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Abstract

Vision based mobile robot guidance has proven difficult for classical machine
vision methods because of the diversity and real time constraints inherent in the
task. This thesis describes a connectionist system called ALVINN (Autonomous
Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN
learns to guide mobile robots using the back-propagation training algorithm. Be-
cause of its ability to learn from example, ALVINN can adapt to new situations
and therefore cope with the diversity of the autonomous navigation task.

But real world problems like vision based mobile robot guidance presents a
different set of challenges for the connectionist paradigm. Among them are:

* How to develop a general representation from a limited amount of real
training data,

9 How to understand the internal representations developed by artificial neural
networks,

* How to estimate the reliability of individual networks,

* How to combine multiple networks trained for different situations into a

single system,

* How to combine connectionist perception with symbolic reasoning.

This thesis presents novel solutions to each of these problems. Using these
techniques, the ALVINN system can learn to control an autonomous van in under 5
minutes by watching a person drive. Once trained, individual ALVINN networks
can drive in a variety of circumstances, including single-lane paved and unpaved
roads, and multi-lane lined and unlined roads, at speeds of up to 55 miles per hour.
The techniques also are shown to generalize to the task of controlling the prec; ,e
foot placement of a walking robot.
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Chapter 1

Introduction

A truly autonomous robot must sense its environment and react appropriately.
Previous mobile robot perception systems have relied on hand-coded algorithms
for processing sensor information. In this dissertation I develop techniques which
enable artificial neural networks (ANNs) to learn the visual processing required
for mobile robot guidance. The power and flexibility of these techniques are
demonstrated in two domains, wheeled vehicle navigation, and legged robot foot
positioning.

The central claims of this dissertation are:

" By appropriately constraining the problem, the network architecture and the
training algorithm, ANNs can quickly learn to perform many of the complex
perception tasks required for mobile robot navigation.

" A neural network-based mobile robot perception system is able to robustly
handle a wider variety of situations than hand-programmed systems because
of the ability of ANNs to adapt to new sensors and situations.

" Artificial neural networks are not just black boxes. Their internal represen-
tations can be analyzed and understood.

" The reliability of ANNs can be estimated with a relatively high precision.
These reliability estimates can be employed to arbitrate between multiple
expert networks, and hence facilitate the modular construction of connec-
tionist systems.
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Figure 1.1: Block diagram of sensor based mobile robot guidance

9 By combining neural network-based perception with symbolic reasoning,
an autonomous navigation system can achieve accurate low-level control
and exhibit intelligent high-level behavior.

1.1 Problem Description

To function effectively, an autonomous mobile robot must first be capable of pur-
poseful movement in its environment. This dissertation focuses on the problent of
how to employ neural network based perception to guide the movement of such
a robot. To navigate effectively in a complex environment, a mobile robot must
be equipped with sensors for gathering information about its surroundings. In this
work, I have chosen imaging sensors as the primary source of information be-
cause of their ability to quickly provide dense representations of the environment.
The imaging sensors actually employed include color and black-and-white video
cameras, a scanning laser rangefinder and a scanning laser reflectance sensor'.

The imaging sensors provide input to the component of an autonomous mobile
robot which will be the primary focus of this dissertation, the perceptual process-
ing module (See Figure 1.1). The job of the perceptual processing module is to
transform the information about the environment provided by one or more imag-
ing sensors into an appropriate high level motor command. The motor command
appropriate for a given situation depends both on the current state of the world as
reported by the sensors, and the perception module's knowledge of appropriate re-
sponses for particular situations. The motor responses produced by the perception
module take the form of elementary movement directives, such as "drive the robot

'Work is also underway in using the same techniques to interpret the output from a sonar array
and an infrared camera.
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along an arc with a 30m radius" or "move the robot's foot 2.5cm to the right".
The elementary movement directives are carried out by a controller which

manipulates the robot's actuators. The determination of the correct motor torques
required to smoothly and accurately perform the elementary movement directives
is not addressed in this dissertation. While it is possible to use connectionist tech-
niques for low level control [Jordan & Jacobs, 1990, Katayama & Kawato, 19911.
this aspect of the problem is implemented using classical PID control in each ot
the systems described in this work.

The two mobile robot domains used to develop and demonstrate the techniques
of this thesis are autonomous outdoor driving and precise foot positioning for a
robot designed to walk on the exterior of a space station. Because it embodies
most of the difficulties inherent in any mobile robot task, autonomous outdoor
driving is the primary focus of this work.

In autonomous outdoor driving, the goal is to safely guide the robot through
the environment. Most commonly, the environment will consist of a network of
roads with varying characteristics and markings. In this situation, the goal is to
keep the robot on the road, and in the correct lane when appropriate. There is
frequently the added constraint that a particular route should be followed through
the environment, requiring the system to make decisions such as which way to
turn at intersections. An additional desired behavior for the autonomous robot is
to avoid obstacles, such as other cars, when they appear in its path.

The difficulty of outdoor autonomous driving stems from four factors. They
are

" Task variations due to changing road type

* Appearance variations due to lighting and weather conditions

* Real time processing constraints

" High level reasoning requirements

A general autonomous driving system must be capable of navigating in a
wide variety of situations. Consider some of the many driving scenarios people
encounter every day: There are multi-lane roads with a variety of lane markers.
There are two-lane roads without lane markers. There are situations, such as
city or parking lot driving, where the primary guidance comes not from the r-ad
delineations, but from the need to avoid other cars and pedestrians.
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The second factor making autonomous driving difficult is the variation in
appearance that results from environmental factors. Lighting changes, and deep
shadows make it difficult for perception systems to consistently pick out important
features during daytime driving. The low light conditions encountered at night
make it almost impossible for a video-based system to drive reliably. In addition,
missing or obscured lane markers make driving difficult for an autonomous system
even under favorahle lighting conditions.

Given enough time, a sophisticated image processing system might be able to
overcome these difficulties. However the third challenging aspect of autonomous
driving is that there is a limited amount of time available for processing sensor
information. To blend in with traffic, an autonomous system must drive at a
relatively high speed. To drive quickly, the system must react quickly. For
example, at 50 miles per hour a vehicle is traveling nearly 75 feet per second. A
lot can happen in 75 feet, including straying a significant distance from the road,
if the system isn't reacting quickly or accurately enough.

Finally, an autonomous driving system not only must perform sophisticated
perceptual processing, it also must make high level symbolic decisions such as
which way to turn at intersections. This dissertation shows that the first three
factors making mobile robot guidance difficult can be overcome using artificial
neural networks for perception, and the fourth can be handled by combining
artificial neural networks with symbolic processing.

1.2 Robot Testbed Description

The primary testbed for demonstrating the applicability of the ideas developed
in this dissertation to autonomous outdoor driving is the CMU Navlab, shown
in Figure 1.2. The Navlab is a modified Chevy van equipped with forward and
backward facing color cameras and a scanning laser rangefinder for sensing the
environment. These are the primary sensory inputs the system receives. The
Navlab also contains an inertial navigation system (INS) which can maintain the
vehicle's position relative to its starting location. The Navlab is outfitted with
three Sun Sparcstations, which are used for perceptual processing and other high
level computation. The Navlab also has a 68020-based processor for controlling
the steering wheel and accelerator and for monitoring the vehicle's status.

The Navlab can be controlled by computer or driven by a person just like a
normal car. This human controllability is useful for getting the Navlab to a test site,
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Figure 1.2: The CMU Navlab Autonomous Navigation Testbed

and as will be seen in Chapter 3, for teaching an artificial neural network to drive by
example. I have used two other robots to demonstrate the power of connectionist
robot guidance, a ruggedized version of the Navlab called Navlab II, and a walking
robot called the Self Mobile Space Manipulator (SM 2). These additional testbeds
will be described in more detail in Chapters 5 and 9, respectively.

1.3 Dissertation Overview

The goal of this thesis is to develop techniques that enable artificial neural networks
to guide mobile robots using visual input. In chapter 2, 1 present the simple neural
network architecture that serves as the basis for the connectionist mobile robot
guidance system I develop called ALVINN (Autonomous Land Vehicle In a Neural
Network). The architecture consists of a single hidden layer, feedforward network
(see Figure 1.3). The input layer is a two dimensional retina which receives input
from an imaging sensor such as a video camera or scanning laser rangefinder. The
output layer is a vector of units representing different steering responses, ranging
from a sharp left to a sharp right turn. The network receives as input an image of
the road ahead, and produces as output the steering command that will keep the
vehicle on the road.
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Figure 1.3: ALVINN driving network architecture

Although some aspects of ALVINN's architecture and I/O representation are
unique, the network structure is not the primary reason for ALVINN's success.
Instead, much of its success can be attributed to the training methods presented
in Chapters 3 and 4. Using the training "on-the-fly" techniques described in
Chapter 3, individual three-layered ALVINN networks can quickly learn to drive
by watching a person steer. These methods allow ALVINN to learn about new
situations first hand, as a person drives the vehicle. The ability to augment the
limited amount of live training data available from the sensors with artificial images
depicting rare situations is shown to be crucial for reliable network performance
in both Chapters 3 and 4.

Using the architecture described in Chapter 2, and the training techniques from
Chapters 3 and 4, ALVINN is able to drive in a wide variety of situations, described
in Chapter 5. As a preview, some of ALVINN's capabilities include driving on
single-lane paved and unpaved roads, and multi-lane lined and unlined roads, at
speeds of up to 55 miles per hour.

But developing networks that can drive is not enough. It is also important to
und, -stand how the networks perform their functions. In order to quantitatively
understand the internal representation developed by individual driving network, I
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develop a technique called sensitivity analysis in Chapter 6. Sensitivity analysis
is a graphical technique which provides insight into the processing performed by
a network's individual hidden units, and into the cooperation between multiple
hidden units to carry out a task. The analysis techniques in Chapter 6 illustrate
that ALVINN's internal representation varies widely depending on the situations
for which it is trained. In short, ALVINN develops filters for detecting image
features that correlate with the correct steering direction.

A typical filter developed by ALVINN is shown in Figure 1.4. It depicts
the connections projecting to and from a single hidden unit in a network trained
on video images of a single-lane, fixed width road. This hidden unit receives
excitatory connections (shown as white spots) from a road shaped region on the
left of the input retina (see the schematic). It makes excitatory connections to the
output units representing a sharp left turn. This hidden unit is stimulated when a
road appears on the left, and suggests a left turn in order to steer the vehicle back
to the road center. Road-shaped region detectors such as this are the most common
type of feature filters developed by networks trained on single-lane unlined roads.
In contrast, when trained for highway driving ALVINN develops feature detectors
that determine the position of the lane markers painted on the road.

This situation specificity allows individual networks to learn quickly and drive
reliably in limited domains. However it also severely limits the generality of
individual driving networks. Chapters 7, 8 and 9 focus on techniques for combining
multiple simple driving networks into a single system capable of driving in a wide
variety of situations. Chapter 7 describes rule-based techniques for integrating
multiple networks and a symbolic mapping system. The idea is to use a map of
the environment to determine which situation-specific network is appropriate for
the current circumstances. The symbolic mapping module is also able to provide
ALVINN with something the networks lack, namely the ability to make high level
decision such as which way to turn at intersections.

However rule-based arbitration is shown to have significant shortcomings.
Foremost among them is that it requires detailed symbolic knowledge of the
environment, which is often difficult to obtain. In Chapters 8 and 9, I develop
connectionist multi-network arbitration techniques to complement the rule-based
methods of Chapter 7. These techniques allow individual networks to estimate
their own reliability in the current situation. These reliability estimates can be
used to weight the responses from multiple networks and to determine when a new
network needs to be trained.

Chapter 10 illustrates the flexibility of connectionist mobile robot guidance
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Figure 1: Diagram of weights projecting to and from a typical hidden unit in a
network trained on roads with a fixed width. This hidden unit acts as a filter for a
road on the left side of the visual field as illustrated in the schematic.
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by demonstrating its use in a very different domain, the control of a two-legged
walking robot designed to inspect the space station exterior. The crucial task in this
domain is to precisely position the foot of the robot in order to anchor it without
damaging either the space station or the robot. The same methods developed to
steer an autonomous vehicle are employed to safely guide the foot placement of
this walking robot.

In Chapter 11, the neural network approach to autonomous robot guidance
is compared with other techniques, including hand-programmed algorithms and
other machine learning methods. Because of its ability to adapt to new situations,
ALVINN is shown to be more flexible than previous hand-programmed systems for
mobile robot guidance. The connectionist approach employed in ALVINN is also
demonstrated to have distinct advantages over other machine learning techniques
such as nearest neighbor matching, decision trees and genetic algorithms.

Finally, Chapter 12 summarizes the results and discusses the contributions of
this dissertation. It concludes by presenting areas for future work.



Chapter 2

Network Architecture

The first steps in applying artificial neural networks to a problem involve choosing
a training algorithm and a network architecture. The two decisions are intimately
related, since certain training algorithms require, or are best suited to, specific net-
work architectures. For this work, I chosen a multi-layered perceptron (MLP) and
the back-propagation training algorithm [Rumelhart, Hinton & Williams, 19861
for the following reasons:

* The task requires supervised learning from examples (i.e. given sensor
input, the network should respond with a specific motor response). This
rules out unsupervised/competitive learning algorithms like Kohonen's self-
organizing feature maps [Kohonen, 1990] which learn to classify inputs on
the basis of statistically significant features, but not to produce particular
desired responses.

* The system should learn relatively quickly, since one of the goals is to rapidly
adap: to new driving situations. This rules out certain supervised train-
ing algorithms/architectures such as Boltzmann Machines [Hopfield, 1982],
which are notoriously slow at learning.

* The task of determining the correct motor response from sensor input was
not expected to require substantial, run-time knowledge about recent inputs.
Thus, it was decided that the extensions of the back-propagation algorithm
to fully recurrent networks [Pineda, 1987, Pearlmutter, 1988] was not nec-
essary.

10
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The decision to use artificial neural networks in the first place, and to use back-
propagation over other closely related neural network training algorithms like
quickprop [Fahlman, 1988] and radial basis functions [Poggio & Girosi, 1990]
can be better understood after presentation of the architecture and training scheme
actually employed in this work, and hence will be discussed in Chapter 11.

Once the decision is made to use a feedforward multi-layered perceptron
as the underlying network architecture, the question then becomes "what form
should the MLP take?" This question can be divided into three components:
the input representation, the output representation, and the network's internal
structure. I will discuss each of the three components separately, theoretically
and/or empirically justifying the choices made.

2.1 Architecture Overview

The architecture of the perception networks chosen for mobile robot guidance
consists of a multi-layer perceptron with a single hidden layer (See Figure 2.1).
The "nput layer of the network consists of a 30x32 unit "retina" which receives
images from a sensor. Each of the 960 units in the input retina is fully connected
to the hidden layer of 4 units, which in turn is fully connected to the output layer.
The output layer represents the motor response the network deems appropriate for
the current situation. In the case of a network trained for autonomous driving, the
output layer consists of 30 units and is a linear representation of the direction the
vehicle should steer in the current situation. The middle output unit represents
the "travel straight ahead" condition, while units to the left and right of center
represent successively sharper left and right turns.

To control a mobile robot using this architecture, input from one of the robot's
sensors is reduced to a low-resolution 30x32 pixel image and projected onto
the input retina. After completing a forward pass through the network, a motor
response is derived from the output activation levels and performed by the low level
controller. In the next sections, I will expand this high level description, giving
more details of how the processing actually proceeds and why this architecture
was chosen.
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Figure 2.1: ALVINN driving network architecture

2.2 Input Representations

Perhaps the most important factor determining the performance of a particular
neural network architecture on a task is the input representation. In determining
the input representation, there are two schools of thought. The first believes that the
best input representation is one which has been extensively preprocessed to make
"important" features prominent and therefore easy for the network to incorporate
in its processing. The second school of thought contends that it is best to give
the network the "raw" input and let it learn from experience what features are
important.

Four factors to consider when deciding the extent of preprocessing to perform
on the input are the existence of a preprocessing algorithm, its necessity, its com-
plexity and its generality. If straightforward algorithms are known to perform
crucial initial processing steps applicable in a wide variety of situations, then it
is advisable to use them. Such is the case in speech recognition where the raw
speech input, as represented as amplitude of sound waves over time, is converted
into coefficients representing amplitudes at various frequencies over time using
a fast Fourier transform preprocessing step [Waibel et al., 1987]. This FFT pre-
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processing is known to be a useful and widely applicable first step in automatic
processing of speech data [O'Shaughnessy, 1987]. Furthermore, algorithms to
compute a signal's Fourier transform, while complex, are well understood and
have efficient implementations on a variety of computer architectures. Finally,
not only is the information contained in the Fourier transform proven useful in
previous speech recognition systems, the Fourier transform also has the property
that little information in the original signal is lost in the transformation. This
insures that important input features are not lost as a result of the FFT.

On the other hand, if appropriate preprocessing algorithms are not known
for the task, or if the known algorithms are too complex to be practical, the
solution is to give the network the raw input and let it learn to perform its own
preprocessing. Such is the case with image processing for autonomous robot
guidance. The types of features which are important vary widely with the situation
and with the sensor being used. For example, lined highway driving requires
attention to different features than single lane dirt road driving. Similarly, video
images contain very different features than iaser rangefinder images. Furthermore,
algorithms that are known to be useful in many image based tasks, such as edge
finding and region segmentation, are computationally expensive and eliminate
much potentially important information.

As a result of these difficulties with preprocessing images for mobile robot
guidance, the philosophy in this work has been to keep the system general by
performing a minimal amount of preprocessing. The idea is to let the network
learn not only to combine important features to determine the most appropriate
response in the current situation, but also to determine what the most important
features are and how to detect them in the input image.

2.2.1 Preprocessing Practice

The result of this minimal preprocessing philosophy is an input representation
consisting of a two-dimensional retina of units onto which sensor images are
projected, as described above. Each unit in the input retina corresponds to a pixel
in the sensor image. The sensor images used as input are constrained to a relatively
low resolution because of the high computational cost of a large input layer when
simulating the network on a serial computer. As a result, the most common retina
size used, and the size which can be assumed throughout this dissertation unless
otherwise stated, is 30x32 units. Image resolutions of up to 64x60 units have
been tried on occasions, particularly in situations where small image features, like
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High Resolution Image

Low Resolution Image

Figure 2.2: To determine the value of a pixel Lo,o in the low resolution image, a
small percentage of the pixels in the corresponding region of the high resolution
image are sampled and averaged together.

the lines painted on the road, are important for accurate driving. However for
most domains, including multi-lane highway driving, networks with 30x32 unit
input retinas have proven sufficient and at least as capable as networks with higher
resolution inputs.

In order to transform the high resolution sensor images into the low resolution
images required by the network, a simple subsampling with averaging technique is
used. The technique is easiest to understand from example. To determine the value
for a unit in the 30x32 unit retina from the pixels in the 480x512 image, a small
percentage of the pixels (usually around 3%) in the corresponding 16x16 pixel
region of the high resolution image are randomly sampled and averaged together
to get a mean value for the region (see Figure 2.2). The resulting low resolution
image is then histogrammed and normalized in order to assign activation values
to pixel values. More specifically, the darkest 5% of the pixels are assigned the
minimum activation level, -1.0, and the brightest 5% of the pixels are assigned
the maximum activation level, 1.0. The other 90% of the pixels are assigned
activation values proportional to their brightness relative to the extremes. This
histogram normalization process ensures that all images the network receives
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Figure 2.3: A single lane paved road image, and the corresponding reduced and
histogram normalized image used as input to the network.

have similar brightness levels, and that the full dynamic range of the input units
is employed. In analyzing the histogram normalization technique with respect to
the four preprocessing criteria described above, it is a simple, commonly used
image processing algorithm known to be useful in a wide variety of situations.
It is applicable to all three of the sensor modalities used in this work: video
images, laser reflectance images and laser range images. A high resolution black-
and-white video image, and the corresponding low resolution image after the
histogram normalization are shown in Figure 2.3.

The sensor used most frequently in this work is a color video camera. Color
cameras provide three greyscale images or color bands, one each for the red, green
and blue components of the image as shown in Figure 2.4. There is therefore an
additional preprocessing step required to convert these three bands into a single
greyscale image used as input to the network described above. The simplest
method of conversion would be to average the pixel values of the three color
bands to create a greyscale image, as shown in the left image of Figure 2.5. This
is the "intensity" image that would be seen by a monochrome (black and white)
camera. This naive averaging approach discards valuable information, which can
be used to enhance the contrast between important features in the image and to
eliminate the confusing effect of shadows.

The first step towards eliminating shadows is to observe that, at least to first
approximation the effect of a shadow on a pixel is to decrease its intensity, but
to leave its color (i.e. the relative amounts of red, green, and blue in the pixel)
constant. In other words, a pixel corresponding to grass in an image will be darker
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Figure 2.4: The red, green and blue bands of a single color image of a single lane
paved road. While it is difficult to distinguish the three color bands when each is
represented separately in greyscale, when they are combined into a single image
the differences in the color bands become apparent.

Figure 2.5: Images illustrating three techniques for converting a color image to
a greyscale image for input to the network. The left image represents a simple
averaging of the three color bands. Notice the strong shadows in this image.
The middle image represents the blue band normalized for pixel brightnesses. In
this image, the shadows are brighter than the unshadowed regions because of the
strong blue component in indirect light coming from the sky and because of camera
nonlinearities. The image on the right was made by adding the original blue band
and the brightness normalized blue band. Since shadows were dark in the original
blue band, and bright in the brightness normalized blue band, they appear to be
the nearly the same intensity as the unshadowed regions in this image.
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if it is in a shadow, but will still have a much stronger green component than
red or blue, just like its unshadowed neighbors. By normalizing pixels for their
brightnesses, this relative color constancy can be used to nearly eliminated shadows
from outdoor images [Wallace et al., 1985a]. Mathematically, normalizing for
brightness can be expressed by the equations,

R
r R+G+B

Gg =R+G+B

B
R+G+B

where R, G and B represent the original red, green and blue components of a pixel
and r, g and b represent the red, green and blue components after normalization
for brightness. Of course brightness normalization of all three bands results in
three images, whereas the network architecture describe above uses only one. Of
the three, the normalized blue band best discriminates between important features
in the color image, since paved roads have a strong blue component, while other
features like dirt, grass, and yellow road center lines are strong in red and/or green
but weak in blue. To capitalize on the discrimination power of the normalized
blue image, it is included as one component of the input image for the network.

But there are still two problems with the normalized blue image which make it
less than ideally suited for use as the sole input to the network. The first problem
is illustrated in the center image of Figure 2.5, which represents the reduced

resolution normalized blue version of the image from Figure 2.4. In this image
the shadows appear brighter than the unshadowed regions. These bright shadows
result from two factors. First, the illumination of unshadowed regions comes
directly from the sun, and therefore has a nearly uniform distribution of colors.
Shadowed regions on the other hand are illuminated solely by indirect sources,
and in particular by light from the sky. The strong blue component of light from
the sky gives pixels in shadowed regions a higher relative blueness than their
neighbors in unshadowed regions, making them appear brighter in the normalized
blue image. The second factor contributing to the extra blueness of shadowed
pixels results from a characteristic of color CCD cameras. Color CCD cameras
are more sensitive in low light conditions to blue light than to red or green. As
a result, the "percent blueness" of a pixel increases in shadows. In short, in an
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attempt to brighten shadows by normalizing the blue band for brightness, we have
actually overcompensated for them.

The second problem with using a single normalized color band as the sole
input to the network is the fact that relative color isn't always a good discriminant
between important feature in the image. There are in fact situations, such as
driving on a hard-packed dirt road surrounded by soft-packed dirt, where the color
of the road and the non-road are nearly identical, and only the brightness differs
between the two. To avoid eliminating a potentially crucial discriminating factor
by normalizing for brightness, a term representing absolute brightness in the blue
band is added to the preprocessed image. The final preprocessed image is derived
using the equation

B B
+2 R+G+B

where p represents value for a pixel after preprocessing and 255 is a scale factor to
limit the absolute blue component of a pixel to a value between 0.0 and 1.0. The
result of this preprocessing can be seen in the right image of Figure 2.5. Notice
how the strong shadows in the original image have been almost totally eliminated,
and only distinctions based on actual color remain in the image.

2.2.2 Justification of Preprocessing

Having earlier mentioned the goal of maintaining the system's generality by min-
imizing preprocessing, it is reasonable to ask how I can justify performing this
relatively sophisticated image preprocessing. While the preprocessing scheme
is relatively simple, it is specific to color video images, and hence violates the
generality criterion mentioned above as an important factor in choosing a prepro-
cessing technique. The reason this color image preprocessing is justified is that
the network learns to approximate this technique when provided with raw color
images.

The experiment went as follows. Instead of performing the preprocessing steps
described above, I provided the network with three 30x32 pixel input images, one
for each of the three video color bands (See Figure 2.6. Each pixel in each of
the three input images had a connection to the corresponding pixel in a 30x32
unit array of hidden units. All the connections from a single color input band
to the array of hidden units were constrained to have identical weights. In other
words, there were only three distinct weights between the three color input bands
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Figure 2.6: The four-layered architecture used to train ALVINN on the three band

of the color video signal

and the array of hidden units. It was the job of this first layer of connections to
determine appropriate weightings for the three color bands to enhance the contrast
of features in the image which would be needed later in the network for determining
the direction to steer. Above the array of 30x32 hidden units, the architecture was
identical to the standard network, with a layer of 4 hidden units fully connected to
a layer of 30 output units.

The network was trained using the training "on-the-fly" techniques described
in detail in the next chapter. It was repeatedly presented with road images and
the corresponding correct output steering direction. The network's weights were
updated using the back-propagation learning rule so as to produce the correct

steering direction when presented with a road image. In this case however,
the network had to also learn a relative weighting for the three color bands in
order to produce an "image" in the first hidden layer with sufficient information[

for the higher layers to produce the correct steering direction. The color band
weighting that the network developed was a surprisingly close approximation to
the preprocessing described above. Specifically, to determine a pixel's value in

UMI
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the first hidden layer, the network learned that the corresponding blue pixel in
the input should have a strong positive influence, and the corresponding red and
green pixels in the input should have negative influence. As a result, if a pixel in
the input image had a lot of blue and little red or green, the corresponding unit
in the first hidden layer would be highly active, just like in the normalized blue
preprocessing described above. But if the pixel was bright in all three bands,
the positive influence from the blue component would be offset by the negative
influence of the red and green components. As a result, the corresponding unit in
the first hidden layer would have an intermediate activation value, just as in the
normalized blue preprocessing described above.

This experiment demonstrates that a network can learn to perform the ap-
propriate preprocessing and subsequently learn to produce the correct steering
direction when given only the raw color bands from the video signal. However,
the added complexity of the task and the network architecture resulted in a factor
of six increase in training time over a three layer network such as Figure 2.1
that was given the normalized blue image as input. Because of this slow down
in training, and because of the similar slow down that occurs at runtime when
performing the forward pass through the more complex network, it was decided
not to force networks to learn the normalized blue preprocessing, but to perform
the preprocessing using the algorithm described above and to provide the resulting
image as input to the network.

2.3 Output Representation

Another crucial decision in determining the network architecture is the output
representation. In the case of mobile robot guidance, the network's output repre-
sents a specific motor response along a continuum. For instance, in autonomous
driving, the network's output represents the steering direction appropriate for the
current situation, ranging continuously from sharp left to sharp right. Similarly,
in the foot placement task for the walking robot, the network's output represents
the displacement of the robot's foot from a "safe" position to step.

I have investigated three techniques for representing continuous scalar values
such as these in connectionist networks. For purposes of concreteness, in the
comparison of the three techniques, I will focus on representing the steering
direction of a driving network. However the analysis and conclusions hold for
representing any bounded continuous value in a neural network.



23. OUTPUT REPRESENTATION 21

Straight Ahead

' 10 Sharp Left Sharp Right

< 1.

1 15 30
Output Unit

1.0

1 15 30
Output Unit

Figure 2.7: The representation of two steering directions using a "Il-of-N" encod-
ing. The top graph represents a straight ahead steering direction, since the middle
output unit is activated. The bottom graph represents a slight right turn, since an
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2.3.1 1-of-N Output Representation

In the first representation technique, a continuous range of values is discretized
and the problem of producing the correct motor response is converted into a 1-of-N
classification task. In the case of the driving network, each output unit represents
a different, equally spaced steering direction ranging from a sharp left to a sharp
right turn. To represent a particular steering direction, the unit representing the
closest steering direction to the desired direction would be fully activated with a
1.0 activation level. So for example, the straight ahead steering direction would
be represented by fully activating the output unit closest to the center, since it
represents the closest steering direction to the desired direction (See the top graph
in Figure 2.7). The remainder of the output units would be given a desired
activation level of-1.01.

There are three problems with the 1-of-N encoding of continuous values. The
first problem is that by having each output represent a discrete motor action,
the network is limited to a fixed number of responses. With a limited number
of responses, the network's ability to precisely control the robot's movement is
limited, reducing the system's performance. Of course, it is possible to increase
the precision of the network's response by increasing the number of output units,
but this in turn aggravates the second problem with the 1-of-N representation.

Another disadvantage of the 1-of-N encoding is that it requires at least one
training example for each of the N responses. Without any examples of a training
pattern showing a particular output unit active, the network will assume it should
always be inactive. There is no possibility of generalizing from training pattern
that require "similar" steering directions, because with the 1-of-N encoding there
is no notion of similarity between output classes. Instead, each output class is
distinct and unrelated to any of the others.

A related problem is that the mapping from input to output units when using the
1-of-N representation is a highly nonlinear function. Consider two road images.
The first shows a road centered in the image and heading straight ahead. The
desired steering direction for this image would be straight ahead, so the desired
output vector would look like the top graph of Figure 2.7. The second image is
identical to the first except that the road is shifted slightly to the right. In fact,
it is shifted just enough to change the desired steering direction to be closer to

'The hyperbolic tangent activation function is used as the activation function for all the units
in the network, making their ranges -1.0 to 1.0. The advantages of using a symmetric activation
function, instead of the normal sigmoid with a range from 0.0 to 1.0 is discussed in Chapter 6.
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the direction represented by the first output uni: right of center, instead of the
middle output unit, as illustrated in the bottom graph of Figure 2.7. As a result
of a very small change in the input image, there is a significant change in the
desired output, namely the middle unit has gone from active to inactive and its
neighbor to the right has gone from inactive to active. It is difficult for the network
to deveiup a representation that allows changes of just a few pixels in the input
image to significantly change in the output vector. This difficulty with highly
nonlinear mappings is one of the reasons handwritten character recognition is
such a difficult problem. Small differences in the input, such ass the difference
between an "F" and an "E", result in a different classification and therefore a
very different desired output. In character recognition, this nonlinearity cannot be
avoided, since a network must be able to clearly differentiate between an "F" and
an "E".

Many of these problems are illustrated in Figure 2.8. It depicts the internal
representation developed by a network with the 1-of-N output representation. The
network was identical in structure to the network depicted in Figure 2.1, with 30
output units representing 30 different steering directions. The network presented
in this example, like those in the examples from the next two sections, was trained
by presenting it with 100 images of a real single lane paved road which were
digitized as a person drove the Navlab. It was trained to produce the output
corresponding to the direction the person was steering in when each of the images
was taken. The network was trained until it showed only asymptotic decreases in
error on the training set.

In Figure 2.8, the four large rectangles labeled "Input-Hiddenl Weights"
through "Input-Hidden4 Weights" represent the weights going from each of the
units in the input retina to the four hidden units in the network. Dark squares rep-
resent inhibitory connections and light squares represent excitatory connections.
The intensity of a square represents the weight's magnitude. The four vectors
labeled "Hidden 1-Output Weights" through "Hidden4-Output Weights" represent
the weight going from each of the four hidden units to the 30 output units. The
stripes or bands of similar weights in the input to hidden weights represent edge
detectors the network has developed for determining where in the image the road is
(For a more detailed analysis of the internal representations developed by ALVINN
networks, see Chapter 6). The rectangle in the lower right corner labeled "Input
Acts" represents the activations of the units in the input retina on a particular
road image. Light squares represent units with positive activation levels, and dark
squares represent units with negative activation levels (recall that the range of
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activation levels is -1.0 to +1.0). The vectors labeled "Hidden Acts" and "Output
Acts" represents the activation levels of the hidden units and the output units on
this particular input pattern. The "Target Acts" vector shows the desired activation
level of the output units for this input pattern. The input image in this case depicts
a road on the right side of the image, so the target output vector has a single unit
activated towards the right side, indicating a right turn is desired in this situation.

Notice the sharp differences between weights to neighboring output units from
individual hidden units, particularly from hidden units 3 and 4. Also notice in
hidden units 3 and 4 the sharply delineated features in the input to hidden unit
weights. These abrupt changes are a result of the sharp output differences required
by the 1-of-N representation for similar input patterns. Due to the arbitrary and
highly specific nature of its internal representation, the network has difficulty
generalizing to slightly different input patterns, as will be seen in the performance
comparison below.

Also notice that unlike the target vector, in which a single output unit is fully
active, the actual output vector has a few units in the vicinity of the correct one
slightly activated. This illustrates the networks tendency to treat neighboring
output units, representing similar steering directions, similarly. This desirable
tendency is exploited in the next two output representations.

2.3.2 Single Graded Unit Output Representation

In many domains, mobile robot guidance being one of them, the output of the
network represents a continuous quantity and not simply membership in one of N
unrelated classes. A representation which exploits this structure can help eliminate
some of the complexity in the mapping from inputs to outputs. One representation
that reduces the mapping complexity is a "graded representation", in which the
activation level of a single output unit is used to encode the continuous output.
So for the output of a driving network, a sharp left steering direction would be
represented by an activation level of -1.0, sharp right by an activation level of 1.0,
and intermediate steering directions by activation levels between -1.0 and 1.0.

This compact output representation reduces the mapping complexity, since in-
put images which differ only slightly would require only slightly different output
responses. But the single graded unit output representation has other disadvan-
tages. With the 1-of-N encoding, the network's support for a response can be
measured using the activation levels of the corresponding output unit. The greater
a unit's activation level, the greater the network's support for its steering direction.
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Figure 2.8: The internal representation developed by a network trained on images
of a single lane road when using a 1--of-N output representation.
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The single graded unit representation has no corresponding "extra parameters" to
represent the degree of support for particular responses. Instead, every possible
output pattern represents a different response.

This inability to represent support for individual responses results in a number
of problems. As will be seen in Chapter 7, the degree to which one and only
one steering direction receives support is a good estimate of network reliability.
With the single output unit representation, there is no way to quantify support for
one steering direction versus another, making this reliability estimation technique
impossible. A closely related problem is that with a single output unit it is
impossible for the network to discretely select a single response from a number of
likely competitors. Suppose for example, certain input features suggest a sharp left
turn, while others suggest steering hard to the right. In the 1-of-N representation,
the response with the largest support (i.e. output unit with the highest activation
level) can be chosen as the direction to steer. But with the single output encoding,
input features that support a sharp left turn will result in inhibitory influence on
the single output unit. Conversely, input features that suggest turning hard to
the right will result in excitatory influence on the output unit. Together these
conflicting signals will lead to an intermediate output activation and hence an
incorrect, straight ahead steering response.

This inability to represent competing responses in the output has a detrimental
influence on the internal representations developed by networks. As will be seen in
the analysis of the internal representations of networks in Chapter 6, when using a
distribL ted output representation in which different output units represent different
motor responses, hidden units are able to develop a distributed representation.
Specifically, hidden units develop into detectors for roads at multiple positions
and orientations in the image, and suggest multiple steering directions as output.
For example, a hidden unit might become active when presented with an image
containing a road either on the far left or far right. It would in turn make excitatory
connections to output units representing both a sharp left and a sharp right turn.
With a single, graded output unit representing steering direction, this type of
distributed representation is impossible, since a hidden units can only excite or
inhibit the single output unit, suggesting either a right or a left turn, but never both.

The detrimental influence the single output unit representation has on the
network's internal representation is illustrated in Figure 2.9. This network was
trained on the same set of images as in the 1-of-N example above. Instead of
30 output units representing discrete steering directions, this network has a single
output whose activation represents the steering direction.
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Figlure 2.9: The intHal representation developed by a network trained on images
of a single lane road when using a single graded unit to represent the correct
steering direction.
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In contrast to the representation developed with the 1-of-N output representa-
tion, in this case the hidden units develop very smooth, large scale feature detectors.
In fact, it is fairly obvious that each of the hidden units delineates between the road
being on the left or the right side of the image. The further left the road appears
in the image, the more excited hidden units 1 and 3 become, and the more they
inhibit the output unit, indicating a left turn. The further right the road appears in
the image, the more excited units 2 and 4 become, and the more they excite the
output unit, indicating a right turn. Close observation reveals that hidden units 1
and 3 are nearly identical, as are units 2 and 4. In addition, hidden units 1 and 3
are simply inversions of hidden units 2 and 4, meaning that when units 1 and 3 are
active, units 2 and 4 are inactive. Because of the symmetric activation function
used, the influence each of the hidden units has on the output unit will be identical
for all inputs. In other words, for a road on the right side of the input image, units
2 and 4 will be active and since they have positive connections to the output unit,
they will excite it. On the same image, units 1 and 3 will be inactive (i.e. have a
negative activation level). Since they make inhibitory connections to the output
unit, a negative activation level times a negative weight will result in an excitatory
influence. Since all the hidden units have a similar influence on the output unit
for all inputs, there is really only a single distinct hidden unit in the network. This
collapse of distinct hidden units results from the fact that by only having a single
weight to influence the network's output, the hidden units are forced to become
general "left-or-right" detectors. This lack of representational freedom severly
limits the accuracy with which this network architecture can perform the driving
task, as will be seen in the performance comparison between the networks.

2.3.3 Gaussian Output Representation

The question is, how to get the advantages of distributed internal representations
and certainty measurements possible with a multi-unit output representation while
preserving the simplicity of input-to-output mapping and the arbitrary precision in-
herent in a single-unit, graded representation. The answer is shown in Figure 2.10.
Just as in the 1-of-N representation, there are multiple output units representing
different motor responses. But unlike the 1-of-N encoding, to represent a particu-
lar motor response, multiple output units are activated in a gaussian pattern, with
the gaussian centered on the correct motor response.

In more detail, the following approximation to a gaussian equation is used to
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Figure 2.10: The representation of two steering directions using a gaussian output
encoding. The top graph represents a straight ahead steering direction, since the
gaussian "hill" of activation is centered on the middle output unit. The bottom
graph represents a slight right turn, since the "hill" of activation is centered slightly
right of the middle unit.
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precisely interpolate the correct output activation levels:

xi -- e-

where xi represents the desired activation level for unit i and di is the ith unit's
distance from the correct steering direction point along the output vector. The
constant 10 in the above equation is an empirically determined scale factor that
controls the width of the gaussian curve. The above equation corresponds to a
normal distribution with a standard deviation a = V-1-0.

As an example from the driving network domain, consider the situation in
which the correct steering direction falls halfway between the steering directions
represented by output units j and j + 1. Using the above equation, the desired
output activation levels for the units successively farther to the left and the right
of the correct steering direction fall off rapidly with the values 0.98, 0.80, 0.54,
0.29, 0.13, 0.04, 0.01, etc.

Just as in the 1-of-N encoding, it is the position of the activation peak along
the vector of output units that encodes the motor response. As a result, individual
hidden units can support multiple steering directions by making excitatory con-
nections to multiple output units, encouraging a distributed internal representation.
Also, since it the position of the peak of activation, and not the activation level
itself that determines the motor response, the height and shape of the activation
peak can be used to measure the network's certainty (for more details, see Chapters
8 and 9).

But unlike the 1-of-'! encoding, a small change in the input will only result in a
small change in the o-wt- ... Consider the two road images mentioned above, with
the second depicting the exact same scene as the first, except the road is shifted
slightly to the right. The two desired output vectors when using the gaussian output
representation are depicted in the top and bottom graphs of Figure 2.10. Notice
that because of the large overlap of the two gaussians, none of the output units
have drastically changed their desired activation levels. As a result of the smooth
mapping from changes in the input to changes in the output, developing a robust
and accurate internal representation is much simpler for the network when using
a gaussian output representation than when using a 1-of-N output representation.
The gaussian desired output vector can be thought of as representing the probability
density function for the correct motor response, in which a unit's probability of
being correct decreases with distance from the gaussian's center.
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Another advantage the gaussian output representation has over the 1-of-N
representation is its ability to precisely represent arbitrary motor responses. While
the 1-of-N representation can encode only a limited number of motor responses,
the gaussian output representation can encode arbitrary responses by centering
the gaussian appropriately. For instance, to represent a steering direction which
lies midway between the directions represented by two output units, the gaussian
"hill" of activation can simply be centered half way between the two output units.
In this way, the gaussian output representation allows the network to interpolate
between units to produce a precise motor command.

Finally, the gaussian output format has the advantage of biological plausibility.
Zipser and Andersen [Zipser & Anderson, 1988] employed a gaussian output for-
mat for representing eye position and the spatial location of external visual features
in their model of primate posterior parietal neurons. In fact, neurophysiologic2
studies suggest that this type of gaussian representation may be the most common
coding format found in the brain [Andersen et al., 1985].

The internal representation developed by a network using the gaussian output
representation is shown in Figure 2.11. Like in the 1-of-N example, this network
had 30 output units. But unlike the 1-of-N example, the desired output vector
contained a group of output units with positive desired activation, as depicted in
the "Target Acts" display. The edge and region detectors developed in the input to
hidden weights in this network are significantly smoother and broader that those in
the 1-of-N network. Also in contrast with the 1-of-N internal representation, the
weights from individual hidden units to the output vector appear much smoother.
That is, there aren't the sharp differences in weights from a single hidden unit
to neighboring output units, as there are in the 1-of-N network. The smoother
nature of the internal representation over the 1-of-N network results from the
more regular mapping between input and output patterns. In other words, since
neighboring output units always have similar % alues, the influence a hidden unit
has on neighboring output units can also be similar.

However the gaussian output representation does not so severly restrict the
influence a hidden unit can have on the output so as to force all hidden units to
be identical, as in the single graded unit output representation. Individual hidden
units can support different, relatively specific steering directions, not just "right"
or "left". This can be seen in hidden unit 3. If hidden unit 3 has a positive
activation level, it will support steering directions ranging from straight ahead to
a moderately sharp left turn (as indicated by the broad band of excitatory weights
in the "Hidden3-Output Weights" vector). If unit 3 has a negative activation, it
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Figure 2.11: The internal representation developed by a network trained on images
of a single lane road when using the gaussian output representation for the correct
steering direction.
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Figure 2.12: A comparison of the steering errors made by networks using each
of the three output representations on a test set of 66 images. The height of the
bars represent the average absolute difference in curvature between the steering
direction indicated by the network and the steering directior, indi-'ated by the
human driver.

suggests either steering sharply left, or moderately sharp to the right (as indicated
by the two short patches of dark, inhibitory weights in the "Hidden3-Output
Weights" vector). The performance improvements made possible by the gaussian
output representation are illustrated in the next section.

2.3.4 Comparing Output Representations

The steering performance of networks employing the three output representations
are depicted in Figure 2.12. The graph shows the average errors made by networks
like those described above on a separate test set of 66 road images, taken along a
different stretch of the same road the networks were trained on. The errors mea-
sures in the graph represent the average absolute difference between the steering
direction indicated by the network for an image and the direction the person was
steering in when the image was taken, across the 66 test images. Since steering
direction is measured in terms of the curvature of the vehicle's current arc, the
difference between steering directions is measureed in terms of differences of arc
curvatures, which has the units of 1/meters. To eliminate the possible effects of
random initial weights, four networks, with different initial weights, were trained
for each of the three representations and their results averaged to produce the table.

To convert the output activation levels of the three types of networks into
steering directions, the following procedures were used. For the 1-of-N represen-
tation, a network's dictated steering direction was interpreted to be the direction
represented by the output unit with the maximum activation level. For the sin-
gle graded unit output representation, the activation level of the output unit was
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Figure 2.13: To convert the network's output activation levels into a steering di-
rection for the vehicle when using the gaussian output representation, the gaussian
of the width specified during training that best fits the output activation levels is
determined. The network's steering direction is determined by the position of the
best fit gaussian's peak along the output vector.

simply multiplied by a scale factor to determine the network's dictated direction.
For the gaussian output representation, the closest gaussian output pattern (with
the standard deviation used in training) to the network's actual output pattern was
found using a least squares measure of closest fit. The position of the peak of
this best fit gaussian along the output vector was used to determine the network's
dictated direction (see Figure 2.13).

The average steering error made by networks trained using the 1-of-N output
representation was 34% higher than that of networks trained using the gaussian
output representation. In addition, networks employing the 1-of-N representation
required twice as long on average to reach their optimum performance level than
did networks employing the other two representations (80 vs. 160 epochs).

While networks with a single output unit quickly learned the "left vs. right" in-
ternal representation depicted in Figure 2.9, the performance of this representation
was quite poor. Networks with a single output unit exhibited 59% more steering
error on the test set than did networks trained using the gaussian output repre-
sentation. These results illustrate that the theoretical advantages of the gaussian
output representation described above make a significant difference in network
performance. More specifically, more regular mapping from inputs to outputs
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allows the gaussian representation to generalize better to new situations than the
1-of-N representation. In addition, the ability of the gaussian representation to
encode more precise steering directions than the 1-of-N representation makes it
more accurate. In comparison with the single graded unit output representation,
the gaussian representation encourages more hidden unit diversity, and therefore
greater accuracy. As a result of these findings, in the remaider of this dissertation
the gaussian output representation is used exclusively.

2.4 Internal Network Structures

The final decision concerning network architecture is determining what comes
between the input and the output layers. While the choice of the internal network
structure has not been a central focus of this work, I have experimented with a
number of different network architectures by varying the number of hidden layers,
the size of hidden layers, and the connectivity pattern between layers. While I
have not densely sampled the entire space of architectures spanned by these three
parameters, I have experimented with networks with 0 to 2 hidden layers, 0-70
hidden units, and connectivity patterns in which hidden units receive connections
from either all the units in the previous layer, a randomly selected subset of units
in the previous layer, or a spatially contiguous subset of units in the previous layer
(i.e., local receptive fields).

My conclusion is that while nearly all of these architectures can do a reason-
able job of mapping input images to steering commands, none of them worked
significantly better than the network described above with a single layer of four
fully-connected hidden units. In more detail, networks with no hidden layer, or
a single hidden layer with fewer than four hidden units are less accurate than the
chosen network at mapping road images to the appropriate steering direction. This
performance shortcoming is particularly pronounced in driving situations where
the important image features are spatially small relative to the entire image size.
For instance, even a perceptron network can learn to produce reasonably accurate
steering directions when presented with single lane road images, in which the
feature which determines the correct steering direction is the position of the large
region of bright pixels in the image corresponding to the road (See Figure 2.5).
However, on multi-lane highway driving, where small painted lines delineate the
position of the vehicle relative to the road, the inability of these simpler networks
to develop internal representations complex enough to pick out the relevant small
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features and at the same time ignore spurious input features results in poorer
driving performance.

On the other extreme, networks with additional hidden layers, or more hidden
units in a single hidden layer, have not been found to perform significantly better
than the network with a single layer of four hidden units. Networks with an
additional hidden layer require significantly longer training times to reach the
same level of performance as a single hidden layer network. Networks with
more than four hidden units take longer to train because of the added network
size. They also "waste" much of the additional structure by developing redundant
hidden units which respond identically to input images and have identical influence
on the output units.

In short, no other network architecture examined has performed significantly
better than the simple architecture shown in Figure 2.1. Because of its simplicity
and relatively small size, it is used as the basis for the remainder of the experiments
and results reported in this dissertation. While slight performance improvements
could possibly be achieved through a more detailed study of network architectures,
I have focused on improving the system's capabilities using architecturally inde-
pendent means, including techniques for intelligently training individual networks
(see Chapters 3 and 4) and for integrating multiple networks (see Chapters 7, 8
and 9).



Chapter 3

Training Networks "On-The-Fly"

Previous trainable connectionist perception systems have often ignored impor-
tant aspects of the form and content of available sensor data. Because of the
assumed impracticality of training networks to perform realistic high level percep-
tion tasks, connectionist researchers have frequently restricted their research to toy
problems (e.g., the T-C identification task [Rumelhart, Hinton & Williams, 1986,
Jacobs et al., 1990]) or to low level tasks (e.g., edge detection [Koch et al., 1990]).
While these restricted domains can provide valuable insight into connectionist
architectures and learning algorithms, they frequently ignore the complexities
associated with real world problems.

There are exceptions to this trend towards simplified tasks. Notable successes
in high level domains such as speech recognition [Waibel et al., 1987], character
recognition [LeCun et al., 1989] and face recognition [Cottrell, 1990] have been
achieved using real sensor data. However, the results have come only in very
controlled environments, after careful preprocessing of the input to segment and
label the training exemplars. In addition, these successful connectionist percep-
tion systems have ignored the fact that sensor data normally becomes available
gradually and not as a monolithic training set. In short, artificial neural networks
previously have never been successfully trained using sensor data in real time to
perform a real world perception task.

In this chapter, I present techniques which address these shortcomings. The
chapter is organized to illustrate the evolution of the training technique used in this
work from the traditional monolithic training set approach to the real time training
"on-the-fly" technique employed currently.

37
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3.1 Training with Simulated Data

When considering applying artificial neural network techniques to a problem, the
first thought of most researchers is to acquire a large and varied set of examples
for training purposes. The problem, particularly with complex domains like
perception based mobile robot guidance, is how to ensure that the training set is
representative of the full range of situations the network might encounter during
testing.

My initial attempt at ensuring sufficient diversity in the training set involved
generating synthetic images of situations the robot was likely to encounter and
using them as training data. The use of synthetic training data was motivated
by two factors. First, skepticism concerning the feasibility of using artificial
neural networks for mobile robot guidance necessitated a "proof of conccl:" ir.
simulation before implementing these ideas on a real robot. More importantly
from a theoretical standpoint, I believed at the time that the only way to achieve
variety in the training set sufficient to ensure that the network learns a general
internal representation was to generate the training set synthetically.

To generate synthetic training data for the task of autonomous road following,
I developed a program that generated aerial views of simulated stretches of roads
and then used a model of the camera to back-project the aerial map into a 2D
image of the road ahead. The simulated road image generator used nearly 200
parameters in order to generate a variety of realistic road images. Some of the
most important parameters are listed in Figure 3.1.

Figure 3.2 depicts the video images of one real road (left) and one artificial road
(right) generated with a single set of values for the parameters from Figure 3.1. At
the relatively low resolution employed in the system it is difficult to distinguish
between real and simulated roads.

The set of 1200 exemplars used to train the network was created by randomly
varying the parameters used by the simulated road generator. Because the artificial
road images were created using a detailed model of the scene, the position of the
road, and hence the correct direction to steer, was fully specified for each image
(the steering model used to map road position to steering direction is discussed in
the next section). The network described in the last chapter was then trained using
the back-propagation algorithm until the network was making only asymptotic
improvements to its steering responses each epoch'.

Due to the nature of the activation function, eliminating all the network's error on the training
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size of video camera retina 3D position of video camera
direction of video camera field of view of video camera
vehicle position relative to road center road direction
road curvature rate of road curvature change
road curve length road width
rate of road width change road intensity
left non-road intensity right non-road intensity
road intensity variability non-road intensity variability
rate of road intensity change rate of non-road intensity change
position of image saturation spots size of image saturation spots
shape of image saturation spots position of obstacles
size of obstacles shape of obstacles
intensity of obstacles shadow size
shadow direction shadow intensity

Figure 3.1: Parameters varied to generate simulated road images for network
training

Figure 3.2: A low resolution video image of a single lane road (left) and an
artificial single lane road image created by the road image generator (right).
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After training on artificial road images, the network was tested using three
techniques. The first test used novel artificial road images. The network correctly
dictated a turn curvature within two units of the correct answer approximately 90%
of the time on novel artificial road snapshots. A second, more informative test
involved "driving" down a simulated stretch of road. Specifically, the artificial road
generator had an interactive mode in which the road image scrolled in response to
an externally specified speed and direction of travel. After the training described
above, the network could drive along a stretch of road created by the road generator
at a constant speed for many miles without straying from the simulated road. The
best indication of the network's performance came from driving tests on Navlab
I, one of CMU's robot vehicles. Specifically, the network could accurately drive
Navlab I at a speed of 4 miles per hour along a 400 meter path through a wooded
area of the CMU campus under sunny fall conditions.

Despite its apparent success, this training paradigm had serious drawbacks.
From a purely practical standpoint, generating the synthetic road scenes was quite
time consuming, requiring approximately 6 hours of Sun-4 CPU time. Once
the roads scenes were generated, the 30-40 presentations of the 1200 images to
train the network required an additional 45 minutes on a 100 MFLOP systolic
array supercomputer called the Warp [Pomerleau et al., 1988]. Also, differences
between the synthetic road images on which the network was trained and the real
situations on which the network was tested often resulted in poor performance in
real driving situations. For example, when the network was trained on synthetic
road images which were less curved than the test road, it would become confused
when presented with a sharp curve during testing. Finally, while relatively effective
at training the network to drive under the limited conditions of a single-lane road,
it quickly became apparent that extending the synthetic training paradigm to deal
with more complex situations such as multi-lane and off-road driving would require
prohibitively complex training data generators.

To deal with these problems, I developed a training scheme which involves
teaching the network to imitate a human driver under actual driving conditions.
The technique, called training "on-the-fly", is described in the next section.

set is impossible. It is also quite undesirable, since overlearning on the training set often leads to
poor generalization. To prevent this, training was stopped when the network's error improved by
less than 0.1% over 5 epochs.
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Figure 3.3: Schematic representation of training "on-the-fly". The network is
shown images from the onboard sensor and trained to steer in the same direction
as the human driver.

3.2 Training "on-the-fly" with Real Data

Autonomous driving has a substantial advantage as a domain for supervised learn-
ing: the ready availability of a teaching signal in the form of the human driver's
current steering direction. In theory it should be possible to teach a network to
imitate a person as they drive using the current sensor image as input and the per-
son's current steering direction as the desired output. This idea of on-line learning
is depicted in Figure 3.3.

Training on real images would dramatically reduce the human effort required
to develop networks for new situations, by eliminating the need for a hand-
programmed training example generator. On-the-fly training should also allow
the system to adapt quickly to new situations.

3.2.1 Potential Problems

There are two potential problems associated with training a network using live
sensor images as a person drives. First, since the person steers the vehicle down
the center of the road during training, the network will never be presented with
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situations where it must recover from misalignment errors. When driving for itself,
the network may occasionally stray from the road center, so it must be prepared
to recover by steering the vehicle back to the middle of the road. The second
problem is that naively training the network with only the current video image and
steering direction may cause it to overlearn recent inputs. If the person drives the
Navlab down a stretch of straight road at the end of training, the network will be
presented with a long sequence of similar images. This sustained lack of diversity
in the training set will cause the network to "forget" what it had learned about
driving on curved roads and instead learn to always steer straight ahead.

Both problems associated with training on-the-fly stem from the fact that
back-propagation requires training data which is representative of the full task
to be learned. The first approach I contemplated for increasing the training set
diversity was to have the driver swerve the vehicle during training. The idea was
to teach the network how to recover from mistakes by showing it examples of
the person steering the vehicle back to the road center. However this approach
was deemed impractical for two reasons. First, training while the driver swerves
would require turning learning off while the driver steers the vehicle off the road,
and then back on when he swerves back to the road center. Without this ability
to toggle the state of learning, the network would incorrectly learn to imitate the
person swerving off the road as well as back on. While possible, turning learning
on and off would require substantial manual input during the training process,
which I wanted to avoid. The second problem with training by swerving is that
it would require swerving in many circumstances to enable the network to learn a
general representation. This would be time consuming, and also dangerous when
training in traffic.

3.2.2 Solution - Transform the Sensor Image

To achieve sufficient diversity of real sensor images in the training set, without
the problems associated with training by swerving, I have developed a technique
for transforming sensor images to create additional training exemplars. Instead of
presenting the network with only the current sensor image and steering direction,
each sensor image is shifted and rotated in software to create additional images
in which the vehicle appears to be situated differently relative to the environment
(See Figure 3.4). The sensor's position and orientation relative to the ground
plane are known, so precise transformations can be achieved using perspective
geometry.
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Shifted and Rotated Images

Figure 3.4: The single original video image is shifted and rotated to create multiple
training exemplars in which the vehicle appears to be at different locations relative
to the road.

The image transformation is performed by first determining the area of the
ground plane which is visible in the original image, and the area that should be
visible in the transformed image. These areas form two overlapping trapezoids as
illustrated by the aerial view in Figure 3.5. To determine the appropriate value
for a pixel in the transformed image, that pixel is projected onto the ground plane,
and then back-projected into the original image. The value of the corresponding
pixel in the original image is used as the value for the pixel in the transformed
image. One important thing to realize is that the pixel-to-pixel mapping which
implements a particular transformation is constant. In other words, assuming a
planar world, the pixels which need to be sampled in the original image in order
to achieve a specific shift and translation in the transformed image always remain
the same. In the actual implementation of the image transformation technique,
ALVINN takes advantage of this fact by precomputing the pixels that need to
be sampled in order to perform the desired shifts and translations. As a result,
transforming the original image to change the apparent position of the vehicle
simply involves changing the pixel sampling pattern during the image reduction
phase of preprocessing. Therefore, creating a low resolution transformed image
takes no more time than it takes to reduce the image resolution as described in
Chapter 2.

Obviously the environment is not always flat. But the elevation changes due to
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Figure 3.5: An aerial view of the vehicle at two different positions, with the
corresponding sensor fields of view. To simulate the image transformation that
would result from such a change in position and orientation of the vehicle, the
overlap between the two field of view trapezoids is computed and used to direct
resampling of the original image.
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Original Image Transformed Image

Area to
, fill in

Figure 3.6: A schematic example of an original image, and a transformed image
in which the vehicle appears one meter to the right of its initial position. The
white region on the right of the transformed image corresponds to an unseen area
in the original image. These pixels must be extrapolated from the information in
the original image. Notice the number of pixels per row whose value needs to be
extrapolated is greater near the bottom of the image than at the top. This is because
the one meter of unknown ground plane to the right of the visible boundary in the
original image covers more pixels at the bottom than at the top.

hills or dips in the road are small enough so as not to significantly violate the planar
world assumption. For more abrupt elevation changes caused by obstacles in the
vehicle's path, a more sophisticated image transformation scheme (described in
Chapter 6) is required.

Extrapolating Missing Pixels

The less than complete overlap between the trapezoids of Figure 3.5 illustrates the
need for one additional step in the image transformation scheme. The extra step
involves determining values for pixels which have no corresponding pixel in the
original image. Consider the transformation illustrated in Figure 3.6. To make
it appear that the vehicle is situated one meter to the right of its position in the
original image requires not only shifting pixels in the original image to the left, but
also filling in the unknown pixels along the right edge. I have experimented with
two techniques for extrapolating values for these unknown pixels (See Figure 3.7).

In the first technique, to determine the value for a pixel that projects to the
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Figure 3.7: An aerial view (left) and image based view (right) of the two techniques
used to extrapolate the values for unknown pixels. See text for explanation.

ground plane at point A in the transformed image, the closest ground plane point in
the original viewing trapezoid (point B) is found. This point is then back-projected
into the original image to find the appropriate pixel to sample. The image in the
top right shows the sampling performed to fill in the missing pixel using this
extrapolation scheme. The problem with this technique is that it results in the
"smearing" of the image approximately along rows of the image, as illustrated
in the middle image of Figure 3.8. In this figure, the leftmost image represents
an actual reduced resolution image of a two-lane road coming from the camera.
Notice the painted lines delineating the center and right boundaries of the lane.
The middle image shows the original image transformed to make it appear that
the vehicle is one meter to the right of its original position using the extrapolation
technique described above. The line down the right side of the road can be seen
smearing to the right where it intersects the border of the original image. Because
the length of this smear is highly correlated with the correct steering direction, the
network learns to depend on the size of this smear to predict the correct steering
direction. When driving on its own however, this lateral smearing of features is
not present, so the network performs poorly.
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Figure 3.8: Three reduced resolution images of a two-lane road with lines painted
down the middle and right side. The left image is the original coming directly
from the camera. The middle image was created by shifting the original image
to make it appear the vehicle was situated one meter to the right of its original
position using the first extrapolation technique described in the text. The right
image shows the same shift of the original image, but using the more realistic
extrapolation technique.

To eliminate this artifact of the transformation process, I implemented a more
realistic extrapolation technique which relies on the fact that interesting features
(like road edges and painted lane markers) normally run parallel to the road,
and hence parallel to the vehicle's current direction. With this assumption, to
extrapolate a value for the unknown pixel A in Figure 3.7, the appropriate ground
plane point to sample from the original image's viewing trapezoid is not the closest
point (point B), but the nearest point in the original image's viewing trapezoid along
the line that runs through point A and is parallel to the vehicle's original heading
(point C).

The effect this improved extrapolation technique has on the transformed image
can be seen schematically in the bottom image on the right of Figure 3.7. This
technique results in extrapolation along the line connecting a missing pixel to the
vanishing point, as illustrated in the lower right image. The realism advantage this
extrapolation technique has over the previous scheme can be seen by comparing
the image on the right of Figure 3.8 with the middle image. The line delineating
the right side of the lane, which was unrealistically smeared using the previous
method, is smoothly extended in the image on the right, which was created by
shifting the original image by the same amount as in the middle image, but using
the improved extrapolation method.

The improved transformation scheme certainly makes the transformed images
look more realistic, but to test whether it improves the network's driving per-
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formance, I did the following experiment. I first collected actual two-lane road
images like the one shown on the left side of Figure 3.8 along with the direction
the driver was steering when the images were taken. I then trained two networks
on this set of images. The first network was trained using the naive transfor-
mation scheme and the second using the improved transformation scheme. The
magnitude of the shifts and rotations, along with the buffering scheme used in the
training process are described in detail below. The networks were then tested on a
disjoint set of real two-lane road images, and the steering direction dictated by the
networks was compared with the person's steering direction on those images. The
network trained using the more realistic transformation scheme exhibited 37%
less steering error on the 100 test images than the network trained using the naive
transformation scheme. In more detail, the amount of steering error a network
produces is measured throughout this dissertation as the distance, in number of
units (i.e. neurons), between the peak of the network's "hill" of activation in the
output vector and the "correct" position, in this case the direction the person was
actually steering in. This steering error measurement is illustrated in Figure 3.9.
In this case, the network trained with the naive transformation technique had an
average steering error across the 100 test images of 3.5 units, while the network
trained with the realistic transformations technique had an average steering error
of only 2.2 units.

3.2.3 Transforming the Steering Direction

As important as the technique for transforming the input images is the method
used to determine the correct steering direction for each of the transformed im-
ages. The correct steering direction as dictated by the driver for the original
image must be altered for each of the transformed images to account for the al-
tered vehicle placement. This is done using a simple model called pure pursuit
steering [Wallace et al., 1985b]. In the pure pursuit model, the "correct" steer-
ing direction is the one that will bring the vehicle to a desired location (usually
the center of the road) a fixed distance ahead. The idea underlying pure pursuit
steering is illustrated in Figure 3.10. With the vehicle at position A, driving for
a predetermined distance along the person's current steering arc would bring the
vehicle to a "target" point T, which is assumed to be in the center of the road.

After transforming the image with a horizontal shift s and rotation 9 to make
it appear that the vehicle is at point B, the appropriate steering direction according
to the pure pursuit model would also bring the vehicle to the target point T.
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Figure 3.9: To calculate a network's steering error the best fit gaussian is found
to the network's output activation profile, as described in Chapter 2. The distance
between the peak of the best fit gaussian and the position in the output vector
representing the reference steering direction (in this case the person's steering
direction) is calculated. This distance, measured in units or neurons between the
two positions, is defined to be the network's steering error.
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Mathematically, the formula to compute the radius of the steering arc that will
take the vehicle from point B to point T is

12 +d2

2d

where r is the steering radius I is the lookahead distance and d is the distance
from point T the vehicle would end up at if driven straight ahead from point B for
distance I. The displacement d can be determined using the following formula:

d = cos 9. (dp + s + I tan 9)

where dp is the distance from point T the vehicle would end up if it drove straight
ahead from point A for the lookahead distance 1, s is the horizontal distance from
point A to B, and 9 is the vehicle rotation from point A to B. The quantity d can
be calculated using the following equation:

dp = rp - Vr2-

where rp is the radius of the arc the person was steering along when the image was
taken.

The only remaining unspecified parameter in the pure pursuit model is 1, the
distance ahead of the vehicle to select a point to steer towards. Empirically, I have
found that over the speed range of 5 to 55 mph, accurate and stable vehicle control
can be achieved using the following rule: look ahead the distance the vehicle will
travel in 2-3 seconds.

Interestingly, with this empirically determined rule for choosing the lookahead
distance, the pure pursuit model of steering is a fairly good approximation to how
people actually steer. Reid, Solowka and Billing [Reid, Solowka & Billing, 1981]
found that at 50km/h, human subjects responded to a Im lateral vehicle displace-
ment with a steering radius ranging from 51 im to 1194m. With a lookahead equal
to the distance the vehicle will travel in 2.3 seconds, the pure pursuit model dictates
a steering radius of 594m, within the range of human responses. Similarly, human
subjects reacted to a I degree heading error relative to the current road direction
with a steering radius ranging from 719m to 970m. Again using the 2.3 second
travel distance for lookahead, the pure pursuit steering model's dictated radius of
945m falls within the range of human responses.
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Figure 3.10: Illustration of the "pure pursuit" model of steering. See text for
explanation.

Like the image transformation scheme, the steering direction transformation
technique uses a simple model to determine how a change in the vehicle's po-
sition and/or orientation would affect the situation. In the image transformation
scheme, a planar world hypothesis and rules of perspective projection are used
to determine how changing the vehicle's position and/or orientation would affect
the sensor image of the scene ahead of the vehicle. In the steering direction
transformation technique, a model of how people drive is used to determine how
a particular vehicle transformation should alter the correct steering direction. In
both cases, the transformation techniques are independent of the driving situation.
The person could be driving on a single lane dirt road or a multi lane highway: the
transformation techniques would be the same.

Anthropomorphically speaking, transforming the sensor image to create more
training images is equivalent to telling the network "I don't know what features in
the image are important for determining the correct direction to steer, but whatever
they are, here are some other positions and orientations you may see them in".
Similarly, the technique for transforming the steering direction for each of these
new training images is equivalent to telling the network "whatever the important
features are, if you see them in this new position and orientation, here is how your
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response should change". Because it does not rely on a strong model of what
important image features look like, but instead acquires this knowledge through
training, the system is able to drive in a wide variety of circumstances, as will be
seen in the Chapter 5.

These weak models are enough to solve the two problems associated with
training in -eal time on sensor data. Specifically, using transformed training
patterns allows the network to learn how to recover from driving mistakes that
it would not otherwise encounter as the person drives. Also, overtraining on
repetitive images is less of a problem, since the transformed training exemplars
maintain variety in the training set.

3.2.4 Adding Diversity Through Buffering

As additional insurance against the effects of repetitive exemplars, the training set
diversity is further increased by maintaining a buffer of previously encountered
training patterns. When new training patterns are acquired through digitizing and
transforming the current sensor image, they are added to the buffer, while older
patterns are removed. I have experimented with four techniques for determining
which patterns to replace. The first is to replace oldest patterns first. Using this
scheme, the training pattern buffer represents a history of the driving situations
encountered recently. But if the driving situation remains unchanged for a period
of time, such as during an extended right turn, the buffer will loose its diversity and
become filled with right turn patterns. The second technique is to randomly choose
old patterns to be replaced by new ones. Using this technique, the laws of prob-
ability help ensure somewhat more diversity than the oldest pattern replacement
scheme, but the buffer will still become biased during monotonous stretches.

The next solution I developed to encourage diversity in the training was to
replace those patterns on which the network was making the lowest error, as
measured by the sum squared difference between the network's output and the
desired output. The idea was to eliminate the patterns the network was performing
best on, and leave in the training set those images the network was still having
trouble with. The problem with this technique results from the fact that the human
driver doesn't always steer in the correct direction. Occasionally he may have a
lapse of attention for a moment and steer in an incorrect direction for the current
situation. If a training exemplar was collected during this momentary lapse, under
this replacement scheme it will remain there in the training buffer for a long time,
since the network will have trouble outputting a steering response to match the
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person's incorrect steering command. In fact, using this replacement technique,
the only way the pattern would be removed from the training set would be if
the network learned to duplicate the incorrect steering response, obviously not a
desired outcome. I considered replacing both the patterrs with the lowest error
and the patterns with the highest error, but decided against it since high network
error on a pattern might also result on novel input image with a correct response
associated with it. A better method to eliminate this problem is to add a random
replacement probability to all patterns in the training buffer. This ensured that
even if the network never learns to produce the same steering response as the
person on an image, that image will eventually be eliminated from the training set.

While this augmented lowest-error-replacement technique did a reasonable job
of maintaining diversity in the training set, I found a more straightforward way of
accomplishing the same result. To make sure the buffer of training patterns does
not become biased towards one steering direction, I add a constraint to ensure that
the mean steering direction of all the patterns in the buffer is as close to straight
ahead as possible. When choosing the pattern to replace, I select the pattern
whose replacement will bring the average steering direction closest to straight.
For instance, if the training pattern buffer had more right turns than left, and a left
turn image was just collected, one of the right turn images in the buffer would
be chosen for replacement to move the average steering direction towards straight
ahead. If the buffer already had a straight ahead average steering direction, then
an old pattern requiring a similar steering direction the new one would be replaced
in order to maintain the buffer's unbiased nature. By actively compensating for
steering bias in the training buffer, the network never learns to consistently favor
one steering direction over another. This active bias compensation is a way to
build into the network a known constraint about steering: in the long run right and
left turns occur with equal frequency.

The final details required to specify the training on-the-fly process are the
number and magnitude of transformations to use for training the network. The
following quantities have been determined empirically to provide sufficient diver-
sity to allow networks to learn to drive in a wide variety of situations (see Chapter
5 for details). The original sensor image is shifted and rotated 14 times using the
technique describe above to create 14 training exemplars. The size of the shift
for each of the transformed exemplars is chosen randomly from the range -0.6
to +0.6 meters, and the amount of rotation is chosen from the range -6.0 to +6.0
degrees. But before the randomly selected shift and rotation is performed on the
original image, the steering direction that would be appropriate for the resulting
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transformed image is computed using the formulas given above. If the resulting
steering direction is sharper than the sharpest turn representable by the network's
output (usually a turn with a 30m radius), then the transformation is disallowed and
a new shift distance and rotation magnitude are randomly chosen. By eliminating
extreme and unlikely conditions from the training set, such as when the road is
shifted far to the right and vehicle is heading sharply to the left, the network is able
to devote more of its representation capability to handling plausible scenarios. For
more details on the network's internal representation, see Chapter 6.

The 14 transformed training patterns, along with the single pattern created
by pairing the current sensor image with the current steering direction, are in-
serted into the buffer of 200 patterns using the replacement strategy described
above. After this replacement process, one forward and one backward pass of
the back-propagation algorithm is performed on the 200 exemplars to update the
network's weights. The entire process is then repeated. Each cycle requires ap-
proximately 2.5 seconds on the three Sun Sparcstations onboard the vehicle. One
of the Sparcstation performs the sensor image acquisition and preprocessing, the
second implements the neural network simulation, and the third takes care of com-
municating with the vehicle controller and displaying system parameters for the
human observer. The network requires approximately 100 iterations through this
digitize-replace-train cycle to learn to drive in the domains that have been tested.
At 2.5 seconds per cycle, training takes approximately four minutes of human
driving over a sample stretch of road. During the training phase, the person drives
at approximately the speed at which the network will be tested, which ranges from
5 to 55 miles per hour.

3.3 Performance Improvement Using Transforma-
tions

The performance advantage this technique of transforming and buffering training
patterns offers over the more naive methods of training on real sensor data is
illustrated in Figure 3.11. This graph shows the vehicle's displacement from the
road center measured as three different networks drove at 4 mph over a 100 meter
section of a single lane paved bike path which included a straight stretch and turns
to the left and right. The three networks were trained over a 150 meter stretch of
the path which was disjoint from the test section and which ended in an extended
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Figure 3.11: Vehicle displacement from the road center as the Navlab was driven
by networks trained using three different techniques.

right turn.
The first network, labeled "-trans -buff", was trained using just the images

coming from the video camera. That is, during the training phase, an image was
digitized from the camera and fed into the network. One forward and backward
pass of back-propagation was performed on that training exemplar, and then the
process was repeated. The second network, labeled "+trans -buff", was trained
using the following technique. An image was digitized from the camera and then
transformed 14 times to create 15 new training patterns as described above. A
forward and backwards pass of back-propagation was then performed on each of
these 15 training patterns and then the process was repeated. The third network,
labeled "+trans +buff" was trained using the same transformation scheme as the
second network, but with the addition of the image buffering technique desc.. jed
above to prevent overtraining on recent images.

Note that all three networks were presented with the same number of images.
The transformation and buffering schemes did not influence the quantity of data
the networks were trained on, only its distribution. The "-trans -buff" network was
trained on closely spaced actual video images. The "+trans -buff' network was
presented with 15 times fewer actual images, but its training set also contained 14
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transformed images for every "real" one. The "+trans +buff" network collected
even fewer live images, since it performed a forward and backward pass through
its buffer of 200 patterns before digitizing a new one.

The accuracy of each of the three networks was determined by manually
measuring the vehicle's lateral displacement relative to the road center as each
network drove, using the technique described in Chapter 5. The network trained
on only the current video image quickly drove off the right side of the road, as
indicated by its rapidly increasing displacement from the road center. The problem
was that the network overlearned the right turn at the end of training and became
biased towards turning right. Because of the increased diversity provided by the
image transformation scheme, the second network performed much better than the
first. It was able to follow the entire test stretch of road. However it still had a
tendency to steer too much to the right, as illustrated in the graph by the vehicle's
positive displacement over most of the test run. In fact, the mean position of the
vehicle was 28.9cm right of the road center during the test. The variability of the
errors made by this network was also quite large, as illustrated by the wide range
of vehicle displacement in the "+trans -buff" graph. Quantitatively, the standard
deviation of this network's displacement was 62.7cm.

The addition of buffering previously encountered training patterns eliminated
the right bias in the third network, and also greatly reduced the magnitude of the
vehicle's displacement from the road center, as evidenced by the "+trans +buff"
graph. While the third network drove, the average position of the vehicle was
2.7cm right of center, with a standard deviation of only 14.8cm. This represents a
423% improvement in driving accuracy.

3.4 Discussion

Because of the variety of driving situations and environmental conditions an au-
tonomous navigation system is likely to encounter, training such a system involves
special difficulties. Generating realistic artificial training data proved impractical
for all but the simplest driving situations. But training on real sensor data is ac-
companied by its own set of challenges. Prominent among these difficulties is the
need to maintain sufficient variety in the training set to ensure that the network de-
velops a sufficiently general representation of the task. Two characteristics of real
sensor data collected as a person drives which make training set variety difficult to
maintain are temporal correlations and the limited range of situations encountered.
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Extended intervals of nearly identical sensor input can bias a network's internal
representation and reduce later driving accuracy. The human trainer's high degree
of driving accuracy severely restricts the variety of situations covered by the raw
sensor data.

The techniques for training "on-the-fly" described in this chapter solve these
difficulties. The key idea underlying training on-the-fly is that a model of the
process generating the live training data can be used to augment the training set
with additional realistic patterns. By modeling both the imaging process and the
steering behavior of the human driver, training on-the-fly generates patterns with
sufficient variety to allow networks to learn a robust representation of individual
driving domains.

In many ways, training on-the-fly blurs the distinction between training on
simulated patterns and training on real sensor input. By transforming live sensor
images to simulate a new vehicle position relative to the environment, training on-
the-fly preserves real input feature characteristics while at the same time generating
novel driving situations. The generalization improvements made possible by this
type of task modeling will be further demonstrated in the next chapter on adding
structured noise to the training set.



Chapter 4

Training Networks With Structured
Noise

In the last chapter, I presented a technique for achieving greater training set diver-
sity by geometrically transforming the original training patterns. This technique
provides sufficient variety to allow a network to drive reliably as long as the impor-
tant image features, such as lane markers and road boundaries, remain consistent
in appearance between training and testing. However there are situations which
give networks trained using the on-the-fly technique trouble. If the appearance
of the road changes drastically during testing, say by growing from one lane to
two, then no network trained on images of the original road will be capable of
driving on the new road. To cope with changing road types, I have developed
the multi-network arbitration tec.iniques described in Chapters 7, 8 and 9. These
techniques allow the system to switch from a network trained for one situation to
a network trained for another, as appropriate.

4.1 Transitory Feature Problem

However there are more subtle and transitory changes in the driving situation
which should not require changing networks, but which have proved troublesome
for networks trained using the technique desriibed previously. Two examples
of temporary but problematic features are illustrated in the real video images of
Figure 4.1. The left image shows a typical scene, similar to the ones used for
training the network. It has features including the lines down the left, right and

58
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Figure 4.1: Three video images of a multi-lane highway. The image on the left
is a typical scene, with visible features including the lane markers and a patch of
grass from the median visible in the upper left comer. The center image s1'ows the
vehicle going over a bridge. Notice that the grass in the median has disappeared
and a jersey barrier has taken its place. The image on the right shows a different
transitory image feature, namely a car as it is being passed.

center of the road, and a patch of grass from the median in the upper left corner.
The other two images illustrate deviations from this typical scene. The center
image shows a jersey barrier instead of a patch of grass in the upper left comer
as the vehicle drives over a bridge. The right image shows the vehicle passing
another car.

The reason this type of transitory disturbance causes trouble is that each
network is trained over a relatively short stretch of road (< 2 miles). As a result,
during training the network is not exposed to all the possible driving situations
it might encounter when driving autonomously. In particular, since situations
like the two illustrated in Figure 4.1 are relatively rare and limited in duraion,
even if the network sees them during training, it doesn't learn enough from its
brief exposure to handle them appropriately. As a result, while a network trained
with the technique described in the last chapter is capaLe of reliably driving in
situations closely resembling those it was trained on, when it encoun.;rs slightly
novel situations like the ones illustrated above, it frequently steers incorrectly.

The influence spurious image features can have on driving performance can
be seen by comparing Figures 4.2 and 4.3. Figure 4.2 illustrates a typical reduced
resolution multi-lane highway image like the ones ALVINN was trained on. The
dark triangle in the upper left is the green grass on the left side of the road. The
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thin dark line parallel to it is a yellow line painted down the left side of the road'.
The faint light dashes towards to upper right corner are part of the dashed white
lines marking the lanes. Notice that ALVINN's output response is nearly identical
in position to the target, indicating ALVINN is steering in the correct direction.
Figure 4.3 is similar to Figure 4.2, except in this input image, there is a guardrail
on the left side of the road, which appears as the bright triangular region in the
upper left corner. Notice ALVINN's steering direction is greatly disturbed by this
relatively minor change to the image.

The reason for this large disturbance is illustrated in the weight diagram of
Figure 4.4. In this figure, each of the rectangles labeled "Input-Hiddenl Weights"
through "Input-Hidden4 Weights" represents the weights projecting from the input
retina to one of the four hidden units in the network. White squares within each
of these images represent excitatory weights, black squares represent inhibitory
weights, and grey squares represent weights with small magnitude. Notice that
the connections from the pixels in the upper corners of the image to each of the
hidden units have relatively large magnitude, indicating the network is depending
heavily on the values of those pixels to determine the correct direction to steer.
The reason the network came to rely heavily on those pixels is that during training,
no guardrails or passing cars appeared in the periphery during training. In the
case of the left periphery, it contained only grass over the entire stretch of road
the network was trained on. As a result, the size of the dark triangular patch of
grass in the upper left corner was a good indication of how sharply the vehicle
should turn. The larger the dark patch, the more towards the left the vehicle was,
and therefore the more the vehicle should turn to the right. Because of the high
correlation between the size of the dark patch and the correct steering direction,
the network learned to use this feature to determine how to steer. Therefore, the
connections from the upper left pixels were given large weights, while the center
and bottom portions of the image were largely ignored. The same argument hold
true for the pixels in the upper right corner: the network relies heavily on them
because of their consistency during training.

The quantitative effect transitory image features like guardrails have on driving
performance is shown in the leftmost two bars of the graph in Figure 4.5. These two
bars represent the performance of a network trained using the technique described
in the preceding chapter on a sequence of multi-lane test images like the ones

'The yellow line ,.ppears dark in the preprocessed image because of its relatively small blue
components (see Chapter 2 for details).
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Figure 4.2: A typical two low resolution multi-lane highway image, and the
response of a network trained without noise. The units with high activation in the
network's output are in the same location as the high activation units in the target
vector, indicating the network is steering in the correct direction.
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Figure 4.3: A low resolution multi-lane highway image in which a guardrail
appears on the left side of the road (the bright triangular region in the upper left
comer). Since the network did not see a situation like this during training, its
steering response is far from correct.
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Figure 4.4: Weight diagram of a network trained without noise. The blocks labeled
Input-Hiddenl Weights through Input-Hidden4 Weights represent the magnitude
and sign of the weights from the input retina to each of the four hidden units in the
network. The dark a square within each of these blocks the more inhibitory the
corresponding weight. Conversely, the lighter a square, the more excitatory the
corresponding weight. The upper comers of each of these input-to-hidden weight I
diagrams illustrate that the network has learned to rely heavily on features in the
periphery to determine how to steer. As a result, when these features are corrupted,
such as when a guardrail appears, the network's response is significantly disturbed.
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shown in Figure 4.1. The leftmost bar shows the network's average steering error
over the entire test set. Recall that steering error represents the curvature difference
between the steering arc suggested by the network for an image and the arc the
person was driving along when the image was taken. The bar next to it, labeled
"Images w/ Guardrail" shows the average steering error of the same network on
a 32 image subset from the test sequence which contained a feature not present
in many of the training images, namely a guardrail on the left side of the road.
The network's steering error more than doubles on images containing the novel
feature, clearly illustrating the effect these features can have on performance. If
allowed to steer autonomously over the stretch of road where the guardrail images
were taken, the network would steer off the road and crash. Clearly something
must be done to correct this behavior.

The problem caused by transitory image features is analogous to the problem
addressed by training "on-the-fly", namely insufficient diversity in the training
examples. When training on-the-fly with just the images coming directly from the
camera, the system doesn't see any situations where the vehicle is off the center
of the road. Therefore, it doesn't learn to recover from mistakes. By shifting and
rotating the training images, the diversity of the training set is increased, resulting
in a network better able to recover from steering mistakes.

In the case of transitory, spurious feature changes, the network does not en-
counter them frequently enough during the short training period to learn to .gnore
them. One useful aspect of the problem, exploited in the solution below, is that
these transitory features do not radically alter the overall appearance of the image.
While they may obscure or replace features which appear in a "normal" image,
there remain enough features in the image to at least in theory make driving using
the same network possible. In other words, because of redundancy in the image,
if the network could learn to ignore spurious features such as guardrails, it should
still be capable of driving accurately. This is an important distinction, since there
are situations, such as one vs. two lane roads, where all the relevant image features
are sufficiently different to warrant training separate networks.

4.2 Training with Gaussian Noise

A commonly employed technique for improving generalization from a limited
amount of training data is to add uncorrelated gaussian noise to the training
patterns [Seitzma & Dow, 1991]. The idea is that adding noise to the input prevents
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Figure 4.5: Graph illustrating the performance of networks trained using three
different techniques on a test set of 180 images, and on a subset of 32 images
containing a guardrail. The bars labeled "no noise" represent the average steering
error of a network trained without noise. The bars labeled "gaussian noise"
represent the average steering error of a network trained by adding gaussian noise
to the input images. The bars labeled "structured noise" represent the average
steering error of a network trained by adding structured noise to the input images.
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the network from relying on idiosyncrasies in the training patterns to perform the
task. Sietsma and Dow found a dramatic improvement in generalization when
noise was added to the training patterns on a frequency classification problem. In
their task, the input was a 64 unit vector whose input activation pattern formed a
sine wave of a particular frequency. The task was to classify an input sine wave
according to its frequency, regardless of its phase within the input field. They
found that when gaussian noise was added to the training patterns, the resulting
network made dramatically fewer classification errors on novel, noise-free input
patterns (0.5% vs. 17%).

I performed the same experiment by training networks on the identical se-
quence of images as the noise-free network, but with the addition of various
amounts of gaussian noise to the road images. The noise added to the training
patterns for each network had a mean of 0 and a standard deviation ranging from
0.4 to 1.2. Figure 4.6 shows one corrupted road image used for training.

The results obtained by testing the noise trained networks on novel images
were initially surprising. Regardless of the amount of noise, the networks trained
with noisy input performed uniformly worse than the network trained without
noise. This poorer performance is "llustrated in the second pair of bars in Fig-
ure 4.5 labeled "Gaussian Noise". They represent the best performance of any
of the networks trained with gaussian noise. Both on the entire training set, and
particularly on the guardrail subset of images, the networks trained with noise
steered less accurately than the network trained without noise.

The reason for this unexpected drop in performance is evident in Figure 4.6.
Notice that the finer image features such as the lane markers, which were visible
in the noise-free image of Figure 4.2, have been obscured by the noise. In
fact, the only remaining distinct feature is the large patch of grass in the upper
left corner. Since the size and location of the grass patch were the only image
characteristics that the networks could accurately estimate, it was these that the
noise-trained networks learned to key on to determine the steering direction. This
degraded performance on the test set because despite its large size, the grass
patch is actually a less reliable feature than the lane markers, since it is frequently
obscured by guardrails and jersey barriers. Adding uncorrelated gaussian noise
to the input has a tendency to obscure fine features like the lane markers, while
leaving larger, more redundant features intact. When smaller features are more
reliable indicators of the correct response than larger features, the result of adding
gaussian noise during training will be poorer generalization.

Gaussian noise is a poor model of the important "noise" that occurs in the input
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Figure 4.6: A multi-lane highway image corrupted with gaussian noise. Notice
that the finer image features, such as the lane markers, are obscured by the noise,
while the large patch of grass in the upper left corner remains visible.
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while driving. The noise that matters results from the appearance or disappearance
of coherent 2-D features such as guardrails and other cars which do not consistently
correlate with the correct response. Modeling these irrelevant features and adding
them to the input while training can improve generalization dramatically, as illus-
trated by the last two bars in Figure 4.5. Networks trained by adding structured
noise to the input, as described in the next section, generalized better on the test
set as a whole than networks trained without noise or with gaussian noise. Even
more significant was the performance improvement of the network trained with
structured noise on images with spurious features in them, as illustrated by the
low error of the network on the guardrail images. In fact, the network's steering
performance on the novel guardrail images was not significantly different than its
performance on the test set as a whole, demonstrating that it has learned to ignore
spurious image features (See Figure 4.5.

4.3 Characteristics of Structured Noise
A numbe- of straightforward characteristics of structured image noise can be
employed to improve network generalization. The most obvious features is the
high degree of spatial correlation. Important noise does not appear as corruption of
random image pixels. Instead, the physical object (like a car or guardrail) causing
the noise makes a 2-D projection into the input image. As a result, the important
image -)ise takes the form of spatially coherent two-dimensional regions of nearly
uniform intensity. While objects with multiple or variable intensities do occur,
their rarity makes a uniform intensity model of structured noise a reasonable
approximation.

A more subtle characteristic of structured image noise results from the fact
that objects can change in three ways. Objects can suddenly appear in the image,
obscuring part or all of a previously visible feature. An example of this effect is
when a car passes and obscures the lane markers. Objects can also disappear from
the image, making previously hidden features visible. This effect might occur
when the guardrail disappears, revealing the grass on the other side. Finally, a
feature can change color or brightness, as when the centerline changes from white
to yellow. Shape is not considered a changing feature characteristic, since objects
visible when driving are assumed to be rigid.

A useful domain-specific characteristic of structured image noise is that when
driving, irrelevant features are more likely to occur in the eriphery of the image
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than in the center. Even if during training the appearance of the terrain off to the
side of the road remains constant, it is helpful for the network to learn that the
appearance of the periphery can change dramatically. This way the network can
learn not to rely heavily on the position of the guardrail or the size of the grass
area in the off-road region, since they may be obscured or disappear at any time.

The size of significant image features can be constrained by estimating the size
and distance to features which may appear or disappear in the scene. The retina
size of significant features ranges from a few tens of pixels for the lane markers
or guardrail to several hundred pixels for large objects such as passing trucks.
The shape of significant image features is also strongly constrained in the domain
of autonomous driving. In particular, image features are frequently oriented with
their primary axis pointed towards the vanishing point of the image. The technique
for incorporating these characteristics of image features and the noise that corrupts
them into the training process is described in the next section.

4.4 Training with Structured Noise

Structured noise characteristics are used during training to determine the appear-
ance of the noise to be added to the input patterns. Instead of adding gaussian
noise to each pixel, the following technique is employed to add or remove coherent
two-dimensional features to the training patterns.

First, for each pattern on each epoch of the back-propagation, a decision is
made whether to add noise to that pattern or not. Instead of adding structured noise
on every presentation of a pattern, I've found that occasionally presenting each
training pattern without noise helps to maintain the network's ability to handle
clean images. Empirically, adding noise on 3 out of every 4 presentations of
a pattern seems to be a good compromise between teaching the network to be
insensitive to noise and teaching it to process clean images correctly.

Once the decision is made to add noise to a pattern, the next question is where
to put it. I have found that when trained on images with a single noise feature, a
network is able to generalize to images with multiple noise features. Therefore, at
most one noise feature is added per image during training. The location for this
single noise feature is selected randomly with a bias towards the periphery of the
scene, corresponding to the upper corners of the image. That is, the likelihood that
a pixel will be chosen as the starting point for the noise feature is proportional to
its proximity to the closer of the two upper corners of the image. This periphery
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bias roughly models the tendency of noise features to appear away from the path
directly ahead of the vehicle in real world driving situations.

After determining the starting location for the noise feature, a decision is made
whether a new feature should be added at that position or an existing feature should
be removed from that position. This choice is made randomly, but with a bias
towards deleting a feature if one appears to exist at that location, and towards
adding a feature if that location appears to be "feature free". The judgement
concerning whether a feature exists at a location is made based on the size of
the uniform region that location is part of. First, a region is grown around the
chosen location to encompass all the contiguous pixels whose intensity is within
a fixed threshold of the chosen pixel's value. If the size of this region is within
the size range of interesting features as characterized above, then the location is
considered to be part of a feature and that feature is removed. If the size of the
region falls outside the size range of interesting features, it is considered part of
the background, and a new feature is added at that location.

Removing a feature is easy. The pixels defining the feature have already
been determined in the region growing step described above. Deleting the feature
involves changing the values of all the pixels within the region to a new randomly
chosen intensity. This alteration of a region's intensity models the corresponding
object changing color. By selecting the new intensity to be the same as the intensity
of the area surrounding the feature, the disappearance of the feature can also be
simulated.

The result of using this technique to alter an existing feature is illustrated in
Figure 4.7. The image is identical to the one in Figure 4.2, except that the patch of
grass in the upper left corner has changed intensity from very dark to very light.

Adding a new feature to model the sudden appearance. of objects such as
a guardrail or automobile is more difficult, since unlike in the feature elimina-
tion/alteration process described above, the shape of the feature is not known.
The shape of spurious 2-D image features can in theory be arbitrary. There is the
weak constraint mentioned earlier that significant features tend to have their major
axis pointing towards the vanishing point. However, this orientation specificity
is difficult to implement directly in the noise generation model since it requires
knowledge of the sensor geometry.

This sensor geometry information is available, since it is used in the image
transformation scheme described in the last chapter, but there is a simpler and more
general technique for modeling feature shape. The technique involves using the
shape of the feature detectors the network develops in its internal representation
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Figure 4.7: An image in which an existing feature has been altered by changing its
intensity. The image is identical to the one in shown earlier, except that the patch
of grss in the upper lcft comer has changed intensity from very dark to very light.
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to bias the shape of the noise features added as distractors. As is evident in the
weights from the input retina to the hidden units in Figure 4.4, the network develops
a strong model of the shape of important image features. The network's knowledge
that features tend to be oriented towards the vanishing point is demonstrated by the
manner in which the features in the receptive fields of the hidden units converge
towards the top.

To bias the new feature's shape using the shapes of the features in the network's
internal representation, a random hidden unit is first selected. The values of the
weights from the input retina to this hidden unit are then used as the image in
which to grow the new feature. In other words, a pixel in the vicinity of the
feature's start pixel is chosen to be an element of the feature if the weight of the
connection from it to the chosen hidden unit is sufficiently similar in value to the
weight of the connection from the feature's start pixel to the chosen hidden unit.
By biasing the shape of noise features by the shape of important features according
to the internal representation, this technique ensures that only noise features with
a reasonable shape are added to the input. In addition, a noise feature whose
shape corresponds to the contours formed by a coherent group of large magnitude
connections from the input retina guarantees that noise feature will have maximum
impact for its size. This is because if the noise feature stretches "across the grain"
of the receptive field, the influence of the pixels connecting to the chosen hidden
unit with large negative weights would cancel out the influence of the pixels with
large positive connections. This would result in the noise feature having little net
influence on the hidden unit's final activation level.

To mimic situations in which image noise does not precisely align with sig-
nificant feature detectors, a spatial coherence constraint is added to the feature
growing algorithm. The following equation balances the tendency of the feature
growing algorithm to follow hidden unit weight contours with the tendency to
create a spatially compact feature. A pixel i will be included in a newly created
features if:

alwih - whl + (I - a)li - sl > T

In this equation, wjA is the weight value of the connection originating at pixel i
in the input image and terminating at the chosen hidden unit h. The variable wh
corresponds to the weight of the connection originating at s, the pixel chosen as
the start position of the feature, to the chosen hidden unit h. The quantity II i - s II
represents the Euclidean distance between pixels i and s in the input ret.na. The
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constant a i; used to weight the tendency to follow hidden unit weight contours
with the tendency to keep the feature spatially compact. With an a of 0, the
new feature will form a circular region centered on pixel s. With an a of 1, the
new feature will grow to include all the pixels in the image having connections to
hidden unit h with a weight close in magnitude to the connection from pixel s to
unit h. Randomly choosing an a from the range 0.1 to 0.3 for each image creates
realistic looking new noise features. The threshold T is used to limit the growth
of the new feature. If the weight from pixel i to hidden unit h differs significantly
from the weight from the start pixel s to unit h, or if pixel i is a great distance from
pixel s, thea the threshold T will be exceeded by the above sum and pixel i will
not be included in the new feature.

Once the position and shape of the noise feature is determined, it is made to
contrast with the surrounding area by filling it with a randomly chosen uniform
brightness. A real video image in which a noise feature (the dark region in the
upper right) has been added is shown in Figure 4.8. Notice how the feature
appears close to the upper corner of the image due to the periphery bias built into
the noise feature generation algorithm. Figure 4.8 also illustrates how growing
noise features along important contours in the hidden unit representation results
in features with appropriate orientations for the domain. In this example, this bias
results in a feature oriented diagonally towards the vanishing point. The feature
is spatially compact due to the bias in the noise generation algorithm towards
choosing pixels in the vicinity of the feature's start pixel. This combination of
bias--s based on known, consistent image feature charac-teristics results in the
generation of noise features with realistic appearance. In fact, the feature in
Figure 4.8 appears very much like a car passing by on the right side of the vehicle,
as in the right image of Figure 4.1.

As illustrated in the bar graph of Figure 4.5, a network trained by adding and
removing features steers more accurately than a network trained without noise,
particularly on images containing spurious features. The reason for this is evident
in the weight diagram of Figure 4.9. The network shown in this diagram was trained
on the same sequence of images as the network shown in Figure 4.4, except that on
each iteration of back-propagation, 75% of the patterns were randomly selected
to have a noise feature added to their input. Varying the noise at every epoch
prevents the network from learning characteristics of a single noise feature. The
remaining 25% of the patterns were presented without noise to ensure the network
would also handle noise free situations.

It is clear by looking in the upper corners of the input-to-hidden weight arrays
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Figure 4.8: An image in which a new feature has been added by growing a region
in the weight array from a single hidden unit, subject to a spatial compactness
constraint.
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that adding structured noise to the image has had the desired effect. Namely, the
network has learned to rely less on features in the periphery than the network
depicted in Figure 4.4. In fact, the network has developed detectors primarily
for determining the position of the line marking the left lane boundary, since this
is the feature that appears most reliably in this type of road image. Because of
its frequent occlusion and absence from the image, the dashed line marking the
right boundary of the lane is given little importance in the internal representation.
The resulting performance improvement is illustrated by the input pattern and
corresponding network response in the lower right corner of Figure 4.9. The input
pattern is the same guardrail image that confused the network trained without
noise in Figure 4.3. This network handles the guardrail image perfectly, since it
has learned not to be disturbed by features in the periphery.

4.5 Improvement from Structured Noise Training

The bar graph in Figure 4.5 illustrates the significant increase in steering accuracy
which results when structured noise is added in the training process. This steering
accuracy improvement translates directly into dramatic gains in driving perfor-
mance. Quantitatively, I have found that a network trained without the addition of
structured noise on a two mile stretch of a four lane divided highway was capable
of driving autonomously for only about four miles before straying from the road
because of a spurious feature. Driving successfully for even this relatively short
distance was somewhat fortuitous, in that it was achieved on a stretch of road free
from guardrails and other potentially confusing permanent features, and at a time
of day when there was very little traffic to confuse the network. In fact, when other
vehicles did appear during these tests, the network trained without noise frequently
swerved towards or away from them depending on their brightness relative to the
background. The swerves were relatively small, so the safety driver allowed the
run to continue without interference. The situation which ended the run after four
miles was the one depicted in the center image of Figure 4.5. The vehicle encoun-
tered a bridge with jersey barriers along the edge of the road. This spurious feature
caused the vehicle to swerve dramatically, forcing the safety driver to intervene.

The network trained with structured noise drives significantly better. Its best
run was 21.2 miles without human intervention, on the same highway that caused
the network trained without noise to fail after 4.0 miles. It made it over the bridge
that caused the previous network to fail, and through a number of other situations
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Figure 4.9: Weight diagram of a network trained with structured noise. As is
evi -4 nt by the low magnitude of the weights from the upper comers of the image
to the hidden units, adding structured noise has taught the network not to rely
on features in the periphery, since they are not a reliable indicator of the correct
steering direction.
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that would have caused trouble for the network trained without noise. The reason
the run came to an end after 21.2 miles was that the width of the road changed
significantly, causing the network trained with noise to become confused. For
more details on the performance of this network, which actually set a new world
distance record for autonomous navigation with its 21.2 mile run, see the next
chapter.

4.6 Discussion

The appearance or disappearance of irrelevant features can disrupt a network's
driving when the network's training did not demonstrate their irrelevance. Adding
structured noise to the training patterns using a model describing the characteristics
of irrelevant features significantly improves driving performance. A simpler
gaussian model of image noise has been shown to be ineffective at compensating
for this problem because it does not mimic the important characteristics of real
world, structured noise.

But are there other possible solutions which do not require such complex
modeling? In theory, training the network over a longer stretch of road than the
two miles currently employed should result in a more representative training set
and hence a more robust network. However there are a number of shortcomings
to this approach. One long term goal of this work is the development of a super
cruise control system capable of controlling both the vehicle's speed and steering.
If the training period for this super cruise control is too long, it will be impractical.

But even given unlimited training time, the scarcity of irrelevant features would
make it difficult to train a network to ignore them. For instance, over many miles
of highway driving, the size of the patch of grass on the left side of the image is a
good indicator of the correct steering direction. Only in rare situations, like going
over a bridge, will relying on this feature get the network in trouble. Even if the
training period were extended to ensure encountering this type of situation, its low
frequency would make it beneficial for the network to ignore these few patterns.
This is because the network could lower the total error over all training patterns
by employing the patch of grass to improve the steering performance on the vast
majority of patterns, while suffering substantial error only on the few patterns in
which the patch of grass is missing. In other words, the high correlation between an
irrelevant feature and the correct output would result in the network employing the
feature despite being exposed to a few situations where this degrades performance.
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It might be possible to achieve a similar result by intelligently selecting patterns
during training. The network could be trained solely with images on which it
disagrees with the person's steering response. A similar effect could be achieve
with a back-propagation error term that penalizes large steering errors more than
small ones. These techniques, would increase the impact of rare circumstances in
which irrelevant features cause the network to make a large mistake.

There are three problems with these alternative methods. First, the human
driver does not always drive attentively and therefore occasionally steers incor-
rectly. Techniques which emphasis discrepancies between the network and the
human trainer will encourage the network to imitate the person's mistakes, clearly
an undesirable effect. In addition, these technique require the vehicle to encounter
a situation at least once in order for the network to learn about it. For instance, if a
bridge never appeared during training, the network would still mistakenly learn to
rely on grass to the left of the road. In contrast, by employing a model of structured
noise during training, the network can learn about this situation which the vehicle
never actually encounters. Related to the first shortcoming, a significantly longer
training time would be required to ensure that the network has encountered all the
possible types of spurious features. From a practical sta.,dpoint, it is much more
straightforward to build a model of the noise and add it directly.

But is there a simpler way of building the domain knowledge currently embod-
ied in the structured noise generation process into the training procedure? There
very well may be. One possibility would be to constrain the network architec-
ture by limiting its connectivity in order to force the network to ignore irrelevant
features. The problem with this approach is that it is difficult to determine the
exact appearance and location of irrelevant features before the training process
begins. In autonomous driving, features in the periphery are known to be less
reliable than more central features, but the actual impact of this general rule on
the images depends on the camera geometry and the particular features of the
domain. The technique for adding structured noise overcomes this problem by
applying the general rule of peripheral unreliability on an image by image basis.
Instead of predetermining which pixels in the image will be ignored by limiting the
network's connectivity pattern, the structure noise generation technique disrupts
entire peripheral features in individual images, allowing the network to learn on
its own the position and appearance of irrelevant features.

The current model of structured image noise has obvious shortcomings. Noise
features do not always occur in the periphery. When driving in traffic, cars directly
in front of the vehicle will obscure central image features. But even this simple
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model is sufficient to demonstrate an important point: dramatic improvements in
network generalization can be achieved by actively employing domain-specific
knowledge during the training process. Both the technique described in the previ-
ous chapter for training on-the-fly and this technique for adding structured noise
demonstrate that domain knowledge can be effectively exploited by augmenting
the training set with patterns representing relatively simple transformations of
situations actually encountered.



Chapter 5

Driving Results and Performance

The preceding three chapters focused on techniques that allow artificial neural
networks to perform vision-based guidance of a mobile robot. Actual results
employing these techniques have been included only for drawing comparisons
between competing methods. In the first part of this chapter the flexibility of the
techniques presented so far is demonstrated by illustrating the range of situations
in which networks have been trained to drive. Accompanying the description of
each situation is an analysis of the characteristics that made the domain interesting
or difficult, and an outline of any situation-specific steps required to facilitate
driving in that domain.

The remainder of the chapter is devoted to quantitatively characterizing the per-
formance of the neural network driving system. Performance of any autonomous
driving system is difficult to quantify because of the dynamic nature of the task.
Despite this difficulty, I will describe one measurement technique I have devel-
oped, and use the technique to compare a network's performance with that of a
human driver.

5.1 Situations Encountered

I will first describe situations that ALVINN has successfully handled using video
camera input. I will then present situations in which the use of alternative sensors
has allowed ALVINN to drive proficiently.

80
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',1

Figure 5.1: Video images taken on three of the road types ALVINN modules have
been trained to handle. They are, from left to right, a single-lane dirt access road,
a single-lane paved bicycle path, and a lined two-lane highway.

5.1.1 Single Lane Paved Road Driving

The first scenario to which I applied neural network based autonomous navigation,
and the domain which has served as the proving ground for many of the techniques
described in this dissertation, is driving along a 400M bicycle path through a
wooded area adjacent to the CMU campus (see the middle image of Figure 5.1).
Driving on this road is difficult for many reasons. First, the road contains five
sharp curves, making rapid steering corrections extremely important. The need
for precise and timely steering corrections is demanded by the narrowness of the
road relative to the vehicle. The road averages 2.9 meters wide, which is only
slightly more than the 2.55 meter width of the two test vehicles. In addition, the
road is not actively maintained. As a result, the road's width and appearance
varies substantially due to the effects of missing or broken sections of pavement.
Depending on the season, the existing pavement is also frequently obscured by
fallen leaves or snow. Another difficulty results from the fact that the road
traverses both a grassy field and a wooded area with only dirt surrounding the
road. This change of terrain results in a dramatiL change in the appearance of the
off-road region in color video images. In addition, the trees bordering the road
in the wooded area often cast harsh shadows, creating spurious features in the
image. Finally, the road contains three intersections which can be confusing for
an autonomous driving system.

Despite the inherent difficulties with this domain, a network can learn to steer
on this road in about 3 minutes by watching a person drive along its. After training,

---- --- -- -
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the network can generalize to drive the road in the opposite direction at speeds
of up to 10 mph. The ability to drive in the other direction illustrates that the
network does not learn idiosyncrasies about the appearance or turn sequence of
this particular stretch of road, but instead learns general image features useful for
driving on this type of road.

In addition to generalizing to novel stretches of this type of road, a network
trained on this road can also drive in weather and lighting conditions it never
encountered during training. This ability has been demonstrated by training a
network one day, and then testing it the next after conditions have changed. A
single network trained under either sunny, cloudy or rainy conditions can also
accurately drive in the other situations.

The one climatic condition that has proven difficult to generalize about from
real training data is snowy conditions. A network trained when there is snow
cov,-".,g the non-road areas of the image has no trouble driving in those conditions.
However, a network trained under snowless conditions is unable to drive in snowy
situations, and a network trained under snowy conditions is not able to drive in
snowless situations. This failure to generalize results from the drastic appearance
change associated with snow. Under conditions without snow, the road appears
brighter than the non-road in the preprocessed image, since the road is bluer
than the non-road (recall from Chapter 2 that the blueness of a pixel determines its
brightness in the preprocessed image). The reverse is true under snowy conditions.
That is, the road appears darker than the non-road in the preprocessed image.

This flip in polarity of the relative intensity of the road and non-road makes
generalizing between the two situations difficult. I have successfully trained a
single network to drive in both snowy and snowless conditions. However, this
was achieved by using a batch training method, in which the network was trained
on images collected from both situations instead of the normal "on-the-fly" method
of training.

A network trained on live images of roads without snow doesn't generalize to
snowy images since the training set employed during a live training run doesn't
contain any patterns resembling the road under snowy conditions. However using
a simple model describing how the image can flip polarity, the training set could
be easily augmented to include these situations using a technique similar to the one
described in the last chapter. In other words, instead of randomly adding feature
noise to the training images, they could be occasionally inverted in order to teach
the network that the road can be either darker or lighter than the non-road.

In fact, before I developed the technique for training on real images, the
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artificial patterns I generated for training included both images in which the road
was lighter than the non-road, and images in which it was darker. Again I found
that by training with both types of images, a single network could learn to drive
in both situations. However due to the added complexity associated with learning
road polarity invariance, training took significantly longer. This extra training
time, coupled with the fact that it is very rare that the road changes polarity with
the non-road, prompted me to discontinue training networks to be invariant to this
type of image change.

The more efficient solution I've developed to deal with widely varying con-
ditions involves training separate "expert" networks for each, and then choosing
the most appropriate network using connectionist arbitration techniques described
in Chapters 8 and 9. By requiring a single network to only handle a relatively
limited set of circumstances, training time is shortened and overall performance
is improved.

5.1.2 Single Lane Dirt Road Driving

Another road type ALVINN has been trained to handle is unpaved single-lane
roads. This road type is interesting for two reasons. First, on some of the unpaved
roads ALVINN has been trained on, the contrast between the road and the non-
road is much lower, and the amount of image noise is much higher than in the
paved single-lane road domain. Despite these added difficulties, ALVINN can
drive quite proficiently on these roads.

An interesting variant of unpaved road that an ALVINN network has be trained
to drive on is defined only by parallel wheel ruts running through a uniform
environment. On the road tested there was grass surrounding the road and also
grass down the middle of the road between the two ruts. This configuration can
confuse road following systems which rely on classifying pixels as part of the
road or part of the non-road and then fitting a model of the road's shape to these
classified pixels [Crisman & Thorpe, 1990]. The problem stems from the fact that
the usual model of an unstructured road, as a trapezoidal image region differing in
color from its surroundings, is violated in this situation since grass pixels occur in
both the road and the off-road regions (for more details see Chapter 11).

In contrast, ALVINN does not have a strong predefined model of what impor-
tant image features should look like. Instead, ALVINN is able to learn that it is
the position and orientation of the two ruts in the image that determine the correct
steering direction. This ability to learn a new road model allows ALVINN to drive
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as proficiently on this type of road as on roads with a more typical appearance.

5.1.3 Two-Lane Neighborhood Street Driving
A domain that further illustrates the flexibility of the neural network approach to
autonomous navigation is driving on two-lane, unlined suburban neighborhood
streets. The significant distinctions between this road type and the previous ones
are the added road width, and the frequent occurrence of driveways intersecting
the road at right angles.

As in the previous domain, accurate driving is difficult to achieve on this type
of road using techniques based on pixel classification and road model fitting for
three reasons. Like the grass down the middle of dirt roads, the driveways in this
domain make it difficult to accurately represent the road with a simple trapezoid
model. In addition, the greater road width means that frequently only one of the
road's edges will appear in the image. When one edge is missing, the model fitting
process employed by classical road followers becomes more difficult. Finally,
even after finding the position of the road, traditional model-based autonomous
navigation systems would have to be progranmed by hand to stay to the right on
this type of two-lane road, instead of driving down the middle.

ALVINN learns to ignore the spurious image features caused by the driveways,
and to keep the vehicle driving down the right side of the road simply by watching
a person drive in this domain for about four minutes. ALVINN has successfully
driven in this domain for 1/2 mile at speeds of up to 13 mph. By combining
ALVINN's road following ability with the symbolic reasoning of an annotated
map system, the system was able to navigate through three intersections over the
1/2 mile course, coming to rest at a preplanned destination. For more details about
this run, and the hybrid connectionist/symbolic approach which made it possible,
see Chapter 7.

5.1.4 Railroad Track Following

Another domain that demonstrates how ALVINN can learn to maintain the vehicle
at an arbitrary position relative to features in the world is driving parallel to railroad
tracks. In this domain, there was a very poorly defined road running next to a set
of railroad tracks. Since, there were no consistent road features for the network
to key off, driving using a camera pointed straight ahead was impossible. But
the solution was easy. I simply turned the camera slightly to get the rails of the
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railroad tracks in its field of view and trained the network by driving parallel to
the tracks. The network learned in about 4 minutes to steer the vehicle in order to
keeps the rails at a particular position and orientation in the image. Again, because
of the network's flexibility, this domain was no more difficult to master than the
previous ones.

5.1.5 Driving in Reverse

A driving situation which, like railroad track following, required a non-standard
camera positioning was driving in reverse. By mounting a camera on the rear
of the vehicle facing backwards, and training a network while a person backed
up, ALVINN learned to drive in reverse on the single-lane paved road described
above.

The interesting aspect of this domain is that ALVINN was actually better
at driving backwards than its human trainer. There were two reasons for this
improvement. First, because of people's bias towards driving forward, the human
trainer could not get accustomed to driving in reverse using the rear facing camera.
His difficulty resulted from the fact that the rear facing camera produced a mirror
image of the scene behind the vehicle when displayed on a monitor next to the
steering wheel. If the road appeared on the right side of the image, his natural
reaction was to turn right, instead of the correct response, left. So the human
trainer continued to use the rear view mirrors while training the network.

Since an untrained ALVINN network has no bias about what to expect from the
scene, it had no difficulty learning the inverse relationship between feature position
and steering response required for driving in reverse using the rear mounted
camera. As a result, ALVINN was able to drive at up to 10 mph in reverse just
as proficiently as it could drive forward on the single-lane paved test road. The
human driver, with the limited field of view provided by the rear view mirrors,
was able to keep the vehicle centered on the narrow road reliably only up to a
speed of 7 mph.

5.1.6 Multi-ine Highway Driving

The domain in which ALVINN's most impressive results have been achieved is
multi-lane highway driving. Some of the difficulties in this domain, in particu-
lar the problems associated with spurious image features, were presented in the
last chapter. Other factors that make highway driving a challenge are the high
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speed required to keep up with the prevailing traffic, and the very subtle steering
corrections required to keep the vehicle on the road without losing control.

Two slight modifications were required to enable ALVINN to drive in this
domain. The first change was to increase the lookahead distance for steering
to 45 meters. This change was made in accordance with the rule of thumb
from Chapter 3 describing the relationship between driving speed and lookahead
distance. Specifically, the lookahead was set to the distance the vehicle would
travel in 2 second at the desired speed of 50 mph.

The second modification was to limit the magnitude of ALVINN's sharpest
steering direction from the 20m turn radius used in the other domains to a relatively
shallow 100m radius turn. Limiting the steering range serves two purposes. First,
it provides greater resolution over the reduced steering range, permitting finer
distinctions to be make. Second, it reduces the da-ger of suddenly swerving into
another lane by preventing ALVINN from turning too sharply.

With these modifications, ALVINN was able to learn from two miles of training
to drive autonomously down the left lane of a highway at a speed of up to 55 mph.
The left lane was chosen to avoid the confusing effects of exit ramps. The speed
was limited not by the network's performance, but by the physical limitations of
the NAVLAB II, which won't drive more than 55 mph for any extended period,
and by the Pennsylvania speed limit.

The network made two runs of slightly over 10 miles, and a world record
run of 21.2 miles. This nearly doubled the previous world distance record for
autonomous navigation, held the Dickmanns' group [Dickmanns & Zapp, 1987]
driving along a 12 mile, newly paved and painted stretch of the German autobahn
closed to other traffic at the time. ALVINN's 21.2 mile run was on a relatively old
stretch of highway which was open to other traffic. During the record setting run,
the average speed was 45 mph. Over the 21.2 miles, 14 cars passed the vehicle
while it was being driven autonomously, without disturbing the network. The
reason the safety driver finally had to intervene was that the width of the road
changed significantly, confusing the network.

5.2 Driving with Alternative Sensors

The previous section demonstrated the flexibility of the connectionist approach
to vision-based robot guidance by presenting the wide range of driving situations
successfully handled by networks using video input. This section further illustrates
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Figure 5.2: Images taken of a scene ;.ising the three sensor modalities the system
employs as input. From left to right they are a video image, a laser rangefinder
image and a laser reflectance image. Obstacles such as trees appear as disconti-
nuities in laser range images. The road and the grass reflect different amounts of
laser light, making them distinguishable in laser reflectance images.

the flexibility of the neural network approach by pre.senting ALVINN's ability to
employ alternate sensors to drive in situations which would be impossible using
only a video camera.

The primary additional sensor on both the Navlab and Navlab II is a scanning
laser rangefinder. It rapidly scans a laser beam over a 30 by 80 degree field of view
in front of the vehicle and measures both the amount and the phase of the light
eflected back from the scene. The amount of returning light from each point in the

scene can be translated into a two dimensional image representing the reflectivity
of each point. The laser beams "time-of-flight" can be translated into an image
representing the distance to points in the scene.

Images of the same scene created using the three sensor modalities are illus-
trated in the Figure 5.2. The scene contains a single lane paved road winding
between two trees. In the video image on the left and the reflectance image op the
right, the road is clearly distinguishable from the non-road ;egioii. In the video
image, this distinction is created by ihe difference in brightness between the road
and the non-road. In the laser sensor image, the road is distinguishable from the
non-road because each reflects a different amount of light back to the sensor. In
the range image (shown in the middle of Figure 5.2), the two trees on either side
of the road appear darker than the points around them, because the trees are closer
to the sensor; the points around them, which lie on the ground plane, are much
farther away.
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5.2.1 Night Driving Using Laser Reflectance Images

As can be seen in Figure 5.2, laser reflectance images resemble black and white
video images. In fact, it was trivial to replace ALVINN's normal video input with
laser reflectance input and train a network to drive on the single lane test road
shown in Figure 5.2. All it required was resetting the parameters in the image
transformation code describing the sensor's field of view to ensure that the shifted
and rotated patterns created while training on-the-fly appeared realistic. Other
than that, training of the network to drive using laser reflectance images proceeded
exactly like training with video input. The person drove along a 300 meter stretch
of the road while the network watched. After training, the network was able to
take over and drive on its own.

The big advantage of using reflectance input over video input is that reflectance
images appear the same regardless of the lighting conditions. In other words,
since the laser sensor has its own light source, the reflectance images it creates
are insensitive to ambient lighting. This allows ALVINN to be trained during
daylight, when a person can see, and then tested in total darkness. A network so
trained was able to drive at 6 mph at night with or without headlights along the
paved single lane test road. Without headlights, the person drove less accurately
than the network, since he had to rely solely on the limited amount of ambient light
available. The reason ALVINN could not drive at the 10 mph speed achieved on
the same road using video input was that the laser sensor only provides 2 images
per second, while the video camera provides 30.

5.2.2 Training with a Laser Range Sensor

Employing laser range images to teach ALVINN about obstacles required more
substantial changes than did reflectance images. The reason is that a different
scheme must be devised to transform laser range images for training on-the-fly.
For video and reflectance images, important images features are assumed to lie
on the ground plane. Therefore, a simple, resampling of images pixels could be
precomputed to transform the apparent position and orientation of the vehicle, as
described in Chapter 3.

In range images, the important features (i.e., those corresponding to obstacles
in the environment) violate the flat world assumption by extending above the
ground plane. The consequence of this violation in the transformation process is
illustrated in Figure 5.3. The image on the left shows the original range image



5.2. DRIVING WITH ALTERNATIVE SENSORS 89

Figure 5.3: Three reduced resolution range images of a scene. The image on the
left is the original range image. Notice the two dark vertical stripes caused by
nearby trees. The middle image was created by transforming the image to make
it appear 1 meter to the right of its original location, assuming the environment
is planar. As a result of the flat world assumption, non-planar objects like the
tree become unrealistically skewed in the image. The image on the right shows
the same shift of the same image, but using the image's range information to
accurately shift the pixels in the scene.

reduced to the low resolution employed by the network. The two dark vertical
stripes result from nearby trees in the scene. The middle image shows the result
of transforming the image to make it appear that the vehicle is 1 meter to the
right of its location in the original image, assuming a planar world. Notice that
pixels at the bottom of the image, corresponding to nearby points in the scene,
are shifted more than pixels at the top, which are assumed to be far away. As a
result of this differential shifting, the trees no longer appear vertical. Obviously,
to create realistic new training exemplars from a non-planar scene, a different
transformation scheme is required.

All the pixels corresponding to a single tree, regardless of their row in the
image, should shift by the same amount since they are all approximately the same
distance from the sensor. Fortunately, the distance to every point in the scene is
easy to calculate, since it is simply a linear function of the corresponding pixel's
intensity. In other words, the distance a pixel should be shifted in the image to
make it appear that the vehicle has been displaced by a given amount can be
calculated using only the pixel's value.

The equation that describes the distance a point will shift in a range image as
a function of the vehicle's change in lateral position and heading, and the distance
of the point from the sensor is given below:
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C (tan dO + ,(L tan ,O + ,a))Si = h
2 tan 0

where Si is the shift of the pixel i, in columns across the image,
C is the number of columns in the image,
,a0 is the change in the vehicles heading,
.al is the change in the vehicles lateral position,
4) is one half the field of view angle,
L is the distance from the vehicle's pivot point to the laser sensor,
Ii is the intensity of pixel i,

and K is the constant factor for converting pixel intensity to the
distance to the corresponding point in the scene.

The right image in Figure 5.3 illustrates the results of transforming the ap-
parent vehicle position using this equation to accurately determine how far each
pixel should be shifted in the image. Notice that the trees are no longer skewed
diagonaly. This more realistic technique for augmenting the training set with new
range image patterns allows ALVINN to learn interesting new behaviors.

5.2.3 Contour Following Using Laser Range Images

One situation ALVINN was trained to handle using laser range input was to follow
terrain contours. In this domain, a network was trained using range images as a
person drives the vehicle, maintaining a fixed relationship between the vehicle
and objects in the environment. For instance, ALVINN was trained to drive down
a street lined with parked cars, maintaining a certain lateral distance between the
robot vehicle and the parked cars. If a car was protruding farther into the street
than the rest, ALVINN learned to swerve to avoid it. Again because of the slow
frame rate of the laser sensor, ALVINN was only able to safely drive at a speed of
about 5 mph.

5.2.4 Obstacle Avoidance Using Laser Range Images

Laser range images were also employed to teach ALVINN to avoid obstacles. In
this scenario, a network was trained to imitate the reactions of a person as he drove
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through an obstacle-rich off-road environment. The human trainer was instructed
to steer straight whenever possible, and to swerve to avoid any obstacles that
appear in front of the vehicle in the direction that required the least deviation from
a straight. The training and testing environment included natural obstacles such
as trees, and also strategically placed trash cans.

After watching the person drive for about 5 minutes through this environment,
the network was able to imitate his reactions. The network dictates a straight
ahead steering direction unless confronted with an obstacle in its path. Ir that
case, it swerved to avoid the obstacle with as shallow a turn as possible, and then
returned to steering straight ahead.

5.3 Quantitative Performance Analysis

A very difficult aspect of conducting research in the area of autonomous navigation
is quantifying a system's performance. The wide variety of driving situations and
environmental conditions a robust autonomous agent is expected to handle makes it
hard to measure its ability. Quantitative performance measures are important both
for making comparisons with alternative approaches to autonomous navigation
and also for determining the effects of improvements in technique using the same
approach. This sections describes a technique I've developed for measuring
driving performance, and the insights it provides.

The first question to answer is what aspect of driving is most appropriate for
quantifying performance. The range of driving situations a system is capable
of handling would be a worthwhile characteristic to employ, and one by which
ALVINN would score very well relative to other systems (see Chapter 11 for more
details). Unfortunately, measuring such a vague concept as flexibility is very
difficult. What is required is an aspect of driving that is both measurable and gives
a good indication of driving performance.

The difference between the steering command issued by the person when
an image was taken and the steering command issued by the network on the
same image is one simple measure I employ throughout this dissertation for
quantifying network performance. However there are three drawbacks to this
measure. First, it assumes the person is always steering in the correct direction,
which, as will be seen below, is not always the case. Second, the difference between
the steering commands of the network and a person only measures performance in
the relatively restricted and "benign" situations encountered while a person drives.
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In other words, since the human driver never makes drastic steering mistakes, this
technique fails to measure a network's ability to recover from errors.

Finally, this technique only measures network static performance on isolated
images. A significant implicit assumption of the feedforward architecture em-
ployed in ALVINN is that stable driving can be achieved without recurrent infor-
mation from previous frames. The network receives only the current sensor image
as input, and has no feedback connections to maintain internal state information. A
frame-by-frame measure of agreement between the person and the network while
a person drives cannot test the validity of this assumption, since it provides no
information regarding the dynamic behavior of the vehicle under network control.

The only true measure of dynamic driving accuracy is to measure the vehicle's
deviation from a known correct trajectory. For road following, the domain most
easily measured, this entails measuring the vehicle's lateral displacement relative to
the road center (or the center of its lane). To make this measurement and determine
ALVINN's driving accuracy, I developed the following technique. First, a site for
the test needs to be chosen. I chose the single lane paved road described above
because of the diversity in its appearance and its infrequent use by other vehicles.
Its lack of traffic facilitated the next step, which involves precisely determining
the position of the road center. To ensure accuracy and repeatability of road
center measurements, I manually located the road edges along the test section at
1 meter intervals and marked the point midway between them as the road center.
This measurement process was difficult since broken pavement and fallen leaves
frequently made estimating the exact location of road edges difficult. To avoid
disturbing the network with spurious image features, the road center points were
marked with paint which contrasted only slightly with the pavement, and hence
did not appear in the sensor input to the network.

The second step in quantifying driving accuracy was to measure how closely
the network kept the vehicle to the road center while driving autonomously. Be-
cause of the low contrast between the pavement and the road center markers, the
only feasible technique for determining how close to the center the network kept
the vehicle was to measure it manually. Accurate real time measurement of the
vehicle's relative position every meter proved impractical, since the vehicle travels
too quickly. Instead, I designed an apparatus that allows the vehicle to leave a
trail which could be carefully measured after the test run. Specifically, I immersed
one end of a narrow tube in a bucket of water, and attached the other end to the
pivot point of the vehicle at the midpoint of the rear axle. Using this apparatus as
a siphon, the vehicle dripped water along the precise path it followed over the test
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road. By measuring the deviation of this drip trail from the road center marks, I
could determine how accurately the network drove. Since the trail was only water,
it evaporated quickly. This prevented the trail from interfering with trails made
on subsequent runs.

By using this technique, precise measurement of driving accuracy can is possi-
ble. The performance of networks trained using different techniques was presented
in Chapter 4. There it was shown that augmenting the training set with transformed
images significantly improved the driving accuracy of a network. The technique
can also be used to quantitatively compare the performance of neural networks
with other techniques for vehicle control. One such comparison I have made is
between ALVINN's steering performance and that of a typical human driver. In
this test, ALVINN was trained on a disjoint section of the test road using the train-
ing on-the-fly technique described in Chapter 4. The network was then allowed
to drive over the 140 meter stretch of calibrated test road, and its deviation from
the road center recorded. The human trainer was then asked to drive over the
same section of test road, under the same conditions, and his driving accuracy was
recorded.

Over three runs, with the network driving at 5 miles per hour along the 140
meter test section of road, the average position of the vehicle was 1.6cm right
of center, with a standard deviation of 7.2cm. The average distance the vehicle
was from the road center during the test runs was 6.9cm'. Under human control,
the average position of the vehicle was 4.0cm right of center, with a variance
of 5.47cm. The average distance the vehicle was from the road center while
the person drove was 5.70cm. It appears that the human driver, while more
consistent than the network, had an inaccurate estimate of the vehicle's centerline,
and therefore drove slightly right of the road center. Studies of human driving
performance have found similar steady state errors and variances in vehicle lateral
position. Blaauw [Blaauw, 19821 found consistent displacements of up to 7cm
were not uncommon when people drove on highways. Also for highway driving,
Blaauw reports standard deviations in lateral error up to 16.6cm.

The human trainer's bias towards driving slightly to the right of the road
center manifested itself as bias towards the right in the network. Surprisingly,
the network's bias towards the right appeared to be slightly less than that of the

IThe reason these network performance measurements are significantly better than those pre-
sented in Chapter 4 for a network trained on the same stretch of road using the same training
technique is that the road was much more heavily obscured by fallen leaves in the test described
in Chapter 4.
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human trainer. However this difference was not found to be statistically significant.
Unfortunately, a quantitative performance comparison between ALVINN and other
autonomous navigation systems is impossible at this time since no one has carefully
measured the driving accuracy of other systems using this or any other technique.
Hopefully the development of the technique described above, and the challenge of
bettering the performance reported here will encourage others to make quantitative
measurements of their systems' driving accuracy. For a qualitative comparison of
ALVINN and other autonomous navigation systems, see Chapter 11.

5.4 Discussion

In this chapter I have demonstrated the power and flexibility of the techniques
developed in Chapters 2-4 for neural network based autonomous navigation.
ALVINN's ability to drive in such a wide variety of situation stems from two
characteristics. First, since ALVINN learns from example employing only mini-
mally preprocessed sensor input, it can easily adapt to new situations. As will be
seen in Chapter 11, this contrasts sharply with previous autonomous driving sys-
tems. In fact, this ability to cope with novel circumstances has allowed ALVINN
to drive in a wider variety of situations than any other autonomous navigation
system.

The second key characteristic underlying ALVINN's success is the fact that
individual networks are trained to drive in only relatively specific situations. By
restricting each network's task, training is faster and performance in each domain
is better than if a single network was trained to drive in all circumstances.

However, in addition to accurately driving in a number of separate circum-
stances, a truly autonomous system must be capable of seamlessly handling tran-
sitions from one driving situation to another. With separate networks for each
circumstance, coping with a variety of situations necessitates multi-network ar-
bitration. Chapters 7 and 8 present techniques for integrating multiple networks
using rule-based and connectionist techniques respectively. These techniques
allow ALVINN to perform interesting hybrid behaviors such as simultaneously
following the road and avoiding obstacles that appear in front of the vehicle.

But before exploring schemes for multi-network arbitration, an important
question related to individual driving networks needs to be addressed. It is in
fact the question most frequently asked about this research, namely, "how do the
networks actually process the input images to determine correct response?". In
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the next chapter I present techniques for analyzing the internal representations
developed by multi-layered perceptrons, and then use these techniques to gain
interesting insights into the processing performed by individual driving networks.



Chapter 6

Analysis of Network
Representations

A criticism frequently leveled at the connectionist paradigm is that while it may
work, it is of little use since we don't understand how or why it works. While
I would dispute the claim that a "black-box" connectionist solution to a difficult
problem is entirely useless, I agree that understanding the details of a solution is
important. Understanding the processing being performed can point out situations
or conditions where the system is likely to fail. Knowing a system's limitations
is critical in domains such as autonomous navigation where mistakes can be
catastrophic. Also, recognizing a system's limitations and the reasons underlying
them are prerequisites for improving the system's performance. As a result, I
have spent considerable time and effort developing techniques for analyzing a
network's internal representations.

In this chapter, I describe two techniques used to gain insight into ALVINN net-
works and how the resulting insights have led to improvements in performance.
The first technique, involving qualitative interpretation of network weight dia-
grams, has been widely employed by others [Cottrell, 1990, Waibel et al., 1987,
LeCun et al., 1989]. But as will be seen, the importance of spatial structure in
the task of autonomous navigation makes weight diagrams more useful in this
domain than in others. The second network analysis technique, called hidden unit
sensitivity analysis, further exploits the strong spatial regularity in the task to quan-
titatively measure the influence of individual hidden units on network processing
in various situations.

96
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Weight to Output Units

Weight from Input Retina
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QNon-Road

Figure 6.1: Diagram of weights projecting to and from a typical hidden unit in a
network trained on roads with a fixed width. This hidden unit acts as a filter for a
single road on the left side of the visual field as illustrated in the schematic.

6.1 Weight Diagram Interpretation

Weight diagrams have been introduced in Chapters 2 and 4 as a tool for inferringI
properties of the internal representations developed by ALVINN networks. In this
section I will systematically illustrate the value of this technique by employing it

to demonstrate how the flexibility across driving domains is achieved in ALVINN.I
In particular, I will show that the internal representation developed by the network
for performing a driving task depends dramatically on the characteristics of the
environment. When trained on examples of roads with a fixed width, the network
develops a representation in which hidden units act as filters for roads at different
positions. Figures 6.1 and 6.2 are diagrams of the connections projecting to and

from single hidden units in such a network.
In Figure 6.1, the weights from the video camera retina to this hidden unit

.,:: ... ... .,..: ... , .,. ...... .:.
========================================I
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Figure 6.2: Diagram of weights projecting , and from a typical hidden unit in a
network trained on roads with a fixed wiQ,.. This hidden unit acts as a filter for
two roads, one slightly left and one slightly right of center, as illustrated in the
schematic.
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support the interpretation that this hidden unit is a filter for a single road on the left
side of the visual field (see the small schematic to the right of the weights from
the video retina in Figure 6.1). The single road filter interpretation is reflected
in the weights from this hidden unit to the direction output units. Specifically,
this hidden unit makes excitatory connections to the output units on the far left,
dictating a sharp left turn to bring the vehicle back to the road center. It also
strongly inhibits steering in two other directions, slightly left and sharply right.

However there are interesting subtleties to this hidden unit's representation
which undermine such a simple explanation. First, there are a number of in-
hibitory weights from the area of the input retina which represent the middle of
the road according to the above explanation. These weights demonstrate that
this hidden unit is actually combining two classical image processing techniques,
region finding and edge detection, to locate the road. This hidden unit has learned
to detect a trapezoidal-shaped region on the left of the image, but with special em-
phasis placed on finding the trapezoid's border. In other words, it has learned that
roads resemble a trapezoid, but that the trapezoid's center is much less important
than its edges for determining the correct response. The ability of connectionist
networks to subtly combine processing strategies in this manner gives them a
greater flexibility than hand-coded algorithms. This advantage will be discussed
more in Chapter 11.

There is another subtle aspect of this hidden unit's representation which un-
dermines the simple, single road explanation for its processing. Specifically, there
are a number of excitatory connections from the righ: side of the input retina and
there are three slightly excitatory connections to the output vector suggesting a
slightly right turn. In fact, this hidden unit is marginally excited by a road slightly
right of center, and it weakly suggests a slight right turn.

A hidden unit which clearly responds to roads at more than one position is
shown in Figure 6.2. This hidden unit also acts as a filter for two roads, one slightly
left and one slightly right of center. The weights from the video camera retina along
with the explanatory schematic in Figure 6.2 show the positions and orientations
of the two roads. This hidden unit makes bimodal excitatory connections to the
direction output units, dictating a slight left or slight right turn. Hidden units
which act as filters for one to three roads are the representation structures most
commonly developed when the network is trained on roads with a fixed width.

The network develops a very different representation when trained on im-
ages with widely varying road widths. A typical hidden unit from this type of
representation is depicted in Figure 6.3.
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Figure 6.3: Diagram of weights projecting to and from a typical bidden unit in a
network trained on a road with varying width. This hidden unit acts as a detector
for the left road edge, as illustrated by the schematic.
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The first important feature to notice in Figure 6.3 is the single abrupt change
in weights along the diagonal line on the left side of the weights from the video
camera retina to this hidden unit. This edge clearly indicates that this hidden unit
is a filter for the left edge of the road (see the schematic to the right of the video
retina weights). In addition, notice that unlike in the earlier weight diagrams, the
weights from the units which are supposed to represent the road are inhibitory
(black) rather than excitatory (white). This pattern indicates that this hidden unit
responds to roads which are darker, and hence have lower retina activation levels
than the non-road. This illustrates that when the training set requires it, the network
will develop units to deal with roads which can be either darker or lighter than the
non-road.

The hidden unit in Figure 6.3 supports a rather wide range of travel directions,
as indicated by the large number of excitatory connections it makes to the output
layer. This is to be expected, since the correct travel direction for a road with an
edge at a particular location varies substantially depending on the road's width.
This hidden unit cooperates with hidden units that detect the right road edge
to determine the correct travel direction in any particular situation. The large
magnitude weights coming from the image column on the far right are puzzling
and do not quite fit the interpretation I have provided. This anomaly demonstrates
that subjective weight diagram interpretation can only provide a gross explanation
of the prccessing performed by individual hidden units. In the remainder of chapter
I present a technique called sensitivity analysis that can be used to understand the
more subtle aspects of a network's representation.

6.2 Sensitivity Analysis

While qualitative hidden unit analysis can provide useful insights into the rep-
resentations developed by trained networks, it has two major limitations. First,
hidden unit interpretation is not always as straightforward as in the above exam-
pies. Consider the hidden unit depicted in Figure 6.4. It is clear from the structure
in the input-to-hidden and hidden-to-output weights that this unit acts as some
type of feature detector, but exactly how it contributes to road following is not
immediately evident. In addition, weight diagrams such as this can't shed light on
how this hidden unit works together with other hidden units to produce the correct
output response.

To quantitatively understand the processing performed by individual hidden
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Weight to Output Units

Weight from Input Retina

Figure 6.4: Weight display for a more typical, less obvious hidden unit from a
network trained on single lane road images.



6.2. SENSITIVITY ANALYSIS 103

units, and the interaction among multiple hidden units, I've developed a technique
called hidden unit sensitivity analysis. This technique is a more rigorous imple-
mentation of a procedure frequently used in classical neuroscience investigations
of biological visual systems [Hubel & Wiesel, 1979]. The neuroscience procedure
involves systematically presenting the retina with a variety of stimuli to determine
the situations which cause an internal neuron to respond. The simplicity of three
layer artificial neural networks allows us to go further. Using sensitivity analysis
it is possible to determine not only the situations which simulate a hidden unit, but
also the impact the hidden unit has in those situations.

6.2.1 Single Unit Sensitivity Analysis
From the positive weights on the left side of the hidden unit's receptive field in
Figure 6.4, it appears that the hidden unit will respond when the road is on the left
side of the image. In addition, from the positive weights on the left side of the
hidden unit's "projective field" (i.e. the weights from the hidden unit to the output
units [Lehky & Sejnowski, 1988]), it appears that this unit will dictate a left turn
when it has a positive activation value.

The first step towards achieving a quantitative understanding of this hidden
unit's processing with sensitivity analysis is to systematically vary the position
and orientation of the road in images presented as input to the network, and record
the activation of the hidden unit for each. The result of this process is shown in
Figure 6.5. In this diagram, the height of each point on the surface represents
the activation level of the hidden unit when presented with a road image at a
different position and orientation. At points above the midline, the hidden unit
had a positive activation level, while points below mean the hidden unit had a
negative activation level'. As can be seen from this diagram, the hidden unit
responds with a positive activation level when presented with images in which
the road is situated towards the left side and/or the heading is towards the left.
Conversely, roads on the right side and/or heading towards the right produce a
negative response from this hidden unit.

Figure 6.6 was also made by systematically varying the position and orientation
of roads in the input image, but this time the height of the surface represents the
influence a positive activation level in this hidden unit will have on the correct
steering direction output unit for this case. In other words, for each road position

'Recall that ALVINN employs a symmetric sigmoid activation function ranging from -1 to + 1.
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Figure 6.5: Response of a single hidden unit in an ALVINN network to images
with roads at differing positions and orientations.
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Figure 6.6: Weight from the hidden unit to the output unit representing the correct
steering direction for roads at differing positions and orientations.[
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and orientation, there is a single most correct steering direction that is represented
by a unit in the output layer of the network. This graph represents the weight from
the hidden unit to that correct output unit for each road position and orientation.
The positive influence from the hidden unit to the left turn output units illustrated
in the weight diagram of Figure 6.4 is also evident in this figure as the elevated
plateau along the back left of the surface. If the hidden unit had a positive activation
level, it would excite the correct output unit when the road is on the left side of
the image since it has positive weights to the left turn output units.

The diagonal "valley" down the middle of the diagram illustrates that a positive
activation level for this hidden unit would result in inhibition of the correct output
in cases when the road is near the middle of the image and heading nearly straight
ahead. The diagonal tendency of features in this and the other sensitivity analysis
diagrams results from the fact that for the purpose of steering correctly, road
images are divided into equivalence classes. The correct steering direction is the
same for a road centered in the image heading towards the left and for a road on
the left of the image heading straight ahead.

Finally Figure 6.7 was constructed by multiplying Figures 6.5 and 6.6 to-
gether. Multiplying the graph of the hidden unit's response to various road images
and the graph of the hidden unit's potential contribution on various road images
results in a graph showing the contribution the hidden unit actually makes to
the correct output unit for the various road position/orientation combinations.
Multiplying the a unit's state by its outgoing weights to determine its influ-
ence is analogous to "weight-state" representation developed by Gorman and
Sejnowski [Gorman & Sejnowski, 1988]. While Gorman and Sejnowski used a
multiplicative method to determine the influence of inputs on individual hidden
units, sensitivity analysis uses products to determine the effect hidden units have
on a very special output unit, the correct one.

As was expected from the weight diagram interpretation, the hidden unit makes
a significant positive contribution to activating the correct output unit for roads on
the left of the image and heading towards the left. This utility for left turn situations
is illustrated by the plateau along the back left of the surface in Figure 6.7.

In addition, the diagonal ridge down the center of the surface demonstrates
a less obvious contribution of this hidden unit. It shows that on roads where
the correct response is to steer straight ahead, the negative activation level of the
hidden unit when coupled with the inhibitory weight between it and the straight
ahead output units results in support for steering straight ahead. This illustrates
an advantage of using a symmetric activation function; namely that hidden units
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Figure 6.7: Contribution of the hidden unit to the correct steering direction unit
for roads at differing positions and orientations.
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can make significant contribution to the network's at either output extreme. This
"two negatives makes a positive" effect is also responsible for the somewhat small
positive influence this unit has on roads requiring an extreme right turn, depicted
by the smaller peak in Figure 6.7 in the far right corner.

Another interesting feature illustrated by Figure 6.7 is that the hidden unit
makes significant positive contributions to the correct output unit on a large fraction
of the possible road images. Also, even when this hidden unit is not making a
strong positive impact on the correct output unit, it almost never has a detrimental
influence on the network's processing. This is illustrated in Figure 6.7 by the fact
that on only a few images does the surface fall below the plane representing zero
contribution to the correct output unit.

6.2.2 Whole Network Sensitivity Analysis

To fill in the "gaps" left by a hidden unit and counteract its small negative impact on
the correct output unit in a few cases, the other hidden units must also contribute. To
illustrate this dovetailing of coverage by multiple hidden units, consider Figures 6.8
and 6.9. Figure 6.8 depicts the weight diagram for a network trained on a single
lane road. It is difficult to determine from visual inspection of this display how
the hidden units work together to process the range of possible road images they
might encounter.

But when the contributions to the correct output unit are displayed together, as
in Figure 6.9, the coordination between multiple hidden units becomes clear. In
this diagram, the top four graphs represent the contributions from each of the four
hidden units in the network from Figure 6.8 to the correct output unit. The hidden
units work together to "fill in the holes" in each other's coverage, so that the net
contribution to the correct output unit is strongly positive for all road positions
and orientations (although the total contribution to the correct output unit on sharp
left turn images is somewhat less than on the rest). This is shown in the total
contribution graph at the bottom left of Figure 6.9. This diagram, which shows
the total input to the correct output unit for various road positions and orientations,
was constructed by summing the hidden units' individual contributions depicted
in the top four graphs. The lower right graph in Figure 6.9 shows the activation
level of the correct output unit. It was created by applying the sigmoid squashing
function to the net input graph in the lower left.

An interesting property of the network illustrated by Figure 6.9 is that only
two of the four hidden units (hidden units 1 and 3) are responsible for turning on
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Figure 6.8 Weight displays for all the hidden units from a network trained on

single lane road images.
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Figure 6.9: The upper four graphs represent the contribution from each of the
four hidden units to the correct output unit for different road positions and orien-
tations. The graph at the lower left represents the summation of all the hidden unit
contributions to the correct output unit. The graph at the lower right represents
the activation level of the correct output unit as road position and orientation is
varied. Notice the activation level of the correct output unit are positive for all
road position/orientation combinations.
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Figure 6.10: Response of hidden unit 2 to images with roads at differing positions
and orientations.

the correct output unit. Hidden units 2 and 4 have an inhibitory influence on the
correct output unit for almost all road positions and orientations. The question is,
if hidden units 2 and 4 are not helping turn on the correct output unit, what are they
doing? They must be contributing in some way towards minimizing the network's
error, since if they weren't, the forces of gradient descent and weight decay would
reduce their detrimental influence, and hence the network's total error, by zeroing
the weights from these hidden units to the output units.

The activity pattern of one of these seemingly detrimental hidden units does
not provide much insight into its function. Figure 6.10 shows the activation level
of hidden unit 2 upon presentation of roads at different positions and orientations.
This graph illustrates that hidden unit 2 is excited by a wide range of road stimuli,
but it tells us little else.

To really understand what these seemingly detrimental hidden units are doing,
the first step is to realize that turning on the correct output unit is not the only task
the network must perform. In addition, it must inhibit incorrect output units to
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prevent them from being chosen as the direction in which to steer. It is for this
task that hidden units 2 and 4 are specializing, as is evident from Figure 6.11. This
diagram shows the contribution from each of the hidden units and the network as
a whole not to the correct output unit, but to one of the incorrect output units.
Specifically, the four graphs at the top of Figure 6.11 represent the contributions
from the four hidden units to the output unit that is 15 output units away from the
correct one along the 30 unit output vector. As can be seen from this diagram,
hidden units 2 and 4 are crucial for inhibiting this incorrect unit, particularly on
the road images requiring a shallow turn, which the other two hidden units don't
handle. As a result of their large inhibitory influence, the net input to the incorrect
output unit is negative across all road positions and orientations, as shown in the
bottom left graph of Figure 6.11. After applying the sigmoid squashing function
to this net input, the activation level for this incorrect output unit is very close to -1
for all road position/orientation combinations, as shown in the bottom right graph
of Figure 6.11.

As is evident from Figures 6.9 and 6.11, this network's performance is almost
perfect, since it turns on the correct output unit and turns off (at least one) in-
correct output unit across all road positions and orientations. However ALVINN
networks do not always achieve such proficient performance on all driving situ-
ations. Figure 6.12 shows a weight diagram of a network trained on a stretch of
single lane road containing only straight stretches and right turns. For this test,
no transformations were performed to increase training set variety, so the network
never saw any left turns. From the weight diagram it is difficult to infer that there
is anything wrong with the network. However the activation level diagram for
the network depicted in Figure 6.13 clearly illustrates the network's shortcom-
ings. This diagram shows that on roads requiring a left turn, this network strongly
inhibits the correct steering direction unit, and hence will perform poorly.

Figures 6.14 and 6.15 show the weight diagram and total contribution diagram
for an even less reliable network. This network was trained on a stretch of road
without left or right turns. Again, no transformations were used to aid the network's
generalization. As a result, the network is incapable of correctly responding to
road images requiring sharp turns either to the left or right. Again, it would be
difficult to draw this conclusion directly from the weight diagram, but the diagram
representing the activation level of the correct output unit makes this fact apparent.
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Figure 6.11: The upper four graphs represent the contribution from each of the
four hidden units to an incorrect output unit for different road positions and orien-
tations. The graph at the lower left represents the summation of all the hidden unit
contributions to the correct output unit for different road positions and orientations.
The graph at the lower right represents the activation level of an incorrect output
unit as road position and orientation are varied. Notice that the activation level of
the incorrect output unit is negative for all road position/orientation combinations.
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Figure 6.12: Weight diagram from a network trained on a stretch of single lane
road images containing no left turns.
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Figure 6.13: The activation level of the correct output unit for a variety of road I
positions and orientations in a network trained on a stretch of road with no left
turns. I
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Figure 6 14 Weight diagram from a network trained on a stretch of single lane
road images containing no left or right turns.
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Figure 6.15: The activation level of the correct output unit for a variety of road
positions and orientations in a network trained on a stretch of road with no left or
right turns.
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6.3 Discussion
Hidden unit sensitivity analysis allows us to go beyond the usual qualitative
speculation about a hidden unit's "job" to determine empirically how a hidden
unit contributes to performing the task across a range of input situations. In
addition to providing insight into the behavior of isolated hidden units, sensitivity
analysis can illustrate the subtle cooperation between multiple hidden units which
is required for complex tasks. Finally, sensitivity analysis is yet another way of
quantifying network performance. It can point out situations in which a network
is likely to fail; these situations need greater representation in the training set.

Previous research in neuroscience [Hubel & Wiesel, 1979] and connection-
ist modeling [Lehky & Sejnowski, 1988, Zipser & Anderson, 1988] has demon-
strated the utility of measuring the response of internal units to various stimuli.
However this technique is not always sufficient to allow one to determine the a
unit's function. This was demonstrated in Figure 6.10, in which a hidden unit
whose function is to inhibit incorrect output units in a particular set of situations
was shown to respond strongly in a wide range of stimuli.

Lehky and Sejnowski [Lehky & Sejnowski, 1988] were on the right track when
they recognized the importance of both a unit's receptive field, and also the connec-
tions it makes to subsequent stages of processing, which they called its "projective
field". However instead of subjectively interpreting a hidden unit's function from
its receptive and projective fields, sensitivity analysis allows quantitative mea-
surement of a unit's contribution to the network's processing.

But sensitivity analysis does have limitations. To be effective, it requireE
that the task have important continuous dimensions along which the input can be
smoothly varied. For the task of autonomous driving, two obvious continuous
input features are road position and orientation. Finding useful dimensions in
other domains to employ in sensitivity analysis may prove more difficult. For
domains such as speech and character recognition, the network must often learn
to ignore the absolute spatial position of features in the input signal, and instead
employ the relative position of features to correctly classify the input. For speech
recognition, it may be possible to use sensitivity analysis by shifting the frequency
or the type scale of input signal and recording the contributions of hidden units.

For classification tasks such as speech and character recognition, the technique
of cluster analysis [Gorman & Sejnowski, 1988, Servan-Schreiber et al., 1989],
which groups input patterns according to the similarity of their corresponding hid-
den unit activation patterns, is probably a more informative method for analyzing
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internal representations. However there is the potential for useful cooperation be-
tween the two techniques. Analysis of the common feature(s) among the members
of a cluster could be used to hypothesize important input feature dimensions. The
actual importance of this feature could then be confirmed or denied by presenting
the network with inputs in which this feature is continuously varied while the
response and output contribution of individual hidden units are recorded.

To make the potential synergy between cluster analysis and sensitivity analysis
more concrete, consider the following hypothetical example from the domain of
character recognition. Suppose cluster analysis of the networks internal represen-
tation grouped the characters b, d and h into one cluster and the characters f, g,
p, q, t, and y into another. It might be hypothesized from these groupings that
the network is employing a character's vertical "center of mass" to perform clas-
sification. This hypothesis could be tested by presenting the network with inputs
having various centers of mass and recording the responses of the hidden units.
Finding hidden units whose response varies coherently with the input's center of
mass would strongly suggest this as an important feature employed by the network.
The input used to test the hypothesis could be either real characters distorted to
alter their center of mass, or "nonsense characters" with varying centers of mass
fabricated specifically for the test. If the input's center of mass is an important
feature for the network, then either type of test stimulus should elicit responses
from at least one hidden unit which correlates with the input's center of mass.
While this example is purely fabricated, it illustrates the potential application of
sensitivity analysis outside the domain of autonomous navigation.



Chapter 7

Rule-Based Multi-network
Arbitration

This chapter describes work in combining artificial neural network techniques for
autonomous driving with symbolic processing methods in order to achieve more
intelligent behavior. This work was done in collaboration with Jay Gowdy and
Charles Thorpe [Pomerleau et al., 1991d].

Artificial neural networks are commonly employed as monolithic non-linear
classifiers. The technique, often used in domains such as speech, character and
target recognition, is to train a single network to classify input patterns by showing
it many examples from numerous classes. The mapping function from inputs to
outputs in these classification tasks can be extremely complex, resulting in slow
learning and unintelligible internal representations.

However there is an alternative to this monolithic network approach. By train-
ing multiple networks on different aspects of the task, each can learn relatively
quickly to become an expert in its sub-domain. The training on-the-fly technique
described in Chapter 3 makes this specialized expert network approach very ef-
fective for autonomous navigation. As was seen in Chapter 5, training on-the-fly
allows specialized networks to be trained in under five minutes to perform a va-
riety of navigation tasks including single-lane road driving, multi-lane highway
driving, and collision avoidance.

But achieving full autonomy requires not only the ability to train individual
expert networks, but also the ability to integrate their responses. This chapter fo-
cuses on rule-based arbitration techniques for combining multiple driving experts
into a system that is capable of guiding a vehicle in a variety of circumstances.
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These techniques are compared with other neural network integration schemes and
shown to have a distinct advantage in domains where symbolic knowledge and
techniques can be employed in the arbitration process.

7.1 Symbolic Knowledge and Reasoning

Despite the variety of capabilities exhibited by individual driving networks, the
ALVINN system described thus far does not achieve true autonomy. The network
ALVINN architecture is capable of driving only on the type of road on which it
was trained. If the road characteristics changed, ALVINN would often become
confused and stray from the road. In addition, a real autonomous system needs to
be capable of planning and traversing a route to a goal. The neural network driving
modules are good at reactive tasks such as road following and obstacle avoidance,
but the networks have a limited capability for the symbolic tasks necessary for
an autonomous mission. The system of networks cannot decide to turn left at an
intersection in order to reach a goal. After making a turn from a one-lane road
to a two-lane road, the system does not know that it should stop listening to one
network and start listening to another. Just as a human needs symbolic reasoning
to guide reactive processes, the networks need a source of symbolic knowledge to

plan and execute a mission.
Ideally, the symbolic knowledge source would reason like a person. It would

use its knowledge of the world to plan a sequence of observations and correspond-
ing actions to traverse the route. For instance, to achieve the goal of reaching a
friend's house, the mission description might be a sequence like "Drive until the
sign for Seneca Road is seen, and turn left at that intersection. Then drive until
the third house on the left is seen, and stop in front of it."

In this ideal system, once the mission is planned, the symbolic knowledge
source would rely entirely on perception to control the execution of the mission.
In other words, the symbolic resource module would be able to r.cognize events
and use what it sees to guide the interaction of the networks. The symbolic
resource module would be capable of reading the street sign at an intersection and
commanding the appropriate turn to continue on to its destination. It would also be
able to identify the new road type and choose the appropriate network for driving
on that kind of road. Unfortunately, the perception capabilities required by such a
module are beyond the current state of the art.

In order to bridge the gap between mission requirements and perception ca-
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pabilities, ALVINN uses additional geometric and symbolic information stored in
an "annotated map" [Thorpe & Gowdy, 1990]. An annotated map is a two dimen-
sional data structure containing information about the area to be traversed. Each
entry in the annotated map's two dimensional array covers a small patch of the
environment, usually a couple meters square. Each entry is actually a linked list
whose elements represent all the objects that occupy the corresponding patch of
the environment. Each object description contains the type of the object, such as
road, obstacle or mailbox, and the objects precise location and shape. In addition,
each object in the map can be annotated with extra information to be interpreted
by the clients that access the map. For example, as far as the annotated map is
concerned, a mailbox is simply a two dimensional polygon at a particular location
with some extra bits associated with it. The "extra bits" might represent the three
dimensional shape of the mailbox, or even the name of the person who owns
it. The module which manages the annotated map does not interpret this extra
information, but rather provides a mechanism for client modules to access the
annotations. This reduces the knowledge bottleneck that can develop in large,
completely centralized systems.

The annotated map is not just a passive geometric database, but instead is
an active part of our system. Besides having a 2D representation of the physical
objects in a region, annotated maps can contain what are called alarms. Alarms are
conceptual objects in the map, and can be lines, circles, or regions. Each alarm is
annotated with a list of client modules to notify and the information to send to each
when the alarm is triggered. When the annotated map manager notices that the
vehicle is crossing an alarm on the map, it sends the information to the pertinent
modules. Once again, the map manager does not interpret the information: that is
up to the client modules.

Alarms can be thought of as positionally-based production rules. Instead of
using perception-based production rules like "If A is observed, then perform action
B", an annotated map based system has rules of the form, "If location A is reached,
then perform action B". Thus the problem of making high level decisions from
the difficult task of perceiving and reacting to external events is reduced to the
relatively simple task of monitoring and updating the vehicle's position.

The first step in building an annotated map is collecting geometric information
about the environment. Gowdy [Thorpe & Gowdy, 1990] has created a map build-
ing system that records the vehicle's trajectory as a person drives and inserts entries
into the annotated map representing the roads location at one meter intervals. At
the same time, the laser rangefinder described in Chapter 5 is used to record the
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positions of landmarks such as mailboxes and telephone poles. Specifically, the
range images provided by the laser sensor are converted into a three dimensional
aerial map of the terrain directly in front of the vehicle using an algorithm de-
scribed in [Thorpe et al., 1991]. A landmark entry is created in the annotated map
representing the position and shape of each 3D object detected in the aerial map.

After encoding the terrain's geometric description in the annotated map, the
map can be used to plan a particular mission. The planning phase involves adding
specific instructions to the map in the form of "trigger annotations". This is
currently a process performed by the person planning the mission. For example,
the human expert knows that when approaching an intersection, the vehicle should
slow down, so the expert chooses the appropriate location to put the trigger line.
The trigger line goes across the road at that point, and is annotated with a string of
bits that represents the new speed of the vehicle. During the run, when the vehicle
crosses the trigger line, the map manager sends the string of bits to a module that
interprets the information and slows the vehicle to the desired speed. In the current
system, alarms are interpreted as commands, but there is no predefined "correct"
way for a module to react to an alarm. Depending on its content, an alarm could
also be interpreted as a wakeup call, or even as simply advice.

Because position information is so critical to the annotated map, the system
uses multiple techniques to determine the vehicle's current location. First, an
Inertial Navigation System (INS) is employed to determine the vehicle's location
with an error of approximately 1% of distance traveled [Amidi & Thorpe, 1990].
To eliminate positioning error that accumulates over time in the INS data, the an-
notated map system also uses information from perception modules. For example,
since the driving networks presumably keep the vehicle on the road, lateral error in
the vehicle positioning system relative to the road can be identified and eliminated.
In addition, a module using the laser rangefinder compares the landmarks it sees to
the landmarks collected when the map was built, and triangulates to find the vehi-
cle's position on the map. These techniques allow perception modules to provide
useful positioning information without requiring them to explicitly recognize and
interpret particular objects such as street signs. The position corrections provided
by perception modules are interpreted as a change in the transform between the
location that the INS reports and the real vehicle position on the map. A separate
module, called the navigator, is in charge of maintaining and distributing this
position transform.

Annotated maps provide the system with the symbolic information and control
knowledge necessary for a fully autonomous mission. Since the control knowledge
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Annotated Map System

Figure 7.1: The components of the annotated map system and the interaction
between them. The annotated map system keeps track of the vehicle's position
on a map. It provides the arbitrator with symbolic information concerning the
direction to steer to follow the preplanned route and the terrain the vehicle is
currently encountering. The neural network driving modules are condensed for
simplicity into a single block labeled perceptual neural networks.
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is geometrically based, and since planning is done before the mission starts,
runtime control comes at a low computational cost. Figure 7.1 shows the structure
and interaction of the annotated map system's components. It also illustrates the
annotated map system's interaction with the other parts of the system, including
the perceptual neural networks and the arbitrator (discussed below). Figure 7.2
shows a map and annotations for a mission segment.

7.2 Rule-based Driving Module Integration

The symbolic knowledge provided by the annotated map system can help guide
the interaction of the reactive driving networks. Figure 7.3 shows the system
architecture with emphasis on the neural networks. Whereas Figure 7.1 subsumed
the neural network systems into one unit labeled "perceptual neural networks",
Figure 7.3 subsumes the annotated map system into one package. In this diagram,
each box represents a separate process running in parallel. Images from the three
onboard sensors are provided to the five driving networks shown in the second
row of the diagram. The driving networks propagate activation forward through
their weights, with each determining what it considers to be the correct steering
direction. These steering directions are sent to the arbitrator, which has the job of
deciding which network to attend to and therefore how to steer.

The arbitrator makes use of both the geometric and control information pro-
vided by the annotated map system to perform a -nission autonomously. First,
the route following module within the annotated map system uses the geometric
information in the annotated map to recommend a vehicle steering direction. The
direction recommended by the route follower is the direction it thinks the vehicle
should steer in order to follow the preplanned route. When the ,ehicle is driving
down a road, the route follower queries the annotated map for the position of the
road ahead of the vehicle. The route follower uses this geometric information to
generate a steering direction.

The annotated map system also provides the arbitrator with information about
the current driving situation, including what type of road the vehicle is on, and
whether there is an intersection or dangerous permanent obstacle ahead. For
example, suppose during the planning phase the human expert notices that at a
particular point the road changes from one lane to two. The expert would set a
trigger line at the corresponding point on the map and annotate it with a message
that will tell the arbitrator to stop listening to the one-lane road following network



126 CHAPTER 7. RULE-BASED MULTI-NETWORK ARBITRATION
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Figure 7.2: A section of a map created and maintained by the annotated map
system. The map shows the vehicle traversing an intersection between a single-
and a two-lane road. The lines across the roads are alarms which are triggered
when crossed by the vehicle. Triggering an alarm results in a message being
passed from the map manager to the arbitrator indicating a change in terrain type.
The circles on the map represent the positions of landmarks, such as trees and
mailboxes. The annotated map system uses the locations of known landmarks to
correct for vehicle positioning errors which accumulate over time.
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Figure 7.3: The integrated ALVINN architecture. The arbitrator uses the terrain
information provided by the annotated map system as well as symbolic models
of the driving networks' capabilities and priorities to determine the appropriate
module for controlling the vehicle in the current situation.

and start listening to the two-lane road following network. When the alarm is
triggered during the run, the arbitrator combines the advice from the annotated
map system with the steering directions of the neural network modules using a
technique called relevancy arbitration.

Relevancy arbitration is a straightforward idea. If the annotated map system
indicates the vehicle is on a two-lane road, the arbitrator will steer in the direction
dictated by the two-lane road driving network, since it is the relevant module
for the current situation. If the annotated map system indicates the vehicle is
approaching an intersection, the arbitrator will choose to steer in the direction

dictated by the annotated map system, since it is the module that knows which
way to go in order to head towards the destination. In short, the arbitrator combines
symbolic knowledge of driving module capabilities with knowledge of the present
terrain to determine the relevant module for the current circumstances.

The relevancy of a module need not be based solely on the current terrain
information provided by the annotated map system. Instead, the arbitrator also
employs rules for determining a module's relevancy from the content of the mod-
ule's output. The obstacle avoidance network has one such rule associated with it.
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The obstacle avoidance network is trained to steer straight when the terrain ahead
is clear and to swerve to prevent collisions when confronted with obstacles. The
arbitrator gives low relevancy to the obstacle avoidance network when it suggests
a straight steering direction, since the arbitrator realizes it is not an applicable
knowledge source in this situation. But when it suggests a sharp turn, indicating
there is an obstacle in the vehicle's path, the urgency of avoiding a collision takes
precedence over other possible actions, and the steering direction is determined
by the obstacle avoidance network. This priority arbitration is similar in many
ways to the subsumption architecture [Brooks, 1986], although the most common
interaction between behaviors in Brooks' systems is for higher level behaviors to
override less sophisticated, instinctual ones.

By combining map-related knowledge about the current driving situation with
knowledge about abilities and priorities of individual driving modules, the inte-
gra!ed architecture provides the system with capabilities that far exceed those of
individual driving modules alone. Using this architecture, the system has success-
fully followed a 1/2 mile path through a suburban neighborhood from one specific
house to another. In navigating the route, the system was required to drive through
three intersections onto three different roads while swerving to avoid parked cars
along the way. At the end, the vehicle came to rest just one meter from its intended
destination.

7.3 Analysis and Discussion
Rule-based integration of multiple expert networks has significant advantages
connectionist arbitration schemes developed by other. One such advantage is
the ease of adding new modules to the system. Using rule-based arbitration,
the new module can be trained in isolation to become an expert in a new do-
main, and then integrated by writing rules for the arbitrator which specify the
new module's area of expertise and its priority. This is in contrast to other
connectionist expert integration techniques, such as the task decomposition archi-
tecture [Jacobs et al., 1990, Jacobs et al., 1991], connectionist glue [Waibel, 1989]
and the meta-pi architecture [Hampshire & Waibel, 1992]. To combine experts us-
ing these techniques requires the training of additional neural network structures,
either sim ultaneously with the training of the experts in the case of the task decom-
position architecture, or after expert training in the case of the connectionist glue
and meta-pi architectures. Adding a new expert usiikg these techniques requires
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retraining the entire integrating structure from scratch, which involves presenting
the system patterns from each of the experts' domains, not just the new one. This
large scale retraining is particularly difficult in a task like autonomous navigation
because it requires either driving over all the experts' domains again, or storing a
large number of domain-specific images for later reuse.

Another significant advantage of rule-based arbitration is the ease with which
non-neural network knowledge sources can be integrated into the system. Sym-
bolic tasks such as planning and reasoning about a map are currently difficult to
implement using neural networks. In the future, it should be possible to imple-
ment more symbolic processing using connectionist techniques, but until then,
rule-based arbitration provides a way of bridging the gap between neural networks
and traditional Al systems.

Rule based multi-network arbitration is not without shortcomings however.
The current implementation relies too heavily on the accuracy of the annotated map
system, particularly for negotiating intersections. The question might be asked,
why is the mapping system required for intersection traversal in the first place?
Why can't the driving networks handle intersections? When approaching an
intersection, an individual driving network will often provide ambiguous steering
commands, since there are multiple possible roads to follow. If left on its own,
a road-following network will often alternately steer towards one or the other
road choices, causing the vehicle to oscillate and eventually drive off the road. In
addition, even if the network could learn to definitively choose one of the branches
to follow, it still wouldn't know which is the appropriate branch to choose in order
to head toward the destination. In short, the mapping modules can be viewed both
as a useful source of high level symbolic knowledge, and as an interim solution to
the difficult perceptual task of intersection navigation.

The annotated map system as currently implemented is not a perfect solution to
the problem of high level guidance because it requires both detailed knowledge of
the route and an accurate idea of the current vehicle position. In certain controlled
circumstances, such as rural mail delivery, the same route is followed repeatedly,
making an accurate map of the domain feasible. However a system capable
of following less precise directions, like "go about a half mile and turn left on
Seneca Road", is clearly desirable. Such a system would require more reliance
on observations from perception modules and less reliance on knowledge of the
vehicle's exact position when making high level decisions.

Conceptually, this shift towards reliance on perception for high level guidance
could be done with or without a map. Observations of objects like the Seneca
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Road street sign could be used to update the vehicle's estimated location. In
fact, position updates based on perceptual observations are currently employed by
the annotated map system when it triangulates the vehicle's location based on the
positions of known landmarks in laser range images. But position updates are only
helpful when the observations are location specific. When objects such as stop
lights, or arbitrarily located objects like "road construction ahead" signs appear,
the system's response should be independent of the vehicle's location.

These location-independent observations could be modeled as positionless
alarms in the annotated map. When a perception module sees an object like a "road
construction aheaid" sign, it would notify the map manager. The map manager
would treat the sighting as an alarm, distributing the information associated with
the alarm to the pertinent modules. Perception triggered alarms would allow
the system to transition between its current perceptual abilities and future, more
advanced capabilities.

Although ALVINN is not yet capable of identifying and reading individual
signs in order to pinpoint the vehicle's location, in the next two chapters I describe
connectionist techniques which allow perceptual observations by the networks to
help guide high level reasoning. These techniques, described in the next two chap-
ters, allow the networks to estimate their own reliability in the current situation.
These reliability estimates can be used to refine the vehicle's current position es-
timate. When coupled with the symbolic integration techniques described in this
chapter, they greatly extend the flexibility and reliability of the ALVINN system.

The connectionist arbitration techniques in the next two chapters also solve
another shortcoming of rule-based arbitration, the binary nature of its integration
procedure. Currently, a module is deemed by the annotated map system as ei-
ther appropriate or inappropriate for the current road type. This binary decision
does not address the question of intelligently combining modules trained for the
same domain, such as the video-based single-lane driving network and the laser
reflectance-based single-lane driving network. There are obviously some situa-
tions, such as night driving, when one network is better suited than the other. One
possible way to take more subtle circumstances into account when weighting the
steering directions from multiple networks, would be to augment the arbitration
rules to consider more context than just the current road type. However this
approach would increase ALVINN's dependence on difficult to acquire symbolic
knowledge. The connectionist reliability estimation techniques described in the
next two chapters provide a more natural method of combining the outputs from
multiple networks.



Chapter 8

Output Appearance Reliability
Estimation

In the last chapter, rule-based arbitration was shown to be a useful technique for
integrating multiple driving networks. However the technique was also shown to
have significant limitations, including over-reliance on detailed map knowledge
and an inability to smoothly combine the outputs from multiple networks. In this
chapter I present a connectionist arbitration technique, called Output Appearance
Reliability Estimation (OARE), which avoids these shortcomings.

The OARE technique estimates the reliability of individual networks and then
uses these estimates to weight the outputs from multiple networks. Because it
provides an estimate of an individual network's absolute reliability, and not just
an indication of the relative reliabilities of multiple networks, it is useful for more
than just arbitration. In the domain of autonomous navigation, OARE can also be
used to:

* Refine the vehicle's estimated position

e Control the vehicle's speed

9 Determine when a new network needs to be trained

In the first section, I review previous connectionist techniques for multi-
network arbitration, pointing out their shortcomings with regard to autonomous
navigation. Next I present the details of the OARE technique, along with results
obtained using it in ALVINN. I then discuss the conditions necessary for OARE to
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Figure 8.1: The gating network architecture.

be an effective method for multi-network integration. Finally I present shortcom-
ings of OARE as a motivation for another network reliability estimation technique,
to be discussed in the following chapter.

8.1 Review of Previous Arbitration Techniques

Previous connectionist arbitration techniques have been based primarily on gating
networks [Jacobs et al., 1991, Hampshire & Waibel, 1992]. The underlying idea
is illustrated in Figure 8.1. In this architecture, the gating network receives the
same input as the expert networks. But instead of contributing directly to the final
output of the system, it provides gating signals, labeled g, and g2 in Figure 8.1, I
which are used to weight the outputs from the respective expert networks to
determine the final response using the formula: I

0 = _,giOi
a I

where o is the final output vector, gi is the gating signal for expert i and oi is the
output vector of expert i.



8.1. REVIEW OF PREVIOUS ARBITRATION TECHNIQUES 133

Jacobs et al. [Jacobs et al., 1991] employ the architecture shown in Figure 8.1
in their competitive expert mixing models. In these models, the gating network
and the expert networks are trained simultaneously using back-propagation with a
modified error term to encourage competition among the experts. During learning,
the experts compete to respond to individual input patterns. The contribution of an
expert i that does better than average at predicting the desired output is increased
by raising its gating signal gi. At the same time, each expert is trained to better
predict the desired output for those patterns in which its contribution to the final
output is large. In other words, the error signal back-propagated through an expert
network i for a particular pattern is scaled by the gating signal for that expert, gi.
Deriving the gating function through competitive learning encourages the experts
to specialize for coherent subtasks, a useful property in complex domains where
the appropriate task decomposition is not known a priori.

In Hampshire and Waibel's Meta-Pi architecture, experts are trained to co-
operate rather than compete. The individual expert networks are first trained
separately on a pre-specified subset of training patterns, such as the speech input
from a single speaker. Each expert network produces what it considers to be the
correct response for the given input, labeled {p, p2,... , pk} in Figure 8.2. The
outputs from the individual networks are then combined via multiplicative con-
nections from the gating network, labeled {M,1 , M, 2 ,... , Mir& } in Figure 8.2, to
determine the final response. A learning rule similar to the Sigma-Pi extension
to back-propagation [Rumelhart, Hinton & Williams, 1986] is used to train the
multiplicative connections and the internal units of the gating network. They are
trained to minimize the error in the final response across patterns drawn from all the
experts' domains of knowledge. Using this technique, Hampshire has shown that
the Meta-Pi gating architecture can learn to recognize speech from a male speaker
using a combination of speaker-specific modules trained on other speakers.

While interesting and useful, both the competitive expert mixing techniques
and the Meta-Pi architecture suffer from significant shortcomings, particularly for
the domain of autonomous navigation. First, they require substantial additional
network structure and training. The Meta-Pi strategy involves a computationally
expensive training phase during which the gating network is presented with exem-
plars from all the subdomains of the task. This is impractical for on-line training
in autonomous navigation, since it would require storage of an extensive corpus
of patterns from previously encountered driving domains, and tedious training of
the gating network after training the expert networks.

In the competitive expert mixing model, the experts and gating network can
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Figure 8.2: The Meta-Pi Architecture [Hampshire & Waibel, 1992].

be trained simultaneously, but at a high price. Simultaneous training is very
expensive, since both the forward and backward passes of back-propagation must
be performed for each pattern for each expert network. In a sense, simultaneous
training defeats an important purpose of a modular architecture, namely the ability
to efficiently and independently train sub-modules. While it is important for the
system to automatically allocate new networks when the existing ones are unable
to handle the current situation, it is impractical to expect all the networks that might
eventually be required by the system to be implemented and simulated throughout
the training process.

In the experiments performed by Jacobs et al. using the competitive expert mix-
ing model, the architecture was trained from the very start on examples covering
the full range of tasks. It is not clear that the competitive expert mixing model can
"hold networks in reserve" until a new situations are encountered which require
them. In real world applications like autonomous navigation, where unexpected
situations frequently arise, all the experts and the gating network may require
retraining from scratch if the initial task decomposition is insufficient.

The Meta-Pi architecture suffers from a similar shortcoming. In this case,
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adding a new expert by definition requires restructuring and retraining the gating
network. The expense of adding new experts in the Meta-Pi architecture may not
be much of a problem when a sufficiently large ensemble of experts is collected
to allow accurate processing of novel situations by a combination of previously
trained experts. However, this synergy between multiple experts when presented
with new stimuli has yet to be demonstrated on a large-scale problem.

Finally, both the Meta-Pi architecture and the competitive expert mixing model
provide only an indication of a network's applicability for the current input relative
to other networks. They do not provide an absolute measure an expert's relevance.
Therefore, these techniques cannot easily indicate when none of the ensemble of
experts is appropriate and therefore a new expert is required. On the contrary,
both architectures will happily combine the outputs from their experts to produce
what they consider to be the appropriate response, but which may very well be
incorrect.

The ability to accurately predict impending failures is critical in domains like
autonomous driving where mistakes can be catastrophic. Ideally, the individual
experts should produce both a response to an input pattern and an estimate of the
response's probability of correctness. This reliability estimate could be used both
to weight the output from multiple experts and to alert a human observer when a
new expert needs to be trained. The technique would be most useful if it required
little or no additional network structure or training. In the remainder of this chapter
I describe a technique called Output Appearance Reliability Estimation (OARE)
that meets these criteria and results obtained applying it to autonomous navigation.

8.2 OARE Details

OARE employs the simple idea that if the network's output is misshapen, the
network is probably confused. Specifically, after presenting the network with an
input pattern, the network's output is compared with the nearest ideal Gaussian
output pattern. The farther the actual output is from the ideal output, the lower the
estimated reliability of the network's response. While very straightforward, this
technique can quite accurately estimate the reliability of multi-layered perceptrons
under certain conditions described below.

The first step in estimating a network's reliability using the appearance of its
output is to determine the nearest ideal output pattern. For 1-of-N classification
tasks like speech or character recognition, the nearest ideal output pattern is easy to
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determine. It is the pattern in which tht output unit with the maximum activation
is fully activated (i.e., 1.0 activation level) and the remaining units are fully
inhibited (i.e., -1.0 activation level). For more complex output representations,
like the gaussian output representation employed by ALVINN, determining the
nearest ideal output is slightly more difficult. It involves finding the output pattern
with the gaussian activity distribution described in Chapter 2 which best fits
the network's actual output pattern. The same least squares matching technique
described in Chapter 2 for interpolating a network's dictated steering direction can
be employed in OARE to determine the best fit gaussian output vector.

Once the closest ideal output vector is determined, various metrics such as
Hamming distance, Euclidean distance or sum-squared difference can be used to
measure the closeness of the actual output vector to the nearest ideal one. I have
rather arbitrarily chosen to employ sum-squared difference as the distance metric
in OARE. Mathematically, if netq is the actual net input to and output unit i before
application of the sigmoid squashing function and net4 is its desired net input,
then the network's output appearance error E. is expressed as

E = (net - ne/d)2

Using the actual and desired net input to the output units before the sigmoid
squashing function when calculating the appearance error significantly increases
the correlation between the output appearance error and the network's probability
of responding incorrectly. This improvement stems from the fact that the sigmoid's
non-linearity distorts the similarity metric between two output patterns. Consider
a single unit in the following two scenarios. In the first, the unit's activation
level is 0.95 and its desired level is 0.99. In the second case the unit's activation
level is 0.50 and the its desired level is 0.54. Despite the fact that the change in
activation level is the same in both cases, the first would require a much larger
change in the internal representation (given fixed weights) to produce the desired
change in response. As a result, the hidden representation in the first case should
be considered much less appropriate than in the second, since it would require a
larger change in the first to correct the error than in the second.

Put another way, the first indication of a network's confusion is the disappear-
ance of the peak at the center of the gaussian. In effect, the gaussian gets chopped
off. A single direction still receives support, and it is sufficient support to create a
"hill" of activation in the output vector, but the support is not strong enough to drive
the center units in the gaussian to extreme values. When employing activation



83. RESULTS USING OARE 137

values to compute output appearance error, the disappearance of the gaussian's
peak does not lead to a large increase in appearance error, since the differences
in activation values are not very large between the ideal output gaussian and the
actual, chopped-off gaussian. In a sense, this subtle sign of possible error gets
washed out. Only on very confusing images, like at intersections, is support for
a single steering direction low enough to make the activation levels of the output
units different substantially from the ideal values. On these images, the appear-
ance error rises rapidly as network confusion increases, since a small decrease
in support for a steering direction when in the sigmoid's linear range results in a
large decrease in activation level and hence a large increase in appearance error.
Using the net input to a unit instead of the unit's activation level when calculating
output appearance error prevents the sigrnoid's non-linearity from distorting the
measure of support for its steering direction. In terms of performance, using net
input instead of activation level in OARE results in an increase of 0.1 to 0.2 in
the correlation coefficient between a network's output appearance error and its
likelihood of responding incorrectly (see the next section for more details).

8.3 Results Using OARE
Empirically I have found a driving network's output appearance error to be a good
indication of its reliability. Figure 8.3 illustrates the strong correlation between
the output appearance error and the magnitude of the steering errors a trained
network makes when driving over a 300 meter stretch of road. The graph was
made by having a person drive while recording both the person's steering direction
and the steering direction dictated by the network. The dashed line represents the
network's output appearance error at various points along the road. The solid line
represents the error in the steering direction dictated by the network, as measured
by the difference in turn curvature between the steering directions of the network
and the person. Specifically,

E=

where E, is the network's steering error, r. is the person's steering radius, and
r,, is the network's dictated steering radius. As can be seen from the graph, the
degree of degradation in the shape of the output vector is closely related to network
steering error. In fact, over a number of trials on a number of different road types,
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Figure 8.3: Graph comparing steering error (solid line) and output appearance
error (dotted line) over a 500 meter stretch of road. As can be seen from the high
correlation between the two curves, when the appearance of the output is far from
ideal, the network is likely to be making a significant steering error.

I have found the average correlation coefficient between output appearance error
and steering error is 0.82.

The reliability prediction provided by output appearance can be employed to
improve the performance of a neural network-based autonomous driving system
in a number of ways. The simplest use of OARE is to control vehicle speed. The
more ideal the output, the more confident the network, and hence the faster the
vehicle is allowed to travel under autonomous control.

A second use for a reliability estimate is to update the vehicle's position on a
map. When the vehicle encounters a confusing situation such as an intersection,
the network's output appearance error rises dramatically. This effect is illustrated
by the two sharp peaks labeled with "intersection" in Figure 8.3. At these two
points, the vehicle encounters a fork in the road and the network becomes confused.
The situation and response from the network at the second intersection, labeled
"B" in Figure 8.3, is shown in the middle frame of Figure 8.4. Since there are two
possible directions in which to steer, the network produces an output vector with a
bimodal distribution. This ambiguous output results in a large output appearance
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Figure 8.4: The situation and ALVINN's response at the three points labeled A,

B and C in the previous Figure. Notice the bimodal distribution of the network's
output vector for the middle, fork image. Also, notice the absence of a sharp peak
in the output vector for the two-lane road image on the right.

error since it does not resemble a single gaussian peak. The sudden increase in
output appearance error is a good indication that the vehicle has just reached a

confusing location. By watching for this spike in output appearance error, the
annotated map module described in Chapter 7 is able to accurately pinpoint the
vehicle's location without a highly detailed or accurate map.

Recall from Chapter 7 that the situation that has most required a highly accurate
map is intersection traversal. The previous method for negotiating intersections
relied solely on the mapping module to steer the vehicle correctly, since the
networks were not reliable at intersections. More reliable intersection traversal can
be achieved by combining the annotated map module's high-level route knowledge
with the road following information contained in the ambiguous output vector.

When the vehicle reaches an intersection, the mapping module's knowledge
that the vehicle should turn ight in order to ead towards the goal can bias the
arbitrator towards choosing the peak on the ight of the network's output vector as
the direction to steer. Using this technique, the architecture shown in Figure 8.5
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Figure 8.5: Architecture used with QARE to navigate over a pre-planned route
through a network of single lane roads.

has successfully driven over a 400 meter single lane course containing three
intersections. The arbitrator realized when it had reached each intersection by

observing a sudden jump in the network's output appearance error, at which point
it sent a message to the mapping system telling it the intersection had been reached.
It then selected from among the ambiguous steering directions provided by the
network on the basis of coarse commands from the symbolic mapping module like

"turn right at this intersection". Using output appearance reliability estimation
to more closely couple the symbolic knowledge of the mapping module with the

steering expertise of an artificial neural network greatly extends the flexibility and
robusness of a single network autonomous navigation system.

But perhaps the most useful application of OARE is in arbitrating between
multiple expert networks. When a network trained to drive in one situation is
presented with images from another situation, the appearance of the output is
far from ideal. This is illustrated by the high output appearance error for the
two-lane road images on the right side of the graph in Figure 8.3. The single
lane network's response on a typical two-lane road image, labeled as point C in
Figure 8.3, is shown in the right frame of Figure 8.4. In this case, the network's
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Figure 8.6: Graph comparing the appearance error of two networks trained for
different situations. The network trained for single lane roads produces an output
vector that appears nearly ideal on single lane road images (the first 20) and an
ambiguous output vector on two-lane road images (the last 20). The opposite is
true for the network trained for two-lane road images.

output supports a single, left steering direction. However the sharp peak in the
output vector, characteristic of a confident network, is missing. This missing peak
can be detected by the output appearance calculation described above and used to
discount the response of this network.

Figure 8.6 demonstrates in more detail the domain-specific nature of networks'
output appearance errors. The first 20 images are from a stretch of single lane
road, while the second 20 are from a stretch of two-lane road. Notice the network
trained for a single lane road provides nearly ideal output responses on the single
lane road images, but ambiguous responses on the two-lane road images. The
opposite is true for the network trained on two-lane roads.

I have utilized this output appearance domain-dependency as an arbitration
mechanism for a multi-network ALVINN system which included a single-lane
video based driving network, a single lane laser reflectance-based driving network,
and a two-lane video-based driving network. The arbitrator was able to use the
output appearance error of the networks to select the most appropriate one for the
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current situation. A beneficial side effect of employing OARE for arbitration is
fault tolerance with respect to sensor failure. While driving autonomously on a
single-lane road, ALVINN is able to smoothly switch from relying on the single-
lane video network to the laser reflectance network when the signal from the video
camera is lost.

In summary, Output Appearance Reliability Estimation is a computationally
inexpensive way to determine the likelihood and magnitude of errors made by
driving networks in the ALVINN system. OARE improves the system's flexibility
and robustness by providing a means for

* Intelligently controlling vehicle speed

* Pinpointing vehic!e location

9 Arbitrating between multiple networks

8.3.1 When and Why OARE Works
A technique similar to OARE had been tried with little success on multi-class pat-
tern recognition tasks such as character recognition [Linden & Kindermann, 1989]
and speech recognition [Hampshire, 1990]. Linden and Kindermann found that
networks trained to perform digit recognition would often unambiguously classify
random input patterns as particular digits, so the appearance of the output response
was a poor indication of the network's correctness. In contrast, I have found that
output appearance is a very good indication of the reliability of ALVINN driving
networks.

One possible explanation for the difficulties others have experienced with
OARE is that they employed the output activations, after applying the sigmoid
squashing function, to quantify output appearance. Recall that when using output
activations for OARE in the autonomous navigation domain, similar poor results
were obtained. Only after employing the net input to the output units, instead
of their activations, did output appearance error correlate highly with network
reliability. But this is probably not the entire explanation. Additional reasons for
the failure of OARE in character and speech recognition stem from both charac-
teristics of the tasks themselves and the connectionist architectures employed to
solve them.

Two additional conditions necessary for OARE to be effective are that 1) co-
herent support from multiple input features for a particular response be a sufficient
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condition for correct classification and 2) an ideal appearing output vector should
only result from coherent support from multiple features for a single response. If
either of these conditions is violated, as will be demonstrated for classification
tasks like character and speech recognition, then output appearance ill not be a
good indication of network reliability.

Task Requirements

Consider the task of handwritten digit recognition. In this domain, discriminations
between one class and another (say between a 5 and a 6) must often be based on
the activations of only a few input units. For a connectionist classifier to work
on this task, those few crucial units must be capable of greatly influencing the
output of the network, since they must change its output classification. With a
small combination of units able to greatly influence the network's output, it is easy
to see how a random or unfamiliar input pattern, which happens to have the right
combination of activations for these few crucial units, could be unambiguously
classified as a particular digit. This is in fact just Linden and Kindermann found.
A few important input units could determine whether a pattern would be classified
as a particular digit, regardless of the activation of the other units.

In short, the highly non-linear relationship between input feature combinations
and output classification in the digit recognition task violates both necessary
conditions for OARE to be effective. Coherent support from multiple features
is not sufficient for correct classification, since when the digit is a "6", the class
"5" will likely receive nearly as much support from input features as the "6" class.
Also, the very subtle discriminations necessary for correct classification requires
that subtle individual features in the input be capable of greatly influencing the
output vector. Therefore, just one or two could features in the input could produce
an ideal appearing output vector, violating the second condition for OARE's
effectiveness.

In autonomous navigation, there is a much more direct relationship between
input features and desired output, so OARE works well. The crucial difference
between this domain and digit recognition is that the correct output is determined
not by small localized input features, but by the combination of many consistent
features such as the positions of the lines painted on the road and the locations of
the boundaries between the road and the non-road. No single feature is necessary
for determining the correct output. Instead, many features with small individual
importance contribute to determining the correct steering direction. Since no
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single feature is important enough (i.e., has large enough associated weights) to
determine the correct output in isolation, the only way for the network to produce an
ideal appearing output is for many features to support the same steering direction.
At the same time, if many features support the same output, that output is likely
to be correct, making an ideal appearing output vector a strong indication that the
output is correct. Conversely, an ambiguous output vector will only result when
no single steering direction receives coherent support from multiple input features,
meaning the network is confused. Again, the appearance of the output correlates
well with the likelihood of the output's correctness.

Output Representation Requirements

Task characteristics alone are not sufficient to guarantee the effectiveness of output
appearance reliability estimation. The output representation chosen for the task is
also crucial. If the output representation does not allow for comparison with an
ideal output, or does not encourage the network to give small weight to individual
input features, than OARE can still fail. Such is the case with the two alternative
output representations explored in Chapter 2.

Recall in the so called "graded single unit" output representation the steering
direction is encoded in the activation level of a single output unit. Obviously in
this representation there can be no notion of an ideal output vector, since each
activation level represents a different entirely legitimate steering direction.

The problem with the "one-of-N" output representation is that it ignores the
output's structured nature by treating each output unit as if it represented a discrete
class unrelated to its neighbors. As was seen in Chapter 2, this division of
steering directions into disjoint classes converts the problem into a highly non-
linear classification task. Just as in the digit recognition problem, unambiguous
classification of a road image into one of N distinct classes requires the network to
make discriminations based on very subtle input features. This heavy weighting of
small features can result in unambiguous classification without coherent support
from multiple features, violating the second necessary condition for OARE's
effectiveness. As a result, the correlation between output appearance error and
steering error when using a one-of-N representation averages only about 0.3, less
than half that achieved with the gaussian output representation (0.82).
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Figure 8.7: The response of a network trained on artificial two-lane road images
in two situations, a "normal" image on the left, and a novel image on the fight.
The network's output vector is not significantly different between the two images.

8.4 Shortcomings of OARE

OARE has proven quite useful in the domain of autonomous navigation, but it
still has some significant shortcomings. While the correlation between output
appearance error and steering error is high, there are still situations where the
network's output appears reliable but the input image is far from typical. Such a
scenario is illustrated in Figure 8.7. The network was trained on artificial two-lane
lined road images like the one shown on the left. When presented with an image
like the one on the right, with a large section of the right-hand lane marker missing,
the network's output response was nearly indistinguishable from its response on
the "normal" image. In fact, on this particular image, the network's response was
slightly more "ideal" on the right image than the left.

In one sense, the network's confident response to the image on the right is
forgivable, since it has chosen the only plausible generalization from the training
data for this novel circumstance: steer straight ahead. But as was seen above.
we'd like to glean more from the network than just the correct direction to steer.
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We'd like an indication of the situation's novelty, for use by high-level reasoning
systems like the annotated map module. In this specific situation, a gap in the right
lane marker might signal an off-ramp which the vehicle should follow. Without an
indication of the situation's novelty, the annotated map module would either have
to rely on accurate map and vehicle position information, or miss the exit entirely.

Even when the network indicates uncertainty through a less than ideal output
vector, the confusing aspects of the input are often impossible to determine because
of the difficulty in correlating output activation profiles with specific spurious input
conditions. The bimodal output distribution at intersections is an exception. It
is usually very difficult to determine what features in the input are confusing the
network. In the situation depicted in the left image of Figure 8.7, if the network
did produce an output vector with the gaussian peak chopped off, it would be
impossible to determine if its confusion was caused by a passing car occluding the
centerline, or a gap in the right boundary signaling an exit ramp.

In the next chapter, I present a technique called Input Reconstruction Reliability
Estimation (IRRE) which alleviates these problems by determining both the degree
of novelty of the current input and the identity of the novel features.



Chapter 9

Input Reconstruction Reliability
Estimation

The ability to identify and reason about novel aspects of their input would greatly
enhance the capabilities of artificial neural networks. The extent of the novelty
could be used to judge the appropriateness of individual networks for the task to be
performed. The location and shape of novel features could be employed to identify
the unusual components of the input and to choose an appropriate response.

This chapter describes a technique called Input Reconstruction Reliability Es-
timation (IRRE) which improves on the Output Appearance Reliability Estimation
technique described in the last chapter. Like OARE, the IRRE technique can ac-
curately estimate the reliability of a network's response. But in addition, IRRE
provides useful details about the reason for the network's confusion in a novel
situation.

9.1 The IRRE Idea

The hidden representation in artificial neural networks is a compressed represen-
tation of important input features. In the case of ALVINN networks, the hidden
units represent the position and orientation of important features like the road
edges and lane markers. If this internal representation of what ALVINN "thinks
it is seeing" could be compared with the actual input, the amount of discrepancies
would be a good indication of the situation's novelty. Put another way, the severely
limited number of units in the hidden layer prevents the network from accurately

147
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representing an arbitrary input pattern. Instead, the hidden units learn to devote
their limited representational capabilities to encoding the position and orientation
of consistent, frequently-occurring features from the training set. When presented
with an atypical input, the feature detectors developed by the hidden units will not
accurately cover or account for all the actual input features.

This type of situation is depicted in Figure 9.1. It shows the weights of a
network trained on artificial two-lane roads like the ones in Figure 8.7. Notice that
the feature detectors developed by the hidden units all represent unbroken lane
markers. This is because all the training patterns showed roads with continuous
lines. The technique described below uses this type of constraint on the appearance
of typical inputs provided by the hidden representation to reconstruct the nearest
"ideal" exemplar to the actual input. This reconstruction is shown in the block
labeled "Reconstructed Input" in Figure 9.1. Like the hidden unit receptive fields
and unlike the actual input, the reconstructed input contains an unbroken right
lane marker. The degree and location of discrepancies between reconstructed and
actual inputs can be used to measure and reason about the novelty of the current
situation.

The question is how to reconstruct the nearest familiar input pattern from the
network's internal representation. The next three sections describe technique I
have experimented with for performing this reconstruction.

9.2 Network Inversion

The first reconstruction technique uses is similar to the "network inversion" method
developed by Linden and Kindermann [Linden & Kindermann, 1989]. In this
method the reconstructed input vector is computed iteratively by back-propagating
an error signal from the outputs all the way to the input units.

In more detail, the first step in the modified network inversion procedure is
to present the network with the current input pattern and propagate activation to
the output units. The nearest ideal output vector is then determined using the
techniques described for OARE. The difference between the actual output vector
and the nearest ideal output vector is used as an error signal in the back-propagation
phase of network inversion. This error signal is propagated all the way down to the
input layer using the delta equations from the back-propagation gradient descent
algorithm. For an output unitj,
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Figure 9.1: A network trained on artificial two-lane roads with continuous lane
markers. When presented with an image containing a gap in the right lane marker,
the image produced by the input reconstruction process "fills in" the gap to produce
the familiar input pattern nearest to the actual input.
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j = (j - oj)f'(netj)

where bj is the error signal for output unitj, tj is the "ideal" activation level for unit
j, oj is the actual activation for unitj, andf '(netj) is the derivative of the activation
function.

If unit j is a hidden or input unit,

b. =f'(netj) 1 Ikwj
where k represents a unit in the layer above unit j, and wjk is the weight of the
connection from unit j to unit k. The b values for the input units are used to
determine the magnitude and direction of change to their activations in order to
decrease the difference between the actual and ideal output response. In order to
keep the reconstructed activation levels of the input units bounded within their
normal range of -I to 1, the activation levels of the input units are not directly
altered using their error signals. Instead, a net input component netj is computed
for each input unitj by inverting the activation function. Since

oj = f(nerj)

- tanh(netj)

netj can be computed by

netj = f -(oj)

- atanh(oj)

Gradient descent on the error signal 6, can be employed to alter netj in order I
to minimize the difference between the actual and the nearest ideal output vectors
using the equation I

Anetj = c . bi

where c is a small constant acting as the step size in input space. Altering
a hypothetical net input to the input units during the gradient descent process,
instead of the input unit activation levels directly, ensures that the activation level
of the input units will remain within the -I to +1 range of the hyperbolic tangent
activation function.

So the steps in network inversion are: I
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1. Forward propagate activation from input to output units.

2. Compute error by comparing the actual output pattern with the nearest ideal
output pattern.

3. Backward propagate this error from output to input units.

4. Alter the input unit activations to reduce the distance between the actual
output and the nearest ideal output.

These four steps are repeated for a fixed number of steps, or until the difference
between the actual and the nearest ideal output falls below a fixed threshold. At the
end of this gradient descent procedure, the input vector in some sense represents
the best input pattern for producing the target vector. This ideal input can then be
compared with the actual input to measure the familiarity of the situation.

There is one significant problem with using network inversion for estimating
the familiarity of an input pattern. In almost all task domains, the mapping from
inputs to outputs is many-to-one, with many input patterns resulting in the same
correct output response. In the domain of autonomous navigation for example,
there are many road position/orientation combinations which should result in the
same steering direction. The same is true in classification tasks such as speech
or character recognition, where many different input exemplars are members
of the same class. The network inversion technique will not produce a single
"clean" example from the target class, but instead will produce a conglomeration
or superposition of all the class members. This phenomenon is illustrated in
Figures 9.2 and 9.3. For illustration purposes, the network in Figure 9.3 was
trained on only the two artificial two-lane road images shown in Figure 9.2. Each
depicted the road at a different position and orientation, but both required a straight-
ahead steering direction. Because of the identical response required for each, the
network does not learn to distinguish between them. Instead, each of the hidden
units learns to respond identically to each. As a result, when presented with one
of the training images, the reconstructed input produced by the network inversion
method contains a superposition of both training examples.

Linden and Kindermann [Linden & Kinden,..,nn, 1989] exploited the super-
position property of network inversion to analyze networks trained for character
recognition. By thresholding the superimposed image created by network inver-
sion, they were able to extract the essential or common features present in all
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Figure 9.2: Two artificial road images used to train the network displayed in
Figure 9.3. The roads have different positions and orientations, but they both
require a straight-ahead steering direction.

examples of a particular character. But for accurate input reconstruction, this su-
perposition of features is not desired, since the actual input should not be required
to embody the conglomeration of all the features of a class's members in order for
it to be considered a familiar member of that class. Instead, the algorithm should
produce a pattern representing a "clean" single example of the class, and more
specifically a single example which is as close to the actual input as possible. The
actual input could then be compared with this "clean" nearby class member to
determine how typical or familiar an example of the class it is.

9.3 Backdriving the Hidden Units

Part of network inversion's problem with superposition stems from the fact that
it tries to reconstruct an ideal input pattern starting with an ideal output pattern.
A better method would reconstruct the nearest familiar input pattern using the
actual hidden representation formed by forward propagating the input pattern.
This would enable more specific and distinct reconstructions of inputs which have
different hidden representations, but which require the same output response.

This approach requires a different computation strategy than network inver-
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Figure 93 A network trained on two different images requiring the same steering

direction. When presented with one of the images, the network inversion method
produces a reconstructed input which is a superposition of both training inputs.
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Figure 9.4: The two steps involved in reconstructing the input by backdriving the
internal representation. In the first step, activation is propagated from the input
layer to the hidden layer. In the second step, the hidden unit activations are frozen
activation is propagated from then hidden layer back to the input layer.
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sion, since the hidden representation provides no quantifiable error signal to be
back-propagated for input reconstruction. I have developed an alternative tech-
nique that involves "backdriving" the network. The idea is to first present the
network with an image and propagate activation forward from the input layer to
the hidden layer. The hidden activation levels are then frozen and activation is
propagate in the opposite direction, from the hidden layer to the input layer. This
two step process is illustrated in Figure 9.4. Mathematically, the backdriving
phase can be described as follows:

ri =f (EZWboh)

where ri is the reconstructed activation for input unit i, f is the hyperbolic tangent
activation function, wj, is the weight of the connection from input unit i to hidden
unit h, and oh is the activation level of hidden unit h. By turning the network
around in this manner, active hidden units will excite those input units which
normally excite them, and inhibit input units which would normally inhibit them.
Backdriving the first layer of weights reconstructs the input image which would
produce the current hidden activation pattern.

Visual inspection of the actual and reconstructed input images demonstrates
that the degree of resemblance between them is a good indication of the actual
input's familiarity. Figure 9.5 shows the input image, network response, and
reconstructed input at the three points along the stretch of road used to demonstrate
OARE in the previous chapter. When presented with the image on the left, which
closely resembles patterns from training set, the network's reconstructed image
closely resembles the actual input. In novel situations, like the fork image and
the two-lane road image shown in the other two columns of Figure 9.5, the
reconstructed image bears much less resemblance to the original input, indicating
the network's confusion.

To be useful, the visually apparent tendency of confusing input images to result
in high reconstruction error must be quantified. In particular, the reconstruction
error measure should be chosen so as to maximize its correlation with the network's
steering error. In other words, the reconstruction error should be high on those
inputs where the network is likely to make a mistake. Quantitatively capturing this
visually apparent relationship has proven difficult. The problem is that the input
image and reconstructed image have very differ metns and variances, making a
straight pixel-by-pixel distance metric such as Euclidean distance a poor measure
of similarity between the images.
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.. .. . .

Figure 9.5: Input image, network response, and reconstructed input created by

backdriving the input-to-hidden weights on three road images.
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One method I have employed to better capture the degree of similarity between
in the input and reconstructed images is to normalize the mean and variance of
the reconstructed image to equal that of the input image. After this normalization
step, the Euclidean distance between the two images provides a reliable measure
of the images' similarity. A more straightforward technique for determining the
similarity of two images with different means and variances is to compute the
correlation coefficient between them.

The correlation coefficient p(X, Y) between two sets of numbers X and Y, in
this case representing image pixel values, is defined to be:

p(X, Y) = NY - X V

where X and Y are the means of each set, XY is the mean of the set formed by
the element-wise product of the two sets, and q. and cy represent the standard
deviations of each set.

The correlation coefficient between the actual and reconstructed images has
three useful properties. First, it is simple to compute. Second, like the normal-
ization method described above, it compensates for the diffcurences in mean and
variance between the two images. Finally, it is bounded between -1.0 and + 1.0,
with -1.0 signifying a perfect inverse correlation, 0.0 signifying no correlation
(i.e., independence), and +1.0 signifying perfect correlation between the images.
Because of these useful properties, the correlation coefficient is the measure of
similarity used throughout the remainder of this chapter. In order to compute
the reconstruction error from this similarity measure, the correlation coefficient is
subtracted from 1.0. This ensures that the reconstruction error will range between
0.0 and 2.0, and will increase as the similarity between the input and reconstructed
images decreases.

The reconstruction error computed in this manner is a good indicator of network
reliability on real images, as illustrated by the graph in Figure 9.6. It shows the
steering error versus reconstruction error for the same network on the same stretch
of road used to demonstrate OARE in the previous chapter. The 0.76 correlation
coefficient between steering error and reconstruction error on this stretch of road
is somewhat lower than the 0.87 correlation coefficient between steering error and
output appearance error. One possible explanation for this lower correlation is
that the reconstruction procedure is flagging some images as atypical for which
the network is able to correctly generalize the steering direction. This is almost
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Figure 9.6: Reconstruction error obtained by backdriving the input-to-hidden
weights versus network steering error over a stretch 500 meter of single and
two-lane road.
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certainly the case for the images in the middle of the graph in Figure 9.5, where
the network is steering correctly but the reconstruction error is elevated. In fact,
the first sizable peak after the point labeled A in Figure 9.6 corresponds to a left
turn sharper than most in the training set. The network was able to choose the
correct steering direction on that section of road, but the reconstruction error is
indicating that something about that stretch is atypical.

A more theoretical problem which may also contribute to the lower accuracy
of this reliability estimation method is the fact that backdriving the internal repre-
sentation does not entirely solve the superposition problem described earlier. Input
patterns requiring the same output response but with different hidden representa-
tions will no longer be superimposed in the reconstructed input. But if the network
does not distinguish between input patterns in its internal representation, as was
the case for the network trained on two straight-ahead images in Figure 9.2, the
result of backdriving the input-to-hidden weights will still be an image in which
the input patterns are superimposed.

The only way to avoid the superposition problem in input reconstruction is to
force the network to develop different internal representations for distinct input
patterns from the same class. The next section describes a technique for ensuring
this discrimination, and gives the results obtained by using it.

9.4 Autoencoding the Input

One way to ensure that the network explicitly represents specific features from the
current input in its hidden representation is to force the network to recreate the
input in its output. An architecture which accomplishes this is shown in Figure 9.7.
It contains an extra group of output units, with the same dimensions as the input
image and fully connected to all the hidden units. The desired activation pattern
for this new set of output units is identical to the input pattern.

Forcing the network to auto-encode its input as well as produce the correct
steering direction makes the learning task more difficult. But it has two advantages
for input reconstruction reliability estimation. First, unlike the two previous input
reconstruction methods, it requires no extra computation after the forward pass
through the network to produce the reconstructed image. The reconstructed input
image is simply the activation pattern of the encoder output array.

More importantly, reproducing the input image in the output forces the network
to develop different internal representations for distinct input patterns that require
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Figure 9.7: Network architecture augmented to include an encoder output array.

the same response. This is illustrated in Figure 9.8, which shows the architecture
from Figure 9.7 trained on the same two straight-ahead artificial road images as the
network in Figure 9.3. Like the network in Figure 9.3, this network devotes some
of its hidden units (numbers 1 and 3) to encoding the correct steering direction.
But unlike the network in Figure 9.3, this one also devotes two of its hidden units
(numbers 2 and 4) to encoding specific details about features in the input image.
Hidden units 2 and 4 are each excited by oae of the two training patterns and
inhibited by the other. Note that the weights to the steering output vector for
hidden units 2 and 4 are near zero.

Using this pattern-specificity in the hidden representation, the network is able
to accurately reproduce each of the two training patterns in the encoder output
array (labeled "Reconstructed Input" in the Figure 9.8), without the superposition
problem of the previous methods. But more importantly, on novel patterns like
the image with the gap in the right lane marker, the reconstructed input accurately
depicts the nearest training exemplar, and as a result "fills in" the gap in the lane

marker. Both these points are illustrated by the "Difference" image in Figure 9.9.
Each of the difference images was created by taking the point-wise absolute dif-
ference between the actual input and the reconstructed images. These differences
were then thresholded in order to highlight the areas of high discrepancy. The
large number of white pixels in the difference images for the two unfamiliar sit-

............
.... . ....
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Figure 9.8: A network trained on two road images to produce the correct steering
direction and autoencode the input.
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Figure 9.9: The actual input image, the reconstructed input image taken from the
autoencoder output array, and the point-wise absolute difference between them.
Notice that the difference image clearly points out the missing section in the right
lane marker without superimposing the second road image.

uations illustrate that the network was not able to reconstruct the input images
accurately. In addition, the well defined features in the difference image produced
at the intersection suggests that it may be possible to reason about the specific
aspects of the current input which are causing the network's confusion.

Eliminating the superposition problem results in a much higher correlation
betwe-n reconstruction error and the novelty of the input image. As a result, the
correlation between steering error and reconstruction error is significantly higher
using autoencoder reconstruction than using either of the previous techniques. This
strong correlation is illustrated in Figure 9.10, which is a graph of the steering
error versus autoencoder reconstruction error of the network shown in Figure 9.7
trained on the road used previously. The input reconstruction error measure has
a slightly higher correlation with steering error than does the output appearance
error measure for the same network (0.92 vs. 0.90).

Figure 9.11 shows the actual input and the reconstructed input obtained from
the autoencoder output array on the three images labeled A, B and C in Figure 9.10.
The images labeled "Recon Error" represent the absolute value of the point-wise
difference between the actual and reconstructed images. The brighter the pixel in
the "Recon Error" ima-e, the greater the difference. The network's confusion on
the two atypical images is clearly demonstrated by the large discrepancy between
the actual input and the reconstructed input. Note that the for in the image labeled
B causes two roads to appear superimposed in the reconstructed image. This
illustrates the specific reason for the network's confusion, namely that it sees two
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Figure 9. 10: Reconstruction error obtained using autoencoder reconstruction ver-
sus network steering error over a stretch of one-lane and two-lane road.

possible roads it could follow.

9.5 Discussion

Intuitively, the effectiveness of input reconstruction reliable estimation stems from
the fact that small number of hidden units in the network prevents it from faithfully
encoding arbitrary input patterns. Instead, the hidden units learn to encode features
present in the training images that are most important for the task. In the case of an
autoencoder network like that shown in Figure 9.7, where the task is to reproduce
the input image on the output, the definition of the most important features can
be more precisely quantified using the relationship between back-propagation
networks and the technique of principal component analysis.

Baldi and Hornik [I] have shown that if an autoencoder network with a single
layer of N linear hidden units is trained with back-propagation, the activation levels
of the hidden units will represent the first N principal components of the training
set. The first N principal components are defined to be the N linear combinations
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Figure 9.11: The actual input, the reconstructed input and the point-wise absolute
difference between them on a road image similar to those in the training set (labeled
A), and on two atypical images (labeled B and C).
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of the input vector elements (i.e. pixels) that display the most variance over
the training set. Because the principal components represent the dimensions
along which the training examples varies most, it can be shown that using linear
combinations of the principal components to represent the individual training
patterns optimally preserves the information contained in the training set [31.
Specifically, the response functions developed by the linear hidden units represent
the N linear basis functions that allow for the most accurate reconstruction of the
training patterns. In other words, linear combinations of the N hidden activation
levels can be used to reproduce the input patterns of the training set with lower
sum squared error than combinations of any other N linear functions of the input
pattern components.

The compressed representation developed by a linear autoencoder network is
only optimal for encoding images from the same distribution as the training set.
When presented with images very different from those in the training set, the
reconstruction produced by a linear autoencoder network will not be as accurate.
As I have demonstrated, this reconstruction error can be employed to estimate the
likelihood of error in networks trained for autonomous driving.

The proof that the internal representation spans the principal components of the
training set holds only when the hidden units employ a linear activation function.
While this is not the case for the networks employed in this dissertation, Cottrell
and Munro [2] have found empirically that autoencoder networks with a sigmoidal
activation function develop hidden units that span the principal subspace of the
training images, with some noise on the first principal component due to network
non-linearity. This near optimality of the compressed representation developed by
autoencoder networks may explain why the autoencoder reconstruction technique
provides a better estimate of network reliability than either of the two alternative
reconstruction techniques explored.

However reconstructing the input image using an autoencoder network has two
disadvantages. First, it is the most computationally expensive of the three recon-
struction techniques. Second, to achieve more accurate input reconstruction, the
autoencoder reconstruction technique requires forcing the network to encode all
input features, including potentially irrelevant ones. While this increased represen-
tation load on the hidden units has the potential to degrade network performance,
this effect has not been observed in the tests I have conducted. Also, this potential
problem could be avoided by having hidden units connected exclusively to one
group of outputs or the other. This would prevent the representation developed
for the autoencoder task from interfering with the representation developed for
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the "normal" task. It remains to be seen if this decoupling will adversely affect
IRRE's ability to predict network errors.

When compared with Output Appearance Reliability Estimation, IRRE has
both advantages and disadvantages. OARE is simpler than any of the techniques
for IRRE, but it has the potential to overestimate network reliability in novel
situations. Input Reconstruction Reliability Estimation has the potential for the
other extreme. Its assumption that the degree of novelty in the input is directly
related to the network's reliability could result in underestimating the network's
confidence when the novel input features are irrelevant. Perhaps the most accurate
way to estimate network reliability would be to combine the predictions from the
OARE and IRRE techniques.

A potential advantage of IRRE over OARE is the possibility of applying it
to a wider variety of domains. The OARE technique is limited to tasks in which
the correct response is determined by linear combination of many supporting
input features. Estimating a network's reliability by measuring how faithfully the
network is able to represent the input has no such application restrictions.

In addition, IRRE provides much more interesting insights into the internal
processing of the network by depicting the network's interpretation of what it
is seeing. Although I have not had a chance to exploit the added information
provided by IRRE, its ability to specify the novel aspect of the current situation
could potentially be used to reason about the appropriate response. In the missing
lane marker example shown earlier, the IRRE technique could not only indicate
that the current input is atypical, but also that its novelty results from a large
gap in the right lane marker. This information could be employed by a symbolic
reasoning module to identify the gap as the offramp it has been expecting.

Both OARE and IRRE have advantages over previous connectionist arbitration
techniques. They both can estimate the reliability of isolated networks, instead of
just .ne relative reliability of a group of networks. As a result, OARE and IRRE
can predict performance errors :, systems with only one network. In addition,
OARE and IRRE have the ability to determine when none of a group of networks is
reliable, and therefore a new network needs to be trained. In addition, both IRRE
and OARE allow for the true modular construction of multi-network systems
since new networks can be added incrementally, without the need to retrain the
integrating structure.

These connectionist arbitration techniques also have distinct advantages over
the rule-based arbitration techniques described in Chapter 7. Unlike symbolic
techniques for multi-network integration, they provide a means of smoothly corn-
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bining responses from many networks based on confidence measures computed
by the networks themselves. They make ALVINN less reliant on detailed and
accurate high level knowledge of the environment, which is hard to obtain. In
its place, OARE and IRRE substitute simple consistency checks between the net-
work's response and some ideal, or between the network's internal representation
and the actual input.

( f course OARE and IRRE cannot entirely replace symbolic reasoning tech-
niques, but they can greatly augment them. This was demonstrated when OARE
was used in conjunction with a coarse map to follow high level instructions while
staying on the road. IRRE has the potential to increase the synergy between sym-
bolic and connectionist processing by providing more detailed information about
the novel aspects of the current situation.



Chapter 10

Other Applications - The SM 2

The techniques described in this dissertation are applicable in domains other than
autonomous driving. In this chapter I present results which demonstrate this flex-
ibility. I describe the application of these methods to the task of precisely guiding
a robot called the Self Mobile Space Manipulator (SM 2), which is designed to
walk on the exterior of space station Freedom [Brown, Friedman & Kanade, 1990,
Ueno, Xu & Brown, 1990]. While the SM2 is a very different type of robot, requir-
ing very different guidance signals, the techniques developed for ALVJNN require
only minor modifications for this domain. The ease with which these techniques
can be adapted to a new domain underscores the point made in the next chapter,
that the learning power of artificial neural networks can effectively eliminate much
of the difficulty involved in developing robust vision-based autonomous guidance
systems.

10.1 The Task

Space is a dangerous environment for people. To reduce this danger in the
construction and maintenance of the space station Freedom, a number of robot
systems are under development. One of those robots, called the Self Mobile
Space Manipulator (SM 2), is being designed at Carnegie Mellon University to
perform visual inspection, transportation of parts and light construction tasks (see
Figure 10.2). The SM 2 , shown in Figure 10.1, is a two-legged robot capable
of rapid walking along the outside of the space station. Grippers at the tip of
each leg screw into threaded holes in the nodes where support struts join together.
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Figure 10.1: Image of the Self Mobile Space Manipulator.

Locomotion is achieved by alternately unscrewing one gripper from its anchor hole
and swinging it around to screw into the next hole (see Figures 10.2 and 10.3).

In order build a compact, power-efficient robot capable of fast walking, the
robot's mass has been kept to a minimum by using lightweight aluminum legs.
As a result of the flexibility in these legs, and the long distance between adjacent
anchor holes (15 feet on the space station, 5 feet on the 1/3 scale CMU testbed
model), it is difficult to consistently position the gripper of the robot within the
required 0.25 inches of the anchor hole for reliable insertion using only measured
joint angles. In other words, sensor feedback is required for the precise positioning
of the gripper. To facilitate this feedback, small monochrome video cameras are
attached to the robot's grippers as illustrated in Figure 10.3. The next section
describes the artificial neural network designed to guide the robot using tl~cse
video cameras.



170 CHAPTER 10. OTHER APPLICATIONS - THE SM2

a) Robot b)

Figure 10.2: Schematic of the SM 2 : a) Robot and space station structure; b)
Locomotion.

Scem 
Anchor~Hole

Figure 10.3: A schematic closeup of the gripper on the SM 2 .
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10.2 Network Architecture

Given an image coming from the camera at the gripper, the network is required
to provide the two dimensional displacement of the gripper screw relative to the
anchor hole. To accomplish this mapping, a neural network architecture very
similar to that described for autonomous driving is used. Specifically, the input
layer consists of a 24x20 two dimensional "retina" which receives input from
the gripper's video camera. The activation level of each unit in the input retina
represents the grey scale intensity of the corresponding pixel in the low resolution
video image coming from the camera. Each unit in the input retina is fully
connected to a layer of five hidden units which are in turn fully connected to two
vectors of 20 output units (See Figure 10.4). The first output vector is a linear
representation of the displacement of the gripper relative to the anchor hole in
the X dimension, ranging from -1.25 inches for the leftmost output unit to +1.25
inches for the rightmost output unit. The second vector of output units is identical
to the first except it represents displacement in the Y dimension.

To control the precise positioning of the robot's gripper once it is in the vicinity
of the anchor hole, a video image from the appropriate gripper camera is projected
onto the input layer. After completing a forward pass through the network, X and Y
displacements are read off the output vectors. The technique described in Chapter
2 for interpolating the network's precise response by finding the best fit gaussian
to an output vector is used to determine the network's displacement response in
each dimension. These displacements are then converted to joint torques by the
robot's PID controller in order to move the gripper over the anchor hole. Once the
network has indicated that the gripper is within the 0.25 inch "threshold radius"
of the anchor hole for over one second, the gripper is considered to be stably
positioned over the hole and the controller lowers the gripper to anchor the leg.

10.3 Network Training and Performance

Like the networks used for autonomous driving, the network to control the SM2

is trained using back-propagation. Also like its road following counterparts, this
network for the SM 2 requires a relatively large and varied set of training examples
in order to develop a general representation. However acquiring training examples
is more difficult because there is no readily available te-.ching signal. To provide
the precise X-Y gripper displacement measures required by the network, a special
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Figure 10.4: Architecture of network designed to control the SM 2 .

training jig was constructed. The jig consisted of distance encoders which were
temporari.ly attached to the robot gripper during the data collection phase (see
Figure 10.5). 500 video images were taken while the gripper's position relative to
the anchor hole was manually varied in three dimensions. Each of the collected
images was automatically tagged with its corresponding X-Y offset.

During training, the back-propagation algorithm uses these input-output pair-
ings as examples of the mapping to be performed. After approximately 100
presentations of the exemplars, the network learns to use image features to ac-
curately determine the gripper displacement to within 0.1 inches. Figure 10.6
illustrates the evolution of the weights projecting into the five hidden units from
the video retina at four different times during training. Prior to training, the net-
work's connections are random, as illustrated by the unstructured distribution of
positive weights (light squares) and negative weights (dark squares) at epoch 0 in
Figure 10.6. As training progresses, Figure 10.6 shows the weights to the hidden
units evolving to pick out important image features. The network uses the position
of these features to determine the gripper offset relative to the anchor hole. The
data collection and training phases require a total of about 20 minutes running on
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Figure 10.5: Distance encoders temporarily attached to robot provide accurate
gripper displacement data during data collection.

a Sun-4 workstation.

Once trained the system is able to provide 15 precise and accurate gripper
displacement values per second under a variety of laboratory lighting conditions.
Figure 10.7 illustrates the low resolution video input to a trained network and the
resulting network responses for X and Y gripper displacement. In the case of
Figure 10.7, the robot gripper is actually centered over the anchor hole, although
it does not appear to be, due to the camera's displacement relative to the gripper
(see Figure 10.5). The network responds correctly in this situation by most
strongly activating the centermost units of the two output vectors, indicating the
g-ipper has zero offset in the X and Y dimensions. When compared with using
no sensor feedback, this neural network method for precisely guiding the SM 2

resulted in a factor of five decrease in missed gripper insertions. Because of the
success of the neural network approach, the non-connectionist gripper guidance
implementations described in the next section were never tested on the robot itself,
making it impossible to compare their performance.
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Figure 10.6: The weights projecting from the input retina to the five hidden units
in the network at four points during training.
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Figure 10.7: The low resolution video image provided as input to a trained
network and the network's X-Y displacement responses. The gripper screw is
actually centered over the hole in this image, as indicated in the schematic to the
right. The anchor hole does not appear centered in the image is since the camera
is offset from the gripper screw.
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10.4 Discussion

The SM2 example illustrates that a network similar to that employed for au-
tonomous driving can precisely guide the foot placement of a walking robot. But
what advantages do neural network learning methods have over traditional image
processing techniques for performing this task?

First, the neural network system was very easy to develop. Once the camera
and distance encoders were in place for data collection, it took under an hour to
develop a working system from scratch. It will take even less time to develop
a new network when a (highly probable) redesign of the space station structure
occurs. This flexibility and ease of development results from the fact that the
network does not rely on prespecified structural characteristics for its processing,
but instead learns the features of the space station structure that are important for
determining the gripper's relative position. If a redesign resulted in a different
appearance, a new network could easily be trained to perform the task using the
new structural features.

The two traditional image processing systems that have been designed for the
same task [Simon, 1990] go one step further than requiring a fixed appearance for
the space station structure. They require altering the space station's appearance
by adding visual targets to make the image processing task more tractable. One
system uses the black and white cameras currently on the robot and a white-on-
black crosshair attached near each anchor hole. The system finds the crosshair
in the image and uses its position to determine the gripper displacement. This
system fails if the target is obscured or out of the camera's field of view. The
second system uses a color camera and a red ring surrounding each anchor hole.
Again, image processing techniques are used to find the ring and use its position
to determine gripper displacement. This system is as robust as the neural network,
but requires a more complex camera and, more importantly, alteration of the space
station itself with a colored target. In addition, after choosing the target, the
programmer of both these systems was required to develop algorithms for finding
the target and determining the gripper offset from the target's size and location.
In contrast, the neural network learned to perform the entire task from examples.
Neural networks will be demonstrated to have similar advantages over previous
hand-coded systems for autonomous driving in the next chapter.

Since the neural network was easy to develop and can learn to robustly provide
accurate gripper displacement data without altering the space station's appearance,
it is the vision system being employed in the development of the SM 2 . In addition
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to being a useful solution to a difficult problem, the neural network SM2 guidance
system illustrates that the vision-based neural connectionist techniques developed
in this thesis are applicable to more than just a variety of driving tasks, but also to
very different mobile robot guidance domains.



Chapter 11

Other Vision-based Robot Guidance
Methods

In the last chapter, I demonstrated how the flexibility of the techniques described
in this dissertation make them applicable to other vision-based robot guidance
tasks. The techniques were also shown to have distinct advantages over more
traditional, hand-coded machine vision algorithms for guiding the SM2. In the
first section of this chapter, I expand the comparison between the connectionist
methods I've developed and non-learning techniques others have employed for
autonomous navigation. As was the case in the walking robot domain, ALVINN
is shown to have distinct advantages relative to hand-programmed systems for
autonomous driving.

In the second part of the chapter, I compare the methods I've developed with
other machine learning techniques for autonomous navigation. Some of these
techniques are neural network based, while others use such methods as reinforce-
ment learning, genetic algorithms, decision trees and nearest neighbor matching.
Some have been tested by others in the domain of autonomous navigation, some I
have tried myself, and some I only speculate about. The general conclusion is that
other supervised connectionist learning algorithms could probably learn to drive
as well as the back-propagation system presented in this dissertation, and could
in fact exploit many of the techniques I've developed. But the other machine
learning paradigms have significant shortcomings which would make it difficult
to duplicate ALVINN's level of performance.
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11.1 Non-learning Autonomous Driving Systems

Almost all of the previous vision-based outdoor autonomous navigation systems
have been hand-programmed using the following three step procedure: First, the
programmer determines which image features are important for navigating in the
chosen domain. Then the programmer develops detectors (using statistical or
symbolic techniques) to find these important features. Finally, the programmer
develops an algorithm to determine the appropriate steering direction given the
positions and orientations of the important image features.

11.1.1 Examples

A typical example of a system employing this three step procedure was the Martin
Marietta VITS system [Turk et al., 1988]. This system assumed the road would
appear as bright pixels in the image formed by subtracting the red color band from
the blue color band. It thresholded this feature image and found the largest region
of "road pixels". The borders of this region were back-projected to the ground
plane and the vehicle was steered towards the center of this back-projected road
region. Using this algorithm, the VITS system was able to drive at speeds of up
to 20 km/hour on straight, obstacle-free stretches of a single-lane road. Its crude
segmentation technique and reliance on a single sensor (video camera) limited its
robustness in the domain of single-lane driving, and prevented it from tackling
other domains such as multi-lane driving or obstacle avoidance. The Martin
Marietta system was also not designed to handle intersections or to follow high
level directions.

The SCARF system [Crisman & Thorpe, 1990] was similar to the VITS sys-
tem in that it classified pixels in the image into road or non-road based on
their color. However SCARF used a more sophisticated, probabilistic, adaptive
color classification scheme to label pixels. SCARF then used a Hough trans-
form [Ballard & Brown, 1982] to find the most probable road location, assuming
the road appears as a trapezoid in the image. It then back-projected the road trape-
zoid to the ground plane and steered to keep the vehicle centered on this region
and heading in the direction of the region's major axis. Its more sophisticated seg-
mentation algorithm made SCARF much more robust then Martin Marietta's ALV
system when driving in changing and noisy situations in the domain of single-lane
road following. But like the Martin Marietta system, SCARF used a single sensor
(video camera) and looked for a single image feiture (a trapezoidal-shaped re-
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gion of road pixels) to determine the direction to steer. This limitation prevented
SCARF frorm being used in other domains, such as multi-lane road driving and
obstacle avoidance. An interesting feature of SCARF missing in the VITS system
was the modeling of intersections as overlapping trapezoids. This gave SCARF
the ability to traverse intersections, at least on the single-lane CMU test path.

The Sidewalk II system [Goto et al., 1986] was a predecessor of the SCARF
system, and hence used a more crude segmentation algorithm. However it did have
interesting characteristics related to the ALVINN system. Unlike other previous
systems, it fused input from a laser rangefinder and a video camera in order to
distinguish between stairs, a ramp, and the surrounding grass. The Sidewalk II
system also used an internal map of the CMU sidewalk network to plan a path
through intersections. However the Sidewalk II system was limited to driving on
a single terrain type (sidewalks) and, because of its crude segmentation algorithm,
displayed limited reliability in that domain.

Instead of using color to classify pixels into road and non-road regions, a
number of systems have employed edge detection methods to find road or lane
boundaries. The General Motors Lanelok system [Kenue, 1989] used a Sobel edge
operator [Sobel, 1970] and a Hough transform to detect the position of the lane
markers on a multi-lane highway. The lane markers were assumed to fit a straight
line, and their image position was used to control the vehicle.

Another system that employed edge detection was the VaMoRs system from the
Universitat der Bunderswehr Munchen in Germany [Dickmanns & Zapp, 19871.
This system used local edge detectors to find the position of highway lane markers
in various subregions of the image. A curve was then fitted to the detected
points on tie lane markers and a sophisticated control algorithm was employed
to keep the vehicle in its lane. Because of its local feature detectors and parallel
implementation, the VaMoRs system was capable of processing 13 images per
second and driving at up to 60 miles/hour on the German Autobahn.

Edge detection systems like the Lanelok and VaMoRs systems assume im-
portant features will have strong edges associated with them in the image. On
freshly-painted highways this is usually the case. However, on older highways
with faded lane markers and cracked pavement, heavily-shadowed stretches of
road, or roads without lane markings, important edges are often obscured or non-
existent.

To avoid the difficulties that result from relying solely on edges, the YARF
system used edge and color information to find lane markers on multi-lane high-
ways [Kluge & Thw e, 1990]. Like the VaMoRs system, it used local trackers to
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find the position of important road features within small windows in the image. But
unlike the VaMoRs system, YARF had a number of different hand-programmed
feature trackers which used color information to more reliably locate features such
as the yellow center line and the white line indicating the road edge. In addition,
the YARF system reasons about the information received from its feature trackers
to alter the trackers it use . as conditions changed. This is analogous to the capabil-
ity of the ALVINN system to arbitrate between its multiple knowledge, described
in Chapters 7, 8 and 9.

11.1.2 Comparison with ALVINN
In order to achieve greater reliability, the trend in autonomous navigation systems
has been towards more complex, situation-specific processing. This not only
makes system development more difficult, it also restricts the domains each of
these systems is capable of handling. In contrast, ALVINN is able to learn for
each of these domains what image features are important, how to detect them and
how to use their position to steer the vehicle. As was demonstrated in Chapter 6,
ALVINN's hidden unit representation varies depending on the driving situation.
ALVINN learns to key off image features which correlate with the correct steering
direction. When trained on multi-lane roads, the network develops hidden unit
feature detectors for the lines painted on the road, while in single-lane driving
situations, the detectors developed are sensitive to road edges and road-shaped
regions of similar intensity in the image.

ALVINN's ability to quickly adapt to new scenarios is a significant advantage,
and it has allowed ALVINN to drive in a wider variety of situations than any other
autonomous navigation system. However when dealing with only minor changes
in a driving situation, using neural networks can be a disadvantage. For instance,
a new network would have to be trained to handle a road which is identical to a
previous road but twice as wide. In contrast, a traditional machine vision program
which had been hand-coded to look for features at particular locations could simply
be told to look for those same features at a different location.

Another advantage ALVINN has over previous systems results from the sim-
plicity of the connectionist approach. Determining the direction to steer from an
image requires only a forward pass through the network (essentially two matrix-
vector multiplies and some table-lookups to approximate the squashing function),
resulting in faster processing and hence faster driving than is possible with other
methods. As a result, using the same computing resources, ALVINN has been
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able to drive the CMU autonomous vehicles 4 to 6 times faster than the situation-
specific hand-coded vision systems in each of their domains of expertise.

Finally, since the network does not depend on finding a single feature in
the image but instead subtly combines image features to determine the correct
steering direction, its behavior is robust in situations where features are missing
or obscured. For instance, if the road's center line is hidden by a passing car or
harsh shadow, ALVINN will be less affected than a system that depends on just
finding the center line, since ALVINN also uses cues from other images features
like the road edges to determine the correct direction to steer.

However this ability to utilize subtle image features can be dangerous. This
danger was demonstrated when ALVINN was trained to drive on a dirt road with
a small but distinct ditch on its right side. The network had no problem learning
and then driving autonomously in one direction, but when the vehicle was turned
around, the network stayed on the road, but was erratic, swerving from one edge
,)I the road to the other. After analyzing the network's hidden units, the reason
for its difficulty became clear. It had developed detectors not only for the position
of the road, but also for the position of the ditch on the right side during training.
When tested in the opposite direction, the network was able to keep the vehicle
on the road using its road detectors but was somewhat confused because the ditch
it had learned to look for on the right side was now on the left. As a result of
the network's ability to key on any image feature that correlates with steering
direction, it is important that during training the network be presented with the
entire range of situations it will later encounter, to prevent it from relying on
local, coincidental features such as a ditch on one side. The technique of adding
structured noise to the input (described in Chapter 4) helps to reduce the network's
reliance on irrelevant image features.

11.2 Other Connectionist Navigation Systems

A iew other previous systems have employed connectionist supervised learning
techniques to do tasks related to outdoor autonomous navigation. One system
build at Martin Marietta [Marra, Dunlay & Mathis, 1988] used a neural network
to classify video image pixels into one of the categories dirt, grass, road or sky. The
network was given a 16x16 window of color pixels taken from a full res6lution
video image, along with an encoding of the window's vertical position in the
larger image. The network was trained to determine the category of that portion
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of the image. By sequentially presenting each subregion of the larger image to
the network and recording its classification, the entire image could be segmented
into regions of dirt, grass, road and sky. The network was able to identify road
pixels with relatively high accuracy, but was not designed to drive a vehicle. A
similar system was built at British Aerospace [Wright, 1989]. This system used
more sophisticated statistics about the region in question, such as its brightness
variability, to train a network to classify regions. In both the Martin Marietta
and the British Aerospace systems, training the network and classifying an entire
image were too time-consuming for practical application to driving. In addition,
to control a vehicle, each of these systems would require additional processing
to determine the appropriate steering command from the segmented image. Like
the non-learning systems, they would require a hand-programmed model of what
roads look like, and therefore would suffer from the same situational dependence
and brittleness.

Other connectionist autonomous navigation systems have employed simulated
and/or simplified indoor environments. An interesting example from this category
was built at TRW by Shepanski and Macy [Shepanski & Macy, 1987]. The system
used a neural network to control a car in a simulated "arcade game" driving
environment. The network received as input information such as the lane its
vehicle currently occupied, the location of other cars and the curvature of the
upcoming road. The network was trained using back-propagation to change speed
and direction in order to stay on the road and avoid other cars. Unlike ALVINN, the
system performed no perceptual processing, since it was provided with a simple,
symbolic encoding of all the relevant features. However, like ALVINN, the system
learned by watching people drive. In fact, the system adopted the driving style of
its trainer. If it learned by watching a conservative driver, it would hardly ever
pass. If it was taught by an aggressive driver, the network drove recklessly and
tended to cut off other cars.

A number of other researchers have used techniques related to neural networks,
such as potential fields [Tarassenko et al., 1991, Bachrach, 1991] or reinforcement
learning [Sutton, 1990, Dayan, 1991, Thrun, 1991] to explore problems in plan-
ning and obstacle avoidance. Like the Shepanski and Macy system, these systems
place little or no emphasis on visual perception, and hence would not be imme-
diately applicable to outdoor navigation. Application of reinforcement learning
techniques to autonomous outdoor driving would be particularly difficult because
of the catastrophic result of errors. A network could not afford to drive haphazardly
at the beginning and count on learning from its mistakes, since in outdoor driving
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a single mistake could cause irreparable damage to the vehicle. An additional dif-
ficulty inherent in applying reinforcement learning to real world perception tasks
is the credit assignment problem for high dimensional inputs. When the system
is only told it has made a mistake after it has driven off the road, it faces the dual
problems of determining which of its recent actions caused the failure, and which
of the many input features in the situation where it made the mistake should it
have treated differently. This credit assignment problem will appear again in the
analysis of non-connectionist learning methods for autonomous navigation.

Another neural network like approach to mobile robot guidance is the work of
Brooks [Brooks, 1986]. Brooks' robots are hand-programmed to perform simple
behaviors like wall following and climbing over ohetacles. Like in the ALVINN
system, these simple behaviors can be linked together to create more sophisticated
capabilities. The real innovation in Brooks' work is the use of small robots. When
the robot is the size of a shoebox, it can afford to run into obstacles first and then
determine how to get around them. Thus his robots require only relatively simple
sensing and processing. In contrast, when the robot is a six ton truck traveling at
55 mph, it doesn't have the same luxury. It must look ahead and make very precise
responses based on subtle sensor cues in order to avoid disaster. For tasks where
a small robot is sufficient, Brooks' approach may work well. But for applications
such as autonomous mail delivery system or the enhanced cruise control discussed
in the next chapter, the robot needs to be large since it will be transporting large
payloads over long distances.

11.3 Other Potential Connectionist Methods

There are many alternative connectionist approaches which could conceivably be
employed for autonomous navigation. They can be divided into supervised and
unsupervised learning algorithms. In the supervised category are a number of
techniques which use the error surface's second derivative (or an approximation
to it) to speed up gradient descent. Two prominent examples are the quickprop
algorithm [Fahlman, 1988] and the conjugate gradient method [Rohwer, 19911.
While I have not tried these techniques for ALVINN, I see no reason why they
would not work. However I don't expect they would provide much advantage,
either in driving accuracy or in learning speed. One reason is that these alternative
training algorithms do not produce qualitatively different networks than standard
back-propagation. In addition, ALVINN's learning speed is not limited by back-
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propagation, but by the time required to collect and transform the training images.
To learn to drive accurately, ALVINN must be presented with a relatively varied
set of training examples. Even with faster learning algorithms, this training phase
would still require a person to drive the vehicle over a substantial stretch of road.

A number of supervised connectionist learning algorithms which differ sub-
stantially from standard back-propagation could potentially be employed to train-
ing ALVINN networks. One such alternative would be to use radial basis func-
tions [Poggio & Girosi, 1990] instead of the standard sigmoid shaped activation
function for the units in the network. Hidden units with radial activation functions
divide the multi-dimensional input space into hyperellipsoid-shaped regions, in-
stead of carving it up with soft hyperplanes as standard back-propagation does.
Radial basis function networks, like networks with the standard sigmoid acti-
vation function, have been shown to be universal approximators [Baldi, 1991]
(i.e., theoretically capable of approximating any reasonable function to any degree
of precision). However, units with radial activation functions could have more
trouble representing important image properties related to autonomous navigation
than standard sigmoid units. The reason is that individual hidden units with radial
activation functions behave very much like template matchers, being maximally
activated by a particular input pattern and becoming less active as the input differs
from the unit's ideal template. In contract, units with a sigmoid-shaped activation
function do not behave like template matchers, since they can independently detect
many features at different image locations and combine the results to determine
its output. The problem with template matching and the related technique of
nearest-neighbor matching, is discussed in the section comparing ALVINN with
other non-connectionist learning techniques.

But before discussing non-connectionist methods, there are two additional
classes of connectionist learning algorithms worth speculating about for au-
tonomous navigation. One recently developed class of connectionist algorithms
are those which modify the network architecture as learning progresses. Example
of this approach are Cascade-Correlation [Fahlman & Lebiere, 1990] and meiosis
networks [Hanson, 1990], which add hidden units to the network as learning pro-
gresses. In the tests conducted to date with this algorithm, the entire training set
has been present throughout the learning process. To the best of my knowledge, no
experiments have been conducted using Cascade-Correlation in which the train-
ing set varies over time. The dynamic nature of the training set when learning to
drive in real time could potentially cause problems for Cascade-Correlation for
the following reason. The algorithm depends on teaching a small network to do
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the best it can on the training set, and then adding new hidden units to eliminate
residual errors. With the training set constantly changing, it could be difficult to
determine when the current architecture is doing the best it can and therefore when
to add additional hidden units. However this problem might be alleviated using a
modified version of the pattern buffering technique currently employed in training
on-the-fly.

A final class of connectionist algorithms with potential application to au-
tonomous navigation are the unsupervised learning methods. These allow the
network to discover its own regularities in the input, without the guidance of
an external teacher specifying a desired output. Two subclasses of unsupervised
learning methods are variants on clustering algorithms [Rumelhart & Zipser, 1986,
Grossberg, 1987, Kohonen, 1990, Fukushima, 19881 and neural network tech-
niques for performing principal component analysis [Oja, 1989, Linsker, 1989].
Clustering algorithms work well when the goal is to find a limited number of
prototypes in a set of high-dimensional data. Principal component analysis seeks
to achieve maximal data compression while retaining as much information as
possible about the input. These unsupervised techniques frequently find interest-
ing features in the input, but alone cannot produce a particular desired response
(e.g., the correct steering C ection). Exciting recent results have been achieved
by 'combining supervised and unsupervised learning methods in the same net-
work [Moody & Darken, 1989]. Moody and Darken trained the initial layer of
weights to pick out interesting input features using an unsupervised algorithm and
trained the subsequent layer to perform a specific task using back-propagation.
They found this hybrid technique resulted in faster learning and comparable per-
formance to supervised training methods on the difficult tasks of phoneme recog-
nition and chaotic time series prediction. This type of hybrid approach could also
have applications to vision-based autonomous navigation.

11.4 Other Machine Learning Techniques

A number of other techniques exist in the machine learning literature which are
not based on the connectionist paradigm. They too should be considered as
potential methods for autonomous navigation. Perhaps the oldest are the nearest
neighbor matching algorithms [MacQueen, 1967]. The idea is to "learn" the task
by recording samples of the inputs along with the correct response. Then, to
perform the task, an actual input is compared with each stored example to find one
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Templates Test Image

Best Match

Figure 11.1: A example of the problem with nearest neighbor matching. The
template which should match the current image is the one on the left. However
an irrelevant feature in the periphery, a car, causes the template on right to match
most closely.

or more close matches using some distance metric (such as Euclidean distance).
The response associated with the closest match, or the average response from a
few close matches, is assumed to be the correct response for the current input.

I have tried this technique for autonomous navigation and found it to have
significant problems. Conceptually, the problem can be understood from the
simple example in Figure 11.1. In this example, there are two templates of
simulated two-lane road images, presumably collected earlier while a person
drove. The first requires a straight-ahead steering command, while the second
requires a left turn since the vehicle is slightly off the right side of the road. The
test image presented to the system is shown on the right side of Figure 11.1.
The position and orientation of the road markers in the test image are identical
to those of the first template, so one would hope the matching algorithm would
determine it to be the nearest neighbor. However, because of the limited size
of the lane markers in the image, the closest matching template is actually the
second template, in which a large irrelevant feature, the car on the right side of the
road, matches the current image closely. The back-propagation training algorithm,
particularly when augmented with the structured noise training technique described
in Chapter 4, teaches the network to weight important features like lane markers
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Figure 11.2: A example of nearest neighbor matching making a mistake on real
images. The template on the right matches the test image better than the template
on the left, despite the fact that the left template and the test image depict the exact
same scene, but under different lighting conditions.

near the center of the road more heavily than irrelevant features like cars in the
periphery of the image. In contrast, nearest neighbor techniques and other template
matching algorithms treat all inputpixels equally. It might be possible to improve
nearest neighbor matching in this type of situation by adding structured noise to
the templates, or alternatively developing a weighting function which discounts
the closeness of match of peripheral pixels. However, the task of appropriately
weighting input features requires more than just ignoring peripheral pixels, as is
illustrated in the following experiment.

Images of a single-lane stretch of road were collected under two different
weather and lighting conditions. Under the first condition, illustrated in the two
images labeled templates in Figure 11.2, the pavement was dry, resulting in fairly
uniform intensities for all the road pixels in the templates. Under the second
condition, the pavement was wet, resulting in specular reflection off the road
surface. This specular reflection resulted in the right side of the road being
significantly brighter than the left, as shown in the image labeled Test Image in
Figure 11.2. The test image was taken with the vehicle in the exact same position
and orientation as in the left template. However because of the intensity gradient
across the test image, the template on the right is actually a better match to the test
image than the one on the left. This mismatching of templates causes the system
to steer more sharply right than it should.
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As in the example with the car in the periphery, the problem here is that all
pixels are given equal weight when determining the nearest template. In many
cases, there are certain pixels which are much more important than others for
determining the correct steering direction. In this specific case, the pixels along
sharp image boundaries are more important than pixels in a region's interior.
ALVINN is able to perform well because it develops detectors that emphasize the
positions of relatively localized image features, like region boundaries, instead of
simply computing global image similarity.

It is conceivable that a heuristic could be developed to solve this problem with
nearest neighbor matching. In fact, a neural network with a single hidden layer
of units can in some sense be considered just such a solution. For instance, it
was shown in Chapter 6 that ALVINN's hidden units act as filters or templates
for combinations of input features at particular positions and orientations. The
network learns from examples to weight the importance of various image features
in order to perform the task correctly. A more explicit, hand-generated weighting
of various features might be employed to encourage a traditional nearest neighbor
matching algorithm to pay more attention to particular features. Towards this end,
the techniques of transforming the live training images and adding structured noise
to the training data could serve the same purpose for a nearest neighbor matching
system as they do for ALVINN. Specifically, they could increase the variety in the
template set and hence enhance the nearest neighbor matching system's ability to
handle situations not explicit represented in the live data.

But like with the earlier techniques explored in this chapter, I do not expect such
a modified nearest neighbor matching algorithm to outperform ALVINN for the
following reasons. The necessary improvements to mitigate the effects of matching
irrelevant features would all require increasing the cost of determining the best
match, either by increasing the number of templates to match against, or by making
the matching process itself more complex. This would slow down processing
and make real-time driving difficult to achieve. The connectionist approach can
be thought of as a technique for distilling into a compact form all the relevant
knowledge from the training set that would normally be used in a nearest neighbor
matching system. ALVINN's distributed representation, with single hidden units
frequently acting as templates for roads at different positions and orientations,
allows it to determine the correct steering direction with just the few thousand
arithmetic operations required to forward propagate through the network. The
equivalent computation would be much more expensive if hundreds of templates
had to be compared with the current image to find the closest match, even using
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cost saving search techniques like k-d trees [Friedman, Bentley & Finkel, 1977].
There is a penalty associated with distilling the information contained in those
hundreds of images into the weights of a neural network, namely the additional
time required to train the network. But this cost is small, particularly since the
training on-the-fly technique allows much of it to be incurred while the training
images are being collected.

Another commonly employed machine learning tool used for classification is
decision trees [Quinlan, 1986, Breiman et al., 1984]. This paradigm suffers from
the opposite problem that plagues nearest neighbor matching. Decision trees have
no difficulty learning to weight certain features more than others. Decision tree
algorithms classify patterns by making a sequence of decisions based on the value
of individual attributes within the pattern. The sequence of decisions, and hence
the input attributes upon which those decisions are based, have a natural ordering
of importance based on the amount of information provided by each feature. The
problem is that decision trees base their branching on single values from the input
pattern; there is no easy way of represent larger scale image features like edges
or regions which are composed of many pixel values'. As a result, a successful
application of decision trees to vision-based autonomous navigation would require
large, deep trees. These trees probably wouldn't generalize well to new inputs
unless they were built with a very large number of training patterns.

Genetic algorithms [Holland, 1975, Goldberg, 1989] suffer from the same
problem as decision trees, namely they have difficulty representing higher level
structure in the input. Recent work in combining genetic algorithms with su-
pervised neural network learning has the potential to correct this shortcom-
ing [Keesing & Stork, 1991]. The idea is to simultaneously train a number of
networks with different architectures, initial weights or learning rate parameters,
and choose to replicate (with some small modifications) only those which perform
well. For autonomous navigation, the large network size and real time training
constraints currently make this type of iterative procedure prohibitively expensive.

11.5 Discussion
Because of its ability to learn to drive from examples, ALVINN has two distinct

advantages over previous autonomous navigation systems. First, it can drive more

'One might say that decision trees can't see the forest for the trees.
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reliably in a wide variety of situations because it learns on its own which image
features are important and how to use them to drive. This contrasts with previous
systems, which have relied on the judgement and programming of people, who
may have trouble explicitly converting their driving knowledge into a form the
computer can understand. By circumventing the tedious programming phase,
ALVINN also demonstrates the novel ability to quickly adapt to new driving
situations.

Other machine learning techniques have the potential to exploit the same
advantages ALVINN possesses for vision-based autonomous driving. But in my
opinion, there are no alternative learning methods that clearly promise better
performance than the artificial neural network-based ALVINN system. Those that
have the potential to succeed would require many of the techniques developed
in this dissertation, such as the image transformation scheme for augmenting the
training set, in order to match ALVINN's performance level.



Chapter 12

Conclusion

In this dissertation, I have developed techniques which enable artificial neural
networks to guide mobile robots using visual input. By exploiting their ability to
adapt to new situations, I have shown that artificial neural networks are capable of
reliably controlling a number of different mobile robots using a variety of imaging
sensors in many different circumstances. The ALVINN system has driven two
different wheeled vehicles using video and laser sensor input for distances of up to
21.2 miles at speeds up to 55 miles/hour. ALVINN has driven in a wider variety of
situations than any previous autonomous navigation system, including following
single and multi-lane roads, avoiding obstacles and tracking prominent terrain
contours such as rows of parked cars.

The flexibility of the techniques I have developed allow them to be applied to
mobile robot domains other than driving. One such alternative domain is guiding
the foot placement of a walking robot. The connectionist methods described in
this thesis resulted in a fivefold increase in foot placement accuracy when used to
control an inspection robot for the exterior of the space station.

12.1 Contributions

In developing neural network techniques for autonomous robot guidance, I have
addressed a number of previously unexplored difficulties in applying connectionist
methods to real world problems. First among these are difficulties resulting from
restrictions on the training data. Due to time constraints or other logistical com-
plications, sufficient training data is hard to acquire in many real world problems.

192
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For autonomous driving, this problem manifests itself in two ways. First, since the
human trainer drives quite accurately, the training data contains no examples -f
recovering from errors. The image transformation schemed developed for train-
ing on-the-fly solves this problem by augmenting the training set with patterns in
which the vehicle appears situated differently relative to the environment.

Another training set restriction results from the limited time available for data
collection. Since ALVINN needs to rapidly adapt to new situations, it is impossible
to collect data which illustrates all the situations it might eventually encounter.
Adding structured noise to the input mitigates this problem by simulating rare
situations, such as passing cars, which the network will inevitably encounter when
driving autonomously.

A related training set restriction is the incremental nature of the data collection
process. In many real world problems, the network cannot expect to have the entire
training set available from the start. Instead, training examples become available
one at a time. While it might be possible to entirely separate the data collection
and the training phases, this would have two drawbacks. First, the time required
to create a network capable of performing in a new situation would be increased.
Second, it would be difficult to determine when sufficient examples had been
collected to train a reliable network, since there is no way to judge the performance
of a network before it is trained. Training the network simultaneously with data
collection decreases development time. It also allows one to judge the sufficiency
of the training set by measuring how closely the network mimics the person's
steering response as training progresses. However training "on-the-fly" creates its
own difficulties. It introduces the potential for overlearning particular responses
in repetitive environments. By intelligently buffering previously encountered
examples to ensure variety in the training set, I have shown data collection and
training of artificial neural networks can occur simultaneously.

All of these specific extensions to connectionist training procedures are exam-
ples of a single important principle. Applying artificial neural networks to difficult
real world problems requires exploiting a priori domain knowledge. Previous work
in specialized network architectures has demonstrated this principle in the domains
of speech [Waibel et al., 1987] and character recognition [LeCun et al., 1989]. For
these tasks, it is unrealistic to expect a standard three layer network to perform
reliably. This dissertation demonstrates that for certain real world problems, spe-
cialized architectures are not necessary. However to achieve reliable performance
does require modifying the standard training techniques based on knowledge of
the domain.
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Another important lesson from this dissertation is the importance of modularity
in connectionist architectures. Training a single network to guide a mobile robot
in a wide variety of situations would be extremely difficult. But by using the
training procedures described above, separate networks can be quickly trained to
handle many different circumstances. However with modularity comes the need
to integrate multiple networks. I have developed both symbolic and connectionist
techniques for arbitrating between multiple networks. The symbolic integration
techniques of relevancy and priority arbitration allow high level knowledge and
symbolic reasoning to be effectively combined with the perceptual capabilities of
artificial neural networks.

Unlike these symbolic techniques, the connectionist multi-network integra-
tion methods developed in this dissertation can weight the responses from many
networks without relying on detailed symbolic knowledge of the environment.
Unlike previous connectionist arbitration methods, Output Appearance Reliabil-
ity Estimation (OARE) and Input Reconstruction Reliability Estimation (IRRE)
can assess the appropriateness of individual networks independently, without re-
quiring a separate gating network. In addition to facilitating modular network
construction, these techniques provide a crucial capability, namely the ability to
determine when a network is likely to fail. For many real world tasks, including
autonomous driving, failures can be catastrophic. OARE and IRRE provide a
means for recognizing potentially confusing situations and hence avoiding costly
mistakes.

For those more interested in the general applicability of artificial neural net-
works to machine vision than in the specific connectionist techniques developed
in this dissertation, I can not hope to characterize all the circumstances in which
connectionist learning methods provide an effective alternative to the traditional
hand-coded approach. However there are a number of features of vision-based
mobile robot guidance task which make it particularly amenable to connectionist
techniques. The most obvious advantage of the mobile robot guidance tasks is
the ready availability of a teaching signal. For autonomous driving, the teaching
signal came directly from the human driver. In the walking robot example, the
teaching signal was also easy to obtain, since the task involved determining other
easily measured quantities, namely foot displacement from a target in two dimen-
sions. The same techniques would not be as readily applicable to domains such as
controlling individual joints of a robot arm, or controlling the steps in a complex
chemical process, since in these tasks the correct response is difficult to determine.

A related advantage for the task of mobile robot guidance, particularly when
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individual networks are trained for restricted domain such as highway driving, is
that the important attributes for correct performance are the position and orientation
of known image features. This contrasts with classification tasks such as speech or
character recognition in which the position and orientation of input features must
frequently be ignored in favor of higher level characteristics which determine
the input's identity. Like other classification tasks, autonomous robot guidance
requires combining many local image cues such as the positions of lane markers
and road edges. But unlike speech and character recognition where single small
features can mean the difference between one class and another, in mobile robot
guidance none of the multiple cues is of special importance. Together they usually
support a single, consistent interpretation of the input, making the learning task
easier. Ambiguity, which is to be avoided at all costs in other classification tasks
where there is always a single correct interpretation of the input, can in fact be
encouraged in network for autonomous robot guidance. The kind of ambiguity
that results when the vehicle encounters an intersection can be combined with
symbolic map information to improve the system's performance.

The ability of artificial neural networks to effectively integrate many local
input features is the main advantage connectionist techniques have over hand-
coded approaches to mobile robot guidance. Previous systems have relied on
the judgement and programming of people to determine which input features are
important, how to find them, and how to extract from them the correct response.
Each of these subtasks is a serious challenge since most of the knowledge peopie
have about driving is not open to introspection. As a result, previous hand-
programmed systems have employed little of the information contained in sensor
images, and therefore have often suffered from low reliability. Those systems
that have been programmed to find enough features in one domain for reliable
performance, are usually so situation-specific that they are incapable of handling
other situations.

I have demonstrated that connectionist methods can make develop of au-
tonomous navigation systems for specific situations much easier. In addition, this
dissertation illustrates that there need not be a direct tradeoff between a vision
system's generality and its reliability. Using machinL, learning techniques, it is
possible to build a vision system capable of performing accurately in a wide variety
of circumstances.
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12.2 Future Work

Notwithstanding its past successes, much work remains to be done on the ALVINN
system. To improve its generality, additional networks need to be trained for new
circumstances. One near term extension is to train networks to drive using a
newly acquired infrared camera. Slight temperature variations between important
features in the scene should make it possible to drive using this sensor even in
total darkness. Unlike the laser sensor, which also requires no ambient lighting,
the infrared camera operates at the same high frame rate as a video camera. This
should make it useful for high speed driving.

Another well defined extension is to integrate a satellite positioning system into
the symbolic mapping module. While the 10 meter resolution of current satellite
positioning technology iimits its usefulness for steering the vehicle, it could be
employed in conjunction with a map to greatly enhance ALVINN's range. With
a satellite positioning system to indicate when the vehicle is approaching an
important exit, it should be possible to achieve very long autonomous runs (e.g.,
Pittsburgh to Chicago).

As the perceptual capabilities of the connectionist components improve, it
should be possible to rely less on detailed symbolic knowledge of the environ-
ment and more on neural network processing to guide high level decision making.
One way to achieve this goal is through more widespread and sophisticated ap-
plication of the connectionist reliability estimation techniques I have developed.
Another is through the development of additional perception modules for tasks
like recognizing stop lights or street signs.

Both of these approaches will eventually require a capability not yet present
in the ALVINN system: the ability to change the orientation of the sensors to
view potentially important aspects of the scene. Currently the system uses fixed
sensors pointed directly in front of the vehicle. In order to successfully traverse
arbitrary intersections, to say nothing of recognize other environmental cues such
as stop lights, will require the ability to pan and tilt the sensors. The Navlab I will
soon be equipped with a computer-controlled sensor platform which will make
this possible. The question remains how to intelligently control a sensor's field of
view, and change a network's focus of attention appropriately.

From a long term applications perspective, it may eventually be possible to
employ the techniques developed in this dissertation to implement a "super cruise
control" that automates a vehicle's steering as well as speed. In this scenario, a
person would drive for a short time to train the network in the current situation.
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After training, the network would take over and drive autonomously. More prac-
tical opportunities to apply these ideas exist in less demanding domains, such as
automated farm equipment, and in situations considered dangerous for people,
such as space and undersea exploration. The SM 2 example demonstrates the wide
potential for application of these ideas. However much work remains to be done to
ensure and demonstrate the reliability of connectionist robot guidance techniques
in the harsh conditions characteristic of these alternative domains.
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