\ $	$\begin{array}{rrrr} 1 & -0.49039 \\ 2 & -0.27779 \\ 2 & -0.41573 \\ 3 & -0.41573 \\ 3 & -0.41573 \\ 3 & -0.27779 \\ 4 & -0.99755 \\ 5 & -0.09755 \\ 5 & -0.09755 \\ 5 & -0.09755 \\ 5 & -0.09755 \\ 5 & -0.09755 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.41573 \\ 5 & -0.40755 \\ 5 & -0.40075 \\ 5 & -0.400755 \\ 5 & -0.400755 \\ 5 & -0.400755 \\ 5 & -0.400755 \\ 5 & -0.400755 \\ 5 & -0.400755 \\ 5 & -0.400755 \\ 5 & -0.400755 \\ 5 & -0.40075 \\ 5 & -0.400755 \\ 5 & -0.40075$

JIG BORING

969

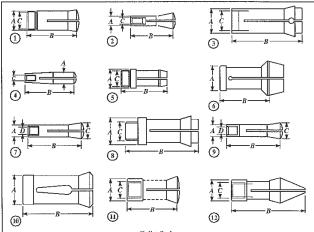
Table 4. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "B" Hole Circles Central Coordinates (English or Metric units)

	noie circie	s centrar e	oor annuces ()				
C C)Y (5	$\langle $	The diagram shows a type "B" circle for a 5-hule circle. Coordinates r,				
	Ref.	.)	ware given in the b	able for hole circles	5 of from 5 to 28 n	ples, Dimensions	
L	(~ (f~ + +)		are for holes numb Dimensions given	erad in a counterel	ockwise direction	as shown).	
	<u>, t</u> ((4)	circle of, say, 3-int	sh or 3-centimeter of	liameter, multiply	table values by 3.	
1 1	+Y	~					
17 Holes	18 Holes	19 Holes	20 Holes	21 Holes	22 Holes	23 Holes	
x1 -0.09187	x1 -0.08682	x1 -0.08230	x1 -0.07822	x1 -0.07452	x1 -0.07116 v1 -0.49491	x10.06808 y10.49534	
		y1 -0.49318	y1 -0.49384 x2 -0.22700	y10.49442 x20.21694	y1 -0.49491 x2 -0.20771	x2 -0.19920	
		x20.23797 y20.43974	x2 -0.22700 y2 -0.44550	y2 -0.45048	y2 -0.45482	y2 -0.45861	
		y2 -0.43974 x3 -0.36786	x3 -0.35355	x3 -0.34009	x3 -0.32743	x30.31554	
		y3 -0.33864	y3 -0.35355	y3 -0.36653	y3 -0.37787	y3 −0.38786	
	x4 -0.46985	x4 -0.45789	x4 -0.44550	x4 -0.43301	x4 -0.42063	x40,40848	
	y4 -0.1710J	y4 -0.20085	34 -0.22700	340.25000	y4 -0.27032	y4 -0.28834	
	x5 -0.50000	x5 -0.49829	x5 -0.49384	.5 -0.48746	x5 -0.47975	x5 -0.47113 x5 -0.16744	
	y5 0.00000	y5 -0.04129	y5 -0.07822	y5 -0.11126	y5 -0.14087 y6 -0.50000	y5 -0.16744 x6 -0.49883	
x60.44758	.46 -0.46985	x6 -0.48470	x6 -0.49384	x6 -0.49860 x6 +0.03737	x6 -0.50000 x6 0.00000	y6 -0.03412	
	y6 +0.1710J	+0.12274 6 f	y6 +0.07822 x7 -0.44550	y6 +0.03737 x7 −0.46544	x7 -0.47975	x7 -0.48954	
	x7 -0.38302 x7 +0.32139	x70.41858 y7 +0.27347	y7 +0.22700	y7 +0.18267	y7 +0.14087	y7 +0.10173	
J	y7 +0.32139 x8 -0.25000	x8 -0.30711	x8 -0.35355	x8 -0.39092	x8 -0.42063	x8 -0.44394	
x80.18062 y8 ÷0.46624	y8 +0.43301	y8 +0.39457	y8 +0.35355	y8 ÷0.31174	y8 +0.27032	y8 +0.23003	
19 0.00000	19 -0.08682	x9 -0.16235	x9 -0.22700	x9 -0.28166	0.32743 وړ	x9 -0.36542	
y9 +0.50000	y9 +0.49240	+0.47291 ور	y9 +0,44550	y9 +0.41312	9 +0.37787 19	39 +0.34128	
x10+0.18062	x10+0.08682	x10 0.00000	x10-0.07822	x10-0.14738	x10-0.20771	x10-0.25979 y10+0.42721	
y10+0.46624	y]0+0.49240	y10 +0_50000	y10+0.49384	y10 +0.47779	y10+0.45482 x11-0.07116	x11-0.13490	
x11+0.33685	x11+0.25000	x11+0.16235	x11 +0.07822	x11 0.00000 y11+0.50000	v11+0.49491	y11+0.48146	
y11 +0.36950	y11+0.43301	y11+0.47291	y11+0.49384 x12+0.22700	\$12+0.14738	\$12+0.07116	x12 0.00000	
x12+0.44758	x12 +0.38302	x12 +0.30711 y12 +0.39457	y12+0.44550	y12 +0.47779	y12+0.49491	y12+0.50000	
y12+0.22287	y12+0.32139 x13+0.46985	x13 +0.41858	x13 +0.35355	x13+0.28166	x13+0.20771	x13 +0.13490	
x13-0.49787 y13+0.04613	y13+0.17101	y13 ÷0.27347	y13 +0.35355	y13 +0.41312	y13+0.45482	y13 ÷0.48146	
x14 +0.48091	x14+0.50000	x14+0.48470	x14+0.44550	x14+0.39092	x14+0.32743	x14+0.25979	
114-0.13683	y14 0.00000	y14+0.12274	y14+0.22700	y14+0.31174	y14+0.37787	y14+0.42721	
x15+0.39901	x15+0.46985	x15+0.49829	x15+0.49384	x15+0.46544	x15 +0.42063	x15-0.36542 y15+0.34128	
y15-0.30J32	y15-0.17101	y15-0.04129	y15+0.07822	y15+0.18267 x16+0.49860	y15+0.27032 x16+0.47975	x16+0.44394	
x16+0.26322	x16+0.38302	x16+0.45789	x16+0.49384 y16-0.07822	v16+0.03737	y16+0.14087	y16+0.23003	
y16-0.42511	y16-0.32139	y16-0.20085 x17+0.36786	x17 +0.44550	x17+0.48746	x17+0.50000	x17+0.48954	
x17 ÷0.09187	x17+0.25000 y]7-0.43301	y17-0.33864	y17-0.22700	y17-0.11126	y17 0.00000	y17 +0.10173	
y17-0.49149	x18+0.08682	x18 +0.23797	x18+0.35355	x18+0.43301	x18+0.47975	x18 +0.49883	
	y18-0.49240	y18-0.43974	y18-0,35355	y18-0.25000	y18-0.14087	y18-0.03412	
	F	x19-0.08230	x19+0.22700	x19+0.34009	x19+0.42063	x19 +0.47113	
	1	y19-0.49318	y19-0.44550	y19-0.36653	y19-0.27032	y19 -0.16744 x20 +0.40848	
1			x20+0.07822	x20 +0.21694	x20+0.32743 x20-0.37787	v20-0.28834	
	1	1	20-0.49384	y20-0.45048 x21+0.07452	x21+0.20771	x2J +0.31554	
Į.	1	1	1	321-0.49442	121-0.45482	y21-0.38786	
		1		Jac 0.0, 142	x22 +0.07116	x22 +0.19920	
	1	1	1		y22-0.49491	y220.45861	
1		1 I		1		x23 +0.06808	
	1	1				y230.49534	
24 Holes	25 Holes	26 Holes	27 Holes	28 Holes			
x1 -0.06526	x1 -0.06267	x1 -0.06027	x1 -0.05805	x1 -0.05598	1		
yi -0.49572	y1 -0.49606	y1 -0.49635	y1 -0.49662	y1 -0.49686	1		
x2 -0.19134	x2 -0.18406	x2 -0.17730	x2 -0.17101 y2 -0.46985	x2 -0.16514 y2 -0.47194	1		
y2 -0.46194 x3 -0.30438	y2 -0.46489 x3 -0.29389	y2 -0.46751 x3 -0.28403		x3 -0.26602			
x3 -0.30438							

JIG BORING

 Table 4. (Continued) Hole Coordinate Dimension Factors for Jig Boring — Type "B"

 Hole Circles Central Coordinates (English or Metric units)


(<u> </u>	3					
-Y -X $+K+X$			The diagram shows a type "B" circle for a S-hole circle. Coordinates r. y are given in the table for hole circles of from 3 to 28 holes. Dimensions are fur holes numbered in a counterclockwise direction (as shown). Dimensions given are based upon a hole circle of ruit diameter. For a hole circle of , say, 3-inch or 3-centimeter diameter, multiply table values by 3				
· · · · ·	$\overline{3}$	×					
y3 -0.39668	y3 -0.40451	y3 -0.41149	y3 -0.41774 x4 -0.36369	y3 -0.42336 x4 -0.35355			
x4 -0.39668	.x4 -0.38526	x4 -0.37426 y4 -0.33156	x4 -0.36369 y4 -0.34312	14 -0.35355			
y4 −0.30438 x5 −0.46194	y4 -0.31871 x5 -0.45241	y4 -0.33156 x5 -0.44273	x5 -0.43301	15 -0.42336			
y5 -0.19134	v5 -0.21289	y5 -0.23236	35 - 0.25000	35 -0.26602			
10 -0.49572	x6 -0.49114	x6 -0.48547	16 -0.47899	x60.47194			
y6 -0.06526	y6 -0.09369	y6 -0.11966	36 -0.14340	y6 -0.16514			
x7 -0.49572	x7 -0.49901	x7 -0.50000	x7 -0.49915	x7 -0.49686			
y7 +0.06526	y7 +0.03140	y7 0.00000	y7 -0.02907	y7 -0.05598			
.r8 -0.46194	x8 -0.47553	x8 -0.48547	x8 -0.49240	x8 -0.49686			
3⁄8 ÷0.19134	y8 +0.15451	y\$ +0.11966	y8 +0.08682	8 +0.05598			
x9 -0.39668	x9 -0.42216	x90.44273	19 -0.45911	x9 -0.47194			
y9 +0.30438	y9 +0.26791	y9 +0.23236	y9 +0.19804	y9 +0.16514			
x10-0.30438	x10-0.34227	x10-0.37426	x10-0.40106	x10-0.42336			
y10+0.39668	y10+0.36448	y10+0.33156	y10+0.29858	y10+0.26602			
x11-0.19134	x11-0.24088	x11-0.28403	x11-0.32139	x11-0.35355 y11+0.35355			
y11+0.46194	y11+0.43815	y11+0.41149 x12-0.17730	y11+0.38302 x12-0.22440	x12 -0.26602			
x12-0.06526 y12+0.49572	x12-0.12434 y12+0.48429	y12 +0.46751	y12+0.44682	y12+0.42336			
$x_{13}^{+0.06526}$	x13 0.00000	x13 -0.06027	x13-0.11531	xJ3-0.16514			
y13+0.49572	y13 +0.50000	y13 +0.49635	y13 +0.48652	y13+0.47194			
x14 +0.19134	x14 +0.12434	x14 +0.06027	x14 0.00000	x14-0.05598			
yJ4+0.46194	v14+0.48429	y14 +0.49635	y]4+0.50000	y14+0.49686			
x15+0.30438	x15+0.24088	x15+0.17730	x15 +0.11531	x15+0.05598			
y15 +0.39668	y15+0.43815	y15+0.46751	y15 +0.48652	y15÷0.49686			
x16+0.39668	x16+0.34227	x16+0.28403	x16 +0.22440	x16+0.16514			
y16+0.30438	y16+0.36448	y16÷0.41149	y16+0.44682	y16+0.47194	1		
x17 +0.46194	x17+0,42216	x17 +0.37426	x17 +0.32139	x17+0.26602			
y17 +0.19134	y17 +0.26791	y17+0.33156	y17+0.38302	y17+0.42336			
x18+0.49572	x18+0.47553	x18+0.44273	x18+0.40106	x18+0.35355			
y18 +0.06526	3/18 +0.15451	y18+0.23236	y18+0.29858	y18 +0.35355 x19 +0.42336			
x19 +0.49572	x19 +0.49901 y19 +0.03140	x19 +0.48547 y19 +0.11966	x19+0.45911 y19+0.19804	v19+0.26602			
y19 -0.06526 x20 +0.46194	x20 +0.49114	x20 +0.50000	x20+0.49240	x20+0.47194			
y20-0.19134	y20-0.09369	y20 0.00000	y20+0.08682	y20+0.165J4			
x21+0.39668	x21+0.45241	x21 + 0.48547	x21 +0.49915	x21 +0.49686			
y21-0.30438	y21-0.21289	y21-0.11966	y21-0.02907	y21+0.05598			
x22 +0.30438	x22+0.38526	x22 +0.44273	x22+0.47899	x22+0.49686			
y22-0.39668	y22-0.31871	y220.23236	y22-0.14340	y22-0.05598	l		
x23+0.19134	x23 +0.29389	x23 +0.37426	x23+0.43301	x23+0.47194			
y23-0.46194	y230.40451	y23-0.33156	y230.25000	y23-0.16514	1		
x24 +0.06526	x24 +0.18406	x24 +0.28403	x24+0.36369	x24 +0.42336			
y24-0.49572	3/24-0.46489	324-0.41149	324-0.34312	y24-0.26602	1		
	x25 +0.06267	x25 +0.17730	x25 +0.27475 y25-0.41774	x25 ÷0.35355 y25 =0.35355			
	y25-0.49606	y25-0.46751 x26+0.06027	x26 +0.17101	x26 +0.26602	1		
		y26-0.49635	y26-0.46985	y26-0.42336			
	1	120-049000	x27 +0.05805	x27 +0.16514	1		
		1	127-0,49662	327-0.47194	1		
l		1	<u> </u>	x28 ÷0.05598	1		
1				328-0.49686	1		

COLLETS

971

Collets

Collets for Lathes, Mills, Grinders, and Fixtures

Collet Styles Collets for Lathes, Mills, Grinders, and Fixtures

		Dimensions			Max.	Capacity (inches)
Collet	Style	Bearing Diam., A	Length, B	Thread, C	Round	Hex	Square
1A.	1	0.650	2.563	$0.640 \times 26 \text{ RH}$	0.500	0.438	0.344
1AM	1	1.125	3.906	1.118 × 24 RH	1.000	0.875	0.719
1B	2	0.437	1.750	0.312 × 30 RH	0.313	0.219	0.188
IC	I	0.335	1.438	0.322 × 40 RH	0.250	0.219	0.172
11	1	1.250	3.000	1.238×20 RII	1.063	0.875	0.750
IK	3	1.250	2.813	None	1.000	0.875	0.719
2A.	1	0.860	3.313	0.850×20 RH	0.688	0.594	0.469
2AB	2	0.750	2.563	$0.500 \times 20 \text{ RH}$	0.625	0.484	0.391
2ÅM	1	0.629	3.188	0.622×24 RH	0.500	0.438	0.344
2B	2	0.590	2.031	0.437×26 RH	0.500	0.438	0.344
2C	1	0.450	1.812	0.442 × 30 RH	0.344	0.594	0.254
2H	1	0.826	4.250	0.799 × 20 RH	0.625	0.531	1.000
21	1	1.625	3.250	$1.611 \times 18 \text{ RH}$	1.375	1.188	0.438
2L	1	0.950	3.000	$0.938 \times 20 \text{ RH}$	0.750	0.656	1.000
2M	4	2 Morse	2.875	0.375 × 16 RH	0.500	0.438	0.344
2NS	1	0.324	1.562	0.318 × 40 RH	0.250	0.203	0.J72
205	1	0.299	1.250	$0.263 \times 40 \text{ RH}$	0.188	0.156	0.125
28	1	0.750	3.234	0.745×18 RH	0.563	0.484	0.391
2VB	2	0.595	2.438	0.437 × 26 RH	0.500	0.438	0.344
3AM	1	0.750	3.188	0.742 × 24 RH	0.625	0.531	0.438
3AT	1	0.687	2.313	0.637 × 26 RH	0.500	0.438	0.344

COLLETS

Collets for Lathes, Mills, Grinders, and Fixtures (Continued)

		Dimensions			Max. Capacity (inches)		
Collet	Style	Bearing Diam., A	Length, B	Thread, C	Round	Hex	Square
3B	2	0.875	3.438	$0.625 \times 16 \text{ RH}$	0.750	0.641	0.531
3C	1	0.650	2.688	$0.640 \times 26 \text{ RH}$	0.500	0.438	0.344
3H	1	1.125	4.438	1.050 × 20 RH	0.875	0.750	0.625
31	1	2.000	3.750	1.988×20 RH	1.750	1.500	1.250
3NS	1	0.687	2.875	$0.647 \times 20 \text{ RH}$	0.500	0.438	0.344
30S	1	0.589	2.094	$0.518 \times 26 \text{ RH}$	0.375	0.313	0.266
3PN	1	0.650	2.063	0.645 × 24 RH	0.500	0.438	0.344
3PO	1	0.599	2.063	0.500×24 RH	0.375	0.313	0.266
38	1	1.000	4.594	$0.995 \times 20 \text{ RH}$	0.750	0.656	0.531
3SC	1	0.350	1.578	0.293 × 36 RH	0.188	0.156	0.125
3 8 8	1	0.589	2.125	0.515 × 26 RH	0.375	0.313	0.266
4C	1	0.950	3.000	0.938 × 20 RH	0.750	0.656	0.531
4N5	1	0.826	3.500	$0.800 \times 20 \text{ RH}$	0.625	0.531	0.438
405	1	0.750	2.781	$0.660 \times 20 \text{ RH}$	0.500	0.438	0.344
4PN	1	1.000	2.906	0.995 × 16 RH	0.750	0.656	0.531
4S	I	0.998	3.250	0.982 × 20 RH	0.750	0.656	0.531
5C	I	1.250	3.281	1.238 × 20 RH ^a	1.063	0.906	0.750
5M	5	1.438	3.438	1.238 × 20 RH	0.875	0.750	0.625
5NS	1	1.062	4.219	1.050 × 20 RH	0.875	0.750	0.625
508	1	3.500	3.406	0.937 × 18 RH	0.750	0.641	0.516
5P	1	0.812	3.687	0.807 × 24 RH	0.625	0.531	0.438
5PN	1	1.312	3.406	1.307 × 16 RH	1.000	0.875	0.719
5SC	l î	0.600	2.438	0.500 × 26 RH	0.375	0.328	0.266
5ST		1.250	3.281	1.238 × 20 RH	1.063	0.906	0.250
5V		0.850	3.875	0.775 × 18 RH	0.563	0.484	0.391
6H		1.375	4,750	1.300 × 10 RH	1.125	0.969	0.797
6K	l î	0.842	3.000	0.762 × 26 RH	0.625	0.531	0.438
6L	i	1.250	4.438	1.178 × 20 RH	1.000	0.875	0.719
6NS	1	1.312	5,906	1.176 X 20 KH	1.000	0.875	0.719
6R	1	1.375	4.938				
7B	4	7 B&S	3.125	1.300 × 20 RH 0.375 × 16 RH	1.125 0.500	0.969	0.781
7B&S	4						
7 B&S	4	7 B&S	2.875	0.375 × 16 RH	0.500	0.406	0.344
		1.125	4.750	1.120 × 20 RH	0.875	0.750	0.625
7R 8B	6 1	1.062	3.500 4.750	None 1.425 × 20 RH	0.875	0.750	0.625
	l		1				
8ST	1	2.375	5.906	2.354 × 12 RH	2,125	1.844	1.500
8WN		1.250	3.875	1.245 × 16 RH	1.000	0.875	0.719
9B	4	9 B检S	4.125	0.500×13 RH	0.750	0.641	0.531
10L	1	1.562	5.500	1.490×18 RH	1.250	1.063	0.875
10P	1	1.500	4.750	1.495 × 20 RH	1.250	1.063	0.875
16C	1	1.889	4.516	1.875 × 1.75 mm RH ^b	1.625	1.406	1.141
20W	1	0.787	2.719	0.775 × 6–1 cm	0.563	0.484	0.391
223	1	2.562	4.000	2.550 × 18 RH	2.250	1.938	1.563
328	1	0.703	2.563	0.690×24 RH	0.500	0.438	0.344
35J	1	3.875	5.000	3.861 × 18 RH	3.500	3.000	2.438
425	1	1.250	3.688	1.236 × 20 RH	1.000	0.875	0.719
50V	8	1.250	4.000	1.125 × 24 RH	0.938	0.813	0.656
528C	1	0.800	3.688	0.795 × 20 RH	0.625	0.531	0.438
115	1	1.344	3.500	1.307×20 LH	1.125	0.969	0.797

COLLETS

Collets for Lathes, Mills, Grinders, and Fixtures (Continued)

973

		Dimensions			Max. Capacity (inches)		inches)
Collet	Style	Bearing Diam., A.	Length, B	Thread, C	Round	Hex	Square
215	1	2.030	4.750	1.990 × 18 LH	1.750	1.500	1.219
315	1	3.687	5.500	3.622 × 16 LH	3.250	2.813	2.250
B3	7	0.650	3.031	$0.437 \times 20 \text{ RH}$	0.500	0.438	0.344
DS	7	0.780	3.031	$0.500 \times 20 \text{ RH}$	0.625	0.531	0.438
GTM	7	0.625	2.437	0.437 × 20 RH	0.500	0.438	0.344
J&L	9	0.999	4.375	None	0.750	0.641	0.516
1C	8	1.360	4.000	None	1.188	L000	0.813
LB	10	0.687	2.000	None	0.500	0.438	0.344
RO	п	1.250	2.938	0.875 × 16 RH	1.125	0.969	0.781
RO	12	1.250	4.437	0.875 × 16 RH	0.800	0.688	0.563
RO	12	1.250	4.437	0.875 × 16 RH	1.125	0.969	0.781
RO	ш	1.250	2.938	0.875×16 RH	0.800	0.688	0.563
R8	7	0.950	4.000	0.437×20 RH	0.750	0.641	0.531

^a Internal stop thread is 1.041 × 24 RH. ^b Internal stop thread is 1.687 × 20 RH. Dimensions in inches unless otherwise noted. Courtesy of Hardinge Brothers, Inc.

DIN 6388, Type B, and DIN 6499, ER Type Collets

	30 L ER Type			L Type B	
Coller			Dime	nsions	
Standard	Турс	B (mm)	L (mm)	A (mm)	с
Туре В,	16	25.50	40	4.5-16	
DIN 6388	20	29.80	45	5.5-20	
	25	35.05	52	5.5-25	
	32	43.70	60	9.5-32	
ER Type,	ERA8	8.50	13.5	0.5-5	8°
DIN 6499	ERA11	11.50	18	0.5-7	8°
	ERA16	17	27	0.5-10	8º
	ERA20	21	31	0.5-13	80
	ERA25	26	35	0.5-16	8°
	ERA32	33	40	2-20	8°
	ERA40	41	46	326	8°
	LICATO	41	39	26-30	8º
	ERA50	52	60	5-34	8°