(12)

United States Patent

Munger et al.

US006502135B1

(10) Patent No.:
“5) Date of Patent:

US 6,502,135 B1
Dec. 31, 2002

(54)

(75)

(73)

(*)

ey
(22

(63)
(60)

(51)
(52)
(58)

(56)

DE

AGILE NETWORK PROTOCOL FOR
SECURE COMMUNICATIONS WITH
ASSURED SYSTEM AVAILABILITY

Inventors: Edmund Colby Munger, Crownsville,
MD (US); Douglas Charles Schmidt,
Severna Park, MD (US); Robert
Dunham Short, III, Leesburg, VA
(US); Victor Larson, Fairfax, VA (US);
Michael Williamson, South Riding, VA
(US)

Assignee: Science Applications International

Corporation, San Diego, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 09/504,783
Filed: Feb. 15, 2000

Related U.S. Application Data

Continuation-in-part of application No. 09/429,643, filed on
Oct. 29, 1999
Provisional application No. 60/106,261, filed on Oct. 30,
1998, and provisional application No. 60/137,704, filed on
Jun. 7, 1999.

Int. CL7 ..o, GOOF 15/173
US.CL ... 709/225; 709/229; 709/245
Field of Search tevreeenne 109/249, 223,

1709/225, 229, 245; 7131201

References Cited
U.S. PATENT DOCUMENTS
4,933,846 A 6/1990 Humphrey et al.
(List continued on next page.)

FOREIGN PATENT DOCUMENTS
0 838 930 12/1999

TARP
ROUTER

P
THRP
ROUTER ROUTER

148

SESSION KEY

\‘_,

128 75 INTERNET

DL 199 24 575 12/1999
EP 2317 792 4/1998
EP 0 858 189 8/1998
GB 0 814 589 12/1997
WO WO 98/27783 6/1998
WO WO 98 59470 12/1998
WO WO 99 38081 7/1999
WO WO 99 48303 9/1999
WO WO 00/70458 11/2000
WO WO 01 50688 7/2001

OTHER PUBLICATIONS

Fasbender, Kesdogan, and Kubitz: “Variable and Scalable
Security: Protection of Location Information in Mobile IP”,
IEEE publication, 1996, pp. 963-967.

(List continued on next page.)

Primary Examiner—XKrisna Lim
(74) Antorney, Agent, or Firm—Banner & Witcoff, Ltd.

(57) ABSTRACT

A plurality of computer nodes communicate using seem-
ingly random Internet Protocol source and destination
addresses. Data packets matching criteria defined by a
moving window of valid addresses are accepted for further
processing, while those that do not meet the criteria are
quickly rejected. Improvements to the basic design include
(1) a load balancer that distributes packets across different
transmission paths according to transmission path quality;
(2) a DNS proxy server that transparently creates a virtual
private network in response to a domain name inquiry; (3)
a large-to-small link bandwidth management feature that
prevents denial-of-service attacks at system chokepoints; (4)
a traffic limiter that regulates incoming packets by limiting
the rate at which a transmilter can be synchronized with a
receiver; and (5) a signaling synchronizer that allows a large
number of nodes to communicate with a central node by
partitioning the communication function between two sepa-
rate entities.

17 Claims, 35 Drawing Sheets

[TARP PACKET

10
TARP
TERMINAL

New Bay Capital, LLC
Ex.1015-Page 1401 of 3151

US 6,502,135 B1
Page 2

U.S. PATENT DOCUMENTS

5,588,060 A 12/1996 Aziz

5,689,566 A 11/1997 Nguyen

5,796,942 A 8/1998 Esbensen

5,805,801 A 9/1998 Holloway et al.

5,842,040 A 11/1998 Hughes et al.

5,878,231 A * 3/1999 Baehr et al.cccuueeeeen 709/243
5,892,903 A 4/1999 Klaus

5,898,830 A * 4/1999 Wesinger et al. 709/225
5,905,859 A 5/1999 Holloway et al.

6,006,259 A 12/1999 Adelman et al.

6,016,318 A * 1/2000 Tomoikec.ceu....... 370/338
6,052,788 A 4/2000 Wesinger, Jr. et al.

6,079,020 A * 6/2000 Liu .cccoevvvevnneeinnennen. 713/201
6,119,171 A 9/2000 Alkhatib

6,178,505 B1 * 1/2001 Schneider et al. 713/168
6,226,751 B1 * 5/2001 Arrow et al.ccce... 370/351
6,243,749 B1 6/2001 Sitaraman et al.

6,286,047 B1 * 9/2001 Ramanathan et al. 345/733
6,330,562 B1 * 12/2001 Boden et al. 707/10
6,332,158 B1 * 12/2001 Risley ct al. 709/219
6,353,614 B1 * 3/2002 Borella et al. 370/389

OTHER PUBLICATIONS

Linux FreeS/WAN Index File, printed from http://liberty-
freeswan.org/freeswan__trees/freeswan—1.3/doc/ on Feb.
21, 2002, 3 pages.

J. Gilmore, “Swan: Securing the Internet against Wiretap-
ping”, printed from http://liberty.freeswan.org/freeswan__
trees/freesswan—1.3/doc/rationale.html on Feb. 21, 2002, 4
pages.

Glossary for the Linux FreeS/WAN project, printed from
http://liberty.freeswan/org/freeswan_trees/freeswan—1.3/
doc/glossary.html on Feb. 21, 2002, 25 pages.

Alan Q. Frier et al., “The SSL Protocol Version 3.0”, Nov.
18, 1996, printed from http://www.netscape.com/eng/ss13/
draft302.txt on Feb. 4, 2002, 56 pages.

Reiter, Michael K. and Rubin, Aviel D. (AT&T Labs—
Research), “Crowds: Anonymity for Web Transactions”, pp.
1-23.

Dolcv, Shlomi and Ostrovsky, Rafail, “Efficicnt Anonymous
Multicast and Reception” (Extended Abstract), 16 pages.
Rubin, Aviel D., Geer, Daniel, and Ranum, Marcus J. (Wiley
Computer Publishing), “Web Sccurity Sourccbook™, pp.
82-94.

Shree Murthy et al., “Congestion—Oriented Shortest Multi-
path Routing”, Proceedings of ILEE IN'OCOM, 1996, pp.
1028-1036.

Jim Jones et al., “Distributed Denial of Service Attacks:
Defenses”, Global Integrity Corporation, 2000, pp. 1-14.
Search Report (dated Jun. 18, 2002), International Applica-
tion No. PCT/US01/13260.

Search Report (dated Jun. 28, 2002), International Applica-
tion No. PCT/US01/13261.

Donald E. Eastlake, “Domain Name System Security Exten-
sions”, DNS Security Working Group, Apr. 1998, 51 pages.
D. B. Chapman et al., “Building Internet Firewalls”, Nov.
1995, pp. 278-297 and pp. 351-375.

P. Srisuresh et al., “DNS exlensions to Network Address
Translators”, Jul. 1998, 27 pages.

Laurie Wells, “Security Icon”, Oct. 19, 1998, 1 page.

W. Stallings, “Cryptography And Network Security”, 2"
Edition, Chapter 13, IP Security, Jun. 8, 1998, pp. 399-400.
W. Stallings, “New Cryptography and Network Security
Book”, Jun. 8, 1998, 3 pages.

* cited by examiner

New Bay Capital, LLC
Ex.1015-Page 1402 of 3151

U.S. Patent Dec. 31, 2002 Sheet 1 of 35 US 6,502,135 B1

f—100

ORIGINATING
TERMINAL

107

40
[P PACKET 3
P
P | ROUTER

ROUTER
2 3 \ Y
P

IP IP

ROUTER ROUTER 7| ROUTER 2
= — 25 INTERNET 32 -
(- P
ROUTER ROUTER ROUTER

7 5
‘—‘”, P
ROUTER

ROUTER

s 110
ENCRYPTION KEY DESTINATION
\ TERMINAL

FIG. 1

New Bay Capital, LLC
Ex.1015-Page 1403 of 3151

U.S. Patent Dec. 31, 2002 Sheet 2 of 35
100
TARP
TERMINAL
107
1
TARP PACKET 1
LINK KEY TARP ROUTER
ROUTER
123 @ém 130 LINKKEY 104
L Rk kY - O
TARP P | TARP
ROUTER ROUTER ROUTER 128
0 A% NTERNET 12 -
- (I P
TARP P ROUTER
ROUTER ROUTER | © ROUTER
LINK KEY ot
127 -
- TARP
TARP
ROUTER ROUTER

SESSION KEY

N~

FIG. 2

LINK KEY

LINKKEY

1
TRPPACKET, (0

US 6,502,135 Bl

TARP

TERMINAL

New Bay Capital, LLC
Ex.1015-Page 1404 of 3151

U.S. Patent Dec. 31, 2002 Sheet 3 of 35 US 6,502,135 B1

207a 207b 207¢ 074 .-
[P[17273[P[4i5 6 IP[778}9] | | § e
DATA STREAM 300
INTERLEAVED
PAYLOAD DATA
320

SESSION-KEY-ENCRYPTED
PAYLOAD DATA 330

TARP PACKET WITH

ENCRYPTED PAYLOADS 340

| o] LINKKEYENCRYPTED
SR [BEESYETE TARP PACKETS 350

T T IPPACKETS W/ENCRYPTED
] TARP PACKETS AS
PAYLOAD 360

TARP
ROUTER 1

TARP
ROUTER 2

TARP TARP
ROUTER7 ™RP |.—1ROUTER5
ROUTER 3
\ ERET

TARP ROUTER 6

TARP
DESTINATION

FIG. 3A

New Bay Capital, LLC
Ex.1015-Page 1405 of 3151

7€ SAYOIAVd Q3LdA¥INS
HLIM SLINOVd d¥vL

US 6,502,135 Bl

£26 GINYITHILNI SAYOTAY OLN
(3QIAId X008 A3 1dAYIN

£26 A3AYITHILNI SAYOTAVd OLNI
@3aIAId %3018 A3 LdAYONT

Sheet 4 of 35

725 SAY0IAYd OLNI
Q3AIAIA Y078 GILdAYMONT

Dec. 31, 2002

(30av 39 AW 026 3ON3ND3S A0 1AV -
V1¥Q 40 SHI018 AWANNG | (AINNOISSIS) GTLdAYONTHI08 [

| >

RN | _ |

00€ WY341S Viva
pL0Z \ 202 K

EL0C

U.S. Patent

New Bay Capital, LLC
Ex.1015-Page 1406 of 3151

US 6,502,135 Bl

Sheet 5 of 35

Dec. 31, 2002

U.S. Patent

057 ¥3ddvem

1030108d ¥NITvLYd

d0SS3004d

dl S/0 HLIM
ONISS3004d dulvl
aNIGNOD

0L JAILYNI3LTV ANO

¥ Ol

067 ¥IAVTYINITYLYQ

0L ¥3AVT (dl) YYOMLIN

GOy ¥INFOSNVYL dvL

(Wo¥d

QYv08 OLNINdNg "9'3)
d0SS3008d '@ HLIM
ONISS3004d

dyv1 INIGWOD OL
JAILYNYLTY ¥3HL10

New Bay Capital, LLC
Ex.1015-Page 1407 of 3151

U.S. Patent Dec. 31, 2002

Sheet 6 of 35 US 6,502,135 B1

S6

7

DUMP DECOY

Y

BACKGROUND LOOP-DECOY
GENERATION

AUTHENTICATE TARP PACKET

OUTER LAYER DECRYPTION OF N
TARP PACKET USING LINKKEY | ~S3

CHECK FOR DECQOY AND N
INCREMENT PERISHABLE DECOY | ™S4
COUNTER AS APPROPRIATE

NO

TRANSMIT DECOY?

NO DECREMENT

S9
/
DETERMINE DESTINATION TARP

ADDRESS AND STORE LINK KEY
AND P ADDRESS

TTLTTL>0?

GENERATE NEXT-HOP TARP
ADDRESS AND STORE LINKKEY [_ S8
AND IP ADDRESS

FIG. 5

GENERATE NEXT-HOP TARP
ADDRESS AND STORE LINK KEY [_ 10
AND IP ADDRESS

GENERATE IP HEADER
AND TRANSMIT N1

New Bay Capital, LLC
Ex.1015-Page 1408 of 3151

U.S. Patent Dec. 31, 2002 Sheet 7 of 35 US 6,502,135 B1

BACKGROUND LOOP-DECOY
GENERATION \.520

l

GROUP RECEIVED IP PACKETS N
INTO INTERLEAVE WINDOW 521

Y

DETERMINE DESTINATION TARP
ADDRESS, INITIALIZE TTL, STORE .52
IN TARP HEADER

l

RECORD WINDOW SEQ. NOS. AND
INTERLEAVE SEQ. NOS IN TARP [\.g93
HEADERS

\

CHOOSE FIRST HOP TARP

ROUTER, LOOK UP [P ADDRESS g2
AND STORE IN CLEAR IP HEADER,

OUTER LAYER ENCRYPT

Y

INSTALL GLEAR IP HEADER
AND TRANSMIT \.525

FIG. 6

New Bay Capital, LLC
Ex.1015-Page 1409 of 3151

U.S. Patent Dec. 31, 2002 Sheet 8 of 35 US 6,502,135 B1

$40
/
BACKGROUND LOOP-DECOY
GENERATION
$42
! Yy
AUTHENTICATE TARP PACKET 549
RECEIVED v
DIVIDE BLOCK INTO PACKETS
543 USING WINDOW SEQUENCE DATA,
| Y ADD CLEAR 1P HEADERS
DECRYPT OUTER LAYER GENERQ!TEEA%E?QM TARP
ENCRYPTION WITH LINK KEY
s P
\ |
HAND COMPLETED IP PACKETS
INCREMENT PERISHABLE
REMENT PERSHAD TO IP LAYER PROCESS
$45
¥ /
THROW AWAY DECOY OR KEEP
IN RESPONSE TO ALGORITHM
S46
v /
CACHE TARP PACKETS UNTLL
WINDOW IS ASSEMBLED
$47
v /
DEINTERLEAVE PACKETS
FORMING WINDOW
S48
Y /
DECRYPT BLOCK
FIG. 7

New Bay Capital, LLC
Ex.1015-Page 1410 of 3151

US 6,502,135 Bl

Sheet 9 of 35

Dec. 31, 2002

U.S. Patent

18
L0y
vl

8 Ol

(8 MOV NOILVILINI NOISS3S 34N03S

bZ8 NOILYILINI NOISS3S 34N23S

—

€28 1IMOVd MOV MOV NASS

——

b\u\.\.\.\\\‘

€78 LINOYd MOV NASS

128 13XIVd NASS

\ _
108

TYNIAYEL IN3ITO

New Bay Capital, LLC
Ex.1015-Page 1411 of 3151

US 6,502,135 Bl

Sheet 10 of 35

Dec. 31, 2002

U.S. Patent

6V 70281 1EL 6LL 70781216}
[VY0Z8LTIEL 1 L0TPOT8ITLEL
AYA A AL . 99°'702'812'18)
697078LT1EL 19LP0Z'8IT LS
€76 3719YL LINSNY¥L
o A T A AR A AT
99Lv0Z8LTIEL 1 BELHOTBITIEL
I 1A A R 7 A AT
op0z8LTIEL 86'702'817 15}
726 378vL NFDY

116

d31n0Y
duvl

6 Ol

6YH0Z8ITIEL ' BLLYOZBITLEL
A A Al L R VA4 A)
ArA A TrA T . 09702812 1€}
68H0Z'9IT 1L LOLPOTBITLEL
276 3718vL IAIFOTY
oI ALK AR A YRS
®LHOZ8IT IS T BELHOZ8LTLEL
JLR A A K A At A R A R
RTA AT 8670281 LSl
126 378VL LINSNYYL

\\\I\.‘/ am
-~ L IN3D

New Bay Capital, LLC
Ex.1015-Page 1412 of 3151

U.S. Patent Dec. 31, 2002 Sheet 11 of 35 US 6,502,135 B1

- ™~
-~ ~
O (]

1013

FIG. 10

CLIENT

1001

New Bay Capital, LLC
Ex.1015-Page 1413 of 3151

US 6,502,135 Bl

Sheet 12 of 35

Dec. 31, 2002

U.S. Patent

WL "Old
2 QYOTAYd
it
- £) ‘T3l AROSI
so0il— | 6SS3400VdI 1530 B
o111 £H'SSAQVAIZ0HN0s | 60M
. NEED
LBHovdd)
£ QYO AYd P 14 QYO AV
it
S ‘01314 NIIOSIA |~ 50 A 1101314 W¥OSIq
pSd s |8 DN T ssanaava usa y
W< iossadvdigoanos PN o | OSSRy dTonos | paok
H30VEH NEWED
f LoV d 1oV d)
| se'ssmaavimnisia |~ wwn G| PSSR MHISH0 |
“ . e , _
oudl &8 wwmw%%umﬂx oS el I mwmw%%mﬁx M|y,
, JV LN3HLS) TN 1INATHLT \
L e

New Bay Capital, LLC
Ex.1015-Page 1414 of 3151

US 6,502,135 Bl

Sheet 13 of 35

Dec. 31, 2002

U.S. Patent

aA €72} 272/ 14} 012l 6z | 80

N \ / \) \ \ / \)

¥] ¥ ¥ y ¥ f f
86 [65 61 [09 Zi[98T82 8 [0l Tos 1615 £ [L€ 9]zl |[oz]ez]
G [66 B [/8 869 lzzl Ilzo]98]lez 6} {09 8668 alnlsl ([alselsz
o L | [[ES]S L9l TAEAVAEAERED M L | [[erl28 Gy 66 ¢ [2al18]l/ 18619 12z
sz 95 1€ TR g (9118 N [L] g6 (G} e[9 e8]l [6L]81]8l
88 [£5 or[¢ v o]l [zl 968 95| 1€ \S]z/ sr [l]l [eL]siel
TR 88 | £5 ovlsslzs] [srli6l1L orle 98] ¢g AR ERIMEAL
as a s SCd S sa4d s a s a s SCQ S saa s

(xy) (xL) (x¥) (x1) (xy) (X (xy) (xL)
| D91V dOHMH | 097V JOHMH <9<%In__ mgzoi_ | 91V dOHMH | 99 dOHMH | 89TV dOHdI | ¥ 9TV dOHd!

S S N S— S
Xy2z) XeTl xNNN_ x_S X4zl X0ik _—Xe0e) X80z}

NOIYOIddY | | MOVLS YOVLS || NOILYOIddY
¥3sn 08l VE / %A oSl ¥3asn
7 1INY3HLT S
812} N4 a4 DN N 60z}
0z 9l y1Zb SIZ) 102} 902} AT A
N \
A 102}

New Bay Capital, LLC
Ex.1015-Page 1415 of 3151

US 6,502,135 Bl

Sheet 14 of 35

Dec. 31, 2002

U.S. Patent

ONAS N ONAS N ONAS N ONIddOH
Q30avA 38 Y9 Q319VA 38 YD Q3VA 38 Y9 HVMAYYH ¢

ONAS NI INAS NI Nd/ ¥3d
Q30dvA JENYD Q319VA 38 NY9 NdA HOV3 404 0314 SNONOSINOYd 2

ONAS N INASN L. |
Q319vA JENYD Q3IVA 38 NYD SO TNO0%0 SNONDSINOYd *}

SINTVA S39SIHATY d $3553400Y Hzms_%%zm

Q71314 HOLYNINHOSI] YMAEVH o

New Bay Capital, LLC
Ex.1015-Page 1416 of 3151

US 6,502,135 Bl

Sheet 15 of 35

Dec. 31, 2002

U.S. Patent

€l 9l

13¥0Vd
QyvOsId

ON 0LEl
/

L08
130V | 5
5830044~ ST OV ONY

aVO1Avd
03 LdAYONS
ADINNIT

A

. LdA¥030
gl

INAS GINIBNO)D
606}~ 80¢}

(NOILYOd JLYAIMd)
ANTVA INAS

(NOILMOd 211and)
ANTVA ONAS

§S34aQv 1S3ddi

g IN3IT0

\
bOE) £0¢) 201

>-90€1

> 50€)

$8340dv 394N0S d

VIN3ITO

\
hih

New Bay Capital, LLC
Ex.1015-Page 1417 of 3151

o
== ;
” ¥l "Old
<
m - - HIZINOYHONAS ¥3AN3S OL LN3IdIOTFH ¥O04 INAS NI LdIN
M, Ll > HIZINOYHONAS INJIdIOFY OL ¥3ANIS HO4 INAS NI LdI
=)
dSI S.IN3dI03¥ dSI SHY3ANIS
..& Y3LLINSNYL H3AIF03N
m ~ 1y
= Nydyp =---==-f= T —- _._Hﬁv_o
g U)dyo ~— — 07y
2 ity ~— Mlvd di
Hivd dl INFHHND ~— m MOGNIM
m ¢ dlvd d
Sk H3AIFOH | ¥ivd dl
-
2 ¥3LLINGNVL
. It T p
= . MOONM~-~--to T o ISR T
3 A e o = 07y
Dnm vavdadt o 1T * HIvd dIl INIHHNO
3
-]

New Bay Capital, LLC
Ex.1015-Page 1418 of 3151

US 6,502,135 Bl

Sheet 17 of 35

Dec. 31, 2002

U.S. Patent

Ny YIvd
AINIOdY03HI M3N ONISN
XOY ONAS LINSNWL »
HILLINSNVIL NI idp0
HIvd dI INIOdXOIHO
MIN ALVHIND -
¥IAIFOTY NI UId¥o
¥Ivd dI INIOd®O3HO
MIN FLVINTD «

MOONM 3Lvadn: M

UId¥ SHIAFOFY

= 43QY3H ONINOONI HLIM

SIAIYUY DI ONAS NFHM «

Y.

- —— - - -
E 3

Gl Ol

MY ONAS

034 ONAS

HILLINSNVYL NI Uit
lvd dl LNIOdMO3HO
M3N 3LVHINTO

1A = ¥3QYIH
ONINOONIHLIM S3AIYY
MOV ONAS NIHM #

Ndo INIOdYDIHD

JSNOSTH HIAFOFH MIN
ALYHINTD ANV U100 Hivd

dl INIOdOTHO HILLINSNYHL
M3N ONISN D34 INAS

(PaYOY LNN ATIVOIAONId
LINSNVYLIY) LINSNVYL SNI93E
5 NOILVZINOYHONAS NIHM @

New Bay Capital, LLC
Ex.1015-Page 1419 of 3151

U.S. Patent Dec. 31, 2002

(ETHERNET LAN - TWO AADDRESS BLOCKS)

Sheet 18 of 35

US 6,502,135 Bl

Y
1

FIG. 16

Y
1

Lo
(2]
o
~t
L] O
o
o~
(U]
(=2
]
-
-
o0
] O
o
o
S
[
-t
(e
™~
JO
[w
oo D
[
~r
o
L] O

Y
1

New Bay Capital, LLC
Ex.1015-Page 1420 of 3151

U.S. Patent Dec. 31, 2002 Sheet 19 of 35 US 6,502,135 B1

(] |
000<
I
. INACTIVE
4 /7| ACTIVE
WONSES 7777777 | usen

A,

WA,
A,
A

WINDOW_SIZE< / O
PSS
I IS,
AP

\

FIG. 17

New Bay Capital, LLC
Ex.1015-Page 1421 of 3151

U.S. Patent Dec. 31, 2002 Sheet 20 of 35 US 6,502,135 B1

(1
000<
(200
. INACTIVE
: 7/ ACTIVE
WINDOW_SIZE < T | useD

AN,
A AN,
A,

\ o
(V0000000

WNDOW SZES &

FIG. 18

New Bay Capital, LLC
Ex.1015-Page 1422 of 3151

U.S. Patent

000 <

WINDOW_SIZE <

WINDOW_SIZE <

Dec. 31, 2002 Sheet 21 of 35

(L2007

)

AN,

N\

AN //////////// /

I,

///////// AN

VIS AN IA IS,

A

(W00

US 6,502,135 Bl

INACTIVE
/_/ ACTIVE
| USED

7777 ////////////

T

7
LI, /// 7,

FIG. 19

New Bay Capital, LLC
Ex.1015-Page 1423 of 3151

US 6,502,135 Bl

Sheet 22 of 35

Dec. 31, 2002

U.S. Patent

L #

d31NdNOI

New Bay Capital, LLC
Ex.1015-Page 1424 of 3151

U.S. Patent Dec. 31, 2002 Sheet 23 of 35 US 6,502,135 B1

AD TABLE A
PL] _IP2
B e | (A
AE TABLE S
S 2102
AF TABLE 3
- 2103
BD TABLE 3
> 2104
BE TABLE
2105
LINK DOWN ———
BF TABLE
2106
-
00 / CD TABLE
- 2107
CE TABLE 3
> 2108
CF TABLE <
> 2109
)
FIG. 21

New Bay Capital, LLC
Ex.1015-Page 1425 of 3151

U.S. Patent Dec. 31, 2002 Sheet 24 of 35 US 6,502,135 B1

\

MEASURE
201~ QUALITYOF
TRANSMISSION
PATH X

MORE
THAN ONE
TRANSMITTER
TURNED
ON?

NO

2202

2209
PATH X 4
2203 QUALITY < SET WEIGHT
THRESHOLD? TO MIN. VALUE

4

DECREASE
WEIGHT FOR
PATH X

INCREASE WEIGHT

206~ FORPATHX

TOWARD STEADY
STATE VALUE

Y

ADJUST WEIGHTS

2206~ | FORREMAINING
PATHS SO THAT

WEIGHTS EQUAL ONE

| FIG. 22A

New Bay Capital, LLC
Ex.1015-Page 1426 of 3151

U.S. Patent Dec. 31, 2002 Sheet 25 of 35 US 6,502,135 B1

(EVENT) TRANSMITTER
220~J"" FOR PATH X

TURNS OFF
2215
211 ATLEAST NO | DROPALL PACKETS
ONE TRANSMITTER UNTILA TRANSMITTER
TURNED ON? TURNS ON

22~ | SETWEIGHT
TO ZERO

l

ADJUST WEIGHTS

2213~ FORREMAINING
PATHS SO THAT

WEIGHTS EQUAL ONE

lf

2N DONE

FIG. 22B

New Bay Capital, LLC
Ex.1015-Page 1427 of 3151

US 6,502,135 Bl

Sheet 26 of 35

Dec. 31, 2002

U.S. Patent

€¢ 9ld
NOILONNA NOLLONNA
A INFWISNRAY [=— INTNFANSYIN N
S0€z LHOIM ALTVO NI | TOEe
A
1062 =" |
Y 60T
10 = (FXIM \
9'0 = (EXIM
0Ee 1’0 = (XM
20=(1XIM HINF0TY |] N
S BT oY
o T30S
¥X HIvd D 319v1 N30
. MALLINSNVAL |_
£X HLvd &l LN
ZX HLVd * Logz / TS
2082 378VL LINSNYYL
X HLYd * /
8067

New Bay Capital, LLC
Ex.1015-Page 1428 of 3151

US 6,502,135 Bl

Sheet 27 of 35

Dec. 31, 2002

U.S. Patent

A31NdNO3

N
0%

¥¢ Old

Q)

d41N0Y @/

8=L1SSIN S/AN 62

/

b2 =1 SSIN S/AN 6L

\

Q.

\@ 441n0oY

G,

70¥¢

¢€ =1 SSIN /AW 001

@

£0ve

d3LNdWod

’
oz

New Bay Capital, LLC
Ex.1015-Page 1429 of 3151

US 6,502,135 Bl

Sheet 28 of 35

New Bay Capital, LLC
Ex.1015-Page 1430 of 3151

Dec. 31, 2002

U.S. Patent

(LMY ¥0ordd)
G¢ 9ld
314S gIMm dS34 39vd
13941
D34 3OVd
%\N N ovovis | - HISMOME
| I
\ N 906¢ S
6052 Y062
NG
¥ VENES\
\
7 1052
2067

US 6,502,135 Bl

Sheet 29 of 35

Dec. 31, 2002

U.S. Patent

9¢ 9|4
311 1394Vl
:‘mm\ FHNIISNN
moom\ ONIddOH dI
.\
709 311 13941 IN03S
ONIddOH
/ d o [™00z
s31y | [oNiddoH 6&\ ——
SR S
000" y3q3myaLe d ga
\ \
9002 6007
AXO¥d |1
olez-t| SNa
A /
! 1097
2002 —"| .
NETINE
st NG

New Bay Capital, LLC
Ex.1015-Page 1431 of 3151

U.S. Patent Dec. 31, 2002 Sheet 30 of 35 US 6,502,135 B1

RECEIVE DNS
0~ REQUESTFOR
TARGET SITE
2703
— ACCESS TO PASS THRU
SECURE SITE REQUEST T0
REQUESTED? DNS SERVER
2705
- USER RETURN
AUTHORIZED TO "HOST UNKNOWN®

CONNECT? ERROR

ESTABLISH
2106~_ VPN WITH

TARGET SITE

FIG. 27

New Bay Capital, LLC
Ex.1015-Page 1432 of 3151

US 6,502,135 B1

Sheet 31 of 35

Dec. 31, 2002

U.S. Patent

8¢ 9ld
LINY3INI o# mwwﬂ__s_oo
$087
MaHOH~"
5087 0162
N J
A 4
I
avN9 m@\
N 4 43LN0Y
N 3903
ds| MEMOT
) 2082
£087

1#43LNdW0D

1SOH
N

08¢

New Bay Capital, LLC
Ex.1015-Page 1433 of 3151

US 6,502,135 Bl

Sheet 32 of 35

Dec. 31, 2002

U.S. Patent

6¢ 9l
002-00} XL dI 400 Y3LNAINOD YINOVH o
S160 216
WU
X XL
™\~ 2067
N 24 ¥3LNdNOD 1SOH
M8 HOIH 9067 1067 o067 5067 0067
L2 NN
MAMOT
1062—"| oz XL | Xd / X Xl
s _ ¥3LNoY
2 3903
N
ez-1 | N Mo |
dsl YORZ 4 ¥3LNdINOD LSOH

New Bay Capital, LLC
Ex.1015-Page 1434 of 3151

US 6,502,135 Bl

Sheet 33 of 35

Dec. 31, 2002

U.S. Patent

we 0€ 9I4

\

£00¢

000¢

——

600 |

N Ldd0
EINLENER)

¥
SONOD3S 3y |

1008

c00¢

. A0
™~ M \
800¢ -
(40¥ ONAS) Y
N i) DR ONAS FIvLXL QHv0SI0 T1avL X
$53004d EMREIER -
4 . 900¢
e 0I0E
DI ONAS
p00¢ | N0
HILLINSNYAL T NENEUEN
N
Y / Y

New Bay Capital, LLC
Ex.1015-Page 1435 of 3151

US 6,502,135 Bl

Sheet 34 of 35

Dec. 31, 2002

U.S. Patent

G0LE -1 ¥Y3INOVH
b0LE 1 C#IN

Y_LdD

110 1dXd

0ie N_1d)d
eole = 4 INJIT10

L€ Old

0bce
\

60c€ 80CE

XuXL Xd/XL XdX1

™\ 2018

eHe]

A
A

M 1D

0 LdXd

l/

N_LdX

¥ 1d¥

0 LdX0

N Ld4D

~ L0LE

- 901¢
- 1018

New Bay Capital, LLC
Ex.1015-Page 1436 of 3151

U.S. Patent

CLIENT

SEND DATA PACKET
USING CKPT N
CKPT_Q=CKPT N
GENERATE NEW CKPT N
START TIMER, SHUT
TRANSMITTER OFF

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S
CKPT O

UPDATE RECEIVER'S
CKPT R

KILL TIMER, TURN
TRANSMITTER ON

SEND DATA PACKET
USING CKPT N
CKPT_QO=CKPT N
GENERATE NEW CKPT_N
START TIMER, SHUT
TRANSMITTER OFF

WHEN TIMER EXPIRES
TRANSMIT SYNC_REQ
USING TRANSMITTERS
CKPT_O, START TIMER

IF CKPT_O IN SYNC ACK
MATCHES TRANSMITTER'S
CKPT O

UPDATE RECEIVER'S
CKPT R

KILL TIMER, TURN
TRANSMITTER ON

Dec. 31, 2002

DATA

FIG. 32

Sheet 35 of 35

“
SYNC_ACK

X

SYNC_REQ

1 TRANSMIT SYNC_ACK

SYNC_ACK

US 6,502,135 Bl

SERVER

PASS DATA UP STACK
CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT R
FOR TRANSMITTER SIDE
TRANSMIT SYNC_ACK
CONTAINING CKPT_O

CKPT_O=CKPT N

GENERATE NEW CKPT_N
GENERATE NEW CKPT R
FOR TRANSMITTER SIDE

CONTAINING CKPT_O

New Bay Capital, LLC
Ex.1015-Page 1437 of 3151

US 6,502,135 B1

1

AGILE NETWORK PROTOCOL FOR
SECURE COMMUNICATIONS WITH
ASSURED SYSTEM AVAILABILITY

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority from and is a
contlinuation-in-part of previously filed U.S. application Ser.
No. 09/429,643, filed on Oct. 29, 1999. The subject matter
of that application, which is bodily incorporated herein,
derives from provisional U.S. application No. 60/106,261
(filed Oct. 30, 1998) and No. 60/137,704 (filed Jun. 7, 1999).

BACKGROUND OF THE INVENTION

A tremendous variety of methods have been proposed and
implemented lo provide security and anonymity [or com-
munications over the Internet. The variety stems, in part,
from the different needs of different Internet users. A basic
heuristic framework to aid in discussing these different
security techniques is illustrated in FIG. 1. Two terminals, an
originating terminal 100 and a destination terminal 110 are
in communication over the Internet. It is desired for the
communications to be secure, that is, immune to eavesdrop-
ping. For example, terminal 100 may transmit secret infor-
mation to terminal 110 over the Internet 107. Also, it may be
desired to prevent an eavesdropper from discovering that
terminal 100 is in communication with terminal 110. For
example, if terminal 100 is a user and terminal 110 hosts a
web site, terminal 100°s user may not want anyone in the
intervening networks to know what web sites he is “visit-
ing.” Anonymity would thus be an issue, for example, for
companies that want to keep their market research interests
privatc and thus would prefer to prevent outsiders from
knowing which web-sites or other Internet resources they
are “visiting.” These two security issues may be called data
security and anonymity, respectively.

Data security is usually tackled using some form of data
encryption. An encryption key 48 is known at both the
originating and terminating terminals 100 and 110. The keys
may be private and public at the originating and destination
terminals 100 and 110, respectively or they may be sym-
metrical keys (the same key is used by both parties to
encrypt and decrypt). Many encryption methods are known
and usablc in this contcxt.

To hide traffic from a local administrator or ISP, a user can
employ a local proxy server in communicating over an
encrypted channel with an outside proxy such that the local
administrator or ISP only sees the encrypted traffic. Proxy
servers prevent destination servers from determining the
identities of the originating clients. This system employs an
intermediate server interposed between client and destina-
tion server. The destination server sees only the Internet
Protocol (IP) address of the proxy server and not the
originating client. The target server only sees the address of
the outside proxy. This scheme relies on a trusted outside
proxy server. Also, proxy schemes are vulnerable to traffic
analysis methods of determining identities of transmitters
and rcceivers. Another important limitation of proxy scrvers
is that the server knows the identities of both calling and
called parties. In many instances, an originating terminal,
such as terminal A, would prefer to keep its identity con-
cealed from the proxy, for example, if the proxy server is
provided by an Internet service provider (ISP).

To defeat traffic analysis, a scheme called Chaum’s mixes
employs a proxy server that transmits and receives fixed
length messages, including dummy messages. Multiple

15

30

35

40

45

50

55

60

65

2

originating terminals are connected through a mix (a server)
to multiple target servers. It is difficult to tell which of the
originating terminals are communicating to which of the
connected target servers, and the dummy messages confuse
eavesdroppers’ efforts to detect communicating pairs by
analyzing traffic. A drawback is that there is a risk that the
mix server could be compromised. One way to deal with this
risk is to spread the trust among multiple mixes. If one mix
is compromised, the identities of the originating and target
terminals may remain concealed. This strategy requires a
number of alternative mixes so that the intermediate servers
interposed between the originating and target terminals are
not determinable except by compromising more than one
mix. The strategy wraps the message with multiple layers of
encrypted addresses. The first mix in a sequence can decrypt
only the outer layer of the message to reveal the next
destination mix in sequence. The second mix can decrypt the
message to reveal the next mix and so on. The target server
receives the message and, optionally, a multi-layer
encrypted payload containing return information to send
data back in the same fashion. The only way to defeat such
a mix scheme is to collude among mixes. If the packets are
all fixed-length and intermixed with dummy packets, there
is no way to do any kind of traffic analysis.

Still another anonymity technique, called ‘crowds,’ pro-
tects the identity of the originating terminal from the inter-
mediate proxies by providing that originating terminals
belong to groups of proxies called crowds. The crowd
proxies are interposed belween originating and targel termi-
nals. Each proxy through which the message is sent is
randomly chosen by an upstream proxy. Each intermediate
proxy can send the message either to another randomly
chosen proxy in the “crowd” or to the destination. Thus,
even crowd members cannot determine if a preceding proxy
is the originator of the message or if it was simply passed
from another proxy.

ZKS (Zero-Knowledge Systems) Anonymous IP Protocol
allows users to select up to any of five different pseudonyms,
while desktop software encrypts outgoing traffic and wraps
it in User Datagram Protocol (UDP) packets. The first server
in a 2+-hop system gets the UDP packets, strips off one layer
of encryption to add another, then sends the traffic to the next
server, which strips off yet another layer of encryption and
adds a new one. The user is permitted to control the number
of hops. At the final server, traffic is decrypted with an
untraceable IP address. The technique is called onion-
routing. This method can be defeated using traffic analysis.
For a simple example, bursts of packets from a user during
low-duty periods can reveal the identities of sender and
receiver.

Firewalls attempt to protect LANs from unauthorized
access and hostile exploitation or damage to computers
connected to the LAN. Firewalls provide a server through
which all access to the LAN must pass. Firewalls are
centralized systems that require administrative overhead to
maintain. They can be compromised by virtual-machine
applications (“applets™). They instill a false sense of security
that leads to security breaches for example by users sending
scnsitive information to scrvers outside the fircwall or
encouraging use of modems to sidestep the firewall security.
Firewalls are not useful for distributed systems such as
business travelers, extranets, small teams, etc.

SUMMARY OF THE INVENTION

A secure mechanism for communicating over the internet,
including a protocol referred to as the Tunneled Agile

New Bay Capital, LLC
Ex.1015-Page 1438 of 3151

US 6,502,135 B1

3

Routing Protocol (TARP), uses a unique two-layer encryp-
tion format and special TARP routers. TARP routers are
similar in function to regular IP routers. Each TARP router
has one or more IP addresses and uses normal IP protocol to
send IP packet messages (“packets” or “datagrams™). The IP
packets exchanged between TARP terminals via TARP rout-
ers are actually encrypted packets whose true destination
address is concealed except to TARP routers and servers.
The normal or “clear” or “outside” IP header attached to
TARP IP packets contains only the address of a next hop
router or destination server. That is, instead of indicating a
final destination in the destination field of the IP header, the
TARP packet’s IP header always points to a next-hop in a
series of TARP router hops, or to the final destination. This
means there is no overt indication from an intercepted TARP
packet of the true destination of the TARP packet since the
destination could always be next-hop TARP router as well as
the final destination.

Each TARP packet’s true destination is concealed behind
a layer of encryption generated using a link key. The link key
is the encryption key used for encrypted communication
between the hops intervening between an originating TARP
terminal and a destination TARP terminal. Each TARP
router can remove the outer layer of encryption to reveal the
destination router for cach TARDP packet. To identify the link
key needed to decrypt the outer layer of encryption of a
TARP packet, a receiving TARP or routing terminal may
identify the transmitting terminal by the sender/receiver IP
numbers in the cleartext IP header.

Once the outer layer of encryption is removed, the TARP
router determines the final destination. Each TARP packet
140 undergoes a minimum number of hops to help foil traffic
analysis. The hops may be chosen at random or by a fixed
value. As a result, each TARP packet may make random trips
among a number of geographically disparate routers before
reaching its destination. Each trip is highly likely to be
different for each packet composing a given message
because each trip is independently randomly determined.
This feature is called agile routing. The fact that different
packets take different routes provides distinct advantages by
making it difficult for an interloper to obtain all the packets
forming an entire multi-packet message. The associated
advantages have to do with the inner layer of encryption
discussed below. Agile routing is combined with another
featurc that furthers this purposc; a featurc that cnsurcs that
any message is broken into multiple packets.

The IP address of a TARP router can be changed, a feature
called IP agility. Each TARP router, independently or under
direction from another TARP terminal or router, can change
its IP address. A separate, unchangeable identifier or address
is also defined. This address, called the TARP address, is
known only to TARP routers and terminals and may be
correlated at any time by a TARP router or a TARP terminal
using a Lookup Table (LUT). When a TARP router or
terminal changes its IP address, it updates the other TARP
routers and terminals which in turn update their respective
LUTs.

The message payload is hidden behind an inner layer of
encryption in the TARP packet that can only be unlocked
using a session key. 'T'he session key is not available to any
of the intervening TARP routers. The session key is used to
decrypt the payloads of the TARP packets permitting the
data stream to be reconstructed.

Communication may be made private using link and
session keys, which in turn may be shared and used accord-
ing to any desired method. For example, public/private keys
or symmetric keys may be used.

30

35

45

50

55

60

65

4

To transmit a data stream, a TARP originating terminal
constructs a series of TARP packets from a series of IP
packets generated by a network (IP) layer process. (Note that
the terms “network layer,” “data link layer,” “application
layer,” etc. used in this specification correspond to the Open
Systems Intercomection (OSI) network terminology.) The
payloads of these packets are assembled into a block and
chain-block encrypted using the session key. This assumes,
of course, that all the IP packets are destined for the same
TARP terminal. The block is then interleaved and the
interleaved encrypted block is broken into a series of
payloads, one for each TARP packet to be generated. Special
TARP headers IPT are then added to each payload using the
IP headers from the data stream packets. The TARP headers
can be identical to normal IP headers or customized in some
way. They should contain a formula or data for deinterleav-
ing the data at the destination TARP terminal, a time-to-live
(TTL) parameter to indicate the number of hops still to be
executed, a data type identifier which indicates whether the
payload contains, for example, TCP or UDP data, the
sender’s TARP address, the destination TARP address, and
an indicator as to whether the packet contains real or decoy
data or a formula for filtering out decoy data if decoy data
is spread in some way through the TARP payload data.

Note that although chain-block encryption is discussed
here with reference to the session key, any encryption
method may be used. Preferably, as in chain block
encryption, a method should be used that makes unautho-
rized decryption difficult without an entire result of the
encryption process. Thus, by separating the encrypted block
among multiple packets and making it difficult for an
interloper to obtain access to all of such packets, the contents
of the communications are provided an extra layer of
security.

Decoy or dummy data can be added to a stream to help
foil traffic analysis by reducing the peak-to-average network
load. It may be desirable to provide the TARP process with
an ability to respond to the time of day or other criteria to
generate more decoy data during low traffic periods so that
communication bursts at one point in the Internet cannot be
tied to communication bursts at another point to reveal the
communicating endpoints.

Dummy data also helps to break the data into a larger
number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be
broken into multiple packets is apparent if a chain block
encryption scheme is used to form the first encryption layer
prior to interleaving. A single block encryption may be
applied to portion, or entirety, of a message, and that portion
or cntircty then interlcaved into a number of scparatc
packets. Considering the agile IP routing of the packets, and
the attendant difficulty of reconstructing an entire sequence
of packcts to form a single block-cnerypted message
element, decoy packets can significantly increase the diffi-
culty of reconstructing an entire data stream.

The above scheme may be implemented entirely by
processes operating between the data link layer and the
network layer of each server or terminal participating in the
TARP system. Because the encryption system described
above is insertable between the data link and network layers,
the processes involved in supporting the encrypted commu-
nication may be completely transparent to processes at the IP
(network) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as

New Bay Capital, LLC
Ex.1015-Page 1439 of 3151

US 6,502,135 B1

5

well. Thus, no operations at or above the Network layer, or
at or below the data link layer, are affected by the insertion
of the TARP stack. This provides additional security to all
processes at or above the network layer, since the difficulty
of unauthorized penetration of the network layer (by, for
example, a hacker) is increased substantially. Even newly
developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note
that in this architecture, security is distributed. That is,
notebook computers used by executives on the road, for
example, can communicate over the Internet without any
compromise in security.

IP address changes made by TARP terminals and routers
can be done at regular intervals, at random intervals, or upon
detection of “attacks.” The variation of IP addresses hinders
traffic analysis that might reveal which computers are
communicating, and also provides a degree of immunity
from attack. The level of immunity from attack is roughly
proportional to the rate at which the IP address of the host
is changing.

As mentioned, IP addresses may be changed in response
to attacks. An attack may be revealed, for example, by a
regular series of messages indicating that a router is being
probed in some way. Upon detection of an attack, the TARP
layer process may respond to this event by changing its IP
address. In addition, it may create a subprocess that main-
tains the original IP address and continues interacting with
the attacker in some manner.

Decoy packets may be generated by each TARP terminal
on some basis determined by an algorithm. 'or example, the
algorithm may be a random one which calls for the genera-
tion of a packet on a random basis when the terminal is idle.
Alternatively, the algorithm may be responsive to time of
day or detection of low traffic to generate more decoy
packets during low ftraffic times. Note that packets are
preferably generated in groups, rather than one by one, the
groups being sized to simulate real messages. In addition, so
that decoy packets may be inserted in normal TARP message
streams, the background loop may have a latch that makes
it more likely to insert decoy packets when a message stream
is being received. Alternatively, if a large number of decoy
packels is received along with regular TARP packets, the
algorithm may increase the rate of dropping of decoy
packets rather than forwarding them. The result of dropping
and generating decoy packets in this way is to make the
apparent incoming message size different from the apparent
outgoing message size to help foil traffic analysis.

In various other embodiments of the invention, a scalable
version of the system may be constructed in which a
plurality of IP addresses are preassigned to cach pair of
communicating nodes in the network. Each pair of nodes
agrees upon an algorithm for “hopping” between IP
addresses (both sending and receiving), such that an eaves-
dropper sees apparently continuously random IP address
pairs (source and destination) for packets transmitted
between the pair. Overlapping or “reusable” IP addresses
may be allocated to different users on the same subnet, since
each node merely verifies that a particular packet includes a
valid source/destination pair from the agreed-upon algo-
rithm. Source/destination pairs are preferably not reused
between any two nodes during any given end-to-end session,
though limited IP block sizes or lengthy sessions might
require it.

Further improvements described in this continuation-in-
part application include: (1) a load balancer that distributes
packets across different transmission paths according to

30

35

45

50

55

60

65

6

transmission path quality; (2) a DNS proxy server that
transparently creates a virtual private network in response to
a domain name inquiry; (3) a large-to-small link bandwidth
management feature that prevents denial-of-service attacks
at system chokepoints; (4) a traffic limiter that regulates
incoming packets by limiting the rate at which a transmitter
can be synchronized with a receiver; and (5) a signaling
synchronizer that allows a large number of nodes to com-
municate with a central node by partitioning the communi-
cation function between two separate entities

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of secure communications over
the Internet according to a prior art embodiment.

FIG. 2 is an illustration of secure communications over
the Internet according to a an embodiment of the invention.

FIG. 3a is an illustration of a process of forming a
tunneled IP packet according to an embodiment of the
invention.

FIG. 3b is an illustration of a process of forming a
tunneled IP packet according to another embodiment of the
invention.

FIG. 4 is an illustration of an OSI layer location of
processes that may be used to implement the invention.

FIG. 5 is a flow chart illustrating a process for routing a
tunneled packet according to an embodiment of the inven-
tion.

FIG. 6 is a flow chart illustrating a process for forming a
tunneled packet according to an embodiment of the inven-
tion.

FIG. 7 is a flow chart illustrating a process for receiving
a tunneled packet according to an embodiment of the
invention.

FIG. 8 shows how a secure session is established and
synchronized between a client and a TARP router.

FIG. 9 shows an IP address hopping scheme between a
client computer and TARP router using transmit and receive
tables in each computer.

FIG. 10 shows physical link redundancy among three
Internet Service Providers (ISPs) and a client computer.

FIG. 11 shows how multiple IP packets can be embedded
into a single “frame” such as an Ethernet frame, and further
shows the use of a discriminator field to camouflage true
packet recipients.

FIG. 12A shows a system that cmploys hopped hardwarc
addresses, hopped IP addresses, and hopped discriminator
fields.

FIG. 12B shows several different approaches for hopping
hardware addresses, IP addresses, and discriminator fields in
combination.

FIG. 13 shows a technique for automatically
re-establishing synchronization between sender and receiver
through the use of a partially public sync value.

FIG. 14 shows a “checkpoint” scheme for regaining
synchronization between a sender and recipient.

FIG. 15 shows further details of the checkpoint scheme of
FIG. 14.

FIG. 16 shows how two addresses can be decomposed
into a plurality of segments for comparison with presence
veclors.

FIG. 17 shows a storage array for a receiver’s active
addresses.

FIG. 18 shows the receiver’s storage array after receiving
a sync request.

New Bay Capital, LLC
Ex.1015-Page 1440 of 3151

US 6,502,135 B1

7

FIG. 19 shows the receiver’s storage array after new
addresses have been generated.

FIG. 20 shows a system employing distributed transmis-
sion paths.

FIG. 21 shows a plurality of link transmission tables that
can be used to route packets in the system of FIG. 20.

FIG. 22A shows a flowchart [or adjusting weight value
distributions associated with a plurality of transmission
links.

FIG. 22B shows a flowchart for setting a weight value to
zero if a transmitter turns off.

F1G. 23 shows a system employing distributed transmis-
sion paths with adjusted weight value distributions for each
path.

FIG. 24 shows an example using the system of FIG. 23.

FIG. 25 shows a conventional domain-name look-up
service.

FIG. 26 shows a system employing a DNS proxy server
with transparent VPN creation.

FIG. 27 shows steps that can be carried out to implement
transparent VPN creation based on a DNS look-up function.

FIG. 28 shows a system including a link guard function
that prevents packet overloading on a low-bandwidth link
LOW BW.

FIG. 29 shows one embodiment of a system employing
the principles of FIG. 28.

FIG. 30 shows a system that regulates packet transmission
rates by throttling the rate at which synchronizations are
performed.

FIG. 31 shows a signaling server 3101 and a transport
server 3102 used to establish a VPN with a client computer.

FIG. 32 shows message flows relating to synchronization
protocols of FIG. 31.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 2, a secure mechanism for communi-
cating over the internet employs a number of special routers
or servers, called TARP routers 122-127 that are similar to
regular IP routers 128-132 in that each has one or more IP
addresses and uses normal IP protocol to send normal-
looking IP packet messages, called TARP packets 140.
TARP packets 140 are identical to normal IP packet mes-
sages that are routed by regular IP routers 128-132 because
each TARP packet 140 contains a destination address as in
a normal IP packet. However, instead of indicating a final
destination in the destination field of the IP header, the TARP
packet’s 140 IP header always points to a next-hop in a
series of TARP router hops, or the final destination, TARP
tcrminal 110. Bccausc the hcader of the TARP packet
contains only the next-hop destination, there is no overt
indication from an intercepted TARP packet of the true
destination of thc TARP packect 140 since the destination
could always be the next-hop TARP router as well as the
final destination, TARP terminal 110.

Each TARP packet’s true destination is concealed behind
an outer layer of encryption generated using a link key 146.
The link key 146 is the encryption key used for encrypted
communication between the end points (TARP terminals or
TARP routers) of a single link in the chain of hops connect-
ing the originating TARP terminal 100 and the destination
TARP terminal 110. Each TARP router 122-127, using the
link key 146 it uses to communicate with the previous hop
in a chain, can use the link key to reveal the true destination

10

15

35

40

45

50

55

60

65

8

of a TARP packet. To identify the link key needed to decrypt
the outer layer of encryption of a TARP packet, a receiving
TARP or routing terminal may identify the transmitting
terminal (which may indicate the link key used) by the
sender field of the clear IP header. Alternatively, this identity
may be hidden behind another layer of encryption in avail-
able bits in the clear IP header. Each TARP router, upon
receiving a TARP message, determines if the message is a
TARP message by using authentication data in the TARP
packet. This could be rccorded in available bytes in the
TARP packet’s IP header. Alternatively, TARP packets could
be authenticated by attempting to decrypt using the link key
146 and dctermining if the results arc as cxpected. The
former may have computational advantages because it does
not involve a decryption process.

Once the outer layer of decryption is completed by a
TARP router 122-127, the TARP router determines the final
destination. The system is preferably designed to cause each
TARP packet 140 to undergo a minimum number of hops to
help foil traffic analysis. The time to live counter in the IP
header of the TARP message may be used to indicate a
number of TARP router hops yet to be completed. Each
TARP router then would decrement the counter and deter-
mine from that whether it should forward the TARP packet
140 1o another TARP router 122-127 or to the destination
TARP terminal 110. If the time to live counter is zero or
below zero after decrementing, for an example of usage, the
TARP router receiving the TARP packet 140 may forward
the TARP packet 140 to the destination TARP terminal 110.
If the time to live counter is above zero after decrementing,
for an example of usage, the TARP router receiving the
TARP packet 140 may forward the TARP packet 140 to a
TARP routcr 122-127 that thc current TARP terminal
chooses at random. As a result, each TARP packet 140 is
routed through some minimum number of hops of TARP
routers 122—-127 which are chosen at random.

Thus, each TARP packet, irrespective of the traditional
factors determining traffic in the Internet, makes random
trips among a number of geographically disparate routers
before reaching its destination and each trip is highly likely
to be different for each packet composing a given message
because each trip is independently randomly determined as
described above. This feature is called agile routing. For
reasons that will become clear shortly, the fact that different
packets take different routes provides distinct advantages by
making it difficult for an interloper to obtain all the packets
forming an entire multi-packet message. Agile routing is
combined with another feature that furthers this purpose, a
feature that ensures that any message is broken into multiple
packets.

A TARP router receives a TARP packet when an IP
address used by the TARP router coincides with the IP
address in the TARP packet’s IP header IP.. The IP address
of a TARP router, however, may not remain constant. To
avoid and manage attacks, each TARP router, independently
or under direction from another TARP terminal or router,
may change its IP address. A separate, unchangeable iden-
tifier or address is also defined. This address, called the
TARP address, is known only to TARP routers and terminals
and may be correlated at any time by a TARP router or a
TARP terminal using a Lookup Table (LUT). When a TARP
router or terminal changes its IP address, it updates the other
TARP routers and terminals which in turn update their
respective LUTs. In reality, whenever a TARP router looks
up the address of a destination in the encrypted header, it
must convert a TARP address to a real IP address using its
LUT.

New Bay Capital, LLC
Ex.1015-Page 1441 of 3151

US 6,502,135 B1

9

While every TARP router receiving a TARP packet has
the ability to determine the packet’s final destination, the
message payload is embedded behind an inner layer of
encryption in the TARP packet that can only be unlocked
using a session key. The session key is not available to any
of the TARP routers 122-127 intervening between the
originating 100 and destination 110 TARP terminals. The
session key is used to decrypt the payloads of the TARP
packets 140 permitting an entirc message to be recon-
structed.

In one embodiment, communication may be made private
using link and session keys, which in turn may be shared and
used according any desired method. For example, a public
key or symmetric keys may be communicated between link
or session endpoints using a public key method. Any of a
variety of other mechanisms for securing data to ensure that
only authorized computers can have access to the private
information in the TARP packets 140 may be used as
desired.

Referring to FIG. 3a, to construct a series of TARP
packets, a data stream 300 of IP packets 207a, 207b, 207c,
ete., such series of packets being formed by a network (IP)
layer process, is broken into a series of small sized segments.
In the present example, equal-sized segments 1-9 are
defined and used to construct a set of interleaved data
packets A, B, and C. Here it is assumed that the number of
interleaved packets A, B, and C formed is three and that the
number of IP packets 207a—207c used to form the three
interleaved packets A, B, and C is exactly three. Of course,
the number of TP packets spread over a group of interleaved
packcts may be any convenicnt number as may be the
number of interleaved packets over which the incoming data
stream is spread. The latter, the number of interleaved
packets over which the data strcam is spread, is called the
interleave window.

To create a packet, the transmitting software interleaves
the normal IP packets 207a et. seq. to form a new set of
interleaved payload data 320. This payload data 320 is then
encrypted using a session key to form a set of session-key-
encrypted payload data 330, each of which, A, B, and C, will
form the payload of a TARP packet. Using the TP header
data, from the original packets 2074—207c, new TARP
headers IP; are formed. The TARP headers IP, can be
identical to normal IP headers or customized in some way.
In a preferred cmbodiment, the TARP headers 1P arc IP
headers with added data providing the following information
required for routing and reconstruction of messages, some of
which data is ordinarily, or capable of being, contained in
normal IP headers:

1. A window sequence number—an identifier that indi-
cates where the packet belongs in the original message
sequence.

2. An interleave sequence number—an identifier that
indicates the interleaving sequence used to form the
packet so that the packet can be deinterleaved along
with other packets in the interleave window.

3. A time-to-live (TTL) datum—indicates the number of
TARP-router-hops to be executed before the packet
reaches its destination. Note that the TTL parameter
may provide a datum to be used in a probabilistic
formula for determining whether to route the packet to
the destination or to another hop.

4. Data type identifier—indicates whether the payload
contains, for example, TCP or UDP data.

5. Sender’s address—indicates the sender’s address in the
TARP network.

10

30

35

40

45

50

55

60

65

10

6. Destination address—indicates the destination termi-
nal’s address in the TARP network.

7. Decoy/Real—an indicator of whether the packet con-
tains real message data or dummy decoy data or a
combination.

Obviously, the packets going into a single interleave
window must include only packets with a common destina-
tion. Thus, it is assumed in the depicted example that the IP
headers of IP packets 2074-207c all contain the same
destination address or at least will be received by the same
terminal so that they can be deinterleaved. Note that dummy
or decoy data or packets can be added to form a larger
interleave window than would otherwise be required by the
size of a given message. Decoy or dummy data can be added
to a stream to help foil traffic analysis by leveling the load
on the network. Thus, it may be desirable to provide the
TARP process with an ability to respond to the time of day
or other criteria to generate more decoy data during low
traffic periods so that communication bursts at one point in
the Internet cannot be tied to communication bursts at
another point to reveal the communicating endpoints.

Dummy data also helps to break the data into a larger
number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be
broken into multiple packets is apparent if a chain block
encryption scheme is used to form the first encryption layer
prior to interleaving. A single block encryption may be
applied to a portion, or the entirety, of a message, and that
portion or entirety then interleaved into a number of separate
packets.

Referring to FIG. 3b, in an alternative mode of TARP
packet construction, a series of IP packets are accumulated
to make up a predefined interleave window. The payloads of
the packets are used to construct a single block 520 for chain
block encryption using the session key. The payloads used to
form the block are presumed to be destined for the same
terminal. The block size may coincide with the interleave
window as depicted in the example embodiment of I'lG. 3b.
After encryption, the encrypted block is broken into separate
payloads and segments which are interleaved as in the
embodiment of FIG. 3a. The resulting interleaved packets A,
B, and C, are then packaged as TARP packets with TARP
headers as in the Example of FIG. 3a. The remaining process
is as shown in, and discussed with reference to, FIG. 3a.

Once the TARP packets 340 are formed, each entire TARP
packet 340, including the TARP header IP,, is encrypted
using the link key for communication with the first-hop-
TARP router. The first hop TARP router is randomly chosen.
A final unencrypted IP header IP. is added to each encrypted
TARP packet 340 to form a normal IP packet 360 that can
be transmitted to a TARP router. Note that the process of
constructing the TARP packet 360 does not have to be done
in stages as described. The above description is just a useful
heuristic for describing the final product, namely, the TARP
packet.

Note that, TARP header IP;, could be a completely custom
header configuration with no similarity to a normal IP header
except that it contain the information identified above. This
is so since this header is interpreted by only TARP routers.

The above scheme may be implemented entirely by
processes operating between the data link layer and the
network layer of each server or terminal participating in the
TARP system. Referring to FIG. 4, a TARP transceiver 405

can be an originating terminal 100, a destination terminal

New Bay Capital, LLC
Ex.1015-Page 1442 of 3151

US 6,502,135 B1

1

110, or a TARP router 122—-127. In each TARP Transceiver
405, a transmitting process is generated to receive normal
packets from the Network (IP) layer and generate TARP
packets for communication over the network. A receiving
process is generated to receive normal IP packets containing
TARP packets and generate from these normal IP packets
which are “passed up” to the Network (IP) layer. Note that
where the TARP Transceiver 405 is a router, the received
TARP packets 140 are not processed into a stream of IP
packets 415 because they need only be authenticated as
proper TARP packets and then passed to another TARP
router or a TARP destination terminal 110. The intervening
process, a “IARP Layer” 420, could be combined with
either the data link layer 430 or the Network layer 410. In
cither case, it would intervene between the data link layer
430 so that the process would receive regular IP packets
containing embedded TARP packets and “hand up” a series
of reassembled IP packets to the Network layer 410. As an
example of combining the TARP layer 420 with the data link
layer 430, a program may augment the normal processes
running a communications card, for example, an Ethernet
card. Alternatively, the TARP layer processes may form part
of a dynamically loadable module that is loaded and
executed 1o support communications between the network
and data link layers.

Because the encryption system described above can be
inserted between the data link and network layers, the
processes involved in supporting the encrypted communi-
cation may be completely transparent to processes at the IP
(network) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as
well. Thus, no operations at or above the network layer, or
at or below the data link layer, are affected by the insertion
of the TARP stack. This provides additional security to all
processes at or above the network layer, since the difficulty
of unauthorized penetration of the network layer (by, for
example, a hacker) is increased substantially. Even newly
developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note
that in this architecture, security is distributed. That is,
notebook computers used by executives on the road, for
example, can communicate over the Internet without any
compromise in security.

Note that IP address changes made by TARP terminals
and routers can be done at regular intervals, at random
intervals, or upon detection of “attacks.” The variation of IP
addresses hinders traffic analysis that might reveal which
computers are communicating, and also provides a degree of
immunity from attack. The level of immunity from attack is
roughly proportional to the rate at which the IP address of
the host is changing.

As mentioned, IP addresses may be changed in response
to attacks. An attack may be revealed, for example, by a
regular series of messages indicates that a router is being
probed in some way. Upon detection of an attack, the TARP
layer process may respond to this event by changing its IP
address. To accomplish this, the TARP process will construct
a TARP-formatted message, in the style of Internet Control
Message Protocol (ICMP) datagrams as an example; this
message will contain the machine’s TARP address, its
previous IP address, and its new IP address. The TARP layer
will transmit this packet to at least one known TARP router;
then upon receipt and validation of the message, the TARP
router will update its LUT with the new IP address for the
stated TARP address. The TARP router will then format a
similar message, and broadcast it to the other TARP routers
so that they may update their LUTs. Since the total number

&)
o

30

35

40

45

50

55

60

65

12

of TARP routers on any given subnet is expected to be
relatively small, this process of updating the LUTs should be
relatively fast. It may not, however, work as well when there
is a relatively large number of TARP routers and/or a
relatively large number of clients; this has motivated a
refinement of this architecture to provide scalability; this
refinement has led to a second embodiment, which is dis-
cussed below.

Upon detection of an attack, the TARP process may also
create a subprocess that maintains the original IP address
and continues interacting with the attacker. The latter may
provide an opportunity to trace the attacker or study the
attacker’s methods (called “fishbowling” drawing upon the
analogy of a small fish in a fish bowl that “thinks” it is in the
ocean but is actually under captive observation). A history of
the communication between the attacker and the abandoned
(fishbowled) IP address can be recorded or transmitted for
human analysis or further synthesized for purposes of
responding in some way.

As mentioned above, decoy or dummy data or packets can
be added to outgoing data streams by TARP terminals or
routers. In addition to making it convenient to spread data
over a larger number of separate packets, such decoy packets
can also help to level the load on inactive portions of the
Internet to help foil traffic analysis efforts.

Decoy packets may be generated by each TARP terminal
100, 110 or each router 122-127 on some basis determined
by an algorithm. For example, the algorithm may be a
random one which calls for the generation of a packet on a
random basis when the terminal is idle. Alternatively, the
algorithm may be responsive to time of day or detection of
low traffic to generate more decoy packets during low traffic
times. Notc that packets arc preferably gencrated in groups,
rather than one by one, the groups being sized to simulate
real messages. In addition, so that decoy packets may be
inserted in normal TARP message streams, the background
loop may have a latch that makes it more likely to insert
decoy packets when a message stream is being received.
That is, when a series of messages are received, the decoy
packet generation rate may be increased. Alternatively, if a
large number of decoy packets is received along with regular
TARP packets, the algorithm may increase the rate of
dropping of decoy packets rather than forwarding them. The
result of dropping and generating decoy packets in this way
is to make the apparent incoming message size different
from the apparent outgoing message size to help foil traffic
analysis. The rate of reception of packets, decoy or
otherwise, may be indicated (o the decoy packet dropping
and generating processes through perishable decoy and
regular packet counters. (A perishable counter is one that
resets or decrements its value in response Lo time so that it
contains a high value when it is incremented in rapid
succession and a small value when incremented either
slowly or a small number of times in rapid succession.) Note
that destination TARP terminal 110 may generate decoy
packets equal in number and size to those TARP packets
received to make it appear it is merely routing packets and
is therefore not the destination terminal.

Referring to FIG. 5, the following particular steps may be
employed in the above-described method for routing TARP
packets.

S0. A background loop operation is performed which
applies an algorithm which determines the generation
of decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

S2. The TARP packet may be probed in some way to
authenticate the packet before attempting to decrypt it

New Bay Capital, LLC
Ex.1015-Page 1443 of 3151

US 6,502,135 B1

13

using the link key. That is, the router may determine
that the packet is an authentic TARP packet by per-
forming a selected operation on some data included
with the clear IP header attached to the encrypted TARP
packet contained in the payload. This makes it possible
to avoid performing decryption on packets that are not
authentic TARP packets.

S3. The TARP packet is decrypted to expose the destina-
tion TARP address and an indication of whether the
packet is a decoy packet or part of a real message.

S4. If the packet is a decoy packet, the perishable decoy
counter is incremented.

S5. Based on the decoy generation/dropping algorithm
and the perishable decoy counter value, if the packet is
a decoy packet, the router may choose to throw it away.
If the received packet is a decoy packet and it is
determined that it should be thrown away (S6), control
returns to step SO.

S7. The TTL parameter of the TARP header is decre- ,

mented and it is determined if the TTL parameter is
greater than zcro.

S8. If the TTL parameter is greater than zero, a TARP
address is randomly chosen from a list of TARP

addresses maintained by the router and the link key and ,

IP address corresponding to that TARP address memo-
rized for use in creating a new IP packet containing the
TARP packet.

S9. If the TTL parameter is zero or less, the link key and
IP address corresponding to the TARP address of the
destination are memorized for use in creating the new
IP packet containing the TARP packet.

S10. The TARP packet is encrypted using the memorized
link key.

S11. An IP header is added to the packet that contains the
stored IP address, the encrypted TARP packet wrapped
with an IP header, and the completed packet transmitted
to the next hop or destination.

Referring to FIG. 6, the following particular steps may be
employed in the above-described method for generating
TARP packets.

S20. A background loop operation applies an algorithm
that determines the generation of decoy IP packets. The
loop is interrupted when a data stream containing IP
packets is received for transmission.

S21. The received IP packets are grouped into a set
consisting of messages with a constant IP destination
address. The set is [urther broken down to coincide
with a maximum size of an interleave window The set
is encrypted, and interleaved into a set of payloads
destined o become TARP packets.

S22. The TARP address corresponding to the IP address is
determined from a lookup table and stored to generate
the TARP header. An initial TTL count is generated and
stored in the header. The TTL count may be random
with minimum and maximum values or it may be fixed
or determined by some other parameter.

S23. The window scquence numbers and intcrlcave
sequence numbers are recorded in the TARP headers of
each packet.

S24. One TARP router address is randomly chosen for
each TARP packet and the IP address corresponding to
it stored for use in the clear IP header. The link key
corresponding to this router is identified and used to
encrypt TARP packets containing interleaved and
encrypted data and TARP headers.

5

10

30

35

40

45

50

55

60

65

14

S25. A clear IP header with the first hop router’s real IP
address is generated and added to each of the encrypted
TARP packets and the resulting packets.

Referring to FIG. 7, the following particular steps may be
employed in the above-described method for receiving
TARP packets.

S40. A background loop operation is performed which
applies an algorithm which determines the generation
of decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

S42. The TARP packet may be probed to authenticate the
packet before attempting to decrypt it using the link
key.

S43. The TARP packet is decrypted with the appropriate
link key to expose the destination TARP address and an
indication of whether the packet is a decoy packet or
part of a real message.

S44. If the packet is a decoy packet, the perishable decoy
counter is incremented.

S45. Based on the decoy generation/dropping algorithm
and the perishable decoy counter value, if the packet is
a decoy packet, the receiver may choose to throw it
away.

S46. The TARP packets are cached until all packets
forming an interleave window are received.

S47. Once all packets of an interleave window are
received, the packets are deinterleaved.

S48. The packets block of combined packets defining the
interleave window is then decrypted using the session
key.

S49. The decrypted block is then divided using the
window sequence data and the IP; headers are con-
verted into normal 1P, headers. ''he window sequence
numbers are integrated in the IP. headers.

S50. The packets are then handed up to the IP layer
processes.

1. SCALABILITY ENHANCEMENTS

The IP agility feature described above relies on the ability
to transmit IP address changes to all TARP routers. The
embodiments including this feature will be referred to as
“boutique” embodiments due to potential limitations in
scaling these features up for a large network, such as the
Internet. (The “boutique” embodiments would, however, be
robust for use in smaller networks, such as small virtual
private networks, for example). One problem with the
boutique embodiments is that if [P address changes are to
occur frequently, the message traffic required to update all
routers sufficiently quickly creates a serious burden on the
Internet when the TARP router and/or client population gets
large. The bandwidth burden added to the nctworks, for
example in ICMP packets, that would be used to update all
the TARP routers could overwhelm the Internet for a large
scale implementation that approached the scalc of the Inter-
net. In other words, the boutique system’s scalability is
limited.

A system can be constructed which trades some of the
features of the above embodiments to provide the benefits of
IP agility without the additional messaging burden. This is
accomplished by IP address-hopping according to shared
algorithms that govern IP addresses used between links
participating in communications sessions between nodes
such as TARP nodes. (Note that the IP hopping technique is
also applicable to the boutique embodiment.) The IP agility
feature discussed with respect to the boutique system can be

New Bay Capital, LLC
Ex.1015-Page 1444 of 3151

US 6,502,135 B1

15

modified so that it becomes decentralized under this scalable
regime and governed by the above-described shared algo-
rithm. Other features of the boutique system may be com-
bined with this new type of IP-agility.

The new embodiment has the advantage of providing IP
agility governed by a local algorithm and set of IP addresses
exchanged by each communicating pair of nodes. This local
governance is session-independent in that it may govern
communications between a pair of nodes, irrespective of the
session or end points being transferred between the directly
communicating pair of nodcs.

In the scalable embodiments, blocks of IP addresses are
allocated to each node in the network. (This scalability will
increase in the future, when Internet Protocol addresses are
increased to 128-bit fields, vastly increasing the number of
distinctly addressable nodes). Each node can thus use any of
the IP addresses assigned to that node to communicate with
other nodes in the network. Indeed, each pair of communi-
cating nodcs can usc a plurality of sourcc IP addresscs and
destination IP addresses for communicating with each other.

Each communicating pair of nodes in a chain participating
in any session stores two blocks of IP addresses, called
netblocks, and an algorithm and randomization seed for
sclecting, from cach nctblock, the next pair of source/
destination IP addresses that will be used to transmit the next
message. In other words, the algorithm governs the sequen-
tial selection of IP-address pairs, one sender and one
receiver IP address, from each netblock. The combination of
algorithm, seed, and netblock (IP address block) will be
called a “hopblock.” A router issues separate transmit and
receive hopblocks to its clients. The send address and the
receive address of the IP header of each outgoing packet sent
by the client are filled with the send and receive IP addresses
generated by the algorithm. 'T'he algorithm is “clocked”
(indexed) by a counter so that each time a pair is used, the
algorithm turns out a new transmit pair for the next packet
to be sent.

The router’s receive hopblock is identical to the client’s
transmit hopblock. The router uses the receive hopblock to
predict what the send and receive IP address pair for the next
expected packet from that client will be. Since packets can
be received out of order, it is not possible for the router to
predict with certainty what IP address pair will be on the
next sequential packet. To account for this problem, the
router generates a range of predictions encompassing the
number of possible transmitted packet send/receive
addresses, of which the next packet received could leap
ahead. Thus, if there is a vanishingly small probability that
a given packet will arrive at the router ahead of 5 packets
transmilted by the client belore the given packet, then the
router can generate a series of 6 send/receive IP address pairs
(or “hop window”) to compare with the next received
packet. When a packet is received, it is marked in the hop
window as such, so that a second packet with the same IP
address pair will be discarded. If an out-of-sequence packet
does not arrive within a predetermined timeout period, it can
be requested for retransmission or simply discarded from the
receive table, depending upon the protocol in use for that
communications session, or possibly by convention.

When the router receives the client’s packet, it compares
the send and receive IP addresses of the packet with the next
N predicted send and receive IP address pairs and rejects the
packet if it is not a member of this set. Received packets that
do not have the predicted source/destination IP addresses
falling with the window are rejected, thus thwarting possible
hackers. (With the number of possible combinations, even a

30

35

40

45

50

55

60

65

16

fairly large window would be hard to fall into at random.) If
it is a member of this set, the router accepts the packet and
processes it further. This link-based IP-hopping strategy,
referred to as “IHOP,” is a network element that stands on
its own and is not necessarily accompanied by elements of
the boutique system described above. If the routing agility
feature described in connection with the boutique embodi-
ment is combined with this link-based IP-hopping strategy,
the router’s next step would be to decrypt the TARP header
to determine the destination TARP router for the packet and
determine what should be the next hop for the packet. The
TARP router would then forward the packet to a random
TARP router or the destination TARP router with which the
source TARP router has a link-based IP hopping communi-
cation established.

FIG. 8 shows how a client computer 801 and a TARP
router 811 can establish a secure session. When client 801
seeks to establish an IHOP session with TARP router 811,
the client 801 sends “secure synchronization” request
(“SSYN”) packet 821 to the TARP router 811. This SYN
packet 821 contains the clicnt’s 801 authentication token,
and may be sent to the router 811 in an encrypted format.
The source and destination IP numbers on the packet 821 are
the client’s 801 current fixed IP address, and a “known”
fixed IP address for the router 811. (For security purposes,
it may be desirable to reject any packets from outside of the
local network that are destined for the router’s known fixed
IP address.) Upon receipt and validation of the client’s 801
SSYN packet 821, the router 811 responds by sending an
encrypted “secure synchronization acknowledgment”
(“SSYN ACK”) 822 to the client 801. This SSYN ACK 822
will contain the transmit and receive hopblocks that the
client 801 will use when communicating with the TARP
router 811. The client 801 will acknowledge the TARP
router’s 811 response packet 822 by generating an encrypted
SSYN ACK ACK packet 823 which will be sent from the
client’s 801 fixed IP address and to the TARP router’s 811
known fixed IP address. The client 801 will simultaneously
generale a SSYN ACK ACK packet; this SSYN ACK
packet, referred to as the Secure Session Initiation (SSI)
packet 824, will be sent with the first {sender, receiver} IP
pair in the client’s transmit table 921 (FIG. 9), as specified
in the transmit hopblock provided by the TARP router 811
in the SSYN ACK packet 822. The TARP router 811 will
respond to the SSI packet 824 with an SSI ACK packet 825,
which will be sent with the first {sender, receiver} IP pair in
the TARP router’s transmit table 923. Once these packets
have been successfully exchanged, the secure communica-
tions session is established, and all further secure commu-
nications between the client 801 and the TARP router 811
will be conducted via this secure session, as long as syn-
chronization is maintained. If synchronization is lost, then
the clicnt 801 and TARP routcr 802 may rc-cstablish the
secure session by the procedure outlined in FIG. 8 and
described above.

While the secure session is active, both the client 901 and
TARP router 911 (FIG. 9) will maintain their respective
transmit tables 921, 923 and receive tables 922, 924, as
provided by the TARP router during session synchronization
822. It is important that the sequence of IP pairs in the
client’s transmit table 921 be identical to those in the TARP
router’s receive table 924; similarly, the sequence of IP pairs
in the client’s receive table 922 must be identical to those in
the router’s transmit table 923. This is required for the
session synchronization to be maintained. The client 901
need maintain only one transmit table 921 and one receive
table 922 during the course of the secure session. Each

New Bay Capital, LLC
Ex.1015-Page 1445 of 3151

US 6,502,135 B1

17

sequential packet sent by the client 901 will employ the next
{send, receive} IP address pair in the transmit table, regard-
less of TCP or UDP session. The TARP router 911 will
expect each packet arriving from the client 901 to bear the
next IP address pair shown in its receive table.

Since packets can arrive out of order, however, the router
911 can maintain a “look ahead” buffer in its receive table,
and will mark previously-received IP pairs as invalid for
future packets; any future packet containing an IP pair that
is in thc look-ahcad buffer but is marked as previously
received will be discarded. Communications from the TARP
router 911 to the client 901 are maintained in an identical
manner; in particular, the router 911 will sclect the next IP
address pair from its transmit table 923 when constructing a
packet to send to the client 901, and the client 901 will
maintain a look-ahead buffer of expected IP pairs on packets
that it is receiving. Each TARP router will maintain separate
pairs of transmit and receive tables for each client that is
currently engaged in a secure session with or through that
TARP router.

While clients receive their hopblocks from the first server
linking them to the Internet, routers exchange hopblocks.
When a router establishes a link-based IP-hopping commu-
nication regime with another router, each router of the pair

exchanges its transmit hopblock. The transmit hopblock of ,

each router becomes the receive hopblock of the other
router. The communication between routers is governed as
described by the example of a client sending a packet to the
first router.

While the above strategy works fine in the IP milieu,
many local networks that are connected to the Internet are
Ethernet systems. In Ethernet, the IP addresses of the
destination devices must be translated into hardware
addresses, and vice versa, using known processes (“address
resolution protocol,” and “reverse address resolution
protocol”). However, il the link-based IP-hopping strategy is
employed, the correlation process would become explosive
and burdensome. An alternative to the link-based IP hopping
stralegy may be employed within an Ethernet network. The
solution is to provide that the node linking the Internet to the
Ethernet (call it the border node) use the link-based
IP-hopping communication regime to communicate with
nodes outside the Ethernet LAN. Within the Ethernet LAN,
each TARP node would have a single IP address which
would be addressed in the conventional way. Instead of
comparing the {sender, receiver} IP address pairs to authen-
ticate a packet, the intra-LAN TARP node would use one of
the IP header extension fields to do so. Thus, the border node
uses an algorithm shared by the intra-LAN TARP node to
generate a symbol that is stored in the free field in the IP
header, and the intra-LAN TARP node generates a range of
symbols based on its prediction of the next expected packet
to be reccived from that particular source IP address. The
packet is rejected if it does not fall into the set of predicted
symbols (for example, numerical values) or is accepted if it
docs. Communications from the intra-LAN TARP node to
the border node are accomplished in the same manner,
though the algorithm will necessarily be different for secu-
rity reasons. Thus, each of the communicating nodes will
generate transmit and receive tables in a similar manner to
that of FIG. 9; the intra-LAN TARP nodes transmit table will
be identical to the border node’s receive table, and the
intra-LAN TARP node’s receive table will be identical to the
border node’s transmit table.

The algorithm used for IP address-hopping can be any
desired algorithm. For example, the algorithm can be a given
pseudo-random number generator that generates numbers of

Y
“wn

30

35

40

45

50

55

60

65

18

the range covering the allowed IP addresses with a given
seed. Alternatively, the session participants can assume a
certain type of algorithm and specify simply a parameter for
applying the algorithm. For example the assumed algorithm
could be a particular pseudo-random number generator and
the session participants could simply exchange seed values.

Note that there is no permanent physical distinction
between the originating and destination terminal nodes.
Either device at either end point can initiate a synchroniza-
tion of the pair. Note also that the authentication/
synchronization-rcquest (and acknowledgment) and
hopblock-exchange may all be served by a single message
so that separate message exchanges may not be required.

As another extension to the stated architecture, multiple
physical paths can be used by a client, in order to provide
link redundancy and further thwart attempts at denial of
service and traffic monitoring. As shown in FIG. 10, for
example, client 1001 can establish three simultaneous ses-
sions with cach of thrcc TARP routers provided by different
ISPs 1011, 1012, 1013. As an example, the client 1001 can
use three different telephone lines 1021, 1022, 1023 to
connect to the ISPs, or two telephone lines and a cable
modem, etc. In this scheme, transmitted packets will be sent
in a random fashion among the different physical paths. This
architecture provides a high degree of communications
redundancy, with improved immunity from denial-of-
service attacks and traffic monitoring.

2. FURTHER EXTENSIONS

The following describes various extensions to the
techniques, systems, and methods described above. As
described above, the security of communications occurring
between computers in a computer network (such as the
Internet, an Ethernet, or others) can be enhanced by using
seemingly random source and destination Internet Protocol
(IP) addresses for data packets transmitted over the network.
This feature prevents eavesdroppers from determining
which computers in the network are communicating with
each other while permitting the two communicating com-
puters to easily recognize whether a given received data
packel is legitimate or nol. In one embodiment of the
above-described systems, an IP header extension field is
used to authenticate incoming packets on an Ethernet.

Various extensions to the previously described techniques
described herein include: (1) use of hopped hardware or
“MAC” addresses in broadcast type network; (2) a self-
synchronization technique that permits a computer to auto-
matically regain synchronization with a sender; (3) synchro-
nization algorithms that allow transmitting and receiving
computers to quickly re-establish synchronization in the
event of lost packets or other events; and (4) a fast-packet
rejection mechanism for rejecting invalid packets. Any or all
of these extensions can be combined with the features
described above in any of various ways.

A. Hardware Address Hopping

Internet protocol-based communications techniques on a
LAN—or across any dedicated physical medium—typically
embed the IP packets within lower-level packets, often
referred to as “frames.” As shown in FIG. 11, for example,
a first Ethernet frame 1150 comprises a frame header 1101
and two embedded IP packets IP1 and IP2, while a second
Ethernet frame 1160 comprises a different frame header
1104 and a single IP packet IP3. Each frame header gener-
ally includes a source hardware address 1101A and a des-
tination hardware address 1101B; other well-known fields in
frame headers are omitted from FIG. 11 for clarity. Two

New Bay Capital, LLC
Ex.1015-Page 1446 of 3151

US 6,502,135 B1

19

hardware nodes communicating over a physical communi-
cation channel insert appropriate source and destination
hardware addresses to indicate which nodes on the channel
or network should receive the frame.

It may be possible for a nefarious listener to acquire
information about the contents of a frame and/or its com-
municants by examining frames on a local network rather
than (or in addition to) the IP packets themselves. This is
especially true in broadcast media, such as Lthernet, where
it is necessary to insert into the frame header the hardware
address of the machine that generated the frame and the
hardware address of the machine to which frame is being
sent. All nodes on the network can potentially “see” all
packets transmitted across the network. This can be a
problem for secure communications, especially in cases
where the communicants do not want for any third party to
be able to identify who is engaging in the information
exchange. One way to address this problem is to push the
address-hopping scheme down to the hardware layer. In
accordance with various embodiments of the invention,
hardware addresses are “hopped” in a manner similar to that
used to change IP addresses, such that a listener cannot
determine which hardware node generated a particular mes-
sage nor which node is the intended recipient.

FIG. 12A shows a system in which Media Access Control
(“MAC”) hardware addresses are “hopped” in order to
increase security over a network such as an Ethernet. While
the description refers to the exemplary case of an Ethernet
environment, the inventive principles are equally applicable
to other types of communications media. In the Ethernet
case, the MAC address of the sender and receiver are
inserted into the Ethernet frame and can be observed by
anyone on the LAN who is within the broadcast range for
that frame. For secure communications, it becomes desirable
to generate frames with MAC addresses that are not attrib-
utable to any specific sender or receiver.

As shown in FIG. 12A, two computer nodes 1201 and
1202 communicate over a communication channel such as
an Ethernet. Each node executes one or more application
programs 1203 and 1218 that communicate by transmitting
packets through communication software 1204 and 1217,
respectively. Examples of application programs include
video conferencing, e-mail, word processing programs,
telephony, and the like. Communication software 1204 and
1217 can comprise, for example, an OSI layered architecture
or “stack” that standardizes various services provided at
different levels of functionality.

‘The lowest levels of communication software 1204 and
1217 communicate with hardware components 1206 and
1214 respectively, each of which can include one or more
registers 1207 and 1215 that allow the hardware to be
reconfigured or controlled in accordance with various com-
muunication protocols. The hardware components (an Ether-
net network interface card, for example) communicate with
each other over the communication medium. Each hardware
component is typically pre-assigned a fixed hardware
address or MAC number that identifies the hardware com-
ponent to other nodes on the network. One or more interface
drivers control the operation of each card and can, for
example, be configured to accept or reject packets from
certain hardware addresses. As will be described in more
detail below, various embodiments of the inventive prin-
ciples provide for “hopping” different addresses using one or
more algorithms and one or more moving windows that
track a range of valid addresses to validate received packets.
Packets transmitted according to one or more of the inven-
tive principles will be generally referred to as “secure”

30

35

40

45

50

55

60

65

20

packets or “secure communications” to differentiate them
from ordinary data packets that are transmitted in the clear
using ordinary, machine-correlated addresses.

One straightforward method of generating non-
attributable MAC addresses is an extension of the IP hop-
ping scheme. In this scenario, two machines on the same
LAN that desire to communicate in a secure fashion
exchange random-number generators and seeds, and create
sequences of quasi-random MAC addresses for synchro-
nized hopping. The implementation and synchronization
issues are then similar to that of IP hopping.

This approach, however, runs the risk of using MAC
addresses that are currently active on the LAN—which, in
turn, could interrupt communications for those machines.
Since an Ethernet MAC address is at present 48 bits in
length, the chance of randomly misusing an active MAC
address is actually quite small. However, if that figure is
multiplied by a large number of nodes (as would be found
on an extensive LAN), by a large number of frames (as
might be the case with packet voice or streaming video), and
by a large number of concurrent Virtual Private Networks
(VPNs), then the chance that a non-secure machine’s MAC
address could be used in an address-hopped frame can
become non-trivial. In short, any scheme that runs even a
small risk of interrupting communications for other
machines on the LAN is bound to receive resistance from
prospective system administrators. Nevertheless, it is tech-
nically feasible, and can be implemented without risk on a
LAN on which there is a small number of machines, or if all
of the machines on the LAN are engaging in MAC-hopped
communications.

Synchronized MAC address hopping may incur some
overhead in the course of session establishment, especially
if there are multiple sessions or multiple nodes involved in
the communications. A simpler method of randomizing
MAC addresses is to allow each node to receive and process
every incident frame on the network. Typically, each net-
work interface driver will check the destination MAC
address in the header of every incident frame to see if it
matches that machine’s MAC address; if there is no match,
then the frame is discarded. In one embodiment, however,
these checks can be disabled, and every incident packet is
passed to the TARP stack for processing. This will be
referred to as “promiscuous” mode, since every incident
frame is processed. Promiscuous mode allows the sender to
use completely random, unsynchronized MAC addresses,
since the destination machine is guaranteed to process the
frame. 'I'he decision as to whether the packet was truly
intended for that machine is handled by the TARP stack,
which checks the source and destination IP addresses for a
match in its I[P synchronization tables. If no match is found,
the packet is discarded; if there is a match, the packet is
unwrapped, the inner header is evaluated, and if the inner
header indicates that the packet is destined for that machine
then the packet is forwarded to the IP stack—otherwise it is
discarded.

One disadvantage of purely-random MAC address hop-
ping is its impact on processing overhead; that is, since
every incident frame must be processed, the machine’s CPU
is engaged considerably more often than if the network
interface driver is discriminating and rejecting packets uni-
laterally. A compromise approach is to select either a single
fixed MAC address or a small number of MAC addresses
(e.g., one for each virtual private network on an Ethernet) to
use for MAC-hopped communications, regardless of the
actual recipient for which the message is intended. In this
mode, the network interface driver can check each incident

New Bay Capital, LLC
Ex.1015-Page 1447 of 3151

US 6,502,135 B1

21

frame against one (or a few) pre-established MAC
addresses, thereby freeing the CPU from the task of
physical-layer packet discrimination. This scheme does not
betray any useful information to an interloper on the LAN;
in particular, every secure packet can already be identified
by a unique packet type in the outer header. [lowever, since
all machines engaged in secure communications would
either be using the same MAC address, or be selecting from
a small pool of predetermined MAC addresses, the associa-
tion between a specific machine and a specific MAC address
is effectively broken.

In this scheme, the CPU will be engaged more often than
it would be in non-secure communications (or in synchro-
nized MAC address hopping), since the network interface
driver cannot always unilaterally discriminate between
secure packets that are destined for that machine, and secure
packets from other VPNs. However, the non-secure traffic is
easily eliminated at the network interface, thereby reducing
the amount of processing required of the CPU. There are
boundary conditions where these statements would not hold,
of course-c.g., if all of the traffic on the LAN is secure traffic,
then the CPU would be engaged to the same degree as it is
in the purely-random address hopping case; alternatively, if
each VPN on the LAN uses a different MAC address, then
the network interface can perfectly discriminate secure
frames destined for the local machine from those constitut-
ing other VPNs. These are engineering tradeoffs that might
be best handled by providing administrative options for the
users when installing the software and/or establishing VPNs.

Even in this scenario, however, there still remains a slight
risk of selecting MAC addresses that are being used by one
or more nodes on the LAN. One solution to this problem is
to formally assign one address or a range of addresses for
use in MAC-hopped communications. This is typically done
via an assigned numbers registration authority; e.g., in the
case of Ethernet, MAC address ranges are assigned to
vendors by the Institute of Electrical and Electronics Engi-
neers (IEEE). A formally-assigned range of addresses would
ensure that secure frames do not conflict with any properly-
configured and properly-functioning machines on the LAN.

Reference will now be made to I'IGS. 12A and 12B in
order to describe the many combinations and features that
follow the inventive principles. As explained above, two
computer nodes 1201 and 1202 are assumed to be commu-
nicating over a network or communication medium such as
an Ethernet. A communication protocol in each node (1204
and 1217, respectively) contains a modified element 1205
and 1216 that performs certain functions that deviate from
the standard communication protocols. In particular, com-
puter node 1201 implements a first “hop” algorithm 1208X
that selects seemingly random source and destination IP
addresses (and, in one embodiment, seemingly random IP
header discriminator fields) in order to transmit each packet
to the other computer node. For example, node 1201 main-
tains a transmit table 1208 containing triplets of source (S),
destination (D), and discriminator fields (DS) that are
inserted into outgoing IP packet headers. The table is gen-
erated through the use of an appropriate algorithm (e.g., a
random number generator that is seeded with an appropriate
seed) that is known to the recipient node 1202. As each new
IP packet is formed, the next sequential entry out of the
sender’s transmit table 1208 is used to populate the IP
source, IP destination, and IP header extension field (e.g.,
discriminator field). It will be appreciated that the transmit
table need not be created in advance but could instead be
created on-the-fly by executing the algorithm when each
packet is formed.

30

35

40

45

50

55

60

65

22

At the receiving node 1202, the same IP hop algorithm
1222X is maintained and used to generate a receive table
1222 that lists valid triplets of source IP address, destination
IP address, and discriminator field. This is shown by virtue
of the first five entries of transmit table 1208 matching the
second five entries of receive table 1222. (The tables may be
slightly offset at any particular time due to lost packets,
misordered packets, or transmission delays). Additionally,
node 1202 maintains a receive window W3 that represents
a list of valid IP source, IP destination, and discriminator
fields that will be accepted when received as part of an
incoming IP packet. As packets are received, window W3
slides down the list of valid entries, such that the possible
valid entries change over time. Two packets that arrive out
of order but are nevertheless matched to entries within
window W3 will be accepted; those falling outside of
window W3 will be rejected as invalid. The length of
window W3 can be adjusted as necessary to reflect network
delays or other factors.

Node 1202 maintains a similar transmit table 1221 for
creating IP packets and frames destined for node 1201 using
a potentially different hopping algorithm 1221X, and node
1201 maintains a matching receive table 1209 using the
same algorithm 1209X. As node 1202 transmits packets to
node 1201 using seemingly random IP source, IP
destination, and/or discriminator fields, node 1201 matches
the incoming packet values to those falling within window
WI maintained in its receive table. In effect, transmit table
1208 of node 1201 is synchronized (i.e., entries are selected
in the same order) to receive table 1222 of receiving node
1202. Similarly, transmit table 1221 of node 1202 is syn-
chronized to receive table 1209 of node 1201. It will be
appreciated that although a common algorithm is shown for
the source, destination and discriminator fields in FIG. 12A
(using, e.g., a different seed for each of the three fields), an
entirely different algorithm could in fact be used to establish
values for each of these fields. It will also be appreciated that
one or two of the fields can be “hopped” rather than all three
as illustrated.

In accordance with anather aspect of the invention, hard-
ware or “MAC” addresses are hopped instead of or in
addition to IP addresses and/or the discriminator field in
order to improve security in a local area or broadcast-type
network. To that end, node 1201 further maintains a transmit
table 1210 using a transmit algorithm 1210X to generate
source and destination hardware addresses that are inserted
into frame headers (e.g., fields 1101A and 1101B in FIG. 11)
that are synchronized to a corresponding receive table 1224
at node 1202. Similarly, node 1202 maintains a different
transmit table 1223 containing source and destination hard-
ware addresses that is synchronized with a corresponding
receive table 1211 at node 1201. In this manner, outgoing
hardware frames appear to be originating from and going to
completely random nodes on the network, even though each
recipient can determine whether a given packet is intended
for it or not. It will be appreciated that the hardware hopping
feature can be implemented at a different level in the
communications protocol than the IP hopping feature (e.g.,
in a card driver or in a hardware card itself to improve
performance).

FIG. 12B shows three different embodiments or modes
that can be employed using the aforementioned principles.
In a first mode referred to as “promiscuous” mode, a
common hardware address (e.g., a fixed address for source
and another for destination) or else a completely random
hardware address is used by all nodes on the network, such
that a particular packet cannot be attributed to any one node.

New Bay Capital, LLC
Ex.1015-Page 1448 of 3151

US 6,502,135 B1

23

Each node must initially accept all packets containing the
common (or random) hardware address and inspect the IP
addresses or discriminator field to determine whether the
packet is intended for that node. In this regard, either the IP
addresses or the discriminator field or both can be varied in
accordance with an algorithm as described above. As
explained previously, this may increase each node’s over-
head since additional processing is involved to determine
whether a given packet has valid source and destination
hardware addresses.

In a second mode referred to as “promiscuous per VPN*
mode, a small set of fixed hardware addresses are used, with
a fixed source/destination hardware address used for all
nodes communicating over a virtual private network. For
example, if there are six nodes on an Ethernet, and the
network is to be split up into two private virtual networks
such that nodes on one VPN can communicate with only the
other two nodes on its own VPN, then two sets of hardware
addresses could be used: one set for the first VPN and a
second set for the second VPN. This would reduce the
amount of overhead involved in checking for valid frames
since only packets arriving from the designated VPN would
need to be checked. IP addresses and one or more discrimi-
nator fields could still be hopped as before for secure
communication within the VPN. Of course, this solution
compromises the anonymity of the VPNs (i.e., an outsider
can easily tell what traffic belongs in which VPN, though he
cannot correlate it to a specific machine/person). It also
requires the use of a discriminator field to mitigate the
vulnerability to certain types of DoS attacks. (For example,
without the discriminator field, an attacker on the LAN
could stream frames containing the MAC addresses being
used by the VPN; rejecting those frames could lead to
excessive processing overhead. The discriminator field
would provide a low-overhead means of rejecting the false
packets.)

In a third mode referred to as “hardware hopping” mode,
hardware addresses are varied as illustrated in FIG. 12A,
such that hardware source and destination addresses are
changed constantly in order to provide non-attributable
addressing. Variations on these embodiments are of course
possible, and the invention is not intended to be limited in
any respect by these illustrative examples.

B. Extending the Address Space

Address hopping provides security and privacy. However,
the level of protection is limited by the number of addresses
in the blocks being hopped. A hopblock denotes a field or
fields modulated on a packet-wise basis for the purpose of
providing a VPN. For instance, if two nodes communicate
with IP address hopping using hopblocks of 4 addresses (2
bits) each, there would be 16 possible address-pair combi-
nations. A window of size 16 would result in most address
pairs being accepted as valid most of the time. This limita-
tion can be overcome by using a discriminator field in
addition to or instead of the hopped address fields. The
discriminator field would be hopped in exactly the same
fashion as the address fields and it would be used to
determine whether a packet should be processed by a
receiver.

Suppose that two clients, each using four-bit hopblocks,
would like the same level of protection afforded to clients
communicating via IP hopping between two A blocks (24
address bits eligible for hopping). A discriminator field of 20
bits, used in conjunction with the 4 address bits eligible for
hopping in the IP address field, provides this level of
protection. A 24-bit discriminator field would provide a
similar level of protection if the address fields were not

10

30

35

40

45

50

55

60

65

24

hopped or ignored. Using a discriminator field offers the
following advantages: (1) an arbitrarily high level of pro-
tection can be provided, and (2) address hopping is unnec-
essary to provide protection. This may be important in
environments where address hopping would cause routing
problems.

C. Synchronization Techniques

It is generally assumed that once a sending node and
receiving node have exchanged algorithms and seeds (or
similar information sufficient to generate quasi-random
source and destination tables), subsequent communication
between the two nodes will proceed smoothly. Realistically,
however, two nodes may lose synchronization due to net-
work delays or outages, or other problems. Consequently, it
is desirable to provide means for re-establishing synchroni-
zation between nodes in a network that have lost synchro-
nization.

One possible technique is to require that each node
provide an acknowledgment upon successtul receipt of each
packet and, if no acknowledgment is received within a
certain period of time, to re-send the unacknowledged
packet. This approach, however, drives up overhead costs
and may be prohibitive in high-throughput environments
such as streaming video or audio, for example.

A different approach is to employ an automatic synchro-
nizing technique that will be referred to herein as “self-
synchronization.” In this approach, synchronization infor-
mation is embedded into each packet, thereby enabling the
receiver to re-synchronize itself upon receipt of a single
packet if it determines that is has lost synchronization with
the sender. (If communications are already in progress, and
the receiver determines that it is still in sync with the sender,
then there is no need to re-synchronize.) A receiver could
detect that it was out of synchronization by, for example,
employing a “dead-man” timer that expires after a certain
period of time, wherein the timer is reset with each valid
packet. A time stamp could be hashed into the public sync
field (see below) to preclude packet-retry attacks.

In one embodiment, a “sync field” is added to the header
of each packet sent out by the sender. This sync field could
appear in the clear or as part of an encrypted portion of the
packet. Assuming that a sender and receiver have selected a
random-number generator (RNG) and seed value, this com-
bination of RNG and seed can be used to generate a
random-number sequence (RNS). The RNS is then used to
generate a sequence of source/destination IP pairs (and, if
desired, discriminator fields and hardware source and des-
tination addresses), as described above. It is not necessary,
however, to generate the entire sequence (or the first N-1
values) in order to generate the Nth random number in the
sequence; if the sequence index N is known, the random
value corresponding to that index can be directly generated
(see below). Different RNGs (and seeds) with different
fundamental periods could be used to generate the source
and destination IP sequences, but the basic concepts would
still apply. For the sake of simplicity, the following discus-
sion will assume that [P source and destination address pairs
(only) are hopped using a single RNG sequencing mecha-
nism.

In accordance with a “self-synchronization” feature, a
sync field in each packet header provides an index (i.e., a
sequence number) into the RNS that is being used to
generate IP pairs. Plugging this index into the RNG that is
being used to generate the RNS yields a specific random
number value, which in turn yields a specific IP pair. That is,
an IP pair can be generated directly from knowledge of the
RNG, seed, and index number; it is not necessary, in this

New Bay Capital, LLC
Ex.1015-Page 1449 of 3151

US 6,502,135 B1

25

scheme, to generate the entire sequence of random numbers
that precede the sequence value associated with the index
number provided.

Since the communicants have presumably previously
exchanged RNGs and seeds, the only new information that
must be provided in order to gencrate an IP pair is the
sequence number. If this number is provided by the sender
in the packet header, then the receiver need only plug this
number into the RNG in order to generate an IP pair—and
thus verify that the IP pair appearing in the header of the
packet is valid. In this scheme, if the sender and receiver lose
synchronization, the receiver can immediately
re-synchronize upon receipt of a single packet by simply
comparing the IP pair in the packet header to the IP pair
generated from the index number. Thus, synchronized com-
munications can be resumed upon receipt of a single packet,
making this scheme ideal for multicast communications.
Taken to the extreme, it could obviate the need for synchro-
nization tables entirely; that is, the sender and receiver could
simply rely on the index number in the sync field to validate
the IP pair on each packet, and thereby eliminate the tables
entirely.

The aforementioned scheme may have some inherent
security issues associated with it—namely, the placement of
the sync field. If the field is placed in the outer header, then
an interloper could observe the values of the field and their
relationship to the IP stream. This could potentially com-
promise the algorithm that is being used to generate the
IP-address sequence, which would compromise the security
of the communications. If, however, the value is placed in
the inner header, then the sender must decrypt the inner
header before it can extract the sync value and validate the
IP pair; this opens up the receiver to certain types of
denial-of-service (DoS) attacks, such as packet replay. That
is, if the receiver must decrypt a packet before it can validate
the IP pair, then it could potentially be forced to expend a
significant amount of processing on decryption if an attacker
simply retransmits previously valid packets. Other attack
methodologies are possible in this scenario.

A possible compromise between algorithm security and
processing speed is to split up the sync value between an
inner (encrypted) and outer (unencrypted) header. That is, if
the sync value is sufficiently long, it could potentially be
split into a rapidly-changing part that can be viewed in the
clear, and a fixed (or very slowly changing) part that must be
protected. The part that can be viewed in the clear will be
called the “public sync” portion and the part that must be
protected will be called the “private sync™ portion.

Both the public sync and private sync portions are needed
to generate the complete sync value. The private portion,
however, can be selected such that it is fixed or will change
only occasionally. Thus, the private sync value can be stored
by the recipient, thereby obviating the need to decrypt the
header in order to retrieve it. If the sender and receiver have
previously agreed upon the frequency with which the private
part of the sync will change, then the receiver can selectively
decrypt a single header in order to extract the new private
sync if the communications gap that has led to lost synchro-
nization has exceeded the lifetime of the previous private
sync. This should not represent a burdensome amount of
decryption, and thus should not open up the receiver to
denial-of-service attack simply based on the need to occa-
sionally decrypt a single header.

One implementation of this is to use a hashing function
with a one-to-one mapping to generate the private and public
sync portions from the sync value. This implementation is
shown in FIG. 13, where (for example) a first ISP 1302 is the

&)
o

30

35

40

45

50

55

60

65

26

sender and a second ISP 1303 is the receiver. (Other alter-
natives are possible from FIG. 13.) A transmitted packet
comprises a public or “outer” header 1305 that is not
encrypted, and a private or “inner” header 1306 that is
encrypted using for example a link key. Outer header 1305
includes a public sync portion while inner header 1306
contains the private sync portion. A receiving node decrypts
the inner header using a decryption function 1307 in order
to extract the private sync portion. This step is necessary
only if the lifetime of the currently buffered private sync has
expired. (If the currently-buffered private sync is still valid,
then it is simply extracted from memory and “added” (which
could be an inverse hash) to the public sync, as shown in step
1308.) The public and decrypted private sync portions are
combined in function 1308 in order to generate the com-
bined sync 1309. The combined sync (1309) is then [ed into
the RNG (1310) and compared to the [P address pair (1311)
to validate or reject the packet.

An important consideration in this architecture is the
concept of “future” and “past” where the public sync values
are concerned. Though the sync values, themselves, should
be random to prevent spoofing attacks, it may be important
that the receiver be able to quickly identify a sync value that
has already been sent—even if the packet containing that
sync value was never actually received by the receiver. One
solution is to hash a time stamp or sequence number into the
public sync portion, which could be quickly extracted,
checked, and discarded, thereby validating the public sync
portion itself.

In one embodiment, packets can be checked by compar-
ing the source/destination IP pair generated by the sync field
with the pair appearing in the packet header. If (1) they
match, (2) the time stamp is valid, and (3) the dcad-man
timer has expired, then re-synchronization occurs;
otherwise, the packet is rejected. If enough processing
power is available, the dead-man timer and synchronization
tables can be avoided altogether, and the receiver would
simply resynchronize (e.g., validate) on every packet.

The foregoing scheme may require large-integer (e.g.,
160-bit) math, which may affect its implementation. Without
such large-integer registers, processing throughput would be
affected, thus potentially affecting security from a denial-
of-service standpoint. Nevertheless, as large-integer math
processing features become more prevalent, the costs of
implementing such a feature will be reduced.

D. Other Synchronization Schemes

As explained above, if W or more consecutive packets are
lost between a transmitter and receiver in a VPN (where W
is the window size), the receiver’s window will not have
been updated and the transmitter will be transmitting packets
oot in the receiver’s window. The sender and receiver will
not recover synchronization until perhaps the random pairs
in the window are repeated by chance. Therefore, there is a
need to keep a transmitter and receiver in synchronization
whenever possible and to re-establish synchronization
whenever it is lost.

A “checkpoint” scheme can be used to regain synchroni-
zation between a sender and a receiver that have fallen out
of synchronization. In this scheme, a checkpoint message
comprising a random IP address pair is used for communi-
cating synchronization information. In one embodiment,
two messages are used to communicate synchronization
information between a sender and a recipient:

1. SYNC_REQ is a message used by the sender to

indicate that it wants to synchronize; and

2. SYNC_ACK is a message used by the receiver to

inform the transmitter that it has been synchronized.

New Bay Capital, LLC
Ex.1015-Page 1450 of 3151

US 6,502,135 B1

27

According to one variation of this approach, both the trans-
mitter and receiver maintain three checkpoints (see FIG. 14):
1. In the transmitter, ckpt o (“checkpoint old”) is the IP
pair that was used to re-send the last SYNC_REQ
packet to the receiver. In the receiver, ckpt o
(“checkpoint old”) is the IP pair that receives repeated
SYNC__REQ packets from the transmitter.

2. In the transmitter, ckpt_n (“checkpoint new”) is the IP
pair that will be used to send the next SYNC_REQ
packet to the receiver. In the receiver, ckpt_n
(“checkpoint new”) is the IP pair that receives a new
SYNC_REQ packet from the transmitter and which
causes the receiver’s window to be re-aligned, ckpt_ o
set to ckpt__n, a new ckpt_ n to be generated and a new
ckpt_r to be generated.

3. In the transmitter, ckpt__r is the 1P pair that will be used
to send the next SYNC__ACK packet to the receiver. In
the receiver, ckpt_r is the IP pair that receives a new
SYNC__ACK packet from the transmitter and which
causes a new ckpt_n to be generated. Since SYNC__
ACK is transmitted from the receiver ISP to the sender
ISP, the transmitter ckpt r refers to the ckpt r of the
receiver and the receiver ckpt_ r refers to the ckpt_ r of
the transmitter (see FIG. 14).

When a transmitter initiates synchronization, the IP pair it
will use to transmit the next data packet is set to a prede-
termined value and when a receiver first receives a SYNC__
REQ, the receiver window is updated to be centered on the
transmitter’s next IP pair. This is the primary mechanism for
checkpoint synchronization.

Synchronization can be initiated by a packet counter (e.g.,
after every N packets transmitted, initiate a synchronization)
or by a timer (every S seconds, initiate a synchronization) or
a combination of both. See FIG. 15. From the transmitter’s
perspective, this technique operates as follows: (1) Each
transmitter periodically transmits a “sync request” message
to the receiver to make sure that it is in sync. (2) If the
receiver is still in sync, it sends back a “sync ack” message.
(If this works, no further action is necessary). (3) If no “sync
ack” has been received within a period of time, the trans-
mitter retransmits the sync request again. If the transmitter
reaches the next checkpoint without receiving a “sync ack™
response, then synchronization is broken, and the transmitter
should stop transmitting. The transmitter will continue to
send sync__reqs until it receives a sync__ack, at which point
transmission is reestablished.

From the receiver’s perspective, the scheme operates as
follows: (1) when it receives a “sync request” request from
the transmitter, it advances its window to the next check-
point position (even skipping pairs if necessary), and sends
a “sync ack” message to the transmitter. If sync was never
lost, then the “jump ahead” really just advances to the next
available pair of addresses in the table (i.c., normal
advancement).

If an interloper intercepts the “sync request” messages
and tries to interfere with communication by sending new
ones, it will be ignored if the synchronization has been
established or it it will actually help to re-establish synchro-
nization.

A window is realigned whenever a re-synchronization
occurs. This realignment entails updating the receiver’s
window to straddle the address pairs used by the packet
transmitted immediately after the transmission of the
SYNC__REQ packet. Normally, the transmitter and receiver
are in synchronization with one another. However, when
network events occur, the receiver’s window may have to be
advanced by many steps during resynchronization. In this

15

[
“wn

30

35

40

45

50

55

60

65

28

case, it is desirable to move the window ahead without
having to step through the intervening random numbers
sequentially. (This feature is also desirable for the auto-sync
approach discussed above).
E. Random Number Generator with a Jump-Ahead Capa-
bility

An attractive method for generating randomly hopped
addresses is to use identical random number generators in
the transmitter and receiver and advance them as packets are
transmitted and received. There are many random number
generation algorithms that could be used. Each one has
strengths and weaknesses for address hopping applications.

Linear congruential random number generators (LCRs)
are fast, simple and well characterized random number
generators that can be made to jump ahead n steps efficiently.
An LCR generates random numbers X, X,, X; . . . X,
starting with seed X, using a recurrence

X=(aX;_;+b)ymod ¢, @
where a, b and ¢ define a particular LCR. Another expression
for X,

X=((a"X+b)-b)/(a-1))mod ¢ 2)
enables the jump-ahead capability. The factor a‘ can grow
very large even for modest i if left unfettered. Therefore
some special properties of the modulo operation can be used
to control the size and processing time required to compute
(2). (2) can be rewritten as:

X=(a"Xo(a-1)+b)-b)/(a—1)mod c. 3)
It can be shown that:

(@' (Xo(a=1)+b)-b)/(a-1)mod c=((a’ mod((a—1)c)Xo(a—1)+b)-b)/
(a-1))mod ¢ @.

(X,(a—=1)+b) can be stored as (X (a—~1)+b) mod ¢, b as b mod
¢ and compute a* mod((a—~1)c) (this requires O(log(i)) steps).
A practical implementation of this algorithm would jump
a fixed distance, n, between synchronizations; this is tanta-
mount to synchronizing every n packets. The window would
commence n IP pairs from the start of the previous window.
Using X, the random number at the i checkpoint, as X,
and n as i, a node can store a” mod((a~1)c) once per LCR
and set
X=Xy y=((@" mod((a-1)0)X;*(a=1)+b)-b)/(a-1)mod ¢, (5)

f

to generate the random number for the j+17 synchroniza-
tion. Using this construction, a node could jump ahead an
arbitrary (but fixed) distance between synchronizations in a
constant amount of time (independent of n).

Pseudo-random number generators, in general, and LCRs,
in particular, will eventually repeat their cycles. This rep-
etition may present vulnerability in the IP hopping scheme.
An adversary would simply have to wait for a repeat to
predict future sequences. One way of coping with this
vulnerability is to create a random number generator with a
known long cycle. A random sequence can be replaced by a
new random number generator before it repeats. LCRs can
be constructed with known long cycles. This is not currently
true of many random number generators.

Random number generators can be cryptographically
insecure. An adversary can derive the RNG parameters by
examining the output or part of the output. This is true of
LCGs. This vulnerability can be mitigated by incorporating
an encryptor, designed to scramble the output as part of the
random number generator. The random number generator

New Bay Capital, LLC
Ex.1015-Page 1451 of 3151

US 6,502,135 B1

29

prevents an adversary from mounting an attack—e.g., a
known plaintext attack—against the encryptor.
F. Random Number Generator Example
Consider a RNG where a=31, b=4 and c=15. For this case
equation (1) becomes:
X=(31X; ;+4)mod 15. (0)
If one sets X,=1, equation (6) will produce the sequence
1,5,9,13,2,6,10,14,3,7, 11,0, 4, 8, 12. This sequence
will repeat indefinitely. For a jump ahead of 3 numbers in
this sequence a"=31°=29791, c¢*(a~1)=15*30=450 and a”
mod((a~1)c)=31% mod(15%30)=29791 mod(450)=91. Equa-
tion (5) becomes:
((91(X;30+4)-4)/30)mod 15 .

Table 1 shows the jump ahead calculations from (7) . The
calculations start at 5 and jump ahead 3.

TABLE 1
91 (01

I X, (X30+4) X30+4)-4 X30+4)-4/30 X
1 5 154 14010 467 2
4 2 64 5820 194 14
7 14 424 38580 1286 11
10 1 334 30390 1013 8
13 8 244 22200 740 5

G. Fast Packet Filter

Address hopping VPNs must rapidly determine whether a
packet has a valid header and thus requires further
processing, or has an invalid header (a hostile packet) and
should be immediately rejected. Such rapid determinations
will be referred to as “fast packet filtering.” This capability
protects the VPN from attacks by an adversary who streams
hostile packets at the receiver at a high rate of speed in the
hope of saturating the receiver’s processor (a so-called
“denial of service” attack). Fast packet filtering is an impor-
tant feature for implementing VPNs on shared media such as
Ethernet.

Assuming that all participants in a VPN share an unas-
signed “A” block of addresses, one possibility is to use an
experimental “A” block that will never be assigned to any
machine that is not address hopping on the shared medium.
“A” blocks have a 24 bits of address that can be hopped as
opposed to the 8 bits in “C” blocks. In this case a hopblock
will be the “A” block. The use of the experimental “A” block
is a likely option on an Ethernet because:

1. The addresses have no validity outside of the Ethernet
and will not be routed out to a valid outside destination
by a gateway.

2. There are 2** (~16 million) addresses that can be
hopped within each “A” block. This yields >280 trillion
possible address pairs making it very unlikely that an
adversary would guess a valid address. It also provides
acceptably low probability of collision between sepa-
rate VPNs (all VPNs on a shared medium indepen-
dently gencrate random address pairs from the same
“A” block).

3. The packets will not be received by someone on the
Ethernet who is not on a VPN (unless the machine is in
promiscuous mode) minimizing impact on non-VPN
computers.

The Ethernet example will be used to describe one

implementation of fast packet filtering. The ideal algorithm
would quickly examine a packet header, determine whether

15

30

40

50

55

60

65

30

the packet is hostile, and reject any hostile packets or
determine which active IP pair the packet header matches.
The problem is a classical associative memory problem. A
variety of techniques have been developed to solve this
problem (hashing, B-trees etc). Each of these approaches has
its strengths and weaknesses. For instance, hash tables can
be made to operate quite fast in a statistical sense, but can
occasionally degenerate into a much slower algorithm. This
slowness can persist for a period of time. Since there is a
need to discard hostile packets quickly at all times, hashing
would be unacceptable.

H. Presence Vector Algorithm

A presence vector is a bit vector of length 2" that can be
indexed by n-bit numbers (each ranging from 0 to 2"-1).
One can indicate the presence of k n-bit numbers (not
necessarily unique), by setting the bits in the presence vector
indexed by each number to 1. Otherwise, the bits in the
presence vector are 0. An n-bit number, X, is one of the k
numbers if and only if the x” bit of the presence vector is 1.
A fast packet filter can be implemented by indexing the
presence vector and looking for a 1, which will be referred
to as the “test.”

For example, suppose one wanted to represent the number
135 using a presence vector. The 1357 bit of the vector
would be set. Consequently, one could very quickly deter-
mine whether an address of 135 was valid by checking only
one bit: the 1357 bit. The presence vectors could be created
in advance corresponding to the table entries for the IP
addresses. In effect, the incoming addresses can be used as
indices into a long vector, making comparisons very fast. As
each RNG generates a new address, the presence vector is
updated to reflect the information. As the window moves,
the presence vector is updated to zero out addresses that are
no longer valid.

There is a trade-off between efficiency of the test and the
amount of memory required for storing the presence vector
(s). For instance, if one were to use the 48 bits of hopping
addresses as an index, the presence vector would have to be
35 terabytes. Clearly, this is too large for practical purposes.
Instead, the 48 bits can be divided into several smaller fields.
For instance, one could subdivide the 48 bits into four 12-bit
fields (see TIG. 16). This reduces the storage requirement to
2048 bytes at the expense of occasionally having to process
a hostile packet. In effect, instead of one long presence
vector, the decomposed address portions must match all four
shorter presence vectors before further processing is
allowed. (If the first part of the address portion doesn’t
match the first presence vector, there is no need to check the
remaining three presence vectors).

A presence vector will have a 1 in the y* bit if and only
if one or more addresses with a corresponding field of y are
active. An address is active only if each presence vector
indexed by the appropriate sub-field of the address is 1.

Consider a window of 32 active addresses and 3 check-
points. A hostile packet will be rejected by the indexing of
one presence vector more than 99% of the time. A hostile
packet will be rejected by the indexing of all 4 presence
vectors more than 99.9999995% of the time. On average,
hostile packets will be rejected in less than 1.02 presence
vector index operations.

The small percentage of hostile packets that pass the fast
packet filter will be rejected when matching pairs are not
found in the active window or are active checkpoints.
Hostile packets that serendipitously match a header will be
rejected when the VPN software attempts to decrypt the
header. However, these cases will be extremely rare. There
are many other ways this method can be configured to
arbitrate the space/speed tradeoffs.

New Bay Capital, LLC
Ex.1015-Page 1452 of 3151

US 6,502,135 B1

31

I. Further Synchronization Enhancements

A slightly modified form of the synchronization tech-
niques described above can be employed. The basic prin-
ciples of the previously described checkpoint synchroniza-
tion scheme remain unchanged. The actions resulting from
the reception of the checkpoints are, however, slightly
different. In this variation, the receiver will maintain
between 000 (“Out of Order”) and 2xWINDOW_SIZE+
000 active addresses (1£000EWINDOW_SIZE and
WINDOW_SIZE=1). OoO and WINDOW_SIZE are
engineerable parameters, where 000 is the minimum num-
ber of addresses needed to accommodate lost packets due to
events in the network or out of order arrivals and
WINDOW__SIZE is the number of packets transmitted
before a SYNC_REQ is issued. FIG. 17 depicts a storage
array for a receiver’s active addresses.

The receiver starts with the first 2xWINDOW_SIZE
addresses loaded and active (ready to receive data). As
packets are received, the corresponding entries are marked
as “used” and are no longer eligible to receive packets. The
transmitter maintains a packet counter, initially set to O,
containing the number of data packets transmitted since the
last initial transmission of a SYNC_REQ for which
SYNC_ACK has been received. When the transmitter
packet counter cquals WINDOW__SIZE, the transmittcr
generates a SYNC__REQ and does its initial transmission.
When the receiver receives a SYNC__REQ corresponding to
its current CKPT_N, it generates the next WINDOW__
SIZE addresses and starts loading them in order starting at
the first location after the last active address wrapping
around to the beginning of the array after the end of the array
has been reached. The receiver’s array might look like FIG.
18 when a SYNC__REQ has been received. In this case a
couple of packets have been either lost or will be received
out of order when the SYNC__REQ is received.

FIG. 19 shows the receiver’s array after the new addresses
have been generated. If the transmitter does not receive a
SYNC__ACK, it will re-issue the SYNC__REQ at regular
intervals. When the transmitter receives a SYNC__ACK, the
packet counter is decremented by WINDOW_SIZE. If the
packet counter reaches 2xWINDOW__SIZE—Oo0O then the
transmitter ceases sending data packets until the appropriate
SYNC_ACK is finally received. The transmitler then
resumes sending data packets. Future behavior is essentially
a repetition of this initial cycle. The advantages of this
approach are:

1. There is no need for an efficient jump ahead in the

random number gencrator,

2. No packet is ever transmitted that does not have a
corresponding entry in the receiver side

3. No timer based re-synchronization is necessary. This is
a consequence of 2.

4. The receiver will always have the ability to accept data
messages transmitted within OoO messages of the most
recently transmitted message.

J. Distributed Transmission Path Variant

Another embodiment incorporating various inventive
principles is shown in FIG. 20. In this embodiment, a
message transmission system includes a first computer 2001
in communication with a second computer 2002 through a
network 2011 of intermediary computers. In one variant of
this embodiment, the network includes two edge routers
2003 and 2004 cach of which is linked to a plurality of
Internet Service Providers (ISPs) 2005 through 2010. Each
ISP is coupled to a plurality of other ISPs in an arrangement
as shown in FIG. 20, which is a representative configuration
only and is not intended to be limiting. Each connection

10

15

30

35

45

50

55

60

65

32

between ISPs is labeled in FIG. 20 to indicate a specific
physical transmission path (e.g., AD is a physical path that
links ISP A (element 2005) to ISP D (element 2008)).
Packets arriving at each edge router are selectively trans-
mitted to one of the ISPs to which the router is attached on
the basis of a randomly or quasi-randomly selected basis.

As shown in FIG. 21, computer 2001 or edge router 2003
incorporates a plurality of link transmission tables 2100 that
identify, for each potential transmission path through the
network, valid sets of IP addresses that can be used to
transmit the packet. For example, AD table 2101 contains a
plurality of IP source/destination pairs that are randomly or
quasi-randomly generated. When a packet is to be transmit-
ted from first computer 2001 to second computer 2002, one
of the link tables is randomly (or quasi-randomly) selected,
and the next valid source/destination address pair from that
table is used to transmit the packet through the network. If
path AD is randomly selected, for example, the next source/
destination IP address pair (which is pre-determined to
transmit between ISP A (element 2005) and ISP B (element
2008)) is used to transmit the packet. If one of the trans-
mission paths becomes degraded or inoperative, that link
table can be set to a “down” condition as shown in table
2105, thus preventing addresses from being selected from
that table. Other transmission paths would be unaffected by
this broken link.

3. CONTINUATION-IN-PART IMPROVEMENTS

The following describes various improvements and fea-
tures that can be applied to the embodiments described
above. The improvements include: (1) a load balancer that
distributes packets across different transmission paths
according to transmission path quality; (2) a DNS proxy
server that transparently creates a virtual private network in
response to a domain name inquiry; (3) a large-to-small link
bandwidth management feature that prevents denial-of-
service attacks at system chokepoints; (4) a traffic limiter
that regulates incoming packets by limiting the rate at which
a transmitter can be synchronized with a receiver; and (5) a
signaling synchronizer that allows a large number of nodes
to communicate with a central node by partitioning the
communication function between two separate entities. Each
is discussed separately below.

A. Load Balancer

Various embodiments described above include a system in
which a transmitting node and a receiving node are coupled
through a plurality of transmission paths, and wherein
successive packets are distributed quasi-randomly over the
plurality of paths. See, for example, FIGS. 20 and 21 and
accompanying description. The improvement extends this
basic concept to encompass distributing packets across
different paths in such a manner that the loads on the paths
are generally balanced according to transmission link qual-
ity.

In one embodiment, a system includes a transmitting node
and a receiving node that are linked via a plurality of
transmission paths having potentially varying transmission
quality. Successive packets are transmitted over the paths
based on a weight value distribution function for each path.
The rate that packets will be transmitted over a given path
can be different for each path. The relative “health” of each
transmission path is monitored in order to identify paths that
have become degraded. In one embodiment, the health of
each path is monitored in the transmitter by comparing the
number of packets transmitted to the number of packet
acknowledgements received. Each transmission path may
comprise a physically separate path (e.g., via dial-up phone

New Bay Capital, LLC
Ex.1015-Page 1453 of 3151

US 6,502,135 B1

33

line, computer network, router, bridge, or the like), or may
comprise logically separate paths contained within a broad-
band communication medium (e.g., separate channels in an
FDM, TDM, CDMA, or other type of modulated or
unmodulated transmission link).

When the transmission quality of a path falls below a
predetermined threshold and there are other paths that can
transmit packets, the transmitter changes the weight value
used for that path, making it less likely that a given packet
will be transmitted over that path. The weight will preferably
be set no lower than a minimum value that keeps nominal
traffic on the path. The weights of the other available paths
are altered to compensate for the change in the affected path.
When the quality of a path degrades to where the transmitter
is turned oll by the synchronization [unction (i.¢., no packets
are arriving at the destination), the weight is set to zero. If
all transmitters are turned off, no packets are sent.

Conventional TCP/IP protocols include a “throttling™
feature that reduces the transmission rate of packets when it
is determined that delays or errors are occurring in trans-
mission. In this respect, timers are sometimes used to
determine whether packets have been received. These con-
ventional techniques for limiting transmission of packets,
however, do not involve multiple transmission paths
between two nodes wherein transmission across a particular
path relative to the others is changed based on link quality.

According to certain embodiments, in order to damp
oscillations that might otherwise occur if weight distribu-
tions are changed drastically (e.g., according to a step
function), a linear or an exponential decay formula can be
applied to gradually decrease the weight value over time that
a degrading path will be used. Similarly, if the health of a
degraded path improves, the weight value for that path is
gradually increased.

Transmission link health can be evaluated by comparing
the number of packets that are acknowledged within the
transmission window (see embodiments discussed above) to
the number of packets transmitted within that window and
by the state of the transmitter (i.e., on or off). In other words,
rather than accumulating general transmission statistics over
time for a path, one specific implementation uses the “win-
dowing” concepts described above to evaluate transmission
path health.

The same scheme can be used to shift virtual circuit paths
from an “unhealthy” path to a “healthy” one, and to select
a path for a new virtual circuit.

FIG. 22A shows a flowchart for adjusting weight values
associated with a plurality of transmission links. It is
assumed that software executing in one or more computer
nodes executes the steps shown in FIG. 22A. It is also
assumed that the software can be stored on a computer-
readable medium such as a magnetic or optical disk for
execution by a computer.

Beginning in step 2201, the transmission quality of a
given transmission path is measured. As described above,
this measurement can be based on a comparison between the
number of packets transmitted over a particular link to the
number of packet acknowledgements received over the link
(e.g., per unit time, or in absolute terms). Alternatively, the
quality can be evaluated by comparing the number of
packets that are acknowledged within the transmission win-
dow to the number of packets that were transmitted within
that window. In yet another variation, the number of missed
synchronization messages can be used to indicate link
quality. Many other variations are of course possible.

In step 2202, a check is made to determine whether more
than one transmitter (e.g., transmission path) is turned on. If
not, the process is terminated and resumes at step 2201.

[
“wn

30

35

40

45

50

55

60

65

34

In step 2203, the link quality is compared to a given
threshold (e.g., 50%, or any arbitrary number). If the quality
falls below the threshold, then in step 2207 a check is made
to determine whether the weight is above a minimum level
(e.g., 1%). If not, then in step 2209 the weight is set to the
minimum level and processing resumes at step 2201. If the
weight is above the minimum level, then in step 2208 the
weight is gradually decreased for the path, then in step 2206
the weights for the remaining paths are adjusted accordingly
to compensate (e.g., they are increased).

If in step 2203 the quality of the path was greater than or
equal to the threshold, then in step 2204 a check is made to
determine whether the weight is less than a steady-state
value for that path. If so, then in step 2205 the weight is
increased toward the steady-state value, and in step 2206 the
weights for the remaining paths are adjusted accordingly to
compensate (e.g., they are decreased). If in step 2204 the
weight is not less than the steady-state value, then process-
ing resumes at step 2201 without adjusting the weights.

The weights can be adjusted incrementally according to
various functions, preferably by changing the value gradu-
ally. In one embodiment, a linearly decreasing function is
used to adjust the weights; according to another
embodiment, an exponential decay function is used. Gradu-
ally changing the weights helps to damp oscillators that
might otherwise occur if the probabilities were abruptly.

Although not explicitly shown in FIG. 22A the process
can be performed only periodically (e.g., according to a time
schedule), or it can be continuously run, such as in a
background mode of operation. In one embodiment, the
combined weights of all potential paths should add up to
unity (e.g., when the weighting for one path is decreased, the
corresponding weights that the other paths will be selected
will increase).

Adjustments to weight values for other paths can be
prorated. For example, a decrease of 10% in weight value for
one path could result in an evenly distributed increase in the
weights for the remaining paths. Alternatively, weightings
could be adjusted according to a weighted formula as
desired (e.g., favoring healthy paths over less healthy paths).
In yet another variation, the difference in weight value can
be amortized over the remaining links in a manner that is
proportional to their traffic weighting.

FIG. 22B shows steps that can be executed to shut down
transmission links where a transmitter turns off. In step
2210, a transmitter shut-down event occurs. In step 2211, a
test is made to determine whether at least one transmitter is
still turned on. If not, then in step 2215 all packets are
dropped until a transmitter turns on. If in step 2211 at least
one transmitter is turned on, then in step 2212 the weight for
the path is set to zero, and the weights for the remaining
paths are adjusted accordingly.

FIG. 23 shows a computer node 2301 employing various
principles of the above-described embodiments. It is
assumed that two computer nodes of the type shown in FIG.
23 communicate over a plurality of separate physical trans-
mission paths. As shown in FIG. 23, four transmission paths
X1 through X4 are defined for communicating between the
two nodes. Each node includes a packet transmitter 2302
that operates in accordance with a transmit table 2308 as
described above. (The packet transmitter could also operate
without using the IP-hopping features described above, but
the following description assumes that some form of hop-
ping is employed in conjunction with the path selection
mechanism.). The computer node also includes a packet
receiver 2303 that operates in accordance with a receive
table 2309, including a moving window W that moves as

New Bay Capital, LLC
Ex.1015-Page 1454 of 3151

US 6,502,135 B1

35

valid packets are received. Invalid packets having source
and destination addresses that do not fall within window W
are rejected.

As each packet is readied for transmission, source and
destination IP addresses (or other discriminator values) are
selected from transmit table 2308 according to any of the
various algorithms described above, and packets containing
these source/destination address pairs, which correspond to
the node to which the four transmission paths are linked, are
generated to a transmission path switch 2307. Switch 2307,
which can comprise a software function, selects from one of
the available transmission paths according to a weight
distribution table 2306. For example, if the weight for path
X1 is 0.2, then every fifth packet will be transmitted on path
X1. Asimilar regime holds true for the other paths as shown.
Initially, each link’s weight value can be set such that it is
proportional to its bandwidth, which will be referred to as its
“steady-state” value.

Packet receiver 2303 generates an output to a link quality
measurement function 2304 that operates as described above
to determine the quality of each transmission path. (The
input to packet receiver 2303 for receiving incoming packets
is omitted for clarity). Link quality measurement function
2304 compares the link quality to a threshold for each
transmission link and, if necessary, generates an output to
weight adjustment function 2305. If a weight adjustment is
required, then the weights in table 2306 are adjusted
accordingly, preferably according to a gradual (e.g., linearly
or exponentially declining) function. In one embodiment,
the weight values for all available paths are initially set to
the same value, and only when paths degrade in quality are
the weights changed to reflect differences.

Link quality measurement function 2304 can be made to
operate as part of a synchronizer function as described
above. That is, if resynchronization occurs and the receiver
detects that synchronization has been lost (e.g., resulting in
the synchronization window W being advanced out of
sequence), that fact can be used to drive link quality mea-
surement function 2304. According to one embodiment,
load balancing is performed using information garnered
during the normal synchronization, augmented slightly to
communicate link health from the receiver to the transmitter.
The receiver maintains a count, MESS__ R(W), of the mes-
sages received in synchronization window W. When it
receives a synchronization request (SYNC_REQ) corre-
sponding to the end of window W, the receiver includes
counter MESS__ R in the resulting synchronization acknowl-
edgement (SYNC__ACK) sent back to the transmitter. This
allows the transmitter to compare messages sent to messages
received in order to asses the health of the link.

If synchronization is completely lost, weight adjustment
function 2305 decreases the weight value on the affected
path to zero. When synchronization is regained, the weight
valuc for the affected path is gradually incrcascd to its
original value. Alternatively, link quality can be measured
by evaluating the length of time required for the receiver to
acknowledge a synchronization requcst. In onc cmbodiment,
separate transmit and receive tables are used for each
transmission path.

When the transmitter receives a SYNC__ACK, the
MESS_ R is compared with the number of messages trans-
mitted in a window (MESS_T). When the transmitter
receives a SYNC__ACK, the traffic probabilities will be
examined and adjusted if necessary. MESS__R is compared
with the number of messages transmitted in a window
(MESS__T). There are two possibilities:

1. If MESS_ R is less than a threshold value, THRESH,

then the link will be deemed to be unhealthy. If the

10

[
“wn

30

35

40

45

50

55

60

65

36

transmitter was turned off, the transmitter is turned on
and the weight P for that link will be set to a minimum
value MIN. This will keep a trickle of traffic on the link
for monitoring purposes until it recovers. If the trans-
mitter was turned on, the weight P for that link will be
set to:

P'=0xMIN+(1-o)xP @
Equation 1 will exponentially damp the traffic weight value
to MIN during sustained periods of degraded service.

2. If MESS_R for a link is greater than or equal to
THRESH, the link will be deemed healthy. If the
weight P for that link is greater than or equal to the
steady state value S for that link, then P is left unaltered.
If the weight P for that link is less than THRESH then
P will be set to:

P=pxS+(1-P)xP @)
where f is a parameter such that O<=f<=1 that determines

the damping rate of P.

Equation 2 will increase the traffic weight to S during
sustained periods of acceptable service in a damped expo-
nential fashion.

A detailed example will now be provided with reference
to FIG. 24. As shown in FIG. 24, a first computer 2401
communicates with a second computer 2402 through two
routers 2403 and 2404. Each router is coupled to the other
router through three transmission links. As described above,
these may be physically diverse links or logical links
(including virtual privatc networks).

Suppose that a first link L1 can sustain a transmission
bandwidth of 100 Mb/s and has a window size of 32; link .2
can sustain 75 Mb/s and has a window sizc of 24; and link
L3 can sustain 25 Mb/s and has a window size of 8. The
combined links can thus sustain 200 Mb/s. The steady state
traffic weights are 0.5 for link L1; 0.375 for link L2, and
0.125 for link L3. MIN=1 Mb/s, THRESH=0.8 MESS_ T
for each link, a=0.75 and p=0.5. These traffic weights will
remain stable until a link stops for synchronization or reports
a number of packets received less than its 'THRESH. Con-
sider the following sequence of events:

1. Link L1 receives a SYNC_ACK containing a
MESS_R of 24, indicating that only 75% of the
MESS_ T (32) messages transmitted in the last window
were successfully received. Link 1 would be below
THRESH (0.8). Consequently, link L1’s traffic weight
value would be reduced to 0.12825, while link I1.2°s
traffic weight value would be increased to 0.65812 and
link I.3’s traffic weight value would be increased to
0.217938.

2. Link I.2 and L3 remained healthy and link L1 stopped
to synchronize. Then link L1’s traffic weight value
would be set to 0, link [.2°s traffic weight value would
be set to 0.75, and link [.33’s traffic weight value would
be set to 0.25.

3. Link 1.1 finally received a SYNC__ACK containing a
MESS_ R of 0 indicating that nonc of thc MESS_ T
(32) messages transmitted in the last window were
successfully received. Link L1 would be below
THRESIIL. Link L1°s traffic weight value would be
increased to 0.005, link 1.2’s traffic weight value would
be decreased to 0.74625, and link [.3’s traffic weight
value would be decreased to 0.24875.

4. Link L1 received a SYNC_ACK containing a
MESS_ R of 32 indicating that 100% of the MESS_ T

New Bay Capital, LLC
Ex.1015-Page 1455 of 3151

US 6,502,135 B1

37

(32) messages transmitted in the last window were
successfully received. Link L1 would be above
THRESH. Link L1’s traffic weight value would be
increased to 0.2525, while link 1.2’s traffic weight value
would be decreased to 0.560625 and link L.3’s traffic
weight value would be decreased to 0.186875.

5. Link L1 received a SYNC_ACK containing a
MESS_ R of 32 indicating that 100% of the MESS__T
(32) messages transmitted in the last window were
successfully received. Link L1 would be above
THRESH. Link L1’s traffic weight value would be
increased to 0.37625; link 1.2°s traffic weight value
would be decreased to 0.4678125, and link 1.3’s traffic
weight value would be decreased to 0.1559375.

6. Link L1 remains healthy and the traffic probabilities

approach their steady state traffic probabilities.
B. Use of a DNS Proxy to Transparently Create Virtual
Private Networks

Asecond improvement concerns the automatic creation of
a virtual private network (VPN) in response to a domain-
name server look-up function.

Conventional Domain Name Servers (DNSs) provide a
look-up function that returns the IP address of a requested
computer or host. For example, when a computer user types
in the web name “Yahoo.com,” the user’s web browser
transmits a request to a DNS, which converts the name into
a four-part IP address that is returned to the user’s browser
and then used by the browser to contact the destination web
site.

This conventional scheme is shown in FIG. 25. A user’s
computer 2501 includes a client application 2504 (for
example, a web browser) and an IP protocol stack 2505.
When the user enters the name of a destination host, a
request DNS REQ is made (through IP protocol stack 2505)
to a DNS 2502 to look up the IP address associated with the
name. The DNS returns the IP address DNS RESP to client
application 2504, which is then able to use the IP address to
communicate with the host 2503 through separate transac-
tions such as PAGE REQ and PAGE RESP.

In the conventional architecture shown in FIG. 25, nefari-
ous listeners on the Internet could intercept the DNS REQ
and DNS RESP packets and thus learn what IP addresses the
user was contacting. For example, if a user wanted to set up
a secure communication path with a web site having the
name “Target.com,” when the user’s browser contacted a
DNS to find the IP address for that web site, the true IP
address of that web site would be revealed over the Internet
as part of the DNS inquiry. 'This would hamper anonymous
communications on the Internet.

One conventional scheme that provides secure virtual
private networks over the Internet provides the DNS server
with the public keys of the machines that the DNS server has
the addresses for. This allows hosts to retrieve automatically
the public keys of a host that the host is to communicate with
so that the host can set up a VPN without having the user
enter the public key of the destination host. One implemen-
tation of this standard is presently being developed as part of
the FreeS/WAN project(REC 2535).

The conventional scheme suffers from certain drawbacks.
For example, any user can perform a DNS request.
Moreover, DNS requests resolve to the same value for all
users.

According to certain aspects of the invention, a special-
ized DNS server traps DNS requests and, if the request is
from a special type of user (e.g., one for which secure
communication services are defined), the server does not
return the true IP address of the target node, but instead

30

35

40

45

50

55

60

65

38

automatically sets up a virtual private network between the
target node and the user. The VPN is preferably imple-
mented using the IP address “hopping” features of the basic
invention described above, such that the true identity of the
two nodes cannot be determined even if packets during the
communication are intercepted. For DNS requests that are
determined to not require secure services (e.g., an unregis-
tered user), the DNS server transparently “passes through”
the request to provide a normal look-up function and return
the IP address of the target web server, provided that the
requesting host has permissions to resolve unsecured sites.
Different users who make an identical DNS request could be
provided with different results.

FIG. 26 shows a system employing various principles
summarized above. A user’s computer 2601 includes a
conventional client (e.g., a web browser) 2605 and an IP
protocol stack 2606 that preferably operates in accordance
with an IP hopping function 2607 as outlined above. A
modified DNS server 2602 includes a conventional DNS
server function 2609 and a DNS proxy 2610. A gatekeeper
server 2603 is interposed between the modified DNS server
and a secure target site 2704. An “unsecure” target site 2611
is also accessible via conventional IP protocols.

According to one embodiment, DNS proxy 2610 inter-
cepts all DNS lookup functions from client 2605 and deter-
mines whether access to a secure site has been requested. If
access to a secure site has been requested (as determined, for
example, by a domain name extension, or by reference to an
internal table of such sites), DNS proxy 2610 determines
whether the user has sufficient security privileges to access
the site. If so, DNS proxy 2610 transmits a message to
gatekeeper 2603 requesting that a virtual private network be
created between user computer 2601 and secure target site
2604. In one embodiment, gatekeeper 2603 creates “hop-
blocks” to be used by computer 2601 and secure target site
2604 for secure communication. Then, gatekeeper 2603
communicates these to user computer 2601. Thereafter,
DNS proxy 2610 returns to user computer 2601 the resolved
address passed to it by the gatekeeper (this address could be
different from the actual target computer) 2604, preferably
using a secure administrative VPN. The address that is
returned need not be the actual address of the destination
computer.

Had the user requested lookup of a non-secure web site
such as site 2611, DNS proxy would merely pass through to
conventional DNS server 2609 the look-up request, which
would be handled in a conventional manner, returning the IP
address of non-secure web site 2611. If the user had
requested lookup of a secure web site but lacked credentials
to create such a connection, DNS proxy 2610 would return
a “host unknown” error to the user. In this manner, different
users requesting access to the same DNS name could be
provided with different look-up results.

Gatekeeper 2603 can be implemented on a scparate
computer (as shown in FIG. 26) or as a function within
modified DNS server 2602. In general, it is anticipated that
gatekeeper 2703 facilitates the allocation and exchange of
information needed to communicate securely, such as using
“hopped” IP addresses. Secure hosts such as site 2604 are
assumed to be equipped with a secure communication
function such as an IP hopping function 2608.

It will be appreciated that the functions of DNS proxy
2610 and DNS server 2609 can be combined into a single
server for convenience. Moreover, although element 2602 is
shown as combining the functions of two servers, the two
servers can be made to operate independently.

FIG. 27 shows steps that can be executed by DNS proxy
server 2610 to handle requests for DNS look-up for secure

New Bay Capital, LLC
Ex.1015-Page 1456 of 3151

US 6,502,135 B1

39

hosts. In step 2701, a DNS look-up request is received for a
target host. In step 2702, a check is made to determine
whether access to a secure host was requested. If not, then
in step 2703 the DNS request is passed to conventional DNS
server 2609, which looks up the IP address of the target site
and returns it to the user’s application for further processing.

In step 2702, if access to a secure host was requested, then
in step 2704 a further check is made to determine whether
the user is authorized to connect to the secure host. Such a
check can be made with reference to an internally stored list
of authorized IP addresses, or can be made by communi-
cating with gatekeeper 2603 (¢.g., over an “administrative”
VPN that is secure). It will be appreciated that different
levels of security can also be provided for different catego-
ries of hosts. For example, some sites may be designated as
having a certain security level, and the security level of the
user requesting access must match that security level. The
user’s security level can also be determined by transmitting
a request message back to the user’s computer requiring that
it prove that it has sufficient privileges.

If the user is not authorized to access the secure site, then
a “host unknown” message is returned (step 2705). If the
user has sufficient security privileges, then in step 2706 a
secure VPN is established between the user’s computer and
the secure target site. As described above, this is preferably
done by allocating a hopping regime that will be carried out
between the user’s computer and the secure target site, and
is preferably performed transparently to the user (i.e., the
user need not be involved in creating the secure link). As
described in various embodiments of this application, any of
various fields can be “hopped” (e.g., IP source/destination
addresses; a field in the header; etc.) in order to communi-
cate securely.

Some or all of the security functions can be embedded in
gatekeeper 2603, such that it handles all requests to connect
to secure sites. In this embodiment, DNS proxy 2610
communicates with gatekeeper 2603 to determine
(preferably over a secure administrative VPN) whether the
user has access to a particular web site. Various scenarios for
implementing these features are described by way of
example below:

Scenario #1: Client has permission to access target
computer, and gatekeeper has a rule to make a VPN for the
client. In this scenario, the client’s DNS request would be
received by the DNS proxy server 2610, which would
forward the request to gatekeeper 2603. The gatekeeper
would establish a VPN between the client and the requested
target. ‘The gatekeeper would provide the address of the
destination to the DNS proxy, which would then return the
resolved name as a result. The resolved address can be
transmitted back to the client in a secure administrative
VPN.

Scenario #2: Client does not have permission to access
target computer. In this scenario, the client’s DNS request
would be received by the DNS proxy server 2610, which
would forward the request to gatekeeper 2603. The gate-
keeper would reject the request, informing DNS proxy
server 2610 that it was unable to find the target computer.
The DNS proxy 2610 would then return a “host unknown™
error message to the client.

Scenario #3: Client has permission to connect using a
normal non-VPN link, and the gatekeeper does not have a
rule to set up a VPN for the client to the target site. In this
scenario, the client’s DNS request is received by DNS proxy
server 2610, which would check its rules and determine that
no VPN is needed. Gatekeeper 2603 would then inform the
DNS proxy server to forward the request to conventional

[
“wn

30

35

40

45

50

55

60

65

40

DNS server 2609, which would resolve the request and
return the result to the DNS proxy server and then back to
the client.

Scenario #4: Client does not have permission to establish
a normal/non-VPN link, and the gatekeeper does not have a
rule to make a VPN for the client to the target site. In this
scenario, the DNS proxy server would receive the client’s
DNS request and forward it to gatekeeper 2603. Gatekeeper
2603 would determine that no special VPN was needed, but
that the client is not authorized to communicate with non-
VPN members. The gatekeeper would reject the request,
causing DNS proxy server 2610 to return an error message
to the client.

C. Large Link to Small Link Bandwidth Management

One feature of the basic architecture is the ability to
prevent so-called “denial of service” attacks that can occur
if a computer hacker floods a known Internet node with
packets, thus preventing the node from communicating with
other nodes. Because IP addresses or other fields are
“hopped” and packets arriving with invalid addresses are
quickly discarded, Internet nodes are protected against
flooding targeted at a single IP address.

In a system in which a computer is coupled through a link
having a limited bandwidth (e.g., an edge router) to a node
that can support a much higher-bandwidth link (e.g., an
Internet Service Provider), a potential weakness could be
exploited by a determined hacker. Referring to FIG. 28,
suppose that a first host computer 2801 is communicating
with a second host computer 2804 using the IP address
hopping principles described above. The first host computer
is coupled through an edge router 2802 to an Internet Service
Provider (ISP) 2803 through a low bandwidth link (LOW
BW), and is in turn coupled to second host computer 2804
through parts of the Internet through a high bandwidth link
(HIGH BW). In this architecture, the ISP is able to support
a high bandwidth to the internet, but a much lower band-
width to the edge router 2802.

Suppose that a computer hacker is able to transmit a large
quantity of dummy packets addressed to first host computer
2801 across high bandwidth link HIGH BW. Normally, host
computer 2801 would be able to quickly reject the packets
since they would not fall within the acceptance window
permitted by the IP address hopping scheme. However,
because the packets must travel across low bandwidth link
LOW BW, the packets overwhelm the lower bandwidth link
before they are received by host computer 2801.
Consequently, the link to host computer 2801 is effectively
flooded before the packets can be discarded.

According to one inventive improvement, a “link guard”
function 2805 is inserted into the high-bandwidth node (e.g.,
ISP 2803) that quickly discards packets destined for a
low-bandwidth target node if they are not valid packets.
Each packet destined for a low-bandwidth node is crypto-
graphically authenticated to determine whether it belongs to
a VPN. If it is not a valid VPN packet, the packet is
discarded at the high-bandwidth node. If the packet is
authenticated as belonging to a VPN, the packet is passed
with high preference. If the packet is a valid non-VPN
packet, it is passed with a lower quality of service (e.g.,
lower priority).

In one embodiment, the ISP distinguishes between VPN
and non-VPN packets using the protocol of the packet. In the
case of IPSEC [rfc 2401], the packets have IP protocols 420
and 421. In the case of the TARP VPN, the packets will have
an IP protocol that is not yet defined. The ISP’s link guard,
2805, maintains a table of valid VPNs which it uses to
validate whether VPN packets are cryptographically valid.

New Bay Capital, LLC
Ex.1015-Page 1457 of 3151

US 6,502,135 B1

41

According to one embodiment, packets that do not fall
within any hop windows used by nodes on the low-
bandwidth link are rejected, or are sent with a lower quality
of service. One approach for doing this is to provide a copy
of the IP hopping tables used by the low-bandwidth nodes to
the high-bandwidth node, such that both the high-bandwidth
and low-bandwidth nodes track hopped packets (e.g., the
high-bandwidth node moves its hopping window as valid
packets are received). In such a scenario, the high-
bandwidth node discards packets that do not fall within the
hopping window before they are transmitted over the low-
bandwidth link. Thus, for example, ISP 2903 maintains a
copy 2910 of the receive table used by host computer 2901.
Incoming packets that do not fall within this receive table are
discarded. According to a dilferent embodiment, link guard
2805 validates each VPN packet using a keyed hashed
message authentication code (HMAC) [rfc 2104].

According to another embodiment, separate VPNs (using,
for example, hopblocks) can be established for communi-
cating between the low-bandwidth node and the high-
bandwidth node (i.e., packets arriving at the high-bandwidth
node are converted into different packets before being
transmitted to the low-bandwidth node).

As shown in FIG. 29, for example, suppose that a first host
computer 2900 is communicating with a second host com-
puter 2902 over the Internet, and the path includes a high
bandwidth link HIGH BW to an ISP 2901 and a low
bandwidth link LOW BW through an edge router 2904. In
accordance with the basic architecture described above, first
host computer 2900 and second host computer 2902 would
exchange hopblocks (or a hopblock algorithm) and would be
able to create matching transmit and receive tables 2905,
2906, 2912 and 2913. Then in accordance with the basic
architecture, the two computers would transmit packets
having seemingly random IP source and destination
addresses, and each would move a corresponding hopping
window in its receive table as valid packets were received.

Suppose that a nefarious computer hacker 2903 was able
to deduce that packets having a certain range of IP addresses
(e.g., addresses 100 to 200 for the sake of simplicity) are
being transmitted to ISP 2901, and that these packets are
being forwarded over a low-bandwidth link. ITacker com-
puter 2903 could thus “flood” packets having addresses
falling into the range 100 to 200, expecting that they would
be forwarded along low bandwidth link LOW BW, thus
causing the low bandwidth link to become overwhelmed.
The fast packet reject mechanism in first host computer 3000
would be of little use in rejecting these packets, since the low
bandwidth link was eftfectively jammed before the packets
could be rejected. In accordance with one aspect of the
improvement, however, VPN link guard 2911 would prevent
the attack from impacting the performance of VPN traffic
because the packets would either be rejected as invalid VPN
packets or given a lower quality of service than VPN traffic
over the lower bandwidth link. A denial-of-service flood
attack could, however, still disrupt non-VPN traffic.

According to one embodiment of the improvement, ISP
2901 maintains a separate VPN with first host computer
2900, and thus translates packets arriving at the ISP into
packets having a different IP header before they are trans-
mitted to host computer 2900. The cryptographic keys used
to authenticate VPN packets at the link guard 2911 and the
cryptographic keys used to encrypt and decrypt the VPN
packets at host 2902 and host 2901 can be different, so that
link guard 2911 does not have access to the private host data;
it only has the capability to authenticate those packets.

According to yet a third embodiment, the low-bandwidth
node can transmit a special message to the high-bandwidth

&)
o

30

35

40

45

50

55

60

65

42

node instructing it to shut down all transmissions on a
particular IP address, such that only hopped packets will
pass through to the low-bandwidth node. This embodiment
would prevent a hacker from flooding packets using a single
IP address. According to yet a fourth embodiment, the
high-bandwidth node can be configured to discard packets
transmitted to the low-bandwidth node if the transmission
rate exceeds a certain predetermined threshold for any given
IP address; this would allow hopped packets to go through.
In this respect, link guard 2911 can be used to detect that the
rate of packets on a given IP address are exceeding a
threshold rate; further packets addressed to that same IP
address would be dropped or transmitted at a lower priority
(e.g., delayed).

D. Traflic Limiter

In a system in which multiple nodes are communicating
using “hopping” technology, a treasonous insider could
internally flood the system with packets. In order to prevent
this possibility, one inventive improvement involves setting
up “contracts” between nodes in the system, such that a
receiver can impose a bandwidth limitation on each packet
sender. One technique for doing this is to delay acceptance
of a checkpoint synchronization request from a sender until
a certain time period (e.g., one minute) has elapsed. Each
receiver can effectively control the rate at which its hopping
window moves by delaying “SYNC ACK” responses to
“SYNC__REQ” messages.

A simple modification to the checkpoint synchronizer will
serve to protect a receiver from accidental or deliberate
overload from an internally treasonous client. This modifi-
cation is based on the observation that a receiver will not
update its tables until a SYNC_REQ is received on hopped
address CKPT_N. It is a simple matter of deferring the
generation of a new CKPT__N until an appropriate interval
after previous checkpoints.

Suppose a receiver wished to restrict reception from a
transmitter to 100 packets a second, and that checkpoint
synchronization messages were triggered every 50 packets.
A compliant transmitter would not issue new SYNC__REQ
messages more often than every 0.5 seconds. The receiver
could delay a non-compliant transmitter from synchronizing
by delaying the issuance of CKPT__N for 0.5 second after
the last SYNC__REQ was accepted.

In general, if M receivers need to restrict N transmitters
issuing new SYNC__REQ messages after every W messages
to sending R messages a second in aggregate, each receiver
could defer issuing a new CKPT__N until MxNxW/R sec-
onds have elapsed since the last SYNC_REQ has been
received and accepted. If the transmitter exceeds this rate
between a pair of checkpoints, it will issue the new check-
point before the receiver is ready to receive it, and the
SYNC_REQ will be discarded by the receiver. After this,
the transmitter will re-issue the SYNC_ REQ every Ti
seconds until it receives a SYNC_ACK. The receiver will
cventually updatc CKPT_N and the SYNC_REQ will be
acknowledged. If the transmission rate greatly exceeds the
allowed rate, the transmitter will stop until it is compliant. If
the transmitter cxceeds the allowed rate by a little, it will
eventually stop after several rounds of delayed synchroni-
zation until it is in compliance. Hacking the transmitter’s
code to not shut off only permits the transmitter to lose the
acceptance window. In this case it can recover the window
and proceed only after it is compliant again.

Two practical issues should be considered when imple-
menting the above scheme:

1. The receiver rate should be slightly higher than the
permitted rate in order to allow for statistical fluctua-
tions in traffic arrival times and non-uniform load
balancing.

New Bay Capital, LLC
Ex.1015-Page 1458 of 3151

US 6,502,135 B1

43
2. Since a transmitter will rightfully continue to transmit
for a period after a SYNC_REQ is transmitted, the
algorithm above can artificially reduce the transmitter’s
bandwidth. If events prevent a compliant transmitter
from synchronizing for a period (e.g. the network
dropping a SYNC_RLQ ora SYNC_ACK) aSYNC__
REQ will be accepted later than expected. After this,
the transmitter will transmit fewer than expected mes-
sages before encountering the next checkpoint. The
new checkpoint will not have been activated and the
transmitter will have to retransmit the SYNC__ REQ.
This will appear to the receiver as if the transmitter is
not compliant. 'Therefore, the next checkpoint will be
accepted late from the transmitter’s perspective. This
has the effect of reducing the transmitter’s allowed
packet rate until the transmitter transmits at a packet
rate below the agreed upon rate for a period of time.

To guard against this, the receiver should keep track of the
times that the last C SYNC_REQs were received and
accepted and use the minimum of MxNxW/R seconds after
the last SYNC_REQ has been received and accepted,
2xMxNxW/R seconds after next to the last SYNC__REQ
has been received and accepted, CxMxNxW/R seconds
after (C—l)"' to the last SYNC__REQ has been received, as
the time to activate CKPT N. This prevents the receiver
from inappropriately limiting the transmitter’s packet rate if
at least one out of the last C SYNC__REQs was processed
on the first attempt.

FIG. 30 shows a system employing the above-described
principles. In FIG. 30, two computers 3000 and 3001 are
assumed to be communicating over a network N in accor-
dance with the “hopping™ principles described above (e.g.,
hopped IP addresses, discriminator values, etc.). For the sake
of simplicity, computer 3000 will be referred to as the
receiving computer and computer 3001 will be referred to as
the transmitting computer, although full duplex operation is
of course contemplated. Moreover, although only a single
transmitter is shown, multiple transmitters can transmit to
receiver 3000.

As described above, receiving computer 3000 maintains a
receive table 3002 including a window W that defines valid
IP address pairs that will be accepted when appearing in
incoming data packets. Transmitting computer 3001 main-
tains a transmit table 3003 from which the next IP address
pairs will be selected when transmitting a packet to receiv-
ing computer 3000. (For the sake of illustration, window W
is also illustrated with reference to transmit table 3003). As
transmitting computer moves through its table, it will even-
tually generate a SYNC_REQ message as illustrated in
function 3010. This is a request to receiver 3000 to syn-
chronize the receive table 3002, from which transmitter
3001 expects a response in the form of a CKPT__N (included
as part of a SYNC_ACK message). If transmitting com-
puter 3001 transmits more messages than its allotment, it
will prematurely generate the SYNC_REQ message. (If it
has been altered to remove the SYNC _REQ message gen-
eration altogether, it will fall out of synchronization since
receiver 3000 will quickly reject packets that fall outside of
window W, and the extra packets generated by transmitier
3001 will be discarded).

In accordance with the improvements described above,
receiving computer 3000 performs certain steps when a
SYNC_ REQ message is received, as illustrated in FIG. 30.
In step 3004, receiving computer 3000 receives the SYNC__
REQ message. In step 3005, a check is made to determine
whether the request is a duplicate. If so, it is discarded in step
3006. In step 3007, a check is made to determine whether the

[
“wn

30

35

40

45

50

55

60

65

44

SYNC_ REQ received from transmitter 3001 was received
at a rate that exceeds the allowable rate R (i.e., the period
between the time of the last SYNC_REQ message). The
value R can be a constant, or it can be made to fluctuate as
desired. If the rate exceeds R, then in step 3008 the next
activation of the next CKPT_N hopping table entry is
delayed by W/R seconds after the last SYNC_REQ has
been accepted.

Otherwise, if the rate has not been exceeded, then in step
3109 the next CKPT__ N value is calculated and inserted into
the receiver’s hopping table prior to the next SYNC_REQ
from the transmitter 3101. Transmitter 3101 then processes
the SYNC__REQ in the normal manner.

E. Signaling Synchronizer

In a system in which a large number of users communi-
cate with a central node using secure hopping technology, a
large amount of memory must be set aside for hopping tables
and their supporting data structures. For example, if one
million subscribers to a web site occasionally communicate
with the web site, the site must maintain one million hopping
tables, thus using up valuable computer resources, even
though only a small percentage of the users may actually be
using the system at any one time. A desirable solution would
be a system that permits a certain maximum number of
simultaneous links to be maintained, but which would
“recognize” millions of registered users at any one time. In
other words, out of a population of a million registered users,
a few thousand at a time could simultaneously communicate
with a central server, without requiring that the server
maintain one million hopping tables of appreciable size.

One solution is to partition the central node into two
nodes: a signaling server that performs session initiation for
user log-on and log-off (and requires only minimally sized
tables), and a transport server that contains larger hopping
tables for the users. The signaling server listens for the
millions of known users and performs a fast-packet reject of
other (bogus) packets. When a packet is received from a
known user, the signaling server activates a virtual private
link (VPL) between the user and the transport server, where
hopping tables are allocated and maintained. When the user
logs onto the signaling server, the user’s computer is pro-
vided with hop tables for communicating with the transport
server, thus activating the VPL. The VPLs can be torn down
when they become inactive for a time period, or they can be
torn down upon user log-out. Communication with the
signaling server to allow user log-on and log-off can be
accomplished using a specialized version of the checkpoint
scheme described above.

FIG. 31 shows a system employing certain of the above-
described principles. In FIG. 31, a signaling server 3101 and
a transport server 3102 communicate over a link. Signaling
server 3101 contains a large number of small tables 3106
and 3107 that contain enough information to authenticate a
communication request with one or more clients 3103 and
3104. As described in more detail below, these small tables
may advantageously be constructed as a special case of the
synchronizing checkpoint tables described previously.
Transport server 3102, which is preferably a separate com-
puter in communication with signaling server 3101, contains
a smaller number of larger hopping tables 3108, 3109, and
3110 that can be allocated to create a VPN with one of the
client computers.

According to one embodiment, a client that has previ-
ously registered with the system (e.g., via a system admin-
istration function, a user registration procedure, or some
other method) transmits a request for information from a
computer (e.g., a web site). In one variation, the request is

New Bay Capital, LLC
Ex.1015-Page 1459 of 3151

US 6,502,135 B1

45

made using a “hopped” packet, such that signaling server
3101 will quickly reject invalid packets from unauthorized
computers such as hacker computer 3105. An “administra-
tive” VPN can be established between all of the clients and
the signaling server in order to ensure that a hacker cannot
flood signaling server 3101 with bogus packets. Details of
this scheme are provided below.

Signaling server 3101 receives the request 3111 and uses
it to determine that client 3103 is a validly registered user.
Next, signaling server 3101 issues a request to transport
server 3102 to allocate a hopping table (or hopping algo-
rithm or other regime) for the purpose of creating a VPN
with client 3103. The allocated hopping parameters are
returned to signaling server 3101 (path 3113), which then
supplies the hopping parameters to client 3103 via path
3114, preferably in encrypted form.

Thereafter, client 3103 communicates with transport
server 3102 using the normal hopping techniques described
above. It will be appreciated that although signaling server
3101 and transport server 3102 are illustrated as being two
separate computers, they could of course be combined into
a single computer and their functions performed on the
single computer. Alternatively, it is possible to partition the
functions shown in FIG. 31 differently from as shown
without departing from the inventive principles.

One advantage of the above-described architecture is that
signaling server 3101 need only maintain a small amount of
information on a large number of potential users, yet it
retains the capability of quickly rejecting packets from
unauthorized users such as hacker computer 3105. Larger
data tables needed to perform the hopping and synchroni-
zation functions are instead maintained in a transport server
3102, and a smaller number of these tables are needed since
they are only allocated for “active” links. After a VPN has
become inactive for a certain time period (e.g., one hour),
the VPN can be automatically torn down by transport server
3102 or signaling server 3101.

A more detailed description will now be provided regard-
ing how a special case of the checkpoint synchronization
feature can be used to implement the signaling scheme
described above.

The signaling synchronizer may be required to support
many (millions) of standing, low bandwidth connections. It
therefore should minimize per-VPL memory usage while
providing the security offered by hopping technology. In
order to reduce memory usage in the signaling server, the
data hopping tables can be completely eliminated and data
can be carried as part of the SYNC REQ message. The
table used by the server side (receiver) and client side
(transmitter) is shown schematically as element 3106 in
FIG. 31.

The meaning and behaviors of CKPT N, CKPT O and
CKPT_R remain the same from the previous description,
excepl that CKPT N can receive a combined data and
SYNC_REQ message or a SYNC__REQ message without
the data.

The protocol is a straightforward cxtension of the carlicr
synchronizer. Assume that a client transmitter is on and the
tables are synchronized. The initial tables can be generated
“out of band.” For example, a client can log into a web
server to establish an account over the Internet. The client
will receive keys etc encrypted over the Internet.
Meanwhile, the server will set up the signaling VPN on the
signaling server.

Assuming that a client application wishes to send a packet
to the server on the client’s standing signaling VPL:

1. The client sends the message marked as a data message
on the inner header using the transmitter’s CKPT_N
address. It turns the transmitter off and starts a timer T1
noting CKPT__O. Messages can be one of three types:

15

[
“wn

30

35

40

45

50

55

60

65

46

DATA, SYNC__REQ and SYNC__ACK. In the normal
algorithm, some potential problems can be prevented
by identifying each message type as part of the
encrypted inner header field. In this algorithm, it is
important to distinguish a data packet and a SYNC
REQ in the signaling synchronizer since the data and
the SYNC__REQ come in on the same address.

2. When the server receives a data message on its CKPT__
N, it verifies the message and passes it up the stack. The
message can be verified by checking message type and
and other information (i.e user credentials) contained in
the inner header. It replaces its CKPT_O with
CKPT N and generates the next CKPI" N. It updates
its transmitter side CKPT_ R to correspond to the
client’s receiver side CKPT R and transmits a SYNC
ACK containing CKP1_O in its payload.

3. When the client side receiver receives a SYNC_ACK
on its CKPT__R with a payload matching its transmitter
side CKPT__O and the transmitter is off, the transmitter
is turned on and the receiver side CKPT__R is updated.
If the SYNC_ACK’s payload does not match the
transmitter side CKPT__O or the transmitter is on, the
SYNC__ACK is simply discarded.

4. T1 expires: It the transmitter is off and the client’s
transmitter side CKPT__O matches the CKPT__O asso-
ciated with the timer, it starts timer T1 noting CKPT O
again, and a SYNC__REQ is sent using the transmit-
ter’s CKPT__O address. Otherwise, no action is taken.

5. When the server receives a SYNC_REQ on its
CKPT_N it replaces its CKPT_O with CKPT_N and
generates the next CKPT__N. It updatcs its transmitter
side CKPT_R to correspond to the client’s receiver
side CKPT_R and transmits a SYNC__ACK contain-
ing CKPT_O in its payload.

6. When the server receives a SYNC_REQ on its
CKPT_O, it updates its transmitter sidle CKPT_R to
correspond (o the client’s receiver side CKPT_R and
transmits a SYNC__ACK containing CKPT O in its
payload.

FIG. 32 shows message flows to highlight the protocol.
Reading from top to bottom, the client sends data to the
server using its transmitter side CKPT__N. The client side
transmitter is turned off and a retry timer is turned off The
transmitter will not transmit messages as long as the trans-
mitter is turned off. The client side transmitter then loads
CKPT_N into CKPT__O and updates CKPT N. This mes-
sage is successfully received and a passed up the stack. It
also synchronizes the receiver i.e, the server loads CKP1T N
into CKPT_O and generates a new CKPT N, it generates
anew CKPT_ R in the server side transmitter and transmits
a SYNC_ACK containing the server side receiver’s
CKPT_O the server. The SYNC_ACK is successfully
received at the client. The client side receiver’s CKPT_R is
updated, the transmitter is turned on and the retry timer is
killed. The client side transmitter is ready to transmit a new
data message.

Next, the client sends data to the server using its trans-
mitler side CKPT__N. The client side transmitter is turned
off and a retry timer is turned off. The transmitter will not
transmit messages as long as the transmitter is turned off.
The client side transmitter then loads CKPT N into
CKPT__O and updates CKPT__N. This message is lost. The
client side timer expires and as a result a SYNC_REQ is
transmitted on the client side transmitter’s CKPT__O (this
will keep happening until the SYNC_ACK has been
received at the client). The SYNC_REQ is successfully
received at the server. It synchronizes the receiver i.e, the
server loads CKPT_N into CKPT__O and generates a new

New Bay Capital, LLC
Ex.1015-Page 1460 of 3151

US 6,502,135 B1

47

CKPT__N. it generates an new CKPT_R in the server side
transmitter and transmits a SYNC__ACK containing the
server side receiver’s CKPT_O the server. The SYNC__
ACK is successfully received at the client. The client side
receiver’s CKPT__R is updated, the transmitter is turned off
and the retry timer is killed. The client side transmitter is
ready to transmit a new data message.

There are numerous other scenarios that follow this flow.
For example, the SYNC__ACK could be lost. The transmit-
ter would continue to re-send the SYNC REQ until the
receiver synchronizes and responds.

The above-described procedures allow a client to be
authenticated at signaling server 3201 while maintaining the
ability of signaling server 3201 to quickly reject invalid
packels, such as might be gencrated by hacker computer
3205. In various embodiments, the signaling synchronizer is
really a derivative of the synchronizer. It provides the same
protection as the hopping protocol, and it does so for a large
number of low bandwidth connections.

What is claimed is:

1. A method of transparently creating a virtual private
network (VPN) between a client computer and a target
computer, comprising the steps of:

(1) generating from the client computer a Domain Name
Service (DNS) request that requests an IP address
corresponding to a domain name associated with the
target computcr,

(2) determining whether the DNS request transmitted in
step (1) is requesting access to a secure web site; and

(3) in response to determining that the DNS request in
step (2) is requesting access to a secure target web site,
automatically initiating the VPN between the client
computer and the target computer.

2. The method of claim 1, wherein steps (2) and (3) are
performed at a DNS server separate from the client com-
puter.

3. The method of claim 1, further comprising the step of:

(4) in response to determining that the DNS request in
step (2) is not requesting access to a secure target web
site, resolving the IP address for the domain name and
returning the IP address to the client computer.

4. The method of claim 1, wherein step (3) comprises the
step of, prior to automatically initiating the VPN between
the client computer and the target computer, determining
whether the client computer is authorized to establish a VPN
with the target computer and, if not so authorized, returning
an error from the DNS request.

5. The method of claim 1, wherein step (3) comprises the
step of, prior to automatically initiating the VPN between
the client computer and the target computer, determining
whether the client computer is authorized (0 resolve
addresses of non secure target computers and, if not so
authorized, returning an error from the DNS request.

6. The method of claim 1, whercin step (3) compriscs the
step of establishing the VPN by creating an IP address
hopping scheme between the client computer and the target
computer.

7. The method of claim 1, wherein step (3) comprises the
step of using a gatekeeper computer that allocates VPN
resources for communicating between the client computer
and the target computer.

8. The method of claim 1, wherein step (2) is performed
in a DNS proxy server that passes through the request to a
DNS server if it is determined in step (3) that access is not
being requested to a secure target web site.

9. The method of claim 5, wherein step (3) comprises the
step of transmitting a message to the client computer to

10

35

40

45

50

55

60

48

determine whether the client computer is authorized to
establish the VPN target computer.

10. A system that transparently creates a virtual private
network (VPN) between a client computer and a secure
target computer, comprising:

a DNS proxy server that receives a request from the client
computer to look up an IP address for a domain name,
wherein the DNS proxy server returns the IP address
for the requested domain name if it is determined that
access to a non-secure web site has been requested, and
wherein the DNS proxy server generates a request to
create the VPN between the client computer and the
secure target computer if it is determined that access to
a secure web site has been requested; and

a gatekeeper computer that allocates resources for the
VPN between the client computer and the secure web
computer in response to the request by the DNS proxy
Server.

11. The system of claim 10, wherein the gatekeeper
computer creates the VPN by establishing an IP address
hopping regime that is used to pseudorandomly change IP
addresses in packets transmitted between the client com-
puter and the secure target computer.

12. The system of claim 10, wherein the gatekeeper
computer determines whether the client computer has suf-
ficient security privileges to create the VPN and, if the client
computer lacks suflicient security privileges, rejecting the
request to create the VPN.

13. A method of establishing communication between one
of a plurality of client computers and a central computer that
maintains a plurality of authentication tables each corre-
sponding to one of the client computers, the method com-
prising the steps of:

(1) in the central computer, receiving from one of the

plurality of client computers a request to establish a
connection;

(2) authenticating, with reference to one of the plurality of
authentication tables, that the request received in step
(1) is from an authorized client;

(3) responsive to a determination that the request is from
an authorized client, allocating resources to establish a
virtual private link between the client and a second
computer; and

(4) communicating between the authorized client and the

second computer using the virtual private link.

14. The method of claim 13, wherein step (4) comprises
the step of communicating according to a scheme by which
at least one field in a series of data packets is periodically
changed according to a known sequence.

15. The method of claim 14, wherein step (4) comprises
the step of comparing an Internet Protocol (IP) address in a
header of each data packet to a table of valid IP addresses
maintained in a table in the second computer.

16. The method of claim 15, wherein step (4) comprises
the step of comparing the IP address in the header of each
data packet to a moving window of valid IP addrcsscs, and
rejecting data packets having IP addresses that do not fall
within the moving window.

17. The method of claim 13, wherein step (2) comprises
the step of using a checkpoint data structure that maintains
synchronization of a periodically changing parameter
known by the central computer and the client computer to
authenticate the client.

New Bay Capital, LLC
Ex.1015-Page 1461 of 3151

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,502,135 B1 Page 1 of 1
DATED : December 31, 2002
INVENTOR(S) :Edmund Colby Munger et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item [56], References Cited, OTHER PUBLICATIONS, insert the following:

-- Search Report (dated 8/20/02), International Application No. PCT/US01/04340
Search Report (dated 8/23/02), International Application No. PCT/US01/13260
James E. Bellaire, “New Statement of Rules — Naming Internet Domains”, Internet
Newsgroup, July 30, 1995, 1 page.

D. Clark, “US Calls for Private Domain-Name System”, Computer, IEEE Computer
Society, August 1, 1998, pages 22-25.

August Bequai, “Balancing Legal Concerns Over Crime and Security in Cyberspace”,
Computer & Security, Vol. 17, No. 4, 1998, pages 293-298.

Rich Winkel, “CAQ: Networking With Spooks: The NET & The Control Of
Information”, Internet Newsgroup, June 21, 1997, 4 pages. --

Column 48
Line 2, “VPN target computer” has been replaced with -- VPN with the target
computer --.

Signed and Sealed this

Ninth Day of September, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

New Bay Capital, LLC
Ex.1015-Page 1462 of 3151

US006502135C1

a2 INTER PARTES REEXAMINATION CERTIFICATE (0271st)

United States Patent

Munger et al.

US 6,502,135 C1
Jun. 7, 2011

(10) Number:
@5) Certificate Issued:

(54) AGILE NETWORK PROTOCOL FOR SECURE
COMMUNICATIONS WITH ASSURED
SYSTEM AVAILABILITY

(75) lnventors: Edmund Colby Munger, Crownsville,
MD (US); Douglas Charles Schmidt,
Severna Park, MD (US); Robert
Dunham Short, I1I, Leesburg, VA (US);
Victor Larson, Fairfax, VA (US);
Michael Williamson, South Riding, VA
us)

(73) Assignee: Virnetx, Inc., Scotts Valley Drive, CA
(US)

Reexamination Request:

No. 95/001,269, Dec. 8, 2009

Reexamination Certificate for:

Patent No.: 6,502,135
Issued: Dec. 31, 2002
Appl. No.: 09/504,783
Filed: Feb. 15,2000

Certificate of Correction issued Sep. 9, 2003.
Related U.S. Application Data

(63) Continuation of application No. 09/429,643, filed on Oct.
29, 1999, now Pat. No. 7,010,604.

(60) Provisional application No. 60/106,261, filed on Oct. 30,
1998, and provisional application No. 60/137,704, filed on
Jun. 7, 1999.

(51) Imt.CL
GOG6F 15/173 (2006.01)

(52) US.Cl oo 709/225; 709/229; 709/245

(58) Field of Classification Search 709/225
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2,895,502 A 7/1959 Roper et al.

4,933,846 A
4,988,990 A
5,276,735 A
5,303,302 A

6/1990 Humphrey et al.
1/1991 Warrior

1/1994 Boebert et al.
4/1994 Burrows

(Continued)
FOREIGN PATENT DOCUMENTS

12/1999
12/1997
4/1998
4/1998
8/1998

(Continued)
OTHER PUBLICATIONS

DE 199 24 575
EP 0 814 589
EP 836306 Al
EP 0838930
EP 0858 189

Alan O. Frier et al., “The SSL Protocol Version 3.0”, Nov.
18, 1996, printed from http://www.netscape.com/eng/ss13/
draft302.txt on Feb. 4, 2002, 56 pages.

(Continued)

Primary Examiner—Andrew L Nalven
67 ABSTRACT

A plurality of computer nodes communicate using seem-
ingly random Internet Protocol source and destination
addresses. Data packets matching criteria defined by a mov-
ing window of valid addresses are accepted for further
processing, while those that do not meet the criteria are
quickly rejected. Improvements to the basic design include
(1) a load balancer that distributes packets across different
transmission paths according to transmission path quality;
(2) a DNS proxy server that transparently creates a virtual
private network in response to a domain name inquiry; (3) a
large-to-small link bandwidth management feature that pre-
vents denial-of-service attacks at system chokepoints; (4) a
traffic limiter that regulates incoming packets by limiting the
rate at which a transmitter can be synchronized with a
receiver; and (5) a signaling synchronizer that allows a large
number of nodes to communicate with a central node by
partitioning the communication function between two sepa-
rate entities.

ENCRYPTION KEY

10
DESTINATION
TERMINAL

New Bay Capital, LLC
Ex.1015-Page 1463 of 3151

US 6,502,135 C1

Page 2
U.S. PATENT DOCUMENTS 6,256,671 Bl 7/2001 Strentzsch et al.
] 6,262,987 Bl 7/2001 Mogul

5,311,593 A 5/1994 Carmi 6,263,445 B1 7/2001 Blumenau
5,329,521 A 7/1994 Walsh et al. 6,286,047 Bl 9/2001 Ramanathan et al.
5,341,426 A 8/1994 Barney etal. 6,298,341 B1 10/2001 Mann et al.
5,367,643 A 11/1994 Chang et al. 6,301,223 B1 10/2001 Hrastar et al.
5,384,848 A 1/1995 Kikuchi 6,308,274 B1 10/2001 Swift
5,511,122 A 4/1996 Atkinson 6,311,207 B1 10/2001 Mighdoll et al.
5,559,883 A 9/1996 Williams 6,314,463 B1 11/2001 Abbott et al.
5,561,669 A 10/1996 Lenneyet al. 6,324,161 B1 11/2001 Kirch
5,588,060 A 12/1996 Aziz 6,330,562 B1 12/2001 Boden et al.
5,625,626 A 4/1997 Umekita 6,332,158 B1 12/2001 Risley etal.
5,629,984 A 5/1997 McManis 6,333,272 B1 12/2001 McMillin et al.
5,654,695 A 8/1997 Olnowich et al. 6,338,082 Bl 1/2002 Schneider
5,682,480 A 10/1997 Nakagawa 6,353,614 Bl 3/2002 Borella et al.
5,689,566 A 11/1997 Nguyen 6,430,155 Bl 8/2002 Davie et al.
5,740,375 A 4/1998 Dunne et al. 6,430,610 B1 8/2002 Carter
5,764,906 A 6/1998 Edelstein et al. 6,487,508 B1 11/2002 Valencia
5,771,239 A 6/1998 Moroney et al. 6,502,135 B1 12/2002 Munger et al.
5,774,660 A 6/1998 Brendel et al. 6,505,232 Bl 1/2003 Mighdoll et al.
5,787,172 A 7/1998 Arnold 6,510,154 B1 1/2003 Mayes et al.
5,796,942 A 8/1998 Esbensen 6,549,516 B1 4/2003 Albert et al.
5,805,801 A 9/1998 Holloway et al. 6.557.037 Bl 4/2003 Provino
5,805,803 A 9/1998 Birrell et al. 6:571:296 B1 5/2003 Dillon
5,822,434 A 10/1998 Caronni et al. 6,571,338 Bl 5/2003 Shaio et al.
5,842,040 A 11/1998 Hughes et al. 6,581,166 Bl 6/2003 Hirst et al.
5,845,091 A 12/1998 Dunne et al. 6,618,761 B2 9/2003 Munger et al.
5,864,666 A 1/1999 Shrader 6,671,702 B2 12/2003 Kruglikov et al.
5,867,650 A 2/1999 Osterman 6,687,551 B2 2/2004 Steindl
5,870,610 A 2/1999 Beyda et al. 6,687,746 Bl 2/2004 Shuster etal.
5,878,231 A 3/1999 Baehr et al. 6,701,437 B1 3/2004 Hoke et al.
5,892,903 A 4/1999 Klaus 6,714,970 B1 3/2004 Fiveash et al.
5,898,830 A 4/1999 Wesinger et al. 6,717,949 B1 4/2004 Boden et al.
5,905,859 A 5/1999 Holloway et al. 6,752,166 B2 6/2004 Lull et al.
5,918,019 A 6/1999 Valencia 6,757,740 B1 6/2004 Parekh et al.
5,950,195 A 9/1999 Stockwell et al. 6,760,766 Bl 7/2004 Sahlqvist
5,996,016 A 11/1999 Thalheimer et al. 6,826,616 B2 11/2004 Larson et al.
6,006,259 A 12/1999 Adelman et al. 6,839,759 B2 1/2005 Larson et al.
6,006,272 A 12/1999 Aravamudan et al. 6,937,597 B1 82005 Rosenberg et al.
6,016,318 A 1/2000 Tomoike 7,010,604 B1 3/2006 Munger et al.
6,016,512 A 1/2000 Huitema 7,039,713 Bl 5/2006 Van Gunter et al.
6,041,342 A 3/2000 Yamaguchi 7,072,964 B1 7/2006 Whittle et al.
6,052,788 A 4/2000 Wesinger et al. 7,133,930 B2 11/2006 Munger et al.
6,055,574 A 4/2000 Smorodinsky et al. 7,167,904 Bl 1/2007 Devarajan et al.
6,061,346 A 5/2000 Nordman 7,188,175 B1 3/2007 McKeeth
6,061,736 A 5/2000 Rochberger et al. 7,188,180 B2 3/2007 Larson et al.
6,079,020 A 6/2000 Liu 7,197,563 B2 3/2007 Sheymov et al.
6,081,900 A 6/2000 Subramaniam et al. 7,353,841 B2 4/2008 Kono et al.
6,092,200 A 7/2000 Muniyappa et al. 7,461,334 B1 12/2008 Luetal.
6,101,182 A 8/2000 Sistanizadeh et al. 7,490,151 B2 2/2009 Munger et al.
6,119,171 A 9/2000 Alkhatib 7,493,403 B2 2/2009 Shull et al.
6,119,234 A 9/2000 Aziz et al. 2001/0049741 Al 12/2001 Skene et al.
6,147,976 A~ 11/2000 Shand et al. 2002/0004898 A1 1/2002 Droge
6,157,957 A 12/2000 Berthaud 2004/0199493 A1 10/2004 Ruiz etal.
6,158,011 A 12/2000 Chen et al. 2004/0199520 A1 10/2004 Ruiz et al.
6,168,409 B1 1/2001 Fare 2004/0199608 A1 10/2004 Rechterman et al.
6,173,399 Bl 1/2001 Gilbrech 2004/0199620 A1 10/2004 Ruiz et al.
6,175,867 Bl 1/2001 Taghadoss 2005/0055306 A1 3/2005 Miller et al.
6,178,409 B1 ~ 1/2001 Weber et al. 2007/0208869 Al 9/2007 Adelman et al.
6,178,505 B1 1/2001 Schneideret al. 2007/0214284 Al 9/2007 King etal.
6,179,102 B1 1/2001 Weber et al. 2007/0266141 Al 11/2007 Norton
6,199,112 B1 ~ 3/2001 Wilson 2008/0235507 A1 9/2008 Ishikawa et al.
6,202,081 Bl 3/2001 Naudus
6,222,842 Bl 4/2001 Sasyan et al. FOREIGN PATENT DOCUMENTS
6,223,287 B1 4/2001 Douglas et al.
6,226,748 B1 5/2001 Bots et al. GB 2317792 4/1998
6,226,751 B1 5/2001 Arrow et al. GB 2334181 A /1999
6,233,618 Bl 5/2001 Shannon P 62-214744 9/1987
6243360 Bl 6/2001 Basilico P 04-363941 12/1992
6,243,749 Bl 6/2001 Sitaraman et al. P 09-018492 1/1997
6,243,754 Bl 6/2001 Guerin et al. P 10-070531 3/1998
6,246,670 Bl 6/2001 Karlsson et al. WO WO 9827783 A 6/1998

New Bay Capital, LLC

Ex.1015-Page 1464 of 3151

US 6,502,135 C1
Page 3

wo WO 98/27783 6/1998
WO WO 98 55930 12/1998
WO WO 98 59470 12/1998
WO ‘WO 99 38081 7/1999
WO WO 99 48303 9/1999
WO WO 00/17775 3/2000
WO WO 001/17775 3/2000
WO WO 00/70458 11/2000
WO WO 01/016766 3/2001
WO WO 01 50688 7/2001
OTHER PUBLICATIONS

August Bequai, “Balancing Legal Concerns Over Crime and
Security in Cyberspace”, Computer & Security, vol. 17, No.
4, 1998, pp. 293-298.

D. B. Chapman et al., “Building Internet Firewalls”, Nov.
1995, pp. 278-375.

D. Clark, “US Calls for Private Domain—Name System”,
Computer, IEEE Computer Society, Aug. 1, 1998, pp.
22-25.

Davila J et al, “Implementation of Virtual Private Networks
at the Transport Layer”, Information Security, Second Inter-
national Work—shop, ISW?99. Proceedings (Lecture Spring-
er-Verlag Berlin, Germany, [Online] 1999, pp. 85-102,
XP002399276, ISBN 3-540-666.

Dolev, Shlomi and Ostrovsky, Rafil, “Efficient Anonymous
Multicast and Reception” (Extended Abstact), 16 pages.
Donald E. Eastlake, 3rd, “Domain Name System Security
Extensions”, Internet Draft, Apr. 1998, pp. 1-51.

F. Halsall, “Data Communications, Computer Networks and
Open Systems”, Chapter 4, Protocol Basics, 1996, pp.
198-203.

Fasbender, Kesdogan, and Kubitz: “Variable and Scalable
Security” Protection of Location Information in Mobile 1P,
1EEE publication, 1996, pp. 963-967.

Glossary for the Linux FreeS/WAN project, printed from
http://liberty.freeswan.org/freeswan__trees/freeswan—1.3/
doc/glossary.html on Feb. 21, 2002, 25 pages.

J. Gilmore, “Swan: Securing the Internet against Wiretap-
ping”, printed from http:/liberty.freeswan.org/freeswan
trees/freeswan—1.3/doc/rationale.html on Feb. 21, 2002, 4
pages.

James E. Bellaire, “New Statement of Rules—Naming Inter-
net Domains”, Internet Newsgroup, Jul. 30, 1995, 1 page.
Jim Jones et al., “Distributed Denial of Service Attacks:
Defenses”, Global Integrity Corporation. 2000, pp. 1-14.
Laurie Wells (LANCASTERBIBELMAIL MSN COM);
“Subject: Security lcon” USENET Newsgroup, Oct. 19,
1998, XP002200606, 1 page.

Linux FreeS/WAN Index File, printed from http://liberty.
freewan.org/freeswan__ trees/freeswan—1.3/doc/ on Feb. 21,
2002, 3 Pages.

P. Srisuresh et al., “DNS extensions to Network address
Translators (DNS__ALG)”, Internet Draft, Jul. 1998, pp.
1-27.

RFC 2401 (dated Nov. 1998) Security Architecture for the
Internet Protocol (RTP).

RFC 2543-SIP (dated Mar. 1999): Session Initiation Proto-
col (SIP or SIPS).

Rich Winkel, “CAQ: Networking With Spooks: The NET &
The Control Of information”, Internet Newsgroup, Jun. 21,
1997, 4 pages.

Rubin, Aviel D., Geer, Daniel, and Ranum, Marcus J. (Wiley
Computer Publishing), “Web Security Sourcebook”, pp.
82-94.

Search Report (dated Aug. 20, 2002), International Applica-
tion No. PCT/US01/04340.

Search Report (dated Aug. 23, 2002), International Applica-
tion No. PCT/US01/13260.

Search Report (dated Oct. 7, 2002), International Applica-
tion No. PCT/US01/13261.

Search Report, IPER (dataed Nov. 13, 2002), International
Application No. PCT/US01/04340.

Search Report, IPER (dated Feb.6, 2002), lnternational
Application No. PCT/US01/13261.

Search Report, IPER (dated Jan. 14, 2003), International
Application No. PCT/US01/13260.

Sankar, A.U. “A verified sliding window protocol with vari-
able flow control”. Proceedings of ACM SIGCOMM confer-
ece on Communications architectures & protocols. pp.
84-91, ACM Press, NY, NY 1986.

Shree Murthy et al., “Congestion-Oriented Shortest Multi—
path Routing”, Proceedings of IEEE INFOCOM, 1996, pp.
1028-1036.

W. Stallings, “Cryptography And Network Security”, 2nd,
Edition, Chapter 13, 1P Security, Jun. 8, 1998, pp. 399-440.
Fasbender, A. et al., Variable and Scalable Security: Protec-
tion of Location Information in Mobile 1P, IEEE VTS, 46th,
1996, 5 pp.

156. Finding Your Way Through the VPN Maze (1999)
(“PGP”).

WatchGuard Technologies, Inc., WatchGuard LiveSecurity
for MSS Powerpoint (Feb. 14 2000) (resubmitted).
WatchGuard Technologies, Inc., MSS Version 2.5, Add-On
[or WatchGuard SOHO Release Notes (Jul. 21, 2000).

Yuan Dong Feng, “A novel scheme combining interleaving
technique with cipher in Rayleigh fading channels,” Pro-
ceedings of the International Conference on Communication
technology, 2:S47-02-1-S47-02-4 (1998).

D.W. Davies and W.L. Price, edited by ladahiro Uezona,
“Network Security”, Japan, Nikkei McGraw—Hill, Dec. 5,
1958, First Edition, first copy, p. 102-108.

U.S. Appl. No. 60/134,547 filed May 17, 1999, Victor Shey-
mov.

U.S. Appl. No. 60/151,563 filed Aug. 31, 1999, Bryan
Whittles.

U.S. Appl. No. 09/399,753 filed Sep. 22, 1998, Graig Miller
etal

Microsoft Corporation’s Fourth Amended Invalidity Con-
tentions dated Jan. 5, 2009, VirnetX Inc. and Science Appli-
cations International Corp.v. Microsoft Corporation.
Appendix A of the Microsoft Corporation’s Fourth
Amended lnvalidity Contentions dated Jan. 5, 2009.
Concordance Table For the References Cited in Tables on
pp- 6-15, 71-80 and 116-124 of the Microsoft Corpora-
tion’s Fourth Amended lnvalidity Contentions dated Jan. 5,
2009.

1. P. Mockapetris, “DNS Encoding of Network Names and
Other Types,” Network Working Group, RI'C 1101 (Apr.
1989) (RFC1101, DNS SRV).

DNS-related corresponding dated Sep. 7, 1993 to Sep. 20,
1993. (Pre KX, KX Records).

R. Atkinson, “An Internetwork Authentication Architecture,”
Naval Research Laboratory, Center for High Assurance
Computing Systems (Aug. 5, 1993). (Atkinson NRL, KX
Records).

New Bay Capital, LLC
Ex.1015-Page 1465 of 3151

US 6,502,135 C1
Page 4

Henning Schulzrinne, Personal Mobility For Multimedia
Services In The Internet, Proceedings of the Interactive Dis-
tributed Multimedia Systems and Services European Work-
shop at 143 (1996) (Schulzrinne 96).

Microsoft Corp., Microsoft Virtual Private Networking:
Using Point—to—Point Tunneling Protocol for Low—Cost,
Secure, Remote Access Across the Internet (1996) (printed
from 1998 PDC DVD-ROM) (Point to Point, Microsoft
Prior Art VPN Technology).

“Safe Surfing: How to Build a Secure World Wide Web Con-
nection,” IBM Technical Support Organization, (Mar. 1996).
(Safe Surfing, Website Art).

Goldschlag, et al., “Hiding Routing Information,” Workshop
on Information Hiding, Cambridge, UK (May 1996). (Gold-
schlag 11, Onion Routing).

“IPSec Minutes From Montreal”, IPSEC Working Group
Meeting Notes, http://www.sandleman.ca/ipsec/1996/08/
msg00018.html (Jun. 1996). (IPSec Minutes, FreeS/WAN).
J.M. Galvin, “Public Key Distribution with Secure DNS,”
Proceedings of the Sixth USENIX UNIX Security Sympo-
sium, San Jose, California, Jul. 1996. (Galvin, DNSSEC).

J. Gilmore, et al. “Re: Key Management, anyone? (DNS
Keying),” 1PSec Working Group Mailing List Archives
(Aug. 1996). (Gilmore DNS, FreeS/WAN).

H. Orman, et al.“Re: Re: DNS? was Re: Key Management,
anyone?” IETF 1PSec Working Group Mailing List Archive
(Aug. 1996/Sep. 1996). (Orman DNS, FreeS/WAN).

Arnt Gulbrandsen & Paul Vixie, 4 DNS RR for specifying
the location of services (DNS SRV), IETF RFC 2052 (Oct.
1996). (RFC 2052, DNS SRV).

Freier, et al. “The SSL Protocol Version 3.0,” Transport
Layer Security Working Group (Nov. 18, 1996). (SSL,
Underlying Security Technology).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Dec. 2, 1996). (RFC 2543
Internet Draft 1).

M.G. Reed, et al. “Proxies for Anonymous Routing,” 12th
Annual Computer Security Applications Conference, San
Diego, CA, Dec. 9-13, 1996. (Reed, Onion Routing).
Kenneth F. Alden & Edward P. Wobber, The AltaVista Tun-
nel: Using the Internet to Extend Corporate Networks, Digi-
tal Technical Journal (1997) (Alden, AltaVista.

Automative Industry Action Group, “ANX Release 1 Docu-
ment Publication,” AIAG (1997). (AIAG, ANX).
Automative lndustry Action Group, “ANX Release 1 Draft
Document Publication,” AIAG Publications (1997). (AIAG
Release, ANX).

Aventail Corp., “AutoSOCKS v. 2.1 Datasheet,” available at
http://www.archive.org/web/19970212013409/www.aven-
tail.com/prod/autosk2ds.html (1997). (AutoSOCKS, Aven-
tail).

Aventail Corp. “Aventail VPN Data Sheet,” available at
http://www.archive.org/web/19970212013043/www.aven-
tail.com/prod/vpndata.html (1997). (Data Sheet, Aventail).
Aventail Corp., “Directed VPN Vs. Tunnel,” available at
http://web.archive.org/web/19970620030312/www.aven-
tail.com/educate/directvpn.html (1997). (Directed VPN,
Aventail).

Aventail Corp., “Managing Corporate Access to the Inter-
net,” Aventail AutoSOCKS White Paper available at http://
web.archive.org/web/199706200303 1 2/www.aventail.com/
educate/whitepaper/ipmwp.html (1997). (Corporate Access,
Aventail).

Aventail Corp., “Socks Version 5,” Aventail Whitepaper,
available at http://web.archive.org/web/19970620030312/
www.aventail.com/educate/whitepaper/sockswp.html
(1997). (Socks, Aventail).

Aventail Corp., “VPN Server V2.0 Administration Guide,”
(1997). (VPN, Aventail).

Goldschlag, et al. “Privacy on the Internet,” Naval Research
Laboratory, Center for High Assurance Computer Systems
(1997). (Goldschlag 1, Onion Routing).

Microsoft Corp., Installing Configuring and Using PPTP
with Microsoft Clients and Servers (1997). (Using PPTP,
Microsoft Prior Art VPN Technology).

Microsoft Corp., IP Security for Microsoft Windows NT
Server 5.0 (1997) (printed from 1998 PDC DVD-ROM). (1P
Security, Microsoft Prior Art VPN Technology).

Microsoft Corp., Microsoft Windows NT Active Directory:
An Introduction to the Next Generation Directory Services
(1997) (printed from 1998 PDC DVD-ROM). (Directory,
Microsoft Prior Art VPN Technology).

Microsoft Corp. Routing and Remote Access Service for
Windows NT Server NewOpportunities Today and Looking
Ahead (1997) (printed from 1998 PDC DVD-ROM). (Rout-
ing, Microsoft Prior Art VPN Technology).

Microsoft Corp., Understanding Point—to—Point Tunneling
Protocol PPTP (1997) (printed from 1998 PDC
DVD-ROM). (Understanding PPTP, Microsoft Prior Art
VPN Technology).

J. Mark Smith et al., Protecting a Private Network: The
AltaVista Firewall, Digital Technical Journal (1997). (Smith,
AltaVista).

Naganand Doraswamy Implementation of Virtual Private
Networks (VPNs) with [PSecurity, <draft-ietf—ipsec—
vpn—00.txt> (Mar. 12, 1997). (Doraswamy).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Mar. 27, 1997). (RFC 2543
Internet Draft 2).

Aventail Corp., “Aventail and Cybersafe to Provide Secure
Authentication For Internet and Intranet Communication,”
Press Release, Apr. 3, 1997. (Secure Authentication, Aven-
tail).

D. Wagner, et al. “Analysis ol the SSL 3.0 Protocol,” (Apr.
15, 1997). (Analysis, Underlying Security Technologies).
Automotive Industry Action Group, “ANXO Certification
Authority Service and Directory Service Definition for ANX
Release 1,” AIAG Telecommunications Project Team and
Bellcore (May 9, 1997). (A1AG Delinition, ANX).
Automotive Industry Action Group, “ANXO Certification
Process and ANX Registration Process Definition for ANX
Release 1,” AIAG Telecommunications Project Team and
Bellcore (May 9, 1997). (A1AG Certification, ANX).
Aventail Corp. “Aventail Announces the First VPN Solution
to Assure lnteroperability Across Emerging Security Proto-
cols,” Jun. 2, 1997. (First VPN, Aventail).

Syverson, et al. “Private Web Browsing,” Naval Research
Laboratory, Center for High 8 Assurance Computer Systems
(Jun. 2, 1997). (Syverson, Onion Routing).

Bellcore, “Metrics, Criteria, and Measurement Technique
Requirements for ANX Release 1,” AIAG Telecommunica-
tions Project Team and Bellcore (Jun. 16, 1997). (A1AG
Requirements, ANX).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Jul. 31, 1997). (RFC 2543
Internet Draft 3).

New Bay Capital, LLC
Ex.1015-Page 1466 of 3151

US 6,502,135 C1
Page 5

R. Atkinson, “Key Exchange Delegation Record for the
DNS,” Network Working Group, RFC 2230 (Nov. 1997).
(RFC 2230, KX Records).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Nov. 11, 1997). (RFC 2543
Internet Draft 4).

1998 Microsoft Professional Developers Conference DVD
(1998 PDC DVD-ROM?”) (including screenshots captured
therefrom and produced as MSFTVX 00018827-
00018832). (Conference, Microsoft Prior Art VPN Technol-
ogy).

Microsoft Corp., Virtual Private Networking An Overview
(1998) (printed from 1998 PDC DVD-ROM) (Overview,
Microsoft Prior Art VPN Technology).

Microsoft Corp., Windows NT 5.0 Beta Has Public Premiere
at Seattle Mini—Camp Seminar attendees get first look at the
performance and capabilities of Windows NT 5.0 (1998)
(available at hap //www.microsoft.com/presspass/features/
1998/10-19nt5.mspxpftrue). (NT Beta, Microsoft Prior Art
VPN Technology).

“What ports does SSL use” available at stason.org/
TULARC/security/ssl-talk/3—-4—What—ports—does—ssl-use.

html (1998). (Ports, DNS SRV).

Aventail Corp., “Aventail VPN V2.6 Includes Support for
More Than Ten Authentication Methods Making Extranet
VPN Development Secure and Simple,” Press Release, Jan.
19, 1998. (VPN V2.6, Aventail).

R. G. Moskowitz, “Network Address Translation Issues with
1Psec,” Internet Draft, Internet Engineering Task Force, Feb.
6, 1998. (Moskowitz).

H. Schulzrinne, et al, “Internet Telephony Gateway Loca-
tion,” Proceedings of IEEE INfocom *98, The Conference on
Computer Communications, vol. 2 (Mar. 29-Apr. 2, 1998).
(Gateway, Schulzrinne).

C. Huitema, 45 al. “Simple Gateway Control Protocol,” Ver-
sion 1.0 (May 5, 1998). (SGCP).

DISA “Secret Internet Protocol Router Network,” SIPRNET
Program Management Office (D3113) DISN Networks,
DISN Transmission Services (May 8, 1998). (DISA, SIPR-
NET).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (May 14, 1998). (RFC 2543
Internet Draft 5).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, lnternet Draft, (Jun. 17, 1998). (RFC 2543
Internet Draft 6).

D. McDonald, et al. “PF_KEY Management AP1, Version
2, Network Working Group, RFC 2367 (Jul. 1998). (RFC
2367).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Jul. 16, 1998). (RFC 2543
Internet Draft 7).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Aug. 7, 1998). (RFC 2543
Internet Draft 8).

Microsoft Corp., Company Focuses on Quality and Cus-
tomer Feedback (Aug. 18, 1998). (Focus, Microsott Prior
Art VPN Technology).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Sep 18, 1998). (RFC 2543
Internet Draft 9).

Atkinson, et al. “Security Architecture for the Internet Proto-
col,” Network Working Group, RFC 2401 (Nov. 1998).
(RFC 2401, Underlying Security Technologies).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Nov. 12, 1998). (RFC 2543
Internet Draft 10) 9.

Donald Eastlake, Domain Name System Security Extensions,
IETF-DNS Security Working Group (Dec. 1998). (DNS-
SEC-7).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Dec. 15, 1998). (RFC 2543
Internet Draft 11).

Aventail Corp., “Aventail Connect 3.1/2.6Administrator’s
Guide,” (1999). (Aventail Administrator 3.1, Aventail).
Aventail Corp., “Aventail Connect 3.1/2.6 User’s Guide,”
(1999). (Aventail Administrator 3.1, Aventail).

Aventail Corp., “Aventail ExtraWeb Server v3.2 Administra-
tor’s Guide,” (1999). (Aventail ExtraWeb 3.2, Aventail).
Kaufman et al, “Implementing 1Psec,” (Copyright 1999).
(Implementing IPSEC, VPN References).

Network Solutions, Inc. “Enabling SSL,” NS1 Registry
(1999). (Enabling SSL, Underlying Security Technologies).
Check Point Software Technologies Ltd. (1999) (Check
Point, Checkpoint FW).

Arnt Gulbrandsen & Paul Vixie, 4 DNS RR for specifying
the location of services (DNS SRV), <draft-ietf-dnsind—
frc2052bis—02.txt> (Jan. 1999). (Gulbrandsen 99, DNS
SRV).

C. Scott, et al. Virtual Private Networks, O’Reilly and Asso-
ciates, Inc., 2nd ed. (Jan. 1999). (Scott VPNs).

M. Handley, H. Schulzrinne, E. Schooler, Internet Engineer-
ing Task Force, Internet Draft, (Jan. 15, 1999). (RFC 2543
Internet Draft 12).

Goldschlag, et al., “Onion Routing for Anonymous and Pri-
vate Internet Connections,” Naval Research Laboratory,
Center for High Assurance Computer Systems (Jan. 28,
1999). (Goldschlag 111, Onion Routing).

H. Schulzrinne, “Internet Telephony: architecture and proto-
cols—an 1ETF perspective,” Computer Networks, vol. 31,
No. 3 (Feb. 1999). (Telephony, Schulzrinne).

M. Handley, et al, “SIP: Session Initiation Protocol,” Net-
work Working Group, RFC 2543 and Internet Drafts (Dec.
1996-Mar. 1999). (Handley, RFC 2543).

FreeS/WAN Project, Linux FreeS/WAN Compatibility Guide
(Mar. 4, 1999). (FreeS/WAN Compatibility Guide, FreeS/
WAN).

Telcordia Technologies, “ANX Release 1 Document Correc-
tions,” AIAG (May 11, 1999). (Telcordia, ANX).

Ken Hornstein & Jeffrey Altman, Distributing Kerberos
KDC and Realm Information with DNS <draft—eitf-cat—
krb—dns—locate—oo.txt> (Jun. 21, 1999). (Hornstein, DNS
SRV).

Bhattacharya et al. “An LDAP Schema for Configuration
and Administration of 1IPSec Based Virtual Private Networks
(VPNs)”, IETF Internet Draft (Oct. 1999). (Bhattcharya
LDAP VPN).

B. Patel, et al, “DHCP Configuration of 1PSEC Tunnel
Mode,” IPSEC Working Group, Internet Draft 02 (Oct. 15,
1999). (Patel).

Goncalves, et al. Check Point FireWall—1 Administration
Guide, McGraw-Hill Companies (2000). (Goncalves,
Checkpoint FW).

“Building a Microsott VPN: A Comprehensive Collection of
Microsoft Resources,” FirstVPN, (Jan. 2000). (FirstVPN
Microsoft).

New Bay Capital, LLC
Ex.1015-Page 1467 of 3151

US 6,502,135 C1
Page 6

Gulbrandsen, Vixie & Esibov, 4 DNS RR for specifying the
location of services (DNS SRV), IETF RFC 2782 (Feb.
2000). (RFC 2782, DNS SRV).

Mitre Organization, “Technical Description,” Collaborative
Operations in Joint Expeditionary Force Experiment (JEFX)
99 (Feb. 2000). (Mitre, SIPRNET).

H. Schulzrinne, et al. “Application-Layer Mobility Using
SIP)”” Mobile Computing and Communications Review, vol.
4, No. 3, pp. 47-57 (Jul. 2000). (Application, S1P).

Kindred et al, “Dynamic VPN Communities: lmplementa-
tion and Expericnce,” DARPA Information Survivability
Conference and Exposition 11 (Jun. 2001). (DARPA, VPN
Systems).

ANX 101: Basic ANX Service Outline. (Outline, ANX).
ANX 201: Advanced ANX Service. (Advanced, ANX).
Appendix A: Certificate Profile for ANX 1Psec Certificates.
(Appendix, ANX).

Assured Digital Products. (Assured Digital).

Aventail Corp., “Aventail AutoSOCKS the Client Key to
Network Security,” Aventail Corporation White Paper. (Net-
work Security, Aventail).

Cindy Moran, “DISN Data Networks: Secret Internet Proto-
col Router Network (SIPRNet).” (Moran, SIPRNET).

Data Fellows F-Secure VPN+ (F-Secure VPN+).

Interim Operational Systems Doctrine for the Remote
Access Security Program (RASP) Secret Dial-In Solution.
(RASP, SIPRNET).

Onion Routing, “lnvestigation of Route Selection Algo-
rithmis,” available at http://www.onion—router.net/Archives/
Route/Index.html. (Route Selection, Onion Routing).
Secure Computing, “Buttet-Proofing an Army Net,” Wash-
ington Technology. (Secure, SIPRNET).

Sparta “Dynamic Virtual Private Network,” (Sparta, VPN
Systems).

Standard Operation Procedure for Using the 1910 Secure
Modems. (Standard, SIPRNET).

Publically available emails relating to FreeS/WAN
(MSFTVX00018833-MSFTVX00019206). (FreeS/WAN
emails, FreeS/WAN).

Kaufman et al., “implementing 1Psec,” (Copyright 1999)
(Implementing 1Psec).

Network Associates Gauntlet Firewall For Unix User’s
Guide Version 5.0 (1999). (Gauntlet User’s Guide—Unix,
Firewall Products).

Network Associates Gauntlet Firewall For Windows NT Get-
ting Started Guide Version 5.0 (1999) (Gauntlet Getting
Started Guide—NT, Firewall Products).

Network Associates Gauntlet Firewall For Unix Getting
Started Guide Version 5.0 (1999) (Gauntlet Unix Getting
Started Guide, Firewall Products).

Network Associates Release Notes Gauntlet Fivewall for
Unix 5.0 (Mar. 19, 1999) (Gauntlet Unix Release Notes,
Firewall Products).

Network Associates Gauntlet Firewall For Windows NT
Administrator’s Guide Version 5.0 (1999) (Gauntlet NT
Administrator’s Guide, Firewall Products).

Trusted Information Systems, lnc. Gauntlet Internet Fire-
wall Firewall-to—Firewall Encryption Guide Version 3.1
(1996) (Gauntlet Firewall-to—Firewall, Firewall Products).
Network Associates Gauntlet Firewall Global Virtual Pri-
vate Network User’s Guide for Windows NT Version 5.0
(1999) (Gauntlet NT GVPN, GVPN).

Network Associates Gauntlet Firewall For Unix Global Vir-
tual Private Network User’s Guide Version 5.0 (1999)
(Gauntlet Unix GVPN, GVPN)

Dan Sterne Dynamic Virtual Private Networks (May 23,
2000) (Sterne DVPN, DVPN).

Darrell Kindred Dyramic Virtual Private Networks (DVPN)
(Dec. 21, 1999) (Kindred DVPN, DVPN).

Dan Sterne et al. 71S Dynamic Security Perimeter Research
Project Demonstration (Mar. 9, 1998) (Dynamic Security
Perimeter, DVPN).

Darrell Kindred Dyramic Virtual Private Networks Capabil-
ity Description (Jan. 5, 2000) (Kindred DVPN Capability,
DVPN) 11.

Oct. 7, and 28 1997 email from Domenic J. Turchi Jr.
(SPARTA00001712-1714, 1808-1811) (Turchi DVPN
email, DVPN).

James Just & Dan Sterne Security Quickstart Task Update
(Feb. 5, 1997) (Security Quickstart, DVPN).

Virtual Private Network Demonstration dated Mar. 21, 1998
(SPARTA00001844-54) (DVPN Demonstration, DVPN).
GTE Internetworking & BBN Technologies DARPA Infor-
mation Assurance Program Integrated Feasibility Demon-
stration (IFD) 1.1 Plan (Mar. 10, 1998) (IFD 1.1, DVPN).
Microsoft Corp. Windows NT Server Product Documenta-
tion: Administration Guide—Connection Point Services,
available at http://www.microsoft.com/technet/archive/
winntas/proddocs/inetconctservice/cpsops.mspx (Connec-
tion Point Services) (Although undated, this reference refers
to the operation of prior art versions of Microsoft Windows.
Accordingly, upon information and belief, this reference is
prior art to the patents—insuit).

Microsoft Corp. Windows NT Servier Product Documenta-
tion: Administration Kit Guide—Connection Manager,
available at http://www.microsoft.com/technet/archive/
winntas/proddocs/inetconctservice/cmak.mspx (Connection
Manager) (Although undated, this reference refers to the
operation of prior art versions of Microsoft Windows such as
Windows NT 4.0. Accordingly, upon information and belief,
this reference is prior art to the patents—in—suit.).

Microsoft Corp. Autodial Heuristics, available at http://sup-
port.microsoft.com/kb/164249 (Autodial ~ Heuristics)
(Although undated, this reference refers to the operation of
prior art versions of Microsoft Windows such as Windows
NT 4.0. Accordingly, upon information and belief, this refer-
ence is prior art to the patents—in—suit.).

Microsoft Corp., Cariplo: Distributed Component Object
Model, (1996) available at http://msdn2.microsoft.com/
en—us/library/ms809332(printer).aspx (Cariplo 1).

Marc Levy, COM Internet Services (Apr. 23, 1999), avail-
able at http://msdn2.microsoft.com/en—us/library/
ms809302(printer).aspx (Levy).

Markus Horstmann and Mary Kirtland, DCOM Architecture
(Jul. 23, 1997), available at http://msdn2.microsoft.com/
en—us/library/ms80931 1 (printer).aspx (Horstmann).
Microsoft Corp., DCOM: A Business Overview (Apr. 1997),
available at http://msdn2.microsoft.com/en—us/library/
ms809320(printer).aspx (DCOM Business Overview 1).
Microsoft Corp., DCOM Technical Overview (Nov. 1996),
available at http://msdn2.microsoft.com/en—us/library/
ms809340(printer).aspx (DCOM Technical Overview 1).
Microsoft Corp., DCOM Architecture White Paper (1998)
available in PDC DVD-ROM (DCOM Architecture).

New Bay Capital, LLC
Ex.1015-Page 1468 of 3151

US 6,502,135 C1
Page 7

Microsoft Corp, DCOM—The Distributed Component
Object Model, A Business Overview White Paper (Microsoft
1997) available in PDC DVD-ROM (DCOM Business
Overview 11).

Microsoft Corp., DCOM—Cariplo Home Banking Over The
Internet White Paper (Microsoft 1996) available in PDC
DVD-ROM (Cariplo 11).

Microsoft Corp., DCOM Solutions in Action White Paper
(Microsoft 1996) available in PDC DVD-ROM (DCOM
Solutions in Action).

Microsoft Corp., DCOM Technical Overview White Paper
(Microsoft 1996) available 12 in PDC DVD-ROM (DCOM
Technical Overview 11).

125. Scott Suhy & Glenn Wood, DNS and Microsoft Win-
dows NT 4.0 (1996) available at http://msdn2.microsoft.
com/cn—us/library/ms810277(printer).aspx (Suhy).

126. Aaron Skonnard, Essential Wininet 313-423 (Addison
Wesley Longman 1998) (Essential Winlnet).

Microsoft Corp. lnstalling, Configuring, and Using PPTP
with Microsoft Clients and Servers, (1998) available at
http://msdn2.microsoft.com/enus/library/ms811078
(printer).aspx (Using PPTP).

Microsoft Corp. Internet Connection Services for MS RAS,
Standard Edition, http://www.microsoft.com/technet/
archive/winntas/proddocs/inetconctservice/begstart.mspx
(Internet Connection Services 1).

Microsoft Corp. Internet Connection Services for RAS,
Commercial Edition, available athttp://www.microsoft.com/
technet/archive/winntas/proddocs/inetconctservice/begstrtc.
mspx (Internet Connection Services 11).

Microsoft Corp., Internet Explorer 5 Corporate Deployment
Guide—Appendix B:Enabling Connections with the Con-
nection Manager Administration Kit, available at http://
www.microsoft.com/technet/prodtechnol/ie/deploy/de-
ploy5/appendb.mspx (1ES Corporate Development).

Mark Minasi, Mastering Windows NT Server 4 1359-1442
(6th ed., Jan. 15, 1999)(Mastering Windows NT Server).
Hands On, Self-Paced Training for Supporting Verion 4.0
371473 (Microsoft Press 1998) (Hands On).

Microsoft Corp., MS Point-to—Point Tunneling Protocol
(Windows N1 4.0), available at http://www.microsott.com/
technet/archive/winntas/maintain/featusability/pptpwp3.
mspx (MS PPTP).

Kenneth Gregg, et al., Microsoft Windows NT Server Admin-
strator’s Bible 173-206, 883-911, 974-1076 (IDG Books
Worldwide 1999) (Gregg).

Microsoft Corp., Remote Access (Windows), available at
http://msdn2.microsoft.com/en—us/library/bb545687
(VS.85,printer).aspx (Remote Access).

Microsoft Corp., Understanding PPTP (Windows NT 4.0),
available at http://www.microsoft.com/technet/archive/
winntas/plan/pptpudst.mspx (Understanding PPTP NT 4)
(Although undated, this reference refers to the operation of
prior art versions of Microsoft Windows such as Windows
NT 4.0. Accordingly, upon information and belief, this refer-
ence is prior art to the patents—in—suit.).

Microsoft Corp., Windows NT 4.0: Virtual Private Network-
ing, available at http://www.microsoft.com/technet/archive/
winntas/deploy/confeat/vpntwk.mspx (NT4 VPN)
(Although undated, this reference refers to the operation of
prior art versions of Microsoft Windows such as Windows
NT 4.0. Accordingly, upon information and belief, this refer-
ence is prior art to the patents—in—suit.).

Anthony Northrup, NT Network Plumbing: Routers, Prox-
ies, and Web Services 299-399 (IDG Books Worldwide
1998) (Network Plumbing).

Microsoft Corp., Chapter 1—Introduction to Windows NT
Routing with Routing and Remote Access Service, Available
at http://www.microsoft.com/technet/archive/winntas/prod-
docs/ rras40/rraschOl.mspx (Intro to RRAS) (Although
undated, this reference refers to the operation of prior art
versions of Microsoft Windows such as Windows NT 4.0.
Accordingly, upon information and belief, this reference is
prior art to the patents—in—suit.) 13.

Microsoft Corp., Windows NT Server Product Documenta-
tion: Chapter 5—Planning for Large—Scale Configurations,
available at http://www.microsoft.com/technet/archive/
winntas/proddocs/rras40/rrasch05.mspx (Large-Scale Con-
figurations) (Although undated, this reference refers to the
operation of prior art versions of Microsoft Windows such as
Windows NT 4.0. Accordingly, upon information and belief,
this reference is prior art to the patents—in—suit.).

F-Secure, F-Secure Evaluation Kit (May 1999) (FSECURE
00000003) (Evaluation Kit 3).

F—Secure, F-Secure NameSurfer (May 1999) (FSECURE
00000003) (NameSurfer 3).

F-Secure, F-Secure VPN Administrator’s Guide (May
1999) (from FSECURE 00000003) (F-Secure VPN 3).
F-Secure, F-Secure SSH User’s & Administrator’s Guide
(May 1999) (from FSECURE 00000003) (SSH Guide 3).
F-Secure, F-Secure SSH2.0 for Windows NT and 95 (May
1999) (from FSECURE 00000003) (SSH 2.0 Guide 3).
F-Secure, F-Secure VPN+ Administrator’s Guide (May
1999) (from FSECURE 00000003) (VPN+ Guide 3).

F. Secure, F—Secure VPN+ 4.1 (1999) (from FSECURE
00000006) (VPN+ 4.1 Guide 6).

F-Secure, F-Secure SSH (1996) (from FSECURE
00000006) (F-Secure SSH 6).

F-Secure, F-Secure SSH 2.0 for Windows NT and 95 (1998)
(from FSECURE 00000006) (F—Secure SSH 2.0 Guide 6).
F—Secure, F-Secure Evaluation Kit (Sep. 1998) (FSECURE
00000009) (Evaluation Kit 9).

F-Secure, F-Secure SSH User’'s & Administrator’s Guide
(Sep. 1998) (from FSECURE 00000009) (SSH Guide 9).
F-Secure, F—Secure SSH 2.0 for Windows NT and 95 (Sep.
1998) (from FSECURE 00000009) (F-secure SSH 2.0
Guide 9).

F-Secure, F—Secure VPN+ (Sep. 1998) (from FSECURE
00000009) (VPN+ Guide 9).

F-Secure, F—Secure Management Tools Administrator’s
Guide (1999) (from FSECURE 00000003) (F—secure Man-
agement Tools).

F-Secure, F—Secure Desktop, User’s Guide (1997) (from
FSECURE 00000009) (F-secure Desktop User’s Guide).
SafeNet, Inc., VPN Policy Manager (Jan. 2000) (VPN Policy
Manager).

F-Secure, F—Secure VPN+ for Windows NT' 4.0 (1998) (from
FSECURE 00000009) (F—secure VPN+).

IRE, Inc., SafeNet/Soft-PK Version 4 (Mar. 28, 2000)
(Soft-PK Version 4).

IRE/SafeNet Inc., VPN Technologies Overview (Mar. 28,
2000) (Safenet VPN Overview).

IRE, Inc., SafeNet/Security Center Technical Reference
Addendum (Jun. 22, 1999) (Safenet Addendum).

IRE, Inc., System Description for VPN Policy Manager and
SafeNet/SoftPK (Mar. 30, 2000) (VPN Policy Manager Sys-
tem Description).

New Bay Capital, LLC
Ex.1015-Page 1469 of 3151

US 6,502,135 C1
Page 8

IRE, Inc., About SafeNet/VPN Policy Manager (1999)
(About Safenet VPN Policy Manager).

IRE, Inc., SafeNet/VPN Policy Manager Quick Start Guide
Version 1 (1999) (SafeNet VPN Policy Manager).

Trusted Information Systems, Inc., Gauntlet Internet Fire-
wall, Firewall Product Functional Summary (Jul. 22, 1996)
(Gauntlet Functional Summary).

Trusted Information Systems, lnc., Running the Gauntlet
Internet Firewall, An Administrator’s Guide to Gauntlet Ver-
sion 3.0 (May 31, 1995) (Running the Gauntlet Internet Fire-
wall).

Ted Harwood, Windows NT Terminal Server and Citrix
Metaframe (New Riders 1999) (Windows N'T Harwood) 79.
Todd W. Matehrs and Shawn P. Genoway, Windows NT
Thing Client Solutions: Implemetning Terminal Server and
Citrix MetaFrame (Macmillan Technical Publishing 1999)
(Windows NT Mathers).

Bernard Aboba et al., Securing L2TP using IPSEC (Feb. 2,

1999).

156. Finding Your Way Through the VPN Maze (1999)
(“PGP”).

Linux FreeS/WAN Overview (1999) (Linux FreeS/WAN)
Overview).

TimeStep, The Business Case for Secure VPNs (1998)
(“TimeStep”).

WatchGuard Technologies, Inc., WatchGuard Firebox Sys-
tem Powerpoint (2000).

WatchGuard Technologies, Inc., MSS Firewall Specifica-
tions (1999).

WatchGuard Technologies, 1nc., Request for Information,
Security Services (2000).

WatchGuard lechnologies, Inc., Protecting the Internet Dis-
tributed Enterprise, White Paper (Feb. 2000).

WatchGuard Technologies, lnc., WatchGuard LiveSecurity
for MSS Powerpoint (Feb. 14, 2000).

WatchGuard Technologies, Inc., MSS Version 2.5, Add-On
for WatchGuard SOHO Releaset Notes (Jul. 21, 2000).

Air Force Research Laboratory, Statement of Work for Infor-
mation Assurance System Architecture and Integration, PR
No. N-8—6106 (Contract No. F30602-98—-C-0012) (Jan. 29,
1998).

GTE Internetworking & BBN Technologies DARPA Infor-
mation Assurance Program Integrated Feasibility Demon-
stration (IFD) 1.2 Report, Rev. 1.0 (Sep. 21, 1998).

BBN Information Assurance Contract, TIS Labs Monthly
Status Report (Mar. 16—Apr. 30, 1998).

DARPA, Dynramic Virtual Private Network (VPN) Power-
point.

GTE Internetworking, Contractor’s Program Progress
Report (Mar. 16-Apr. 30, 1998).

Darrell Kindred, Dynramic Virtual Private Networks (DVPN)
Countermeasure Characterization (Jan. 30, 2001).

Virtual Private Networking Countermeasure Characteriza-
tion (Mar. 30, 2000).

Virtual Private Network Demonstration (Mar. 21, 1998).
Information Assurance/NAl Labs, Dynamic Virtual Private
Networks (VPNs) and Integrated Security Management
(2000).

Information Assurance/NAl Labs,
Enclave(2000).

NAIl Labs, IFE 3.1 Integration Demo (2000).

Information Assurance, Science Fair Agenda (2000).
Darrell Kindred et al., Proposed Threads for IFE 3.1 (Jan.
13, 2000).

Create/ddd DVPN

IFE 3.1 Technology Dependencies (2000).

IFE 3.1 Topology (Feb. 9, 2000).

Information Assurance, Informatiion Assurance Integration:
IFE 3.1, Hypothesis & Thread Development (Jan. 10-11,
2000).

Information Assurance/NAI Labs, Dynamic Virtual Private
Networks Presentation (2000).

Information Assurance/NAl Labs, Dynamic Virtual Private
Networks Presentation v.2 (2000).

Information Assurance/NAl Labs, Dynamic Virtual Private
Networks Presentation v.3 (2000).

T. Braun et al., Virtual Private Network Architecture, Charg-
ing and Accounting Technology for the Internet (Aug. 1,
1999) (VPNA).

Network Associates Products—PGP Total Network Security
Suite, Dynamic Virtual Private Networks (1999).

Microsoft Corporation, Microsoft Proxy Server 2.0 (1997)
(Proxy Server 2.0, Microsoft Prior Art VPN Technology).
David Johnson et al., 4 Guide To Microsoft Proxy Server 2.0
(1999) (Johnson, Microsoft Prior Art VPN Technology).
Microsoft Corporation, Setting Server Parameters (1997
(Proxy Server 2.0 CD labeled MSFTVX00157288) (Setting
Server Parameters, Microsoft Prior Art VPN Technology).
Kevin Schuler, Microsoft Proxy Server 2 (1998) (Schuler,
Microsoft Prior Art VPN Technology).

Erik Rozell et al., MCSE Proxy Server 2 Study Guide (1998)
(Rozell, Microsoft Prior 15 Art VPN Technology.

M. Shane Stigler & Mark A. Linsenbardt, /IS 4 and Proxy
Server 2 (1999) (Stigler, Microsoft Prior Art VPN Technol-
ogy).

David G. Schaer, MCSE Test Success: Proxy Server 2 (1998)
(Schaer, Microsoft Prior Art VPN lechnology).

John Savill, The Windows NT and Windows 2000 Answer
Book (1999) (Savill, Microsoft Prior Art VPN Technology).
Network Associates Gauntlet Firewall Global Virtual Pri-
vate Network User’s Guide for Windows NT Version 5.0
(1999) (Gauntlet NT GVPN, GVPN).

Network Associates Gauntlet Firewall For UNIX Global Vir-
tual Private Network User’s Guide Version 5.0 (1999)
(Gauntlet Unix GVPN, GVPN).

File History for U.S. Appl. No. 09/653,201, Applicant(s):
Whittle Bryan, et al., filed Aug. 31, 2000.

AutoSOCKS v2.1, Datasheet, http://web.archive.org/web/
19970212013409/www.aventail.com/prod/autoskds.html.
Ran Atkinson, Use of DNS to Distribute Keys, Sep. 7, 1993,
http://ops.ietf.org/lists/namedroppers/namedroppers.1 99x/
msg00945.html.

FirstVPN Enterprise Networks, Overview.

Chapter 1: Introduction to Firewall Technology, Administra-
tion Guide: Dec. 19, 2007, http://www.books24x7.com/
book/id_762/viewer_ r.asp?bookid=762&chunked=
41065062.

The TLS Protocol Version 1.0; Jan. 1999; p. 65 of 71.
Elizabeth D. Zwicky, et al., Building Internet Firewalls, 2nd
Ed.

Virtual Private Networks—Assured Digital Incorporated—
AD1 4500; http://web.archive.org/web/1990224050035/
www.assured—digital.com/products/prodvpn/adia4500.htm.
Accessware—The Third Wave in Network Security, Con-
clave from Internet Dynamics; http://web.archive.org/web/
11980210013830/interdyn.com/Accessware.html.

Extended System Press Release, Sep. 2, 1997; Extended
VPN Uses The Internet to Create Virtual Private Networks,
www.extendedsystems.com.

New Bay Capital, LLC
Ex.1015-Page 1470 of 3151

US 6,502,135 C1
Page 9

Socks Version 5; Executive Summary; http://web.
archive.org/web/199970620031945/www.aventail.com/edu-
cate/whitepaper/sockswp.html.

Internet Dynamics First to Ship Integrated Security Solu-
tions for Enterprise Intranets and Extranets; Sep. 15, 1997,
http://web.archive.org/web/19980210014150/interdyn.com.
E-mails from various individuals to Linux 1Psec
re:DNS-LDAP Splicing.

Microsoft Corporation’s Fifth Amended lnvalidity Conten-
tions dated Sep. 18, 2009, VirnetX Inc. and Science Applica-
tions International Corp. v. Microsoft Corporation and
invalidity claim charts for U.S. Patent Nos. 7,188,180 and
6,839,759.

The IPSEC Protocol as described in Atkinson, et al., “Secu-
rity Architecture for the Internet Protocol,” Networking
Working Group, RFC 2401 (Nov. 1998) (“RFC 24017);
http://web.archive.org/web/19991007070353/http://www.
imib.med.tu—dresden.de/imib/Internet/Literatur/ipsec—
docu__eng.html.

S. Kent and R. Atkinson, “IP Authentication Header,” RFC
2402 (Nov. 1998); http://web.archive.org/web/
19991007070353/http://www.imib.med.tu—dresden.de/
imib/lnternet/Literatur/ipsec—docu__eng.html.

C. Madson and R. Glenn, “The Use of HMAC-MD5-96
within ESP and AH,” RFC 2403 (Nov. 1998); http://web.
archive.org/web/19991007070353/http://www.imib.med.tu—
dresden.de/imib/1Internet/Literatur/ipsec—docu__eng.html.
C. Madson and R. Glenn, “The Use HMAC-SHA-1-96
with ESP and AH,” RFC 2404 (Nov. 1998); http://web.
archive.org/web/19991007070353/http://www.imib.med.tu—
dresden.de/imib/Internet/Literatur/ipsec—docu__eng.html.
C. Madson and N. Doraswamy, “I'he ESP DES—-CBC Cipher
Algorithnm With Explicit 1V”, RFC 2405 (Nov. 1998); http://
web.archive.org/web/19991007070353/http://www.imib.
med.tu—dresden.de/imib/Internet/Literatur/ipsec—docu__
eng.html.

S.Kent and R. Atkinson, “1P Encapsulating Security Payload
(ESP),” RFC 2406 (Nov. 1998); http://web.archive.org/web/
19991007070353/http://www.imib.med.tu-dresden.de/
imib/lnternet/Literatur/ipsec—docu__eng.html.

Derrell Piper, “The Internet 1P Security Domain of Interpre-
tation for ISAKMP;” RFC 2407 (Nov. 1998); http://web.
archive.org/web/19991007070353/http://www.imib.med.tu—
dresden.de/imib/1nternet/Literatur/ipsec—docu__eng.html.

Douglas Maughan, et al, “Internet Security Association and
Key Management Protocol (ISAKMP),” RFC 2408 (Nov.
1998); http://web.archive.org/web/19991007070353/http://
www.imib.med.tu—dresden.de/imib/1nternet/Literatur/
ipsec—docu__eng.html.

D. Harkins and D. Carrell, “The Internet Key Exchange
(IKE),” RFC 2409 (Nov. 1998); http://web.archive.org/web/
19991007070353/http://www.imib.med.tu—dresden.de/
imib/Internet/Literatur/ipsec—docu__eng.html.

R. Glenn and S. Kent, “The NULL Encryption Algorithm
and lts Use With 1Psec,” RFC 2410 (Nov. 1998); http://
web.archive.org/web/19991007070353/http://www.imib.
med.tu—dresden.de/imib/Internet/Literatur/ipsec—docu__
eng.html.

R. Thayer, et al., “IP Security Document Roadmap,” RFC
2411 (Now. 1998); http://web.archive.org/web/
19991007070353/http://www.imib.med.tu—dresden.de/
imib/Internet/Literatur/ipsec—docu__eng.html.

Hilarie K. Orman, “The Oakley Key Determination Proto-
col,” RFC 2412 (Nov. 1998) in combination with J.M.
Galvin, “Public Key Distribution with Secure DNS,” Pro-
ceedings of the Sixth USENIX UNIX Security Symposium,
San Jose California (Jul. 1996) (“Galvin®).

David Kosiur, “Building and Managing Virtual Private Net-
works” (1998).

P. Mockapetris, “Domain Names—Implementation and
Specification,” Network Working Group, RFC 1035 (Nov.
1987).

Request for Inter Partes Reexamination of Patent No. 7,188,
180, dated Nov. 25, 2009.

Exhibit 2 “Aventail Connect v3.1/v2.6 Administrator’s
Guide”, 120 pages, 1996—-1999.

Exhibit 3A, “Gauntlet Firewall for Windows”, pp. 1-137,
1998-1999.

Exhibit 3B, “Gauntlet Firewall for Windows”, pp. 138-275,
1998-1999.

Exhibit 4, “Kosiur”, Building and Managing VPNs, pp.
1-396, 1998.

Exhibit 5, Building a Microsoft VPN; A comprehensive Col-
lection of Microfoft Resources, pp. 1-216.

Exhibit 6, Windows NT Server, Virtual Private Network; An
Overview, pp. 1-26, 1998.

Exhibit 7, “Networking Working Group Request for Com-
ments: 1035” pp. 1-56, 1987.

New Bay Capital, LLC
Ex.1015-Page 1471 of 3151

US 6,502,135 C1

1 2
INTER PARTES (1) generating from the client computer a Domain Name
REEXAMINATION CERTIFICATE Service (DNS) request that requests an IP address cor-
ISSUED UNDER 35 U.S.C. 316 responding to a domain name associated with the tar-
get computer;
THE PATENT IS HEREBY AMENDED AS 5
INDICATED BELOW. (2) determining whether the DNS request transmitted in

step (1) is requesting access to a secure web site; and
Matter enclosed in heavy brackets [] appeared in the

patent, but has been deleted and is no longer a part of the (3) in response to determining that the DNS request in
patent; matter printed in italics indicates additions made 10 step (2) is requesting access to a secure target web site,
to the patent. automatically initiating the VPN between the client

computer and the target computer, wherein.

AS A RESULT OF REEXAMINATION, 1T HAS BEEN
DETERMINED THAT: steps (2) and (3) are performed at a DNS server separate

15 from the client computer, and step (3) comprises the step of,
prior to automatically initiating the VPN between the client
computer and the target computer, determining whether the

The patentability of claims 1-10 and 12 is confirmed.

New claim 18 is added and determined to be patentable.
client computer is authorized to resolve addresses of non

Claims 11 and 13-17 were not reexamined. 5o Secure target computers and, if not so authorized, returning

the DNS t.
18. A method of transparently creating a virtual private an error from the reques

network (VPN) between a client computer and a target
computer, comprising the steps of: ok ok %

New Bay Capital, LLC
Ex.1015-Page 1472 of 3151

Request for Inter Partes Reexamination
U.S. Patent No. 7,418,504

Exhibit C-2

U.S. Patent 7,010,604

Customer No.: 000027683 Haynes and Boone, LLP
IP Section

2323 Victory Avenue, Suite 700

Dallas, Texas 75219

Telephone [214] 651.5000

Fax [214] 200.0853

New Bay Capital, LLC
Ex.1015-Page 1473 of 3151

(12)

United States Patent

Munger et al.

US007010604B1

US 7,010,604 B1
Mar. 7, 2006

(10) Patent No.:
45) Date of Patent:

(54

(75)

(73)

(")

ey
(22)

(60)

GD

(52)
(58)

(56)

AGILE NETWORK PROTOCOL FOR
SECURE COMMUNICATIONS WITH
ASSURED SYSTEM AVAILABILITY

Inventors: Edmund Colby Munger, Crownsville,
MD (US); Vincent J. Sabio, Columbia,
MD (US); Robert Dunham Short, III,
Leesburg, VA (US); Virgil D. Gligor,
Chevy Chase, MD (US); Douglas
Charles Schmidt, Severna Park, MD
(Us)

Science Applications International
Corporation, San Diego, CA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 09/429,643

Filed: Oct. 29, 1999

Related U.S. Application Data

Provisional application No. 60/106,261, filed on Oct.
30, 1998, provisional application No. 60/137,704,
filed on Jun. 7, 1999.

Int. Cl.
GOGF 15/16
US.Cl .. . 709/227; 709/245
Field of Classification Search 709/225,
709/223, 238, 227, 241-4, 250, 245; 713/201,
713/160

See application file for complete search history.

(2006.01)

References Cited

U.S. PATENT DOCUMENTS

4,933,846 A 6/1990 Humphrey et al.

FOREIGN PATENT DOCUMENTS
DE 199 24 575 12/1999

(Continued)
OTHER PUBLICATIONS

Shankar, A.U. “A verified sliding window protocol with
variable flow control”. Proceedings of ACM SIGCOMM
conferece on Communications architectures & protocols.
pp- 84-91, ACM Press, NY,NY. 1986.*

(Continued)

Primary Examiner—Dung C. Dinh
Assistant Examiner—Aaron Strange
(74) Artorney, Agent, or Firm—Banner & Witcoff, Ltd.

G7) ABSTRACT

A plurality of computer nodes communicates using seem-
ingly random IP source and destination addresses and (op-
tionally) a seemingly random discriminator field. Data pack-
ets matching criteria defined by a moving window of valid
addresses are accepted for further processing, while those
that do not meet the criteria are rejected. In addition to
“hopping” of IP addresses and discriminator fields, hardware
addresses such as Media Access Control addresses can be
hopped. The hopped addresses are generated by random
number generators having non-repeating sequence lengths
that are easily determined a-priori, which can quickly jump
ahead in sequence by an arbitrary number of random steps
and which have the property that future random numbers are
difficult to guess without knowing the random number
generator’s parameters. Synchronization techniques can be
used to re-establish synchronization between sending and
receiving-nodes. These techniques include a self-synchro-
nization technique in which a sync field is transmitted as part
of each packet, and a “checkpoint” scheme by which trans-
mitting and receiving nodes can advance to a known point
in their hopping schemes. A fast-packet reject technique
based on the use of presence vectors is also described. A
distributed transmission path embodiment incorporates ran-

5276,735 A * 1/1994 Boebert et al. 713/167 L 1bo
5311593 A * 5/1994 Carmi 713,201 domly selected physical transmission paths.
311,593 A * 5/1994 Carmi ...c.oooeeucvieennnnene
(Continued) 52 Claims, 23 Drawing Sheets
IHOP TRANSMIT AND RECEIVE TABLES
T (TaRe
GLENT ROUTER
v 511
TRANSMIT TABLE 821 RECEIVE TABLE 924
13121820498 | 13121820465 13121820498, 13121820465
131218204221 |, 131.218.204.97 181.218.204.221 , 131.218.204.97
131.218.204.133 , 131.218.204.186 131218204139, 131.218.204.186
13121820412, 1312182045 13121820412, 131218.20455
RECEIVE TABLE 822 TRANSMIT TABLE 823
131218204161, 13121820489 181218204181, 13121820489
13121820468 | 131218204212 19121820468, 101218204212
131218204201, 131.218204.127 131.218.204.201 , 131.218204.127

131218204119, 131.218.204.49

131.218204.118 , 131.218204.49

New Bay Capital, LLC
Ex.1015-Page 1474 of 3151

US 7,010,604 B1
Page 2

U.S. PATENT DOCUMENTS

5,588,060 A 12/1996 Aziz

5,654,695 A * 81997 Olnowich et al. 340/825.01
5,689,566 A 11/1997 Nguyen

5,774,660 A * 6/1998 Brendel et al. 709,201
5,796,942 A 8/1998 Esbensen

5,805,801 A 9/1998 Holloway et al.

5,842,040 A 11/1998 Hughes et al.

5,878,231 A 3/1999 Baehr et al.

5,892,903 A 4/1999 Klaus

5,898,830 A 4/1999 Wesinger, Jr. et al.

5,905,859 A 5/1999 Holloway et al.

5,996,016 A * 11/1999 Thalheimer et al. 709/227
6,006,259 A 12/1999 Adelman et al.

6,006,272 A * 12/1999 Aravamudan et al. 709/227
6,016,318 A 1/2000 Tomoike

6,052,788 A 4/2000 Wesinger, Jr. et al.

6,061,736 A * 5/2000 Rochberger et al. 709/241
6,079,020 A 6/2000 Liu

6,119,171 A 9/2000 Alkhatib

6,175,867 B1* 1/2001 Taghadoss 709/228

6,178,505 Bl
6,226,751 Bl
6,233,618 B1*
6,243,360 B1*
6,243,749 Bl
6,243,754 B1*

1/2001 Schneider et al.

5/2001 Arrow et al.

5/2001 Shannon ... 709/229
6/2001 Basilicoc..ccceeeenennn. 709/250
6/2001 Sitaraman et al.

6/2001 Guerin et al. 709/227
6,263,445 B1* 7/2001 Blumenau 713,201
6,286,047 B1 9/2001 Ramanathan et al.

6,308,274 B1* 10/2001 Swiftccoocrvvneeereneen. 713/201
6,311,207 B1* 10/2001 Mighdoll et al. 709/227
6,330,562 B1 12/2001 Boden et al.

6,332,158 B1 12/2001 Risley et al.

6,353,614 B1 3/2002 Borella et al.

6,430,610 B1* 8/2002 Cartercccceeevreuneees 709,221

6,505,232 B1* 1/2003 Mighdoll et al. .. 7001227
6,510,154 B1* 1/2003 Mayes et al. 700245
6,549,516 B1* 4/2003 Albert et al. 370,236
FOREIGN PATENT DOCUMENTS

EP 0 814 589 12/1997

EP 0 838 930 4/1998

EP 0 858 189 8/1998

EP WO 01 50688 7/2001

GB 2317 792 4/1998

WO WO 98/27783 6/1998

WO WO 98 55930 12/1998

WO WO 98 59470 12/1998

WO WO 99 38081 7/1999

WO WO 99 48303 9/1999

WO WO 00/70458 11/2000

OTHER PUBLICATIONS

Linux FreeS/WAN Index File, printed from http://liberty-
freeswan.org/freeswan__trees/freeswan-1.3/doc/ on Feb.
21, 2002, 3 Pages.

J. Gilmore, “Swan: Securing the Internet against Wiretap-
ping”, printed from http://liberty.freeswan.org/
freeswan__trees/freeswan-1.3/doc/rationale.html on Feb. 21,
2002, 4 pages.

Glossary for the Linux FreeS/WAN project, printed from
http://liberty.freeswan.org/freeswan__trees/freeswan-1.3/
doc/glossary.html on Feb. 21, 2002, 25 pages.

Alan O. Frier et al., “The SSL Protocol Version 3.0”, Nov.
18, 1996, printed from http://www.netscape.com/eng/ss13/
draft302.txt on Feb. 4, 2002, 56 pages.

Fasbender, Kesdogan, and Kubitz: “Variable and Scalable
Security: Protection of Location Information in Mobile IP”,
IEEE publication, 1996, pp. 963-967.

Reiter, Michael K. and Rubin, Aviel D. (AT&T
Labs—Research), “Crowds: Anonymity for Web Transac-
tions”, pp. 1-23.

Dolev, Shlomi and Ostrovsky, Rafail, “Efficient Anonymous
Multicast and Reception” (Extended Abstract), 16 pages.
Rubin, Aviel D., Geer, Daniel, and Ranum, Marcus J. (Wiley
Computer Publishing), “Web Security Sourcebook”, pp.
82-94.

Secarch Report (dated Jun. 18, 2002), International Applica-
tion No. PCT/US01/13260.

Search Report (dated Jun. 28, 2002), International Applica-
tion No. PCT/US01/13261.

Donald E. Eastlake, “Domain Name System Security Exten-
sions”, DNS Sccurity Working Group, Apr. 1998, 51 pagcs.
D. B. Chapman et al., “Building Internet Firewalls”, Nov.
1995, pp. 278-297 and pp. 351-375.

P. Srisuresh et al., “DNS extensions to Network Address
Translators”, Jul. 1998, 27 pages.

Laurie Wells, “Security Icon”; Oct. 19, 1998, 1 page.

W. Stallings, “Cryptography And Network Security”, 2™
Edition, Chapter 13, IP Security, Jun. 8, 1998, pp. 399-440.
W. Stallings, “New Cryptography And Network Security
Book”, Jun. 8, 1998, 3 pages.

Search Report (dated Aug. 20, 2002), International Applica-
tion No. PCT/US01/04340.

Search Report (dated Aug. 23, 2002), International Applica-
tion No. PCT/US01/13260.

Shree Murthy et al.,, “Congestion-Oriented Shortest
Multipath Routing”, Proceedings of IEEE INFOCOM,
1996, pp. 1028-1036.

Jim Jones et al., “Distributed Denial of Service Attacks:
Defenses”, Global Integrity Corporation, 2000, pp. 1-14.
James E. Bellaire, “New Statement of Rules—Naming
Internet Domains”, Internet Newsgroup, Jul. 30, 1995, 1
page.

D. Clark, “US Calls for Private Domain-Name System”,
Computer, IEEE Computer Society, Aug. 1, 1998, pp. 22-25.
August Bequai, “Balancing Legal Concerns Over Crime and
Security in Cyberspace”, Computer & Security, vol. 17, No.
4, 1998, pp. 293-298.

Rich Winkel, “CAQ: Networking With Spooks: The NET &
The Control Of Information”, Internet Newsgroup, Jun. 21,
1997, 4 pages.

F. Halsall, “Data Communications, Computer Networks And
Open Systems”, Chapter 4, Protocol Basics, 1996, pp.
198-203.

* cited by examiner

New Bay Capital, LLC
Ex.1015-Page 1475 of 3151

U.S. Patent

Originating

Terminal
100

IP packet

Mar. 7, 2006

40

Sheet 1 of 23

IP Router
23

IP Router
29

e

encryption key

48

|P Router
22

IP Router
30

IP Router
31

AN

1P Router

IP Router
25

1P Router
27

Internet 107

Fig. 1

24

{P Router
32

P Router
26

US 7,010,604 B1

IP Router
28

Destination
Terminal
110

New Bay Capital, LLC

Ex.1015-Page 1476 of 3151

U.S. Patent Mar. 7, 2006 Sheet 2 of 23 US 7,010,604 B1

TARP
Terminal
100

140

TARP packet

IP Router

131
TARP Router
122
o
link key,
. L.\
link key
TARP Router / IP Router _ | TARP Router
123 130 / 124

Intemet 107
tP Router P Router
129 TARP Router IP Router 128
125 132

TARP Router
126

TARP Router
127

link key

link key

TARP packet

session key TARP
Terminal

110

New Bay Capital, LLC
Ex.1015-Page 1477 of 3151

U.S. Patent Mar. 7, 2006 Sheet 3 of 23 US 7,010,604 B1

~—— 207a - 2070

207c 207d o e o

| }...

data stream 300

interleaved
payload data
320

interleave window 320

session-key-encrypted
payload data 330

TARP packet with
encrypted payloads 340

tink-key-encrypted
TARP packets 350

IP packets w/ encrypted
TARP packets as
payload 360

TARP
" router 1

TARP
router 2

TARP
router 7

TARP

TARP / router 5

router 3

TARP
router 6

TARP
router 4

TARP
destination

Fig. 3a

New Bay Capital, LLC
Ex.1015-Page 1478 of 3151

US 7,010,604 B1

Sheet 4 of 23

Mar. 7, 2006

U.S. Patent

Ove speojfed paydAioua
yum siaxoed dyvl

paAeajaul speoiied ojul
pPapIAlp %o0|q pajdAioua

qg *614

[543

ZTG MOPUIM BAES|IBJUI

€¢s
paaeapsiul speojded oyl
papIaip ¥o0|q peydAsous

Z2S speojfed o
pPapIAIp %20|q pajdAsous

pappe aq few

Biep Jo s3o0iq Awwng | (Aey-uolssas) paydAious-3o0|q

0¢G souanbas peojhed

L

»
-

cos

_ | E L] [«

00

wess ejep 1\ i\ \
oo e pOZ 202 a.02 807

New Bay Capital, LLC
Ex.1015-Page 1479 of 3151

US 7,010,604 B1

Sheet 5 of 23

Mar. 7, 2006

U.S. Patent

067 Joddeum
|00030.d yui) E1Ep

Jossaooid
di S/O yim
Buissaocoid 4yvl
auIquWoo

0} aAljeulslie auQ

» Ofv JeAeTun gjeq

02p 1ehen duvl

W)
-~
h 1

dl

0Vb Johe (d1) YiomaN

OF {an9osuel| dYVYL

(Wodd
pIEOq OJUl uing “6°38)
10ssa001d "7'g yum
Buissaooid dyvL
auIgWod 0}
SAljBRUISYE 13U}O

New Bay Capital, LLC
Ex.1015-Page 1480 of 3151

U.S. Patent Mar. 7, 2006 Sheet 6 of 23 US 7,010,604 B1

Background loop - decoy S
generation —

authenticate TARP packet \/_ 52

< S6
outer layer decryption of _/— S3

TARP packet using link key

dump decoy
check for decoy and
incremend perishable decoy \/— 54
counter as appropriate
No
Transmit decoy? S5
Yes Fig. 5
No Decrement S7
TTL. TTL> 07
Yes
y Y
S9 _\ determine destination TARP generate next-hop TARP S8
address and store link key address and store link key \f_
and |P address and IP address

generate next-hop TARP
address and store link key \/— §10

and IP address

]

Generate |P header and Si1
trasnmit "

New Bay Capital, LLC
Ex.1015-Page 1481 of 3151

U.S. Patent

Mar. 7, 2006 Sheet 7 of 23 US 7,010,604 B1

Background loop - decoy
generation

\/— S20

l

group received |P packets
into interleave window

\/‘ S21

'

determine destination TARP
address, initialize TTL, store
in TARP header

/ S22

|

record window seq. nos. and
interleave seq. nos in TARP
headers.

\/_ S23

|

choose first hop TARP
router, look up IP address
and store in clear IP header,
outer layer encrypt

\/‘ S24

|

install clear IP header and
transmit

/ S25

Fig. 6

New Bay Capital, LLC
Ex.1015-Page 1482 of 3151

U.S. Patent

Mar. 7, 2006

Background loop - decoy
generation

’\/_ S40

Y

authenticate TARP packet
received

\/’ S42

Y

decrypt outer layer encryption
with link key

\/— S43

Y

increment perishable counter
if decoy

\/_ S44

Y

throw away decoy or keep in
response to algorithm

\/_ S45

4

cache TARP packets until
window is assembled

/— S46

Y

deinterleave packets forming
window

/ S47

decrypt block

/ S48

L

Sheet 8 of 23

US

[P |

7,010,604 B1

divide block into packets
using window sequence data,
add clear IP headers
generated from TARP
headers

/ S49

4

hand completed IP packets
to IP tayer process

,/_ S50

New Bay Capital, LLC
Ex.1015-Page 1483 of 3151

US 7,010,604 B1

Sheet 9 of 23

Mar. 7, 2006

U.S. Patent

118
d31N0Y
dyvl

GZ8 3OV NOILVILINI NOISS3S 3HNO3S

728 NOILYILINI NOISS3S 3HND3S

T~

€28 LINOVd MOV MOV NASS

/

-

T~

¢¢8 1INIVd MOV NASS

128 L3MOVd NASS

NOILYZINOHHONAS ANY
INIWHSI8VY.LS3 NOISS3S 34NO3S

8 "Old

\ R
08

TVYNIWH3L LNJIT0

New Bay Capital, LLC
Ex.1015-Page 1484 of 3151

US 7,010,604 B1

Sheet 10 of 23

Mar. 7, 2006

U.S. Patent

6y ¥0¢'8L2 1E}
Lel'v0g8ieIEl
¢Iey0e 8l gl
68'¥0¢'8LC1EL

.
.

6L170C8L1EL
10¢'702'812° €L

9902812 1EL
191'v0C8LC IEL

€26 319VL LINSNVHL

.

GSv0c8lg LEL
981'v0c8LC IEL
16'v02°8121€EL
S9'v0c8LC LEL

s

AR (A YA
6EL'Y0C81C IEL
Lec'v0c8Le LEL

86'70¢81LC°LEL

6’70812 1EL
AR VA A)
¢kevocslciel

68'v0¢'8LC 1EL

6L170C8LE LEL
L0c'v0c8Le LEL

99v0c8LL1EL
19L'v028LC e}

26 318YL 33034

226 318Y1 JAI303H

GSy0C8L IEL
98Lv0c8lC IEL
16v0c'8Le’IEl
S9v0c81CLE}

¢

ctv0c8I’LEL
6EL'Y0C 8L IEL
ARV T YA
86'v0C'8LC LEL

1¢6 379VL LINSNYHL

106

L LN3ITO

S319VL 3AI303H ANV LINSNYHL dOHI

6 'Ol

New Bay Capital, LLC
Ex.1015-Page 1485 of 3151

US 7,010,604 B1

Sheet 11 of 23

Mar. 7, 2006

U.S. Patent

€Lot

d31N0OH
ddvl
JdSl

clat

100}

H31N0Y

ddvl

g dSl

L101

431N0YH
dyvl
Y dSI

AONYANNA3IY MNITTVIISAHd

Ol "Old

N30

New Bay Capital, LLC
Ex.1015-Page 1486 of 3151

US 7,010,604 B1

Sheet 12 of 23

Mar. 7, 2006

U.S. Patent

L1 "Old

edl

AT Z# QvYO1Avd
€0} b—A €1 :a1314 WI¥osIa zdl
ge0tl—| 6| :sS3¥aAav d! "1S30 —
VEOLL— €1 :SS3HAav dl 324NOS coLL
— ¥3avaH
13Movd di
£# QYO1AVd Mg L# QVOTAVd
ObLL —
v Q131 WIOSIA N - 0S0k) 9Z0L b~ 12 :a7314 WiyosIa bdl
16 'S53¥aav di 1S53\ __- 8041 azoLi—| 1 'SS3WAQY dI ‘LS3a ~/
coryl [+4SSIHAQY dI 30UNOS | vs0LL VvZ0LL— 0l :8S34¥aav dl 394N0S 2001
¥3avaH ¥3avaH
13M0OVd dl 13X0ovd dI
88 :SS3¥AAVY MH '1S3a _—8+0L} 81011 ~—{ 88:SS3¥AAVY MH '1S3a
boL €5 :SSFYAAY MH 'OHS h——V1OLL VIOLE~_{ €5 :5S34aav mMH OdS oL
Y3Qv3H DV ¥3av3H
INVHS LINN3HLT JAVYS L1INY3HIT

ostl

osti

New Bay Capital, LLC
Ex.1015-Page 1487 of 3151

US 7,010,604 B1

Sheet 13 of 23

Mar. 7, 2006

U.S. Patent

Vel 9Old

vZZL eeel zzzr M ZZL
\ \ el /
N < ¥ ¥
86! 65 61| 09 2l 19¢ wmﬁ g [OL|oL
S¥| 66 6v| 18 86 | 9|zz 29 |98 zz
€5] S vl 6L I8t]stL| | sz [¥ilst
tMm+H 1s] 2L G| LE el |St] el S |29]18
88| €5 o¥] ¢ LL|vi|ol 28| 9]es
0v] ¢ 88 €5 O [86] .S Sp |16] 12
oo&w a s sa g s saa s
) (o0 o))
|2 97¥ JOHMH | 0 91V dOHMH [V 91V dOHdI | & 9TV dOHdl |

(xvmﬁ/M?PxﬁN } \

NOILLYOilddv

mXFNN_.

y3sn

\

-1 Y4

AJVIS
osi

11z 01z} gozL M g0zL
\ \) /
< N ¥ ¥
18| S €| L 29 |98}z2 oz |62 ¥
8L| 09 86| 65 A EAED 2L |9E] g2
8¥| L8 oy | 66 S |29} L8 88 | 9)22
MKz gg| st Z8 | 9168 |6t [3t 6L
85| ¢ 15| 22| sy |168]12 €l |Sb|Et
ovl € 88| ¢ ov |86) 25| |ZZ |¥F|ot
a s a s sa g s sdd s
o) D) [Ya))
| @ 917 dOHMH | 9 91V dOHMH | § 9TV doHdI | v 91V doHd |

\“r >>I_

PRy

L1gl

~

viZL

Sict

FNQN }

_f

|swayi3

@A

A XLiZH /A p (11342 60C} fGONF

MOVLS [
Osl

NOILVDINddV
y3sn

/{

L0Z) 90Z)

)

s0zi

/¢0N 3

(

g0zt

KSN_.

New Bay Capital, LLC
Ex.1015-Page 1488 of 3151

US 7,010,604 B1

Sheet 14 of 23

Mar. 7, 2006

U.S. Patent

ONAS NI INAS NI ONAS NI ONIddOH
Q3YA 38 NVYD Q318VA 38 NVO Q31NVA 38 NVD JYVYMAUYH €
INAS NI ONAS NI NdA ¥3d
Q3dVA 38 NVYD a318VA 38 NYD NdA HOV3 404 G3XI4 SNONJSINONE T
WOANVY
ONAS NI ONAS NI :
AT3L31dWOD ¥O SNONJSINOY L
Q38VA 38 NVD Q318VA 38 NVD ST Ty Hod SAYS
S3INIVA $35S34aav di s3ss3daavy kzmzy_muom_zm
a1314 YOLYNININOSIA JUYMANVH 200N

New Bay Capital, LLC
Ex.1015-Page 1489 of 3151

US 7,010,604 B1

Sheet 15 of 23

Mar. 7, 2006

U.S. Patent

¢l 9old

ﬂo_.m_‘

'OV ONY

ﬂ

L0¢€l
'

avoAvd
Q31dAHONS
ASA-HNIA

1dA¥03a

(NolLyod
JLVAIYd) 3NTIYA ONAS

ONAS Q3NIGWOD

f 60¢ct

J@l

(NoILYOd o1nand)
3NTVA INAS

80¢cl

SS3¥AQY "Ls3A dl

L3Movd
ayvosia
ON

13)0vd
$S300%d LHOLVIN

S3A
gL T
g IN3O

yoel

SSHAAY 30HNOS di

c# dsl <

€oel

7

/

/

/

/

N\

coel

¥ IN3IT0

loel

90¢€l

soct

New Bay Capital, LLC
Ex.1015-Page 1490 of 3151

US 7,010,604 B1

Sheet 16 of 23

Mar. 7, 2006

U.S. Patent

71 DI

dSI sauadnay

JOPISuBI)

> I9ZTUOIYOUAS Iopuag 03 Justdoay 103 oukg ut 3doy]
B I9ZIUOIYOUAS Jusidiooy 01 I9pusg IoJ ouks ur 3doy

dSI S, 19pUag

JIAIY
=% I 3dy

—»)0

—» 0 3

Ted JI USLINY <—

M Jred g1
[J

JIAIY

e | mopmp

[J
7 Jred q1
[Ired g1

JIPrusue.],

-
e ——
-
-

lllll
lllllll

New Bay Capital, LLC
Ex.1015-Page 1491 of 3151

US 7,010,604 B1

Sheet 17 of 23

Mar. 7, 2006

U.S. Patent

1Yo ned J1
yurodyoay) maN Sursp)
MOV ONAS Jwsuer].
JoprwisueI] ur X 1dyo
Ired d1 3utodyos4)
MIN] SJBISUD) »
I0A1209y W U 1dyo
Ied dJ yurodxj0a4)
MIN 9dJeIdUdD).
MOpuIpp depd)e

U 3o s, J0A1009Y

= JOpBIH Suruoou] yum
SOALLY OFY ONAS USUM 4

! e

¢1 "'DIA

Ioprusuel] uru 3dyo
ned dI yurodyoay)
MO 91BIaURD

I 1dyo = JopesH
SuTwoou] YIM SOALLIY
MOV ONAXS USUM #

1 1dyo ymodyo9y)
asu0dsay JOAI0Y MIN
21RISUSY) pue U 1dyo Jed

dI ymodxosy) Isprusuel],
moN Suts() 0T ONAS
(PS3IOV 1nu() A[[esrpolad
NWSURRYY) NWSULL], SUISAg
UOJBZIUOIYOUAS USYM @)

@

New Bay Capital, LLC
Ex.1015-Page 1492 of 3151

U.S. Patent Mar. 7, 2006 Sheet 18 of 23 US 7,010,604 B1

<+ >F-‘
VN
o
.g = —
Q N N
(@) pA
p— -
m
al | T .
_“8’ i
o
< i 2
< ° .
2 2
- ? Fy
[]
g S\A
-
D
E e P —
o .
o % S
)
P e
o

New Bay Capital, LLC
Ex.1015-Page 1493 of 3151

U.S. Patent Mar. 7, 2006 Sheet 19 of 23 US 7,010,604 B1

000 <

o | | Inactive
.) Active
Window_Size< = Used

//
/777777777
/77777777
77777777/
V77772277

\

Window_Size <
///
/7%
/////////////////////////////////////
MMM

FIG. 17

New Bay Capital, LLC
Ex.1015-Page 1494 of 3151

U.S. Patent

000 <

Window_Size{

Window_Size <

Mar. 7, 2006 Sheet 20 of 23 US 7,010,604 B1
(1 |
®
®
°
>
° . Inactive
: % Active
Used
7/
T
7 //
°
[
°
V72 2ZzZ f AXZ
FIG. 18

New Bay Capital, LLC
Ex.1015-Page 1495 of 3151

U.S. Patent Mar. 7, 2006 Sheet 21 of 23

777777277777/

000 < o

Window_Sizey ,,

//
7777777777777
’///
77777777
///

°
Wiy

e
V7772277222

\

Window_Size {

FIG. 19

US 7,010,604 B1

N

> 000

7
U

Inactive
Active
sed

New Bay Capital, LLC

Ex.1015-Page 1496 of 3151

US 7,010,604 B1

Sheet 22 of 23

Mar. 7, 2006

U.S. Patent

c#
H43LNdNOD

L10S

d31N0Y
3903

0¢ Ol

d31N0Y
3943

L#
d31NdINOD

New Bay Capital, LLC
Ex.1015-Page 1497 of 3151

U.S. Patent Mar. 7, 2006 Sheet 23 of 23 US 7,010,604 B1

FIG. 21
ADTABLE |
IP1_| P2 - 2101
IP3 IP4
. . <
AE TABLE
2102
<
AF TABLE
'\ 2103
p
BD TABLE
L 2104
L
BE TABLE
2105
LINK DOWN ——»
<
BF TABLE
2106
J
/ CD TABLE
2100 L 9107
b,
CE TABLE
2108
<
CF TABLE
2109
J

New Bay Capital, LLC
Ex.1015-Page 1498 of 3151

US 7,010,604 B1

1

AGILE NETWORK PROTOCOL FOR
SECURE COMMUNICATIONS WITH
ASSURED SYSTEM AVAILABILITY

RELATED APPLICATIONS

This application claims priority from and bodily incorpo-
rates the subject matter of two previously filed provisional
patent applications: Ser. No. 60/106,261 (filed on Oct. 30,
1998) and Ser. No. 60/137,704 (filed on Jun. 7, 1999).

BACKGROUND OF THE INVENTION

A tremendous variety of methods have been proposed and
implemented to provide security and anonymity for com-
munications over the Internet. The variety stems, in part,
from the different needs of different Internet users. A basic
heuristic framework to aid in discussing these different
security techniques is illustrated in FIG. 1. Two terminals, an
originating terminal 100 and a destination terminal 110 are
in communication over the Internet. It is desired for the
communications to be secure, that is, immune to eavesdrop-
ping. For example, terminal 100 may transmit secret infor-
mation to terminal 110 over the Internet 107. Also, it may be
desired to prevent an eavesdropper from discovering that
terminal 100 is in communication with terminal 110. For
example, if terminal 100 is a user and terminal 110 hosts a
web site, terminal 100’s user may not want anyone in the
intervening networks to know what web sites he is “visit-
ing.” Anonymity would thus be an issue, for example, for
companies that want to keep their market research interests
private and thus would prefer to prevent outsiders from
knowing which web-sites or other Internet resources they
are “visiting.” These two security issues may be called data
security and anonymity, respectively.

Data security is usually tackled using some form of data
encryption. An encryption key 48 is known at both the
originating and terminating terminals 100 and 110. The keys
may be private and public at the originating and destination
terminals 100 and 110, respectively or they may be sym-
metrical keys (the same key is used by both parties to
encrypt and decrypt). Many encryption methods are known
and usable in this context.

To hide traffic from a local administrator or ISP, a user can
employ a local proxy server in communicating over an
encrypted channel with an outside proxy such that the local
administrator or ISP only sees the encrypted traffic. Proxy
servers prevent destination servers from determining the
identities of the originating clients. This system employs an
intermediate server interposed between client and destina-
tion server. The destination server sees only the Internet
Protocol (IP) address of the proxy server and not the
originating client. The target server only sees the address of
the outside proxy. This scheme relies on a trusted outside
proxy server. Also, proxy schemes are vulnerable to traffic
analysis methods of determining identities of transmitters
and receivers. Another important limitation of proxy servers
is that the server knows the identities of both calling and
called parties. In many instances, an originating terminal,
such as terminal A, would prefer to keep its identity con-
cealed from the proxy, for example, if the proxy server is
provided by an Internet service provider (ISP).

To defeat traffic analysis, a scheme called Chaum’s mixes
employs a proxy server that transmits and receives fixed
length messages, including dummy messages. Multiple
originating terminals are connected through a mix (a server)
to multiple target servers. It is difficult to tell which of the

10

15

20

25

30

35

40

45

50

55

60

65

2

originating terminals are communicating to which of the
connected target servers, and the dummy messages confuse
eavesdroppers’ efforts to detect communicating pairs by
analyzing traffic. A drawback is that there is a risk that the
mix server could be compromised. One way to deal with this
risk is to spread the trust among multiple mixes. If one mix
is compromised, the identities of the originating and target
terminals may remain concealed. This strategy requires a
number of alternative mixes so that the intermediate servers
interposed between the originating and target terminals are
not determinable except by compromising more than one
mix. The strategy wraps the message with multiple layers of
encrypted addresses. The first mix in a sequence can decrypt
only the outer layer of the message to reveal the next
destination mix in sequence. The second mix can decrypt the
message to reveal the next mix and so on. The target server
receives the message and, optionally, a multi-layer
encrypted payload containing return information to send
data back in the same fashion. The only way to defeat such
a mix scheme is to collude among mixes. If the packets are
all fixed-length and intermixed with dummy packets, there
is no way to do any kind of traffic analysis.

Still another anonymity technique, called ‘crowds,” pro-
tects the identity of the originating terminal from the inter-
mediate proxies by providing that originating terminals
belong to groups of proxies called crowds. The crowd
proxies are interposed between originating and target termi-
nals. Each proxy through which the message is sent is
randomly chosen by an upstream proxy. Each intermediate
proxy can send the message either to another randomly
chosen proxy in the “crowd” or to the destination. Thus,
even crowd members cannot determine if a preceding proxy
is the originator of the message or if it was simply passed
from another proxy.

ZKS (Zero-Knowledge Systems) Anonymous IP Protocol
allows users to select up to any of five different pseudonyms,
while desktop software encrypts outgoing traffic and wraps
it in User Datagram Protocol (UDP) packets. The first server
in a 2+-hop system gets the UDP packets, strips off one layer
of encryption to add another, then sends the traffic to the next
server, which strips off yet another layer of encryption and
adds a new one. The user is permitted to control the number
of hops. At the final server, traffic is decrypted with an
untraceable IP address. The technique is called onion-rout-
ing. This method can be defeated using traffic analysis. For
a simple example, bursts of packets from a user during
low-duty periods can reveal the identities of sender and
receiver.

Firewalls attempt to protect LANs from unauthorized
access and hostile exploitation or damage to computers
connected to the LAN. Firewalls provide a server through
which all access to the LAN must pass. Firewalls are
centralized systems that require administrative overhead to
maintain. They can be compromised by virtual-machine
applications (“applets”). They instill a false sense of security
that leads to security breaches for example by users sending
sensitive information to servers outside the firewall or
encouraging use of modems to sidestep the firewall security.
Firewalls are not useful for distributed systems such as
business travelers, extranets, small leams, elc.

SUMMARY OF THE INVENTION

A secure mechanism for communicating over the internet,
including a protocol referred to as the Tunneled Agile
Routing Protocol (TARP), uses a unique two-layer encryp-
tion format and special TARP routers. TARP routers are

New Bay Capital, LLC
Ex.1015-Page 1499 of 3151

US 7,010,604 B1

3

similar in function to regular IP routers. Each TARP router
has one or more IP addresses and uses normal IP protocol to
send IP packet messages (“packets” or “datagrams”). The IP
packets exchanged between TARP terminals via TARP rout-
ers are actually encrypted packets whose true destination
address is concealed except to TARP routers and servers.
The normal or “clear” or “outside” IP header attached to
TARP IP packets contains only the address of a next hop
router or destination server. That is, instead of indicating a
final destination in the destination field of the IP header, the
TARP packet’s IP header always points to a next-hop in a
series of TARP router hops, or to the final destination. This
means there is no overt indication from an intercepted TARP
packet of the true destination of the TARP packet since the
destination could always be next-hop TARP router as well as
the final destination.

Each TARP packet’s true destination is concealed behind
alayer of encryption generated using a link key. The link key
is the encryption key used for encrypted communication
between the hops intervening between an originating TARP
terminal and a destination TARP terminal. Each TARP
router can remove the outer layer of encryption to reveal the
destination router for each TARP packet. To identify the link
key needed to decrypt the outer layer of encryption of a
TARP packet, a receiving TARP or routing terminal may
identify the transmitting terminal by the sender/receiver IP
numbers in the cleartext IP header.

Once the outer layer of encryption is removed, the TARP
router determines the final destination. Each TARP packet
140 undergoes a minimum number of hops to help foil traffic
analysis. The hops may be chosen at random or by a fixed
value. As a result, each TARP packet may make random trips
among a number of geographically disparate routers before
reaching its destination. Each trip is highly likely to be
different for each packet composing a given message
because each trip is independently randomly determined.
This feature is called agile routing. The fact that different
packets take different routes provides distinct advantages by
making it difficult for an interloper to obtain all the packets
forming an entire multi-packet message. The associated
advantages have to do with the inner layer of encryption
discussed below. Agile routing is combined with another
feature that furthers this purpose; a feature that ensures that
any message is broken into multiple packets.

The IP address of a TARP router may not remain constant;
a feature called IP agility. Each TARP router, independently
or under direction from another TARP terminal or router,
may change its IP address. A separate, unchangeable iden-
tifier or address is also defined. This address, called the
‘TARP address, is known only to TARP routers and terminals
and may be correlated at any time by a TARP router or a
TARP terminal using a Lookup Table (LUT). When a TARP
router or terminal changes its IP address, it updates the other
TARP routers and terminals which in turn update their
respective LUTs.

The message payload is hidden behind an inner layer of
encryption in the TARP packet that can only be unlocked
using a session key. The session key is not available to any
of the intervening TARP routers. The session key is used to
decrypt the payloads of the TARP packets permitting the
data stream to be reconstructed.

Communication may be made private using link and
session keys, which in turn may be shared and used accord-
ing any desired method. For example, public/private keys or
symmetric keys may be used.

To transmit a data stream, a TARP originating terminal
constructs a series of TARP packets from a series of IP

20

25

30

35

40

45

50

55

60

65

4

packets generated by a network (IP) layer process. (Note that
the terms “network layer,” “data link layer,” “application
layer,” etc. used in this specification correspond to the Open
Systems Interconnection (OSI) network terminology.) The
payloads of these packets are assembled into a block and
chain-block encrypted using the session key. This assumes,
of course, that all the IP packets are destined for the same
TARP terminal. The block is then interleaved and the
interleaved encrypted block is broken into a series of pay-
loads, one for each TARP packet to be generated. Special
TARP headers IP; are then added to each payload using the
IP headers from the data stream packets. The TARP headers
can be identical to normal IP headers or customized in some
way. They should contain a formula or data for deinterleav-
ing the data at the destination TARP terminal, a time-to-live
(TTL) parameter to indicate the number of hops still to be
executed, a data type identifier which indicates whether the
payload contains, for example, TCP or UDP data, the
sender’s TARP address, the destination TARP address, and
an indicator as to whether the packet contains real or decoy
data or a formula for filtering out decoy data if decoy data
is spread in some way through the TARP payload data.

Note that although chain-block encryption is discussed
here with reference to the session key, any encryption
method may be used. Preferably, as in chain block encryp-
tion, a method should be used that makes unauthorized
decryption difficult without an entire result of the encryption
process. Thus, by separating the encrypted block among
multiple packets and making it difficult for an interloper to
obtain access to all of such packets, the contents of the
communications are provided an extra layer of security.

Decoy or dummy data can be added to a stream to help
foil traffic analysis by reducing the peak-to-average network
load. It may be desirable to provide the TARP process with
an ability to respond to the time of day or other criteria to
generate more decoy data during low traffic periods so that
communication bursts at one point in the Internet cannot be
tied to communication bursts at another point to reveal the
communicating endpoints.

Dummy data also helps to break the data into a larger
number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be
broken into multiple packets is apparent if a chain block
encryption scheme is used to form the first encryption layer
prior to interleaving. A single block encryption may be
applied to portion, or entirety, of a message, and that portion
or entirety then interleaved into a number of separate
packets. Considering the agile IP routing of the packets, and
the attendant difficulty of reconstructing an entire sequence
of packets to form a single block-encrypted message ele-
ment, decoy packets can significantly increase the difficulty
of reconstructing an entire data stream.

The above scheme may be implemented entirely by
processes operating between the data link layer and the
network layer of each server or terminal participating in the
TARP system. Because the encryption system described
above is insertable between the data link and network layers,
the processes involved in supporting the encrypted commu-
nication may be completely transparent to processes at the IP
(network) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as
well. Thus, no operations at or above the Network layer, or
at or below the data link layer, are affected by the insertion
of the TARP stack. This provides additional security to all

New Bay Capital, LLC
Ex.1015-Page 1500 of 3151

US 7,010,604 B1

5

processes at or above the network layer, since the difficulty
of unauthorized penetration of the network layer (by, for
example, a hacker) is increased substantially. Even newly
developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note
that in this architecture, security is distributed. That is,
notebook computers used by executives on the road, for
example, can communicate over the Internet without any
compromise in security.

IP address changes made by TARP terminals and routers
can be done at regular intervals, at random intervals, or upon
detection of “attacks.” The variation of IP addresses hinders
traffic analysis that might reveal which computers are com-
municating, and also provides a degree of immunity from
attack. The level of immunity from attack is roughly pro-
portional to the rate at which the IP address of the host is
changing.

As mentioned, IP addresses may be changed in response
to attacks. An attack may be revealed, for example, by a
regular series of messages indicating that a router is being
probed in some way. Upon detection of an attack, the TARP
layer process may respond to this event by changing its IP
address. In addition, it may create a subprocess that main-
tains the original IP address and continues interacting with
the attacker in some manner.

Decoy packets may be generated by each TARP terminal
on some basis determined by an algorithm. For example, the
algorithm may be a random one which calls for the genera-
tion of a packet on a random basis when the terminal is idle.
Alternatively, the algorithm may be responsive to time of
day or detection of low traffic to generate more decoy
packets during low traffic times. Note that packets are
preferably generated in groups, rather than one by one, the
groups being sized to simulate real messages. In addition, so
that decoy packets may be inserted in normal TARP message
streams, the background loop may have a latch that makes
it more likely to insert decoy packets when a message stream
is being received. Alternatively, if a large number of decoy
packets is received along with regular TARP packets, the
algorithm may increase the rate of dropping of decoy
packets rather than forwarding them. The result of dropping
and generating decoy packets in this way is to make the
apparent incoming message size different from the apparent
outgoing message size to help foil traffic analysis.

In various other embodiments of the invention, a scalable
version of the system may be constructed in which a
plurality of IP addresses are preassigned to each pair of
communicating nodes in the network. Each pair of nodes
agrees upon an algorithm for “hopping” between IP
addresses (both sending and receiving), such that an eaves-
dropper sees apparently continuously random IP address
pairs (source and destination) for packets transmitted
between the pair. Overlapping or “reusable” IP addresses
may be allocated to different users on the same subnet, since
each node merely verifies that a particular packet includes a
valid source/destination pair from the agreed-upon algo-
rithm. Source/destination pairs are preferably not reused
between any two nodes during any given end-to-end session,
though limited IP block sizes or lengthy sessions might
require it.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of secure communications over
the Internet according to a prior art embodiment.

FIG. 2 is an illustration of secure communications over
the Internet according to a an embodiment of the invention.

20

25

30

35

40

45

50

55

60

65

6

FIG. 3a is an illustration of a process of forming a
tunneled IP packet according to an embodiment of the
invention.

FIG. 3b is an illustration of a process of forming a
tunneled IP packet according to another embodiment of the
invention.

FIG. 4 is an illustration of an OSI layer location of
processes that may be used to implement the invention.

FIG. 5 is a flow chart illustrating a process for routing a
tunneled packet according to an embodiment of the inven-
tion.

FIG. 6 is a flow chart illustrating a process for forming a
tunneled packet according to an embodiment of the inven-
tion.

FIG. 7 is a flow chart illustrating a process for receiving
a tunneled packet according to an embodiment of the
invention.

FIG. 8 shows how a secure session is established and
synchronized between a client and a TARP router.

FIG. 9 shows an IP address hopping scheme between a
client computer and TARP router using transmit and receive
tables in each computer.

FIG. 10 shows physical link redundancy among three
Internet Service Providers (ISPs) and a client computer.

FIG. 11 shows how multiple IP packets can be embedded
into a single “frame” such as an Ethernet frame, and further
shows the use of a discriminator field to camouflage true
packet recipients.

FIG. 12A shows a system that employs hopped hardware
addresses, hopped IP addresses, and hopped discriminator
fields.

FIG. 12B shows several different approaches for hopping
hardware addresses, IP addresses, and discriminator fields in
combination.

FIG. 13 shows a technique for automatically re-establish-
ing synchronization between sender and receiver through the
use of a partially public sync value.

FIG. 14 shows a “checkpoint” scheme for regaining
synchronization between a sender and recipient.

FIG. 15 shows further details of the checkpoint scheme of
FIG. 14.

FIG. 16 shows how two addresses can be decomposed
into a plurality of segments for comparison with presence
vectors.

FIG. 17 shows a storage array for a receiver’s active
addresses.

FIG. 18 shows the receiver’s storage array after receiving
a sync request.

FIG. 19 shows the receiver’s storage array after new
addresses have been generated.

FIG. 20 shows a system employing distributed transmis-
sion paths.

FIG. 21 shows a plurality of link transmission tables that
can be used to route packets in the system of FIG. 20.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Referring to FIG. 2, a secure mechanism for communi-
caling over the inlernet employs a number ol special Touters
or servers, called TARP routers 122—127 that are similar to
regular IP routers 128-132 in that each has one or more IP
addresses and uses normal IP protocol to send normal-
looking IP packet messages, called TARP packets 140.
TARP packets 140 are identical to normal IP packet mes-
sages that are routed by regular IP routers 128—132 because
each TARP packet 140 contains a destination address as in

New Bay Capital, LLC
Ex.1015-Page 1501 of 3151

US 7,010,604 B1

7

a normal IP packet. However, instead of indicating a final
destination in the destination field of the IP header, the TARP
packet’s 140 IP header always points to a next-hop in a
series of TARP router hops, or the final destination, TARP
terminal 110. Because the header of the TARP packet
contains only the next-hop destination, there is no overt
indication from an intercepted TARP packet of the true
destination of the TARP packet 140 since the destination
could always be the next-hop TARP router as well as the
final destination, TARP terminal 110.

Each TARP packet’s true destination is concealed behind
an outer layer of encryption generated using a link key 146.
The link key 146 is the encryption key used for encrypted
communication between the end points (TARP terminals or
TARP routers) of a single link in the chain of hops connect-
ing the originating TARP terminal 100 and the destination
TARP terminal 110. Each TARP router 122—-127, using the
link key 146 it uses to communicate with the previous hop
in a chain, can use the link key to reveal the true destination
of a TARP packet. To identify the link key needed to decrypt
the outer layer of encryption of a TARP packet, a receiving
TARP or routing terminal may identify the transmitting
terminal (which may indicate the link key used) by the
sender field of the clear IP header. Alternatively, this identity
may be hidden behind another layer of encryption in avail-
able bits in the clear IP header. Each TARP router, upon
receiving a TARP message, determines if the message is a
TARP message by using authentication data in the TARP
packet. This could be recorded in available bytes in the
TARP packet’s IP header. Alternatively, TARP packets could
be authenticated by attempting to decrypt using the link key
146 and determining if the results are as expected. The
former may have computational advantages because it does
not involve a decryption process.

Once the outer layer of decryption is completed by a
TARP router 122-127, the TARP router determines the final
destination. The system is preferably designed to cause each
TARP packet 140 to undergo a minimum number of hops to
help foil traffic analysis. 'The time to live counter in the 1P
header of the TARP message may be used to indicate a
number of TARP router hops yet to be completed. Each
TARP router then would decrement the counter and deter-
mine from that whether it should forward the TARP packet
140 to another TARP router 122—127 or to the destination
TARP terminal 110. If the time to live counter is zero or
below zero after decrementing, for an example of usage, the
TARP router receiving the TARP packet 140 may forward
the TARP packet 140 to the destination TARP terminal 110.
If the time to live counter is above zero after decrementing,
for an example of usage, the TARP router receiving the
TARP packet 140 may forward the TARP packet 140 to a
TARP router 122-127 that the current TARP terminal
chooses at random. As a result, each TARP packet 140 is
routed through some minimum number of hops of TARP
routers 122—127 which are chosen at random.

Thus, each TARP packet, irrespective of the traditional
factors determining traffic in the Internet, makes random
trips among a number of geographically disparate routers
belore reaching its destination and each trip is highly likely
to be different for each packet composing a given message
because each trip is independently randomly determined as
described above. This feature is called agile routing. For
reasons that will become clear shortly, the fact that different
packets take different routes provides distinct advantages by
making it difficult for an interloper to obtain all the packets
forming an entire multi-packet message. Agile routing is

10

15

20

25

30

35

40

45

50

55

60

65

8

combined with another feature that furthers this purpose, a
feature that ensures that any message is broken into multiple
packets.

A TARP router receives a TARP packet when an IP
address used by the TARP router coincides with the IP
address in the TARP packet’s IP header IP... The IP address
of a TARP router, however, may not remain constant. To
avoid and manage attacks, each TARP router, independently
or under direction from another TARP terminal or router,
may change its IP address. A separate, unchangeable iden-
tifier or address is also defined. This address, called the
TARP address, is known only to TARP routers and terminals
and may be correlated at any time by a TARP router or a
TARP terminal using a Lookup Table LUT). When a TARP
router or terminal changes its IP address, it updates the other
TARP routers and terminals which in turn update their
respective LUTs. In reality, whenever a TARP router looks
up the address of a destination in the encrypted header, it
must convert a TARP address to a real IP address using its
LUT.

While every TARP router receiving a TARP packet has
the ability to determine the packet’s final destination, the
message payload is embedded behind an inner layer of
encryption in the TARP packet that can only be unlocked
using a session key. The session key is not available to any
of the TARP routers 122-127 intervening between the
originating 100 and destination 110 TARP terminals. The
session key is used to decrypt the payloads of the TARP
packets 140 permitting an entire message o be recon-
structed.

In one embodiment, communication may be made private
using link and session keys, which in turn may be shared and
used according any desired method. For example, a public
key or symmetric keys may be communicated between link
or session endpoints using a public key method. Any of a
variety of other mechanisms for securing data to ensure that
only authorized computers can have access to the private
information in the TARP packets 140 may be used as
desired.

Referring to FIG. 3a, to construct a series of TARP
packets, a data stream 300 of IP packets 207a, 207b, 207c,
etc., such series of packets being formed by a network (IP)
layer process, is broken into a series of small sized segments.
In the present example, equal-sized segments 1-9 are
defined and used to construct a set of interleaved data
packets A, B, and C. Here it is assumed that the number of
interleaved packets A, B, and C formed is three and that the
number of IP packets 207a-207c used to form the three
interleaved packets A, B, and C is exactly three. Of course,
the number of IP packets spread over a group of interleaved
packets may be any convenient number as may be the
number of interleaved packets over which the incoming data
stream is spread. The latter, the number of interleaved
packets over which the data stream is spread, is called the
interleave window.

To create a packet, the transmitting software interleaves
the normal IP packets 207a et. seq. to form a new set of
interleaved payload data 320. This payload data 320 is then
encrypled using a session key 1o [orm a set of session-key-
encrypted payload data 330, each of which, A, B, and C, will
form the payload of a TARP packet. Using the IP header
data, from the original packets 207¢-207c, new TARP
headers IP; are formed. The TARP headers IP; can be
identical to normal IP headers or customized in some way.
In a preferred embodiment, the TARP headers 1P, are IP
headers with added data providing the following information

New Bay Capital, LLC
Ex.1015-Page 1502 of 3151

US 7,010,604 B1

9

required for routing and reconstruction of messages, some of
which data is ordinarily, or capable of being, contained in
normal IP headers:

1. A window sequence number—an identifier that indi-
cates where the packet belongs in the original message
sequence.

2. An interleave sequence number—an identifier that
indicates the interleaving sequence used to form the
packet so that the packet can be deinterleaved along
with other packets in the interleave window.

3. A time-to-live (TTL) datum—indicates the number of
TARP-router-hops to be executed before the packet
reaches its destination. Note that the TTL parameter
may provide a datum to be used in a probabilistic
formula for determining whether to route the packet to
the destination or to another hop.

4. Data type identifier—indicates whether the payload
contains, for example, TCP or UDP data.

5. Sender’s address—indicates the sender’s address in the
TARP network.

6. Destination address—indicates the destination termi-
nal’s address in the TARP network.

7. Decoy/Real—an indicator of whether the packet con-
tains real message data or dummy decoy data or a
combination.

Obviously, the packets going into a single interleave
window must include only packets with a common destina-
tion. Thus, it is assumed in the depicted example that the IP
headers of IP packets 207a-207c¢ all contain the same
destination address or at least will be received by the same
terminal so that they can be deinterleaved. Note that dummy
or decoy data or packets can be added to form a larger
interleave window than would otherwise be required by the
size of a given message. Decoy or dummy data can be added
to a stream to help foil traffic analysis by leveling the load
on the network. Thus, it may be desirable to provide the
TARP process with an ability to respond to the time of day
or other criteria to generate more decoy data during low
traffic periods so that communication bursts at one point in
the Internet cannot be tied to communication bursts at
another point to reveal the communicating endpoints.

Dummy data also helps to break the data into a larger
number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be
broken into multiple packets is apparent if a chain block
encryption scheme is used to form the first encryption layer
prior to interleaving. A single block encryption may be
applied to portion, or entirety, of a message, and that portion
or entirety then interleaved into a number of separate
packets.

Referring to FIG. 3b, in an alternative mode of TARP
packet construction, a series of IP packets are accumulated
to make up a predefined interleave window. The payloads of
the packets are used to construct a single block 520 for chain
block encryption using the session key. The payloads used to
form the block are presumed to be destined for the same
terminal. The block size may coincide with the interleave
window as depicted in the example embodiment of FIG. 3b.
After encryption, the encrypted block is broken into separate
payloads and segments which are interleaved as in the
embodiment of FIG. 3a. The resulting interleaved packets A,
B, and C, are then packaged as TARP packets with TARP
headers as in the Example of FIG. 3a. The remaining process
is as shown in, and discussed with reference to, FIG. 3a.

10

20

25

30

35

40

45

50

55

60

65

10

Once the TARP packets 340 are formed, each entire TARP
packet 340, including the TARP header IP,, is encrypted
using the link key for communication with the first-hop-
TARP router. The first hop TARP router is randomly chosen.
A final unencrypted IP header IP. is added to each encrypted
TARP packet 340 to form a normal IP packet 360 that can
be transmitted to a TARP router. Note that the process of
constructing the TARP packet 360 does not have to be done
in stages as described. The above description is just a useful
heuristic for describing the final product, namely, the TARP
packet.

Note that, TARP header IP;-could be a completely custom
header configuration with no similarity to a normal IP header
except that it contain the information identified above. This
is so since this header is interpreted by only TARP routers.

The above scheme may be implemented entirely by
processes operating between the data link layer and the
network layer of each server or terminal participating in the
TARP system. Referring to FIG. 4, a TARP transceiver 405
can be an originating terminal 100, a destination terminal
110, or a TARP router 122-127. In each TARP Transceiver
405, a transmitting process is generated to receive normal
packets from the Network (IP) layer and generate TARP
packets for communication over the network. A receiving
process is generated to receive normal IP packets containing
TARP packets and generate from these normal IP packets
which are “passed up” to the Network (IP) layer. Note that
where the TARP Transceiver 405 is a router, the received
TARP packets 140 are not processed into a stream of IP
packets 415 because they need only be authenticated as
proper TARP packets and then passed to another TARP
router or a TARP destination terminal 110. The intervening
process, a “TARP Layer” 420, could be combined with
either the data link layer 430 or the Network layer 410. In
either case, it would intervene between the data link layer
430 so that the process would receive regular IP packets
containing embedded TARP packets and “hand up” a series
of reassembled IP packets to the Network layer 410. As an
example of combining the TARP layer 420 with the data link
layer 430, a program may augment the normal processes
running a communications card, for example, an ethernet
card. Alternatively, the TARP layer processes may form part
of a dynamically loadable module that is loaded and
executed to support communications between the network
and data link layers.

Because the encryption system described above can be
inserted between the data link and network layers, the
processes involved in supporting the encrypted communi-
cation may be completely transparent to processes at the IP
(network) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as
well. Thus, no operations at or above the network layer, or
at or below the data link layer, are affected by the insertion
of the TARP stack. This provides additional security to all
processes at or above the network layer, since the difficulty
of unauthorized penetration of the network layer (by, for
example, a hacker) is increased substantially. Even newly
developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note
that in this architecture, security is distributed. That is,
notebook computers used by executives on the road, for
example, can communicate over the Internet without any
compromise in security.

Note that IP address changes made by TARP terminals
and routers can be done at regular intervals, at random
intervals, or upon detection of “attacks.” The variation of IP
addresses hinders traffic analysis that might reveal which

New Bay Capital, LLC
Ex.1015-Page 1503 of 3151

US 7,010,604 B1

11

computers are communicating, and also provides a degree of
immunity from attack. The level of immunity from attack is
roughly proportional to the rate at which the IP address of
the host is changing.

As mentioned, IP addresses may be changed in response
to attacks. An attack may be revealed, for example, by a
regular series of messages indicates that a router is being
probed in some way. Upon detection of an attack, the TARP
layer process may respond to this event by changing its IP
address. To accomplish this, the TARP process will construct
a TARP-formatted message, in the style of Internet Control
Message Protocol (ICMP) datagrams as an example; this
message will contain the machine’s TARP address, its
previous IP address, and its new IP address. The TARP layer
will transmit this packet to at least one known TARP router;
then upon receipt and validation of the message, the TARP
router will update its LUT with the new IP address for the
stated TARP address. The TARP router will then format a
similar message, and broadcast it to the other TARP routers
so that they may update their LUTs. Since the total number
of TARP routers on any given subnet is expected to be
relatively small, this process of updating the LUTs should be
relatively fast. It may not, however, work as well when there
is a relatively large number of TARP routers and/or a
relatively large number of clients; this has motivated a
refinement of this architecture to provide scalability; this
refinement has led to a second embodiment, which is dis-
cussed below.

Upon detection of an attack, the TARP process may also
create a subprocess that maintains the original IP address
and continues interacting with the attacker. The latter may
provide an opportunity to trace the attacker or study the
attacker’s methods (called “fishbowling” drawing upon the
analogy of a small fish in a fish bowl that “thinks” it is in the
ocean but is actually under captive observation). A history of
the communication between the attacker and the abandoned
(fishbowled) IP address can be recorded or transmitted for
human analysis or further synthesized for purposes of
responding in some way.

As mentioned above, decoy or dummy data or packets can
be added to outgoing data streams by TARP terminals or
routers. In addition to making it convenient to spread data
over a larger number of separate packets, such decoy packets
can also help to level the load on inactive portions of the
Internet to help foil traffic analysis efforts.

Decoy packets may be generated by each TARP terminal
100, 110 or each router 122-127 on some basis determined
by an algorithm. For example, the algorithm may be a
random one which calls for the generation of a packet on a
random basis when the terminal is idle. Alternatively, the
algorithm may be responsive to time of day or detection of
low traffic to generate more decoy packets during low traffic
times. Note that packets are preferably generated in groups,
rather than one by one, the groups being sized to simulate
real messages. In addition, so that decoy packets may be
inserted in normal TARP message streams, the background
loop may have a latch that makes it more likely to insert
decoy packets when a message stream is being received.
That is, when a series of messages are received, the decoy
packetl generation rate may be increased. Allernatively, il a
large number of decoy packets is received along with regular
TARP packets, the algorithm may increase the rate of
dropping of decoy packets rather than forwarding them. The
result of dropping and generating decoy packets in this way
is to make the apparent incoming message size different
from the apparent outgoing message size to help foil traffic
analysis. The rate of reception of packets, decoy or other-

10

15

20

25

30

35

40

45

50

55

65

12

wise, may be indicated to the decoy packet dropping and
generating processes through perishable decoy and regular
packet counters. (A perishable counter is one that resets or
decrements its value in response to time so that it contains
a high value when it is incremented in rapid succession and
a small value when incremented either slowly or a small
number of times in rapid succession.) Note that destination
TARP terminal 110 may generate decoy packets equal in
number and size to those TARP packets received to make it
appear it is merely routing packets and is therefore not the
destination terminal.

Referring to FIG. §, the following particular steps may be
employed in the above-described method for routing TARP
packets.

S0. A background loop operation is performed which
applies an algorithm which determines the generation
of decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

S2. The TARP packet may be probed in some way to
authenticate the packet before attempting to decrypt it
using the link key. That is, the router may determine
that the packet is an authentic TARP packet by per-
forming a selected operation on some data included
with the clear IP header attached to the encrypted TARP
packet contained in the payload. This makes it possible
to avoid performing decryption on packets that are not
authentic TARP packets.

S3. The TARP packet is decrypted to expose the destina-
tion TARP address and an indication of whether the
packet is a decoy packet or part of a real message.

S4. If the packet is a decoy packet, the perishable decoy
counter is incremented.

S5. Based on the decoy generation/dropping algorithm
and the perishable decoy counter value, if the packet is
a decoy packet, the router may choose to throw it away.
If the received packet is a decoy packet and it is
determined that it should be thrown away (S6), control
returns to step SO.

S7. The TTL parameter of the TARP header is decre-
mented and it is determined if the TTL parameter is
greater than zero.

S8. If the TTL parameter is greater than zero, a TARP
address is randomly chosen from a list of TARP
addresses maintained by the router and the link key and
IP address corresponding to that TARP address memo-
rized for use in creating a new IP packet containing the
TARP packet.

S9. If the TTL parameter is zero or less, the link key and
IP address corresponding to the TARP address of the
destination are memorized for use in creating the new
IP packet containing the TARP packet.

S10. The TARP packet is encrypted using the memorized
link key.

S11. An IP header is added to the packet that contains the
stored IP address, the encrypted TARP packet wrapped
with an IP header, and the completed packet transmitted
to the next hop or destination.

Referring to FIG. 6, the following particular steps may be
employed in the above-described method for generating
TARP packets.

S20. A background loop operation applies an algorithm
that determines the generation of decoy IP packets. The
loop is interrupted when a data stream containing IP
packets is received for transmission.

S21. The received IP packets are grouped into a set
consisting of messages with a constant IP destination
address. The set is further broken down to coincide

New Bay Capital, LLC
Ex.1015-Page 1504 of 3151

US 7,010,604 B1

13

with a maximum size of an interleave window The set
is encrypted, and interleaved into a set of payloads
destined to become TARP packets.

S22. The TARP address corresponding to the IP address is
determined from a lookup table and stored to generate
the TARP header. An initial TTL count is generated and
stored in the header. The TTL count may be random
with minimum and maximum values or it may be fixed
or determined by some other parameter.

S23. The window sequence numbers and interleave
sequence numbers are recorded in the TARP headers of
each packet.

S24. One TARP router address is randomly chosen for
each TARP packet and the IP address corresponding to
it stored for use in the clear IP header. The link key
corresponding to this router is identified and used to
encrypt TARP packets containing interleaved and
encrypted data and TARP headers.

S25. A clear IP header with the first hop router’s real IP
address is generated and added to each of the encrypted
TARP packets and the resulting packets.

Referring to FIG. 7, the following particular steps may be
employed in the above-described method for receiving
TARP packets.

S40. A background loop operation is performed which
applies an algorithm which determines the generation
of decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

S42. The TARP packet may be probed to authenticate the
packet before attempting to decrypt it using the link
key.

S43. The TARP packet is decrypted with the appropriate
link key to expose the destination TARP address and an
indication of whether the packet is a decoy packet or
part of a real message.

S44. If the packet is a decoy packet, the perishable decoy
counter is incremented.

S45. Based on the decoy generation/dropping algorithm
and the perishable decoy counter value, if the packet is
a decoy packet, the receiver may choose to throw it
away.

S46. The TARP packets are cached until all packets
forming an interleave window are received.

S47. Once all packets of an interleave window are
received, the packets are deinterleaved.

S48. The packets block of combined packets defining the
interleave window is then decrypted using the session
key.

S49. The decrypted block is then divided using the
window sequence data and the IP;, headers are con-
verted into normal IP headers. The window sequence
numbers are integrated in the IP. headers.

S50. The packets are then handed up to the IP layer
processes.

Scalability Enhancements

The IP agility feature described above relies on the ability
to transmit IP address changes to all TARP routers. The
embodiments including this feature will be referred to as
“boutique” embodiments due (o potential limitations in
scaling these features up for a large network, such as the
Internet. (The “boutique” embodiments would, however, be
robust for use in smaller networks, such as small virtual
private networks, for example). One problem with the
boutique embodiments is that if IP address changes are to
occur frequently, the message traffic required to update all
routers sufficiently quickly creates a serious burden on the

10

15

20

25

30

35

40

45

50

55

60

65

14

Internet when the TARP router and/or client population gets
large. The bandwidth burden added to the networks, for
example in ICMP packets, that would be used to update all
the TARP routers could overwhelm the Internet for a large
scale implementation that approached the scale of the Inter-
net. In other words, the boutique system’s scalability is
limited.

A system can be constructed which trades some of the
features of the above embodiments to provide the benefits of
IP agility without the additional messaging burden. This is
accomplished by IP address-hopping according to shared
algorithms that govern IP addresses used between links
participating in communications sessions between nodes
such as TARP nodes. (Note that the IP hopping technique is
also applicable to the boutique embodiment.) The IP agility
feature discussed with respect to the boutique system can be
modified so that it becomes decentralized under this scalable
regime and governed by the above-described shared algo-
rithm. Other features of the boutique system may be com-
bined with this new type of IP-agility.

The new embodiment has the advantage of providing IP
agility governed by a local algorithm and set of [P addresses
exchanged by each communicating pair of nodes. This local
governance is session-independent in that it may govern
communications between a pair of nodes, irrespective of the
session or end points being transferred between the directly
communicating pair of nodes.

In the scalable embodiments, blocks of IP addresses are
allocated to each node in the network. (This scalability will
increase in the future, when Internet Protocol addresses are
increased to 128-bit fields, vastly increasing the number of
distinctly addressable nodes). Each node can thus use any of
the IP addresses assigned to that node to communicate with
other nodes in the network. Indeed, each pair of communi-
cating nodes can use a plurality of source IP addresses and
destination IP addresses for communicating with each other.

Each communicating pair of nodes in a chain participating
in any session stores two blocks of IP addresses, called
netblocks, and an algorithm and randomization seed for
selecting, from each netblock, the next pair of source/
destination IP addresses that will be used to transmit the next
message. In other words, the algorithm governs the sequen-
tial selection of IP-address pairs, one sender and one
receiver IP address, from each netblock. The combination of
algorithm, seed, and netblock (IP address block) will be
called a “hopblock.” A router issues separate transmit and
receive hopblocks to its clients. The send address and the
receive address of the IP header of each outgoing packet sent
by the client are filled with the send and receive IP addresses
generated by the algorithm. 'The algorithm is “clocked”
(indexed) by a counter so that each time a pair is used, the
algorithm turns out a new transmit pair for the next packet
to be sent.

The router’s receive hopblock is identical to the client’s
transmit hopblock. The router uses the receive hopblock to
predict what the send and receive IP address pair for the next
expected packet from that client will be. Since packets can
be received out of order, it is not possible for the router to
predict with certainty what IP address pair will be on the
next sequential packet. To account [or this problem, the
router generates a range of predictions encompassing the
number of possible transmitted packet send/receive
addresses, of which the next packet received could leap
ahead. Thus, if there is a vanishingly small probability that
a given packet will arrive at the router ahead of 5 packets
transmitted by the client before the given packet, then the
router can generate a series of 6 send/receive IP address pairs

New Bay Capital, LLC
Ex.1015-Page 1505 of 3151

US 7,010,604 B1

15

(or “hop window”) to compare with the next received
packet. When a packet is received, it is marked in the hop
window as such, so that a second packet with the same IP
address pair will be discarded. If an out-of-sequence packet
does not arrive within a predetermined timeout period, it can
be requested for retransmission or simply discarded from the
receive table, depending upon the protocol in use for that
communications session, or possibly by convention.

When the router receives the client’s packet, it compares
the send and receive IP addresses of the packet with the next
N predicted send and receive IP address pairs and rejects the
packet if it is not a member of this set. Received packets that
do not have the predicted source/destination IP addresses
falling with the window are rejected, thus thwarting possible
hackers. (With the number of possible combinations, even a
fairly large window would be hard to fall into at random.) If
it is a member of this set, the router accepts the packet and
processes it further. This link-based IP-hopping strategy,
referred to as “IHOP,” is a network element that stands on
its own and is not necessarily accompanied by elements of
the boutique system described above. If the routing agility
feature described in connection with the boutique embodi-
ment is combined with this link-based IP-hopping strategy,
the router’s next step would be to decrypt the TARP header
to determine the destination TARP router for the packet and
determine what should be the next hop for the packet. The
TARP router would then forward the packet to a random
TARP router or the destination TARP router with which the
source TARP router has a link-based IP hopping communi-
cation established.

FIG. 8 shows how a client computer 801 and a TARP
router 811 can establish a secure session. When client 801
seeks to establish an IHOP session with TARP router 811,
the client 801 sends “secure synchronization” request
(“SSYN”) packet 821 to the TARP router 811. This SYN
packet 821 contains the client’s 801 authentication token,
and may be sent to the router 811 in an encrypted format.
The source and destination IP numbers on the packet 821 are
the client’s 801 current fixed IP address, and a “known”
fixed IP address for the router 811. (For security purposes,
it may be desirable to reject any packets from outside of the
local network that are destined for the router’s known fixed
IP address.) Upon receipt and validation of the client’s 801
SSYN packet 821, the router 811 respond by sending an
encrypted “secure synchronization acknowledgment”
(“SSYN ACK”) 822 to the client 801. This SSYN ACK 822
will contain the transmit and receive hopblocks that the
client 801 will use when communicating with the TARP
router 811. The client 801 will acknowledge the TARP
router’s 811 response packet 822 by generating an encrypted
SSYN ACK ACK packet 823 which will be sent from the
client’s 801 fixed IP address and to the TARP router’s 811
known fixed IP address. The client 801 will simultaneously
generate a SSYN ACK ACK packet; this SSYN ACK
packet, referred to as the Secure Session Initiation (SSI)
packet 824, will be sent with the first {sender, receiver} IP
pair in the client’s transmit table 921 (FIG. 9), as specified
in the transmit hopblock provided by the TARP router 811
in the SSYN ACK packet 822. The TARP router 811 will
respond (o the SSI packet 824 with an SSI ACK packet 825,
which will be sent with the first {sender, receiver} IP pair in
the TARP router’s transmit table 923. Once these packets
have been successfully exchanged, the secure communica-
tions session is established, and all further secure commu-
nications between the client 801 and the TARP router 811
will be conducted via this secure session, as long as syn-
chronization is maintained. If synchronization is lost, then

20

25

30

35

40

45

50

55

60

65

16
the client 801 and TARP router 802 may re-establish the
secure session by the procedure outlined in FIG. 8 and
described above.

While the secure session is active, both the client 901 and
TARP router 911 (FIG. 9) will maintain their respective
transmit tables 921, 923 and receive tables 922, 924, as
provided by the TARP router during session synchronization
822 It is important that the sequence of IP pairs in the
client’s transmit table 921 be identical to those in the TARP
router’s receive table 924; similarly, the sequence of IP pairs
in the client’s receive table 922 must be identical to those in
the router’s transmit table 923. This is required for the
session synchronization to be maintained. The client 901
need maintain only one transmit table 921 and one receive
table 922 during the course of the secure session. Each
sequential packet sent by the client 901 will employ the next
{send, receive} IP address pair in the transmit table, regard-
less of TCP or UDP session. The TARP router 911 will
expect each packet arriving from the client 901 to bear the
next IP address pair shown in its receive table.

Since packets can arrive out of order, however, the router
911 can maintain a “look ahead” buffer in its receive table,
and will mark previously-received IP pairs as invalid for
future packets; any future packet containing an IP pair that
is in the look-ahead buffer but is marked as previously
received will be discarded. Communications from the TARP
router 911 to the client 901 are maintained in an identical
manner; in particular, the router 911 will select the next IP
address pair from its transmit table 923 when constructing a
packet to send to the client 901, and the client 901 will
maintain a look-ahead buffer of expected IP pairs on packets
that it is receiving. Each TARP router will maintain separate
pairs of transmit and receive tables for each client that is
currently engaged in a secure session with or through that
TARP router.

While clients receive their hopblocks from the first server
linking them to the Internet, routers exchange hopblocks.
When a router establishes a link-based IP-hopping commu-
nication regime with another router, each router of the pair
exchanges its transmit hopblock. The transmit hopblock of
each router becomes the receive hopblock of the other
router. The communication between routers is governed as
described by the example of a client sending a packet to the
first router.

While the above strategy works fine in the IP milieu,
many local networks that are connected to the Internet are
ethernet systems. In ethernet, the IP addresses of the desti-
nation devices must be translated into hardware addresses,
and vice versa, using known processes (“address resolution
protocol,” and “reverse address resolution protocol”). How-
ever, if the link-based IP-hopping strategy is employed, the
correlation process would become explosive and burden-
some. An alternative to the link-based IP hopping strategy
may be employed within an ethernet network. The solution
is to provide that the node linking the Internet to the ethernet
(call it the border node) use the link-based IP-hopping
communication regime to communicate with nodes outside
the ethernet LAN. Within the ethernet LAN, each TARP
node would have a single IP address which would be
addressed in the conventional way. Instead ol comparing the
{sender, receiver} IP address pairs to authenticate a packet,
the intra-LAN TARP node would use one of the IP header
extension fields to do so. Thus, the border node uses an
algorithm shared by the intra-LAN TARP node to generate
a symbol that is stored in the free field in the IP header, and
the intra-LAN TARP node generates a range of symbols
based on its prediction of the next expected packet to be

New Bay Capital, LLC
Ex.1015-Page 1506 of 3151

US 7,010,604 B1

17

received from that particular source IP address. The packet
is rejected if it does not fall into the set of predicted symbols
(for example, numerical values) or is accepted if it does.
Communications from the intra-LAN TARP node to the
border node are accomplished in the same manner, though
the algorithm will necessarily be different for security rea-
sons. Thus, each of the communicating nodes will generate
transmit and receive tables in a similar manner to that of
FIG. 9, the intra-LAN TARP nodes transmit table will be
identical to the border node’s receive table, and the intra-
LAN TARP node’s receive table will be identical to the
border node’s transmit table.

The algorithm used for IP address-hopping can be any
desired algorithm. I'or example, the algorithm can be a given
pseudo-random number generator that generates numbers of
the range covering the allowed IP addresses with a given
seed. Alternatively, the session participants can assume a
certain type of algorithm and specify simply a parameter for
applying the algorithm. For example the assumed algorithm
could be a particular pseudo-random number generator and
the session participants could simply exchange seed values.

Note that there is no permanent physical distinction
between the originating and destination terminal nodes.
Either device at either end point can initiate a synchroniza-
tion of the pair. Note also that the authentication/synchro-
nization-request (and acknowledgment) and hopblock-ex-
change may all be served by a single message so that
separate message exchanges may not be required.

As another extension to the stated architecture, multiple
physical paths can be used by a client, in order to provide
link redundancy and further thwart attempts at denial of
service and traffic monitoring. As shown in FIG. 10, for
example, client 1001 can establish three simultaneous ses-
sions with each of three TARP routers provided by different
ISPs 1011, 1012, 1013. As an example, the client 1001 can
use three different telephone lines 1021, 1022, 1023 to
connect to the ISPs, or two telephone lines and a cable
modem, etc. In this scheme, transmitted packets will be sent
in a random fashion among the different physical paths. This
architecture provides a high degree of communications
redundancy, with improved immunity from denial-of-ser-
vice attacks and traffic monitoring.

Further Extensions

‘The tollowing describes various extensions to the tech-
niques, systems, and methods described above. As described
above, the security of communications occurring between
computers in a computer network (such as the Internet, an
Ethernet, or others) can be enhanced by using seemingly
random source and destination Internet Protocol (IP)
addresses for data packets transmitted over the network.
This feature prevents eavesdroppers from determining
which computers in the network are communicating with
each other while permitting the two communicating com-
puters to easily recognize whether a given received data
packet is legitimate or not. In one embodiment of the
above-described systems, an IP header extension field is
used to authenticate incoming packets on an Ethernet.

Various extensions to the previously described techniques
described herein include: (1) use of hopped hardware or
“MAC” addresses in broadcast type network; (2) a self-
synchronization technique that permits a computer to auto-
matically regain synchronization with a sender; (3) synchro-
nization algorithms that allow transmitting and receiving
computers to quickly reestablish synchronization in the
event of lost packets or other events; and (4) a fast-packet
rejection mechanism for rejecting invalid packets. Any or all

10

20

25

30

35

40

45

50

55

60

65

18

of these extensions can be combined with the features
described above in any of various ways.

A. Hardware Address Hopping

Internet protocol-based communications techniques on a
LAN—or across any dedicated physical medium—typically
embed the IP packets within lower-level packets, often
referred to as “frames.” As shown in FIG. 11, for example,
a first Ethernet frame 1150 comprises a frame header 1101
and two embedded IP packets IP1 and IP2, while a second
Ethernet frame 1160 comprises a different frame header
1104 and a single IP packet IP3. Each frame header gener-
ally includes a source hardware address 1101A and a des-
tination hardware address 1101B; other well-known fields in
frame headers are omitted from FIG. 11 for clarity. Two
hardware nodes communicating over a physical communi-
cation channel insert appropriate source and destination
hardware addresses to indicate which nodes on the channel
or network should receive the frame.

It may be possible for a nefarious listener to acquire
information about the contents of a frame and/or its com-
municants by examining frames on a local network rather
than (or in addition to) the IP packets themselves. This is
especially true in broadcast media, such as Ethernet, where
it is necessary to insert into the frame header the hardware
address of the machine that generated the frame and the
hardware address of the machine to which frame is being
sent. All nodes on the network can potentially “see” all
packets transmitted across the network. This can be a
problem for secure communications, especially in cases
where the communicants do not want for any third party to
be able to identify who is engaging in the information
exchange. One way to address this problem is to push the
address-hopping scheme down to the hardware layer. In
accordance with various embodiments of the invention,
hardware addresses are “hopped” in a manner similar to that
used to change IP addresses, such that a listener cannot
determine which hardware node generated a particular mes-
sage nor which node is the intended recipient.

F1G. 12A shows a system in which Media Access Control
(“MAC”) hardware addresses are “hopped” in order to
increase security over a network such as an Ethernet. While
the description refers to the exemplary case of an Ethernet
environment, the inventive principles are equally applicable
to other types of communications media. In the Ethernet
case, the MAC address of the sender and receiver are
inserted into the Ethernet frame and can be observed by
anyone on the LAN who is within the broadcast range for
that frame. For secure communications, it becomes desirable
to generate [rames with MAC addresses that are not attrib-
utable to any specific sender or receiver.

As shown in FIG. 12A, two computer nodes 1201 and
1202 communicate over a communication channel such as
an Ethernet. Each node executes one or more application
programs 1203 and 1218 that communicate by transmitting
packets through communication software 1204 and 1217,
respectively. Examples of application programs include
video conferencing, e-mail, word processing programs, tele-
phony, and the like. Communication software 1204 and
1217 can comprise, for example, an OSI layered architecture
or “stack” that standardizes various services provided at
different levels of functionality.

The lowest levels of communication software 1204 and
1217 communicate with hardware components 1206 and
1214 respectively, each of which can include one or more
registers 1207 and 1215 that allow the hardware to be
reconfigured or controlled in accordance with various com-

New Bay Capital, LLC
Ex.1015-Page 1507 of 3151

US 7,010,604 B1

19

munication protocols. The hardware components (an Ether-
net network interface card, for example) communicate with
each other over the communication medium. Each hardware
component is typically pre-assigned a fixed hardware
address or MAC number that identifies the hardware com-
ponent to other nodes on the network. One or more interface
drivers control the operation of each card and can, for
example, be configured to accept or reject packets from
certain hardware addresses. As will be described in more
detail below, various embodiments of the inventive prin-
ciples provide for “hopping” different addresses using one or
more algorithms and one or more moving windows that
track a range of valid addresses to validate received packets.
Packets transmitted according to one or more of the inven-
tive principles will be generally referred to as “secure”
packets or “secure communications” to differentiate them
from ordinary data packets that are transmitted in the clear
using ordinary, machine-correlated addresses.

One straightforward method of generating non-attribut-
able MAC addresses is an extension of the IP hopping
scheme. In this scenario, two machines on the same LAN
that desire to communicate in a secure fashion exchange
random-number generators and seeds, and create sequences
of quasi-random MAC addresses for synchronized hopping.
The implementation and synchronization issues are then
similar to that of IP hopping.

This approach, however, runs the risk of using MAC
addresses that are currently active on the LAN—which, in
turn, could interrupt communications for those machines.
Since an Ethernet MAC address is at present 48 bits in
length, the chance of randomly misusing an active MAC
address is actually quite small. However, if that figure is
multiplied by a large number of nodes (as would be found
on an extensive LAN), by a large number of frames (as
might be the case with packet voice or streaming video), and
by a large number of concurrent Virtual Private Networks
(VPNs), then the chance that a non-secure machine’s MAC
address could be used in an address-hopped frame can
become non-trivial. In short, any scheme that runs even a
small risk of interrupting communications for other
machines on the LAN is bound to receive resistance from
prospective system administrators. Nevertheless, it is tech-
nically feasible, and can be implemented without risk on a
LAN on which there is a small number of machines, or if all
of the machines on the LAN are engaging in MAC-hopped
communications.

Synchronized MAC address hopping may incur some
overhead in the course of session establishment, especially
if there are multiple sessions or multiple nodes involved in
the communications. A simpler method of randomizing
MAC addresses is to allow each node to receive and process
every incident frame on the network. Typically, each net-
work interface driver will check the destination MAC
address in the header of every incident frame to see if it
matches that machine’s MAC address; if there is no match,
then the frame is discarded. In one embodiment, however,
these checks can be disabled, and every incident packet is
passed to the TARP stack for processing. This will be
referred to as “promiscuous” mode, since every incident
[rame is processed. Promiscuous mode allows the sender Lo
use completely random, unsynchronized MAC addresses,
since the destination machine is guaranteed to process the
frame. The decision as to whether the packet was truly
intended for that machine is handled by the TARP stack,
which checks the source and destination IP addresses for a
match in its IP synchronization tables. If no match is found,
the packet is discarded; if there is a match, the packet is

10

15

20

25

30

35

40

45

50

55

60

65

20

unwrapped, the inner header is evaluated, and if the inner
header indicates that the packet is destined for that machine
then the packet is forwarded to the IP stack—otherwise it is
discarded.

One disadvantage of purely-random MAC address hop-
ping is its impact on processing overhead; that is, since
every incident frame must be processed, the machine’s CPU
is engaged considerably more often than if the network
interface driver is discriminating and rejecting packets uni-
laterally. A compromise approach is to select either a single
fixed MAC address or a small number of MAC addresses
(e.g., one for each virtual private network on an Ethernet) to
use for MAC-hopped communications, regardless of the
actual recipient for which the message is intended. In this
mode, the network interface driver can check each incident
frame against one (or a few) pre-established MAC
addresses, thereby freeing the CPU from the task of physi-
cal-layer packet discrimination. This scheme does not betray
any useful information to an interloper on the LAN; in
particular, every secure packet can already be identified by
a unique packet type in the outer header. However, since all
machines engaged in secure communications would either
be using the same MAC address, or be selecting from a small
pool of predetermined MAC addresses, the association
between a specific machine and a specific MAC address is
effectively broken.

In this scheme, the CPU will be engaged more often than
it would be in non-secure communications (or in synchro-
nized MAC address hopping), since the network interface
driver cannot always unilaterally discriminate between
secure packets that are destined for that machine, and secure
packets from other VPNs. However, the non-secure traffic is
easily eliminated at the network interface, thereby reducing
the amount of processing required of the CPU. There are
boundary conditions where these statements would not hold,
of course e.g., if all of the traffic on the LAN is secure traffic,
then the CPU would be engaged to the same degree as it is
in the purely-random address hopping case; alternatively, if
each VPN on the LAN uses a different MAC address, then
the network interface can perfectly discriminate secure
frames destined for the local machine from those constitut-
ing other VPNs. These are engineering tradeoffs that might
be best handled by providing administrative options for the
users when installing the software and/or establishing VPNs.

Even in this scenario, however, there still remains a slight
risk of selecting MAC addresses that are being used by one
or more nodes on the LAN. One solution to this problem is
to formally assign one address or a range of addresses for
use in MAC-hopped communications. This is typically done
via an assigned numbers registration authority; e.g., in the
case of Ethernet, MAC address ranges are assigned to
vendors by the Institute of Electrical and Electronics Engi-
neers (IEEE). A formally-assigned range of addresses would
ensure that secure frames do not conflict with any properly-
configured and properly-functioning machines on the LAN.

Reference will now be made to FIGS. 12A and 12B in
order to describe the many combinations and features that
follow the inventive principles. As explained above, two
computer nodes 1201 and 1202 are assumed to be commu-
nicating over a network or communication medium such as
an Ethernet. A communication protocol in each node (1204
and 1217, respectively) contains a modified element 1205
and 1216 that performs certain functions that deviate from
the standard communication protocols. In particular, com-
puter node 1201 implements a first “hop” algorithm 1208X
that selects seemingly random source and destination IP
addresses (and, in one embodiment, seemingly random IP

New Bay Capital, LLC
Ex.1015-Page 1508 of 3151

US 7,010,604 B1

21

header discriminator fields) in order to transmit each packet
to the other computer node. For example, node 1201 main-
tains a transmit table 1208 containing triplets of source (S),
destination (D), and discriminator fields (DS) that are
inserted into outgoing IP packet headers. The table is gen-
erated through the use of an appropriate algorithm (e.g., a
random number generator that is seeded with an appropriate
seed) that is known to the recipient node 1202. As each new
IP packet is formed, the next sequential entry out of the
sender’s transmit table 1208 is used to populate the IP
source, IP destination, and IP header extension field (e.g.,
discriminator field). It will be appreciated that the transmit
table need not be created in advance but could instead be
created on-the-fly by executing the algorithm when each
packet is formed.

At the receiving node 1202, the same IP hop algorithm
1222X is maintained and used to generate a receive table
1222 that lists valid triplets of source IP address, destination
IP address, and discriminator field. This is shown by virtue
of the first five entries of transmit table 1208 matching the
second five entries of receive table 1222. (The tables may be
slightly offset at any particular time due to lost packets,
misordered packets, or transmission delays). Additionally,
node 1202 maintains a receive window W3 that represents
a list of valid IP source, IP destination, and discriminator
fields that will be accepted when received as part of an
incoming IP packet. As packets are received, window W3
slides down the list of valid entries, such that the possible
valid entries change over time. Two packets that arrive out
of order but are nevertheless matched to entries within
window W3 will be accepted; those falling outside of
window W3 will be rejected as invalid. The length of
window W3 can be adjusted as necessary to reflect network
delays or other factors.

Node 1202 maintains a similar transmit table 1221 for
creating IP packets and frames destined for node 1201 using
a potentially different hopping algorithm 1221X, and node
1201 maintains a matching receive table 1209 using the
same algorithm 1209X. As node 1202 transmits packets to
node 1201 using seemingly random IP source, IP destina-
tion, and/or discriminator fields, node 1201 matches the
incoming packet values to those falling within window W1
maintained in its receive table. In effect, transmit table 1208
of node 1201 is synchronized (i.e., entries are selected in the
same order) to receive table 1222 of receiving node 1202.
Similarly, transmit table 1221 of node 1202 is synchronized
to receive table 1209 of node 1201. It will be appreciated
that although a common algorithm is shown for the source,
destination and discriminator fields in FIG. 12A (using, ¢.g.,
a different seed for each of the three fields), an entirely
different algorithm could in fact be used to establish values
for each of these fields. It will also be appreciated that one
or two of the fields can be “hopped” rather than all three as
illustrated.

In accordance with another aspect of the invention, hard-
ware or “MAC” addresses are hopped instead of or in
addition to IP addresses and/or the discriminator field in
order to improve security in a local area or broadcast-type
network. To that end, node 1201 further maintains a transmit
table 1210 using a transmil algorithm 1210X (o generate
source and destination hardware addresses that are inserted
into frame headers (e.g., fields 1101A and 1101B in FIG. 11)
that are synchronized to a corresponding receive table 1224
at node 1202. Similarly, node 1202 maintains a different
transmit table 1223 containing source and destination hard-
ware addresses that is synchronized with a corresponding
receive table 1211 at node 1201. In this manner, outgoing

15

20

25

30

35

40

45

50

55

60

65

22

hardware frames appear to be originating from and going to
completely random nodes on the network, even though each
recipient can determine whether a given packet is intended
for it or not. It will be appreciated that the hardware hopping
feature can be implemented at a different level in the
communications protocol than the IP hopping feature (e.g.,
in a card driver or in a hardware card itself to improve
performance).

FIG. 12B shows three different embodiments or modes
that can be employed using the aforementioned principles.
In a first mode referred to as “promiscuous” mode, a
common hardware address (e.g., a fixed address for source
and another for destination) or else a completely random
hardware address is used by all nodes on the network, such
that a particular packet cannot be attributed to any one node.
Each node must initially accept all packets containing the
common (or random) hardware address and inspect the IP
addresses or discriminator field to determine whether the
packet is intended for that node. In this regard, either the IP
addresses or the discriminator field or both can be varied in
accordance with an algorithm as described above. As
explained previously, this may increase each node’s over-
head since additional processing is involved to determine
whether a given packet has valid source and destination
hardware addresses.

In a second mode referred to as “promiscuous per VPN”
mode, a small set of fixed hardware addresses are used, with
a fixed source/destination hardware address used for all
nodes communicating over a virtual private network. For
example, if there are six nodes on an Ethernet, and the
network is to be split up into two private virtual networks
such that nodes on one VPN can communicate with only the
other two nodes on its own VPN, then two sets of hardware
addresses could be used: one set for the first VPN and a
second set for the second VPN. This would reduce the
amount of overhead involved in checking for valid frames
since only packets arriving from the designated VPN would
need to be checked. IP addresses and one or more discrimi-
nator fields could still be hopped as before for secure
communication within the VPN. Of course, this solution
compromises the anonymity of the VPNs (i.e., an outsider
can easily tell what traffic belongs in which VPN, though he
cannot correlate it to a specific machine/person). It also
requires the use of a discriminator field to mitigate the
vulnerability to certain types of DoS attacks. (For example,
without the discriminator field, an attacker on the LAN
could stream frames containing the MAC addresses being
used by the VPN; rejecting those frames could lead to
excessive processing overhead. The discriminator field
would provide a low-overhead means of rejecting the false
packets.)

In a third mode referred to as “hardware hopping” mode,
hardware addresses are varied as illustrated in FIG. 12A,
such that hardware source and destination addresses are
changed constantly in order to provide non-attributable
addressing. Variations on these embodiments are of course
possible, and the invention is not intended to be limited in
any respect by these illustrative examples.

B. Extending the Address Space

Address hopping provides security and privacy. However,
the level of protection is limited by the number of addresses
in the blocks being hopped. A hopblock denotes a field or
fields modulated on a packet-wise basis for the purpose of
providing a VPN. Tor instance, if two nodes communicate
with IP address hopping using hopblocks of 4 addresses (2
bits) each, there would be 16 possible address-pair combi-

New Bay Capital, LLC
Ex.1015-Page 1509 of 3151

US 7,010,604 B1

23

nations. A window of size 16 would result in most address
pairs being accepted as valid most of the time. This limita-
tion can be overcome by using a discriminator field in
addition to or instead of the hopped address fields. The
discriminator field would be hopped in exactly the same
fashion as the address fields and it would be used to
determine whether a packet should be processed by a
receiver.

Suppose that two clients, each using [our-bit hopblocks,
would like the same level of protection afforded to clients
communicating via IP hopping between two A blocks (24
address bits eligible for hopping). A discriminator field of 20
bits, used in conjunction with the 4 address bits eligible for
hopping in the IP address field, provides this level of
protection. A 24-bit discriminator field would provide a
similar level of protection if the address fields were not
hopped or ignored. Using a discriminator field offers the
following advantages: (1) an arbitrarily high level of pro-
tection can be provided, and (2) address hopping is unnec-
essary to provide protection. This may be important in
environments where address hopping would cause routing
problems.

C. Synchronization Techniques

It is generally assumed that once a sending node and
receiving node have exchanged algorithms and seeds (or
similar information sufficient to generate quasi-random
source and destination tables), subsequent communication
between the two nodes will proceed smoothly. Realistically,
however, two nodes may lose synchronization due to net-
work delays or outages, or other problems. Consequently, it
is desirable to provide means for re-establishing synchroni-
zation between nodes in a network that have lost synchro-
nization.

One possible technique is to require that each node
provide an acknowledgment upon successful receipt of each
packet and, if no acknowledgment is received within a
certain period of time, to re-send the unacknowledged
packet. This approach, however, drives up overhead costs
and may be prohibitive in high-throughput environments
such as streaming video or audio, for example.

A different approach is to employ an automatic synchro-
nizing technique that will be referred to herein as “self-
synchronization.” In this approach, synchronization infor-
mation is embedded into each packet, thereby enabling the
receiver to re-synchronize itself upon receipt of a single
packet if it determines that is has lost synchronization with
the sender. (If communications are already in progress, and
the receiver determines that it is still in sync with the sender,
then there is no need to re-synchronize.) A receiver could
detect that it was out of synchronization by, for example,
employing a “dead-man” timer that expires after a certain
period of time, wherein the timer is reset with each valid
packet. A time stamp could be hashed into the public sync
field (see below) to preclude packet-retry attacks.

In one embodiment, a “sync field” is added to the header
of each packet sent out by the sender. This sync field could
appear in the clear or as part of an encrypted portion of the
packet. Assuming that a sender and receiver have selected a
random-number generator (RNG) and seed value, this com-
bination of RNG and seed can be used to generate a
random-number sequence (RNS). The RNS is then used to
generate a sequence of source/destination IP pairs (and, if
desired, discriminator fields and hardware source and des-
tination addresses), as described above. It is not necessary,
however, to generate the entire sequence (or the first N-1
values) in order to generate the Nth random number in the

10

15

20

25

30

35

40

45

50

55

60

65

24

sequence; if the sequence index N is known, the random
value corresponding to that index can be directly generated
(see below). Different RNGs (and seeds) with different
fundamental periods could be used to generate the source
and destination IP sequences, but the basic concepts would
still apply. For the sake of simplicity, the following discus-
sion will assume that IP source and destination address pairs
(only) are hopped using a single RNG sequencing mecha-
nism.

In accordance with a “self-synchronization” feature, a
sync field in each packet header provides an index (i.e., a
sequence number) into the RNS that is being used to
generate IP pairs. Plugging this index into the RNG that is
being used to generate the RNS yields a specific random
number value, which in turn yields a specific IP pair. That is,
an IP pair can be generated directly from knowledge of the
RNG, seed, and index number; it is not necessary, in this
scheme, to generate the entire sequence of random numbers
that precede the sequence value associated with the index
number provided.

Since the communicants have presumably previously
exchanged RNGs and seeds, the only new information that
must be provided in order to generate an IP pair is the
sequence number. If this number is provided by the sender
in the packet header, then the receiver need only plug this
number into the RNG in order to generate an IP pair—and
thus verify that the IP pair appearing in the header of the
packet is valid. In this scheme, if the sender and receiver lose
synchronization, the receiver can immediately re-synchro-
nize upon receipt of a single packet by simply comparing the
IP pair in the packet header to the IP pair generated from the
index number. Thus, synchronized communications can be
resumed upon receipt of a single packet, making this scheme
ideal for multicast communications. Taken to the extreme, it
could obviate the need for synchronization tables entirely;
that is, the sender and receiver could simply rely on the
index number in the sync field to validate the IP pair on each
packet, and thereby eliminate the tables entirely.

The aforementioned scheme may have some inherent
security issues associated with it—namely, the placement of
the sync field. If the field is placed in the outer header, then
an interloper could observe the values of the field and their
relationship to the IP stream. This could potentially com-
promise the algorithm that is being used to generate the
IP-address sequence, which would compromise the security
of the communications. If, however, the value is placed in
the inner header, then the sender must decrypt the inner
header before it can extract the sync value and validate the
IP pair; this opens up the receiver to certain types of
denial-of-service (DoS) attacks, such as packet replay. That
is, if the receiver must decrypt a packet before it can validate
the IP pair, then it could potentially be forced to expend a
significant amount of processing on decryption if an attacker
simply retransmits previously valid packets. Other attack
methodologies are possible in this scenario.

A possible compromise between algorithm security and
processing speed is to split up the sync value between an
inner (encrypted) and outer (unencrypted) header. That is, if
the sync value is sufficiently long, it could potentially be
split into a rapidly-changing part that can be viewed in the
clear, and a fixed (or very slowly changing) part that must be
protected. The part that can be viewed in the clear will be
called the “public sync” portion and the part that must be
protected will be called the “private sync” portion.

Both the public sync and private sync portions are needed
to generate the complete sync value. The private portion,
however, can be selected such that it is fixed or will change

New Bay Capital, LLC
Ex.1015-Page 1510 of 3151

US 7,010,604 B1

25

only occasionally. Thus, the private sync value can be stored
by the recipient, thereby obviating the need to decrypt the
header in order to retrieve it. If the sender and receiver have
previously agreed upon the frequency with which the private
part of the sync will change, then the receiver can selectively
decrypt a single header in order to extract the new private
sync if the communications gap that has led to lost synchro-
nization has exceeded the lifetime of the previous private
sync. This should not represent a burdensome amount of
decryption, and thus should not open up the receiver to
denial-of-service attack simply based on the need to occa-
sionally decrypt a single header.

One implementation of this is to use a hashing function
with a one-to-one mapping to generate the private and public
sync portions from the sync value. This implementation is
shown in FIG. 13, where (for example) a first ISP 1302 is the
sender and a second ISP 1303 is the receiver. (Other alter-
natives are possible from FIG. 13.) A transmitted packet
comprises a public or “outer” header 1305 that is not
encrypted, and a private or “inner” header 1306 that is
encrypted using for example a link key. Outer header 1305
includes a public sync portion while inner header 1306
contains the private sync portion. A receiving node decrypts
the inner header using a decryption function 1307 in order
to extract the private sync portion. This step is necessary
only if the lifetime of the currently buffered private sync has
expired. (If the currently-buffered private sync is still valid,
then it is simply extracted from memory and “added” (which
could be an inverse hash) to the public sync, as shown in step
1308.) The public and decrypted private sync portions are
combined in function 1308 in order to generate the com-
bined sync 1309. The combined sync (1309) is then fed into
the RNG (1310) and compared to the IP address pair (1311)
to validate or reject the packet.

An important consideration in this architecture is the
concept of “future” and “past” where the public sync values
are concerned. Though the sync values, themselves, should
be random to prevent spoofing attacks, it may be important
that the receiver be able to quickly identify a sync value that
has already been sent—even if the packet containing that
sync value was never actually received by the receiver. One
solution is to hash a time stamp or sequence number into the
public sync portion, which could be quickly extracted,
checked, and discarded, thereby validating the public sync
portion itself.

In one embodiment, packets can be checked by compar-
ing the source/destination IP pair generated by the sync field
with the pair appearing in the packet header. If (1) they
match, (2) the time stamp is valid, and (3) the dead-man
timer has expired, then re-synchronization occurs; other-
wise, the packet is rejected. If enough processing power is
available, the dead-man timer and synchronization tables
can be avoided altogether, and the receiver would simply
resynchronize (e.g., validate) on every packet.

The foregoing scheme may require large-integer (e.g.,
160-bit) math, which may affect its implementation. Without
such large-integer registers, processing throughput would be
affected, thus potentially affecting security from a denial-
of-service standpoint. Nevertheless, as large-integer math
processing features become more prevalent, the costs of
implementing such a feature will be reduced.

D. Other Synchronization Schemes

As explained above, if W or more consecutive packets are
lost between a transmitter and receiver in a VPN (where W
is the window size), the receiver’s window will not have
been updated and the transmitter will be transmitting packets

20

25

30

35

40

45

50

55

60

65

26

not in the receiver’s window. The sender and receiver will
not recover synchronization until perhaps the random pairs
in the window are repeated by chance. Therefore, there is a
need to keep a transmitter and receiver in synchronization
whenever possible and to reestablish synchronization when-
ever it is lost.

A “checkpoint” scheme can be used to regain synchroni-
zation between a sender and a receiver that have fallen out
of synchronization. In this scheme, a checkpoint message
comprising a random IP address pair is used for communi-
cating synchronization information. In one embodiment,
two messages are used to communicate synchronization
information between a sender and a recipient:

1. SYNC_REQ is a message used by the sender to

indicate that it wants to synchronize; and

2. SYNC_ACK is a message used by the receiver to

inform the transmitter that it has been synchronized.

According to one variation of this approach, both the trans-
mitter and receiver maintain three checkpoints (see FIG. 14):
1. In the transmitter, ckpt_o (“checkpoint old”) is the IP
pair that was used to re-send the last SYNC_REQ
packet to the receiver. In the receiver, ckpt_o (“check-
point old”) is the IP pair that receives repeated SYN-
C_REQ packets from the transmitter.

2. In the transmitter, ckpt_n (“checkpoint new™) is the IP
pair that will be used to send the next SYNC_REQ
packet to the receiver. In the receiver, ckpt_n (“check-
point new”) is the IP pair that receives a new SYN-
C_REQ packet from the transmitter and which causes
the receiver’s window to be re-aligned, ckpt_o set to
ckpt_n, a new ckpt_n to be generated and a new ckpt_r
to be generated.

3. In the transmitter, ckpt_r is the IP pair that will be used
1o send the next SYNC_ACK packel to the receiver. In
the receiver, ckpt_r is the IP pair that receives a new
SYNC_ACK packet from the transmitter and which
causes a new ckp n to be generated. Since SYN-
C_ACK is transmitted from the receiver ISP to the
sender ISP, the transmitter ckpt_r refers to the ckpt_r of
the receiver and the receiver ckpt_r refers to the ckpt_r
of the transmitter (see FIG. 14).

When a transmitter initiates synchronization, the IP pair it
will use to transmit the next data packet is set to a prede-
termined value and when a receiver first receives a SYN-
C_REQ, the receiver window is updated to be centered on
the transmitter’s next IP pair. This is the primary mechanism
for checkpoint synchronization.

Synchronization can be initiated by a packet counter (e.g.,
after every N packets transmitted, initiate a synchronization)
or by a timer (every S seconds, initiate a synchronization) or
a combination of both. See FIG. 15. From the transmitter’s
perspective, this technique operates as follows: (1) Each
transmitter periodically transmits a “sync request” message
to the receiver to make sure that it is in sync. (2) If the
receiver is still in sync, it sends back a “sync ack” message.
(If this works, no further action is necessary). (3) If no “sync
ack” has been received within a period of time, the trans-
mitter retransmits the sync request again. If the transmitter
reaches the next checkpoint without receiving a “sync ack”
response, then synchronization is broken, and the transmitter
should stop transmitting. The transmitter will continue to
send sync_reqs until it receives a sync_ack, at which point
transmission is reestablished.

I'rom the receiver’s perspective, the scheme operates as
follows: (1) when it receives a “sync request” request from
the transmitter, it advances its window to the next check-

New Bay Capital, LLC
Ex.1015-Page 1511 of 3151

US 7,010,604 B1

27

point position (even skipping pairs if necessary), and sends
a “sync ack” message to the transmitter. If sync was never
lost, then the “jump ahead” really just advances to the next
available pair of addresses in the table (i.e., normal advance-
ment).

If an interloper intercepts the “sync request” messages
and tries to interfere with communication by sending new
ones, it will be ignored if the synchronization has been
established or it it will actually help to re-establish synchro-
nization.

A window is realigned whenever a re-synchronization
occurs. This realignment entails updating the receiver’s
window to straddle the address pairs used by the packet
transmitted immediately after the transmission of the SYN-
C_REQ packet. Normally, the transmitter and receiver are in
synchronization with one another. However, when network
events occur, the receiver's window may have to be
advanced by many steps during resynchronization. In this
case, it is desirable to move the window ahead without
having to step through the intervening random numbers
sequentially. (This feature is also desirable for the auto-sync
approach discussed above).

E. Random Number Generator with a Jump-Ahead capabil-
ity

An attractive method for generating randomly hopped
addresses is to use identical random number generators in
the transmitter and receiver and advance them as packets are
transmitted and received. There are many random number
generation algorithms that could be used. Each one has
strengths and weaknesses for address hopping applications.

Linear congruential random number generators (LCRs)
are fast, simple and well characterized random number
generators that can be made to jump ahead n steps efficiently.
An LCR generates random numbers X, X,, X5 . . . X,
starting with seed X, using a recurrence

X=(aX,_+b)mod c, (€]
where a, b and ¢ define a particular LCR. Another expression
for X,

X=((a'(Xg+b)-b)/(a-1))mod c 2
enables the jump-ahead capability. The factor a’ can grow
very large even for modest i if left unfettered. Therefore
some special properties of the modulo operation can be used
to control the size and processing time required to compute
(2). (2) can be rewritten as:

X=(a'X°(a=1)+b)-b)/(a-1)mod c. 3
It can be shown that:
(@ (Xoa=1)+b)=b)/(a—1) mod c =)

((@'mod((a — De)(Xola— 1) +b) = b)/(a—- 1)) mod c.

(Xo(a—1)+b) can be stored as (X(a-1)+b) mod ¢, b as b mod
c and compute a’ mod((a-1)c) (this requires O(log(i)) steps).

A practical implementation of this algorithm would jump
a fixed distance, n, between synchronizations; this is tanta-
mount to synchronizing every n packets. The window would
commence n IP pairs from the start of the previous window.
Using X, the random number at the i checkpoint, as X,
and n as 1, a node can store a"mod((a-1)c) once per LCR and
set

X1 =X, ay=((@"mod((a-1)c) (X;*(a-1)+b)-b)/(a~

1)mod ¢,

®

10

15

20

25

30

35

40

45

50

55

60

65

28

to generate the random number for the j+1” synchronization.
Using this construction, a node could jump ahead an arbi-
trary (but fixed) distance between synchronizations in a
constant amount of time (independent of n).

Pseudo-random number generators, in general, and LCRs,
in particular, will eventually repeat their cycles. This rep-
etition may present vulnerability in the IP hopping scheme.
An adversary would simply have to wait for a repeat to
predict future sequences. One way of coping with this
vulnerability is to create a random number generator with a
known long cycle. A random sequence can be replaced by a
new random number generator before it repeats. LCRs can
be constructed with known long cycles. This is not currently
true of many random number generators.

Random number generators can be cryptographically
insecure. An adversary can derive the RNG parameters by
examining the output or part of the output. This is true of
LCGs. This vulnerability can be mitigated by incorporating
an encryptor, designed to scramble the output as part of the
random number generator. The random number generator
prevents an adversary from mounting an attack-e.g., a
known plaintext attack—against the encryptor.

F. Random Number Generator Example
Consider a RNG where a=31,b=4 and c¢=15. For this case
equation (1) becomes:

X=(31X,_,+4)mod 15. (6)
If one sets X,=1, equation (6) will produce the sequence 1,
5,9,13,2,6,10, 14, 3,7, 11, 0, 4, 8, 12. This sequence will
repeat indefinitely. For a jump ahead of 3 numbers in this
sequence a"=31°=29791, c*(a-1)=15*30=450 and a"mod

((a=1)c)=31’mod(15*30)=29791mod(450)=91. Equation
(5) becomes:
((91 (X,30+4)4)/30)mod 15 @).

Table 1 shows the jump ahead calculations from (7). The
calculations start at 5 and jump ahead 3.

TABLE 1
I X, (X30+4) 91(X30+4)-4 (91 (X30 + 4) - 430 Xi,»
1 5 154 14010 467 2
4 2 64 5820 194 14
7 14 424 38580 1286 11
10 11 334 30390 1013 8
13 8 244 22200 740 5

G. Fast Packet Filter

Address hopping VPNs must rapidly determine whether a
packet has a valid header and thus requires further process-
ing, or has an invalid header (a hostile packet) and should be
immediately rejected. Such rapid determinations will be
referred to as “fast packet filtering.” This capability protects
the VPN from attacks by an adversary who streams hostile
packets at the receiver at a high rate of speed in the hope of
saturating the receiver’s processor (a so-called “denial of
service” attack). Fast packet filtering is an important feature
for implementing VPNs on shared media such as Ethernet.

Assuming that all participants in a VPN share an unas-
signed “A” block of addresses, one possibility is to use an
experimental “A” block that will never be assigned to any
machine that is not address hopping on the shared medium.
“A” blocks have a 24 bits of address that can be hopped as
opposed to the 8 bits in “C” blocks. In this case a hopblock

New Bay Capital, LLC
Ex.1015-Page 1512 of 3151

US 7,010,604 B1

29

will be the “A” block. The use of the experimental “A” block

is a likely option on an Ethernet because:

1. The addresses have no validity outside of the Ethernet and
will not be routed out to a valid outside destination by a
gateway.

2. There are 2** (~16 million) addresses that can be hopped
within each “A” block. This yields>280 trillion possible
address pairs making it very unlikely that an adversary
would guess a valid address. It also provides acceptably
low probability of collision between separate VPNs (all
VPNs on a shared medium independently generate ran-
dom address pairs from the same “A” block).

3. The packets will not be received by someone on the
Ethernet who is not on a VPN (unless the machine is in
promiscuous mode) minimizing impact on non-VPN
computers.

The Ethernet example will be used to describe one
implementation of fast packet filtering. The ideal algorithm
would quickly examine a packet header, determine whether
the packet is hostile, and reject any hostile packets or
determine which active IP pair the packet header matches.
The problem is a classical associative memory problem. A
variety of techniques have been developed to solve this
problem (hashing, B-trces ctc). Each of these approaches has
its strengths and weaknesses. For instance, hash tables can
be made to operate quite fast in a statistical sense, but can
occasionally degenerate into a much slower algorithm. This
slowness can persist for a period of time. Since there is a
need to discard hostile packets quickly at all times, hashing
would be unacceptable.

H. Presence Vector Algorithm

A presence vector is a bit vector of length 2" that can be
indexed by n-bit numbers (each ranging from 0 to 2"-1).
One can indicate the presence of k n-bit numbers (not
necessarily unique), by setting the bits in the presence vector
indexed by each number to 1. Otherwise, the bits in the
presence vector are 0. An n-bit number, x, is one of the k
numbers if and only if the x bit of the presence vector is 1.
A fast packet filter can be implemented by indexing the
presence vector and looking for a 1, which will be referred
to as the “test.”

For example, suppose one wanted to represent the number
135 using a presence vector. The 1357 bit of the vector
would be set. Consequently, one could very quickly deter-
mine whether an address of 135 was valid by checking only
one bit: the 1357 bit. The presence vectors could be created
in advance corresponding to the table entries for the IP
addresses. In effect, the incoming addresses can be used as
indices into a long vector, making comparisons very fast. As
each RNG generates a new address, the presence vector is
updated to reflect the information. As the window moves,
the presence vector is updated to zero out addresses that are
no longer valid.

There is a trade-off between efficiency of the test and the
amount of memory required for storing the presence
vector(s). For instance, if one were to use the 48 bits of
hopping addresses as an index, the presence vector would
have to be 35 terabytes. Clearly, this is too large for practical
purposes. Instead, the 48 bils can be divided inlo several
smaller fields. For instance, one could subdivide the 48 bits
into four 12-bit fields (see FIG. 16). This reduces the storage
requirement to 2048 bytes at the expense of occasionally
having to process a hostile packet. In effect, instead of one
long presence vector, the decomposed address portions must
match all four shorter presence vectors before further pro-
cessing is allowed. (If the first part of the address portion

20

25

30

35

40

45

50

55

60

65

30

doesn’t match the first presence vector, there is no need to
check the remaining three presence vectors).

A presence vector will have a 1 in the y™ bit if and only
if one or more addresses with a corresponding field of y are
active. An address is active only if each presence vector
indexed by the appropriate sub-field of the address is 1.

Consider a window of 32 active addresses and 3 check-
points. A hostile packet will be rejected by the indexing of
one presence vector more than 99% of the time. A hostile
packet will be rejected by the indexing of all 4 presence
vectors more than 99.9999995% of the time. On average,
hostile packets will be rejected in less than 1.02 presence
vector index operations.

The small percentage of hostile packets that pass the fast
packet filter will be rejected when matching pairs are not
found in the active window or are active checkpoints.
Hostile packets that serendipitously match a header will be
rejected when the VPN software attempts to decrypt the
header. However, these cases will be extremely rare. There
are many other ways this method can be configured to
arbitrate the space/speed tradeoffs.

I. Further Synchronization Enhancements

A slightly modified form of the synchronization tech-
niques described above can be employed. The basic prin-
ciples of the previously described checkpoint synchroniza-
tion scheme remain unchanged. The actions resulting from
the reception of the checkpoints are, however, slightly
different. In this variation, the receiver will maintain
between 000 (“Out of Order”) and 2xWINDOW_SIZE+
000 active addresses (1=000 =WINDOW_SIZE and
WINDOW_SIZE=Z 1). 000 and WINDOW_SIZE are engi-
neerable parameters, where Q0O is the minimum number of
addresses needed to accommodate lost packets due to events
in the network or out of order arrivals and WINDOW_SIZE
is the number of packets transmitted before a SYNC_REQ
is issued. FIG. 17 depicts a storage array for a receiver’s
active addresses.

The receiver starts with the first 2xWINDOW_SIZE
addresses loaded and active (ready to receive data). As
packets are received, the corresponding entries are marked
as “used” and are no longer eligible to receive packets. The
transmitter maintains a packet counter, initially set to O,
containing the number of data packets transmitted since the
last initial transmission of a SYNC_REQ for which SYN-
C_ACK has been received. When the transmitter packet
counter equals WINDOW_SIZE, the transmitter generates a
SYNC_REQ and does ils initial transmission. When the
receiver receives a SYNC_REQ corresponding to its current
CKPT N, it generates the next WINDOW_SIZE addresses
and starts loading them in order starting at the first location
after the last active address wrapping around to the begin-
ning of the array after the end of the array has been reached.
The receiver’s array might look like FIG. 18 when a
SYNC_REQ has been received. In this case a couple of
packets have been either lost or will be received out of order
when the SYNC_REQ is received.

FIG. 19 shows the receiver’s array aller the new addresses
have been generated. If the transmitter does not receive a
SYNC_ACK, it will re-issue the SYNC_REQ at regular
intervals. When the transmitter receives a SYNC_ACK, the
packet counter is decremented by WINDOW_SIZE. If the
packet counter reaches 2xWINDOW_SIZLE-OoO then the
transmitter ceases sending data packets until the appropriate
SYNC_ACK is finally received. The transmitter then

New Bay Capital, LLC
Ex.1015-Page 1513 of 3151

US 7,010,604 B1

31

resumes sending data packets. Future behavior is essentially

a repetition of this initial cycle. The advantages of this

approach are:

1. There is no need for an efficient jump ahead in the random
number generator,

2. No packet is ever transmitted that does not have a
corresponding entry in the receiver side

3. No timer based re-synchronization is necessary. This is a
consequence of 2.

4. The receiver will always have the ability to accept data
messages transmitted within OoO messages of the most
recently transmitted message.

I. Distributed Transmission Path Variant

Another embodiment incorporating various inventive
principles is shown in FIG. 20. In this embodiment, a
message transmission system includes a first computer 2001
in communication with a second computer 2002 through a
network 2011 of intermediary computers. In one variant of
this embodiment, the network includes two edge routers
2003 and 2004 each of which is linked to a plurality of
Internet Service Providers (ISPs) 2005 through 2010. Each
ISP is coupled to a plurality of other ISPs in an arrangement
as shown in FIG. 20, which is a representative configuration
only and is not intended to be limiting. Each connection
between ISPs is labeled in FIG. 20 to indicate a specific
physical transmission path (e.g., AD is a physical path that
links ISP A (element 2005) to ISP D (element 2008)).
Packets arriving at each edge router are selectively trans-
mitted to one of the ISPs to which the router is attached on
the basis of a randomly or quasi-randomly selected basis.

As shown in FIG. 21, computer 2001 or edge router 2003
incorporates a plurality of link transmission tables 2100 that
identify, for each potential transmission path through the
network, valid sets of IP addresses that can be used to
transmit the packet. For example, AD table 2101 contains a
plurality of IP source/destination pairs that are randomly or
quasi-randomly generated. When a packet is to be transmit-
ted from first computer 2001 to second computer 2002, one
of the link tables is randomly (or quasi-randomly) selected,
and the next valid source/destination address pair from that
table is used to transmit the packet through the network. If
path AD is randomly selected, for example, the next source/
destination IP address pair (which is pre-determined to
transmit between ISP A (element 2005) and ISP D (element
2008)) is used to transmit the packet. If one of the trans-
mission paths becomes degraded or inoperative, that link
table can be set to a “down” condition as shown in table
2105, thus preventing addresses from being selected from
that table. Other transmission paths would be unaffected by
this broken link.

The invention claimed is:

1. A method of transmitting information between a first
computer and a second computer over a network comprising
the steps of:

(1) embedding in a header of each of a plurality of data
packets a network address that periodically changes
between successive data packets, wherein each network
address is used to route packets over the network;

(2) transmitting the plurality of data packets between the
first computer and the second computer;

(3) receiving the transmitted data packets at the second
computer; and

(4) for each received data packet, comparing the network
address to a moving window of valid network
addresses and, in response to detecting a match within

10

15

20

25

30

35

40

45

50

55

60

65

32

the moving window, accepting the received data packet
for further processing, and otherwise rejecting the
received data packet.

2. The method of claim 1, wherein step (1) comprises the
step of using an Internet Protocol address in an Internet
Protocol header as the network address, wherein the Internet
Protocol address is used to route the data packets over the
Internet.

3. The method of claim 1, further comprising the step of
embedding an additional quasi-random value in a data field
external to an Internet Protocol header of each data packet.

4. The method of claim 1, wherein steps (1) and (4) are
performed in a data link layer of an ISO standard commu-
nication protocol.

5. The method of claim 1, wherein step (1) comprises the
step of using a Media Access Control (MAC) hardware
address as the network address, wherein the MAC hardware
address is used to route the data packets on a local area
network.

6. The method of claim 1, wherein step (1) comprises the
step of using a different network address for each successive
data packet.

7. The method of claim 1, further comprising the step of
moving the window as each successive data packet is
received.

8. The method of claim 1, further comprising the step of
sharing between the first computer and the second computer
information sufficient to generate the moving window of
valid network addresses.

9. The method of claim 1, further comprising the step of
transmitting from the first computer to the second computer
an algorithm for selecting successively valid network
addresses.

10. The method of claim 1, wherein step (4) comprises the
step of using a presence vector to determine whether to
accept each data packet.

11. The method of claim 1, wherein step (4) comprises the
step of using a hashing function to determine whether the
network address is valid.

12. The method of claim 1, further comprising the step of
transmitting a synchronization request between the first
computer and the second computer, wherein the second
computer uses the synchronization request to maintain syn-
chronization of valid network addresses.

13. The method of claim 12, further comprising the step
of, in response to failure to receive a synchronization
acknowledgement from the second computer, shutting off
transmission of data packets to the second computer.

14. The method of claim 12, further comprising the step
of embedding a synchronization value in each data packet
that permits the second computer to re establish synchroni-
zation in a set of potentially valid network addresses.

15. The method of claim 12, further comprising the step
of moving the window of valid network addresses in the
second computer in response to receiving the synchroniza-
tion request from the first computer.

16. The method of claim 1, wherein step (1) comprises the
steps of embedding a periodically-changing Internet Proto-
col source address in an Internet Protocol header and embed-
ding a periodically-changing Internet Protocol destination
address in the Internet Protocol header, wherein the source
and destination addresses are used to route each data packet
over the Internet.

17. The method of claim 16, further comprising the steps
of:

embedding a plurality of the data packets into a frame;

and

New Bay Capital, LLC
Ex.1015-Page 1514 of 3151

US 7,010,604 B1

33

embedding a source and destination hardware address in
the frame, wherein the source and destination hardware
address are quasi-randomly generated and used to route
the frame on the network.

18. The method of claim 1, further comprising the step of
maintaining in the first computer a first transmit table and a
first receive table, and maintaining in the second computer
a second transmit table and a second receive table,

wherein each transmit table comprises a list of valid
network addresses that are to be inserted into outgoing
data packets;

wherein each receive table comprises a list of valid
network addresses that are to be compared against
incoming data packets; and

wherein the first transmit table in the first computer
matches the second receive table in the second com-
puter; and wherein the first receive table in the first
computer matches the second transmit table in the
second computer.

19. A method of transmitting data packets over a network
comprising a plurality of computers connected to each other
through a plurality of physical transmission paths, the
method comprising the steps of:

(1) for each of a plurality of data packets, randomly
selecting one of the plurality of physical transmissions
paths through the plurality of computers;

(2) selecting a next pair of source and destination network
addresses generated from an algorithm that generates a
plurality of pairs of source and destination network
addresses each associated with the one randomly
selected physical transmission path; and

(3) transmitting each data packet over the randomly
selected physical transmission path using the selected
next pair of source and destination network addresses.

20. The method of claim 19 wherein step (1) comprises
the step of avoiding selection of a path that is not opera-
tional.

21. A system comprising;

a first computer that embeds into each of a plurality of
data packets a network address that periodically
changes between successive data packets, wherein each
network address is used to route packets over a net-
work, and

a second computer coupled to the first computer through
the network,

wherein the first computer transmits the plurality of data
packets to the second computer, and

wherein the second computer receives the transmitted
data packets, compares the network address in each
received data packet to a moving window of valid
network addresses and, in response to detecting a
match, accepts the received data packet for further
processing, and otherwise rejects the received data
packet.

22. The system of claim 21, wherein the first computer
embeds into each of the plurality of data packets an Internet
Protocol address in an Internet Protocol header as the
network address, wherein the Internet Protocol address is
used to route the data packets over the Internet.

23. The system of claim 21, wherein the first computer
embeds an additional quasi-random value in a data field
external to an Internet Protocol header of each data packet.

24. The system of claim 21, wherein the first computer
embeds each network address in a first data link layer of an
ISO standard communication protocol, and wherein the

5

10

15

20

25

30

35

40

45

50

55

60

65

34

second computer compares each network address in a sec-
ond data link layer of the ISO standard communications
protocol.

25. The system of claim 21, wherein the first computer
embeds a Media Access Control (MAC) hardware address as
the network address, wherein the MAC hardware address is
used to route the data packets on a local area network.

26. The system of claim 21, wherein the first computer
embeds a different network address for each successive data
packet.

27. The system of claim 21, wherein the second computer
moves the window as each successive data packet is
received.

28. The system of claim 21, wherein the first and second
computers share common information sufficient to generate
the moving window of valid network addresses.

29. The system of claim 21, wherein the first computer
transmits to the second computer an algorithm for selecting
successively valid network addresses.

30. The system of claim 21, wherein the second computer
uses a presence vector to determine whether to accept each
data packet.

31. The system of claim 21, wherein the second computer
uses a hashing function to determine whether the network
address is valid.

32. The system of claim 21, wherein the first computer
transmits to the second computer a synchronization request,
wherein the second computer uses the synchronization
request o maintain synchronization of valid network
addresses.

33. The system of claim 32, wherein the first computer, in
response to failure to receive a synchronization acknowl-
edgement from the second computer, shuts off transmission
of data packets to the second computer.

34. The system of claim 32, wherein the first computer
embeds a synchronization value in each data packet that
permits the second computer to re-establish synchronization
in a set of potentially valid network addresses.

35. The system of claim 32, wherein the second computer
moves a window of valid network addresses in response to
receiving the synchronization request from the first com-
puter.

36. The system of claim 21, wherein the first computer
cmbeds a periodically-changing Intcrnct Protocol source
address in an Internet Protocol header and embeds a peri-
odically-changing Internet Protocol destination address in
the Internet Protocol header, wherein the source and desti-
nation addresses are used to route each data packet over the
Internet.

37. The system of claim 36, wherein the first computer
embeds a plurality of the data packets into a frame and
embeds a source and destination hardware address in the
frame, wherein the source and destination hardware address
are quasi-randomly generated and used to mute the frame on
the network.

38. The system of claim 21,

wherein the first computer comprises a first transmit table

and a first receive table,

wherein the second computer comprises a second transmit

table and a second receive table,

wherein each transmit table comprises a list of valid

network addresses that are to be inserted into outgoing
data packets,

wherein each receive table comprises a list of valid

network addresses that are to be compared against
incoming data packets,

New Bay Capital, LLC
Ex.1015-Page 1515 of 3151

US 7,010,604 B1

35

wherein the first transmit table in the first computer
matches the second receive table in the second com-
puter, and

wherein the first receive table in the first computer
matches the second transmit table in the second com-
puter.

39. A router coupled to a network comprising a plurality
of computers connected to each other through a plurality of
physical transmission paths,

wherein the router receives a plurality of data packets for
transmission across the network; and

wherein the router, for each data packet, randomly selects
one of the plurality of physical transmission paths
through the plurality of computers and transmits each
data packet over the randomly selected physical trans-
mission path using a pair of source and destination
network addresses generated from an algorithm that
generates a plurality of pairs of source and destination
addresses each associated with the one randomly
selected physical transmission path.

40. The router of claim 39, wherein the router avoids

selection of a non-operational path.

41. A system comprising in combination:

a transmitting node that generates pseudo-random net-
work addresses and embeds the pseudo-random net-
work addresses into headers of data packets for trans-
mission; and

a receiving node that receives data packets transmitted by
the transmitting node, wherein the receiving node, for
each received packet, extracts each pseudo-randomly
generated network address, compares it to a moving
window of potentially valid network addresses shared
between the transmitting node and the receiving node
and, in response to detecting a match, accepts the data
packet, and otherwise discards the packet.

42. The system of claim 41, wherein the receiving node
maintains a window of valid network addresses, wherein the
window is moved in response to detecting a match.

43. The system of claim 41, wherein each pseudo-ran-
domly generated network address comprises a valid Internet
Protocol address that is assigned to the receiving node.

44. The system of claim 41, wherein each pseudo-ran-
domly generated network address comprises a valid Media
Access Control (MAC) hardware address that is assigned to
the receiving node.

45. The system of claim 41, wherein the transmitting node
generates a different pseudo-randomly generated network
address for each successive data packet.

15

20

25

30

35

40

45

36

46. A receiving computer that receives data packets from
a transmitting computer, wherein the receiving computer
comprises computer instructions that execute the steps of

(1) for each received data packet, extracting a discrimi-
nator value inserted by the transmitting computer;

(2) comparing the extracted discriminator value to a set of
valid discriminator values on the basis of information
previously shared with the transmitting computer; and

(3) in response to detecting a match in step (2), accepting
the received data packet for further processing and
otherwise rejecting the data packet, wherein the receiv-
ing computer maintains a sliding window of valid
discriminator values, wherein the window slides to
encompass a next range of valid discriminator values in
response to detecting matches, wherein the receiving
computer further comprises computer instructions that
extract as the discriminator value an Internet Protocol
address from a header portion of each data packet.

47. The receiving computer of claim 46, wherein the
receiving computer receives information from the transmit-
ting computer sufficient to establish the set of valid discrimi-
nator values.

48. The method of claim 1, wherein steps (1) and (4) are
performed in a data link layer of a standard communication
protocol.

49. The method of claim 1, wherein step (1) comprises the
step of using a hardware address as the network address,
wherein the hardware address is used to route the data
packets on a local area network.

50. The system of claim 21, wherein the first computer
embeds each network address in a first data link layer of a
standard communication protocol, and wherein the second
computer compares each network address in a second data
link layer of the standard communications protocol.

51. The system of claim 21, wherein the first computer
embeds a hardware address as the network address, wherein
the hardware address is used to route the data packets on a
local area network.

52. The system of claim 41, wherein each pseudo-ran-

domly generated network address comprises a valid hard-
ware address that is assigned to the receiving node.

New Bay Capital, LLC
Ex.1015-Page 1516 of 3151

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,010,604 B1 Page 1 of 1
APPLICATION NO. : 09/429643

DATED : March 7, 2006

INVENTOR(S) : Edmund Colby Munger et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 34, Claim 37, Line 55:
Please replace “mute” with --route--

Signed and Sealed this

Twenty-second Day of August, 2006

o W D)

JON W.DUDAS
Director of the United States Patent and Trademark Office

New Bay Capital, LLC
Ex.1015-Page 1517 of 3151

Request for Inter Partes Reexamination
U.S. Patent No. 7,418,504

Exhibit C-3

Provisional Application 60/106,261

Customer No.: 000027683 Haynes and Boone, LLP
IP Section

2323 Victory Avenue, Suite 700

Dallas, Texas 75219

Telephone [214] 651.5000

Fax [214] 200.0853

New Bay Capital, LLC
Ex.1015-Page 1518 of 3151

W

d
[
S
[¥.N]
=
Sy,
0
DO

O

E \ ! Approved for use through 04/11/98. OMB 0651-0037
g Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
PROVISIONAL APPLICATION COVER SHEET

s
w
gis is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(b)(2).
e Docket Number | 0479.75048 Type a plus sign (+)
inside this box -
+
INVENTOR(s)/APPLICANT(s)

LAST NAME FIRST NAME M.1. RESIDENCE (CITY and sither STATE or COUNTRY)
MUNGER Edmund Colby Crownsville, MD o
SABIO Vincent J. Columbia, MD by
SHORT il Robert Dunham | Leesburg, VA o
GLIGOR Virgil D. Chevy Chase, MD %o

-5
=
TITLE OF THE INVENTION (280 characters max) 1N

™ 3
AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS WITH ASSURED SYSTEM B
AVAILABILITY

CORRESPONDENCE ADDRESS

Banner & Witcoff, Ltd.
1001 G Street, N.W.

zip 20001-4597 COUNTRY USA

STATE Washington, D.C.

ENCLOSED APPLICATION PARTS (check all that apply)

X _| Specification Number of Pages 29 Small Entity Statement

X | Drawings Number of Sheets 11 Other (specify)

METHOD OF PAYMENT (check one)

X | A check or money order is enclosed to cover the Provisional filing fee

The Commissioner is hereby authorized to PROVISIONAL
charge filing fees and credit Deposit Account FILING FEE
Number. 19-0733 AMOUNT (3) $150.00

The invention was made by an agency of the United States Government or under a contract with an
agency of the United States Government.

’ NO
- YES, the name of the U.S. Government agency and the Government contract number are:

Respectfully sw (D .
SIGNATURE _ l(/ /’W/\ %/DATE Oct. 30, 199

TYPED or PRINTED NAME Bradley C. Wright

REG. NO. (if appropriate) 38,061

Additional inventors are being named on separately number sheets attached hereto

PROVISIONAL APPLICATION FILING ONLY

New Bay Capital, LLC
Ex.1015-Page 1519 of 3151

10

15

20

25

0479.75048 PATENT

AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

Background of the Invention

A tremendous variety of methods have been proposed and implemented to provide
security and anonymity for communications over the Internet. The variety stems, in part, from
the different needs of different Internet users. A basic heuristic framework to aid in discussing
these different security techniques is illustrated in Fig. 1. Two terminals, an originating terminal
100 and a destination terminal 110 are in communication over the Internet. It is desired for the
communications to be secure, that is, immune to eavesdropping. For example, terminal 100 may
transmit secret information to terminal 110 over the Internet 107. Also, it may be desired to
prevent an eavesdropper from discovering that terminal 100 is in communication with terminal
110. For example, if terminal 100 is a user and terminal 110 hosts a web site, terminal 100’s user
may not want anyone in the intervening networks to know what web sites he is "visiting."
Anonymity would thus be an issue, for example, for companies that want to keep their market
research interests private and thus would prefer to prevent outsiders from knowing which web-
sites or other Internet resources they are “visiting.” These two security issues may be called data
security and anonymity, respectively.

Data security is usually tackled using some form of data encryption. An encryption key
48 is known at both the originating and terminating terminals 100 and 110. The keys may be
private and public at the originating and destination terminals 100 and 110, respectively or they
may be symmetrical keys (the same key is used by both parties to encrypt and decrypt). Many
encryption methods are known and usable in this context.

" To hide traffic from a local administrator or ISP, a user can employ a local proxy server

in communicating over an encrypted channel with an outside proxy such that the local

New Bay Capital, LLC
Ex.1015-Page 1520 of 3151

10

15

20

25

0479.75048 PATENT

administrator or ISP only sees the encrypted traffic. Proxy servers prevent destination servers
from determining the identities of the originating clients. This system employs an intermediate
server interposed between client and destination server. The destination server sees only the
Internet Protocol (IP) address of the proxy server and not the originating client. The target server
only sees the address of the outside proxy. This scheme relies on a trusted outside proxy server.
Also, proxy schemes are vulnerable to traffic analysis methods of determining identities of
transmitters and receivers. Another important limitation of proxy servers is that the server knows
the identities of both calling and called parties. In many instances, an originating terminal, such
as terminal A, would prefer to keep its identity concealed from the proxy, for example, if the
proxy server is provided by an Internet service provider (ISP).

To defeat traffic analysis, a scheme called Chaum’s mixes employs a proxy server that
transmits and receives fixed length messages, including dummy messages. Multiple originating
terminals are connected through a mix (a server) to multiple target servers. 1t is difficult to tell
which of the originating terminals are communicating to which of the connected target servers,
and the dummy messages confuse eavesdroppers’ efforts to detect communicating pairs by
analyzing traffic. A drawback is that there is a risk that the mix server could be compromised.
One way to deal with this risk is to spread the trust among multiple mixes. If one mix is
compromised, the identities of the originating and target terminals may remain concealed. This
strategy requires a number of alternative mixes so that the intermediate servers interposed
between the originating and target terminals are not determinable except by compromising more
than one mix. The strategy wraps the message with multiple layers of encrypted addresses. The
first mix in a sequence can decrypt only the outer layer of the message to reveal the next
destination mix in sequence. The second mix can decrypt the message to reveal the next mix and
so on. The target server receives the message and, optionally, a multi-layer encrypted payload
containing return information to send data back in the same fashion. The only way to defeat such
a mix scheme is to collude among mixes. If the packets are all fixed-length and intermixed with

dummy packets, there is no way to do any kind of traffic analysis.

New Bay Capital, LLC
Ex.1015-Page 1521 of 3151

10

15

20

25

0479.75048 PATENT

Still another anonymity technique, called ‘crowds,” protects the identity of the originating
terminal from the intermediate proxies by providing that originating terminals belong to groups
of proxies called crowds. The crowd proxies are interposed between originating and target
terminals. Each proxy through which the message is sent is randomly chosen by an upstream
proxy. Each intermediate proxy can send the message either to another randomly chosen proxy in
the “crowd” or to the destination. Thus, even crowd members cannot determine if a preceding
proxy is the originator of the message or if it was simply passed from another proxy.

ZKS (Zero-Knowledge Systems) Anonymous IP Protocol allows users to select up to any
of five different pseudonyms, while desktop software encrypts outgoing traffic and wraps it in
User Datagram Protocol (UDP) packets. The first server in a 2+-hop system gets the UDP
packets, strips off one layer of encryption to add another, then sends the traffic to the next server,
which strips off yet another layer of encryption and adds a new one. The user is permitted to
control the number of hops. At the final server, traffic is decrypted with an untraceable IP
address. The technique is called onion-routing. This method can be defeated using traffic
analysis. For a simple example, bursts of packets from a user during low-duty periods can reveal
the identities of sender and receiver.

Firewalls attempt to protect LANs from unauthorized access and hostile exploitation or
damage to computers connected to the LAN. Firewalls provide a server through which all access
to the LAN must pass. Firewalls are centralized systems that require administrative overhead to
maintain. They can be compromised by virtual-machine applications (“applets”). They instill a
false sense of security that leads to security breaches for example by users sending sensitive
information to servers outside the firewall or encouraging use of modems to sidestep the firewall
security. Firewalls are not useful for distributed systems such as business travelers, extranets,
small teams, etc.

Summary of the Invention

A secure mechanism for communicating over the internet, including a protocol referred to

as the Tunneled Agile Routing Protocol (TARP), uses a unique two-layer encryption format and

New Bay Capital, LLC
Ex.1015-Page 1522 of 3151

10

15

20

25

0479.75048 PATENT

special TARP routers. TARP routers are similar in function to regular IP routers. Each TARP
router has one or more IP addresses and uses normal IP protocol to send IP packet messages
(“packets” or “datagrams”). The IP packets exchanged between TARP terminals via TARP
routers are actually encrypted packets whose true destination address is concealed except to
TARP routers and servers. The normal or “clear” or “outside” IP header attached to TARP IP
packets contains only the address of a next hop router or destination server. That is, instead of
indicating a final destination in the destination field of the IP header, the TARP packet’s IP
header always points to a next-hop in a series of TARP router hops, or to the final destination.
This means there is no overt indication from an intercepted TARP packet of the true destination
of the TARP packet since the destination could always be next-hop TARP router as well as the
final destination. ’

Each TARP packet’s true destination is concealed behind a layer of encryption generated
using a link key. The link key is the encryption key used for encrypted communication between
the hops intervening between an originating TARP terminal and a destination TARP terminal.
Each TARP router can remove the outer layer of encryption to reveal the destination router for
each TARP packet. To identify the link key needed to decrypt the outer layer of encryption of a
TARP packet, a receiving TARP or routing terminal may identify the transmitting terminal by
the sender/receiver IP numbers in the cleartext IP header.

Once the outer layer of encryption is removed, the TARP router determines the final
destination. Each TARP packet 140 undergoes a minimum number of hops to help foil traffic
analysis. The hops may be chosen at random or by a fixed value. As a result, each TARP packet
may make random trips among a number of geographically disparate routers before reaching its
destination. Each trip is highly likely to be different for each packet composing a given message
because each trip is independently randomly determined. This feature is called agile routing. The
fact that different packets take different routes provides distinct advantages by making it difficult
for an interloper to obtain all the packets forming an entire multi-packet message. The associated

advantages have to do with the inner layer of encryption discussed below. Agile routing is

New Bay Capital, LLC
Ex.1015-Page 1523 of 3151

10

15

20

25

0479.75048 PATENT

combined with another feature that furthers this purpose; a feature that ensures that any message
is broken into multiple packets.

The IP address of a TARP router may not remain constant; a feature called IP agility.
Each TARP router, independently or under direction from another TARP terminal or router, may
change its IP address. A separate, unchangeable identifier or address is also defined. This
address, called the TARP address, is known only to TARP routers and terminals and may be
correlated at any time by a TARP router or a TARP terminal using a Lookup Table (LUT). When
a TARP router or terminal changes its IP address, it updates the other TARP routers and
terminals which in turn update their respective LUTs.

The message payload is hidden behind an inner layer of encryption in the TARP packet
that can only be unlocked using a session key. The session key is not available to any of the(
intervening TARP routers. The session key is used to decrypt the payloads of the TARP packets
permitting the data stream to be reconstructed.

Communication may be made private using link and session keys, which in turn may be
shared and used according any desired method. For example, public /private keys or symmetric
keys may be used.

To transmit a data stream, a TARP originating terminal constructs a series of TARP
packets from a series of IP packets generated by a network (IP) layer process. (Note that the

29 &4

terms “network layer,” “data link layer,” “application layer,” etc. used in this specification
correspond to the Open Systems Interconnection (OSI) network terminology.) The payloads of
these packets are assembled into a block and chain-block encrypted using the session key. This
assumes, of course, that all the IP packets are destined for the same TARP terminal. The block is
then interleaved and the interleaved encrypted block is broken into a series of payloads, one for
each TARP packet to be generated. Special TARP headers IP; are then added to each payload
using the IP headers from the data stream packets. The TARP headers can be identical to normal

IP headers or customized in some way. They should contain a formula or data for deinterleaving

the data at the destination TARP terminal, a time-to-live (TTL) parameter to indicate the number

New Bay Capital, LLC
Ex.1015-Page 1524 of 3151

10

15

20

25

0479.75048 PATENT

of hops still to be executed, a data type identifier which indicates whether the payload contains,
for example, TCP or UDP data, the sender’s TARP address, the destination TARP address, and
an indicator as to whether the packet contains real or decoy data or a formula for filtering out
decoy data if decoy data is spread in some way through the TARP payload data.

Note that although chain-block encryption is discussed here with reference to the session
key, any encryption method may be used. Preferably, as in chain block encryption, a method
should be used that makes unauthorized decryption difficult without an entire result of the
encryption process. Thus, by separating the encrypted block among multiple packets and making
it difficult for an interloper to obtain access to all of such packets, the contents of the
communications are provided an extra layer of security.

Decoy or dummy data can be added to a stream to help foil traffic analysis by reducing
the peak-to-average network load.. It may be desirable to provide the TARP process with an
ability to respond to the time of day or other criteria to generate more decoy data during low
traffic periods so that communication bursts at one point in the Internet cannot be tied to
communication bursts at another point to reveal the communicating endpoints.

Dummy data also helps to break the data into a larger number of inconspicuously-sized
packets permitting the interleave window size to be increased while maintaining a reasonable
size for each packet. (The packet size can be a single standard size or selected from a fixed range
of sizes.) One primary reason for desiring for each message to be broken into multiple packets is
apparent if a chain block encryption scheme is used to form the first encryption layer prior to
interleaving. A single block encryption may be applied to portion, or entirety, of a message, and
that portion or entirety then interleaved into a number of separate packets. Considering the agile
IP routing of the packets, and the attendant difficulty of reconstructing an entire sequence of
packets to form a single block-encrypted message element, decoy packets can significantly
increase the difficulty of reconstructing an entire data stream.

The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

New Bay Capital, LLC
Ex.1015-Page 1525 of 3151

15

20

25

0479.75048 PATENT

Because the encryption system described above is insertable between the data link and network
layers, the processes involved in supporting the encrypted communication may be completely
transparent to processes at the IP (network) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as well. Thus, no operations at or above
the Network layer, or at or below the data link layer, are affected by the insertion of the TARP
stack. This provides additional security to all processes at or above the network layer, since the
difficulty of unauthorized penetration of the network layer (by, for example, a hacker) is
increased substantially. Even newly developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note that in this architecture, security is
distributed. That is, notebook computers used by executives on the road, for example, can
communicate over the Internet without any compromise in security.

IP address changes made by TARP terminals and routers can be done at regular intervals,
at random intervals, or upon detection of “attacks.” The variation of IP addresses hinders traffic
analysis that might reveal which computers are communicating, and also provides a degree of
immunity from attack. The level of immunity from attack is roughly proportional to the rate at
which the IP address of the host is changing.

As mentioned, IP addresses may be changed in response to attacks. An attack may be
revealed, for example, by a regular series of messages indicating that a router is being probed in
some way. Upon detection of an attack, the TARP layer process may respond to this event by
changing its IP address. In addition, it may create a subprocess that maintains the original IP
address and continues interacting with the attacker in some manner.

Decoy packets may be generated by each TARP terminal on some basis determined by an
algorithm. For example, the algorithm may be a random one which calls for the generation of a
packet on a random basis when the terminal is idle. Alternatively, the algorithm may be
responsive to time of day or detection of low traffic to generate more decoy packets during low
traffic times. Note that packets are preferably generated in groups, rather than one by one, the

groups being sized to simulate real messages. In addition, so that decoy packets may be inserted

New Bay Capital, LLC
Ex.1015-Page 1526 of 3151

10

15

20

25

0479.75048 PATENT

in normal TARP message streams, the background loop may have a latch that makes it more
likely to insert decoy packets when a message stream is being received. Alternatively, if a large
number of decoy packets is received along with regular TARP packets, the algorithm may
increase the rate of dropping of decoy packets rather than forwarding them. The result of
dropping and generating decoy packets in this way is to make the apparent incoming message
size different from the apparent outgoing message size to help foil traffic analysis.

In various other embodiments of the invention, a scalable version of the system may be
constructed in which a plurality of IP addresses are preassigned to each pair of communicating
nodes in the network. Each pair of nodes agrees upon an algorithm for “hopping” between IP
addresses (both sending and receiving), such that an eavesdropper sees apparently continuously
random IP address pairs (source and destination) for packets transmitted between the pair./
Overlapping or “reusable” IP addresses may be allocated to different users on the same subnet,
since each node merely verifies that a particular packet includes a valid source/destination pair
from the agreed-upon algorithm. Source/destination pairs are preferably not reused between any
two nodes during any given end-to-end session, though limited IP block sizes or lengthy sessions
might require it.

Brief Description of the Drawings

Fig. 1 is an illustration of secure communications over the Internet according to a prior art
embodiment.

Fig. 2 is an illustration of secure communications over the Internet according to a an
embodiment of the invention.

Fig. 3a is an illustration of a process of forming a tunneled IP packet according to an
embodiment of the invention.

Fig. 3b is an illustration of a process of forming a tunneled IP packet according to another
embodiment of the invention.

Fig. 4 is an illustration of an OSI layer location of processes that may be used to

implement the invention.

New Bay Capital, LLC
Ex.1015-Page 1527 of 3151

10

15

20

25

0479.75048 PATENT

Fig. 5 is a flow chart illustrating a process for routing a tunneled packet according to an
embodiment of the invention.

Fig. 6 is a flow chart illustrating a process for forming a tunneled packet according to an
embodiment of the invention.

Fig. 7 is a flow chart illustrating a process for receiving a tunneled packet according to an
embodiment of the invention.

Fig. 8 shows how a secure session is established and synchronized between a client and a
TARP router.

Fig. 9 shows an IP address hopping scheme between a client computer and TARP router
using transmit and receive tables in each computer.

Fig. 10 shows physical link redundancy among three Internet Service Providers (ISPs)’
and a client computer.

Detailed Description of the Embodiments

Referring to Fig. 2, a secure mechanism for communicating over the internet employs a
number of special routers or servers, called TARP routers 122-127 that are similar to regular IP
routers 128-132 in that each has one or more IP addresses and uses normal IP protocol to send
normal-looking IP packet messages, called TARP packets 140. TARP packets 140 are identical
to normal IP packet messages that are routed by regular IP routers 128-132 because each TARP
packet 140 contains a destination address as in a normal IP packet. However, instead of
indicating a final destination in the destination field of the IP header, the TARP packet’s 140 IP
header always points to a next-hop in a series of TARP router hops, or the final destination,
TARP terminal 110. Because the header of the TARP packet contains only the next-hop
destination, there is no overt indication from an intercepted TARP packet of the true destination
of the TARP packet 140 since the destination could always be the next-hop TARP router as well
as the final destination, TARP terminal 110.

Each TARP packet’s true destination is concealed behind an outer layer of encryption

generated using a link key 146. The link key 146 is the encryption key used for encrypted

New Bay Capital, LLC
Ex.1015-Page 1528 of 3151

10

15

20

25

0479.75048 PATENT

communication between the end points (TARP terminals or TARP routers) of a single link in the
chain of hops connecting the originating TARP terminal 100 and the destination TARP terminal
110. Each TARP router 122-127, using the link key 146 it uses to communicate with the
previous hop in a chain, can use the link key to reveal the true destination of a TARP packet. To
identify the link key needed to decrypt the outer layer of encryption of a TARP packet, a
receiving TARP or routing terminal may identify the transmitting terminal (which may indicate
the link key used) by the sender field of the clear IP header. Alternatively, this identity may be
hidden behind another layer of encryption in available bits in the clear IP header. Each TARP
router, upon receiving a TARP message, determines if the message is a TARP message by using
authentication data in the TARP packet. This could be recorded in available bytes in the TARP
packet’s IP header. Alternatively, TARP packets could be authenticated by attempting to decrypt /
using the link key 146 and determining if the results are as expected. The former may have
computational advantages because it does not involve a decryption process.

Once the outer layer of decryption is completed by a TARP router 122-127, the TARP
router determines the final destination. The system is preferably designed to cause each TARP
packet 140 to undergo a minimum number of hops to help foil traffic analysis. The time to live
counter in the IP header of the TARP message may be used to indicate a number of TARP router
hops yet to be completed. Each TARP router then would decrement the counter and determine
from that whether it should forward the TARP packet 140 to another TARP router 122-127 or to
the destination TARP terminal 110. If the time to live counter is zero or below zero after
decrementing, for an example of usage, the TARP router receiving the TARP packet 140 may
forward the TARP packet 140 to the destination TARP terminal 110. If the time to live counter is
above zero after decrementing, for an example of usage, the TARP router receiving the TARP
packet 140 may forward the TARP packet 140 to a TARP router 122-127 that the current TARP
terminal chooses at random. As a result, each TARP packet 140 is routed through some

minimum number of hops of TARP routers 122-127 which are chosen at random.

10

New Bay Capital, LLC
Ex.1015-Page 1529 of 3151

10

15

20

25

0479.75048 PATENT

Thus, each TARP packet, irrespective of the traditional factors determining traffic in the
Internet, makes random trips among a number of geographically disparate routers before
reaching its destination and each trip is highly likely to be different for each packet composing a
given message because each trip is independently randomly determined as described above. This
feature is called agile routing. For reasons that will become clear shortly, the fact that different
packets take different routes provides distinct advantages by making it difficult for an interloper
to obtain all the packets forming an entire multi-packet message. Agile routing is combined with
another feature that furthers this purpose, a feature that ensures that any message is broken into
multiple packets.

A TARP router receives a TARP packet when an [P address used by the TARP router
coincides with the IP address in the TARP packet’s IP header IP.. The IP address of a TARP
router, however, may not remain constant. To avoid and manage attacks, each TARP router,
independently or under direction from another TARP terminal or router, may change its IP
address. A separate, unchangeable identifier or address is also defined. This address, called the
TARP address, is known only to TARP routers and terminals and may be correlated at any time
by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or
terminal changes its IP address, it updates the other TARP routers and terminals which in turn
update their respective LUTs. In reality, whenever a TARP router looks up the address of a
destination in the encrypted header, it must convert a TARP address to a real IP address using its
LUT.

While every TARP router receiving a TARP packet has the ability to determine the
packet’s final destination, the message payload is embedded behind an inner layer of encryption
in the TARP packet that can only be unlocked using a session key. The session key is not
available to any of the TARP routers 122-127 intervening between the originating 100 and
destination 110 TARP terminals. The session key is used to decrypt the payloads of the TARP

packets 140 permitting an entire message to be reconstructed.

Il

New Bay Capital, LLC
Ex.1015-Page 1530 of 3151

10

15

20

25

0479.75048 PATENT

In one embodiment, communication may be made private using link and session keys,
which in turn may be shared and used according any desired method. For example, a public key
or symmetric keys may be communicated between link or session endpoints using a public key
method. Any of a variety of other mechanisms for securing data to ensure that only authorized
computers can have access to the private information in the TARP packets 140 may be used as
desired.

Referring to Fig. 3a, to construct a series of TARP packets, a data stream 300 of IP
packets 207a, 207b, 207c, etc., such series of packets being formed by a network (IP) layer
process,, is broken into a series of small sized segments. In the present example, equal-sized
segments 1-9 are defined and used to construct a set of interleaved data packets A, B, and C.
Here it is assumed that the number of interleaved packets A, B, and C formed is three and that
the number of IP packets 207a-207¢c used to form the three interleaved packets A, B, and C is
exactly three. Of course, the number of IP packets spread over a group of interleaved packets
may be any convenient number as may be the number of interleaved packets over which the
incoming data stream is spread. The latter, the number of interleaved packets over which the data
stream is spread, is called the inferleave window.

To create a packet, the transmitting software interleaves the normal IP packets 207a et.
seq. to form a new set of interleaved payload data 320. This payload data 320 is then encrypted
using a session key to form a set of session-key-encrypted payload data 330, each of which, A,
B, and C, will form the payload of a TARP packet. Using the IP header data, from the original
packets 207a-207¢, new TARP headers IP; are formed. The TARP headers IP; can be identical to
normal IP headers or customized in some way. In a preferred embodiment, the TARP headers IP;
are IP headers with added data providing the following information required for routing and
reconstruction of messages, some of which data is ordinarily, or capable of being, contained in
normal IP headers:

1. A window sequence number — an identifier that indicates where the packet

belongs in the original message sequence.

12

New Bay Capital, LLC
Ex.1015-Page 1531 of 3151

10

15

20

25

0479.75048 PATENT

2. An interleave sequence number — an identifier that indicates the interleaving
sequence used to form the packet so that the packet can be deinterleaved along with
other packets in the interleave window.

3. A time-to-live (TTL) datum - indicates the number of TARP-router-hops to
be executed before the packet reaches its destination. Note that the TTL parameter
may provide a datum to be used in a probabilistic formula for determining whether to

route the packet to the destination or to another hop.

4. Data type identifier — indicates whether the payload contains, for example,
TCP or UDP data.

5. Sender’s address — indicates the sender’s address in the TARP network.

6. Destination address — indicates the destination terminal’s address in the TARP,
network.

7. Decoy/Real — an indicator of whether the packet contains real message data or

dummy decoy data or a combination.

Obviously, the packets going into a single interleave window must include only packets
with a common destination. Thus, it is assumed in the depicted example that the IP headers of IP
packets 207a-207¢ all contain the same destination address or at least will be received by the
same terminal so that they can be deinterleaved. Note that dummy or decoy data or packets can
be added to form a larger interleave window than would otherwise be required by the size of a
given message. Decoy or dummy data can be added to a stream to help foil traffic analysis by
leveling the load on the network. Thus, it may be desirable to provide the TARP process with an
ability to respond to the time of day or other criteria to generate more decoy data during low
traffic periods so that communication bursts at one point in the Internet cannot be tied to
communication bursts at another point to reveal the communicating endpoints.

Dummy data also helps to break the data into a larger number of inconspicuously-sized
packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

New Bay Capital, LLC
Ex.1015-Page 1532 of 3151

10

15

20

25

0475.75048 PATENT

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is
apparent if a chain block encryption scheme is used to form the first encryption layer prior to
interleaving. A single block encryption may be applied to portion, or entirety, of a message, and
that portion or entirety then interleaved into a number of separate packets.

Referring to Fig. 3b, in an alternative mode of TARP packet construction, a series of IP
packets are accumulated to make up a predefined interleave window. The payloads of the packets
are used to construct a single block 520 for chain block encryption using the session key. The
payloads used to form the block are presumed to be destined for the same terminal. The block
size may coincide with the interleave window as depicted in the example embodiment of Fig. 3b.
After encryption, the encrypted block is broken into separate payloads and segments which are
interleaved as in the embodiment of Fig 3a. The resulting interleaved packets A, B, and C, are’
then packaged as TARP packets with TARP headers as in the Example of Fig. 3a. The remaining
process is as shown in, and discussed with reference to, Fig. 3a.

Once the TARP packets 340 are formed, each entire TARP packet 340, including the
TARP header IP,, is encrypted using the link key for communication with the first-hop-TARP
router. The first hop TARP router is randomly chosen. A final unencrypted IP header IP. is
added to each encrypted TARP packet 340 to form a normal IP packet 360 that can be
transmitted to a TARP router. Note that the process of constructing the TARP packet 360 does
not have to be done in stages as described. The above description is just a useful heuristic for
describing the final product, namely, the TARP packet.

Note that, TARP header IP; could be a completely custom header configuration with no
similarity to a normal IP header except that it contain the information identified above. This is so
since this header is interpreted by only TARP routers.

The above scheme may be implemented entirely by processes operating between the data
link layer and the network layer of each server or terminal participating in the TARP system.
Referring to Fig. 4, a TARP transceiver 405 can be an originating terminal 100, a destination

terminal 110, or a TARP router 122-127. In each TARP Transceiver 405, a transmitting process

New Bay Capital, LLC
Ex.1015-Page 1533 of 3151

10

15

20

25

0479.75048 PATENT

is generated to receive normal packets from the Network (IP) layer and generate TARP packets
for communication over the network. A receiving process is generated to rececive normal IP
packets containing TARP packets and generate from these normal IP packets which are “passed
up” to the Network (IP) layer. Note that where the TARP Transceiver 405 is a router, the
received TARP packets 140 are not processed into a stream of IP packets 415 because they need
only be authenticated as proper TARP packets and then passed to another TARP router or a
TARP destination terminal 110. The intervening process, a “TARP Layer” 420, could be
combined with either the data link layer 430 or the Network layer 410. In either case, it would
intervene between the data link layer 430 so that the process would receive regular IP packets
containing embedded TARP packets and “hand up” a series of reassembled IP packets to the
Network layer 410. As an example of combining the TARP layer 420 with the data link layer/
430, a program may augment the normal processes running a communications card, for example,
an ethernet card. Alternatively, the TARP layer processes may form part of a dynamically
loadable module that is loaded and executed to support communications between the network
and data link layers.

Because the encryption system described above can be inserted between the data link and
network layers, the processes involved in supporting the encrypted communication may be
completely transparent to processes at the IP (network) layer and above. The TARP processes
may also be completely transparent to the data link layer processes as well. Thus, no operations
at or above the network layer, or at or below the data link layer, are affected by the insertion of
the TARP stack. This provides additional security to all processes at or above the network layer,
since the difficulty of unauthorized penetration of the network layer (by, for example, a hacker)
is increased substantially. Even newly developed servers running at the session layer leave all
processes below the session layer vulnerable to attack. Note that in this architecture, security is
distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

15

New Bay Capital, LLC
Ex.1015-Page 1534 of 3151

10

15

20

25

0479.75048 PATENT

Note that IP address changes made by TARP terminals and routers can be done at regular
intervals, at random intervals, or upon detection of “attacks.” The variation of IP addresses
hinders traffic analysis that might reveal which computers are communicating, and also provides
a degree of immunity from attack.. The level of immunity from attack is roughly proportional to
the rate at which the [P address of the host is changing.

As mentioned, IP addresses may be changed in response to attacks. An attack may be
revealed, for example, by a regular series of messages indicates that a router is being probed in
some way. Upon detection of an attack, the TARP layer process may respond to this event by
changing its IP address. To accomplish this, the TARP process will construct a TARP-formatted
message, in the style of Internet Control Message Protocol (ICMP) datagrams as an example;
this message will contain the machine’s TARP address, its previous IP address, and its new IP’
address. The TARP layer will transmit this packet to at least one known TARP router; then upon
receipt and validation of the message, the TARP router will update its LUT with the new IP
address for the stated TARP address. The TARP router will then format a similar message, and
broadcast it to the other TARP routers so that they may update their LUTs. Since the total
number of TARP routers on any given subnet is expected to be relatively small, this process of
updating the LUTSs should be relatively fast. It may not, however, work as well when there is a
relatively large number of TARP routers and/or a relatively large number of clients; this has
motivated a refinement of this architecture to provide scalability; this refinement has led to a
second embodiment, which is discussed below.

Upon detection of an attack, the TARP process may also create a subprocess that
maintains the original IP address and continues interacting with the attacker. The latter may
provide an opportunity to trace the attacker or study the attacker’s methods (called “fishbowling”
drawing upon the analogy of a small fish in a fish bowl that “thinks” it is in the ocean but is
actually under captive observation). A history of the communication between the attacker and the
abandoned (fishbowled) IP address can be recorded or transmitted for human analysis or further

synthesized for purposes of responding in some way.

16

New Bay Capital, LLC
Ex.1015-Page 1535 of 3151

10

15

20

25

0479.75048 PATENT

As mentioned above, decoy or dummy data or packets can be added to outgoing data
streams by TARP terminals or routers. In addition to making it convenient to spread data over a
larger number of separate packets, such decoy packets can also help to level the load on inactive
portions of the Internet to help foil traffic analysis efforts.

Decoy packets may be generated by each TARP terminal 100, 110 or each router 122-127
on some basis determined by an algorithm. For example, the algorithm may be a random one
which calls for the generation of a packet on a random basis when the terminal is idle.
Alternatively, the algorithm may be responsive to time of day or detection of low traffic to
generate more decoy packets during low traffic times. Note that packets are preferably generated
in groups, rather than one by one, the groups being sized to simulate real messages. In addition,
so that decoy packets may be inserted in normal TARP message streams, the background loop’
may have a latch that makes it more likely to insert decoy packets when a message stream is
being received. That is, when a series of messages are received, the decoy packet generation rate
may be increased. Alternatively, if a large number of decoy packets is received along with
regular TARP packets, the algorithm may increase the rate of dropping of decoy packets rather
than forwarding them. The result of dropping and generating decoy packets in this way is to
make the apparent incoming message size different from the apparent outgoing message size to
help foil traffic analysis. The rate of reception of packets, decoy or otherwise, may be indicated
to the decoy packet dropping and generating processes through perishable decoy and regular
packet counters. (A perishable counter is one that resets or decrements its value in response to
time so that it contains a high value when it is incremented in rapid succession and a small value
when incremented either slowly or a small number of times in rapid succession.) Note that
destination TARP terminal 110 may generate decoy packets equal in number and size to those
TARP packets received to make it appear it is merely routing packets and is therefore not the
destination terminal.

Referring to Fig. 5, the following particular steps may be employed in the above-
described method for routing TARP packets.

17

New Bay Capital, LLC
Ex.1015-Page 1536 of 3151

0479.75048 PATENT

e S0. A background loop operation is performed which applies an algorithm which determines
the generation of decoy IP packets. The loop is interrupted when an encrypted TARP packet
is received.

s e S2. The TARP packet may be probed in some way to authenticate the packet before
attempting to decrypt it using the link key. That is, the router may determine that the packet
is an authentic TARP packet by performing a selected operation on some data included with
the clear IP header attached to the encrypted TARP packet contained in the payload. This
makes it possible to avoid performing decryption on packets that are not authentic TARP

10 packets.

¢ S3. The TARP packet is decrypted to expose the destination TARP address and an indication
of whether the packet is a decoy packet or part of a real message.

e S4. If the packet is a decoy packet, the perishable decoy counter is incremented.

e S5. Based on the decoy generation/dropping algorithm and the perishable decoy counter

15 value, if the packet is a decoy packet, the router may choose to throw it away. If the received
packet is a decoy packet and it is determined that it should be thrown away (S6), control

returns to step SO.

e S7. The TTL parameter of the TARP header is decremented and it is determined if the TTL

= parameter is greater than zero.

20 e S8.Ifthe TTL parameter is greater than zero, a TARP address is randomly chosen from a list
of TARP addresses maintained by the router and the link key and IP address corresponding to
that TARP address memorized for use in creating a new IP packet containing the TARP
packet.

e S9. If the TTL parameter is zero or less, the link key and IP address corresponding to the

25 TARP address of the destination are memorized for use in creating the new IP packet

containing the TARP packet.

18

New Bay Capital, LLC
Ex.1015-Page 1537 of 3151

0479.75048 PATENT

o S10. The TARP packet is encrypted using the memorized link key.
e S11. An IP header is added to the packet that contains the stored IP address, the encrypted
TARP packet wrapped with an IP header, and the completed packet transmitted to the next

hop or destination.

Referring to Fig. 6, the following particular steps may be employed in the above-
described method for generating TARP packets.

e S20. A background loop operation applies an algorithm that determines the generation of

10 decoy IP packets. The loop is interrupted when a data stream containing IP packets is
received for transmission. '

e S21. The received IP packets are grouped into a set consisting of messages with a constant IP

destination address. The set is further broken down to coincide with a maximum size of an

interleave window The set is encrypted, and interleaved into a set of payloads destined to

15 become TARP packets.
e S22. The TARP address corresponding to the IP address is determined from a lookup table
and stored to generate the TARP header. An initial TTL count is generated and stored in the

header. The TTL count may be random with minimum and maximum values or it may be

fixed or determined by some other parameter.
20 o S23. The window sequence numbers and interleave sequence numbers are recorded in the
TARP headers of each packet.
e S24. One TARP router address is randomly chosen for each TARP packet and the IP address
corresponding to it stored for use in the clear IP header. The link key corresponding to this
router is identified and used to encrypt TARP packets containing interleaved and encrypted

25 data and TARP headers.

19

New Bay Capital, LLC
Ex.1015-Page 1538 of 3151

0479.75048 PATENT

e S25. A clear IP header with the first hop router’s real IP address is generated and added to

each of the encrypted TARP packets and the resulting packets.

Referring to Fig. 7, the following particular steps may be employed in the above-
5 described method for receiving TARP packets.

e S40. A background loop operation is performed which applies an algorithm which
determines the generation of decoy IP packets. The loop is interrupted when an encrypted

TARP packet is received.
10 e S42. The TARP packet may be probed to authenticate the packet before attempting to decrypt
it using the link key. ,
e S43. The TARP packet is decrypted with the appropriate link key to expose the destination
TARP address and an indication of whether the packet is a decoy packet or part of a real

message.

s 15 e S44, If the packet is a decoy packet, the perishable decoy counter is incremented.

- e S45. Based on the decoy generation/dropping algorithm and the perishable decoy counter
value, if the packet is a decoy packet, the receiver may choose to throw it away.

e S46. The TARP packets are cached until all packets forming an interleave window are

received.
20 e S47. Once all packets of an interlcave window are received, the packets are deinterleaved.
e S48. The packets block of combined packets defining the interleave window is then
decrypted using the session key.
e S49. The decrypted block is then divided using the window sequence data and the IPp
headers are converted into normal IP; headers. The window sequence numbers are integrated
25 in the IP_ headers.

e S50. The packets are then handed up to the IP layer processes.

20

New Bay Capital, LLC
Ex.1015-Page 1539 of 3151

10

15

20

25

0479.75048 PATENT

Scalability Enhancements

The IP agility feature described above relies on the ability to transmit IP address changes
to all TARP routers. The embodiments including this feature will be referred to as “boutique”
embodiments due to potential limitations in scaling these features up for a large network, such as
the Internet. (The “boutique” embodiments would, however, be robust for use in smaller
networks, such as small virtual private networks, for example). One problem with the boutique
embodiments is that if IP address changes are to occur frequently, the message traffic required to
update all routers sufficiently quickly creates a serious burden on the Internet when the TARP
router and/or client population gets large. The bandwidth burden added to the networks, for
example in ICMP packets, that would be used to update all the TARP routers could overwhelm
the Internet for a large scale implementation that approached the scale of the Internet. In other
words, the boutique system’s scalability is limited.

A system can be constructed which trades some of the features of the above embodiments
to provide the benefits of IP agility without the additional messaging burden. This is
accomplished by IP address-hopping according to shared algorithms that govern IP addresses
used between links participating in communications sessions between nodes such as TARP
nodes. (Note that the IP hopping technique is also applicable to the boutique embodiment.) The
IP agility feature discussed with respect to the boutique system can be modified so that it
becomes decentralized under this scalable regime and governed by the above-described shared
algorithm. Other features of the boutique system may be combined with this new type of IP-
agility.

The new embodiment has the advantage of providing IP agility governed by a local
algorithm and set of IP addresses exchanged by each communicating pair of nodes. This local
governance is session-independent in that it may govern communications between a pair of
nodes, irrespective of the session or end points being transferred between the directly

communicating pair of nodes.

21

New Bay Capital, LLC
Ex.1015-Page 1540 of 3151

10

15

20

25

0479.75048 PATENT

In the scalable embodiments, blocks of IP addresses are allocated to each node in the
network. (This scalability will increase in the future, when Internet Protocol addresses are
increased to 128-bit fields, vastly increasing the number of distinctly addressable nodes). Each
node can thus use any of the IP addresses assigned to that node to communicate with other nodes
in the network. Indeed, each pair of communicating nodes can use a plurality of source IP
addresses and destination IP addresses for communicating with each other.

Each communicating pair of nodes in a chain participating in any session stores two
blocks of IP addresses, called netblocks, and an algorithm and randomization seed for selecting,
from each netblock, the next pair of source/destination IP addresses that will be used to transmit

the next message. In other words, the algorithm governs the sequential selection of IP-address

pairs, one sender and one receiver IP address, from each netblock. The combination of algorithm,’

seed, and netblock (IP address block) will be called a “hopblock.” A router issues separate
transmit and receive hopblocks to its clients. The send address and the receive address of the IP
header of each outgoing packet sent by the client are filled with the send and receive IP addresses
generated by the algorithm. The algorithm is “clocked” (indexed) by a counter so that each time a
pair is used, the algorithm turns out a new transmit pair for the next packet to be sent.

The router’s receive hopblock is identical to the client’s transmit hopblock. The router
uses the receive hopblock to predict what the send and receive IP address pair for the next
expected packet from that client will be. Since packets can be received out of order, it is not
possible for the router to predict with certainty what IP address pair will be on the next sequential
packet. To account for this problem, the router generates a range of predictions encompassing
the number of possible transmitted packet send/receive addresses, of which the next packet
received could leap ahead. Thus, if there is a vanishingly small probability that a given packet
will arrive at the router ahead of 5 packets transmitted by the client before the given packet, then
the router can generate a series of 6 send/receive IP address pairs (or “hop window”) to compare
with the next received packet. When a packet is received, it is marked in the hop window as such,

so that a second packet with the same IP address pair will be discarded. If an out-of-sequence

22

New Bay Capital, LLC
Ex.1015-Page 1541 of 3151

10

15

20

25

0479.75048 PATENT

packet does not arrive within a predetermined timeout period, it can be requested for
retransmission or simply discarded from the receive table, depending upon the protocol in use for
that communications session, or possibly by convention.

When the router receives the client’s packet, it compares the send and receive IP
addresses of the packet with the next N predicted send and receive IP address pairs and rejects
the packet if it is not a member of this set. Received packets that do not have the predicted
source/destination IP addresses falling with the window are rejected, thus thwarting possible
hackers. (With the number of possible combinations, even a fairly large window would be hard
to fall into at random.) If it is a member of this set, the router accepts the packet and processes it
further. This link-based IP-hopping strategy, referred to as “IHOP,” is a network element that
stands on its own and is not necessarily accompanied by elements of the boutique system
described above. If the routing agility feature described in connection with the boutique
embodiment is combined with this link-based IP-hopping strategy, the router’s next step would
be to decrypt the TARP header to determine the destination TARP router for the packet and
determine what should be the next hop for the packet. The TARP router would then forward the
packet to a random TARP router or the destination TARP router with which the source TARP
router has a link-based IP hopping communication established.

Figure 8 shows how a client computer 801 and a TARP router 811 can establish a secure
session. When client 801 seeks to establish an IHOP session with TARP router 811, the client
801 sends “secure synchronization” request (“SSYN”) packet 821 to the TARP router 811. This
SYN packet 821 contains the client’s 801 authentication token, and may be sent to the router 811
in an encrypted format. The source and destination IP numbers on the packet 821 are the client’s
801 current fixed IP address, and a “known” fixed IP address for the router 811. (For security
purposes, it may be desirable to reject any packets from outside of the local network that are
destined for the router’s known fixed IP address.) Upon receipt and validation of the client’s 801
SSYN packet 821, the router 811 respond by sending an encrypted “secure synchronization
acknowledgment” (“SSYN ACK”) 822 to the client 801. This SSYN ACK 822 will contain the

23

New Bay Capital, LLC
Ex.1015-Page 1542 of 3151

0479.75048 PATENT

transmit and receive hopblocks that the client 801 will use when communicating with the TARP
router 811. The client 801 will acknowledge the TARP router’s 811 response packet 822 by
generating an encrypted SSYN ACK ACK packet 823 which will be sent from the client’s 801
fixed IP address and to the TARP router’s 811 known fixed IP address. The client 801 will
5 simultaneously generate a SSYN ACK ACK packet; this SSYN ACK packet, referred to as the
Secure Session Initiation (SSI) packet 824, will be sent with the first {sender, receiver} IP pair in
the client’s transmit table 921 (Fig. 9), as specified in the transmit hopblock provided by the
TARP router 811 in the SSYN ACK packet 822. The TARP router 811 will respond to the SSI
packet 824 with an SSI ACK packet 825, which will be sent with the first {sender, receiver} IP
10 pair in the TARP router’s transmit table 923. Once these packets have been successfully
exchanged, the secure communications session is established, and all further secure
communications between the client 801 and the TARP router 811 will be conducted via this
secure session, as long as synchronization is maintained. If synchronization is lost, then the client

801 and TARP router 802 may re-establish the secure session by the procedure outlined in Figure

15 8 and described above.
While the secure session is active, both the client 901 and TARP router 911 (Fig. 9) will

maintain their respective transmit tables 921, 923 and receive tables 922, 924, as provided by the

TARP router during session synchronization 822. It is important that the sequence of IP pairs in
E the client’s transmit table 921 be identical to those in the TARP router’s receive table 924;
20 similarly, the sequence of IP pairs in the client’s receive table 922 must be identical to those in
the router’s transmit table 923. This is required for the session synchronization to be maintained.
The client 901 need maintain only one transmit table 921 and one receive table 922 during the
course of the secure session. Each sequential packet sent by the client 901 will employ the next
{send, receive} IP address pair in the transmit table, regardless of TCP or UDP session. The
25 TARP router 911 will expect each packet arriving from the client 901 to bear the next IP address

pair shown in its receive table.

24

New Bay Capital, LLC
Ex.1015-Page 1543 of 3151

10

15

20

25

0479.75048 PATENT

Since packets can arrive out of order, however, the router 911 can maintain a “look
ahead” buffer in its receive table, and will mark previously-received IP pairs as invalid for future
packets; any future packet containing an IP pair that is in the look-ahead buffer but is marked as
previously received will be discarded. Communications from the TARP router 911 to the client
901 are maintained in an identical manner; in particular, the router 911 will select the next IP
address pair from its transmit table 923 when constructing a packet to send to the client 901, and
the client 901 will maintain a look-ahead buffer of expected IP pairs on packets that it is
receiving. Each TARP router will maintain separate pairs of transmit and receive tables for each
client that is currently engaged in a secure session with or through that TARP router.

While clients receive their hopblocks from the first server linking them to the Internet,
routers exchange hopblocks. When a router establishes a link-based IP-hopping communication
regime with another router, each router of the pair exchanges its transmit hopblock. The transmit
hopblock of each router becomes the receive hopblock of the other router. The communication
between routers is governed as described by the example of a client sending a packet to the first
router.

While the above strategy works fine in the IP milieu, many local networks that are
connected to the Internet are ethernet systems. In ethernet, the IP addresses of the destination
devices must be transiated into hardware addresses, and vice versa, using known processes
(“address resolution protocol,” and “reverse address resolution protocol”). However, if the link-
based IP-hopping strategy is employed, the correlation process would become explosive and
burdensome. An alternative to the link-based IP hopping strategy may be employed within an
ethernet network. The solution is to provide that the node linking the Internet to the ethernet (call
it the border node) use the link-based IP-hopping communication regime to communicate with
nodes outside the ethernet LAN. Within the ethernet LAN, each TARP node would have a single
IP address which would be addressed in the conventional way. Instead of comparing the {sender,
receiver} IP address pairs to authenticate a packet, the intra-LAN TARP node would use one of

the IP header extension fields to do so. Thus, the border node uses an algorithm shared by the

25

New Bay Capital, LLC
Ex.1015-Page 1544 of 3151

10

15

20

25

0479.75048 PATENT

intra-LAN TARP node to generate a symbol that is stored in the free field in the IP header, and
the intra-LAN TARP node generates a range of symbols based on its prediction of the next
expected packet to be received from that particular source IP address. The packet is rejected if it
does not fall into the set of predicted symbols (for example, numerical values) or is accepted if it
does. Communications from the intra-LAN TARP node to the border node are accomplished in
the same manner, though the algorithm will necessarily be different for security reasons. Thus,
each of the communicating nodes will generate transmit and receive tables in a similar manner to
that of Figure 9; the intra-LAN TARP nodes transmit table will be identical to the border node’s
receive table, and the intra-LL AN TARP node’s receive table will be identical to the border node’s
transmit table.

The algorithm used for IP address-hopping can be any desired algorithm. For example,'
the algorithm can be a given pseudo-random number generator that generates numbers of the
range covering the allowed IP addresses with a given seed. Alternatively, the session participants
can assume a certain type of algorithm and specify simply a parameter for applying the
algorithm. For example the assumed algorithm could be a particular pseudo-random number
generator and the session participants could simply exchange seed values.

Note that there is no permanent physical distinction between the originating and
destination terminal nodes. Either device at either end point can initiate a synchronization of the
pair. Note also that the authentication/synchronization-request (and acknowledgment) and
hopblock-exchange may all be served by a single message so that separate message exchanges
may not be required.

As another extension to the stated architecture, multiple physical paths can be used by a
client, in order to provide link redundancy and further thwart attempts at denial of service and
traffic monitoring. As shown in Figure 10, for example, client 1001 can establish three
simultaneous sessions with each of three TARP routers provided by different ISPs 1011, 1012,
1013. As an example, the client 1001 can use three different telephone lines 1021, 1022, 1023 to

connect to the ISPs, or two telephone lines and a cable modem, etc. In this scheme, transmitted

26

New Bay Capital, LLC
Ex.1015-Page 1545 of 3151

0479.75048 PATENT

packets will be sent in a random fashion among the different physical paths. This architecture
provides a high degree of communications redundancy, with improved immunity from denial-of-

service attacks and traffic monitoring.

27

New Bay Capital, LLC
Ex.1015-Page 1546 of 3151

0479.75048 PATENT

1 Claims
2 What is claimed is:
3 1. A secure method of transmitting data packets over a computer network, comprising

4 the steps of:

5 composing an IP data packet within a client computer, in the layer between the network
6 layer and the data link layer, by (1) encrypting the packet payload in a session key, (2) replacing
7 the actual IP numbers in the header with their corresponding non-attributable addresses, (3)
8 encrypting the combination of modified header and the session-key-encrypted payload in a link
9 key, and (4) placing a new IP header on the packet such that the new IP header does not reveal

10 the identities of the true sender or true receiver;

11 interleaving the session-key-encypted data in such a manner as sequential bytes will tend
12 to be distributed to different packets, and providing the interleaving algorithm to the receiver

13 such that the original encrypted data stream can be reconstructed by the receiver;

14 creating a random path from starting point to ending point for each packet by providing a
15 decrementing counter in the encrypted header that will specify a minimum number of hops that
16 the packet is to take through a random series of cooperating routers before being delivered to the

17 final destination;

i
hi

18 establishing a communication session between the client computer and a router computer
19 by exchanging transmit and receive hopblocks, each hopblock comprising pairs of transmit and
20 receive network addresses and a hopping algorithm and seed, that will be valid during the
21 communication session; and

22 determining in the router computer whether the received data packets conform to a valid
23 source and destination address on the basis of the exchanged hopblocks and the hopping

24 algorithm; and discarding any data packets that are not valid.

28

New Bay Capital, LLC
Ex.1015-Page 1547 of 3151

0479.75048 PATENT

ABSTRACT

A secure network has a network of routers scattered around the Internet. At an originating

terminal, a data stream is parsed into blocks and session-key-encrypted, each encrypted block

5 being shared, via an interleaving process, among several packet payloads. A destination identifier
and hop counter are added to each packet payload and the combination encrypted with link keys
respective of the routers through which respective packet payloads are destined. IP packets are
formed combining the payloads with the IP addresses of the various routers in their headers. The
router to which each IP packet is sent may be randomly chosen. The result is that a given block-

10 encrypted message portion is scattered among a number of routers with only the next hop router
destination being identified in the IP packet headers. Upon being received by the routers, the hop
counter is decremented and queried to determine if the packets should be sent to the dcstination’

(if a minimum number of hops has already been performed) or to another randomly chosen

router. The routers change IP addresses and update each other as to their current IP addresses.

15 The entire packet generation, routing, and packet reception processes are handled by a process
residing between the OSI network and data link layers of the routers and terminals. Thus, IP
packets are passed to and from the interstitial layer from the IP and data link layers, respectively.
Decoy packets are generated and trashed at the routers and terminals to foil traffic analysis. In

certain scalable embodiments of the invention, a plurality of IP addresses are preassigned to each

20 pair of communicating nodes, and the nodes exchange an algorithm for hopping pseudo-

randomly among source/destination address pairs.

29

New Bay Capital, LLC
Ex.1015-Page 1548 of 3151

Originating
Terminal
100

40

IP packet |

IP Router

IP Router =

22

IP Router
24

IP Router
30

1P Router
23

o internet 107

{P Router
29 IP Router
— 25
.
IP Router
[27

$’——‘ iP Router
IP Router 28

L 32

—

IP Router
26

Destination
48 Terminal

encryption key

110

New Bay Capital, LLC
Ex.1015-Page 1549 of 3151

TARP Terminal
100

140

LTARP packet

IP Router
| 131 ,

o

link key
TARP Router
122

TARP Router

TARP Router IP Router
123 130 12

Internet 107
] IP Router

IP Router 128
129 TARP Router IP Router T

- 125 132

TARP Router
TARP Router | 126
127 link key
o
link key

-
| TARP packet |

TARP Terminal
110 ,

session key 148
140

New Bay Capital, LLC
Ex.1015-Page 1550 of 3151

207a 207b / 207¢ / 207d o e @
T
[

data stream 300

interleaved
payload data
320

interleave window 320

session-key-encrypted
payload data 330

TARP packet with
IP; A IP; B ‘ encrypted payloads 340 .

e

TARP packets 350

IP packets w/ encrypted
TARP packets as
payload 360

|
TARP
router 2 |

i

——l TARPT
TARP f router 5
router 3 |

L }

- | TARP T«l
TARP router 6 l

router 4

a
TARP |
destination |

L]

Fig. 3a

New Bay Capital, LLC
Ex.1015-Page 1551 of 3151

207a 207b 207¢c 207d o o @
/ data stream 300

< 1

block-encrypted (session-key) | Dummy blocks or data
payload sequence 520 may be added

encrypted block divided
into payloads 522

encrypted block divided
into payloads interleaved
523

interleave window 517

, encrypted block divided
into payloads interieaved

523

TARP packets with
Py E encrypted payloads 340

Fig. 3b

New Bay Capital, LLC
Ex.1015-Page 1552 of 3151

Other alternative
to combine
TARP processing
with D.L. Processor
(e.g., burn into boarc

PROM)

TARP Transceiver 405

—

|

Network (IP) Layer 410

|

|

3

P 415

|

TARP Layer 420 J

Data Link Layer 430

>

One alternative to
combine
TARP processing
with O/S IP
Processor

data link protocol
wrapper 450

New Bay Capital, LLC
Ex.1015-Page 1553 of 3151

Y

Background loop - decoy - 80
generation i\/

—

authenticate TARP packet \f S2

<

dump decoy

outer layer decryption of S3
TARP packet using link key "

check for decoy and
increment perishable decoy J 54
counter as appropriate

!

No

Transmit decoy? S5

Yes Fig. 5

Decrement - S7

TTL.TTL>07?

{ Yes
| J

S9 determine destination TARP] generate next-hop TARPT
!

address and store link key address and store link key S8
and IP address and IP address

generate next-hop TARP
address and store link key
and IP address

No

S10

T
i
Generate [P header and 1\f S11
J

trasnmit

New Bay Capital, LLC
Ex.1015-Page 1554 of 3151

Background loop - decoy
generation

|

‘\/‘ S20

|

'

group received IP packets
into interleave window

L/‘ S21
|
J

determine destination TARP
address, initialize TTL, store
in TARP header

\/” S22

A

record window seq. nos. and
interleave seq. nos in TARP
headers.

\/— 823

|

choose first hop TARP
router, look up IP address
and store in clear IP header,
outer layer encrypt

\/’ S24

l

install clear IP header and
transmit

/ 525

Fig. 6

New Bay Capital, LLC
Ex.1015-Page 1555 of 3151

Background loop - decoy
generation

f\/‘840
]

y

!

\/— S42

authenticate TARP packet
received

decrypt outer layer
encryption with link key

\/‘ S43

\

increment perishable counter S44
if decoy -~

throw away decoy or keep in
response to algorithm

J S45

]

cache TARP packets until
window is assembled

S47
deinterleave packets forming

window :

]

S46

v

! — 548
} decrypt block

Y

divide block into packets S49
using window sequence data,
add clear IP headers
generated from TARP
headers
S50

hand completed IP packets
to IP layer process

New Bay Capital, LLC
Ex.1015-Page 1556 of 3151

St8 I~ «nv.p».rnh ~V:Ssac 5

\ B VL e sea oes

\ BT Pt oV oy Q}WWHV ﬂr M
A

l/l.’ Il\l\\l‘\\\
/NQ F2y22d W (Vhge xm

A *Jai. VASS - Q\,é‘{bo* £11)0

B At e
#:é,\«@\ﬂd%wm N SEX, P9I

New Bay Capital, LLC
Ex.1015-Page 1557 of 3151

: +

btepoe” 18 (61 ” W o Jie 1L
Ll nel 91T gl 1ot pog- §1¢ 180
T Yl A TRV 1 L
68 .%Q%.&F\ el ‘ 191 “pog "3V sl

sep 2[1°L 10t T

L4
. ¢
.

33 \,.A. iz 181 C ey oo 18t
9g) pac -y 151 el poeye VEl
Lb " foC Ne 1E! (e poe ..m:.u.ri
sopac decist b Bb e LIS

ry T RN

b
$2% —

%Z

.

b pac 80 18! C oyt poe po 18l
Let por pe 15t Crop por pi 1€
2Ie " por $1T ‘gl M 99 pee ' YC ' E1
L8 ‘poc 317 gL 191 ‘o Jic 1€/
Trp 7197 20?97)

Bay Capital, LLC

e

Ex.1015-Page 1558 of 3151

v
4

_$S ‘foc ..%N,%\ €2 #aT 317 1€
gyl pec g1z 151 wtl por 4IEIE]
Ly “pe¢ §C ‘Is/ AZ.N o8 1T 1§/
59 por® M 181 C gy per 817151

»

—) AL

&b

Fi svaal,

New Bay Capital, LLC
Ex.1015-Page 1559 of 3151

United States Patent & Trademark Office

Office of Initial Patent Examination - Scanning Division

Application deficiencies were found during scanning:

O Page(s) of &B?ﬂ h@ OJ ‘\'OY[were not present
for scanning.” (Document title)
O Page(s) of were not present
for scanning. (Document title)

O Scanned copy is best available.

New Bay Capital, LLC
Ex.1015-Page 1560 of 3151

Request for Inter Partes Reexamination
U.S. Patent No. 7,418,504

Exhibit C-4

Provisional Application 60/137,704

Customer No.: 000027683 Haynes and Boone, LLP
IP Section

2323 Victory Avenue, Suite 700

Dallas, Texas 75219

Telephone [214] 651.5000

Fax [214] 200.0853

New Bay Capital, LLC
Ex.1015-Page 1561 of 3151

PTO/SB/16 (6-95}
Approved for use through 04/11/98. OMB 0651-0037
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

PROVISIONAL APPLICATION COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1,53(c).

—_ Docket Number :Ty;:)e a p_lus sign (+)
p— 1 00479.81281 inside this box - +
Nd——
EE INVENTOR(s)/APPLICANT(s)
\.‘g;' LAST NAME FIRST NAME M.L. RESIDENCE (CITY and either STATE or
== COUNTRY)
=p
MUNGER Edmund Colby | Crownsville, MD o
SABIO Vincent J. Columbia, MD By
SHSRT - Robert Dunham | Leesburg, VA (,;‘E?_ a
SCHMIDT Douglas Charles | Severna Park, MD S =
e a
e —
TITLE OF THE INVENTION (280 characters max} o =6
™ —

EXTENSIONS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS WITH
ASSURED SYSTEM AVAILABILITY

7' CORRESPONDENCE ADDRESS

Banner & Witcoff, Ltd.
:1001 G Street, N.W., 11th Floor

IeTatE Washington, DC | zip 20001-4597 | counthRy USA

' ENCLOSED APPLICATION PARTS (check all that apply)

Specification Number of Pages 21 Small Entity Statement
Drawings Number of Sheets 7 Other {specify)

EMETHOD OF PAYMENT (check one)

42 X | A check or money order is enclosed to cover the Provisional filing fee

‘ The Commissioner is hereby PROVISIONAL
authorized to charge filing fees and FILING FEE
credit Deposit Account Number. 19-0733 AMOUNT ($) $150.00

The invention was made by an agency of the United States Government or under a contract with an agency
of the United States Government.

X NO
YES, the name of the U.S. Government agency and the Government contract number are:

Respectfully m : :
1
SIGNATURE ‘EJ '// /’fDATE é/7 /7 ?

TYPED or PRINTED NAME _Bradley C. Wright REG. NO. 38.061
Additional inventors are being named on separately number sheets attached hereto

PROVISIONAL APPLICATION FILING ONLY

New Bay Capital, LLC
Ex.1015-Page 1562 of 3151

EXTENSIONS TO AN AGILE NETWORK PROTOCOL FOR SECURE
COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

5
BACKGROUND OF THE INVENTION
This patent application describes various extensions to the techniques, systems,
and methods described in U.S. provisional patent application number 60/106,261, which
was filed on October 30, 1998. Familiarity with that application is presumed.
10 As described in the above-identified patent application, the security of

communications occurring between computers in a computer network (such as the

Internet, an Ethernet, or others) can be enhanced by using seemingly random source and

destination Internet Protocol (IP) addresses for data packets transmitted over the network.

This feature prevents eavesdroppers from determining which computers in the network

15 are communicating with each other while permitting the two communicating computers

to easily recognize whether a given received data packet is legitimate or not. In one

embodiment of the above-identified application, an IP header extension field is used to
authenticate incoming packets on an Ethernet.

Various extensions to the previously described techniques described herein

20 include: (1) use of hopped hardware or “MAC” addresses in broadcast type network; (2) a

self-synchronization technique that permits a computer to automatically regain

synchronization with a sender; (3) synchronization algorithms that allow transmitting and
receiving computers to quickly re-establish synchronization in the event of lost packets or
other events; and (4) a fast-packet rejection mechanism for rejecting invalid packets. Any
25 or all of these extensions can be combined with the features described in the
aforementioned patent application in any of various ways.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 11 shows how multiple IP packets can be embedded into a single “frame”
such as an Ethernet frame, and further shows the use of a discriminator field to
30 camouflage true packet recipients.
FIG. 12A shows a system that employs hopped hardware addresses, hopped IP

addresses, and hopped discriminator fields.

New Bay Capital, LLC
Ex.1015-Page 1563 of 3151

FIG. 12B shows several different approaches for hopping hardware addresses, IP
addresses, and discriminator fields in combination.
FIG. 13 shows a technique for automatically re-establishing synchronization
between sender and receiver through the use of a partially public sync value.
5 FIG. 14 shows a “checkpoint” scheme for regaining synchronization between a
sender and recipient.
FIG. 15 shows further details of the checkpoint scheme of FIG. 14.
FIG. 16 shows how two addresses can be decomposed into a plurality of segments
for comparison with presence vectors.
10 DETAILED DESCRIPTION
A. Hardware Address Hopping
Internet protocol-based communications techniques on a LAN—or across any
dedicated physical medium—typically embed the IP packets within lower-level packets,

y

often referred to as “frames.” As shown in FIG. 11, for example, a first Ethernet frame
15 1150 comprises a frame header 1101 and two embedded IP packets [P1 and IP2, while a
second Ethernet frame 1160 comprises a different frame header 1104 and a single IP
packet IP3. Each frame header generally includes a source hardware address 1101A and
a destination hardware address 1101B; other well-known fields in frame headers are
omitted from FIG. 11 for clarity. Two hardware nodes communicating over a physical
20 communication channel insert appropriate source and destination hardware addresses to

indicate which nodes on the channel or network should receive the frame.

It may be possible for a nefarious listener to acquire information about the
contents of a frame and/or its communicants by examining frames on a local network
rather than (or in addition to) the IP packets themselves. This is especially true in

25 broadcast media, such as Ethernet, where it is necessary to insert into the frame header
the hardware address of the machine that generated the frame and the hardware address of
the machine to which frame is being sent. All nodes on the network can potentially “see”
all packets transmitted across the network. This can be a problem for secure
communications, especially in cases where the communicants do not want for any third

30 party to be able to identify who is engaging in the information exchange. One way to

address this problem is to push the address-hopping scheme down to the hardware layer.

New Bay Capital, LLC
Ex.1015-Page 1564 of 3151

In accordance with various embodiments of the invention, hardware addresses are
“hopped” in a manner similar to that used to change IP addresses, such that a listener
cannot determine which hardware node generated a particular message nor which node is
the intended recipient.

5 FIG. 12A shows a system in which Media Access Control (“MAC”) hardware
addresses are “hopped” in order to increase security over a network such as an Ethernet.
While the description refers to the exemplary case of an Ethernet environment, the
inventive principles are equally applicable to other types of communications media. In
the Ethernet case, the MAC address of the sender and receiver are inserted into the

10 Ethernet frame and can be observed by anyone on the LAN who is within the broadcast
range for that frame. For secure communications, it becomes desirable to generate frames
with MAC addresses that are not attributable to any specific sender or receiver.

As shown in FIG. 12A, two computer nodes 1201 and 1202 communicate over a
communication channel such as an Ethernet. Each node executes one or more application

15 programs 1203 and 1218 that communicate by transmitting packets through

communication software 1204 and 1217, respectively. Examples of application programs

include video conferencing, e-mail, word processing programs, telephony, and the like.

Communication software 1204 and 1217 can comprise, for example, an OSI layered

architecture or “stack” that standardizes various services provided at different levels of
20 functionality.

The lowest levels of communication software 1204 and 1217 communicate with

hardware components 1206 and 1214 respectively, each of which can include one or
more registers 1207 and 1215 that allow the hardware to be reconfigured or controlled in
accordance with various communication protocols. The hardware components (an
25 Ethernet network interface card, for example) communicate with each other over the
communication medium. Each hardware component is typically pre-assigned a fixed
hardware address or MAC number that identifies the hardware component to other nodes
on the network. One or more interface drivers control the operation of each card and can,
for example, be configured to accept or reject packets from certain hardware addresses.
30 As will be described in more detail below, various embodiments of the inventive

principles provide for “hopping” different addresses using one or more algorithms and

[VS)

New Bay Capital, LLC
Ex.1015-Page 1565 of 3151

one or more moving windows that track a range of valid addresses to validate received

packets. Packets transmitted according to one or more of the inventive principles will be

generally referred to as “secure” packets or “secure communications” to differentiate

them from ordinary data packets that are transmitted in the clear using ordinary, machine-
5 correlated addresses.

One straightforward method of generating non-attributable MAC addresses is an
extension of the IP hopping scheme. In this scenario, two machines on the same LAN
that desire to communicate in a secure fashion exchange random-number generators and
seeds, and create sequences of quasi-random MAC addresses for synchronized hopping.

10 The implementation and synchronization issues are then similar to that of IP hopping.

This approach, however, runs the risk of using MAC addresses that are currently
active on the LAN—which, in turn, could interrupt communications for those machines.
Since an Ethernet MAC address is at present 48 bits in length, the chance of randomly
misusing an active MAC address is actually quite small. However, if that figure is

15 multiplied by a large number of nodes (as would be found on an extensive LAN), by a
large number of frames (as might be the case with packet voice or streaming video), and
by a large number of concurrent Virtual Private Networks (VPNs), then the chance that a
non-secure machine’s MAC address could be used in an address-hopped frame can
become non-trivial. In short, any scheme that runs even a small risk of interrupting

20 communications for other machines on the LAN is bound to receive resistance from

prospective system administrators. Nevertheless, it is technically feasible, and can be
implemented without risk on a LAN on which there is a small number of machines, or if

all of the machines on the LAN are engaging in MAC-hopped communications.
Synchronized MAC address hopping may incur some overhead in the course of
25 session establishment, especially if there are multiple sessions or multiple nodes involved
in the communications. A simpler method of randomizing MAC addresses is to allow
each node to receive and process every incident frame on the network. Typically, each
network interface driver will check the destination MAC address in the header of every
incident frame to see if it matches that machine’s MAC address; if there is no match, then
30 the frame is discarded. In one embodiment, however, these checks can be disabled, and

every incident packet is passed to the TARP stack for processing. This will be referred to

New Bay Capital, LLC
Ex.1015-Page 1566 of 3151

as “promiscuous” mode, since every incident frame is processed. Promiscuous mode
allows the sender to use completely random, unsynchronized MAC addresses, since the
destination machine is guaranteed to process the frame. The decision as to whether the
packet was truly intended for that machine is handled by the TARP stack, which checks
5 the source and destination IP addresses for a match in its IP synchronization tables. If no
match is found, the packet is discarded; if there is a match, the packet is unwrapped, the
inner header is evaluated, and if the inner header indicates that the packet is destined for

that machine then the packet is forwarded to the IP stack—otherwise it is discarded.
One disadvantage of purely-random MAC address hopping is its impact on
10 processing overhead, that is, since every incident frame must be processed, the machine’s
CPU is engaged considerably more often than if the network interface driver is
discriminating and rejecting packets unilaterally. A compromise approach is to select
either a single fixed MAC address or a small number of MAC addresses (e.g., one for
each virtual private network on an Ethernet) to use for MAC-hopped communications,
regardless of the actual recipient for which the message is intended. In this mode, the
network interface driver can check each incident frame against one (or a few) pre-
established MAC addresses, thereby freeing the CPU from the task of physical-layer
packet discrimination. This scheme does not betray any useful information to an
interloper on the LAN; in particular, every secure packet can already be identified by a

unique packet type in the outer header. However, since all machines engaged in secure

communications would either be using the same MAC address, or be selecting from a
small pool of predetermined MAC addresses, the association between a specific machine
and a specific MAC address is effectively broken.
In this scheme, the CPU will be engaged more often than it would be in non-
25 secure communications (or in synchronized MAC address hopping), since the network
interface driver cannot always unilaterally discriminate between secure packets that are
destined for that machine, and secure packets from other VPNs. However, the non-secure
traffic is easily eliminated at the network interface, thereby reducing the amount of
processing required of the CPU. There are boundary conditions where these statements
30 would not hold, of course—e.g., if all of the traffic on the LAN is secure traffic, then the
CPU would be engaged to the same degree as it is in the purely-random address hopping

New Bay Capital, LLC
Ex.1015-Page 1567 of 3151

case; alternatively, if each VPN on the LAN uses a different MAC address, then the

network interface can perfectly discriminate secure frames destined for the local machine

from those constituting other VPNs. These are engineering tradeoffs that might be best

handled by providing administrative options for the users when installing the software
5 and/or establishing VPNSs.

Even in this scenario, however, there still remains a slight risk of selecting MAC
addresses that are being used by one or more nodes on the LAN. One solution to this
problem is to formally assign one address or a range of addresses for use in MAC-hopped
communications. This is typically done via an assigned numbers registration authority;

10 e.g., in the case of Ethemet, MAC address ranges are assigned to vendors by the Institute
of Electrical and Electronics Engineers (IEEE). A formally-assigned range of addresses
would ensure that secure frames do not conflict with any properly-configured and
properly-functioning machines on the LAN.

Reference will now be made to FIGS. 12A and 12B in order to describe the many

15 combinations and features that follow the inventive principles. As explained above, two
computer nodes 1201 and 1202 are assumed to be communicating over a network or
communication medium such as an Ethernet. A communication protocol in each node
(1204 and 1217, respectively) contains a modified element 1205 and 1216 that performs
certain functions that deviate from the standard communication protocols. In particular,

20 computer node 1201 implements a first “hop” algorithm 1208X that selects seemingly

random source and destination IP addresses (and, in one embodiment, seemingly random
IP header discriminator fields) in order to transmit each packet to the other computer
node. For example, node 1201 maintains a transmit table 1208 containing triplets of
source (S), destination (D), and discriminator fields (DS) that are inserted into outgoing
25 IP packet headers. The table is generated through the use of an appropriate algorithm
(e.g., arandom number generator that is seeded with an appropriate seed) that is known to
the recipient node 1202. As each new IP packet is formed, the next sequential entry out
of the sender’s transmit table 1208 is used to populate the IP source, IP destination, and
IP header extension field (e.g., discriminator field). It will be appreciated that the
30 transmit table need not be created in advance but could instead be created on-the-fly by

executing the algorithm when each packet is formed.

New Bay Capital, LLC
Ex.1015-Page 1568 of 3151

At the receiving node 1202, the same IP hop algorithm 1222X is maintained and
used to generate a receive table 1222 that lists valid triplets of source IP address,
destination IP address, and discriminator field. This is shown by virtue of the first five
entries of transmit table 1208 matching the second five entries of receive table 1222.

5 (The tables may be slightly offset at any particular time due to lost packets, misordered
packets, or transmission delays). Additionally, node 1202 maintains a receive window
W3 that represents a list of valid IP source, IP destination, and discriminator fields that
will be accepted when received as part of an incoming IP packet. As packets are
received, window W3 slides down the list of valid entries, such that the possible valid

10 entries change over time. Two packets that arrive out of order but are nevertheless
matched to entries within window W3 will be accepted; those falling outside of window
W3 will be rejected as invalid. The length of window W3 can be adjusted as necessary to
reflect network delays or other factors.

Node 1202 maintains a similar transmit table 1221 for creating IP packets and

15 frames destined for node 1201 using a potentially different hopping algorithm 1221X,
and node 1201 maintains a matching receive table 1209 using the same algorithm 1209X.
As node 1202 transmits packets to node 1201 using seemingly random IP source, IP
destination, and/or discriminator fields, node 1201 matches the incoming packet values to
those falling within window W1 maintained in its receive table. In effect, transmit table
20 1208 of node 1201 is synchronized (i.e., entries are selected in the same order) to receive

table 1222 of receiving node 1202. Similarly, transmit table 1221 of node 1202 is

synchronized to receive table 1209 of node 1201. It will be appreciated that although a

common algorithm is shown for the source, destination and discriminator fields in FIG.

12A (using, e.g., a different seed for each of the three fields), an entirely different

25 algorithm could in fact be used to establish values for each of these fields. It will also be

appreciated that one or two of the fields can be “hopped” rather than all three as
illustrated.

In accordance with another aspect of the invention, hardware or “MAC” addresses

are hopped instead of or in addition to IP addresses and/or the discriminator field in order

30 to improve security in a local area or broadcast-type network. To that end, node 1201

further maintains a transmit table 1210 using a transmit algorithm 1210X to generate

New Bay Capital, LLC
Ex.1015-Page 1569 of 3151

source and destination hardware addresses that are inserted into frame headers (e.g., fields
1101A and 1101B in FIG. 11) that are synchronized to a corresponding receive table
1224 at node 1202. Similarly, node 1202 maintains a different transmit table 1223
containing source and destination hardware addresses that is synchronized with a
5 corresponding receive table 1211 at node 1201. In this manner, outgoing hardware
frames appear to be originating from and going to completely random nodes on the
network, even though each recipient can determine whether a given packet is intended for
it or not. It will be appreciated that the hardware hopping feature can be implemented at
a different level in the communications protocol than the IP hopping feature (e.g., in a

10 card driver or in a hardware card itself to improve performance).
FIG. 12B shows three different embodiments or modes that can be employed
using the aforementioned principles. In a first mode referred to as “promiscuous” mode,
a common hardware address (e.g., a fixed address for source and another for destination)
or else a completely random hardware address is used by all nodes on the network, such
15 that a particular packet cannot be attributed to any one node. Each node must initially
accept all packets containing the common (or random) hardware address and inspect the
IP addresses or discriminator field to determine whether the packet is intended for that
node. In this regard, either the IP addresses or the discriminator field or both can be
varied in accordance with an algorithm as described above. As explained previously, this

20 may increase each node’s overhead since additional processing is involved to determine

whether a given packet has valid source and destination hardware addresses.

In a second mode referred to as “promiscuous per VPN” mode, a small set of
fixed hardware addresses are used, with a fixed source/destination hardware address used
for all nodes communicating over a virtual private network. For example, if there are six

25 nodes on an Ethernet, and the network is to be split up into two private virtual networks
such that nodes on one VPN can communicate with only the other two nodes on its own
VPN, then two sets of hardware addresses could be used: one set for the first VPN and a
second set for the second VPN. This would reduce the amount of overhead involved in
checking for valid frames since only packets arriving from the designated VPN would

30 need to be checked. IP addresses and one or more discriminator fields could still be

hopped as before for secure communication within the VPN. Of course, this solution

New Bay Capital, LLC
Ex.1015-Page 1570 of 3151

compromises the anonymity of the VPNs (i.e., an outsider can easily tell what traffic

belongs in which VPN, though he cannot correlate it to a specific machine/person). It also

requires the use of a discriminator field to mitigate the vulnerability to certain types of

DoS attacks. (For example, without the discriminator field, an attacker on the LAN could

5 stream frames containing the MAC addresses being used by the VPN; rejecting those

frames could lead to excessive processing overhead. The discriminator field would
provide a low-overhead means of rejecting the false packets.)

In a third mode referred to as “hardware hopping” mode, hardware addresses are

varied as illustrated in FIG. 12A, such that hardware source and destination addresses are

10 changed constantly in order to provide non-attributable addressing. Variations on these

embodiments are of course possible, and the invention is not intended to be limited in any

respect by these illustrative examples.

B. Extending the Address Space

2 Address hopping provides security and privacy. However, the level of protection
15 is limited by the number of addresses in the blocks being hopped. A hopblock denotes a
field or fields modulated on a packet-wise basis for the purpose of providing a VPN. For
instance, if two nodes communicate with IP address hopping using hopblocks of 4
addresses (2 bits) each, there would be 16 possible address-pair combinations. A window
of size 16 would result in most address pairs being accepted as valid most of the time.

20 This limitation can be overcome by using a discriminator field in addition to or instead of

the hopped address fields. The discriminator field would be hopped in exactly the same
fashion as the address fields and it would be used to determine whether a packet should

be processed by a receiver.
Suppose that two clients, each using four-bit hopblocks, would like the same level
25 of protection afforded to clients communicating via [P hopping between two A blocks (24
address bits eligible for hopping). A discriminator field of 20 bits, used in conjunction
with the 4 address bits eligible for hopping in the TP address field, provides this level of
protection. A 24-bit discriminator field would provide a similar level of protection if the
address fields were not hopped or ignored. Using a discriminator field offers the
30 following advantages: (1) an arbitrarily high level of protection can be provided, and (2)

address hopping is unnecessary to provide protection. This may be important in

New Bay Capital, LLC
Ex.1015-Page 1571 of 3151

environments where address hopping would cause routing problems.
C. Synchronijzation Techniques
It is generally assumed that once a sending node and receiving node have

exchanged algorithms and seeds (or similar information sufficient to generate quasi-
5 random source and destination tables), subsequent communication between the two nodes

will proceed smoothly. Realistically, however, two nodes may lose synchronization due

to network delays or outages, or other problems. Consequently, it is desirable to provide

means for re-establishing synchronization between nodes in a network that have lost

synchronization.

10 One possible technique is to require that each node provide an acknowledgment
upon successful receipt of each packet and, if no acknowledgment is received within a
certain period of time, to re-send the unacknowledged packet. This approach, however,
drives up overhead costs and may be prohibitive in high-throughput environments such as
streaming video or audio, for example.

15 A different approach is to employ an automatic synchronizing technique that will
be referred to herein as “self-synchronization.” In this approach, synchronization

information is embedded into each packet, thereby enabling the receiver to re-

synchronize itself upon receipt of a single packet if it determines that is has lost

synchronization with the sender. (If communications are already in progress, and the

20 receiver determines that it is still in sync with the sender, then there is no need to re-

synchronize.) A receiver could detect that it was out of synchronization by, for example,
employing a “dead-man” timer that expires after a certain period of time, wherein the
timer is reset with each valid packet. A time stamp could be hashed into the public sync
field (see below) to preclude packet-retry attacks.

25 In one embodiment, a “sync field” is added to the header of each packet sent out
by the sender. This sync field could appear in the clear or as part of an encrypted portion
of the packet. Assuming that a sender and receiver have selected a random-number
generator (RNG) and seed value, this combination of RNG and seed can be used to
generate a random-number sequence (RNS). The RNS is then used to generate a sequence

30 of source/destination IP pairs (and, if desired, discriminator fields and hardware source

and destination addresses), as described above. It is not necessary, however, to generate

10

New Bay Capital, LLC
Ex.1015-Page 1572 of 3151

the entire sequence (or the first N-1 values) in order to generate the Nth random number

in the sequence; if the sequence index N is known, the random value corresponding to

that index can be directly generated (see below). Different RNGs (and seeds) with

different fundamental periods could be used to generate the source and destination IP

5 sequences, but the basic concepts would still apply. For the sake of simplicity, the

following discussion will assume that IP source and destination address pairs (only) are
hopped using a single RNG sequencing mechanism.

In accordance with a “self-synchronization” feature, a sync field in each packet

header provides an index (i.e., a sequence number) into the RNS that is being used to

10 generate IP pairs. Plugging this index into the RNG that is being used to generate the

RNS yields a specific random number value, which in turn yields a specific IP pair. That

is, an IP pair can be generated directly from knowledge of the RNG, seed, and index

number; it is not necessary, in this scheme, to generate the entire sequence of random

numbers that precede the sequence value associated with the index number provided.

15 Since the communicants have presumably previously exchanged RNGs and seeds,
the only new information that must be provided in order to generate an IP pair is the
sequence number. If this number is provided by the sender in the packet header, then the
receiver need only plug this number into the RNG in order to generate an IP pair — and
thus verify that the IP pair appearing in the header of the packet is valid. In this scheme, if

20 the sender and receiver lose synchronization, the receiver can immediately re-synchronize

upon receipt of a single packet by simply comparing the IP pair in the packet header to

the IP pair generated from the index number. Thus, synchronized communications can be

resumed upon receipt of a single packet, making this scheme ideal for multicast

communications. Taken to the extreme, it could obviate the need for synchronization

25 tables entirely; that is, the sender and receiver could simply rely on the index number in

the sync field to validate the IP pair on each packet, and thereby eliminate the tables
entirely.

The aforementioned scheme may have some inherent security issues associated

with it — namely, the placement of the sync field. If the field is placed in the outer

30 header, then an interloper could observe the values of the field and their relationship to

the IP stream. This could potentially compromise the algorithm that is being used to

11

New Bay Capital, LLC
Ex.1015-Page 1573 of 3151

generate the IP-address sequence, which would compromise the security of the

communications. If, however, the value is placed in the inner header, then the sender

must decrypt the inner header before it can extract the sync value and validate the IP pair;

this opens up the receiver to certain types of denial-of-service (DoS) attacks, such as

5 packet replay. That is, if the receiver must decrypt a packet before it can validate the IP

pair, then it could potentially be forced to expend a significant amount of processing on

decryption if an attacker simply retransmits previously valid packets. Other attack
methodologies are possible in this scenario.

A possible compromise between algorithm security and processing speed is to

10 split up the sync value between an inner (encrypted) and outer (unencrypted) header.

That is, if the sync value is sufficiently long, it could potentially be split into a rapidly-

changing part that can be viewed in the clear, and a fixed (or very slowly changing) part

that must be protected. The part that can be viewed in the clear will be called the “public

sync” portion and the part that must be protected will be called the “private sync” portion.

15 Both the public sync and private sync portions are needed to generate the

complete sync value. The private portion, however, can be selected such that it is fixed

or will change only occasionally. Thus, the private sync value can be stored by the

recipient, thereby obviating the need to decrypt the header in order to retrieve it. If the

sender and receiver have previously agreed upon the frequency with which the private

20 part of the sync will change, then the receiver can selectively decrypt a single header in

order to extract the new private sync if the communications gap that has led to lost

synchronization has exceeded the lifetime of the previous private sync. This should not

represent a burdensome amount of decryption, and thus should not open up the receiver

to denial-of-service attack simply based on the need to occasionally decrypt a single
25 header.

One implementation of this is to use a hashing function with a one-to-one
mapping to generate the private and public sync portions from the sync value. This
implementation is shown in FIG. 13, where (for example) a first ISP 1302 is the sender
and a second ISP 1303 is the receiver. (Other alternatives are possible from FIG. 13.) A

30 transmitted packet comprises a public or “outer” header 1305 that is not encrypted, and a

private or “inner” header 1306 that is encrypted using for example a link key. Outer

12

New Bay Capital, LLC
Ex.1015-Page 1574 of 3151

header 1305 includes a public sync portion while inner header 1306 contains the private
sync portion. A receiving node decrypts the inner header using a decryption function
1307 in order to extract the private sync portion. This step is necessary only if the
lifetime of the currently buffered private sync has expired. (If the currently-buffered

5 private sync is still valid, then it is simply extracted from memory and “added” (which
could be an inverse hash) to the public sync, as shown in step 1308.) The public and
decrypted private sync portions are combined in function 1308 in order to generate the
combined sync 1309. The combined sync (1309) is then fed into the RNG (1310) and
compared to the IP address pair (1311) to validate or reject the packet.

10 An important consideration in this architecture is the concept of “future” and
“past” where the public sync values are concerned. Though the sync values, themselves,
should be random to prevent spoofing attacks, it may be important that the receiver be
able to quickly identify a sync value that has already been sent — even if the packet
containing that sync value was never actually received by the receiver. One solution is to

15 hash a time stamp or sequence number into the public sync portion, which could be
quickly extracted, checked, and discarded, thereby validating the public sync portion
itself.

In one embodiment, packets can be checked by comparing the source/destination
[P pair generated by the sync field with the pair appearing in the packet header. If (1) they

20 match, (2) the time stamp is valid, and (3) the dead-man timer has expired, then re-

synchronization occurs; otherwise, the packet is rejected. If enough processing power is
available, the dead-man timer and synchronization tables can be avoided altogether, and
the receiver would simply resynchronize (e.g., validate) on every packet.
The foregoing scheme may require large-integer (e.g., 160-bit) math, which may
25 affect its implementation. Without such large-integer registers, processing throughput
would be affected, thus potentially affecting security from a denial-of-service standpoint.
Nevertheless, as large-integer math processing features become more prevalent, the costs
of implementing such a feature will be reduced.

D. Other Synchronization Schemes

30 As explained above, if W or more consecutive packets are lost between a

transmitter and receiver in a VPN (where W is the window size), the receiver’s window

13

New Bay Capital, LLC
Ex.1015-Page 1575 of 3151

will not have been updated and the transmitter will be transmitting packets not in the

receiver’s window. The sender and receiver will not recover synchronization until

perhaps the random pairs in the window are repeated by chance. Therefore, there is a

need to keep a transmitter and receiver in synchronization whenever possible and to
5 re-establish synchronization whenever it is lost.

A “checkpoint” scheme can be used to regain synchronization between a sender
and a receiver that have fallen out of synchronization. In this scheme, a checkpoint
message comprising a random IP address pair is used for communicating synchronization
information. In one embodiment, two messages are used to communicate synchronization

10 information between a sender and a recipient:

1. SYNC REQ is a message used by the sender to indicate that it wants to

synchronize; and

2. SYNC_ACK is a message used by the receiver to inform the transmitter that it

has been synchronized.
15 According to one variation of this approach, both the transmitter and receiver maintain
three checkpoints (see FIG. 14):
1. In the transmitter, ckpt o (“checkpoint old”) is the IP pair that was used to

re-send the last SYNC REQ packet to the receiver. In the receiver, ckpt o
(“checkpoint 0ld”) is the IP pair that receives repeated SYNC_REQ packets
20 from the transmitter.

2. In the transmitter, ckpt_n (“checkpoint new™) is the IP pair that will be used to

send the next SYNC_REQ packet to the receiver. In the receiver, ckpt n

(“checkpoint new”) is the IP pair that receives a new SYNC_REQ packet from

the transmitter and which causes the receiver’s window to be re-aligned,

25 ckpt o set to ckpt n, a new ckpt _n to be generated and a new ckpt r to be
generated.

3. In the transmitter, ckpt r is the IP pair that will be used to send the next

SYNC_ACK packet to the receiver. In the receiver, ckpt r is the IP pair that

receives @ new SYNC_ACK packet from the transmitter and which causes a

30 new ckpt n to be generated. Since SYNC_ACK is transmitted from the

receiver ISP to the sender ISP, the transmitter ckpt_r refers to the ckpt r of the

14

New Bay Capital, LLC
Ex.1015-Page 1576 of 3151

receiver and the receiver ckpt_r refers to the ckpt r of the transmitter (see
FIG. 14).
When a transmitter initiates synchronization, the IP pair it will use to transmit the next
data packet is set to a predetermined value and when a receiver first receives a
5 SYNC REQ, the receiver window is updated to be centered on the transmitter’s next IP
pair. This is the primary mechanism for checkpoint synchronization.
Synchronization can be initiated by a packet counter (e.g., after every N packets
transmitted, initiate a synchronization) or by a timer (every S seconds, initiate a
synchronization) or a combination of both. See FIG. 15. From the transmitter’s
10 perspective, this technique operates as follows: (1) Each transmitter periodically transmits
a “sync request” message to the receiver to make sure that it is in sync. (2) If the receiver
is still in sync, it sends back a “sync ack” message. (If this works, no further action is
necessary). (3) If no “sync ack” has been received within a period of time, the transmitter
retransmits the sync request again. If the transmitter reaches the next checkpoint without
15 receiving a “sync ack” response, then synchronization is broken, and the transmitter
should stop transmitting. The transmitter will continue to send sync_reqs until it receives
async_ack , at which point transmission is reestablished.
From the receiver’s perspective, the scheme operates as follows: (1) when it

receives a “‘sync request” request from the transmitter, it advances its window to the next

20 checkpoint position (even skipping pairs if necessary), and sends a “sync ack™ message to

the transmitter. If sync was never lost, then the “jump ahead” really just advances to the

next available pair of addresses in the table (i.e., normal advancement).

If an interloper intercepts the “sync request” messages and tries to interfere with

communication by sending new ones, it will be ignored if the synchronization has been
25 established or it it will actually help to re-establish synchronization.

A window is realigned whenever a re-synchronization occurs. This realignment
entails updating the receiver’s window to straddle the address pairs used by the packet
transmitted immediately after the transmission of the SYNC REQ packet. Normally, the
transmitter and receiver are in synchronization with one another. However, when network

30 events occur, the receiver’s window may have to be advanced by many steps during

resynchronization. In this case, it is desirable to move the window ahead without having

15

New Bay Capital, LLC
Ex.1015-Page 1577 of 3151

to step through the intervening random numbers sequentially. (This feature is also
desirable for the auto-sync approach discussed above).

E. Random Number Generator with a Jump-Ahead capability

An attractive method for generating randomly hopped addresses is to use identical

5 random number generators in the transmitter and receiver and advance them as packets

are transmitted and received. There are many random number generation algorithms that
could be used. Each one has strengths and weaknesses for address hopping applications.

Linear congruential random number generators (LCRs) are fast, simple and well

characterized random number generators that can be made to jump ahead » steps

10 efficiently. An LCR generates random numbers X,, X,, X; ... X, starting with seed X,

using a recurrence

X~(a X, +b)modc, (1)

where a, b and ¢ define a particular LCR. Another expression for X,
15 X=((a'(X,+b)-b)/(a-1)) mod c (2)
enables the jump-ahead capability. The factor a' can grow very large even for modest i if
left unfettered. Therefore some special properties of the modulo operation can be used to
control the size and processing time required to compute (2). (2) can be rewritten as:
X=(a' (X,(a-1)+b)-b)/(a-1) modc. (3)
20 It can be shown that:
(@'(X,(a-1)+b)-b)/(a-1) mod c =
((@'mod((a-1)c)(X,(a-1)+b) -b) /(a-1)) mod ¢ 4).
(X,(a-1)+b) can be stored as (X,(a-1)+b) mod ¢, b as b mod ¢ and compute a' mod((a-

1)c) (this requires O(log(i)) steps).

25 A practical implementation of this algorithm would jump a fixed distance, n,
between synchronizations, this is tantamount to synchronizing every » packets. The
window would commence # IP pairs from the start of the previous window. Using X/,
the random number at the j* checkpoint, as X, and # as i, a node can store a” mod((a-1)c)
once per LCR and set

30 X, =X, =((a"mod((a-1)c) (X;" (a-1)*tb)-b)/(a-1))mod c, (5)

16

New Bay Capital, LLC
Ex.1015-Page 1578 of 3151

to generate the random number for the j+1” synchronization. Using this construction, a
node could jump ahead an arbitrary (but fixed) distance between synchronizations in a
constant amount of time (independent of n).

Pseudo-random number generators, in general, and LCRs, in particular, will

5 eventually repeat their cycles. This repetition may present vulnerability in the IP hopping
scheme. An adversary would simply have to wait for a repeat to predict future sequences.
One way of coping with this vulnerability is to create a random number generator with a
known long cycle. A random sequence can be replaced by a new random number
generator before it repeats. LCRs can be constructed with known long cycles. This is not

10 currently true of many random number generators.

Random number generators can be cryptographically insecure. An adversary can
derive the RNG parameters by examining the output or part of the output. This is true of
LCGs. This vulnerability can be mitigated by incorporating an encryptor, designed to
scramble the output as part of the random number generator. The random number

15 generator prevents an adversary from mounting an attack—e.g., a known plaintext
attack—against the encryptor.
E. Random Number Generator Example

Consider a RNG where a=31,b=4 and ¢=15. For this case equation (1) becomes:

X=(31X,, +4) mod 15. (6)

20 If one sets X;=1, equation (6) will produce the sequence 1, 5, 9, 13, 2, 6, 10, 14, 3,

7,11, 0, 4, &, 12. This sequence will repeat indefinitely. For a jump ahead of 3 numbers
in this sequence a'= 31°=29791, c¢*(a-1)=15*30=450 and a" mod((a-1)c) =
31°mod(15*30)=29791mod(450)=91. Equation (5) becomes:

((91 (X,30+4)-4)/30)mod 15 (7).

25 Table 1 shows the jump ahead calculations from (7) . The calculations start at 5 and jump

ahead 3.
TABLE 1
[X; (X30+4) 91 (X;30+4)-4 | ((91 (X;30+4)-4)/30 X
1 5 154 14010 467 2
4 2 64 5820 194 14
7 14 424 38580 1286 11
17

New Bay Capital, LLC
Ex.1015-Page 1579 of 3151

10 |11 334 30390 1013 g
13 18 244 22200 740 5

G. Fast Packet Filter

Address hopping VPNs must rapidly determine whether a packet has a valid
header and thus requires further processing, or has an invalid header (a hostile packet)
5 and should be immediately rejected. Such rapid determinations will be referred to as “fast
packet filtering.” This capability protects the VPN from attacks by an adversary who
streams hostile packets at the receiver at a high rate of speed in the hope of saturating the
receiver’s processor (a so-called “denial of service” attack). Fast packet filtering is an
important feature for implementing VPNs on shared media such as Ethernet.
10 Assuming that all participants in a VPN share an unassigned “A” block of
addresses, one possibility is to use an experimental “A” block that will never be assigned
to any machine that is not address hopping on the shared medium. “A” blocks have a 24
bits of address that can be hopped as opposed to the 8 bits in “C” blocks. In this case a
hopblock will be the “A” block. The use of the experimental “A” block is a likely option
15 on an Ethernet because:
1. The addresses have no validity outside of the Ethernet and will not be routed out to a
valid outside destination by a gateway.
2. There are 2** (~16 million) addresses that can be hopped within each “A” block. This

yields >280 trillion possible address pairs making it very unlikely that an adversary
20 would guess a valid address. It also provides acceptably low probability of collision
between separate VPNs (all VPNs on a shared medium independently generate

random address pairs from the same “A” block).
3. The packets will not be received by someone on the Ethernet who is not on a VPN
(unless the machine is in promiscuous mode) minimizing impact on non-VPN

25 computers.

The Ethernet example will be used to describe one implementation of fast packet
filtering. The ideal algorithm would quickly examine a packet header, determine whether
the packet is hostile, and reject any hostile packets or determine which active IP pair the

packet header matches. The problem is a classical associative memory problem. A variety

18

New Bay Capital, LLC
Ex.1015-Page 1580 of 3151

of techniques have been developed to solve this problem (hashing, B—trees etc). Each of

these approaches has its strengths and weaknesses. For instance, hash tables can be made

to operate quite fast in a statistical sense, but can occasionally degenerate into a much

slower algorithm. This slowness can persist for a period of time. Since there is a need to
5 discard hostile packets quickly at all times, hashing would be unacceptable.

Presence Vector Algorithm

A presence vector is a bit vector of length 2" that can be indexed by #-bit numbers
(each ranging from O to 2°-1). One can indicate the presence of k n-bit numbers (not
necessarily unique), by setting the bits in the presence vector indexed by each number to
10 1. Otherwise, the bits in the presence vector are 0. An n-bit number, x, is one of the &
numbers if and only if the x® bit of the presence vector is 1. A fast packet filter can be
implemented by indexing the presence vector and looking for a 1, which will be referred

to as the “test.”
For example, suppose one wanted to represent the number 135 using a presence
15 vector. The 135" bit of the vector would be set. Consequently, one could very quickly
determine whether an address of 135 was valid by checking only one bit: the 135" bit.
The presence vectors could be created in advance corresponding to the table entries for
the IP addresses. In effect, the incoming addresses can be used as indices into a long
vector, making comparisons very fast. As each RNG generates a new address, the
20 presence vector is updated to reflect the information. As the window moves, the presence

vector 1s updated to zero out addresses that are no longer valid.

There is a trade-off between efficiency of the test and the amount of memory
required for storing the presence vector(s). For instance, if one were to use the 48 bits of
hopping addresses as an index, the presence vector would have to be 35 terabytes.

25 Clearly, this is too large for practical purposes. Instead, the 48 bits can be divided into
several smaller fields. For instance, one could subdivide the 48 bits into four 12-bit fields
(see FIG. 16). This reduces the storage requirement to 2048 bytes at the expense of
occasionally having to process a hostile packet. In effect, instead of one long presence
vector, the decomposed address portions must match all four shorter presence vectors

30 before further processing is allowed. (If the first part of the address portion doesn’t

19

New Bay Capital, LLC
Ex.1015-Page 1581 of 3151

match the first presence vector, there is no need to check the remaining three presence
vectors).

A presence vector will have a 1 in the y™ bit if and only if one or more addresses
with a corresponding field of y are active. An address is active only if each presence

5 vector indexed by the appropriate sub-field of the address is 1.

Consider a window of 32 active addresses and 3 checkpoints. A hostile packet
will be rejected by the indexing of one presence vector more than 99% of the time. A
hostile packet will be rejected by the indexing of all 4 presence vectors more than
99.9999995% of the time. On average, hostile packets will be rejected in less than 1.02

10 presence vector index operations.

The small percentage of hostile packets that pass the fast packet filter will be
rejected when matching pairs are not found in the active window or are active
checkpoints. Hostile packets that serendipitously match a header will be rejected when
the VPN software attempts to decrypt the header. However, these cases will be extremely

15 rare. There are many other ways this method can be configured to arbitrate the

space/speed tradeofts.

20

New Bay Capital, LLC
Ex.1015-Page 1582 of 3151

ABSTRACT
A plurality of computer nodes communicates using seemingly random IP source
and destination addresses and (optionally) a seemingly random discriminator field. Data
packets matching criteria defined by a moving window of valid addresses are accepted for
5 further processing, while those that do not meet the criteria are rejected. In addition to
“hopping” of IP addresses and discriminator fields, hardware addresses such as Media
Access Control addresses can be hopped. The hopped addresses are generated by random
number generators having non-repeating sequence lengths that are easily determined a-
priori, which can quickly jump ahead in sequence by an arbitrary number of random steps
10 and which have the property that future random numbers are difficult to guess without
knowing the random number generator’s parameters. Synchronization techniques can be
used to re-establish synchronization between sending and receiving nodes. These
techniques include a self-synchronization technique in which a sync field is transmitted as
part of each packet, and a “checkpoint” scheme by which transmitting and receiving
15 nodes can advance to a known point in their hopping schemes. A fast-packet reject

technique based on the use of presence vectors is also described.

21

New Bay Capital, LLC
Ex.1015-Page 1583 of 3151

edl

1l ©Ild
AN ¢# QvOTAVd
0€0} b — €1 :a13did Nibdsia
g€0ll— g1 :883¥Aayv di "1s3a
VEOLL— €l :$S3Aaav di 304n0Ss oLl
— d3av3H
13HM0vd di
el
€# AVOIAYd — L# AVOI1AVd
ObLL
G :a131d WIY¥OSId /.\Omo: 020} L — /2 :a13id Wigosia
16 :SS3YAAV dI "1s3a N gas0lLl g20L1— v1:SS3¥AAvV di "1S3g
coLL 14 :8S34AAyv dl 304N0S - VS0LL VZ0LL—] 0l :SS3HAAV dI I2UNOS Z0L1
¥3av3aH d3avaH
13INOvd di 13M0vd di
88 -SSIUAAV MH "LS3a _—8av0i1 g0l —4 88 :SS3¥aav MH 'Ls3a
oL €6 :SS34aav MH 0d4S h—V¥0ILL VIOl ~_4 €6 :8S34aav MH '0dS LOLL
¥3avaH P R— d3av3aH
JNVYY4 1INY3IHLT ANVYHL 13INYTIHLT

09L1

osti

cdl

bl

New Bay Capital, LLC
Ex.1015-Page 1584 of 3151

1201 l/

1202
D

1215
1206 1207 1217
1205 1214 1216 1218
1204
AmowJ / A Ethernet ~ J p /
{7] v]
USER | sTAcK ISO USER
APPLICATION STACK APPLICATION
1223X
aomJ 1209 1210X v 1211X v dmﬁxv 12 mxd 1224X v
_ IPHOP >_.m>_ IPHOP ALG B | HWHOP >_.mo_x<<xo_u>roc_ _ IPHOP ALG m_ IPHOP A o>__._<<xo_u >_.o_u_1<<_._o_u >_.on_
T (RX) (™X) RX) (TX) (RX) TX) (R
S D DS S D DS S D S D S D Ds S D DS s D s D
10114] 77 57 098] 40 53 | 88 3[40 71]91] 45| [57]g8] 40 53 | 88 3]
13]15] 13 71[91] 45 72 | 51 31 |56 896 82 10 [14] 77 3 |40 53 |88
19 (18] 19 89| 6 | 82 15 |53 14 [17 ~W2 81(62] 5 13 [15] 13 31 | 56 72 |51 ~W4
226 | 98 8162] 5 99 | 45 87 [49 18114] 26 | | [19]18] 19 14 [17 15 |53
28 (36| 12 18 |14 26 59 | o8 60 |19 22|86 62| ([22] 6 | 98 87 49 99 (45
4 {29] 20 22|86| 62 37 | 3 51 |91 76 10| 8 28 (36| 12 60 {19 59 |98
A 4 x .3 4 4 X R
4 \ 4 A\ > AMN\A \ ! A\)
1208 wq 1200 1210 1211 ws 1222 1223 1224

FIG. 12A

New Bay Capital, LLC
Ex.1015-Page 1585 of 3151

W o e v
bR o5 B & R

New Bay' Capitél, LLC
Ex.1015-Page 1586 of 3151

ONAS NI ONAS NI ONAS NI ONIddOH
a3dvA 38 NVO A314VvA 38 NVO d3-VvA 389 NVD JHVYMAHVYH €
ONAS NI ONAS NI NdA d3d

d31’-VA 39 NVYD

A31-|AVA 38 NVO

NdA HOV3 ¥04 a3Xid

SNONJSINOYd ¢

ONAS NI
d314VA 39 NVO

ONAS NI
a3IdvA 39 NVO

WOANVY
AT13131dNOD HO
S3AON T1V HO4 JNVS

SNONJSINOYUL '}

SANIVA
@134 YOL1VNINIEOSIa

$3SS3HAAvV di

S3SS3VAAV
FHVMAHEVH

IN3INIGOan3
d0
Jd0ONn

1305

1306

1301

CLIENT A

1302

Y

IP SOURCE ADDRESS

N

ISP #1 > ISP #2 CLIENTB

1303 1304

IP DEST. ADDRESS

SYNC VALUE
(PUBLIC PORTION)

SYNC VALUE (PRIVATE
PORTION)

-

1308

O

1308
D

COMBINED SYNC

DECRYPT

LINK-KEY
ENCRYPTED
PAYLOAD

1307 k

_‘ v 1311
YES

RNG ALG. MATCH? PROCESS
PACKET

1310 L NO

DISCARD
PACKET

FIG. 13

New Bay Capital, LLC
Ex.1015-Page 1587 of 3151

> IDZIUOIYOUAS JOpUSS 0) Juardrooy 10y oukg ur 1doy

........................... > I9ZIUOIYOUAS JUdIdIoay 03 JOpuos J0J oukg ur 1day

New Bay Capital, LLC

i dSI $PpUWIS
JONIuISsuBAY, Py
nnnnnnnnnnnnnnnnnnnnnnnnnnnn » 1 1do
1Ay €= R B T
U P — - T T i
0 jdyo <4— \1\5 o i
S— | mornn

g 1ed g1
JIATIIY vt

Idyo
udyp —]]

Ex.1015-Page 1588 of 3151

I)dyo ared d1
JuIods29y) MaN 3uis)
SOV ONAS HwsuerL.

Joprwisuel], ur 1 3dyd
1red di jurodyoay)
MIN] eIV »
JOAI909Y ur u jdyd
ned df urodypay)
MON 9JBIUID).
mopurp orepdn. M

U 3O $,19A1000Y

— JOPBOH FuIodu] yum

SOALIY OF ONAS USUM «

M

¢1 "OId

OT¥ HNxg

IopIwsuel], ul u)dyd
ned d1yurodsyjoay)
MIN] 9JeIdUIN)

1 1dy0 = Jopeay
Surwoou] YUMm SIALITY
SOV DONAS USUM #

1 3dyo yurodypay)
9suOdsay IDAIDIY MAIN
ajeIouan) pue u 1dyo Ied
dI yurodyoay) Iaprwisue],
MaN Swis)) OFY ONAS
(Pa3IOV U AJ[eorpoLIag
NwsueIY) ywsues], surdag
UOTJRZIUOIYOUAS UM @)

@

New Bay Capital, LLC
Ex.1015-Page 1589 of 3151

S60¥

0

S60V

—

91 "DId

0

S60Y

0

1910) 4

New Bay Capitél, LLC
Ex.1015-Page 1590 of 3151

0cC

0T

(S)[00[d SSIPPY V OM, - UBT JOUII)

Request for Inter Partes Reexamination
U.S. Patent No. 7,418,504

Exhibit E-1

Copy of catalog listing by IBM for RS/6000 Redbooks Collection
which includes a link to the Lendenmann reference. The link to
the Lendenmann reference was archived at archive.org on
December 7, 1998 and retrieved by the Wayback Machine.

Haynes and Boone, LLP

IP Section

2323 Victory Avenue, Suite 700
Dallas, Texas 75219
Telephone [214] 651.5000

Fax [214] 200.0853

Customer No.: 000027683

New Bay Capital, LLC
Ex.1015-Page 1591 of 3151

Communications & Networking Bookshelf http://web.archive.org/web/19981207011318/http://www.rs6000.ibm.co...

R&/6000 Redbooks Collection |5 RS/6000 - Systems Management (SBOF-7234)

RS/6000 - Communications & Networking (SBOF-7231)

This bookshelf contains redbooks that provide samples and examples of how to implement
network connectivity within the AIX environment. Connectivity topics include how other
platforms, such as SUN, HP, MVS, AS/400, VM, OS/2, Windows NT, Windows 95 and
NetWare, can connect to AIX systems as well as how AIX systems can connect to these
other platforms. In addition to describing what the possible connections are within each
book, the books provide actual working samples of code, system files and screen captures
which show how to set up the connections. Books regarding Tivoli's Network Management
products will be included in this bookshelf as the books become available.

G(:24-4485-90 Multinlatform APPC Conficuration Guide

GG24-2521-00 Examples of Selected Conficuration and Customization
Matters Involved with NetView for AIX and Its Family

G 24-2543-00 IBM DCE Cross-Platform Guide

GG24-3376-804 TOP/EP Tutorial and Technical Overview

GG24-3692-01 AIX/VE X.25 Communications Cookbook

GG24-3700-00 Experiences in usine ALX NetView Service Point

G(24-3804-80 Overview and Examnles of usinoe AITX NetView/6800

GG24-3911-01 TCP/AP for MVS, VM, O5/2 and DOS: X Windoew System
Guide

G(24-4039-00 AS/400 and R5/60060 Conpectivity

GG24-4057-00 LANDP/6000 Concepts and Guidelines

G(24-4059-00 Examples of usine ATX NetView/6800 APIs

GG24-4129-00 ATX SNA Services V1.2 Sample Connections

GG24-4189-00 A Guide Tour of SNA Server/6008 Version 2.1

G(G24-4246-00 The NetView Distribution Manager/6480 Cookbook

((:24-4247-00 Integration of AIX SNA Manager/608) into the
MNetView/6000 Family of Products

New Bay Capital,

1 of 3 Ex.1015-Page 1592 of 3

/2011 1:18 PM

Communications & Networking Bookshelf

2 0of3

INTHENEY AWIHT

i

AR NP AN R 000 P2 3D

Definitions

GG24-4326-890 Examples of Usine MOSeries on §/390, RS/6008, AS/488
and PS/2

GG24-4327-00 Examples of Using NetView for ALK

G 2A4-4332-80 ATY MNetView/6800 L.AM Infecration

G24-4337-80 Manacine [P Networks Usine NetView MultiSvetem
Manager R2

({5 24-4348-00 Usinge and Administerine AIX DCE 1.3

:(:24-4349-08 Implementing £D1 Using ALX OS5I Services/6008 and
ISOTRADE

{:{;24-4374-00 TCP/IP for DOS/Windows Interoperability and
{Coexistence

G(G24-4397-00 Making the World More Manageable with Applications
from the MNetView Association

GG24-4475-00 ALX/6000 X.25 LPP Cookbook

GG24-4490-00 NetView DM/6B0O0 Scenarios and Agents and Advanced
Seenarios

SG24-2504-00 LAN Management Using LMNM for O8/2 V2.0 and LNM for

AlX

S{:24-2532-80 Inteoratine NetWare Manacement into MetView for ATX

S{:24-4398-81 IBM Svstems Monitor Anatomy of 2 Smart Ace

S{;24-4515-80 Examples Usine NetView for ALY Version 4

S:24-4517-00 LAN Manasement Processes {Aleris/Monitoring) Usino
NetFinity

SG24-4588-00 ALX Connections for Beginners

S{:24-4657-88 Examples Using ALX MNetView Service Point

S{:24-4664-00 MOKkeries Three Tier Examples for Windows and ALX
Servers

5G24-4616-08 Understanding OSF DCE 1.1 for AIX and OS5/2

New Bay Capital, I%iz/zou 118 PM
Ex.1015-Page 1593 of 3 '

http://web.archive.org/web/19981207011318/http://www.rs6000.ibm.co...

Communications & Networking Bookshelf http://web.archive.org/web/19981207011318/http://www.rs6000.ibm.co...

ENTEINEY s®ewivy |

'RS/6000 | Soiutions | Hardware | Sofiware | Support | ReSowee |siteap
IBM | Order | Search | Contact 18M |Help |© | ®

MOV DD ARR i

opyright IBM Corp. 1994, 1995, 1996. All rights reserved.

New Bay Capital,

30f3 Ex.1015-Page 1594 of 3

EI:Z/ZOII 1:18 PM

Request for Inter Partes Reexamination
U.S. Patent No. 7,418,504

Exhibit E-2

First page of U.S. Patent No. 5,913,217 published June 15, 1999
and citing a portion of the Lendenmann reference as a prior art
reference.

Customer No.: 000027683 Haynes and Boone, LLP
IP Section

2323 Victory Avenue, Suite 700
Dallas, Texas 75219
Telephone [214] 651.5000

Fax [214] 200.0853

New Bay Capital, LLC
Ex.1015-Page 1595 of 3151

United States Patent (i
Alger et al.

US005913217A

5,913,217
Jun. 15,1999

(111 Patent Number:
1451 Date of Patent:

[54] GENERATING AND COMPRESSING
UNIVERSALLY UNIQUE IDENTIFIERS
(UUIDS) USING COUNTER HAVING HIGH-
ORDER BIT TO LOW-ORDER BIT

[75] Inventors: Jeffrey H. Alger, Redmond; John G.
Bennett, Bellevue; David A. Marshall,
Redmond; David R. Shutt, Bellevue,
all of Wash.

[73] Assignee: Microsoft Corporation, Redmond,
Wash.

[21] Appl. No.: 08/885,115

[22] Filed: Jun. 30, 1997

[51] Imt.CLS .. ceeeen.. GOGF 17/30
[52] US. Cl v 707/101; 707/1; 707/10;
707/200
[58] Field of Searchccccocvvvivcncncnnee 707/1, 2, 101,
707/102, 6, 10, 103, 104, 100, 200, 205;
395/468, 200.33, 200.31, 200.54, 200.58;
365/356; 711/148, 171, 170

[56] References Cited

U.S. PATENT DOCUMENTS

5,423,043 6/1995 Fitzpatrick et al.cccevnee 395/683
5,497,463 3/1996 Stein et al. 395/200.33
5,731,814 3/1998 Bala .eooeeeooereeereereeeeeeereesenene 345/356

OTHER PUBLICATIONS

Bell, Timothy et al., Text Compression, Prentice—Hall, New
Jersey, U.S.A,, 1990, pp. v—=xi, pp. 1-27, and pp. 206-243.
Brockschmidt, Kraig, Inside Ole, Microsoft Corporation,
Redmond, U.S.A., 1995, pp. iv—xviii and pp. 61-143.

Williams, Ross N., Adaptive Data Compression, Kluwer
Academic Publishers, Massachusetts, U.S.A., 1991, pp. vi—x
and pp. 1-105.
http://wtd.webflow.buffalo.edu/online—doc/dcel.1/app _gd
core_13.html. [Accessed May 10, 1998] [1-10 pages]12.
RPC Fundamentals.
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.
[Accessed May 10, 1998] DEC 1.1:Remote Procedure Call
[1-5 pages].

http://www.rs6000.ibm.com/resource/aix ~ resource/Pubs/
redbooks/htmIbooks/sg244616.00/461ch3.html. [Accessed
Jun. 30, 1998] [27 pages] Understanding OSF DEC 1.1.
Timothy C. Bell et al., Text Compression, Prentice Hall,
1990 and chap 1, p. 26 1990.

Primary Examiner—Wayne Amsbury
Assistant Examiner—Srirama Channavajjala
Arttorney, Agent, or Firm—Seed and Berry LLP

[57] ABSTRACT

A computer-based method and system for generating and
compressing a plurality of universally unique identifiers
(UUIDs). The bits of the UUIDs are ordered from left to
right. The system maintains a counter with bits ordered from
a high-order bit to a low-order bit. To generate a UUID, the
system increments the counter. The system then sets the
right-most bits of the UUID to a node identifier, sets the next
right-most bits of the UUID to a clock sequential/variant
value, and sets the left-most bits of the UUID to the bits of
the counter wherein the left-most bit of the UUID is set to
the lowest-order bit of the counter so that sequentially
generated UUIDs tend to have the same values in their
right-most bits. The system then compresses these UUIDs
using a suffix compression technique.

64 Claims, 12 Drawing Sheets

401
411 412
Generate Rearrange
Counter-Based UUIDg
UUID
413 414
Compress Compress 40
uUuID UL.HD
Ind with
ndex Handle
memory
r» Internet
CPU /0
420 430

Disk

New Bay Capital, LLC
Ex.1015-Page 1596 of 3151

Request for Inter Partes Reexamination
U.S. Patent No. 7,418,504

Exhibit E-3

Request for Comments 2026, “The Internet Standards Process —
Revision 3,” (October 1996).

Customer No.: 000027683 Haynes and Boone, LLP
IP Section

2323 Victory Avenue, Suite 700

Dallas, Texas 75219

Telephone [214] 651.5000

Fax [214] 200.0853

New Bay Capital, LLC
Ex.1015-Page 1597 of 3151

Network Working Group

S. Bradner

Request for Comments: 2026 Harvard University

BCP: 9
Obsoletes: 1602
Category: Best Current Practice

The Internet Standards Process —— Revision 3

Status of this Memo

October 1996

This document specifies an Internet Best Current Practices for the
Internet Community, and requests discussion and suggestions for

improvements. Distribution of this memo is unlimited.

Abstract

This memo documents the process used by the Internet community for
the standardization of protocols and procedures. It defines the
stages in the standardization process, the requirements for moving a
document between stages and the types of documents used during this
process. It also addresses the intellectual property rights and

copyright issues associated with the standards process.

Table of Contents

1. INTRODUCTTION . & it ittt ittt ittt et et et ettt ettt it ittt 2
1.1 Internet Standards.ttt ittt ittt ittt 3
1.2 The Internet Standards ProCesSsS.ttt iiieneeeeeeeennn 3
1.3 Organization of This Document...... ...ttt iinnnnns 5

2. INTERNET STANDARDS-RELATED PUBLICATIONS. ..ttt ittt ittt enenennn 5
2.1 Requests for Comments (RECS) v v ittt ii ittt ittt et eeeeeeeeannn 5
2.2 Internet-Drafts. ... it e e e e e 7

3. INTERNET STANDARD SPECTIEICATIONS . & it it it i ittt ittt ie et ettt en e 8
3.1 Technical Specification (T8) « vt i iin ittt ie ettt eeeeaannnn 8
3.2 Applicability Statement (AS) ¢t i it ittt it ittt it i 8
3.3 Requirement Leve ls ittt ittt it ittt ettt e e 9

4. THE INTERNET STANDARDS TRACK. it ittt ittt ittt ittt ieieaenees 10
4.1 Standards Track Maturity Levels.ttt iennnnnn 11

4.1.1 Proposed Standard.ttt e e e 11

4.1.2 Draft Standard.. e e e e e e e 12

4.1.3 Internet Standard..... ...ttt i e e 13

4.2 Non-Standards Track Maturity Levels....... ... 13
4.2.1 Experimental.t e e e e e e e e 13

4.2.2 Informational.ttt ittt it e e 14

4.2.3 Procedures for Experimental and Informational RFCs...... 14

4.2 .4 Hist oo . i i it ittt ittt i et e e e e et e e ettt e e e 15
Bradner Best Current Practice [Page 1]

New Bay Capital, LLC

Ex.1015-Page 1598 of 3151

RFC 2026 Internet Standards Process October 1996

5. Best Current Practice (BCP) RECS .. it ittt ittt ittt eeeeeeeeneneenn 15
5.1 BCP ReVieW ProOCeS S . i it ittt it ittt ittt et i et et e ettt i 16
6. THE INTERNET STANDARDS PROCESS . . ittt ittt ittt ettt ee i 17
6.1 Standards AcCtionSttt ittt i i e e e e e e e e 17
6.1.1 TInitiation of Action...... ..ttt ittt eeaanns 17
6.1.2 TIESG Review and Approval.t iiinie et teeeeeeenanns 17
6.1.3 PuUblication. ... ittt i e e e e e e 18
6.2 Advancing in the Standards Track......... ..ot 19
6.3 Revising a Standard.t ittt it e e e e e e e e 20
6.4 Retiring a Standard.ttt e e e e 20
6.5 Conflict Resolution and Appeals.ttt ittt 21
6.5.1 Working Group Dispubes.ttt ittt ittt eeennnns 21
6.5.2 Process Faillures.ttt iiii ittt i it iie et 22
6.5.3 Questions of Applicable Procedure..........iuvuiiiienuenn. 22
6.5.4 Appeals ProcCedUre. .. . i ittt ittt it ittt ittt ettt 23
7. EXTERNAL STANDARDS AND SPECIFICATIONS. &« it it ittt tmntennnnnnns 23
7.1 Use of External Specifications...........i.iiiiiiiiiiiinnnno.. 24
7.1.1 Incorporation of an Open Standard.............coiiiiinnn 24
7.1.2 Incorporation of a Other Specifications................. 24
T.1.3 AsSsUMPLION . .t ittt it i e et e e e e e e 25
8. NOTICES AND RECORD KEEPING. & it vttt ittt it ettt teeeaeeeeeaaeeens 25
9. VARYING THE PROCES S . ittt it ittt ittt ittt ittt it ittt eenn 26
9.1 The Variance ProCedUrle. ittt ittt ittt ittt eenennn 26
0.2 EXCIUSIOMS .. it it ittt it i et e e e e e e e e e e e e e e e e e 27
10. INTELLECTUAL PROPERTY RIGHT S ittt ittt it itttiiieieeeeeee s 27
10.1. General PoliCy ..ttt it ittt i ettt i et e e 27
10.2 Confidentiality Obligations...... ...ttt enn. 28
10.3. Rights and PermissSionsS i it it i ittt ittt et et annn 28
10.3.1. A1l Contributions.ttt it ittt ittt 28
10.3.2. Standards Track Documents.t ittt eennnnns 29
10.3.3 Determination of Reasonable and
Non—discriminatory TermSt v ittt ittt eeeeeeeeeeeeennn 30
O o N e I = 30
11, ACKNOWLEDGMENT T S . i ittt ittt et et ettt te e e ee et eeteeeeeeeeeaneeeean 32
12. SECURITY CONSIDERATIONS . & ittt ittt it ettt it ittt e ee e ee et e 32
13, REFERENCE S ittt it ittt et ettt et et ettt e e eaeeseeeeeeaneenean 33
14. DEFINITIONS OF TERMS . t v vttt it ittt te o e oe e aeeeeeeeeeaneaeean 33
15, AUTHOR' S ADDRE S S . ittt ittt it ittt et ettt bttt et et ittt enen 34
APPENDIX A: GLOSSARY OF ACRONYMS . i i ittt ittt ittt bttt it tii e it e 35
Bradner Best Current Practice [Page 2]

New Bay Capital, LLC
Ex.1015-Page 1599 of 3151

RFC 2026 Internet Standards Process October 1996

1.

1.

1.

INTRODUCTION

This memo documents the process currently used by the Internet
community for the standardization of protocols and procedures. The
Internet Standards process is an activity of the Internet Society
that is organized and managed on behalf of the Internet community by
the Internet Architecture Board (IAB) and the Internet Engineering
Steering Group (IESG).

1 Internet Standards

The Internet, a loosely-organized international collaboration of
autonomous, interconnected networks, supports host-to-host
communication through voluntary adherence to open protocols and
procedures defined by Internet Standards. There are also many
isolated interconnected networks, which are not connected to the
global Internet but use the Internet Standards.

The Internet Standards Process described in this document is
concerned with all protocols, procedures, and conventions that are
used in or by the Internet, whether or not they are part of the
TCP/IP protocol suite. In the case of protocols developed and/or
standardized by non—-Internet organizations, however, the Internet
Standards Process normally applies to the application of the protocol
or procedure in the Internet context, not to the specification of the
protocol itself.

In general, an Internet Standard is a specification that is stable
and well-understood, is technically competent, has multiple,
independent, and interoperable implementations with substantial
operational experience, enjoys significant public support, and is
recognizably useful in some or all parts of the Internet.

2 The Internet Standards Process

In outline, the process of creating an Internet Standard is
straightforward: a specification undergoes a period of development
and several iterations of review by the Internet community and
revision based upon experience, is adopted as a Standard by the
appropriate body (see below), and is published. 1In practice, the
process 1s more complicated, due to (1) the difficulty of creating

specifications of high technical quality; (2) the need to consider
the interests of all of the affected parties; (3) the importance of
establishing widespread community consensus; and (4) the difficulty

of evaluating the utility of a particular specification for the
Internet community.

Bradner Best Current Practice [Page 3]

New Bay Capital, LLC
Ex.1015-Page 1600 of 3151

