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ABSTRACT

Novel sequencing technologies permit the rapid
production of large sequence data sets. These tech-
nologies are likely to revolutionize genetics and bio-
medical research, but a thorough characterization
of the ultra-short read output is necessary. We gen-
erated and analyzed two Illumina 1G ultra-short read
data sets, i.e. 2.8 million 27mer reads from a Beta
vulgaris genomic clone and 12.3 million 36mers from
the Helicobacter acinonychis genome. We found
that error rates range from 0.3% at the beginning
of reads to 3.8% at the end of reads. Wrong base
calls are frequently preceded by base G. Base sub-
stitution error frequencies vary by 10- to 11-fold,
with A>C transversion being among the most fre-
quent and C>G transversions among the least fre-
quent substitution errors. Insertions and deletions
of single bases occur at very low rates. When simu-
lating re-sequencing we found a 20-fold sequencing
coverage to be sufficient to compensate errors by
correct reads. The read coverage of the sequenced
regions is biased; the highest read density was
found in intervals with elevated GC content. High
Solexa quality scores are over-optimistic and low
scores underestimate the data quality. Our results
show different types of biases and ways to
detect them. Such biases have implications on
the use and interpretation of Solexa data, for de
novo sequencing, re-sequencing, the identification
of single nucleotide polymorphisms and DNA
methylation sites, as well as for transcriptome
analysis.

INTRODUCTION

The DNA sequencing field has experienced a major boost
with the emergence of novel sequencing technologies.
Several systems are currently on the market, including
Illumina’s Solexa instrument, the Applied Biosystems’

Sequencing by Oligonucleotide Ligation and Detection
(SOLiD) technology, and the GS FLX instruments from
Roche/454 Life Sciences. The Polony cyclic sequencing by
synthesis technology is to be launched (1).
These technologies allow sequence determination much

quicker and cheaper than the dideoxy chain terminator
method presented by Sanger in 1977 (2). The main differ-
ence between Sanger sequencing output and the output of
the new technologies is an increased read number, asso-
ciated with a decrease in the length of individual reads.
To achieve high throughput, the new approaches apply

different strategies. 454 Life Sciences has adapted pyrose-
quencing to a microbead format to sequence 400 000
DNA fragments simultaneously, resulting in a per-run
dataset of 100Mbp with reads averaging 250 bp. SOLiD
sequencing also uses templates immobilized onto microbe-
ads. Here, the sequence of the template DNA is decoded
by ligation assays involving oligonucleotides labeled
with different fluorophores. The SOLiD read length is
currently 25–35 bases, and 2–3Gbp of data can be col-
lected during an 8-day run. Solexa sequencing is based on
amplifying single molecules attached to the surface of
a flow cell to generate clusters of identical molecules, fol-
lowed by sequencing using fluorophore-labeled reversible
chain terminators. Solexa sequencing proceeds a base at a
time and read length depends on the number of sequenc-
ing cycles. Current Illumina sequencing instrumentation
achieves read lengths of 36 bases. The Solexa flow cell
is composed of eight separately loadable lanes. Since
each lane has a capacity of about 5 million reads, > 40
million reads can be generated in a run of 3 days, equiva-
lent to > 1.3Gbp.
The adoption of high-throughput sequencing will revo-

lutionize molecular biology research, similar to the inven-
tion of the polymerase chain reaction (PCR) twenty years
ago (3). 454 pyrosequencing short (�100 bp) reads gen-
erated on Roche GS20 instruments (now replaced by
GS FLX) were successfully used for the de novo sequenc-
ing of small genomes and BACs as well as for transcript
discovery and characterization (4–9). De novo genomic
sequencing succeeded even when ultra-short (27–36 bp)
reads generated by Solexa sequencing were employed for
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a small genome (10). For the human genome, ultra-short
reads were applied in studies on chromatin analysis
(11,12).
However, working with large data sets of short reads

involves difficulties, especially due to wrong base calls. To
exploit the full prospects of the novel technologies there is
the need to know as much as possible about biases in the
output data sets, especially with respect to errors. Previous
studies focused on the 454 technology (13) or dealt with
the prospects of short read sequencing as such (14). Here,
we characterize two Solexa read data sets: 12.3 million
36mer reads (trimmed to 32 bases) from the Helicobacter
acinonychis genome and 2.8 million 27mer reads from
a Beta vulgaris bacterial artificial chromosome (BAC)
clone. We analyze these reads and detect biases with
respect to error positions, error rates, erroneous base
calls and their neighboring bases and single base insertions
or deletions. We determine the compensation of erroneous
base calls by correct base calls depending on the sequenc-
ing coverage. We analyze read start positions, the read
coverage along the target sequence, and dependencies of
read coverage and local sequence characteristics. Finally,
we assess the reliability of quality values for wrong and
correct base calls.

METHODS

Solexa sequencing

Helicobacter acinonychis. DNA was fragmented by nebu-
lization as described in the Solexa protocol (www.illumi
na.com). Beta vulgaris DNA was sheared for 1 h with a
UTR200 sonication device (Hielscher Ultrasonics GmbH)
at 100% amplitude and 0.5 cycle mode. Fragmented DNA
was further processed as described previously (10).
Sequencing was carried out by running 27 or 36 cycles,
respectively, on the Illumina 1G sequencing instrument.
The Goat module (Firecrest v.1.8.28 and Bustard
v.1.8.28 programs) of the Solexa pipeline v.0.2.2.3 (for
Helicobacter data set) and v.0.2.2.5 (for Beta data set)
were used for image deconvolution and quality value cal-
culation. Parameterization was auto-generated by the
pipeline (see Supplementary Data for intensity plots and
run parameters, i.e. frequency cross-talk matrix, offsets,
phasing). Set up configuration was used as installed by
Illumina’s technical staff. The Helicobacter data set was
collected from three lanes of two flow cells. The Beta
data set was generated in a single lane from a further
flow cell.

Data analysis

We developed various Perl scripts to extract and process
information from ELAND output files (Gerald module
v.1.27 of the Solexa pipeline) and to find positions of
reads that can be aligned more than once to the reference
sequence without mismatches (the positions of those reads
are not reported by ELAND). We wrote Perl scripts for
the detection of deletions and insertions of single nucleo-
tides in otherwise error-free reads and for the analysis of
quality values per base call. Plots were generated with the
statistical computing environment R (www.R-project.org)

or OpenOffice Calc (www.openoffice.org). R: A language
and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. www.R-project.
org) or OpenOffice Calc (www.openoffice.org).

Data availability

Solexa read data are available from the SHARCGS
project website at http://sharcgs.molgen.mpg.de.

RESULTS

We previously generated 12 288 791 36mer reads from
Helicobacter acinonychis on an Illumina 1G sequencing
device (10). The Helicobacter genome is 1.55Mbp in size
and has a GC content of 38%. A high-quality reference
sequence for Helicobacter is available (GenBank
NC_008229) (15). We ran the ELAND software on the
read data set (trimmed by the last four bases, because
ELAND processes the first 32 bases only) and selected
the 8 389 548 32mer reads that ELAND reported to be
uniquely matched against the Helicobacter reference
sequence with zero, one or two mismatches (labeled U0,
U1 or U2, respectively, see Figure 1b). Additionally, we
generated a 27mer read data set for the sugar beet (Beta
vulgaris) bacterial artificial chromosome (BAC) clone ZR-
47B15. The data set consists of 2 788 286 reads, 2 156 266
of which were labeled U0, U1 or U2 in the ELAND
output (Figure 1a). The Sanger reference sequence in fin-
ished quality of this BAC insert consists of 10 9563 bases
with 34.85% GC (Dohm et al., manuscript submitted for
publication). For all uniquely matched reads, ELAND
reports the match position in the reference sequence as
well as the error position(s) in the read.

Start positions of reads and read distribution on
the target sequence

The preparation of Solexa sequencing libraries involves
the fragmentation of the DNA, followed by the adaptor
ligation, pre-amplification for material enrichment and
amplification within the flow cell prior to sequencing. In
order to detect whether the steps preceding sequencing
show biases, we analyzed the first bases of a read and
the bases that flank the read start position on either
side. Of all possible 27mer tuples (Beta) and 32mer
tuples (Helicobacter), 99.8 and 98.8% are unique, respec-
tively. We therefore assume that potential biases are repre-
sentative for the data set.

We calculated the frequency of 2- to 10-base tuples
enclosing the starting point for 8 389 548 uniquely
matched Helicobacter reads and for 2 156 266 uniquely
matched Beta reads relative to the frequency of these
tuples in the reference sequences. Since the bases in the
reads are subject to errors, we used for both sides the bases
of the corresponding region in the reference sequence.

A general sequence bias for the immediate vicinity of
the read start position could not be deduced from the two
data sets. The results for the Beta data set did not suggest
any tendencies (Supplementary Figure 1a). The results
for the reads from Helicobacter showed a weak tendency
towards T being the most frequent base call to the left and
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Figure l. Pie charts of tire read analysis with ELAND. The ELAND
categories are: QC: no matching done because of low quality of the
read (more than two positions with quality score 5), NM. no match
found; U0, unique exact match found; Ul, unique match with one
error, U2. unique match with two errors; R0, multiple exact matches
found; Rl, multiple matches with one error; R2, multiple matches with
two errors. 1he categories R0, R1, R2 are shown as a single entity. (a)
ELAND categorizations for 27mer reads from Bela vulgaris clone ZR
47815 (2788 286 in total). (b) ELAND categorimtions for 32mu' reads
from Helicobacter achronychis (12 288 79! in total, trimmed by the last
four base calls of the original 36mer data).

to the right of the read start position (Supplementary
Figure lb). Since two different fragmentation methods
were used, sonication for Beta and nebulization for

Helicobacter, the results may indicate method-inherent

properties.
However, by analysing sequence characteristics and

number of roads starting in a sliding window of lkbp in
width, we found a correlation of read coverage and GC

content in both data sets (Figure 2). In regions of elevated
GC content the number of reads was increased. For

instance, windows with a GC content of 40% contain

almost twice as many reads as windows with 30% GC in

the Beta data set. Thus, while the vicinity of 10 bp was not
sufficient to detect a conclusive bias for read starting
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Figure 2. Correlation of the Solexa read coverage and GC content. (a)
27mer reads generated from Bela vulgaris BAC ZR 47B15 (b) 32mer
data set from the Helicobacrer acinmychr‘s genome Each data point
corresponds to the number of reads recorded for a lkbp window
(shift of l00bp in Beta and lkbp in Helicobacler).

points, there is a strong preference towards GC-rich
regions in lkbp sliding windows. Since both templates
show the correlation of read coverage and GC content,

the shift to GC rich regions seems to be a general feature
of the current pre-sequencing procedure. A similar finding
was reported by Hillier et a1. (16).

The overall coverage considering matching reads only is

[65-fold in the Helicobacter data set (l85-fold for 36mer
reads) and 465-fold in the Beta data set. The distribution

of matching reads along the reference sequences is shown

in Figure 3. We calculated the read depth in windows of
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size 7.77 kbp for Helicobacter (Figure 3a) and of size
0.58 kbp for Beta (Figure 3b). The coverage varied by
a factor of 13 and 3.8, respectively, ranging from 49- to
652-fold for Helicobacter and from 238- to 897-fold for
Beta (Table 1). We tested whether the distributions shown
in Figure 3 are compatible with a uniform distribution
of reads across the target sequences. We have applied a
�2-test (goodness of fit) to reject the hypothesis that reads
have the same probability to fall into equally sized regions
of the target sequence (P< 1e�10 even when dividing
target sequences in only five regions).
There is a number of ‘gap’ positions in the target

sequences where no read starts from. However, since
there are no gaps larger than read length all positions of
the target sequence are covered (Supplementary Table 1).

Distribution of error positions along reads

We selected all ELAND U1 and U2 reads, i.e. 28 0173
Beta reads and 2 046 923 Helicobacter reads (cf.
Figure 1), to analyze the occurrence of errors per position.
We performed two types of calculations. Firstly, we calcu-
lated the fraction of wrong base calls at each read position
considering wrong base calls only. Secondly, we calculated
per-base error rates, i.e. the fraction of wrong base calls
per position considering all base calls. The result is shown
in Figure 4. The number of occurrences of wrong bases is
increased at the first position. Rising from the lowest error
rate at the second position, the highest error rate is
observed at the last positions of the read [similar observa-
tion reported in (16)]: 2.5 and 2.9% of the errors in the
data sets of Beta and Helicobacter, respectively, were
found at read position 1, and 11.8% of errors were
recorded at the last read position (position 27 in the
Beta data set and position 32 in the Helicobacter data
set, Figure 4a). The per-base error rates range from
0.3% to 3.8% (Figure 4b) resulting in an average error

rate of 0.6% for the Beta data set and 1.0% for
the Helicobacter data set. Note that only uniquely
matched reads with less than three substitution errors
are considered.

In re-sequencing projects, sequencing errors can be
compensated by high-coverage sequencing. In a re-sequen-
cing project, the reads are aligned against a reference
sequence. Wherever a mismatch between sequencing
data and the reference is observed, a polymorphism is
postulated. In order to avoid spurious detection of poly-
morphisms due to sequencing errors, a consensus between
several reads at each position of the reference is common
practice. Here, we simulate re-sequencing at different
depth by randomly choosing the appropriate number of
reads from our two data sets and counting wrong and
correct base calls [five (Helicobacter) or ten (Beta) simula-
tions per data point]. An error was considered as compen-
sated when at least one correct base call for the same
position existed. A correct base call and the reference
sequence hold the majority over one wrong base call, i.e.
x wrong base calls at the same position can be compen-
sated by x correct base calls (plus reference sequence).

Figure 3. Distribution of Solexa reads along the reference sequences considering unique match positions reported by ELAND (zero, one or two
mismatch bases) and reads with more than one match position (no mismatch bases) detected with a Perl script. (a) Read distribution along the Beta
vulgaris BAC sequence (with cloning vector pBeloBACII). 2 166 892 27mer reads were matched against the finished sequence (enclosed by the cloning
vector,�117 kbp in total). The read coverage was calculated in 200 consecutive 0.58 kbp windows. (b) Read distribution along the 1.55Mbp
Helicobacter genome, based on 8 700 113 32mer reads. The local coverage is shown in 200 consecutive windows of 7.77 kbp.

Table 1. Proportion of reference sequence and coverage ranges (based

on ELAND U0, U1, U2, R0 matched reads and reads with single

indels)

Beta Helicobacter

Coverage BAC (%) Coverage Genome (%)

200 300 4.27 <100 3.53
300 400 23.93 100 150 26.06
400 500 25.64 150 200 42.28
500 600 23.93 200 250 21.49
600 700 12.82 250 300 4.44
700 800 4.27 300 350 1.29
800 900 5.13 >350 0.90
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Figure 4. Frequency of wrong base calls in Solexa reatk depending on
the position along the read (27mer reads from Beta vulgaris and 32mer
reads from Helicobacter). (u) Error frequency per position calculated
from considering wrong base (211s only. The highest error frequency is
observed at the read 3’ end. (1)) Per base error rates (overall error
frequency per position considering all base calls).

Helicobacter

Beta vulgaris
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Figure 5. Compensation of sequencing errors by deep sequencing
in resequencing projects. The average number of errors per kbp is
shown for different levels of coverage. For coverages below 2. reads
are unlikely to overlap and compensation of sequencing errors is rare
(IhlB. sequencing errors accumulate when the coverage is increased).
For coverages above 3 fold the number of uncompensated errors drops
rapidly with the increase of coverage.
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Figure 6. Distance between two errors on a read in the Helicobacrer
and Beta vulgari: data sets. ‘0’ indicates that the erroneous base calls
are next to each other.

We plotted the dependency of sequencing coverage and

error compensation in Figure 5 (range of simulation
results: see Supplementary Figure 2). Increasing the

sequencing coverage results in a rapid decrease of uncom-
pensated errors. At a coverage of 20-fold the average
number of errors per kilo base pair is close to zero and
does not decrease any further. However, such estimates
are likely to change with improvements of the sequencing
technology, as less coverage will be sufficient for reduced
error rates.

Analysis of reads containing two errors

ELAND reported 88 753 reads containing two errors

in the Beta data set, corresponding to 4.1% of all uniquely
matched reads. In Helicobacter, 647151 reads contained

two errors (7.7% of all uniquely matched reads).
We analyzed the distance between erroneous bases and

found a preference for small distances between errors
(Figure 6). In 25% of reads that contained two errors
the erroneous bases were either at adjacent positions or
separated by one base. This observation does not contra-
dict the assumption that errors occur independently

according to their position-specific probability. The heat-
map in Supplementary Figure 3 illustrates the occurrence
of two errors relative to the positions in the read. As
expected from the per-base error rates, two-error occur-
rences are concentrated at the 3’ end of reads and are

therefore close together. In addition, error pairs also
occur with increased frequency at read positions 1 and
2. We provide even stronger evidence for the independence
of error positions in two-error reads in Supplementary
Figure 4.

Although error positions seem to be independent in
reads with two errors, there is evidence that errors accu-

mulate in reads more easily than expected. We deduce this
from the ratios of the observed and expected number of
reads containing one and two errors respectively:
Given the determined error rates per position (for the
Helicobacter data set) we expect 3.5 times more correct
reads (UO) than reads with one error (U1), but we observe

4.5 times more U0 than U1; we expect 19.8 times more
correct reads than reads with two errors (UZ), but we
observe 9.8 times more U0 than U2. Thus, there are
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