United States Patent (9
Wright, Jr.

US005704029A

Patent Number:
Date of Patent:

5,704,029
Dec. 30, 1997

[11]
[45]

[541 SYSTEM AND METHOD FOR COMPLETING
AN ELECTRONIC FORM
[75] Inventor: Gerald V. Wright, Jr., San Diego,
Calif.

[73] Assignee: Wright Strategies, Inc., La Jolla, Calif.

[21] Appl. No.: 247,777

[22] Filed: May 23, 1994

[51] Int. CL® GOGF 17/30

[52] U.S. CL 395/149

[58] Field of Search 395/146, 148,

395/149
[561 References Cited
U.S. PATENT DOCUMENTS
4603232 7/1986 Kurdand et al.ovvirecsresvesnere 379/92
4,651,288 3/1987 Zeising 395/117
4730253 3/1988 GOrdoncoeceececensrenssans 364/413.02
4,863,384 9/1989 Slade 434/107
4,937,439 6/1990 Wanninger et al. ...covcevcsennenn. 235/456
5,047,960 9/1991 Sloan 395/149
5,100,329 3/1992 Deesen et al.ceveccrrceccerenennes 434/327
5,204,813 4/1993 Samph et al. .. . 364/4192
5,208,907 5/1993 Shelton et al.ccoreceerecencreeranes 395/149
5225996 7/1993 Weber 364/550
5283861 2/1994 Dangler et al.cococevencreranenns 395/149
5,335,164 8/1994 Gough, Jr. et al.oceevenauaeen 364/149
OTHER PUBLICATIONS

Straley, Straley’s Programming with Clipper 5.0, 1991, pp.
166-169, 1015-1020, 1079-1107.

Goodman, Danny, “The Newton Shuffle,” MacUser, pp.
183-184, Feb. 1994.

Thornton, J., et al. “Using Computers to survey property,”
Public Finance Account, Feb. 12, 1993 (abstract only).
Brochure entitled “Introducing the ETE Communicator”,
Ete, Inc., 1993.

Brochure entitled “Newton Software Titles, Starcore”, New-
ton, 1993.

Brochure entitled “Form Factor, Business and Personal Data
Collection for PDAs”, Meta Pacific, 1993.

Apple Computer, Inc., The NewtonScript Programming
Language, Alpha Draft 1.0, Jul. 1993.

Primary Examiner—Heather R. Herndon
Assistant Examiner—Anton W. Fetting
Attorney, Agent, or Firm—Knobbe, Martens, Olson & Bear

[571 ABSTRACT

A system and method for providing computerized forms
completion and processing. A forms designer utilizes a
forms creation module that includes a scripting feature to
create an electronic form. The scripting feature provides
flow of control statements and a variety of functions useful
in forms, e.g., such as questiomnaires. These functions
include data validation, field navigation/control (e.g.. skip),
context sensitive help, data formatting, alert sounds and
dialog boxes. The scripting feature ensures that skip patterns
are followed comrectly and that the form is completed
accurately. The forms creation program generates a field
description record for each field created by the forms
designer. The set of field description records that define the
electronic form is then transferred to a handheld computer.
such as a personal digital assistant (PDA). A user of the
form, such as a respondent to a survey, utilizes the PDA to
respond to the statements or questions that are part of the
form. A forms engine executing on the PDA interprets one
field at a time and displays that field in the sequence
designed by the forms designer. Each field includes a prompt
portion, an answer box portion, and a control portion that are
displayed together on the display screen of the PDA. After
the form is completed, the response data is optionally
transferred to another computer for further processing or
reporting.

23 Claims, 16 Drawing Sheets

Microfiche Appendix Included
(1 Microfiche, 56 Pages)

C_m D 3o — %
307 USER 1ELECTS FORM CAEATE STACK T HOLD BUNBERS
AND PRESSES STAST OF HELDS THAY IAVE SLEM FLLER

308
CREATE FONH DATA KALAT 10 CREATE F mmnnmJ/‘ 30
”ﬂ.l—.l [

| 2 312
LOOMF FiGT KELD OF |
SELECTED Fomm I 1O
ENORY

Cardiocom Ex. 1002

U.S. Patent Dec. 30, 1997 Sheet 1 of 16 5,704,029
720~ 102~ 700
PC program
creates field data
structures
representing form | = |
722 ,
Y /02\ o P
Form is sent from °—j\—>“9“-’""
PC to PDA L _ ANAMA
—=
103’
724 770
- 704 Digital cam;a
Form is filled out — -~ 128 772
with PDA forms ¥ || =——— Bar code reader
engine] ~~_
(Fig.8) ~ < Microphone |~
706 774
126
- 704 /o.?: 7102~
Form data sent
back to PC ,.\IIVVVVV\
I = |
7037

£ig. 7

U.S. Patent Dec. 30, 1997 Sheet 2 of 16 5,704,029

i
I . I
| Fig.2 |
/
) Joe’s Diner Customer Comment Card I
L Tedoy's Date: /[|
I e - |
| 1 Number_of_people_in_your_party: 3
}- Meal/s ordersd: O Brooklast _ O Lunch___O Dinner | ‘
I ‘ If breakfost ordered, did you come for the $2.99 breokfast special? |] I
! iL O Yes O No J} '
| Please rate the following: i \
| Poor Excelient |
I ! Restaurant Cleanliness O O O O O | I
| 1
| | Prompt Service O 0 O O O ! |
] P e
; Courteousness O 0 0 O O E
i food Appearance O O O O O E
1 I
: i Food Temperture O O O O 0O i :
IrI:Z:I::Z:I’.’IZZZZ:ZI::::Z:ZZ:Z::::IIZ:I:::::::ZI:::1|
| Which two of the following would you fike to ses odded fo the menu? 1
E O More seafood entrees O Vegetarian enirees %_
| i O Larger selection of desserts O Reduced calorie entrees | I
] !
I E O Imported beer 5 !
| L e s s e e e d '

U.S. Patent Dec. 30, 1997 Sheet 3 of 16 5,704,029

142 ‘
Form 100
Tt "Joe's Diner Comment Card” |
freld 1
Dpe Script |
Offse/ 1 .
Serjpf SET data[1] TO date()
NEXT
144 |
Form 100 |
Freld 2 =
Dpe Numeric I
Offsef 2 Lor
Frompr "Number of people In your parly” SIS
Help "Please Enter a number | 1
Scrjppf IF Answered(2) THEN -
NEXT I
ELSE l
BEEP |
MESSAGE "Please enter o number!’ f
ENDIF ' I
146 : |
Form 100 L
field 3 '
lype Multiple Dichotomy l
Offset [3,4,5] '
Promps “Meals ordered:” !
Answers [Breakfast”, "Lunch’, "Dinner] b
Help *Please select one or more meals’ ! I
Scrp/ IF date[3] = 1 THEN =
NEXT
ELSE IF Answered(3) THEN ’
GOTO 5
ELSE
BEEP !
MESSAGE "Please make a selection
ENDIF |

Fig.2b

U.S. Patent

— —— e m— —————— S e —

l‘_'__"I

Dec. 30, 1997 Sheet 4 of 16 5,704,029
145

form 100

Field 4

lpe Multiple Response

Offse/ 6

Promp? "Did you come for the $2.99 breokfost special?”

Answers [Yes, No']

pesutt [1,2]

Help Please select 'Yes' or 'No”

Serp! NEXT

150

Form 100

Freld)

lype Matrix

Offset [1,89,10,11]

Promp! "Please Rate the following:”

Answers [Restaurant Cleanliness™, "Prompt Service’,
Courteousness’, "Food Appearonce’, "Food
Temp."]

Ronge {"Poor". "Excellent”]

Resulf 1,2,3,4,5)

Serp/ NEXT

152

form 100

freld 6

lpe Multiple Response

Offses [12,13)

FPrompl/ Which two of the following would you like to
see added fo the menu?”

Answers [More seafood entrees’, "Larger selection of
desseris”, "Import Beer", “Vegetarian
entrees”, "Reduced colorie entrees’]

Result [1,2,3,4,5]

Nex/ (3 ()]

—_— g - — -

fig.2c

7162~

Please enter the number of
people in your parly.

£19.

/‘/54'

L 167
| 5 Fromp! Box

Answer Box
S

//44

Field Description Record

Fform
Fleld

Type
Offsef
Prompt
Help
Script

100
2
Numeric
2
"Number of People in your party:’
"Please enter a number
IF Answered(2). THEN
NEXT
ELSE
BEEP
MESSAGE "Please enter a number”
ENDIF

J

Judyed SN

L66T ‘0€ "3

91 3O § 1¥9YS

620°POL’S

766~

\

/—/6'..5’
Select meal/s ordered. Promp! Box
51

/ 168

Field Status Record

answerStofe [1.1,NiL]

% E:‘:Z:fos' 5 Answer Box (/
(3 Dinner = 170 / 4
| 764 Fleld Description Record

form 100

Fleld 3

Type Multiple Dichotomy
Offsst [3.4.5]

¢ "Meals. ordered:”
Answers "Breakfast®, "Lunch’, "Dinner
“Please select one or more meals’

Help
Seript IF dota[3] = 1 THEN
o

ELSE IF Answered(3) THEN

GOTO 5
ELSE

BEEP

MESSAGE "Please make o selection”
ENDIF

judjed S’

L66T ‘O€ 3

91 JO 9 194§

620°POL'S

176~

Did you come for the $2.99
breakfast special?

~
_

s Promp/t Box

< Answer Box

/ 1778

Fleld Status Record

answerSlale 2
”

[

180

f/lé’

Fleld Description Record

Form 100
Fleld 4

glpa Multiple Response
fsef 6

Prompt °Did you come for the $2.99 breakfast special?”
Answers ["Yes', "No']

Help "Please select 'Yes' or 'No™
Script NEXT

£ig.5

judsed ‘SN

L66T ‘0€

91 JO L 13934§

620°POL’S

784 —

-

| Please rate the following: K

Poor Excellent
Cleanliness @ O O O O
Service ocooeo0oO|
Friendliness O ® O O O
Food oppearonce O O O O O
Food temperatue O O O O @
&)

1637
= 186
¥ FPromp! Box /

Fleld Status Record

answerState [1,3,2,NIL,5]

Answer Box
B P
158

| — 164 / 150

Form Description Record

Form 100
Fleld S

W Matrix
feof [7,89,10,11]
Prompt! "Please rale the following”
Answers [Restourant Cleanliness’, “Promp) Service,
"Courteousness’, "Food Appearance’,
_ "Food Temp.']
Range [Poor”, "Excellent’]
Result [1,2,3,4,5]

Serjpt NEXT

fig. 6

juajed ‘S'N

L66T ‘0€ »q

91 JO 8 199YS

620POL'S

792~

Which two of the following would
you like to see added fo the menu?

& More seofood enirees
(O Larger selection of desserts
& Imported Beer

() Reduced calorie entrees
(O Vegetarion entrees

©®)

L 165

/ 794

Promp! Box
s Fleld Status Record
198
200, boxesChecked 2
202 avokOffsets [NILNIL]
I Answer Box usedOffsets/ [12,NIL,13.NILNIL]

answerSiale

/ 152

Fleld Description Record

Form 100

Fleld. 6

3?0 Multiple. Response

foet [12,13]

Which two of the following would you
like to see odded fo the menu?

Answers [Mors Seafood enirees’, "Larger selection of
desserts’, “Imporied beer", "Vegetarian

~ eniress”, "Reduced calorie entrees”)
Result [1,2,3,4,5)
Next EXI

Fig.7

JRjed ‘SN

L66T ‘0€ "xa

91 3O 6 W34S

620POL’S

304~ 06—~ TR~
302 WSERSELCTS Rt | [CENTESTAC O HoLo MuWBERS | [CREAT FoRN DATA ARMAY 10 CAEATE FORM STATUS AT T0 |~ 310
AND PRESSES STAT OF FIELDS THAT HAVE BEEN FILLED |] HoLb Fon DATA CoLLECTED |] HOLD FIELD STATUS MECORDS
J
Y 312
LOOKUP FINST FIELD OF |/~ 320 370
SELECTED FORN IN PDA PAEVIOUS
MEMORY ‘:m BUTTON
C PUSHED?
316
1Es 342 6 200
5 / [
FIELD TYPE A POP LAST FIELD PROCESS
SCRIPT? FROM STACK ANSWER BOX
W 392 INPUT
- SAVE FIELD DATA AT PROPER
P e
DISPLAY HELP TEXT OFFSET IN FORM DATA AKRAY ;
N
> e
/‘354
EXECUTE SCAIPT
4
124-/
Figure 8

JudIed *S'N

L66T 0€ "»a

91 3O 0T 339YS

620°P0L'S

U.S. Patent Dec. 30, 1997
°° 316
DISPLAY PROMPT [N PROMPT 402 \

Sheet 11 of 16

5,704,029

BOX AT TOP OF SCREEN

DETERMINE NUMBER OF
RESPONSES ALLOWED BY
NUMBER OF OFFSET YALUES
N FIELD

408

ONLY ONE
RESPONSE ?

DRAW RADIO BUTTONS
STAKTING AT TOP OF ANSWER
BOX UNTIL ALL ANSWERS
HAYE BEEN DRAWN OR NO
MORE WILL FiT

FIELD TYPE IS
NUNERIC?

412

ARE THERE
TOO HANY ANSWERS
TOHR

DRAW A- INDEXING BAR
AT BOTTOM OF ANSWER

CREATE FIELD
STATUS RECORD

424

§ (ANSWERSTATE AT INDEX[CHECKBO
H0J>0 | USEDOFFSETS AT INDEX
[CHECKBOX NO.] > 0)

—— PUT CHECK HARK IN BOX st

[

DRAW THAEE LINES AT TOP DRAW ONE LIKE AT TOP OF
OF ANSWER BOX FOR USER ANSWER BOX FOR USER TO
T0 WRITE ON WRTE ON
« /e
DRAW CHECK BOXES STARTING DRAW QWERTY DRAW NUMERIC
AT T0P OF ANSWER BOX UNTI XEYBOARD [N BOTTOM KEYBOARD [N BOTTON
ALL ANSWERS HAVE BEEN OF ANSWER BOX OF ANSWER BOX
DRAWN OR NG HORE WILL FIT T v |
446 CHECK FORM DATA ARMAY
=~ 10 SEE IF FIELD HAS
ALREADY BEEN FILLED
422 v
] FOR EACH VISIBLE
CHECK BOX

DRAW YALUE FROM
FORMDATA ARRAY ON
LINE OR LINES ABOVE

——

Figure 9a

U.S. Patent Dec. 30, 1997

470

468

FIELD TYPE IS NO

Sheet 12 of 16

5,704,029

490

FIELD TYPE IS

NATRIX?

YES 1472

CREATE A ROW OF BUBBLES WITH AS
MANY BUBBLES AS RESULT VALUES IN THE
FIELD DESCRIPTION RECORD

l /473

DRAW COLUMN HEADINGS BASED ON
RANGE FIELD OF FIELD DESCRIPTION
RECORD

E-N

74

/476

COUNTER?

DRAW A BUTTON IN THE MIDDLE OF
THE ANSWER BOX

L e

CHECK FORM DATA ARRAY TO SEE IF
FIELD HAS ALREADY BEEN FILLED

496

DOES FIELD STATUS CREATE FIELD 1ELD ALREADY
RECORD EXIST? STATUS RECORD FILLED ?
478 No
\ [498
——»{ FOR EACH AOW OF BUBBLES }¢——— DRAW PREVIOUS YALUE ON BUTTON
ALREADY DRAWN
480
ANSWERSTATE ARRAY
AT INDEX [BUBBLEROW] IS
NOT NIL FALSE
MARK BUBBLE IN CURRENT ROW AT -
L1 BUBBLE COLUMN IDENTIFIED IN
ANSWERSTATE AT INDEX [BUBBLEROW]
\ 4
484

Figure 9b

U.S. Patent

Dec. 30, 1997

Sheet 13 of 16

REMOVE CHECK DRAW CHECK IN
FROM CHECKBOX CHECKBOX
530\ l 546~ l
EHOVE OFFSET FIOM RENOVE FIXST NON-NIL OFFSET
FROM AVAILOFFSETS ARRAY AND
USEDOFFSETS ARRAY AND ADD 1O
ADD TO USEDOFFSETS ARRAY IN
AVAILOFFSETS ARRAY IN T »
LD STATUE AECOMD FIELD STATUS KECORD AT INDEX
[CHECKBOX NO.]
532\ l 548\ l
SET FORH DATA ARRAY AT OFFSET
SET FORM DATA ARRAY AT MOYED IN PREVIOUS STATE T0
FREED OFFSET TO NiL RESULT ARRAY AT INDEX
[CHECKBOX NO
534\ i 550\ l
DECRENENT INCREMENT
BOXESCHECKED BY | IN BOXESCHECKED BY I I
FIELD STATUS RECORD FIELD STATUS RECORD
I v

Figure 10a

5,704,029

ANSWERSTATE AT INDEX

[CHECKBOX NO.] = XOR

(NWERSTATE AT INDEX
[CHECKBOX KO , 1)

REMOYE CHECK
FROM CHECKBOX

/568

SET FORM DATA ARRAY AT

INDEX [OFFSET ARRAY AT

INDEX [CHECKBOX NO.])
TONIL

[570

DRAW CHECK IX
CHECKBOX

, l [572

SET FORM DATA ARRAY AT

INDEX [OFFSET ARRAY AT

INDEX [CHECKBOX NO.J}
101

P 536

590 610
NO

1S
FIELD TYPE

AS USER WRITTEN
ON LINE OR TAPPED ON
KEYBOARD ?

WRITING TAPPING WRITING

ON LIRE OR TAPPED ON
KEYBOARD !

594 596

INTERPRET
HANDWRITING AND
DRAW ON LINES

ADD LETTER OR
ACTION OF KEY
PRESSED TO TEXT

INTERPRET ADD DIGIT OR ACTION
HANDWRITING AND OF KEY PRESSED TO
DRAW ON LINE NUMBER

630

DESELECT PREVIOUSLY
SELECTED BUBBLE IN
W

Y

BUBBLE IN hOW

v

FIELD STATUS RECORD AT
INDEX[ROWOFBUTTON] TO
COLUNN OF BUTTON SELECTED|

v

CHANGE FORM DATA ARRAY AT
INDEX [OFFSET ARRAY AT

598
Figure 10b

INDEX[ROWOFBUTTON] T0
RESULT ARRAY AT INDEX
[COLUNNOFBUTTON]

CHANGE ANSWERSTATE OF /

650

§ FIELD TYPE
COUNTER?

652
\

INCREKENT FORM DATA
ARRAY AT INDEX [OFFSET]
BY 1 AND DRAW NUMBER IN
BUTTON

654

MARR NEWLY SELECTED |,—

640

judjed °"S°N

L661 “0€ *3a

9T JO ¥1 1394

620°P0L’S

U.S. Patent Dec. 30, 1997 Sheet 15 of 16 5,704,029

525

527
\

SET ANSWERSTATE TO BUTTON
NUMBER OF BUTTON SELECTED

529\ l

SET FORM DATA ARRAY AT INDEX
[OFFSET] TO RESULT VALUE OF
RESULT ARRAY CORRESPONDING
T0 BUTTON

Figure 10c

U.S. Patent

PERFORM ACTION

706
[

ACCESS NEXT
STATEMENT IN
SCRIPT

Figure 11

Dec. 30, 1997

Sheet 16 of 16

5,704,029

\ 7 724
TES SAVE FORM DATA ARRAY
IN PDA (EXTT)
720
NO
PUSH CURRENT FIELD ON STACK /732
YES AND ACCESS FIELD DESCRIPTION 114
RECORD OF NEXT FIELD FOUND IN
730
o NUMERICAL ORDER o
(TACK)
PUSH CURRENT FIELD O STACK
AND ACCESS FIELD DESCRIPTION
RECONDATNUMEXPN [~ 742
752 754
TES SAVE FORM DATA ARRAY
IN PDA
750 N0

YES

"OTHER RETURNING”
ACTION

/772

SOUND BEEP

/782

DISPLAY DIALOG BOX
WITH “TEXT™ ON SEREENI

/792

“OTHER NON-RETURNING"
ACTION

/802

ASSIGN EXPN TO
YARIABLE

RETURN
(END 05)

812

s

5

—

5,704,029

1

SYSTEM AND METHOD FOR COMPLETING
AN ELECTRONIC FORM

MICROFICHE APPENDIX

A Microfiche Appendix containing computer source code
is attached. The Microfiche Appendix comprises one (1)
sheet of microfiche having 56 frames, including one title
frame.

The Microfiche Appendix contains material which is
subject to copyright protection. The copyright owner has no
objection to the reproduction of such material, as it appears
in the files of the Patent and Trademark Office, but otherwise
reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to business forms and, more
particularly, to systems for electronically creating and com-
pleting a business form.

2. Description of the Related Technology

For most people, completing a paper form is a bother.
Frequently, many questions do not apply to the person or the
situation, but the person completing the form must read all
the items on the form to determine what is or is not
applicable. To avoid the answering of irrelevant questions,
the form may have instructions to skip one or more questions
under certain conditions, which may cause confusion for the
person filling out the form. Then, because there may be
unanswered questions due to the skip instructions, the per-
son completing the form may not be sure that all the
necessary items or questions were properly answered.

One common type of form, known as a questionnaire, is
used to complete a survey. For example, an amusement park
operator may want to determine from survey information
which rides are popular, why people came on that particular
day, and so forth. There are basically two ways survey
information is acquired in the field and then processed. The
first, and perhaps oldest, method of recorded survey is
simply to distribute copies of a paper form which are filled
out by hand and. at a later time, entered into a computer by
a typist. This is obviously an inefficient approach as data
must be entered twice, once during the survey itself and
again when the data is entered into the computer. It is also
a process which allows two opportunities for error.

A more modern and widely used method utilizes
Scantron/National Computer Systems (NCS) technology.
This is the approach taken by most field survey data col-
lectors today. In this situation the questionnaire is printed
according to stringent technical specifications in a special
form which is marked with a #2 pencil during the survey and
then fed through a scanner utilizing Optical Mark Recogni-
tion (OMR)/Optical Character Recognition (OCR). An
example of OMR is a Scantron/NCS scanning machine. The
Scantron/NCS machine, hereafter referred to as the
‘scanner’, then compiles all survey results into a computer
file for use in analysis. OCR scanners are also used. OCR
forms are also specially printed, but can be written on with
block letters.

The scanner approach can provide an order of magnitude
increase in survey efficiency and accuracy. Since such forms
no longer need to be manually entered into the computer, the
significant accuracy loss associated with this process is also
eliminated. The high cost of entering the data is also
eliminated.

10

15

25

30

35

45

50

55

65

2

However, the scanner approach also has several serious
limitations. First, the questionnaire forms are very expen-
sive. Companies doing even a small number of surveys are
incurring costs in the thousands on form duplication alone.

Second, although accuracy is generally enhanced, the
opportunity for human error still exists during the survey
itself. Many forms, especially questionnaires, contain com-
plex sequences of jumps to other parts of the form in the
questionnaire depending on information filled in. For
instance, if a question asks for gender, the subsequent skip
instruction could be “If you answered male to the previous
question, go to question 10” and the answer to question 10
may also be the subject of a skip instruction. These instruc-
tions are collectively known as skip patterns. Often times
survey takers will become lost trying to follow the skip
pattern and will answer a question that should not be
answered. The only time this mistake can be caught is in the
scanning process. The scanner software can perform data
validation checks to make sure the survey taker has not
answered any questions he shouldn’t have, or to check that
the answer to a particular questions falls within a certain set
of values. However, such post-survey validation takes time.

It takes time for someone to pull out a bad form, try to
determine the error from a message on a computer screen,
change the form, and re-scan it. Furthermore, it may be
impossible to determine what the error was, and the form
may thus have to be discarded. As a third limitation, creating
new questionnaires is time consuming and expensive.
Because the scanner forms must follow stringent technical
specifications to be read by the scanner, expensive artwork
is involved in creating a new form. To create a new survey,
one must create the survey on paper, submit it to the scanner
vendor, and pay around $800 for a two-sided 8%x14 form.
Once it is created and thousands have been ordered, it is
usually no longer economical or feasible to make any
changes to the form itself.

Other ways of improving the completion of forms have
been proposed. One such system is described in U.S. Pat.
No. 4,937,439 to Wanninger, et al. (“Wanninger”) wherein a
desktop survey system for creating and scanning a survey
form to be completed by a survey respondent is described.
The survey forms are printed on a scannable form having a
preprinted timing track which is scanned by an optical mark
scanner. The system also includes a processor for entering
and editing customized questions and corresponding
response areas and for tabulating and analyzing the scanned
results.

Other forms software packages are available for personal
computers. The limitations of these forms packages include
the following. Either the entire form is displayed on a
monitor, or a section of the form is displayed at a time as the
user scrolls the display to show the other pieces of the form.
The latter sitnation is more common in a handheld computer
environment, such as a personal digital assistant (PDA),
because of the smaller screen size as compared to a PC
monitor. In either case, the user’s attention is not fixed on a
single field of the form. To conserve space on a typical form
created by a forms package, one or more levels of menus
and/or dialog boxes must be selected. Thus, a discrete set of
choices or answers are not shown on the form.

Another limitation based on the display of the entire form
is that the order of completing the form cannot be controlled.
A user may choose to fill in responses in an arbitrary order
which may lead to incorrect results. A further limitation is
the inability to easily and automatically backtrack through
the completed sequence of items to correct a previous
answer.

5,704,029

3

Thus a need exists for a system which (1) inexpensively
creates new and modifies existing forms, (2) automatically
handles skip patterns, (3) performs emror validation as the
form is filled out, (4) reduces error by limiting the presen-
tation of information to a survey taker, and (5) is mobile.

SUMMARY OF THE INVENTION

The present solution to the problem of creating and
accurately, quickly, and completely filling-in a business
form is a computerized forms engine and system designed to
automate and simplify the process. The goal of the forms
system is to accurately and easily gather information and
present it for further processing in a known format, or to
even electronically send the gathered information to a
desired party.

For example, a company may use an electronic form
version of a product registration card. When the end user
completes or fills out the registration form, the forms engine
verifies the form information and then electronically for-
wards the information to the company in a format desired
and recognized by the computer of the company. Thus, no
paper forms are needed, the mail system is not needed,
people to sort the mail at the company are not needed, and
people to enter the form information into the company
computer are not needed. These benefits all lead to savings
in resources, overhead and money.

In the presently preferred embodiment of the invention, a
personal computer (PC) program (e.g., running on a Apple
Macintosh, or IBM compatible) creates a set of field struc-
tures representing the electronic form. The data representing
the electronic form is sent from the PC to a portable
computerized device, such as a Personal Digital Assistant
(PDA) that has a graphics display. The electronic form is
completed by a user of the PDA, and then the forms engine
verifies the input data or information. The PDA sends a form
data array containing the responses by the user to the
computer. The first item in the form data array is a form
identification so that the computer can identify the form that
the data is associated with.

The forms engine presents a single item or question to the
person, using as much of the display screen as is needed.
Then, based on user-defined script contained in the form, the
forms engine presents the next item or question to the person
or beeps or displays a message. When a person answers a
question and desires to move to the next field, the forms
engine 124 executes a script written by the form designer.
Although the most expected and common result of the script
will be to advance to another question, it may also perform
other actions such as beep and display a message. quit, or
launch another form. This continues until all the pertinent
questions have been answered, and only the questions appli-
cable to the person or situation will be asked. Each question
corresponds to a certain location on a hard copy version of
the electronic form.

One aspect of the present invention includes, in an auto-
mated forms system including a portable computer, a
method of displaying a response driven sentence, compris-
ing the steps of providing an electronic form comprising a
plurality of form descriptors, wherein each form descriptor
defines a displayable item; displaying only one of the
displayable items on a graphics display of the computer,
wherein the displayable item includes a sentence and a
plurality of possible responses, and wherein the one display-
able item utilizes the entire display; and receiving one or
more response entries to the displayable item selected by a
user of the computer.

10

15

20

25

35

45

55

65

4

Another aspect of the present invention includes, in an
automated forms system including a portable computer, a
method of completing an electronic form comprising a
plurality of form descriptors that define displayable items,
comprising the steps of displaying only one of the display-
able items on a graphics display of the computer, wherein
the displayable item includes a sentence and a plurality of
possible responses; receiving one or more response entries
to the displayable item selected by a user of the computer;
storing the response in the computer; branching to a subse-
quent displayable item in response to the selected response;
and displaying the subsequent displayable item, wherein the
subsequent item includes a plurality of possible response
entries, on the display of the computer.

Yet another aspect of the present invention includes, in an
automated forms system including a portable computer, a
method of completing an electronic form, comprising a
plurality of form descriptors that define displayable items,
comprising the steps of displaying only one of the display-
able items on a graphics display of the computer at any one
time, wherein the displayable item includes a sentence and
a plurality of possible responses; receiving one or more user
selected response entries to the displayable item; storing the
response in the computer; and validating the response
according to a criteria.

Still yet another aspect of the present invention includes,
in an automated forms system including a portable
computer, a method of completing an electronic form,
comprising a plurality of form descriptors that define dis-
playable items, comprising the steps of displaying only one
of the displayable items on a graphics display of the
computer, wherein the displayable item includes a sentence
and a plurality of possible responses, and wherein the one
displayable item utilizes the entire display; receiving one or
more response entries to the displayable item selected by a
user of the computer; storing the responses in the computer;
and automatically sending the responses to a remote com-
puter via a communications device.

Yet another aspect of the present invention includes, in an
automated forms system including a portable computer, a
method of completing an electronic form, comprising the
steps of providing the electronic form comprising a form
descriptor that defines a displayable item; and displaying the
one displayable item on a graphics display of the computer,
wherein the screen displays a button and a number, and
wherein the number is changed when the button is selected
by a vser of the computer.

Yet another aspect of the present invention includes a
system for completing an electronic form, comprising a
portable unit including a processor, a graphics display, an
input device mechanism and a memory; an electronic form
stored in the memory of the unit comprising a plurality of
form descriptors that define displayable items; a forms
engine to display a single displayable item on the graphics
display described by one of the form descriptors, wherein
the displayable item includes a sentence and a set of possible
response entries, and wherein the one displayable item
utilizes the entire display; and wherein the input device
mechanism accepts one or more of the responses selected by
a user of the unit.

Another aspect of the present invention includes a system
for completing an electronic form, comprising means for
processing and storing data; means connected to the pro-
cessing means for displaying graphics; means for defining
an electronic form including a plurality of displayable items;
means for displaying a single one of the displayable items on

5,704,029

5

the graphic means, wherein the displayable item includes a
sentence and a set of possible response entries, and wherein
the one displayable item utilizes the entire graphic means;
and input means connected to the processing means for
accepting one or more of the responses selected by a user of
the system.

Still yet another aspect of the present invention includes,
in a forms system including a computer and a portable
computer, a method of automated forms completion, com-
prising the steps of generating an electronic form using the
computer; sending data defining the electronic form from the
computer to the portable computer; completing the elec-
tronic form, so that response data is generated and stored in
the portable computer; and sending the response data from
the portable computer to the computer.

Another aspect of the present invention includes, in an
automated forms system including a portable computer, a
method of completing an electronic form comprising a
plurality of form descriptors, each form descriptor defining
a displayable item, the system comprising the steps of
displaying a selected one of the displayable items on a
graphics display of the computer, wherein the displayable
item includes a sentence and a plurality of possible
responses, and wherein only the one displayable item is
visible at any one time; receiving one or more user selected
response entries to the selected displayable item; and pro-
viding a script stored in the form descriptor defining the
selected displayable item, wherein the script defines a set of
one or more actions to be executed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level diagram illustrating the basic steps
and components of a presently preferred embodiment of the
forms system of the present invention;

FIG. 2 (comprising FIG. 2a, 2b and 2¢) is exemplary field
data structure printed form and a set of exemplary field data
structures for the form as used in the system of FIG. 1;

FIG. 3 is a diagram of an exemplary screen display as
presented on the display of the handheld computer for the
field 2 data structure and the associated field description
record of the exemplary form of FIG. 2;

FIG. 4 is a diagram of an exemplary screen display as
presented on the display of the handheld computer for the
field 3 data structure, and the associated field description
record and a field status record of the exemplary form of
FIG. 2;

FIG. § is a diagram of an exemplary screen display as
presented on the display of the handheld computer for the
field 4 data structure, and the associated field description
record and a field status record of the exemplary form of
FIG. 2;

FIG. 6 is a diagram of an exemplary screen display as
presented on the display of the handheld computer for the
field 5 data structure, and the associated field description
record and a field status record of the exemplary form of
FIG. 2;

FIG. 7 is a diagram of an exemplary screen display as
presented on the display of the handheld compater for the
field 6 data structure, and the associated field description
record and a field status record of the exemplary form of
FIG. 2;

FIG. 8 is a top-level flow diagram of the form engine
process performed while the form is filled out by the “Form
is filled out with PDA” step of FIG. 1;

FIGS. 9a and 9b are a flow diagram of the “draw field”
function 316 presented in FIG. 8;

10

15

35

45

55

65

6
FIGS. 10a, 10b and 10c are a flow diagram of the
“Process answer box input” function 372 presented in FIG.
§; and
FIG. 11 is a flow diagram of the *execute script” function
354 presented in FIG. 8.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The following detailed description of the preferred
embodiments presents a description of certair specific
embodiments to assist in understanding the claims.
However, the present invention can be embodied in a
multitude of different ways as defined and covered by the
claims.

For convenience, the following description is topicalized
into the following principal sections: Introduction, System
Overview, Forms Creation, Forms Engine, Drawing Fields,
Answer Box Input, Execute Script, Benefits of the Forms
System, Optional System Configuration, and Summary of
Advantages of the Present Invention.

L INTRODUCTION

The present invention utilizes electronic forms to gather
information. Electronic forms are easier to complete and can
be validated as they are being completed. Paper forms do not
have to be printed and stored. Revisions are easily made to
an electronic form, thus eliminating the cost associated with
a new printing of a paper form.

The system of the present invention is typically used in
either a forms creation and forms completion mode, or in
just the forms completion mode, if the electronic form
already exists. Referring to FIG. 1 showing a presently
preferred embodiment, if a new form is necessary, or if a
previous form needs to be revised or customized, a forms
creator or forms designer creates the new form (state 120) by
use of a forms creation program that runs on an Apple
Macintosh or a Microsoft Windows based Personal Com-
puter (PC). The forms creation program is considered to be
a module of the forms system. After the form (not shown) is
built, form descriptors or field description records, which
define each of the form’s fields, are transferred at a state 122
to a portable computer 104, which is henceforth referred to
as a personal digital assistant (PDA), such as the Newton,
available from Apple Computer. Inc. Newton is a trademark
of Apple Computer, Inc. In the instance of the portable
computer being characterized as a handheld computer. such
as a Newton, the handheld does not have a keyboard and
does not have a hinged display (i.e., a hinged display is not
integrated with the processor section of the computer). The
Newton does include a non-volatile, semiconductor random-
access memory (RAM) subsystem. The RAM subsystem
includes 640 Kb of static RAM and a 3 volt lithium backup
battery. In the presently preferred embodiment, the battery
has a lifetime in average use of approximately one year.
Non-volatility refers to the ability of a memory to retain data
when the main power for the computer is turned off. Thus,
the static RAM in conjunction with the backup battery
provide a non-volatile RAM subsystem. In another
embodiment, data may be stored in non-volatile flash
memory. .

In a presently preferred embodiment, the transfer at state
122 is accomplished by connecting a serial cable 103
between the computer 102 and the PDA 104. Alternatively,
other communication devices 103', such as modems or
wireless technology, may be used for communication
between the PDA 104 and computer 102.

5,704,029

7

Once one or more electronic forms are created and
transferred to the PDA 104, a particular form to be com-
pleted is selected by, for example, a data collector
(interviewer). The forms creator designs the form and a user
of the form, e.g., the interviewer, are scparate entities. A
paper representation of the form is not used or needed. A
forms engine (discussed below with respect to FIG. 8)
displays one question or statement (and if appropriate, a
corresponding set of possible answers or responses) at a time
on the display screen 106 of the PDA 104 at a function 124.
Note that the forms system can be operated in a portion of
the display, which, for example, is commonly implemented
as a window.

When the user (not shown) answers each question,
thereby providing response data, the forms engine executes
a script program for that question that may perform data
validation, sound an alarm, display a message, quit, launch
another form, skip to another question, and so forth. The
script allows the forms designer to go to another question
based on the previous answer(s). Thus, complex skip pat-
terns may be utilized without burdening the user about
which question is next, what questions are to be left blank
or skipped, and so forth. Selections can be made by use of
a stylus, such as a pencil, by a finger of the user, or other
ways to identify a choice to the PDA 104.

Optional peripheral input devices which may be con-
nected to the PDA 104 include a digital camera 119 to
capture images, a barcode reader 112, and a microphone 114
for converting sound into an electrical signal. One or more
of these external peripherals may be utilized to provide user
input during the course of completing a form.

After the user completes a particular form, the collected
data, stored in a form data array, is saved in the PDA 104,
The response data may optionally be sent to a host computer
102 at state 126, which may be different than that used to
create the form, for further processing. Various communi-
cation methods can be utilized to send the data to the host
computer 102, e.g., a modem.

Thus, the forms system 100 can be used to create “smart”
forms which automatically guide a user through the form.
The respondent need only be concerned with answering each
question on the screen 106 of the PDA 104 and the rest is
taken care of by the forms engine.

II. SYSTEM OVERVIEW

Referring to FIG. 1, the components of a presently
preferred embodiment of the computerized forms system
100 of the present invention are shown. The personal
computer (PC) 102 may be an IBM compatible PC running
Microsoft Windows version 3.1 or higher. To run Windows
3.1, the PC preferably includes an 80386 class processor
with at least 4 Megabytes (Mb) of memory and an 80 Mb
hard drive. A keyboard, a pointing device, such as a mouse
or trackball, or other such input devices are connected to the
computer for input and control. An alternate computer is an
Apple Macintosh running Apple Operating System level 7.0
or higher. To run System 7.0, the processor is preferably a
68030 class or better. The memory, hard storage and input
devices are similar to those for the PC. Of course, other
similar computers with appropriate software and capability
may be utilized.

The preferred Newton PDA operates under Newton Intel-
ligence version 1.05 or higher operating system. The forms
engine software is written in Newton Script programming
language using the Newton beta-level tool kit, and is com-
piled by the Newton tool kit. The Newton Script Program-

25

30

45

50

55

65

8
ming Language manual (Alpha Draft 1.0) is hereby incor-
porated by reference. The forms creationr software is written
in OMNIS 7 version 1.3 and compiled using OMNIS 7.
Source code for the form engine software is included in the
attached Microfiche Appendix. Of course, other handheld
computers and programming languages may be used.

. FORMS CREATION

The object the forms system 100 works with, or its
document type, is the form. Forms may be created, edited,
duplicated, and sent. Visually, forms appear on the screen of
the PC 102 as a window made up of a list of fields. Within
the current form, users may add new fields, edit fields, or
remove fields.

A. Form Creation Operations

The forms creation program used to design a new elec-
tronic form includes several menus: a “File” menu, a “Con-
nect” menu, and a “Design” menu. Each menu lists a
plurality of options representing operations performed in the
creation of a form. The forms designer selects from among
the options to initiate a desired operation. The options
germane to the creation of the form are now briefly dis-
cussed below.

Available from “File” menu unless otherwise designated.

New Form

Dialog box prompts user for form name and description.
A form number is automatically assigned. A form window is
displayed with an empty field list.

Open Form

Dialog box prompts user for form to open from list of
existing forms. After selection is made, a window opens
containing a form field List.

Duplicate Form

Dialog box prompts user for form to duplicate from a list
of existing forms. After selection is made, a new form is
created with name “Duplicate of ‘Previous Name’”. A new
form number is also assigned. This allows the user to create
a derivative form without reentering all form information
from another form.

Remove Form

Dialog box prompts user for the form to remove. The
program removes it after the selection is made and con-
firmed.

Send Form (Available from “Connect” menu)

Dialog box prompts user for form to send. After the form
is selected, program goes into a wait state until the PDA 104
is connected. Once the PDA 104 is connected, form is sent
as series of field description records. If the PDA 104 is not
connected, a keystroke sequence allows the wait state to be
terminated.

The following are Field Operations (Available from
“Design” menu).

New Ficld

The user is prompted with a dialog box from which the
desired field type is selected. In the presently preferred
embodiment, this list includes multiple response, multiple
dichotomy, matrix, text, number. In another embodiment,
counter types are utilized. After a sclection is made, an
appropriate editor window allows the field to be created.
There are specific editors for use with each type of field.
Each editor is designed to gather appropriate information for
the respective field type in a user-friendly manner.

Edit Field

The selected field is displayed with the appropriate field
editor.

Remove Field

The selected field or fields are removed if the user accepts
a confirmation message.

5,704,029

9

he following is a Program Function (Available from “Con-
nect” menu).

Receive Data

The receive data function puts the program in a wait state.
Multiple PDAs may be connected, and all form information
is downloaded by program. When the user has finished with
all PDAs, a keystroke sequence is entered that will end the
wait state. At this point all form data received is sorted by
form number and saved in individual files by form.

B. Steps in Creating Example Form

Forms are created as a series of numbered fields which are
navigated by field scripts. Field types include common
survey response structures, as well as text and numeric fields
for open ended entry. The execution of the form is driven by
field scripts written in a scripting language supporting flow
of control statements such as IF/THEN/ELSE, and over 100
functions. Scripts can provide common survey functions
such as data validation, field navigation, context sensitive
help, data formatting, alert sounds, and dialog boxes. Scripts
can ensure that skip patterns are always followed correctly,
and that forms are always filled out accurately. In another
embodiment, skip or sequence control statements, such as
Next and Goto may be utilized by the forms engine outside
of the script, i.e., sequence control statements do not have to
be part of the script. Other embodiments may not even use
scripts.

Thus, the scripting feature of the forms system 100 further
improves survey accuracy and reliability. Scripts also allow
the form designer or forms creator to find bottlenecks in
questionnaires by determining how much time the user takes
to answer a particular field, or to trigger other PDA appli-
cations from inside the form.

Referring now to, FIGS. 2a, 2b and 2c¢ the field descrip-
tion records or form descriptors generated by the steps
below are illustrated in a composite diagram. The comment
card 140 (FIG. 2aq) is a diagrammatic paper representation
shown as a composite of the individual display screens for
each field of the form. At this juncture, it must be empha-
sized that the form as a whole is not displayed (as illustrated
in FIG. 2a) on the graphics display of the PDA 104 (FIG. 1).
The steps or instructions for creating an example form, a
“Customer Comment Card” for Joe’s Diner, are as follows.
(FIGS. 3-7 show details of fields 2—6. Field 1 is not shown
in detail because it is not a displayable field, i.e., a screen
display is not generated for this field.)

1. Create and Name the Form

Select New . . . from the File menu and enter a name for
the form and a brief description. Click OK to bring up an
empty form window.

2. Create Field 1

Select New Field . . . from the Design menu to create a
new field. When prompted for field type, select Script, then
click OK. Because the first field in the form always holds the
current date, the form fills this field in automatically using
a script type field. In the field editor that is brought into use
by the forms creation program, some attributes have already
been filled in: number and offset. The field editor is used by
the forms designer to edit an individual field description
record.

Referring now to a record 142 (FIG. 2b), the number in a
field attribute or field uniquely identifies the field description
record (FDR) (and the field defined by the FDR), and the
offset field indicates a position in the resulting data stream,
i.e., the form data array, that will be used by the script. In this
case, offset 1 is used to store the date. The text in a text edit
box is changed by the forms creator to the following:

10

15

20

25

30

35

45

50

55

65

10

1)

SET data(1] TO date()
2) NEXT

The first line of this script uses the set command to put the
date in offset 1. The second line uses the NEXT statement to
move on to the next field in the form. The forms creator
clicks the OK button to accept the changes made to this field.
The result is example field description record (FDR) 142.
3. Create Field 2—Number of people in your party

Referring now to FDR 144 (FIG. 2b). select New Field .
. . from the Design menu to create a new field. When
prompted for field type, select Numeric. This field requires
more attributes than the script field. The question number
and offset have been entered automatically. First enter the
desired text in the form of a question or statement. In this
example, the text, “Number of people in your party”, is
entered in the prompt box. Next, the forms creator writes a
field script that will be evaluated when the user taps the next
field button. In this case, the forms engine continues on to
field 3 if the user fills in this field, or beeps and displays a
message if the field is empty. The forms creator then changes
the default script “NEXT™ to the following:

1) IF Answered(2) THEN

2) NEXT

3) ELSE

4) BEEP

5) MESSAGE “Please enter a mumber!”
6) ENDIF

This script uses an IF/THEN/ELSE statement to do two
different things depending on a certain condition, that is.
whether or not field 2 has been answered. If it has been
answered, line 2 of the script uses the NEXT statement to
advance the user to the next field. However, if field 2 has not
been answered, line 4 of the script initiates sounding a beep
with the BEEP statement and line 5 uses the MESSAGE
statement to display a dialog box with the text “Please enter
a number!”. Note that the script does not wait for the user to
provide an answer as part of the script, but rather, after the
script is performed, the forms engine waits and checks for
the user to either press a button or provide answer box input
during the forms engine function 124 (FIG. 8).

If the forms designer would like to provide the user with
help, i.e., a message activated with the help button, the help
message is entered in the entry box marked Help Message.
The forms designer clicks OK to accept and save the
changes made to this field. The result is example field
description record 144. An example screen display 162
shown in FIG. 3 corresponds with the FDR 144.

4. Create Field 3—Meal/s Ordered

Referring now to FDR 146 (FIG. 2b), select New Field .
. . from the Design menu to create a new field. When
prompted for field type, select Multiple Dichotomy. This
field is a little different, in that its results take up more than
one position in the form data array. In fact, this type requires
one position, or offset, in the form data array for each of the
possible selections. The data will contain a 1 (one) at the
appropriate offset if the item is selected, and will remain
blank otherwise.

First, the forms creator enters the text, “Meal/s Orderd”.
in the entry box marked prompt. Next, the forms creator
clicks Add . . . below the list box labeled Answer Choices,
enters “Breakfast” in the dialog, and clicks Add. “Lunch”
and “Dinner” are entered in the same way. When all answer

5,704,029

11

choices have been entered, click Done. As the answers are
entered, the offsets 3.4, and § are inserted automatically by
the forms creation program. The forms creator now writes a
script that will control the sequence of the electronic form
when the user taps the next button. In this example, if the
user has selected “Breakfast”, the form asks if he came for
the $2.99 special, otherwise the form requests the user to rate
some aspects of the restaurant. If the user doesn’t select any
answer, the forms engine will sound a beep and display a
message asking the user to make a selection.

The forms creator enters in the following script to exhibit
this behavior:

IF date[3] = 1 THEN

2) NEXT

3) ELSE IF Answered(3) THEN

4) GOTO 5

5) ELSE

6) BEEP

) MESSAGE “Please make a selection”
8) ENDIF

The IF/THEN/ELSE statement is used to take different
actions depending on certain conditions. The first line of the
script checks to see if “Breakfast” has been selected by
checking whether offset 3 contains a 1 (one). If it does, line
2 of the script uses the NEXT statement to continue with the
next field in order, i.e.. field 4. If offset 3 does not contain
a 1 (one), line 3 of the script is evaluated. Line 3 checks to
see if the other choices, “Lunch” and “Dinner”, were chosen
in field 3 by using the Answered() function. The argument
of the Answered() function is a field number and returns a
true or false result. If the user has selected at least one
response or provided an answer for the field identified in the
Answered() function argument, the function returns as true.
If no answer has been provided by the user, the function
returns false. If one of the other choices has been selected,
line 4 uses the GOTO statement to skip to field § (FDR 150).
Otherwise lines 6 and 7 of the script initiate sounding a beep
and display the message “Please make a selection”.

If the forms designer would like to provide the user with
help, the help message is entered in the entry box marked
Help Message. The forms designer clicks OK to accept and
save the changes made to this field. The result is example
ficld description record 146. An example screen display 166
shown in FIG. 4 corresponds with the FDR 146. An asso-
ciated field status record 168 provides information used in
the display of the selected answer(s).

5. Create Field 4—"Tf breakfast ordered, did you come for
the $2.99 breakfast special?”

Referring now to FDR 148 (FIG. 2c¢), select New Field .
. . from the Design menu to create a new field. When
prompted for field type, select Multiple Response. This field
type is similar to Multiple Dichotomy in that the forms
creator can list multiple answers for the user to choose from,
but different in the respect that the number of answers that
a user can select simultaneously can be limited. The results
from this field occupy as many offsets in the form data array
as there are simultaneous responses allowed. If the forms
creator limits the user to only two responses, only two
offsets are used to store the results of the user’s selections.

To create the field, the forms creator first enters the
question text in the prompt entry box. Next, the number of
responses allowed is entered, which in this case is 1 (one).
(The form user can select “Yes” or “No”, but not both.) The
offset 4 is automatically inserted in the offset list by the
forms creation program. The forms creator must also enter
result values for each of the answer choices available. These

5

10

15

25

30

35

45

50

55

65

12

will be the values placed at the appropriate offsets for the
answer choice selected. For example, the forms creator can
choose the value 1 (one) for “Yes” and the value 2 (two) for
“No”. This will cause a 1 (one) to be placed at offset 4 when
the user selects “Yes” and a 2 (two) to be placed at offset 4
when the user selects “No”. To enter these answers and
result values, the forms creator clicks on the Add button
below the list box, and in the dialog box, enters the answers
and the respective result values. The forms creator clicks
Done when finished.

In this example, because the forms designer doesn’t care
if the user leaves this field unanswered, the script doesn’t
need to do anything complicated. It only needs to take the
user to the next field. Therefore, no changes need to be made
to the default script, “NEXT™.

If the forms designer would like to provide the user with
help, the help message is entered in the entry box marked
Help Message. The forms designer clicks OK to accept and
save the changes made to this field. The result is example
field description record 148. An example screen display 176
shown in FIG. § corresponds with the FDR 148. An asso-
ciated field status record 178 provides information used in
display of the selected answer.

6. Create Field 5—*Please rate the following:”

Referring now to FDR 150 (FIG. 2¢), select New Field .
. . from the Design menu to create a new field. When
prompted for field type, select Matrix. The matrix type
allows the forms designer to create several rows of buttons
from which the user can select only one button per row. The
matrix field editor is more complex than some of the others.
First, the forms designer fills in the Prompt entry box with
the prompt: “Please rate the following.” Next, the forms
designer fills in the item labels and their comresponding
off sets, the column labels, and the result values. To add items
to any of these lists, the forms designer clicks on the list,
then clicks the Add button. The forms designer enters the
matrix row labels in the first list box starting with “Restau-
rant Cleanliness” and ending with “Food Temperature”. As
these items are entered, the next available offsets. 7 through
11, are automatically inserted by the forms creation pro-
gram. Next, the forms designer inserts the matrix column
labels. In this example, there are only two: “Poor” and
“Excellent”. Column labels will always appear equally
spaced across the top of the matrix. Next, the forms designer
enters the result values. The number of result values entered
determines the number of bubbles there are for each row.
The result values themselves will be inserted in the form
data array at the offset for each item. In this example, the
forms designer uses a scale of 1 to 5. The numbers 1 through
5 are added by clicking on the Result Value list and then
clicking the Add button.

Again, because the forms designer does not require a
response for this field, the default script, “NEXT” is used, as
in the previous field (field 4).

If the forms designer would like to provide the user with
help, the help message is entered in the entry box marked
Help Message. The forms designer clicks OK to accept and
save the changes made to this field. The result is example
field description record 150. An example screen display 184
shown in FIG. 6 corresponds with the FDR 150. An asso-
ciated field status record 186 provides information used in
display of the selected answer(s).

7. Create Field 6—Which two of the following would you
like to see added to the menu?”

Referring now to FDR 152 (FIG. 2¢), select New Field .
. . from the Design menu to create a new field. When
prompted for field type, select Multiple Response. This is the

5,704,029

13

same type of field used in the Yes/No field above (field 4),
but now, more than one response is allowed. In the Prompt
entry box, the forms designer enters the text: “Which two of
the following would you like to see added to the menu?”.
Next, the forms designer enters “2” for the number of
responses allowed. The next two available offsets, 12 and
13, are automatically inserted in the offset list by the forms
creation program. These offsets are the locations in the form
data array where the two selections will be stored. Next, the
forms designer clicks on the Add button below the Answer
Choices list box to enter the answer choices (“More Seafood
entrees” through *“Reduced calorie entrees™) and their cor-
responding result values (1 through 5).

The script for this field is very simple. The forms designer
replaces the default “NEXT™ script with “EXIT™ to cause
the form to end after this field has been completed.

If the forms designer would like to provide the user with
help, the help message is entered in the entry box marked
Help Message. The forms designer clicks OK to accept and
save the changes made to this field. The result is example
field description record 152. An example screen display 192
shown in FIG. 7 corresponds with the FDR 152. An asso-
ciated field status record 194 provides information used in
display of the selected answer.

8. Send Form to the PDA

Select Send Form . . . from the Connect menu. If the form
window is still open, a status window will appear waiting for
the forms designer to connect the PDA 104. If the forms
designer has closed the form window, he/she will be
prompted for a form to send, and then the status window
appears. The forms designer connects the PDA 104 with a
serial cable, taps on the envelope icon, and then taps
Connect on the pop-up item. The form is then sent to the
PDA 104 and the status window closes. As an alternative, a
modem or other communications device can be used in place
of the serial cable to transfer the form. The communications
device may use wireless technology.

IV. THE FORMS ENGINE

Once an electronic form is loaded in the PDA 104 (FIG.
1), a data collector or interviewer in a survey or question-
naire type of application, can choose to fill out any of a
number of forms which have been previously loaded. The
number of forms that can be loaded depends on the amount
of random-access memory (RAM) (not shown) in the FDA
104. Current PDA devices can generally store large numbers
of reasonably small forms in the standard RAM.

Users complete or fill out a form during execution of the
forms engine function 124. Once form execution begins, the
interviewer has very little to do when compared to the paper
based process. Because the scripts, running under the forms
engine, control form execution, the user doesn’t need to
follow any complex skip patterns or even worry about
answering a question incorrectly. Aside from answering the
current question, he/she can select one of four functions by
tapping on buttons (FIG. 3): go to the NEXT field 220, go
to PREVIOUS field 222, get HELP 224, or QUIT 226. When
the NEXT button 220 is pressed, the field script is executed.
At this point, the PDA 104 running the script may check to
see that the field was answered correctly and if so, go to the
next appropriate field. If not, the script may cause the PDA
104 to beep and display a help message, or perform some
other action. The forms engine 124 tracks the progress as the
user progresses through the form. At any point while com-
pleting the form, the user may tap the PREVIOUS button
222 to go back to change an answer to a previous question.
Also, the user may tap the HELP button 224 at any time for
instructions for the current field.

10

15

35

45

55

60

65

14

When an electronic form has been completed. the form
data stored in the PDA 104 can be sent back to the PC 102
via serial cable, modem, or other communications devices.
Once transferred, the form data can be automatically cleared
from the PDA memory. In the presently preferred
embodiment, the form data is then sorted by form and saved
to disk, preferably in a tab-delimited format, where it is
available for use with spreadsheets. databases. tabulation
packages, and other programs. In another embodiment, other
formats for the form data are utilized.

Referring now to FIG. 8, the forms engine function 124
lIocated in the PDA 164 (FIG. 1) will now be described.
Beginning at a start state 302, the forms engine 124 moves
1o a state 304 wherein the user selects the electronic form to
be completed and presses a start button displayed on the
screen 106 of the PDA 104. Moving to state 306, the forms
engine 124 creates a stack to hold the numbers of the fields
already answered in the order they were answered thus
providing a mechanism to maintain a history of the
answered fields. A stack is a well known data structure in the
programming technology.

Proceeding to state 308, the forms engine 124 creates a
form data array to hold the form data collected as each field
is completed. The data array is indexed by the offset number
provided in the field description record (FDR). For example,
the field description record 148 (FIG. 2¢) for field number 4
uses offset 6 to hold the answer for that field, while FDR 150
for field number 5 uses offsets 7-11 to hold the multiple
answers for that field. At some time after the form is
completed, the data array is transmitted from the PDA 104
to the computer 102 as a data stream.

Advancing to state 310, the forms engine 124 creates a
form status array to hold a field status record for each field
type that requires it. In the presently preferred embodiment,
the field types that require the field status record are the
multiple dichotomy, multiple response, and matrix. The field
status record is created and used by the forms engine 124 to
track which answers or responses are selected by the user
and is used to draw the field. Referring to the example of
FIG. 4, field status record 168 includes an answerState 170.
The answerState essentially indicates which box, button, or
bubble of a plurality of boxes, buttons or bubbles is selected.
The answerState is a one-dimensional array having as many
elements as the number of offsets defined in the correspond-
ing FDR. Three offsets are indicated by the FDR 146, so the
answerState will be a three element array. Thus, since only
the first and second of three boxes are checked in the
example of FIG. 4, the answerState is [1,1,NIL]. The field
status record will be further described in conjunction with
the draw field function 316 (FIG. 9) and answer box input
function 372 (FIG. 10).

Moving to state 312, the forms engine 124 accesses the
first field (field number 1) of the selected electronic form in
the PDA memory. In the example form presented in FIG. 2,
field 1 referenced by numeral 142 is accessed. Proceeding to
a decision state 314, forms engine 124 determines if the type
field of the current field is “script”. The example field 1
(142) is of type “script”. If the field type is script, the forms
engine advances to an “execute script” function 354 that
executes the script developed by the forms designer for the
current field. In general, if the type field is script, the script
initiates a calculation or an action to be performed by the
PDA 104. The execute script function 354 will be further
described in conjunction with FIG. 11.

If the field type is not script. as determined at state 314,
the forms engine 124 moves to a “draw field” function 316

5,704,029

15

that generates a screen display for the current field being
processed. In the example field drawn on the screen display
162 shown in FIG. 3, the user of the form is required to
respond to a sentence in a prompt box portion 163 of the
screen display 162 by making a selection or writing an
answer in an answer box portion 164. The draw field
function 316 will be further described in conjunction with
FIG. 9.

Moving to decision states 320, 330, 340, 350 and 370, the
forms engine 124 determines if one of buttons 220 to 226
(FIG. 3) in the control portion of the screen display 162 has
been selected, or if the user is making a selection or writing
an answer in the answer box portion 164. The control portion
of the screen display 162 comprises functions under forms
engine control, ie., buttons 220 through 226 and scroll
arrows 228, 230.

At decision state 320, the forms engine 124 determines if
the quit button 226 has been selected. If the quit button has
been selected, the forms engine proceeds to an end state 322
to terminate the forms engine process. If the quit button was
not selected, as determined at state 320, the forms engine
124 advances to a decision state 330 to determine if the help
button 224 has been selected. If so, the forms engine 124
moves to a decision state 332 to determine if the current field
has associated “help text” in the help field of the FDR. If so,
the forms engine 124 proceeds to state 334 and displays the
help text on the screen 106 of the PDA 104. If the forms
designer did not utilize “help text” for the current field, as
determined at state 332, or after the help text has been
displayed and dismissed, the forms engine 124 continues on
to a decision state 340.

If the help button 224 (FIG. 3) was not selected, as
determined at state 330, the forms engine 124 advances to
decision state 340 to determine if the “previous” button 222
has been selected. If so, the forms engine 124 moves to state
342 and pops the last field number that was entered on the
stack (created at state 306). The FDR corresponding to the
field number popped from the stack is then accessed, and the
forms engine 124 loops back to decision state 314 to process
the field.

If the previous button 222 (FIG. 3) was not selected, as
determined at state 340, the forms engine 124 advances to a
decision state 350 to determine if the “Next” button 220 has
been selected. If so, the forms engine 124 moves to a
decision state 351 to determine if the current field is a text
or numeric field type. If not, the forms engine 124 skips state
352 because the other field types insert their data into the
form data array when the user makes selections in the
answer box. If the current field type was determined at state
351 to be either text or numeric, the forms engine 124 moves
to state 352 and saves the response(s) or answer(s), i.e., the
resultant field data. provided by the user in the answer box
portion 164 into the form data array (created at state 308) at
the offset(s) identified for the current field. Each field of the
electronic form that requires a response from the user of the
form has one or more associated offsets, as defined in the
FDR, into the form data array. After the field data is saved
at state 352 or if the field type is other than text or numeric,
as determined at state 351, the forms engine 124 proceeds to
the “execute script” function 354. Function 354 performs the
step(s) of the script for the current field which may include
validating the response(s) of the user and determining the
next field to be processed. Function 354 will be further
described hereinbelow.

Upon return from the execute script function 354 (FIG.
11), the forms engine 124 checks the status of several flags

5

10

15

25

30

35

45

55

65

16

or indicators that may be set during execution of the script
file during function 354. The condition of the flags is
communicated to the forms engine 124. Moving to a deci-
sion state 356, the forms engine 124 determines if an “exit”
flag was set as a result of performing an exit statement
during function 354. If so, the forms engine proceeds to an
end state 358 which signifies that the form has been com-
pleted.

If the exit flag is not set, as determined at state 356, the
forms engine 124 proceeds to a decision state 360 to
determine if a “stack” flag is set. If so, the forms engine 124
loops back to state 314 to determine the field type of the new
field addressed and accessed at either state 732 (due to a
NEXT statement) or state 742 (due to a GOTO statement)
during execution of function 354.

If the stack flag is not set, as determined at state 360, the
forms engine 124 proceeds to a decision state 362 to
determine if a “restart” flag was set as a result of performing
a RESTART statement during function 354. If so, the forms
engine 124 loops back to state 306 to begin processing the
currently selected form from the beginning. During
RESTART of execute script 354, the form data array is saved
in PDA non-volatile static RAM at a state 752 before
returning to the forms engine 124.

If the restart flag is not set, as determined at state 362, the
forms engine 124 proceeds to a decision state 364 to
determine if an “end” flag was set. The end flag is set due to
reaching the end of script during function 354. If so, the
forms engine 124 loops back to decision state 320 to check
for additional input or action by the user. If the end flag is
not set, as determined at state 364, the forms engine 124
proceeds to state 366 to perform any error handling
necessary, for example, due to an error flag set during
execution of the forms engine 124 or any called functions,
such as array indices out of bounds, division by zero or other
error conditions. Upon completion of error handling at state
366, the forms engine proceeds to the end state 358.

If the Next button 220 (FIG. 3) was not selected, as
determined at state 350, the forms engine 124 advances to a
decision state 370 to determine if the user has made changes
to the answer box 164 portion of the display (FIG. 3)
response(s). If so, the forms engine 124 moves to a “process
answer box input” function 372. Function 372 initiates
drawing the selections or input made by the user in the
answer box portion 164 of the screen display 162 (FIG. 3)
while completing the current field and performs validation,
e.g., makes sure input falls within the constraints of the field.
The form data array and, if necessary, the field status record
are also updated during the answer box input function 372.
Function 372 will be further described in conjunction with
FIG. 10. Upon return from function 372 or if decision state
370 proves to be false (no answer box input), the forms
engine 124 loops back to decision state 320 to wait for user
input or selection of one of the buttons 220-226 (FIG. 3) in
the control portion of the screen display 162. In the current
preferred embodiment, the PDA 104 shuts itself off after a
user defined period of inactivity. When turned back on, the
user continues where he or she was previously.

Table 1 shows an example stack for the example Cus-
tomer Comment Card shown in FIGS. 2-7, while Table 2
shows an example form data array. Both the stack and the
array are shown when the form is completed by the user. The
values shown in the stack and form data array comrespond
with the user selections indicated in the example FIGS. 3-7.

5,704,029

17
TABLE 1
Field Order Stack
6 ¢« Topof Stack
5
4
3
2
TABLE 2
Form Data Array
Off-
set 1 2 3 4 5 6 7 8B 9 10 11 12 13
Value 5/13/94 3 1 1 2 1 3 2 5 1 3

V. DRAWING FIELDS

Referring now to FIGS. %94 and 9b, the “draw field”
function 316 will be described. The draw field function 316
draws the screen display for the current field being pro-
cessed. As previously mentioned, the user of the form is
required to respond to a “sentence” in a prompt box portion
(as shown by the example field illustrated in FIG. 3) of the
screen display 162 by making a selection or writing an
answer in an answer box portion 164. The sentence in the
prompt box portion can be a statement, a command, a
question or other similar construct, and may be an incom-
plete sentence, e.g., a phrase.

Beginning at a start state 400, the forms engine 124 moves
to state 402 and displays the prompt from the prompt field
of the current field description record (FDR) in the prompt
box portion 163 at the top of the screen display 162 (FIG. 3).
Proceeding to a decision state 404, the forms engine deter-
mines if the field type of the current FDR is “multiple
response”. If so, the forms engine 124 advances to a decision
state 406 to determine the number of responses allowed for
the current field by examining the number of offsets defined
in the current FDR. For example, field 4 referenced by
numeral 148 (FIG. 2¢) defines one offset (thus allowing one
response), while field 6 referenced by numeral 152 defines
two offsets (thus permitting two responses). Moving to a
decision state 408, if more than one response is allowed for
the current field, the forms engine 124 moves to state 410
and draws check boxes and assorted answers from the
answers array of the FDR, beginning at the top of the answer
box 164 (FIG. 7) until either all answers have been drawn or
no more answers will fit on the display screen 106 of the
PDA 104. Check boxes and the process of drawing them are
well known in the field of graphics technology, e.g., Visual
Basic available from Microsoft Corp. uses and draws check-
boxes.

If the current FDR only defines one response, i.e., one
offset, as determined at state 408, the forms engine proceeds
to state 412 and draws radio buttons and associated answer

10

15

35

45

55

65

18

text from the answer array of the FDR beginning at the top
of the answer box 164 (FIG. 5) until either all answers have
been drawn or no more answers will fit on the display screen
of the PDA 104. Radio buttons are round option buttons used
for making a selection, such that only one radio button can
be selected within a group of radio buttons at one time. At
the completion of state 410 (drawing check boxes) or state
412 (drawing radio buttons), the forms engine 124 moves to
a decision state 414 to determine if there are too many
possible answers or responses to fit on the screen 106 of the
PDA at one time. If so, the forms engine proceeds to state
416 and draws an “A to Z indexing bar™ at the bottom of the
answer box so the user can navigate the remaining answers
onto the display screen of the PDA. The answers are
arranged in alphabetic order to facilitate use of the indexing
bar. Alternatively, scroll arrows 228, 230 (FIG. 3) can be
used to scroll into view the additional answers (one screen-
ful at a time) into the answer box.

If all the answers fit on one display screen of the PDA, as
determined at state 414, or after the indexing bar is drawn at
state 416, the forms engine proceeds to a decision state 418
to determine if a field status record exists for the current
field. If not, the forms engine proceeds to a create field status
record function 420 to generate a record for the current field.
In the presently preferred embodiment, several field types
utilize a field status record, namely multiple response,
multiple dichotomy and matrix. Several fields may be uti-
lized within a field status record depending on the field type
defined in the current FDR. The matrix field type and the
multiple dichotomy field type use an answerState field and
the multiple response field type uses a usedOffsets/
answerState and two additional fields, described below, if
more than one offset is defined in the FDR.

As previously mentioned, the field status record is created
and used by the forms engine 124 to record which answers
or responses are selected by the user. Referring to the
example screen and records of FIG. 7 (for a multiple
response field type with multiple offsets), field status record
194 includes an usedOffsets/answerState field 202. The
usedOffsets field 202 indicates which offsets, of the offsets
defined in the corresponding FDR, are used. The usedOffsets
field 202 utilizes an “n” by one armray, where “n” is the
number of check boxes in the field, to indicate which offset
corresponds to each checked box. The array 202 essentially
indicates which box or button of a plurality of response
boxes or buttons is selected. The array 202 is a single
element if only one response is allowed, but has as many
elements as checkboxes if multiple responses are allowed.
All the array elements are initially set to NIL. The array 202
indicates the position of selected checkboxes, wherein the
first element of the array corresponds to the first checkbox
in the list of checkboxes and so forth. When a checkbox is
selected by the user, the first offset number from an avail Off-
sets array of the field status record is used to overwrite the
contents of the usedOffsets array corresponding to the
selected checkbox.

In the example of FIG. 7, offsets 12 and 13 are defined in
the FDR and two boxes are checked on the display at the first
and third positions (beginning at the top of the answer list,
with the first position selected first. The usedOffsets field is
indicated by [12.NIL, 13,NIL.NIL] in this example, where
NIL indicates that the position is not used.

Because more than one offset is defined in the correspond-
ing FDR for this multiple response field, two additional
fields are utilized in the field status record: boxesChecked
198, availOffsets 200. The value of the BoxesChecked field
198 indicates how many check boxes are currently checked.

5,704,029

19

In the example of FIG. 7, two boxes are checked (as seen in
answer box portion 164). The availOffsets field 200 indi-
cates which offsets, of the offsets defined in the correspond-
ing FDR, are yet unused. Initially, the offsets from the offset
field of the current FDR are copied into the availOffsets
array. In the example of FIG. 7, since two offsets are defined
in the FDR and two boxes are already checked, there are no
available offsets which is indicated by [NIL, NIL].

At the completion of creating the field status record for the
current field at function 420 or if the record was determined
to exist at decision state 418, the forms engine 124 proceeds
to a loop of states 422, 424, 426 to fill in any check marks
for the displayed ficld. At state 422, for each check box
visible in the answer box portion 164 of the display screen,
the forms engine 124 determines at a decision state 424 if a
check mark is to be placed in the check box at state 426. At
decision state 424, the forms engine uses the answerState
array, if multiple dichotomy is the current field type, or
usedOffsets array, if multiple response is the current field
type, of the field status record to determine if the position
indexed by the check box number currently evaluated con-
tains a value greater than zero. If so, a check mark is drawn
in the check box at state 426. If not, the forms engine loops
back to state 422 to evaluate the next visible check box. The
loop 422426 continues until all visible check boxes have
been evaluated, at which time the forms engine 124 moves
to state 428 and returns to the forms engine function (FIG.
8).

If the forms engine 124 determines at decision state 404
that the field type of the current FDR is not “multiple
response”, the forms engine advances to a decision state 430
to determine if the field type is “multiple dichotomy”. If so,
the forms engine 124 proceeds to state 410, wherein check
boxes are drawn on the answer box portion 164 of the
display screen of the PDA as seen in the example of FIG. 4.
State 410 and the remaining states of the flow for multiple
dichotomy are the same as for multiple response discussed
above. A field status record 168 utilizes an answerState field
170 that contains an array with as many elements as offsets
defined in the corresponding FDR 146. All the elements of
the array are initially set to NIL. When a checkbox is
selected by the user, the value of the position in the array
comresponding to the selected checkbox toggles from NIL to
one (1), if the box was initially blank, or from 1 to NIL, if
the checkbox was already checked. Thus, in the example of
FIG. 4, the first and second of three checkboxes is shown to
be checked, so the answerState array is [1, 1, NILJ.

If the forms engine 124 determines at decision state 430
that the field type of the current FDR is not “multiple
dichotomy”, the forms engine advances to a decision state
440 to determine if the field type is “text”. If so, the forms
engine 124 proceeds to state 442 and draws three lines at the
top of answer box portion 164 of the display screen 106 for
the user to write on with the stylus. Moving to state 444, the
forms engine 124 draws a QWERTY-style keyboard image
in the bottom part of the answer box. Moving to state 446,
the forms engine 124 checks the form data array to see if an
answer has already been stored for this field (storing opera-
tion done at state 352, FIG. 8) at a decision state 448. If the
field has already been answered, the forms engine 124
moves to state 450 and draws the value or characters stored
in the form data array on the lines (text) or line (numeric)
previously drawn (states 442 or 462) on the screen 106. If
the field is not already filled in, as determined at state 448,
or after completion of state 450, the forms engine 124 moves
to state 428 and returns to the forms engine function (FIG.
8).

10

15

20

25

30

35

4s

50

55

65

20

If the forms engine 124 determines at decision state 440
that the field type of the current FDR is not “text”, the forms
engine 124 advances to a decision state 460 to determine if
the field type is “numeric” If so, the forms engine 124
proceeds to state 462 and draws one line at the top of answer
box portion 164 of the display screen 106 for the user to
write on with the stylus. Moving to state 464, the forms
engine 124 draws a numeric keypad image in the bottom part
of the answer box. Moving to state 446, the forms engine
124 checks the form data array to see if an answer has
already been stored for this field. The remaining states for
the numeric field type, states 448, 450, and 428, have been
described above. An example of a numeric type field is
shown in the example of FIG. 3.

If the forms engine 124 determines at decision state 460
that the field type of the current FDR is not “numeric”, the
forms engine 124 proceeds throngh off-page connector B
468 to a decision state 470 on FIG. 9b to determine if the
field type is “matrix”. If so, the forms engine 124 proceeds
to state 472 and generates a row of bubbles on the screen 106
with associated text from the answer field of the current
FDR, with as many bubbles as there are values in the result
array of the FDR. This operation is repeated for as many
rows as there are offsets defined in the offset array of the
current FDR. For example, the FDR 150 for the example
matrix field shown in FIG. 6 has five values in the “result”
field and has five offsets defined in the “offset” field. Thus,
a 5x5 matrix is drawn in the answer box portion 164 of the
example screen display 184. Moving to state 473, the forms
engine 124 draws column headings in 473 based on the
range array in the current FDR.

Proceeding to a decision state 474, the forms engine 124
determines if a field status record 186 exists for the current
field. If not, the forms engine advances to a “create field
status record” function 476 to generate the record. The
record 186 utilizes an answerState array 188 that is a one by
“n” array with as many elements “n” as there are offsets
defined in the FDR for the current field. Each element of the
array is initially set to NIL. In the example of FIG. 6, five
offsets, corresponding to the five rows in the matrix, are
defined in the FDR 150. The first (top) row corresponds with
the first element of the array, and so forth. If a bubble is
selected in a particular row, the colunm number of the
selected bubble (left-most colunm number is one) is used as
the value of the element in the answerState array. A matrix
row without a selected bubble has the cormresponding ele-
ment in the answerState array as NIL.

If the field status record was determined to exist at state
474, or at the completion of “create field status record”
function 476, the forms engine 124 proceeds to a loop of
states 478, 480, 482 to mark any previously selected bubbles
for the displayed field. At state 478, for each row of bubbles
visible in the answer box portion 164 of the display screen,
the forms engine 124 determines at a decision state 480 if a
mark is to be placed in the designated bubble at state 482.
At decision state 480, the forms engine uses the answerState
array of the field status record to determine if the element of
the array at index [bubblerow] is not NIL. If true, at state
482, the forms engine 124 marks the bubble in the current
row of the matrix at the bubble column identified by the
value stored at index {bubblerow] in the answerState array.
If decision state 480 evaluates to false (the element at index
[bubblerow] is NIL), the forms engine 124 accesses the next
row of bubbles at state 478. The loop 478-482 continues
until all visible bubble rows have been evaluated, at which
time the forms engine 124 moves to state 484 and returns to
the forms engine function (FIG. 8).

5,704,029

21

If the forms engine 124 determines at decision state 476
that the field type of the current FDR is not “matrix”, the
forms engine advances to a decision state 490 to determine
if the field type is “counter”. If so, the forms engine 124
proceeds to state 492 and draws a button at the top of answer
box portion 164 of the display screen 106. This button
contains a number used as a counter, such that every time the
button is selected, the number is incremented by one. In
another embodiment of the invention, the counter can be
initialized to begin at a selected number, such as zero or one,
and count up, or be initialized to a different number, such as
100, and count down to yet another selected number. In
another embodiment of the invention, the forms engine 124
draws a timer on the display, in addition to the counter. The
timer can be set to begin at zero and time a predetermined
time interval, or begin at a selected amount of time, such as
an hour, and notify the user after the hour has expired by an
alarm or sound, such as a “beep” sound. Various other
counter and timer combinations are contemplated.

Moving to state 494, the forms engine 124 checks the
form data array at the offset corresponding to the current
“counter” field to see if the field already has a value stored
at a decision state 496. If the field does not already have a
value stored, the forms engine 124 moves to a state 498 and
draws the stored value on the button drawn at state 492. If
either the field does have a value stored in the form data
array, as determined at state 496, if the field type is not
“counter”, as determined at state 490, or at the completion
of drawing the value at state 498, the forms engine 124
moves to state 484 and returns to the forms engine function

(FIG. 8).
VL ANSWER BOX INPUT

Referring now to FIGS. 104, 105 and 10c, the “answer
box input” function 372 will be described. After a selected
field has been drawn on the screen 106 of the PDA 104, the
user of the electronic form responds to the prompt located in
the prompt portion 163 of the display. Answer box input
function 372 responds to the user’s selections and performs
the operations necessary to display the selections and update
the form data array for the current field and the field status
record (if necessary).

Beginning at a start state 520, the forms engine proceeds
to a decision state 522 to determine if the current field
displayed has a field type of “multiple response” If so, the
forms engine 124 moves to a decision state 523 to determine
if more than one response is allowed, i.e., is more than one
offset defined in the current FDR. If only one offset is
defined for this field, the forms engine 124 proceeds through
off-page connector D 525 to state 527 on FIG. 10c. At state
527, the forms engine 124 sets answerState array, which in
the case of a single response is a single element, to the button
number of the button selected. The button numbers begin
with one, beginning at the top of the display. Moving to state
529, the forms engine 124 sets the form data array indexed
by the offset defined in the FDR to the result value in the
FDR result array corresponding to the selected button. In the
example shown in FIG. S, the second button is selected, so
the value (i.e., two) of second element in the result array is
written to the form data array at offset 6. Upon completion
of state 529, the forms engine 124 moves to state 531 and
returns to the forms engine function (FIG. 8).

Returning attention now to decision state 523 on FIG.
10aq, if more than one offset is defined by the current FDR,
the forms engine 124 advances to a decision state 524 to
determine if the checkbox selected by the user is already

10

15

20

25

30

35

45

50

55

65

22

checked. If so, the forms engine 124 moves to state 526 and
removes or deletes the check from the checkbox on the
screen display. The following three states, 530, 532, 534,
revise the field status array record and form data array for
this field. At state 530, the forms engine 124 removes the
offset associated with the current checkbox from the used-
Offsets array and adds the offset to the availOffsets array in
the field status record. Proceeding to state 532, the forms
engine 124 sets the form data array at the offset freed up at
state 530 to NIL. Then at state 534, the forms engine 124
decrements the boxesChecked field in the field status record
by one. Upon completion of state 534, the forms engine 124
moves to state 536 and returns to the forms engine function
(FIG. 8).

Returning attention now to decision state 524, if the
checkbox selected by the user is not already checked, the
forms engine 124 moves to a decision state 540. At decision
state 540, the forms engine 124 determines if the value of the
boxesChecked field of the field status record plus one is less
than or equal to the number of offsets defined in the FDR for
the current field. I so, the forms engine 124 proceeds to state
542 and draws a check on the screen display in the checkbox
selected by the user. The following three states, 546, 548,
550, revise the field status array record and form data array
for this field. At state 546, the forms engine 124 removes the
first non-nil element from the availOffsets array and adds the
offset to the usedOffsets array at the index [checkbox
number] in the field status record. Proceeding to state 548,
the forms engine 124 sets the form data array at the new
offset, added to usedOffsets at state 546, to the value of the
result array of the FDR at index checkbox number. Moving
to state 550, the forms engine 124 increments the box-
esChecked field in the field status record by one. Upon
completion of state 5§50, the forms engine 124 moves to state
536 and returns to the forms engine function (FIG. 8).

Returning attention now to decision state 522, if the field
type is not “multiple response”, the forms engine 124
advances to a decision state 560 and determines if the field
type is “multiple dichotomy”. If so, the forms engine 124
proceeds to state 562 and writes the answerState field at
index [checkbox number] in the field status record for the
current field to the result of the Boolean exclusive-OR of the
value presently at answerState[checkbox number} with one.
In essence, this operation toggles the value of the checkbox
selected by the user in the answerState array. Moving to a
decision state 564, the forms engine 124 determines if the
checkbox selected by the user is already marked as checked.
If so, the forms engine 124 moves to state 566 and removes
or deletes the check from the selected checkbox. i.e., if the
user selects a checkbox that is already marked. the mark is
cleared from the checkbox. Proceeding to state 568, the
forms engine 124 sets the form data array at index [offset
array in the FDR of the current field which is indexed by
[checkbox number]] to NIL. For example, referring to FIG.
4, the offset array field in the FDR 146 for the current field
is [3.4,5]. If checkbox number two (the second from the top)
is selected by the user, the second element in the offset array
is indexed, yielding the value four (4). Thus, offset four in
the form data array would be set to NIL (since the checkbox
was previously checked, as shown in FIG. 4). Upon comple-
tion of state 568, the forms engine 124 moves to state 536
and returns to the forms engine function (FIG. 8).

If the checkbox selected by the user is not already
checked, as determined at decision state 564, the forms
engine 124 proceeds to state 570 and draws a check in the
selected checkbox. Moving to state 572. the forms engine
124 sets the form data array at index [offset array in the FDR

5,704,029

23

which is indexed by [checkbox number]] to one. Upon
completion of state 572, the forms engine 124 moves to state
536 and returns to the forms engine function (FIG. 8).

Returning attention now to decision state 569, if the field
type is not “multiple dichotomy”, the forms engine 124
proceeds through off-page comnector C 578 to a decision
state 590 on FIG. 105 and determines if the filed type is
“text”. If so, the forms engine 124 proceeds to state 592 and
determines if the user has written on the lines displayed on
the screen 106 of the PDA 104 or has tapped on the keyboard
image displayed on the screen. The user can use either the
keyboard image to pick the desired characters to be “typed”
on the three lines or the stylus to write the desired characters
on the lines. If the characters are written, as determined at
state 592, the PDA 104 utilizes an internal built-in recog-
nition function to interpret the handwriting and display the
handwriting on the lines.

If the user has tapped on the keyboard image, as deter-
mined at state 592, the forms engine 124 either inserts the
letter pressed at the insertion point to the text string or
performs the action, e.g., move forward, move backward,
delete. For example, a particular field may be looking for a
single letter, such as “c” as an answer or may alternately
build up a word or sequence of words (a single letter at a
time if using the keyboard or a word at a time if writing) in
the text string. If a displayable character was tapped by the
user, the character is displayed on the lines of the PDA
screen 166. Upon completion of state 596, the forms engine
124 moves to state 598 and returns to the forms engine
function (FIG. 8).

Returning attention now to decision state 5§90, if the field
type is not “text”, the forms engine 124 proceeds to a
decision state 610 and determines if the field type is
“numeric”. If so, the forms engine 124 proceeds to state 612
and executes states 612 and 614 or 612 and 616 in a manner
similar to states 5§92-596 for the field type “text”. The
differences are that only one line is shown on the PDA
screen 106 for a numeric field type, and a number is built up
one digit at a time (or the answer could be a single digit)
instead of building a text string.

Returning attention now to decision state 610, if the field
type is not “numeric”, the forms engine 124 proceeds to a
decision state 630 and determines if the field type is
“matrix”. If so, the forms engine 124 proceeds to state 632
and determines if the button selected by the user is already
marked or selected. If so, no further action is performed on
the row in the matrix that has the selected button. The forms
engine 124 moves to state 598 and returns to the forms
engine function (FIG. 8).

If the button pressed by the user is not already marked as
selected, as determined at decision state 632, the forms
engine 124 proceeds to state 634 and removes or deletes the
mark from the previously selected bubble in the same row as
the mark currently selected by the user. Moving to state 636,
the forms engine 124 draws a mark in the newly selected
bubble in the row. Proceeding to state 638, the forms engine
124 changes the answerState field of the field status record
for the current field at index [Row of Button] to the column
number (column one is left-most on the display) of the
newly selected bubble. Then, at state 640, the forms engine
124 changes the form data array indexed at the offset array
field (in the FDR for the current field) that is indexed by the
Row of Button to the value of the result stored in result field
of the current FDR indexed by the Column of Button. The
Row of Button is the row in the matrix of the button newly
selected by the user.

10

15

20

25

30

35

45

55

65

24

For example, referring to FIG. 6, the offset array field in
the FDR 150 is {7.8,9,10,11]. If the user just selected the last
(fifth) bubble in the fifth row, the Row of Bubble is 5.
Therefore, the fifth position in the offset array field is
indexed by Row of Bubble to yield offset 11 (eleven). This
offset eleven then is used to index the form data array at
index eleven, which is changed to the value stored in the
result array at index Column of Button, which in our
example is 5. At the completion of state 640, the forms
engine 124 moves to state 598 and returns to the forms
engine function (FIG. 8).

Returning attention now to decision state 630, if the field
type is not “matrix”, the forms engine 124 proceeds to a
decision state 650 and determines if the field type is
“counter”. If so, the forms engine 124 proceeds to state 652
and increments the element located in the form data array
indexed at the offset in the FDR for this field by one and then
draws this number in the button displayed on the PDA screen
106. In other words, the counter value is incremented by
one, and the value is stored in the form data array at the
offset for this field and also displayed on the PDA screen. At
the completion of state 652, or if the field type is not
“counter”, as determined at state 650, the forms engine 124
moves to state 654 and returns to the forms engine function
(FIG. 8).

VIL. EXECUTE SCRIPT

The “execute script” function 354 will now be described.
The execute script function 354 is called by the forms engine
124 (FIG. 8) cither as a result of determining that the field
type of the cumrent field is “script™ (state 314), or after the
Next button is pushed (state 350) and the field data for the
current field is saved in the form data array (state 352). In
either case, the script field of the FDR for the current field
is executed by the function 354. The script field contains a
script or small program written in a scripting language
supporting flow of control statements, such as IF/THEN/
ELSE, and over 100 functions. The script may be as short as
a single statement, or contain an entire procedure. A script
can provide functions for the electronic form such as data
validation, field navigation, context sensitive help, data
formatting, alert sounds. and dialog boxes. Data validation
may be performed with respect to any information available
to the forms engine, which includes information derived
from the functions defined in the scripting language, the
forms data array, and information available from the PDA
operating system. An example of data that can be incorpo-
rated into a validation statement is the current date. The
current date could be compared to a date provided by the
user, and the user input could be accepted or rejected based
on the comparison.

The execute script function utilizes the grammar rules
provided in Table 3:

TABLE 3

Script Language Grammar Rules - Backus Naur Form (BNF)

The rules presented here are defined with the following conventions:
nonterminal

TERMINAL

[optional]

{ one | two | three } any of these choices

[zero or more] *

[one or more |+

< description > This is a description of what is allowed
GRAMMAR RULES

5,704,029

25

TABLE 3-continued

Script Language Grammar Rules - Backus Naur Form (BNF)

input
statement-list
statement-list
statement-list statement
statement
{ function | if-expression | for-expression | while-expression |
variable~declaration }
function
name ([parameter-list])
parameter-list
{ parameter | parameter , parameter-list }
parameter
{ string | expression }
if-expression
IF boolean-expression THEN statement-list [ELSE statement-list]
ENDIF
for-expression
FOR name GETS expression TO expression ENDFOR
while-expression
WHILE boolean-expression DO statement-list ENDWHILE
variable-declaration
{ VAR pame | VAR name GETS expression }
boolean-expression
{ boolean-function
| expression boolean-operator expression
| boolean-expression AND boolean-expression
| boolean-expression OR boolean-expression
| NOT boolean-expression
| expression }
boolean-operator
{=l<I>II>=1<=}
expression
{ expression operator expression
| function
| number
| realnumber
| OFFSET number
1 OFFSET (expression) }
operator
{+1-1*IDIVIMOD | & }
name
[character }+

[—11[digit b
realnumber

[—11 digit b - [digit]* [{ e |E } [—] [digit 1+]
{0111213141516171819}

digit

“ character-sequence ”
character-sequence

[{string-character | escape-sequence }]*
string-character

< any ascii character code 32-127 except “ or \ >
escape-sequence

[V{“\Inlt}
character

<AtoZand az>

Referring now to FIG. 11, portions of the execute script
function 354 relevant to the forms engine 124 are presented
in a flowchart format. The execute script function 354 begins
at a start state 700, accesses the first statement in the script,
and proceeds to a decision state 702 to determine if the
statement is part of a control structure, e.g., IFFTHEN/ELSE.
H so, the forms engine 124 performs the action necessary to
implement the control structure at state 704, and advances to
state 706 to access the next statement in the script file based
on the action of any control structure that may be active, e.g.,
loop, IF/THEN. The forms engine 124 then loops back to
state 702 to evaluate the new statement in the script.

If the statement is not part of a control structure, as
determined at decision state 702, the forms engine 124
proceeds to decision states 720-810 to check the statements

10

15

25

30

35

45

50

55

60

65

26

in the script by type. At decision state 720. the forms engine
124 determines if the statement is an EXIT statement. If so,
the forms engine 124 advances to state 722 and permanently
saves the form data array in the PDA 104, After the data is
saved at state 722, the forms engine 124 moves to state 724
wherein an “exit” flag is set and a return is performed to the
forms engine function (FIG. 8). The exit flag denotes that the
EXIT statement was performed by the execute script func-
tion 354.

If the current statement is not an EXIT statement as
determined at decision state 720, the forms engine 124
proceeds to a decision state 730 to determine if the statement
is a NEXT statement. If so, the forms engine 124 advances
to state 732, pushes the current field number on the stack
(created at state 306, FIG. 8), and accesses the FDR of the
next field in numerical order, i.e., moves to the next field of
the electronic form. After the stack push and next field
access at state 732, the forms engine 124 moves to state 734
wherein a “stack” flag is set and a return is performed to the
forms engine function (FIG. 8). The stack flag denotes that
a navigation-type statement was performed by the execute
script function 354.

If the current statement is mot a NEXT statement as
determined at decision state 730, the forms engine 124
proceeds to a decision state 740 to determine if the statement
is a GOTO (numeric expression) statement. If so, the forms
engine 124 advances to state 742, pushes the current field
number on the stack, and accesses the FDR of the field
number provided or determined by the statement, i.c., skips
or jumps to the field of the electronic form pointed to by the
numeric expression in the GOTO statement. After the stack
push and next skip field access at state 742, the forms engine
124 moves to state 734 wherein the “stack” flag is set and a
return is performed to the forms engine function (FIG. 8).

If the current statement is not a GOTO (numerical
expression) statement as determined at decision state 740,
the forms engine 124 proceeds to a decision state 750 to
determine if the statement is a RESTART statement. If so,
the forms engine 124 advances to state 752 and permanently
saves the form data array in the PDA 104 (as performed at
state 722). After the data is saved at state 752, the forms
engine 124 moves to state 754 wherein a “restart” flag is set
and a return is performed to the forms engine function (FIG.
8). The restart flag denotes that the RESTART statement was
performed by the execute script function 354.

If the current statement is not a RESTART statement as
determined at decision state 750, the forms engine 124
proceeds to a decision state 760 to determine if the statement
is an “other returning” statement. “Other returning” state-
ments designates other statements not listed in the flowchart
of FIG. 11 that are processed by the execute script function
and optionally perform some action, including communica-
tion based actions, and return to the forms engine function.
If state 760 is true, the forms engine 124 advances to state
762 and optionally performs the action corresponding to the
“other returning” statement, if an action is required. After
the optional action at state 762, the forms engine 124 moves
to state 764 wherein a optional flag, shown as “other”. is set
and a return is performed to the forms engine function (FIG.
8). Thus, a generic returning function has been described.

If the current statement is not an “other returning” state-
ment as determined at decision state 760, the forms engine
124 proceeds to a decision state 770 to determine if the
statement is a BEEP statement. If so, the forms engine 124
advances to state 772 and initiates a beep sound that is
produced by the PDA 104. Of course, other sounds can be

5,704,029

27

readily produced in other embodiments. After the beep
sound is produced at state 772, the forms engine 124
proceeds to state 706 wherein the next statement in the script
file is accessed, as previously described.

If the current statement is not a BEEP statement as
determined at decision state 770, the forms engine 124
proceeds to a decision state 780 to determine if the statement
is a MESSAGE (STRING EXPN) statement. If so, the forms
engine 124 advances to state 782 and displays a dialog box
with the “STRING” message on the PDA screen 106. The
forms engine 124 then proceeds to state 706 wherein the
next statement in the script is accessed.

If the current statement is not a MESSAGE (STRING
EXPN) statement as determined at decision state 780, the
forms engine 124 proceeds to a decision state 790 to
determine if the statement is an “other non-returning” state-
ment. “Other non-returning” statement designates other
functions not listed in the flowchart of FIG. 11 that are
processed by the execute script function and perform an
action but do not return to the forms engine function. If state
790 is true, the forms engine 124 advances to state 792 and
performs the action corresponding to the “other non-
returning” function. The forms engine 124 then proceeds to
state 706 wherein the next statement in the script file is
accessed.

If the current statement is not an “other non-returning”
statement, as determined at decision state 790, the forms
engine 124 proceeds to a decision state 800 to determine if
the statement is a SET statement, in the format SET
[VARIABLE|TO [EXPN], e.g., SET data[3] TO § or SET
data[10]TO 12+min(data|1].data[2]). If so, the forms engine
124 proceeds to state 802 and assigns the right-hand side of
the SET statement, ie., the expression (EXPN) after the
word “TO”, to the variable after the word “SET.” Moving to
state 706, the forms engine 124 accesses the next statcment
in the script file, as described above.

If the current statement is not a SET statement as deter-
mined at decision state 800, the forms engine 124 proceeds
to a decision state 810 to determine if the end of the script
is reached. If so, the forms engine 124 moves to state 812
wherein an “end” (of script) flag is set and a return is
performed to the forms engine function (FIG. 8). The end
flag denotes that the end of the script was reached by the
execute script function 354. Upon return to the forms engine
function, the forms engine 124 evaluates the flags and then
waits for user input. If the end of the script has not been
reached, as determined at decision state 810, the forms
engine 124 proceeds to state 706 wherein the next statement
in the script is accessed.

VII. BENEFITS OF THE FORMS SYSTEM

Complex forms, such as questionnaires, can be created
quickly and easily. Part of the forms system 100 includes the
forms creation program that runs on a Macintosh or Win-
dows based PC. This application allows the user to create a
form for use with the Newton PDA 104 (FIG. 1). To create
a form, the form designer simply points and clicks to define
a number of fields of different types. For each field, the
designer specifies certain attributes such as the field type. a
question or prompt, a list of answer choices, a help message,
a control script, and others. All attributes are defined with
visual editors providing maximal ease of use. This informa-
tion is then easily transferred to the Newton via serial cable.
After data has been collected by filling out the form with the
Newton, the data is transferred from the Newton back to the
host PC where it is available for use with common data
analysis programs.

10

15

25

30

35

45

50

55

65

28

No paper forms are needed. At no time in the data
collection process is paper used. From the time the form is
designed to the time data is collected, both the form and data
exist only in digital format. This eliminates the high cost of
form duplication and also eliminates labor and equipment
costs associated with scanning forms using OMR or OCR.
The elimination of paper forms also rids the data collection
process of expensive manual data entry that was previously
needed to transfer data from paper forms to a computer.

Designers can create intelligent forms that cannot be
completed incorrectly. Field scripts allow form designers to
implement data validation, skip patterns, data formatting,
alert sounds, dialog boxes, and communications abilities.
Scripts are responsible for actually walking the user through
the entire form and providing interactive feedback. This
technique brings to data collection a level of case and
accuracy previously unattainable in the industry.

As improvements are made in PDA technology, the flex-
ibility of the forms system 100 will allow it to take advan-
tage of new features. For example, as handwriting recogni-
tion improves, open ended questions can be answered more
easily by allowing users to write text directly on the screen
rather than using on-screen keyboards. Further improve-
ments in wireless technology will also allow the forms
system 100 to improve the speed at which data can be
collected and analyzed.

IX. OPTIONAL SYSTEM CONFIGURATION

In yet other embodiments, other structures, arrays, por-
table computers, operating systems or algorithms can be
used. The general system, method and procedures would
remain the same. For example, field types will be added
allowing forms to collect information using external periph-
eral devices such as bar code readers, digital cameras, and
microphones. With these additions, forms could be created
that are capable of collecting visual and audible data,
something never possible with paper forms.

The forms system 160 described herein finds application
in many environments, and is readily adaptable for use
therein. The system finds use in any application in which
data is collected procedurally or algorithmically. For
example, the system could be used to automate a personality
profile based on a line of questioning. After answering a
series of questions, the user would be provided with results
calculated from the answers he gave. The system would also
find application in a product order entry environment. Prod-
uct order forms could be filled out using the PDA and then
sent directly to a vendor where they would be automatically
processed because they arrived in digital format. The system
would also find use automating quality control checklists
common on manufacturing floors.

X. SUMMARY OF THE ADVANTAGES OF THE
PRESENT INVENTION

Eliminates paper forms from a previously paper intensive
process;

Eliminates need for expensive scanners used to process
paper forms;

Eliminates labor expense by eliminating manual data entry,
form coding, and form scanning;

Significantly reduces form creation and modification cost by
eliminating layout necessary for paper forms;

Allows form designers to create intelligent forms that can
eliminate the opportunity for errors common in previous
methods;

Data collectors are ‘walked’ through forms and can get help
at any time, thus reducing training time and improving
accuracy;

5,704,029

29

Data can be collected, compiled, and analyzed in an
extremely short span of time and with a level of ease and
accuracy not previously attainable.

While the above detailed description has shown,
described, and pointed out the fundamental novel features of
the invention as applied to various embodiments, it will be
understood that various omissions and substitutions and
changes in the form and details of the device illustrated may
be made by those skilled in the art, without departing from
the spirit of the invention.

What is claimed is:

1. A system for completing an electronic form, compris-
ing:

a portable unit including a processor, a graphics display,

an input device mechanism and a memory;

an electronic form stored in the memory of the unit
comprising a plurality of form descriptors that define
displayable items, wherein each form descriptor
includes a self-contained script program indicative of
the next displayable item to be displayed, wherein each
script program stores and retrieves data to and from the
memory and wherein the order of display of the dis-
playable items is defined by the script programs;

a forms engine to display a single displayable item on the
graphics display described by one of the form
descriptors, wherein the displayable item includes a
sentence and a set of possible response entries, wherein
the script program of the displayable item is interpreted
by the forms engine, and wherein the one displayable
item utilizes the entire display; and

wherein the input device mechanism accepts one or more
of the responses selected by a user of the unit.

2. The system defined in claim 1, wherein the input

mechanism comprises:

a stylus;

a screen responsive to contact with the stylus and pro-
viding signals indicative to each contact; and

software in communication with the screen for responding
to each contact of the screen.

3. The system defined in claim 1, wherein the forms
engine is capable of receiving signals from an external
peripheral device.

4. The system defined in claim 3, wherein the peripheral
device includes one of the following: barcode reader, digital
camera, and microphone.

10

15

25

30

35

45

30

5. The system defined in claim 1, wherein the form
descriptor includes a type field.

6. The system defined in claim 5, wherein one of the field
types is script.

7. The system defined in claim 6, wherein the initial
initiates an action.

8. The system defined in claim 7, wherein the action
includes a calculation.

9. The system defined in claim 7, wherein the action
initiates a communication function.

10. The system defined in claim 9, wherein the commu-
nication function includes a communications device.

11. The system defined in claim 10, wherein the commu-
nications device comprises a modem.

12. The system defined in claim 10, wherein the commu-
nication device comprises a point-to-point communication
link.

13. The system defined in claim 10, wherein the commu-
nication device comprises a wireless device.

14. The system defined in claim 1, wherein the display-
able item requires an answer box input by the user.

15. The system defined in claim 14, wherein the answer
box input is indicative of one of a plurality of types.

16. The system defined in claim 15, wherein one answer
box input type includes a counter function.

17. The system defined in claim 16, wherein the counter
function displays a button and a number on the graphics
display, and wherein the number is changed when the button
is selected by the user.

18. The system defined in claim 17, wherein the number
is initialized to a predetermined value.

19. The system defined in claim 17, wherein the number
is incremented when the button is selected by the user.

20. The system defined in claim 17, wherein the number
is decremented when the button is selected by the user.

21. The system defined in claim 1, wherein the display-
able item includes a next button.

22. The system defined in claim 21, wherein selection of
the next button initiates evaluation of an expression to
validate the response by the user.

23. The system defined in claim 22, wherein a successful
evaluation of the expression to validate the response initiates
an evaluation of an expression to determine the next form
descriptor.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,704,029 Page 1 of 1
DATED : December 30, 1997
INVENTOR(S) : Gerald V. Wright

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 30
Line 5, please change “initial” to -- script --.

Signed and Sealed this

Fifteenth Day of October, 2002

Attest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

