(12)

US006449657B2

United States Patent
Stanbach, Jr. et al.

(10) Patent No.: US 6,449,657 B2
“5) Date of Patent: *Sep. 10, 2002

€
(75)

(73)

(*)

(e2y)
(22)

(51)
(52)
(58)

(56)

INTERNET HOSTING SYSTEM
Inventors: Francis J. Stanbach, Jr., Menlo Park;
Daniel G. Hoffman; Bruce R. Keiser,
both of Los Gatos, all of CA (US)
Assignee: Namezero.com, Inc., Los Gatos, CA
(Us)
Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
Appl. No.: 09/369,770
Filed: Aug. 6, 1999
Int. CL7 oo GO6F 15/16
US.Cl .o 709/245; 709/203; 705/14
Field of Searchcccccoevvennnn. 709/245, 201,
709/207, 203; 705/14; 707/203
References Cited
U.S. PATENT DOCUMENTS
5,377,354 A * 12/1994 Scannell et al. 709/207
5,408,619 A 4/1995 Orancccccevevueeneeeen. 395/325
5,434,914 A T/1995 Fraserccoeeeeeeeeennn. 379/219
5,664,185 A * 9/1997 Landfield et al. . 707/104.1
5,729,689 A * 3/1998 Allard et al. 709/228
5,752,246 A 5/1998 Rogers et al. 707/10
5,764,915 A 6/1998 Heimsoth et al. 395/200.57
5,805,820 A * 9/1998 Bellovin et al. 709/225
5,809,242 A 9/1998 Shaw et al. 395/200.47
5,838,790 A 11/1998 McAuliffe et al. 380/4
5,848,397 A 12/1998 Marsh et al. 705/14
5,884,038 A 3/1999 Kapoor 395/200.56
5,937,162 A 8/1999 Funk et al. ... 395/200.36
5,037,392 A 8/1999 AIDEILS oo, 705/14
5,938,733 A * 8/1999 Heimsoth et al. e 709/230
5,948,061 A * 9/1999 Merriman et al. 709/219

6,016,512 A * 1/2000 Huitema ... 709/245
6,119,234 A * 9/2000 Aziz et al.cc.cee.s 709/229

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

EP 817444 A2 * 1/1998 HO04L/29/06
JP 10320314 A 12/1998
JP 2000242582 A 9/2000

(List continued on next page.)
OTHER PUBLICATIONS

Mosher, The Microsoft Exchange User’s Handbook, 1997,
Duke Press, 1st ed., pp. 412-419.*

F. Manon, Free E-Mail Is Here But With Ads Aplenty, New
York Post, Business, Jul. 27, 1995.

Freemark, Juno Online Plan to Offer Free Electronic Mail
Accounts for Those Prepared to Receive Ads With Mail,
Information Access Company, Aug. 24, 1995.

(List continued on next page.)

Primary Examiner—Glenton B. Burgess
Assistant Examiner—Bradley Edelman
(74) Attorney, Agent, or Firm—Irell & Manella LLP

67 ABSTRACT

Amethod and apparatus for providing domain name services
includes a multi-threaded name server which concurrently
handles multiple domain name resolution requests and is
particulary well suited for an Internet host system control-
ling information relating to a very large number of domain
names. A database coherency thread continuously refreshes
a host name cache that is utilized by the multi-threaded name
server. The multi-threaded name server may comprise a
request dispatcher thread capable of spawning multiple child
threads, resulting in a multi-threaded, non-blocking name
server. One or more additional network services are also
provided by the system, preferably through a common,
centralized database. For example, in one embodiment,
electronic message forwarding services are provided. In
another embodiment, web services are provided wherein
hypertext markup language (HTML) pages are dynamically
generated from data in the database corresponding to the
requested host name.

8 Claims, 9 Drawing Sheets

aaaaaaa

THREAD
TANDLER

New Bay Capital, LLC
Ex.1014-Page 1 of 25

US 6,449,657 B2
Page 2

U.S. PATENT DOCUMENTS

6,199,102 Bl 3/2001 CObboovvveerrerrenan 709/206
6,205432 Bl 3/2001 Gabbard et al. 705/14
6,289,373 Bl 9/2001 Dezomno ... 709/206
6,308,202 Bl 10/2001 Cohn et al. 709/217

FOREIGN PATENT DOCUMENTS

IP 2000270013 A 9/2000

WO WO 96/24213 * 8/1996 HO4L/29/06
WO WO 98/12643 3/1998 .. GO6F/13/00
WO WO 98/26558 6/1998 HO41/29/12
WO WO 99/09726 2/1999

WO WO 99/17505 4999, uiiiinens HO04L/12/58
WO WO 99/18515 4/1999 GO6F/15/177
WO WO 99/23571 SI1999 sesssvens: GO6F/15/17
WO WO 99/27680 6999 uisuisens HO04L/12/00

OTHER PUBLICATIONS

S. Mohan, ‘Free Mail’ On the 'Net Forces Users to Trade Off
Privacy, Computerworld, vol. 29, No. 48, Nov. 27, 1995.
D. Williamson, This E-Mail Messge is Brought to You
By . .., Advertising Age, Apr. 17, 1995.

Free E-Mail With Postage Stamp “Ads”, Post-Newsweek
Business Information, Inc., Jul. 3, 1995.

P.V. Mockapetris, et al., Development of the Domain Name
System, Communications Architectures & Protocols, Aug.
16-19, 1988, pp. 123-133.

P.B. Danzig, et al., An Analysis of Wide—Area Name Server
Traffic, ACM, Aug., 1992, pp. 281-292.

P. Mockapetris, Domain Names—Implementation and
Specification, Internet RFC 1035, Nov. 1987.

P. Mockapetris, Domain Names—Concepts and Facilities,
Internet RFC 1034, Nov. 1987.

A Brief History of BIND, Internet Software Consortium,
<http://www.isc.org/view.cgi?/products/BIND-history-
.phtml>, 1999.

ISC BIND Plans, Internet Software Consortium, <http://
www.isc.org/view.cgi?/products/BIND/plans.phtml>, 1999.

BIND for NT (freeware), Software.com, <http://www.soft-
ware.com/products/bindnt.html>, 1999.

BIND Version 8.2xHighlights, Internet Software Consor-
tium, <http://www.isc.org/view.cgi?/products/BIND/docs/
bind8.2_ highlights.phtml>, 1999.

* cited by examiner

New Bay Capital, LLC
Ex.1014-Page 2 of 25

U.S. Patent Sep. 10, 2002 Sheet 1 of 9 US 6,449,657 B2

LOCAL HOST . FOREIGN
USER
QUERES QUEREES -

USER > RESOLVER 1 FOREIGN
PROGRAM | B | NAME SERVER
USER RESPONSES .

RESPONSES y '
CACHE
Y
SHARED
DATABASE
A
REFRESHES REFERENCES
Y
RESPONSES !
MASTER NAME 284
FILES ™ SERVER ; FOREIGN
< - RESOLVER
QUERIES
A
MAINTENANGE
UERIE
QUERIES > FOREIGN
: NAME
; ; SERVER
Fig. 1 MAINTENANCE
(PRIOR ART) RESPONSES

New Bay Capital, LLC
Ex.1014-Page 3 of 25

U.S. Patent Sep. 10, 2002 Sheet 2 of 9 US 6,449,657 B2

276
INTERNET
/208
e 275\ “
A
‘} Y
ocaL | %! 2
e \ NETWORK
NETWORK INTERFACE
request | DATABASE |-
COHERENCY
DISPATCHER MANAGER
290
A
) \ Y — Y
291
ADDRESS HASH
DORES g \ DATABASE
_’/
292 293/
Fig. 2

New Bay Capital, LLC
Ex.1014-Page 4 of 25

U.S. Patent

Sep. 10, 2002

REQUEST
DISPATCHER
THREAD

304 ~

REQUEST 1

308 ~

REQUEST 2

312~

REQUEST n

Sheet 3 of 9

REQUEST
THREAD
HANDLER |,

REQUEST
THREAD
HANDLER,,

REQUEST
THREAD
HANDLER ,

_,———“\\\\Z:szfii\\y/316

US 6,449,657 B2

300

J

DATABASE
COHERENCY
THREAD

340

332 o
20) i
LR -
~.ili DATABASE
4
P ™ HASH [...
D P '| TABLE 344
7
A::._, IS
N
c A
Y
336
aooRESS
TABLE
Fig. 3

New Bay Capital, LLC
Ex.1014-Page 5 of 25

U.S. Patent Sep. 10, 2002 Sheet 4 of 9 US 6,449,657 B2

REQUEST 316
DISPATCHER /
THREAD
320
n | REQUEST 2
- HANDLER /
7 | receveamar| ¥ i
OR INTERNET - PARSE A
REQUEST > REQUEST
vl
, 408 Y
SPAWN A - QUERY //508
THREAD FOR HASH TABLE
THE REQUEST
\
Y VALID
HOST NAME
Fig. 4
g 516 YES
Ny
> RETURN NO
ADDRESS
DATABASE
COHERENCY
THREAD 520
SCAN DOMAINS 604 TERMINATE
| TABLEFORNEWLY | <~—— REQUEST HANDLER |«
ENTERED DOMAIN THREAD
INFORMATION
| Fig. 5
STORE NEWLY 608
ENTEREDDOMAN |
INFORMATION IN
MEMORY
Fig. 6

New Bay Capital, LLC
Ex.1014-Page 6 of 25

U.S. Patent Sep. 10, 2002 Sheet 5 of 9 US 6,449,657 B2

700
70< 720 73 / 7°< (74
708 D > :
“alice@ "alice987@
“—1 HEADER ™ snithcon® hotmailcom'| | |,, HEADER
724 736
5 N
o USASSIC THEATRE N
71& || Bony PARK! AD BODY
- N
\-/—\ [PIZZA AD]\ S
X ~ -
: 740 D748
Y
MAIL MAIL
—»| TRANSFER TRANSFER |—»
AGENT DATABASE AGENT
N N
716 716
Fig. 7 3
820
N 800
g KEYWORDS / 08
848 < 8/52
e R DESCRIPTION ‘ \
R v Kevworps || BORDER 4
812 | 4
L : BODY SOURCE DESCRIPTION |~——
BODY 828 BODY
S 844 84
ADVERTISING / / T‘
'\ SOURCE URL : \
. 816 832 . 856
Y :
—={ HTTP RESPONSE Y
ADVERTISING :
\ | DATABASE . 806
844 :
804 836 Y /

= HTTP RESPONSE
Fig.8

New Bay Capital, LLC
Ex.1014-Page 7 of 25

U.S. Patent Sep. 10, 2002 Sheet 6 of 9 US 6,449,657 B2

908
INTERNET
912
= 916 1
A \
Y Y
920
LOCAL | 924\ LOCAL
NETWORK NETWORK
INTERFACE
DATABASE | 9%
COHERENCY
932 MANAGER
!
T brucekeiser.com | valid | pointer v
936 <—~ danhoffman.com | valid | pointer
\ 844
stanbach | valid | pointer DATABASE
/— brucekeiser.com/index.himi -
w
LT danhoffman.com/index.html -
940 é\m
) stanbach.com/index.html
m
Fig. 9

New Bay Capital, LLC
Ex.1014-Page 8 of 25

U.S. Patent Sep. 10, 2002 Sheet 7 of 9 US 6,449,657 B2

et
(=]
=]

TEMPLATE WEB SOURCE
TABLE 1052 TABLE 1014
1036 __{PK 1empLaTE 1D P opomaN — 1036
AD KEYWORD 1038 . SIIE e —4+~1038
TABLE 1066 102 4o Tapie 1060 . KEWORDS 1040
Al M a0 Uioss DESCRIPTION —~1042
KEYWORD USAGE TEMPLATE 1D 1043
1044
A0 COUNTER HIML SOURCE URL
TABLE 1068 TBT Usage - 1046
0~y oo GRAPHIC T
| DOMAINS L1050
ul DEMO 1020 BACKGROUND —
10721 TIME STAMP o
= 0 poman
1020~ OMO__| 1008 MAILTABLE 1015
CLENT 1D
DATE DOMAIN b~ 1022
K PK
PASSWORD CLIENT TABLE 1010 USERNAME 411024
TABLE 1076 1012 FORWARD L1028
1076—~% CLENTID POQUENTID fooromesrosoeoec] upnip —~ 1030
1080~} PASSWORD (| ot e e 102
108~ HINT} FIRST NAME FAVORITES USAGE _b—1034
1084~ HINT2 PHONE TABLE 1064 d
STREET P CLENTID
WSTE (| HosiEs
1018 9 any MOVIES
STATE RECREATION
- \ LOCATIONS
COUNTRY 1020 FO0DS
EMAIL L< i
EDUCATION
OCCUPATION
INCOME
SEX
) BIRTHDATE
Fig. 10
| OTHER DEMO

New Bay Capital, LLC
Ex.1014-Page 9 of 25

U.S. Patent

Sep. 10, 2002

Sheet § of 9 US 6,449,657 B2

1100

HTTP
RESPONSE

1108

804

WEB
CLIENT

HTTP
RESPONSE |

704~\

v
HEADER

708 3

BODY

T2 T

A

1104

MAIL
t TRANSFER

AGENT

N

716

REQUEST n

304

308

312
REQUEST
THREAD

HANDLER ,

REQUEST
THREAD
HANDLER

REQUEST
THREAD
HANDLER ,

Fig. 11

.| HrPS | 808 704
INTERFACE | o (
) T o5
1 v 744—T] HEADER
~-~>{ QUERY |———F—— ::::::]
2 E ' 748~ BODY
L 4 Y
MAIL
TRANSFER |—»
AGENT
716’/
1144
300
DATABASE ‘[/
REQUEST .. DATABASE
DISPATCHER *. COHERENCY
THREAD THREAD
316
332
) a0
......... R
"""""" ™ HAsH | -
.............. 1 TABLE |+
........... R

y
ADDRESS |~ %°
TABLE

New Bay Capital, LLC
Ex.1014-Page 10 of 25

U.S. Patent Sep. 10, 2002 Sheet 9 of 9 US 6,449,657 B2

HOST
1224

1228
INTERNET LOCAL
SERVER NETWORK
1230 ISP \1222

1226 NETWORK LINK
N 1220

e B
/L__f\ COMMUNICATION

PROCESSOR

<:> \[—]/ INTERFACE
1204 1218

MAIN BUS
MEMORY
1206
STORAGE

1208 1210

N y

INPUT CURSOR
DISPLAY DEVICE CONTROL
1212 1214 1216
FIG. 12

New Bay Capital, LLC
Ex.1014-Page 11 of 25

US 6,449,657 B2

1
INTERNET HOSTING SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/369,647, entitled “MULTI-THREADED NAME
SERVER” and 09/370,094, entitled “E-MAIL ADVER-
TISEMENT SELECTION METHOD AND APPARATUS”,
both filed on the same day herewith, and both of which are
incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

The field of the present invention generally relates to
networking, and more particularly, to methods and tech-
niques for hosting internet services on a network.

BACKGROUND

The Internet has become a very popular global electronic
communication network that has brought about a wide
variety of on-line services and development of the World
Wide Web (WWW). The number of computers and users
accessing the Internet continues to increase rapidly.

Computers on the Internet generally exchange informa-
tion in the form of packets or datagrams with each other
using unique addresses, known as host addresses. The most
common form of a host address is an Internet Protocol (IP)
address, which is presently a four part sequence of numbers
that uniquely identify a particular computer on the Internet.
An example of a host address is the IP address
“206.71.200.33”.

Users commonly access the Internet through one or more
clients and servers. Each client and server generally consists
of hardware equipment executing one or more software
processes that maintain connections to various networked
computers. Perhaps the most common tool employed by
users for connecting to the Internet is a client or user
program called a “browser”. Netscape Corporation’s Navi-
gator and Microsoft Corporation’s Internet Explorer are two
forms of browsers, also known as “web clients”. Other
forms of interaction on the Internet include electronic mail
(e-mail), wherein one user sends electronic messages
addressed to another user, usually through a mail client such
as Qualcomm’s Eudora Lite mail client.

Users generally do not use host addresses to connect their
clients to remote computers or servers on the Internet.
Rather, users employ host names, or “domain names” to
access a particular computer or server on the Internet. In
current Internet parlance, domain names are generally com-
prised of alphanumeric characters that correspond to a host
address on the Internet. An example of a domain name is
“yahoo.com”.

Domain names generally comprise multiple parts. A root
name or top level domain is the ending suffix on a domain
name. Examples of top level domains, or root names,
include “edu”, “com”, and “org”. Second level domains
immediately follow a top level domain (generally a period,
also known as “dot”, separates levels of a domain).
Examples of second level domains include “mit”, “yahoo”
and “icann”. Multiple additional domain levels can be added
to a domain to yield a complete domain name, such as
“www.yahoo.com.”

As used in a web client, the domain name might be
“http://www.yahoo.com” (the “http://” portion specifying
the hypertext transfer protocol (HTTP) proxy), whereas in a
mail client, the domain might be in the format of an e-mail

10

15

20

25

35

40

45

50

55

60

65

2

address, such as “mailto:alice@smith.com” (the “mailto:”
portion specifying the simple mail transfer protocol (SMTP)
proxy).

To provide a transparent mapping between host names
and host addresses to users, a domain name system is
employed. The domain name system, or DNS, in current use
on the Internet is generally described in a technical speci-
fication known as Internet RFC 1034, entitled “Domain
Names—Concepts and Facilities,” and additional features
thereof are described in a related technical specification
known as Internet RFC 1035, entitled “Domain Names—
Implementation and Specification,” both of which are
authored by P. Mockepetris.

The domain name system described in RFC 1034 has
three major components: (1) domain name space and
records, which collectively comprise a tree-type data struc-
ture used for the mapping; (2) name servers, which are
server programs that hold information about the tree struc-
ture and point to other name servers that hold information
about the tree structure; and (3) resolvers, which are client
programs that extract information from name servers in
response to client requests.

One configuration for a domain name system (DNS), and
the DNS envisioned by RFCs 1034 and 1035, is depicted as
a flow diagram in FIG. 1. A shared database holds domain
space data for a local name server and a resolver that are
associated with a local host.

The contents of the shared database will typically be a
mixture of authoritative data maintained by periodic refresh
operations from master files by the name server, and non-
authoritative cached data from previous resolution requests
or maintenance queries that were answered by one or more
foreign name servers. The contents of the shared database
are generally in the form a flat file comprising a plurality of
resource records (RRs). Resource records correlate a par-
ticular host name or domain name with its host address and
other protocol information on the Internet. As such, resource
records generally comprise a number of fields. It should be
noted that the name server is responsible for maintaining
current resource records for the domain names for which it
is the authority and any other non-authoritative domain
names specified by the domain name system.

The shared database is generally not a typical database.
The shared database is called such because it represents a
plurality of resource records distributed among various
computer systems (or other domain name systems) through-
out the Internet. Although the shared database might have
somewhat current resource records for which it is the
authority (or in its “zone”), the resource records for which
it is not the authority must be periodically updated or
“refreshed” from multiple foreign resolvers or from foreign
name servers. Theses refresh operations are performed to
account for changes in the mappings between host names
and host addresses. This process occurs for authoritative
resource records too. The shared database is thus a distrib-
uted resource record database and is inextricably tied to
other authoritative domain name systems on the Internet in
order to operate in view of RFC 1034 and 1035. As such, a
highly coherent or synchronized view of the database is
unlikely, given the highly distributed nature of the Internet
and the number of domains therein.

When a user program, such as the browser, requests
information from, or attempts to send information to a
particular host name, a resolution request is passed in the
form of a query to the resolver. The query uses as arguments
a proxy, a host name, and other data. The resolver will check

New Bay Capital, LLC
Ex.1014-Page 12 of 25

US 6,449,657 B2

3

the shared database for a corresponding host address to the
host name in the shared database or from the name server.
If a corresponding resource record exists in the shared
database, it will be returned to the resolver and then to the
user program. However, if a resource record does not exist,
then the resolution request is passed on to a local name
server (for authoritative data) or to a foreign name server
(for non-authoritative data).

The set of domains for which a particular name server is
the authority is commonly referred to as a zone. Data outside
the zone is the responsibility of another name server. When
aresolution request is made for non-authoritative data—data
that is also not present in the shared database—the response
is handled as a “zone transfer”. To resolve the resolution
request, the request is passed on to a foreign name server,
preferably the name server that is the authority for the
domain name. Various techniques can be employed to
resolve such requests for non-authoritative data.

In particular, it is noted that because a foreign name server
will resolve such requests, the latency between the query and
the response can be great. The prior domain name system, as
described in RFC 1034, envisions that zone transfers should
be non-blocking, meaning that zone transfers should be
handled immediately—that a second zone transfer should
not wait for a first zone transfer to be completed before
handling the second zone transfer. Thus, valuable execution
processing cycles will not be wasted while the foreign name
server performs the work.

However, when authoritative requests are made or
requests for non-authoritative data that is contained in the
shared database, known domain name systems block con-
current or subsequent requests until earlier requests have
been handled. This is likely so because the name server can
be responding to either local or foreign resolvers and
because the authoritative name server must perform the
work dictated by the request, such as checking resource
records and formulating a response. The responses, of
course, can vary depending on the type of the request, such
as a mail exchange, hypertext transfer protocol, etc. Han-
dling the resolution request can also involve querying for-
eign resolvers and/or foreign name servers. The varied
nature of the work performed by the name server suggests
that it is either not efficient, or not prudent to share execution
memory or resources when responding to resolution requests
where the name server must perform the work. Moreover,
the existing domain name system was designed to be
portable, meaning it is capable of running on a variety of
operating systems. However, there is no good portable
multi-threaded application programming interface available
on the market today. Furthermore, the overhead involved
with multi-threading simply is not effectively amortized
over the small number of domain names most domain name
systems support.

One option to overcome the drawbacks of overworking a
domain name system is to employ multiple name servers and
attempt to balance the workload on each name server. A
separate computer system, a load balancer, is disposed
between remote systems and multiple name servers. The
load balancer intercepts incoming resolution requests and
assigns those requests in a round-robin fashion to one of the
multiple name servers. Such a technique, however, can
further drain existing system resources, and it can require
additional hardware (e.g., a separate computer system for
each name server) to implement. Additionally, redundant
information must be stored in each of the multiple name
servers such that each name server is capable of handling the
same sets of authoritative and non-authoritative resolution
requests.

25

30

45

55

60

65

4

Perhaps the most common domain name system software
used today is the Berkeley Internet Name Domain, com-
monly referred to as “BIND”. BIND (the most current
version of BIND is Ver. 8.2) is an open source, general
purpose implementation of a domain name system protocol.

Whereas BIND may be adequate for most large-scale
hosts supporting a limited number of domains, BIND may
not be suitable, or may prove to be inadequate, for systems
in which the host is designed to be a name server for many
domains—particularly in the order of the thousands or more
of domain names.

For example, one drawback to BIND is that when
resource records are updated, the host software often needs
to be restarted, causing undesirable delays or down time.
Another drawback or limitation is that BIND is a blocking
server, meaning that only one “thread” exists for answering
queries to resolve a domain name in the server’s zone. (As
used herein, a “thread” refers to a part of a computer
software code that can execute independently relative to
other parts of the code.) The BIND system described above,
“single threaded”, meaning that its code may activate more
than one processor, but it does so in a way that at any given
time only a single processor is active—only one thread is
allowed to answer queries in the server’s zone at a particular
time. If a name server using BIND serves hundreds, or
thousands, of domain names, the latency between a resolve
request and the response can be significant.

These limitations or drawbacks to BIND are compounded
by the fact that growth of the Internet is continuing to
expand at a very rapid rate, which results in the constant
addition of a large number of new domain names on a daily
basis. This rapid growth of domain names is stressing the
infrastructure of the Internet. Resource records need to be
frequently updated, and IP addresses sometimes change.
Since BIND often requires the host software to be restarted
when resource records are updated, a system based on BIND
is not well suited to maintaining an ever-expanding collec-
tion of domain names. Further, BIND, in its present
implementations, lacks a suitable mechanism for handling
the potentially large number of queries to resolve domain
names where the system has hundreds or thousands of
domain names and is continuously expanding.

Given the growth of the Internet and the fact that many
casual users of the Internet would like to maintain domain
names, but are often unable to do so due to costs associated
therewith, the inventors have recognized that it would be
advantageous to provide an improved name server and
domain name hosting system that is scalable and that is able
to answer simultaneous requests for thousands of different
domain names, and to implement such a system on a single
computer system or network.

SUMMARY OF THE INVENTION

A method and apparatus for providing domain name
services is provided. According to one aspect of the
invention, a multi-threaded name server handles multiple
concurrent name requests, and is particularly well suited for
a host system controlling information relating to a large
number of domain names. In a preferred embodiment as
described herein, a multi-threaded name server comprises a
request dispatcher thread capable of spawning multiple child
threads. For each name request received by the request
dispatcher thread, the request dispatcher spawns a child
thread to handle the request. The child threads query a host
name cache to determine whether the host name cache
comprises a host name matching a host name in the name

New Bay Capital, LLC
Ex.1014-Page 13 of 25

US 6,449,657 B2

5

request. The result is a multi-threaded, non-blocking name
server capable of handling multiple concurrent name
requests for a large number of domain names.

In one embodiment, one or more additional network
services are also provided, preferably using a centralized
database. For example, in a particular embodiment, elec-
tronic message forwarding services are provided wherein an
advertisement is associated with an electronic message
based on the message contents. In another embodiment, web
services are provided wherein hypertext markup language
(HTML) pages are dynamically generated. In still another
embodiment, both electronic message forwarding services
and web services are provided on by the same system using
the centralized database.

Further embodiments, enhancements and variations of the
foregoing are also described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The figures in the accompanying drawings depict details
of the invention by way of example and not by way of
limitation, in which like reference numerals refer to like
parts, in which:

FIG. 1 is a block diagram illustrating a configuration for
a domain name system as known in the prior art.

FIG. 2 is a diagram of a multi-threaded name server in
accordance with a preferred embodiment as described
herein.

FIG. 3 is a diagram illustrating operation of a multi-
threaded name server.

FIG. 4 is a flowchart depicting acts performed by a
request dispatcher thread.

FIG. 5§ is a flowchart depicting acts performed by a
request handler thread.

FIG. 6 is a flowchart depicting acts performed by a
database coherency thread.

FIG. 7 is a diagram depicting an e-mail forwarding and
advertisement insertion system in accordance with a pre-
ferred embodiment as described herein.

FIG. 8 is a diagram depicting a hypertext transfer protocol
services system.

FIG. 9 is a block diagram of a web server including a web
cache system.

FIG. 10 depicts a database schema according to a pre-
ferred embodiment as described herein.

FIG. 11 is a diagram depicting an integrated internet
domain hosting system.

FIG. 12 is a block diagram of a computer system which
may be utilized in connection with one or more preferred
embodiments as described herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Multi-threaded Name Server

FIG. 2 is a conceptual diagram of a multi-threaded name
server 275 according to a presently preferred embodiment as
described herein. As shown in FIG. 2, the multi-threaded
name server 275 comprises a database 291 which may store,
among other things, IP addresses and related information.
The multi-threaded name server 275 further comprises a
random-access memory 290 comprising an address table
292 and a cache 293. A database coherency manager 283
interacts between the information stored in the database 291
and the cache 293. A request dispatcher 282 accesses infor-

10

15

20

25

30

35

40

45

50

55

60

65

6

mation from the memory 290, and particularly the cache 293
and/or address table 292, to respond to queries or foreign
requests as further described herein.

It will be appreciated by those skilled in the art that many
possible physical arrangements of memory for the database
291 and random access memory 290 exist, and the present
invention is not to be limited by the conceptual depiction in
FIG. 2. For example, the database 291 may, in certain
embodiments, be physically located at a site remote from the
physical location of the multi-threaded name server 275, so
long as it is accessible to the database coherency manager
283. Further, the address table 292 and cache 293 are
conveniently depicted as sharing the same random access
memory 290, but it is not necessary that they are physically
stored in the same memory hardware. Those skilled in the art
will understand that there are many equivalent ways of
arranging and implementing the features depicted in FIG. 2.

A network interface 284 connects the multi-threaded
domain server 275 to an electronic communication network,
such as the Internet 276. A local network interface 281
connects the multi-threaded domain server 275 to a local
network or system controller 280, whereby the multi-
threaded domain server 275 may be maintained or repro-
grammed.

In operation, resolution requests are received by the
multi-threaded name server 275 over the Internet 276 from
resolver software on a remote domain name system. The
request dispatcher 282 spawns a new child thread to process
each new resolution request received by the multi-threaded
name server 275. The child threads (referred to herein as
“request handler threads”) handle resolution requests and
returns information (e.g., the desired host name) to the
request dispatcher 282, which may pass the information
back to the source from which the resolution requests were
initiated.

FIG. 3 is a block diagram depicting in more detail
operation of a multi-threaded name server 300 according to
a presently preferred embodiment as described herein.
Shown in FIG. 3 are a database 344, address table 336 and
hash table 332, which are generally analogous to the ele-
ments having the same descriptors shown in FIG. 2, the hash
table 332 being an implementation of the cache 293.

As shown in FIG. 3, incoming resolution requests 304,
308 and 312 are received by the multi-threaded name server
300. The resolution requests 304, 308, and 312, as noted,
typically originate from resolver software on remote client
systems. A continuously running request dispatcher thread
316 spawns a new child thread (i.e., a request handler
thread) to process each new resolution request 304, 308 and
312. Thus, request handler threads 320, 324 and 328 are
spawned by the request dispatcher thread 316 in response to
resolution requests 304, 308 and 312, respectively. The
request dispatcher thread 316 may be managed, for example,
by an appropriate software management routine such as
request dispatcher 282 shown in FIG. 2. Information
retrieved from the inbound resolution request, such as the
host name, is passed to the particular request handler thread
320, 324 or 328 spawned by the request dispatcher thread
316.

The child threads (e.g., request handler threads 320, 324
and 328) spawned by the request dispatcher thread 116 are
executed concurrently, that is, they are “multi-threaded”.
(As used herein, “multi-threaded” refers to a technique for
thread execution whereby the program execution code is
shared by more than one concurrently running, or “active”
thread. Whereas the program variables and pointers can vary

New Bay Capital, LLC
Ex.1014-Page 14 of 25

US 6,449,657 B2

F

between two or more threads, they are executing the same
block of program code. Generally speaking, more than one
process or processor can be active at any given time. This is
in contrast to single threaded programming where only a
single process or processor is allowed to be active at a
particular time.) According to one embodiment, the pro-
cesses are executed concurrently by a single processor.
However, in other embodiments, multiple processors per-
form the threads concurrently. In a preferred embodiment,
the multiple processors can not only execute concurrently,
but also simultaneously. Thus, the name server is non-
blocking.

FIG. 4 is a flowchart depicting steps performed by the
request dispatcher thread 316 in accordance with a preferred
process flow. Represented by the flowchart in FIG. 4 is
processing of multiple request handler threads correspond-
ing to resolution requests 304, 308 and 312 (see FIG. 3). In
step 404, the request dispatcher thread 316 receives one or
more resolution requests (e.g., resolution requests 304, 308
and/or 312). In response, in step 408, a new child thread
(e.g., request handler thread 320, 324 and/or 328,
respectively) is spawned to handle the request. Preferably
the resolution request 304, 308 or 312, or at least the host
name and type associated with the resolution request 304,
308 or 312, is passed to the child (i.e., request handler)
thread 320, 324 or 328 as part of process of spawning a new
request handler thread 320, 324, 328 (step 408).

According to a presently preferred embodiment, the
multi-threaded name server 275 only responds to resolution
requests for domains to which it is the authority. The
multi-threaded name server 275 preferably does not resolve
other host names for which it is not the authority. Also, there
is no local resolver for handling outward bound host name
resolution requests (although one could be used). This
operation differs from traditional name servers employed by
Internet access or Internet service providers, which usually
employ general purpose name servers that handle both
outbound host name resolution requests as well as inbound
resolution requests, regardless of whether the name server is
the authority.

FIG. 5 is a flowchart depicting steps performed by the
child threads (such as request handler threads 320, 324 and
328 shown in FIG. 3), in accordance with one embodiment
as described herein. As shown in FIG. 5, in step 504, the
individual request handler threads 320, 324, 328 first parse
the resolution request 304, 308 and 312, respectively. The
host name associated with the resolution request 304, 308
and 312 is identified as part of step 504. In a next step 508,
the host name hash table 332 is queried by the request
handler thread 320, 324 or 328. Specifically, the request
handler thread 320, 324 or 328 searches the host name hash
table 332 for a matching host name. According to one
embodiment, only second level and top level domains are
queried at this stage—in other words, domain names of the
format “yahoo.com” as opposed to names such as “www-
.yahoo.com”. However, third level (and beyond) domains
can also be queried as part of step 308.

In a preferred embodiment, zone transfers are not per-
formed by domain name server 275, as the domain name
server 275 only responds to resolution requests for which it
is the authority.

According to one embodiment, a host name hash table
332 (see FIG. 3) comprises a plurality of host names (e.g.,
“yahoo.com”, “mit.edu” and “icann.org”). Host addresses,
such as Internet protocol (IP) addresses need not be stored
in the host name hash table 332, nor does other protocol

10

15

20

25

30

35

40

45

50

55

60

65

8

information. Instead, the IP addresses and other protocol
information are stored in a separate location, such as address
table 336. Such a configuration reduces redundancy in the
hash table 332, as a small number of IP addresses and
common protocols can correspond to many more host
names.

Returning to the description of FIG. §, based on the query
in step 508, a test is performed in step 512 to determine
whether the host name exists in the host name hash table
332.If it does, then a responsive message, including the host
address, is sent from the request handler thread 320, 324 or
328 to the requester (e.g., the IP address provided by the
requester in the resolution request 304, 308 or 312). Accord-
ing to one embodiment, the request handler thread 320, 324
or 328 retrieves a host address corresponding to the resolu-
tion request type (e.g., webserver, mail exchanger, etc.) and
returns the host address in the response. However, if the host
name hash table 332 does not contain the host name, then in
step 520 the request handler thread 320, 324 or 328 termi-
nates and no response is returned to the requester.

Returning to FIG. 3, the database coherency thread 340 of
the multi-threaded name server 300 is preferably running
continuously. According to one embodiment, the multi-
threaded name server 300 itself executes the database coher-
ency thread 340; however, according to alternative
embodiments, the database coherency thread 340 can be a
remote procedure call, and/or a “daemon” executing on a
processor separate from a processor physically associated
with the multi-threaded name server 300.

The database coherency thread 340 monitors the central-
ized database 344 for updates to host names for which the
multi-threaded name server 300 is the authority. Additions,
deletions and modifications to the host names in a domain
name table in the database 344 are propagated by the
database coherency thread 340 as soon as possible to the
host name hash table 332. In this way, the database coher-
ency thread 340 synchronizes the view of the host names
from the host name hash table 332 with the data stored in
database 344. Moreover, the name server 300 does not have
to be restarted when the domains are updated in the host
name hash table 332. Thus, variations between the data
stored in the host name hash table 332 and the database 344
are minimal and transient.

FIG. 6 is a flowchart illustrating the general steps per-
formed by the database coherency thread 340 in accordance
with a preferred embodiment as described herein. As shown
in FIG. 6, the database coherency thread 340 operates in a
continuous loop. In a first step 604, the database coherency
thread 340 causes the domain name table in the database 344
to be scanned for new domain name information. The
domain name information can include such things as addi-
tions of new data and deletions or modifications of existing
data. In step 608, the newly updated domain name informa-
tion is stored in the host name hash table 332. That is,
information added to the domain name table of database 344
is added to the host name hash table 332; information
modified in the domain name table of database 344 is
modified in the host name hash table 332; and information
deleted from the domain name table of database 344 is
deleted from the host name hash table 332. According to one
embodiment, only the domain name is stored in the host
name hash table 332, as the information used for the
response can be drawn from the address table 336. However,
in other embodiments, the host name hash table can com-
prise additional information, such as information detailing
requests for the particular domain name—e.g., a counter,
and/or a reference URL (the URL from which the request
was made—e.g., “yahoo.com”).

New Bay Capital, LLC
Ex.1014-Page 15 of 25

US 6,449,657 B2

9

Because the multi-threaded name server 300 responds
only to requests for which it is the authority, resource
records stored in the database 344 can be minimal in size.
Moreover, because the name server 300 is the authority for
numerous domains, the database 344 can eliminate redun-
dancies and unnecessary fields in the resource records that
might not otherwise be standardized in systems not lever-
aging this economy of scale for speed, scalability and
administration. Accordingly, the address table 336, or a
similar, modified table can hold a single instance of the
various profiles (e.g., host name addresses and other proto-
col information) of resource records supported by the name
server 300. These advantages allow the multi-threaded name
server 300 to be used in service environments previously not
served or contemplated, due to limitations of traditional
name server architectures.

E-mail Advertisement Selection

Once the multi-threaded name server 300 has responded
to a resolution request, the original resolution request will be
directed toward the host address included in the request
handler’s response. According to a presently preferred
embodiment of the invention, the same computer system
that acts as the authority for the numerous host names also
acts a mail transfer agent.

In the preferred embodiment, the mail transfer agent
receives (or retrieves, as the case may be) electronic mes-
sages (e.g., via simple mail transfer protocol, also known as
“SMTP”, or post office protocol, version 3, also known as
“POP3”, or internet message access protocol, also known as
“IMAP”, or Lotus Development’s cc:Mail system, etc.),
processes the electronic messages according to techniques
described herein, and then forwards the messages to an
intended recipient corresponding to the host name identified
in the database 344. It is noted that electronic messages, or
“e-mail messages” are not limited to any particular type of
e-mail messages, as is noted in the various systems specified
above; rather, e-mail message generally refers to any elec-
tronic message between two users connected, at the same
time (e.g., instant messaging) or at separate times (e.g.,
traditional e-mail applications/clients), to a network.

To process the e-mail messages, the mail transfer agent
scans the contents of an e-mail message and selects an
advertisement to associate with the e-mail message based on
the location of certain key words or phrases in the message
body, and also, if desired, upon personal information stored
about the intended recipient or other criteria.

While the e-mail advertisement presentation system is
described below with reference to particular preferred
embodiments, it should be understood that in other
embodiments, the e-mail advertisement presentation system
described below can be a stand-alone system, as such
services are not necessarily dependent upon the manner in
which a resolution request was answered.

An overview of the e-mail advertisement presentation
process is as follows, keeping in mind that the order of the
particular steps described may vary depending upon the
preference of the system designer. After receiving an e-mail
message from a mail agent or other means, the system
extracts the intended recipient information from an e-mail
message header. A demographic profile of the intended
recipient is generated (or selected, as the information already
exists). Next, a set of advertisements matching the demo-
graphic profile of the intended recipient is selected from a
table of advertisements. The contents of an e-mail message
body are used to form a query to apply to a set of adver-

10

15

20

25

35

40

45

50

55

60

65

10

tisements matching the demographic profile of the intended
recipient. Next, the query is applied to the set of selected
advertisements, and an advertisement (or possibly a set of
advertisements) is selected and associated with the e-mail
message. Ultimately, the advertisement is presented to the
intended recipient, by either inserting the advertisement into
the e-mail message body, or attaching the advertisement to
the e-mail message, or inserting the advertisement in or
attaching the advertisement to a subsequent e-mail or other
message transmitted to the intended recipient at a later time.
Other embodiments of e-mail advertisement presentation in
accordance with the principles described herein will also be
apparent upon review of the present disclosure, including
the accompanying text and figures.

FIG. 7 is a schematic depicting a presently preferred
e-mail forwarding system 700 for selecting and inserting an
advertisement into an e-mail message 704. The e-mail
message 704 generally comprises two parts, a header 708,
which identifies routing information, such as the SMTP
“Mail From” and “Rept To” data, and a body 712. The “Mail
From” and “Rcpt To” sections of the e-mail header 708 are
sometimes referred to as the SMTP “envelope”, as they
contain both forward and reverse path information, just as a
“snail-mail” (i.e., regular postal) envelope would have
affixed to it a destination address and return address. The
body 712 of the e-mail message 704 contains other
information, such as, for example, a subject header and the
text of the e-mail message 704 itself.

According to a preferred embodiment as described herein,
once the e-mail message 704 is received by the mail transfer
agent 716, the mail transfer agent 716 examines the header
708 of the message. The e-mail processor extracts from the
e-mail message 704—and particularly the e-mail header
708—information identifying the intended recipient(s) 720
of the e-mail message 704. For example, if the “Rcpt To”
field indicates that the e-mail message 704 is directed to
intended recipient “alice@smith.com”, then the intended
recipient username (“alice”) and domain name
(“smith.com”) are extracted by the e-mail processor.

The intended recipient information 720 extracted from the
e-mail message 704 is then used to query a database 744
(which may be, in some embodiments, the same as database
344 shown in FIG. 3, where the multi-threaded name server
300 is used in the same system as the e-mail processor). (An
embodiment of an exemplary database schema for a data-
base is described below with reference to FIG. 9, but other
types of database schema may also be used depending upon
the particular needs of the system, as will be apparent to
those skilled in the art.) After extraction of the relevant
information from the message header 708, the domain
names served by the system 700 are queried for the extracted
domain name to ensure that it is a “valid” (i.e., recognized)
domain name. This confirmation process can be
accomplished, for example, by re-querying the host name
hash table 332 (in embodiments where the e-mail processor
is used in conjunction with the multi-threaded name server
300), or by querying a mail table in the database 744. Once
the domain name (e.g., “smith.com”) is confirmed, then the
username (e.g., “alice”) is also confirmed by the e-mail
processor, this time by querying the username in the mail
table (although alternatively, a single query to the mail table
could be used in some embodiments to confirm the validity
of both the username and domain name).

If both the username and domain name are successfully
confirmed, then the pair is matched to information identi-
fying a forwarding e-mail address 732 (e.g.,
“alice987@hotmail.com™) for the intended recipient.

New Bay Capital, LLC
Ex.1014-Page 16 of 25

US 6,449,657 B2

11

According to a presently preferred embodiment, the for-
warding e-mail address 732 is an address to a remote e-mail
scrvice that is not part of the ¢-mail forwarding system 700,
although in alternative embodiments the forwarding e-mail
address 732 could be to an e-mail service that is operated in
conjunction with the e-mail forwarding system 700. The
forwarding address 732 is used to relay or forward the e-mail
message 704 by the mail transfer agent 716 to the remote (or
other) e-mail system, after further processing by the e-mail
forwarding system 700 as described below.

In one embodiment, a demographic profile corresponding
to the recipient address 720 is established by querying the
database 744. The query can be performed on a favorites
table, or a client table, or some other table comprising
demographic information on the intended recipient (e.g.,
favorites table 964 or client table 912 in FIG. 9). The
demographic profile generated on the intended recipient 720
is then used to create a sub-set of advertisements from an ads
table (e.g., ads table 960 in FIG. 9). This sub-set of adver-
tisements from the ads table is particularly focused towards
the demographic profile matching the intended recipient
720.

Next, the mail transfer agent 716 examines the body 712
of the e-mail message 704. Keywords or phrases are
extracted from the body 712 and a query is generated.
According to one embodiment, the query can logically OR
each of the words together. The query, preferably a struc-
tured query language (SQL) query, can be recreated and
applied to the ads or ads keyword tables multiple times in
different formats. For example, a rank or score can be given
to each query. Queries with the logical operator AND
between the keywords having a greater significance than
queries using the logical operator OR.

In another embodiment, the ad selection process does not
have to perform multiple levels of queries, wherein each
query narrows the set of advertisements likely to match the
intended recipient’s demographic profile. Rather, a single
query based upon the contents of the e-mail message body
712 and the demographic profile of the intended recipient
720 can be created.

Various other combinations of the above techniques, or
enhancements thereto, are also possible. For example, the
e-mail body 712 can be subjected to two types of searches,
the first search being for keywords or phrases stored in the
ad keyword table table (e.g., ad keyword table 968 in FIG.
9). The keywords providing the basis of the query on the
body 712 could have been first reduced by filtering out
advertisements not matching the demographic profile of the
intended recipient 720.

In another embodiment, all or a portion of the advertise-
ments can be selected without regard to demographic and/or
personal information-of the intended recipient 720. For
example, some advertisements might have “super words”
that do not have to match any particular demographic or
personal information. For instance, if a popular movie has
been released (e.g., “Jurassic Park”), the message body 712
can be examined for part or all of the phrase (the phrase
being considered a “super word”). The selection of adver-
tisements having super words can be performed in combi-
nation with the selection of advertisements matching demo-
graphic profiles, as is described above.

It is contemplated in various embodiments that a signifi-
cant number of advertisements may be stored in the database
744. Moreover, it is also contemplated in various embodi-
ments that a significantly greater number of e-mails
(possibly thousands or tens of thousands) are received for

10

15

20

30

35

40

45

50

55

60

65

12

processing during a relatively short period of time. It is
therefor preferred that the database 744 be partitioned or
indexed in a mcaningful manner, or that subscts of record
data (e.g., advertisements, advertisement demographics,
and/or user demographics) are organized to reduce the
burden of processing queries on the database 744.
(Partitioning and indexing refer to data organization
techniques, examples of which are generally known in the
art of relational database management systems, and which
are available in commercially available databases such as
Oracle Corporation’s ORACLE 8i™ database or Microsoft
Corporation’s SQL Server 7.0 database, for example.)
Accordingly, the advertisements can be organized (e.g.,
indexed or partitioned) by target zip code, target age group,
target income level, or other such personal or demographic
data so as to increase processing speed.

Additionally, for optimization purposes, data sets or
“snapshots” of commonly performed queries can be peri-
odically created that reduce the number of records that must
be queried when selecting an advertisement. For example,
the structured query language (“SQL”) pseudo-code shown
in Table 1 can be used to create a snapshot to be queried at
a later time. Although only one snapshot is shown, the
concept is equally applicable to virtually any subset of data
from the database 744, including “super words”. Thus,
according to this technique, multiple snapshots can be used
as the basis for queries when selecting an advertisement.

TABLE 1

CREATE SNAPSHOT daily_ads_ west__coast__yuppie
AS SELECT zip, state, city, income, age, sex, keywords, ad ID

FROM ad table
WHERE income >= 45000 AND
age <= 45 AND (
state=CA OR
state=WA OR
state=OR)

GROUP BY zip, keywords;

Further details regarding various ways in which adver-
tisements may be selected using a snapshot profile according
to various embodiments disclosed herein will now be
described. When selecting an advertisement, demographic
information pertaining to the intended recipient 720 is
queried to select the demographic profile snapshot best
matching the intended recipient 720. If, for example, the
intended recipient 720 matches a “west coast yuppie”
profile, then the daily ads west_coast_ yuppie snapshot
can be queried for advertisements directed towards the
intended recipient’s more specific demographic profile.

For example, perhaps only female west coast yuppies are
the target audience, the target age range is 22 through 30,
and the target income is greater than $50,000. The daily__
ads__ west__coast__yuppie snapshot is then queried for
advertisements matching the target criteria. For example,
using the queried data set from the snapshot, one or more
key word queries may be structured and then applied to the
message body 712. Conversely, the message body 712 can
be used to form the key word query (as shown in FIG. 7) that
can be applied to the queried snapshot. Where the message
body 712 is used to form the query, certain words or word
types can be ignored—such as: “for”, “the”, “a”, “an”, “or”,
“on”, “with”, “so”, etc.

FIG. 7 shows a general flow diagram of an embodiment
of the process described above. It is noted that if demo-
graphic information of the intended recipient 720 is not
known, then the demographic information of the client who

New Bay Capital, LLC
Ex.1014-Page 17 of 25

US 6,449,657 B2

13

is the registered contact for the corresponding domain name
(e.g., “smith.com”) can be used.

Assuming that there is only one hit (i.c., one selected
advertisement) based on the contents of the message body
712, then the corresponding advertisement identifier (“ad
ID”) from the ad keyword table 966 can be used to select an
advertisement to insert into the e-mail message 704. It may
also occur, however, that multiple advertisements match the
demographic and/or key word criteria pertaining to the
intended recipient of the e-mail message 704. If there is
more than one advertisement hit based on the contents of the
message body 712, there are a variety of ways to select one
of the advertisements (or more than one) for association with
the e-mail message 704. For example, one of the advertise-
ments can be selected at random and associated with the
e-mail message 704, or else the advertisements can be
rotated in a round robin fashion, or, alternatively, the query
hits can be ranked in a priority order (e.g., by value) and the
highest priority (e.g., most valuable) advertisement selected.

Some advertisements can have more than one key word or
phrase associated with them, making the likelihood of hits
greater in response to a query of the message body 712.
Also, some advertisers might give greater weight a particular
demographic field, key word/phrase, or data set than other
advertisers, such as by paying a premium for matching
demographic insertions. If the advertiser pays more for the
advertisement placement, then that advertiser’s advertise-
ments can, in the event of multiple matching advertisements,
be given priority over other advertisers who are not willing
to pay as much for each selected advertisement. In another
embodiment, where a tie results, advertisements associated
with key words in a particular location in the message body
712 (for example, closest to the start of the message body
712, or in a subject header) are ranked higher than adver-
tisements associated with key words found elsewhere in the
message body 712 (e.g., later occurring words).

Alternatively, as illustrated in FIG. 7, where more than
one key word hit results (e.g., content text 724 and 728),
then more than one advertisement (e.g., advertisements 736
and 740) can be associated with the e-mail message 704 or
intended recipient.

In a preferred embodiment as disclosed herein, the
selected advertisement is inserted into the message body 712
to form a modified e-mail message body 748. Where mul-
tiple advertisements are selected, multiple advertisements
(such as advertisements 736 and 740 shown in FIG. 7) may
be inserted into the body 712 of the e-mail message 704,
resulting in modified message body 748. Similarly, the
forwarding e-mail address 732 can be inserted back into the
message header 708 to form message header 744, or else the
original message header 708 can simply be retained.

In an alternative embodiment, the advertisement is not
inserted into the message body 712, but instead is sent as an
attachment to the e-mail message 704. When the e-mail
message 704 with the attached advertisement is received,
software at the recipient’s computer station detaches the
advertisement and displays it in a selected portion of the
user’s computer screen, or else the recipient’s e-mail server
can detach the advertisement and instruct the recipient’s
computer station as to where to place the advertisement.

In another embodiment, the advertisement is sent apart
from the original e-mail message 704. In such an
embodiment, the advertisement can be queued or flagged for
delivery at a later time. For example, if a hit on a key word
“football” was found, and the advertisement is for a football
sporting event, then the advertisement may be sent closer to

10

15

20

35

40

45

50

55

60

14

a time when the sporting event will occur. Such a technique
may be referred to as “asynchronous” advertisement
presentation, since the advertisement is not delivered con-
currently with the original e-mail message 704. When sent
at the later time, the advertisement may be associated with
a different e-mail message sent to the same intended
recipient, or else it could be sent as its own, self-contained
e-mail or advertisement message. As a variation of the
above, when a key word match occurs but no current
advertisement is available for that key word, a later adver-
tisement may be sent to the intended recipient after a new
advertisement matching that key word is added to the
database 744 after the fact. To facilitate asynchronous adver-
tisement presentation, the e-mail processor may maintain a
queue of “delayed” advertisements, ranked in chronological
order of when the advertisement is due to be sent.

In various embodiments, location placement information
can also be included with the advertisement. Location place-
ment information controls where on a computer screen the
message will be displayed when the message is opened. If
location placement information is included with the e-mail
message, then the client’s computer station is preferably
configured with software capable of placing the advertise-
ment according to the location placement information
included with the advertisement.

Once the e-mail message to be forwarded has been
constructed, the mail transfer agent 716 forwards (or relays)
the e-mail message 704 on to the intended recipient at the
forwarding e-mail address 732.

The advertisement inserted or attached to the e-mail
message 704 can be in any of a variety of formats. The
database 744 may maintain information as to what types of
files the intended recipient’s computer station (or mail
system) supports (e.g., MIME, UUE, text, binary, etc.). If,
for example, the information in the database 744 indicates
that the computer station at the forwarding e-mail address
supports binaries or other graphics files, then an advertise-
ment corresponding to such a type may be preferred. If no
known format types are found in the database 744, then the
advertisement is preferably inserted or attached as an ASCII
text message, since such a format is the most likely to be
supported by the recipient’s software. Uniform resource
locators (URLs), or hypertext markup language (HTML)
banners can also be inserted into the body 712 of the
message, which can link the recipient’s computer to an
external site when the message is read “on line”.

According to one embodiment, advertisement selection
and/or presentation information is stored in the database
744. For example, whenever a particular advertisement is
inserted into or attached to the e-mail message 704, a
counter corresponding to the advertisement is incremented.
Preferably, a record is generated that conveys information
identifying the demographic information corresponding to
the advertisement insertion. For example, the birth date and
zip code corresponding to the e-mail forwarding address 732
can be stored in an advertisement placement or “counter”
table in the database 744 (e.g., ad counter table 968 in FIG.
9). A new record can be generated for every advertisement
placed, thus a body of demographic information can be
maintained and fed back to the particular advertiser and used
as a basis for billing.

According to one embodiment, the particular advertiser
pays an overhead charge plus an insertion fee based upon the
contents of the advertisement counter table in the database
744. The value/cost of the insertion can vary. For example,
if the advertiser is targeting a particular age group of

New Bay Capital, LLC
Ex.1014-Page 18 of 25

US 6,449,657 B2

15

consumers, then advertisement insertions into e-mail mes-
sage 704 that match that age group may have the highest
value. Similarly, the advertiser may want to target consum-
ers in a particular geographic location, such as a local movie
theatre or car dealer might. Accordingly, a value/cost of the
advertisement increases as the advertisement counter demo-
graphics more closely match the intended audience demo-
graphics. At the close of a particular billing cycle, the
advertisement counter table can be analyzed. A report can be
generated detailing the demographics of the insertions and a
cost computed that weights target demographic information
more heavily than insertions missing the target.

The same principles discussed above can be applied to
outbound electronic messages where a computer system
hosts electronic message services or where the computer
system routes electronic messages through an electronic
advertisement selection system prior to delivering the elec-
tronic messages to a remote system (or the same system). In
such an embodiment, rather than forwarding the electronic
message to a recipient address, the content of the outbound
electronic message is used as the basis for a keyword query.
If demographic information is also used as the basis for
selecting an advertisement, then the demographic informa-
tion used in selecting the advertisement can be drawn from
the sender of the electronic message, rather than the intended
recipient’s demographic information, which may not exist.

Hypertext Transfer Protocol Services

In another embodiment as set forth and described herein,
a system including a name server (such as multi-threaded
name server 300 shown in FIG. 3) not only acts as the
authority for numerous host names, responds to resolution
requests, and directs the requests toward the host address
included in the request handler’s response, but it also
provides hypertext transfer protocol services.

FIG. 8 depicts a flow diagram and presently preferred
embodiment of the hypertext transfer protocol services
system 800 according to one embodiment as described
herein. The hypertext transfer protocol services system 800
is, as mentioned, preferably used in conjunction with a
system acting as the authority for numerous host names.
According to the system and process depicted in FIG. 8, a
hypertext transfer protocol (“HTTP”) request 804 is
received at a webserver. The webserver, although not shown
physically in FIG. 8, is embodied in the process by which an
HTTP request and response is handled. The HTTP request
804 comprises, among other things, a host name. The host
name associated with the HTTP request 804 is extracted by
an HTTP software process (not shown) and a database 844
(which may be the same as database 344 shown in FIG. 3,
assuming the functionality of the FIG. 3 and FIG. 8 systems
and processes are at least partially combined) is searched for
a corresponding template. The host name may, if desired,
first be verified in a host name table (similar or the same as
host name hash table 332 shown in FIG. 3) to ensure that it
is has been properly routed to the correct host address (since,
preferably, a single address services multiple domain
names). However, alternatively, a web source table (e.g.,
web source table 914 in FIG. 9) can also (or instead) be
queried to determine the validity of the host name or
address.

Next, the HTTP software process retrieves a hypertext
markup language (“HTML”) template 808 that corresponds
to the host name. Preferably, the HTML template 808 is
retrieved from the database 844, or from the web source
table, or else from a template table if multiple HTML
templates are employed by the system 800.

10

15

20

25

30

35

40

45

50

55

60

65

16

According to one embodiment, a frame-based template
808 is employed by the system 800. HTML frame based
templates are advantageous for at least two reasons. First, a
frame border 812 such as illustrated in FIG. 8 can be
controlled by the hypertext transfer protocol services system
800. Second, the body 816 of the frame template 808 can be
embedded or redirected from another source on the Internet.

When the frame template 808 is retrieved, there will be
various fields for which values must be inserted before the
HTTP response 806 can be returned to the requester. The
hypertext transfer protocol services system 800 queries the
database 844 for data to insert into the various fields. For
example, fields can include a keywords field 820 and a
descriptors field 824 (e.g., for meta tags), as well as a body
source field 828. These fields are filled with data from the
queries, shown as keywords 848, description 844, and
source URL 840 (e.g., “http://users.aol.com/asmith832/
business/index.html”).

Additionally, an advertisement 836 can be retrieved from
the database 844. According to a presently preferred
embodiment, an advertisement query 832 is generated that
corresponds to the demographic and/or usage information of
the domain name. For example, if the website usage is
commercial and is for a real estate agent, then an advertise-
ment for a competing real estate agent would be avoided. To
avoid such problems, the client who controls the domain
name can be given the option of selecting advertisements
that are acceptable for their website, or providing their own
advertisement. An advertisement 836 is retrieved from the
database 844 and inserted in to the border 812 to form border
852. Similar to the technique described above with reference
to Table 1, snapshots can be employed to pre-generated
frequently generated queries.

The frame body 856 is preferably redirected from another
source, so that when data is inserted into the fields of the
original template 808, the result, now containing no blank
fields in border 852 or body 856, can be returned as an HTTP
response 806 to the requester.

As was the case in the e-mail advertisement system 700,
historical advertising presentation information can be stored
back into the database 844. Here, however, the advertise-
ment presentation information corresponds to hits to the
website, rather than to e-mail forwarding. The same table for
historical advertising presentation information may be used
if the database integrates both HTTP and SMTP services;
however, in such a case, an informational field is preferably
added so that advertising inserted into e-mail messages can
be distinguished from advertising inserted into HTML tem-
plates. Advertising cost information can be similarly sup-
ported in hypertext transfer protocol services system 800, as
in e-mail forwarding system 700 shown in FIG. 7.

According to one embodiment, a web cache (in random
access memory) is employed for increasing response times
for HTTP requests. The web cache, although not shown in
FIG. 8, maintains recently or frequently requested HTML
pages. When a page is first requested, data from the database
is accessed and a page is built, as is described above, and is
stored in the web cache (in addition to being returned to the
requester).

FIG. 9 depicts an embodiment of the web server 916,
including a web cache 932 formed from a random access
memory. A system controller is connected to the web server
916 via a local network interface 920, and the web server
916 is connected to the Internet 908 via a network interface
924.

The web server 916 comprises a database coherency
manager 928, similar to database coherency manager 283

New Bay Capital, LLC
Ex.1014-Page 19 of 25

US 6,449,657 B2

17

depicted in FIG. 2. However, here the database coherency
manager 928 maintains frequently accessed and/or recently
requested HTML pages (e.g., HTML pages 940).

The web cache 932 comprises frequently accessed and/or
requested host name records 936, each of which further
comprise a domain name, a valid/invalid flag, and a pointer
to a corresponding HTML page (e.g., HTML pages 940)
preferably contained in the web cache 932.

The web cache 932 can be virtually any size. However, as
the number of host name records 936, and corresponding
HTML pages 940, increases, the organization of the web
cache 932 preferably allows for fast location of data, such as
by aid of a standard B-tree index (generally known in the art)
or a hashing mechanism (also generally known in the art).
The indexing or hashing mechanism can be performed by
the database coherency manager 928, or by a web cache
manager (not shown) located between or coupled to both the
web cache 932 and the database coherency manager 928.

In one embodiment, the hashing mechanism divides the
web cache 932 into two sets of hash buckets (as used herein,
a hash bucket is memory block). A first set of hash buckets
corresponds to the host name records 936. The second set of
hash buckets corresponds to the HTML pages 940. The
purpose of the hashing mechanism is to distribute potential
“hot spots” of the web cache equally about the web cache
932, while at the same time providing a particular organi-
zation to the web cache 932 so that accessing data in the web
cache is faster. The particular algorithm or formula used to
divide the web cache 932 into hash buckets can vary
between implementations.

According to one embodiment, the first time an HTML
page is constructed, it is returned as a response via the
network interface 924 to the requester. However, it is also
stored in the web cache 932. The domain name is stored in
the host name records 936, together with a valid flag and a
pointer to the location of the copy of the recently constructed
HTML page 940.

When the database coherency manager 928 detects
changes that affect construction of the domain name’s
corresponding HTML page, the database coherency man-
ager 928 causes the web cache entry for the particular host
name record 936 to be invalidated by setting the valid/
invalid flag to “invalid”. For example, the database coher-
ency manager 928 can perform this operation itself, or it can
direct the web cache manager (not shown) to perform this
operation. The host name record and corresponding HTML
page will remain “invalid” until it is next requested, when it
will be retrieved from the database 944 and resaved in the
web cache 932. The valid/invalid flag will then be reset to
“valid”.

Centralized Database

A preferred centralized database is now described in more
detail according to one embodiment of the inventions. In a
preferred embodiment, the centralized database is the same
database as is described below as databases 344, 744 and
844 described in connection with FIGS. 3, 7 and 8, respec-
tively. However, the centralized database can be standalone
in the sense that it is not associated with the e-mail forward-
ing system 700 (FIG. 7) or the hypertext transfer protocol
services system 800 (FIG. 8), and the fact that the database
can serve additional functions should not be construed as
limiting on the embodiment of FIG. 3 by any means. For
convenience, the centralized database is referred to as data-
base 344.

It should further be noted that the centralized database
344 described below illustrates certain principles and exem-

10

15

20

25

30

35

40

45

50

55

60

65

18

plary techniques according to the preferred embodiments as
disclosed herein. Various modifications can be made to the
databasc 344, such as the addition or deletion of ficlds and
tables, or the restructuring of tables and/or joins to the
various tables without departing from the principles of the
preferred embodiments or the broader spirit of the invention.
Likewise, whenever the term “database” is used herein, it
should also be recognized that tables or other file structures
can be employed and cross referenced without implemen-
tation of a database per se. Additionally, no data types are
given for the data structures, as they are simply a design
choice for a skilled database developer.

Moreover, the centralized database described in detail
below can be implemented with any number of commer-
cially available relational database management systems.
For example, the centralized database can be implemented in
Microsoft Corporation’s SQL Server 7.0 or Oracle Corpo-
ration’s Oracle 8i relational database management systems.

FIG. 10 depicts an embodiment of the schema 1000 for a
preferred centralized database 344. While a number of tables
are shown in the database schema of FIG. 10, not all of the
tables shown are required for the implementation of the
various embodiments discussed herein. The number of
tables required and their particular nature and contents will
depend in part both on the nature and extent of Internet
hosting services provided.

The database 344 shown in FIG. 10 comprises, among
other things, a domain names table 1004. The domain names
table 1004 preferably includes the minimum number of
fields required to preserve its functionality, thus reducing the
footprint (i.e., the memory size) of data that is continuously
scanned by the database coherency thread 340 (see FIG. 3).
Redundant or duplicative information can be stored, for
example, in the address table 336 (also shown in FIG. 3).
Information included in the domain names table 1004 may
include such items as a host name field 1006, a client ID field
1008 and a date field 1010.

The domain field 1006 preferably acts as the primary key
for the domain names table 1004. As the primary key, exact
duplicates are not allowed and indexing is performed on the
domain field 1006 (it is noted that this general rule is
followed whenever a field is referred to as a “primary key”
for a particular table). The client ID field 1008 is used to join
the domain names table 1004 with a client table 1012, which
is described in more detail below. The date field 1010 is used
to designate the last date on which the domain name record
was updated. The date field 1010 can comprise, for example,
a simple time stamp. If the time stamp is recent, then the
database coherency thread 340 will not have to bother with
checking for updates to the particular record in the domains
table 1004. For example, if any updates have occurred since
the last query of the domain table by the database coherency
manager then those updates are propagated. Preferably only
modified records from the domain names table 1004 are
propagated to the host name cache.

The client table 1012 of the database 344 stores important
contact and demographic information concerning various
Internet subscribers—such information is used extensively
where e-mail advertisement insertion is performed based on
demographic data, or where advertisements are added to an
HTML response. However, some of this information can
alternatively be stored in a web source table 1014, or a mail
table 1016, or a favorites table 1064—<cach are described in
detail below. The client table 1012 is joined to the domain
names table 1004 through the client ID field common to both
tables. In the client table 1012, the client ID field preferably

New Bay Capital, LLC
Ex.1014-Page 20 of 25

US 6,449,657 B2

19

acts as the primary key. There should thus be at least one
record in the client table 1012 for every record in the domain
names table 1004.

Typical contact information 1018 is preferably included in
the client table 1012. Some of the contact information also
doubles as demographic information 1020, such as the city,
state, zip code and country. Additional information, such as
household size and lifestyle preference fields can be added
to the demographic information 1020 stored in the client
table 1012; however, according to one embodiment, the
other demographic information is stored in the favorites
table 1064, described below in more detail.

If e-mail forwarding services and e-mail advertisement
presentation services, such as those described above with
reference to FIG. 7, are provided in the system, then a mail
table 1016 is preferably employed. The mail table 1016, if
present, is joined to the domain names table 1004 through
the domains field common to the two tables. There can be
many records in the mail table 1016 for every corresponding
record in the domain names table 1004. The primary key in
the mail table 1016 is preferably the combination of the
domain field 1022 and the username field 1024.

The e-mail forwarding address field 1028 identifies the
true e-mail address of the intended recipient of an e-mail
message. In a preferred embodiment, the domain field 1022
and the username field 1024 are used by the e-mail forward-
ing system 700 when matching information identifying the
intended recipient 720 (e.g., the “RCPT To” matches the
domain field 1022 and username field 1024) to the forward-
ing e-mail address 732 (e.g., the e-mail forwarding address
field 1028).

Additional fields in the mail table 1016 include the type
filed 1032, that identifies the type of e-mail message sup-
ported by the intended recipient (e.g., SMTP, Internet, and
file types such as mime, binary, HTML, etc.), and the usage
field 1034, that designates whether the mail is for personal
use, commercial use, or both. Depending on the usage,
different types of advertising can be directed to the user.

A client ID field 1030 is also included in the mail table
1016. As shown in FIG. 10, a dashed line joins the mail table
1016 to the client table 1012. The dashed lines signifies that
direct joins between the tables can be made without passing
through an intermediate table. There is also shown in FIG.
10 a one-to-many relationship vis-a-vis the client table 1012
and the mail table 1016, as a single client may maintain
several domain names. It is not necessary that the client ID
field 1030 have a value, although it is preferred. This is
because there may be many more than one username to
which mail can be forwarded for a particular domain and
demographic information may not be available on all users.
In such a circumstance, the demographic information may
be pulled back through the client ID in the clients table 1012
corresponding to the client ID 1008 in the domain names
table 1004.

If web server services, such as those described above with
reference to FIG. 8, are provided by the system, then a web
source table 1014 is preferably employed. The web source
table 1014, if present, is used to identify the HTML template
808 corresponding to the host name in an HTTP request 804,
as well as to provide the data to be inserted into template
fields. The primary key for the web source table 1014 is
preferably the domain field 1036. The web source table 1014
is joined to the domain names table 1004 by the domain
fields in each of the two tables. There should be at least one
record in the web source table 1014 for every record in the
domain names table 1004.

10

15

20

25

35

40

45

50

55

60

65

20

Web source table 1014 includes a title field 1038, for
insertion into a title meta tag in the HTML template 808.
Additionally, the web source table 1014 includes a keyword
field 1040 and description field 1042, also for insertion into
corresponding meta tags in the HTML template 808. A
source URL field 1044 holds data for redirecting/embedding
the body of the frame into the template 808 from another
source, as was described above with reference to FIG. 8.

A usage field 1046 specifies the type of website the
information contains, such as commercial, personal, or
other, as well as the types of information contained therein—
such as legal work, real estate brokerage, medical discipline,
accounting services, etc. The ad ID field 1048 can specify
types of advertisements that can be linked to the site, or it
can specify a particular set of advertisements (or a single
advertisement) that may be unobjectionable in the frame
around the website. Preferably it designates a particular
advertisement that is acceptable for the website. According
to one embodiment, a query is made daily to determine
which advertisements can/should be linked the web source
ad ID 1048 (c.g., advertisement 836 in FIG. 8). The back-
ground field 1050 specifies preferences for the background
of the HIML template, such as the color, font type, font size,
etc.

Whereas the fields inserted into the templates are gener-
ally consistent for all templates, according to one embodi-
ment the particular type of template may vary, such as the
border size, scrolling options, or even different positioning
of borders (e.g., side bar only, top bar only, bottom bar only,
top and side bars). Such an embodiment further adds a
template ID field 1043 to the web source table 1014, as well
as a template table 1052.

A template table 1052, if employed, preferably includes a
template ID field 1054 and an HTML field 758. A template
style field 1056 may also be used to quickly identify various
HTML template patterns. The template ID field 1054 is
preferably the table’s primary key. The template table 1052
is joined to the web source table 1014 by the template ID
fields in each table. There can be a one-to-many relationship
between the template ID fields in the template table 1052
and web source table 1014, respectively.

The ads table 1060 stores advertisements that can be
inserted into or associated with e-mail messages 704 to be
forwarded, as described in connection with the e-mail for-
warding system 700 of FIG. 7, or into the HTML templates
808, as in the case of system 800, or both. The ads table 1060
is joined to the web source table 1014 by the ad ID fields in
each table. The ad ID field 1062 preferably acts as the
primary key for the ads table 1060.

The ads table 1060 is preferably configured to store the
advertisements that will be inserted into the appropriate
medium, as well as certain demographic information to
which the advertisements are targeted. For example, the
same demographic information 1020 stored elsewhere in the
database 1044, such as in the client table 1012 or in the
favorites table 1064 (describe below) is stored in the ads
table 1060. As for the advertisement file types, the ads table
can include an HTML, a text, a graphic or a binary file (e.g.,
GIE, JPG, WAV, MOV, AV, etc.).

The ads table 1060 can also include a usage field 1064,
which specifies the type of domain or e-mail system to
which the advertisement is best placed, such as commercial
or personal and sub-classifications within each type.
Additionally, demographic data in the ads table 1060 can
specify rankings or weight to be given to each piece of
demographic data, or a demographic data set. For example,

New Bay Capital, LLC
Ex.1014-Page 21 of 25

US 6,449,657 B2

21

some advertisers might rank an advertisement placement for
a person having an income above one amount (e.g., $60,000)
higher than for somconc having an income of a lesser
amount (e.g., $20,000).

Because there may be many keywords associated with a
particular advertisement, and because there are likely to be
many queries involving the ads table 1060, the keywords can
be maintained outside of the ads table 1060, for example in
an ad keyword table 1066. The number of ads can thus
quickly be screened first by demographic information, and
then by the context or content of the e-mail message when
being inserted into or associated with an e-mail message
704. If advertisements are placed using a similar technique
in HTML templates, as described in connection with the
hypertext transfer protocol services system 800 shown in
FIG. 8, a similar reduction mechanism can be employed. No
primary key is necessary (although one may be used) for the
ad keyword table 1066, which is joined to the ads table 1060
through the ad ID fields in each table. There is a one-to-
many relationship between records in the ads table 1060 and
in the ad keyword table 1066.

Although not explicitly shown in ad keyword table 1066,
additional fields such as a ranking or weight field can be
included to give a particular key word or phrase more weight
than others. Furthermore, the same field can also indicate
whether a particular advertiser or advertisement “owns” the
key word, meaning that the advertiser has exclusive rights
with respect to that key word. Thus, whenever the key word
appears in an e-mail message to be forwarded, the
advertisement(s) associated with that word should appear
(subject to the ad selection processes described herein
should multiple key word hits occur). Alternatively, a weight
field and a zip code field within the ad keyword table 1066
can be used. In such an embodiment, the zip code field
specifies one or more zip codes (i.e., territories) in which a
particular advertiser has exclusive rights to (i.e., “owns”) the
particular key word.

It is preferred that advertisement presentation
information, as described above with reference to FIGS. 7
and 8, is maintained by the centralized database 344. The
centralized database 344 preferably records advertisement
presentation information in an ad counter table 1068. The ad
counter table 1068 can be joined to the ads table 1060 by
way of the ad ID field in each table. Because there are likely
to be many insertions (or “hits”) for each advertisement,
there is a one-to-many relationship between records of the
ads table 1060 and records of the ad counter table 1068.

The ad counter table 1068 comprises an ad ID field 1070
and a time stamp field 1072 (for recording the date and time
of the insertion/hit). A number of demographic information
fields 1020 can identify the demographic data corresponding
to the domain name or client ID. Alternatively, the client ID
and domain corresponding to the insertion or website can be
stored in a demographics fields, or a designated field can be
added for each demographic field (e.g., demographics fields
1020).

If asynchronous advertisement insertion is employed,
then the ad counter table 1068 may include a field identi-
fying the forwarding address. A time-triggered procedure
call (e.g., a PL/SQL function) can query the ad counter table
1068 and spool out any advertisements to the forwarding
address asynchronously to the e-mail message forwarding. If
privacy of the e-mail recipient is a concern, then the client
ID and domain name can be deleted from the ad counter
table 1068 after spooling, or else synchronous advertisement
insertion should be employed instead of asynchronous

10

15

20

25

30

35

40

45

50

55

60

65

22

advertisement insertion. According to one embodiment, the
e-mail forwarding system 700 described in connection with
FIG. 7 checks a user’s demographic data to decide whether
synchronous or asynchronous advertisement insertion
should be performed.

Two additional tables are also shown for the database 344.
They are the favorites table 1064, which is used to pinpoint
interests corresponding to the client ID in the client table
1012, and a password table 1076. The favorites table 1064
is essentially a table for storing demographic information
1020. The favorites table 1064 can be used to store demo-
graphic information 1020 corresponding to the client ID
stored in the mail table 1016. The favorites table 1064 can
be joined to both the client table 1012 and the mail table
1016, as is shown by the dashed join in FIG. 10. Exemplary
demographic data fields are shown in table 1064.

The password table 1076 comprises administration infor-
mation that can be used to modify information associated
with a client. Thus, the client ID field 1078 is the primary
key, which joins, via a one-to-one correspondence, with the
client table 1012.

A password field 1080 comprises a password. According
to one embodiment, the password is encrypted to prevent
unauthorized access to the information. Because there are
likely to be a large number of users modifying their domain
information, it is desired to minimize the requirement of
administrator intervention. Accordingly, two hint fields 1082
and 1084, which can also be encrypted, provide hints likely
to lead to successful entry of the correct password for the
particular client ID 1078 in the event that a user forgets or
misplaces her password.

According to a preferred embodiment, an HTML-based
configuration interface (or other suitable interface) is pro-
vided that allows users to personally configured or modify
both their domain information as well as their demographic
information. Preferably, the HTML-based configuration
interface is access via a secure connection, such as HTTPS.
The HTML configuration interface provides a secure link
back to selected information stored in the database 344 and
allows users to quickly perform such tasks as adding e-mail
usernames, selecting advertisements, and maintain their
demographic and contact information through HTML and
Java type forms.

Integrated Internet Hosting System

FIG. 11 depicts a presently preferred integrated internet
hosting system 1100. The components in FIG. 11 are shown
integrated into the single internet hosting system all centered
around the centralized database 1144, which is analogous to
database 344 described above in connection with FIG. 10.
The internet hosting system 1100 thus integrates function-
ality from the domain name server (such as domain name
server 300) with one or more other servers, such as a web
server (e.g., web server 800) and/or a mail server (e.g., mail
system 700). The servers can run on a single computer
system, or they can run on multiple, coupled computer
systems.

Mail client 1104 and web client 1108 communicate reso-
lution requests to the multi-threaded, non-blocking name
server 300, which has been described in reference to FIG. 3.
In turn, the name server 300 answers resolution requests for
which it is the authority, while a database coherency thread
340 monitors the database 1144 for updated domain infor-
mation. An appropriate response is returned the respective
clients.

With a host address from the name server 300, a particular
client is able to obtain Internet services. For example, the

New Bay Capital, LLC
Ex.1014-Page 22 of 25

US 6,449,657 B2

23
mail client 1104 can send an e-mail message 704 addressed
to a user stored in the database 1144. When the e-mail
message 704 is transferred by the mail transfer agent 716, an
advertisement can be inserted therein or associated there-
with. The advertisement can be selected based upon a query
1112, such a query 1112 including words from the context of
the e-mail message body 712. The e-mail message 704, now
having an advertisement inserted in it (or otherwise associ-
ated with it) can then be forwarded by the mail transfer agent
716 to a forwarding address identified in the database 1144.

Similarly, the web client 1108, with the host address from
the name server 300, can retrieve an HTML page from the
host name identified in an HTTP request 804. The HTML
page is preferably dynamically generated based on a stored
template 808, and information selected by a query 1116 of
the database 1144. Data returned by the query 1116 is
inserted into the template 808, which is returned as the
HTTP response 806 to the web client 1108.

Further still, an HTTP, or HTTPS (hypertext transfer
protocol secure) configuration interface 1120 is also part of
the internet hosting system 1100. The interface 1120 allows
users to personally configure their domain services offered
by the internet hosting system 1100. For example, users can
specify setup options such as domain names 1008, user-
names 1024, demographic data 1020, web template styles
1038, or even advertiser information for the ads table 1060
(e.g., loading ads and specifying target demographic profiles
for those ads).

Hardware Overview

FIG. 12 is a block diagram illustrating a computer system
1200 upon which various embodiments as described herein
can be implemented. An example of such a computer system
is a Sun Microsystems Enterprise™ family system, or a
Starfire™ system, running Solaris version 7. Programming
can be implemented in the Sun Microsystems’ Java pro-
gramming environment. In another, equally viable
embodiment, an Intel Pentium class computer system
executing Microsoft Corporation’s Windows NT operating
system can be used. There, programming can be imple-
mented via Microsoft’s Java programming environment.

Since the hosting services can grow over time, the par-
ticular computer used can be gradually upgraded from a less
powerful system, thus integrating scalability in the system.
A general description of a computer system 1200 is provided
below.

As shown in FIG. 12, the computer system 1200 includes
a bus 1202 or other communication mechanism for com-
municating information, and a processor 1204 coupled with
bus 1202 for processing information. The computer system
1200 also includes a main memory 1206, such as a random
access memory (“RAM?”) or other dynamic storage device,
coupled to bus 1202 for storing information and instructions
to be executed by processor 1204. Main memory 1206 also
may be used for storing temporary variables or other inter-
mediate information during execution of instructions by
processor 1204. The computer system 1200 further includes
a read only memory (“ROM”) 1208 or other static storage
device coupled to bus 1202 for storing static information and
instructions for processor 1204. A storage device 1210, such
as a magnetic disk or optical disk, is provided and coupled
to bus 1202 for storing information such as data structures
and instructions, such as data stored in databases 291, 344,
744, 844 or 1144 (shown in FIGS. 2, 3, 7, 8 and 11,
respectively).

The computer system 1200 may be coupled via bus 1202
to a display 1212, such as a cathode ray tube (“CRT”), for

10

15

20

25

30

35

40

45

50

55

60

65

24

displaying information to a computer user. An input device
1214, including alphanumeric and other keys, is coupled to
bus 1202 for communicating information and command
selections to processor 1204. Another type of user input
device is cursor control 1216, such as a mouse, a trackball,
or cursor direction keys for communicating direction infor-
mation and command selections to processor 1204 and for
controlling cursor movement on display 1212. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

The computer system 1200 can be employed for provid-
ing various Internet services and functionality as described
herein, such a (multi-threaded) name server, e-mail
forwarding, and other Internet hosting services as described
above. According to one embodiment, such Internet-related
services are provided by computer system 1200 in response
to processor 1204 executing one or more sequences of
instructions contained in main memory 1206. Such instruc-
tions may be read into main memory 1206 from another
computer-readable medium, such as storage device 1210.
Execution of the sequences of instructions contained in main
memory 1206 causes processor 1204 (or multiple processors
if a multi-processor system is employed) to perform the
process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combi-
nation with software instructions to implement the inven-
tion. Thus, embodiments of the invention are not limited to
any specific combination of hardware circuitry and software.
However, according to embodiments of the name server 300,
the computer system 1200 is running an operating system
that allows multi-threaded programming.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 1204 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile
media includes, for example, optical or magnetic disks, such
as storage device 1210. Volatile media includes dynamic
memory, such as main memory 1206. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 1202. Transmission media
can also take the form of acoustic or light waves, such as
those generated during radio-wave and infrared data com-
munications.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, ROM, a FLASH, or
any other memory chip or cartridge, a carrier wave as
described hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 1204 for execution. For example,
the instructions may initially be carried on a magnetic disk
of a remote computer. The remote computer can load the
instructions into its dynamic memory and send the instruc-
tions over a telephone line using a modem. A modem local
to computer system 1200 can receive the data on the
telephone line and use an infrared transmitter to convert the
data to an infrared signal. An infrared detector coupled to
bus 1202 can receive the data carried in the infrared signal
and place the data on bus 1202. Bus 1202 carries the data to
main memory 1206, from which processor 1204 retrieves
and executes the instructions. The instructions received by

New Bay Capital, LLC
Ex.1014-Page 23 of 25

US 6,449,657 B2

25

main memory 1206 may optionally be stored on storage
device 1210 either before or after execution by processor
1204.

The computer system 1200 also includes a communica-
tion interface 1218 coupled to bus 1202. Communication
interface 1218 provides a two-way data communication
coupling to a network link 1220 that is connected to a local
network 1222. For example, the communication interface
1218 may comprise an integrated services digital network
(“ISDN”) card or a modem to provide a data communication
connection to a corresponding type of telephone line. As
another example, communication interface 1218 may com-
prise a local area network (“LAN”) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 1218 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 1220 generally provides data communica-
tion through one or more networks to other data devices. For
example, network link 1220 may provide a connection
through local network 1222 to a host computer 1224 or to
data equipment operated by an Internet Service Provider
(“ISP”) 1226. ISP 1226 in turn provides data communication
services through the world wide packet data communication
network referred to herein as the “Internet” 1228. Local
network 1222 and Internet 1228 both use electrical, elec-
tromagnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 1220 and through communication interface
1218, which carry the digital data to and from computer
system 1200, are exemplary forms of carrier waves trans-
porting the information. Alternatively, communications
interface 1218 can be connected directly to the Internet 1228
without intermediate equipment.

The computer system 1200 can send messages and
receive data, including program code, through the network
(s), network link 1220 and communication interface 1218.
Using the Internet as an example, a server 1230 might
transmit a requested code for an application program
through Internet 1228, ISP 1226, local network 1222 and
communication interface 1218. Such a downloaded appli-
cation may be used to implement the various Internet-related
services described herein.

The received code may be executed by processor 1204 as
it is received, and/or stored in storage device 1210, or other
non-volatile storage for later execution. In this manner,
computer system 1200 may obtain application code in the
form of a carrier wave. The computer 1200 can be employed
as single function input output device, or it can be config-
ured to function as a server, such as a database server or an
application server or both. According to one embodiment, it
functions as domain name server, and in other embodiments,
it provides additional or other Internet hosting services as
described herein.

The methods, techniques and apparatuses described
herein are particularly useful as an Internet domain name
hosting system. In such an embodiment, the system 1100
(see FIG. 11) provides Internet hosting services for a large
number of domain names—for example on the order of
thousands, tens of thousands, and even more domain names,
especially where those same domains share a very small
number of IP addresses (e.g., as few as two IP addresses). A
user who obtains a domain name may obtain Internet hosting
services for the domain name through the system 1100.
Thus, the system 1100 functions in part as a directional

10

15

20

35

40

45

50

55

60

65

26

services mapping system—allowing users to obtain many
domain names, and providing a transparent Internet portal to
all the domain names for which it acts as an authority—all
from a single system.

The described embodiments herein can be directed
towards small and mid-sized domains where the infrastruc-
ture cost to setup a proprietary or self-deployed system are
prohibitive. In other words, the system 1100 can be a
stepping stone for entry into the Internet foray, or even
provide a long-term solution for multitudes of small and
mid-sized domains.

The e-mail advertisement presentation features described
herein can provide a technique for offsetting the costs of the
services provided by the system. Similarly, the advertise-
ment presentation features of the HTTP hosting system
offset the costs of the services as well.

As set forth in the foregoing description, and in the
accompanying figures, an Internet domain name hosting
system is provided having a variety of advantageous fea-
tures. According to various embodiments as described
herein, an Internet domain name hosting system is config-
ured to provide a multi-threaded, non-blocking name server
for responding to multiple, concurrent host name resolution
requests. In further or alternative embodiments, the system
is configured to provide e-mail forwarding services. In
further or alternative embodiments, the system provides
hypertext transfer protocol services, possibly in conjunction
with the provision of e-mail forwarding services. In at least
one embodiment, a centralized database is provided for
integrating the various services supported by the system.

The present inventions have been set forth in the form of
preferred embodiments. It is nevertheless understood that
modifications and variations of the disclosed techniques may
be apparent to those skilled in the art after review of the
above description, the drawings and other aspects of the
present disclosure, without departing from the scope and
spirit of the present invention. Moreover, such modifications
and variations are considered to be within the purview of the
appended claims.

What is claimed is:

1. An internet service system, comprising:

a computer system including,

one Or More Processors;

a memory communicatively coupled to said one or more

processors; and

a disk communicatively coupled to said one or more

processors; and

wherein said one or more processors includes a first

server, said first server configured to execute a multi-

threaded domain name system, said multi-threaded
domain name system comprising:

a request dispatcher thread, said request dispatcher
thread configured to receive multiple concurrent host
name requests over a wide area network; and

multiple concurrent request handler threads, each of
said multiple concurrent request handler threads
spawned by said request dispatcher thread and cor-
responding to exactly one of said multiple concurrent
host name requests, each of said request handler
threads configured to respond to exactly one of said
host name requests by returning a host address if the
requested host name is present in the host name
cache or else to terminate the request if the requested
host name is not present in the host name cache; and

wherein said memory comprises a host name cache, said
host name cache comprising a plurality of host names,

New Bay Capital, LLC
Ex.1014-Page 24 of 25

US 6,449,657 B2

27

said host name cache configured to be read by said
multiple concurrent request handler threads;

wherein said disk comprises records for a database, said
records comprising a plurality of host names for which
said server is an authority and user information corre-
sponding to said host names, said plurality of host
names providing a foundation for said host name cache;
and

wherein said one or more processors further includes a
second server, said second server configured to respond
to a request directed to said host address returned by
said first server, and further configured to include data
stored in said database in its response;
wherein said request directed to said host address is an
electronic message; and
wherein said second server is further configured to:
extract information identifying an intended recipient of
said electronic message;

match said extracted information to a forwarding
address;

select an advertisement corresponding to one or more
words contained in said electronic message;

forward said electronic message including data from
said database to said forwarding address; and

transmit said advertisement, either embedded in or
separate from said electronic message, to said for-
warding address.

2. The system of claim 1, wherein said second server is
further configured to store ad placement information in an ad
placement table in said database, said ad placement infor-
mation indicating that said advertisement is associated with
said electronic message.

3. The system of claim 2, wherein said ad placement
information stored in said table includes demographic infor-
mation corresponding to said intended recipient.

10

15

30

28

4. The system of claim 2, wherein said system is further
configured to generate a cost for said advertisement, said
cost corresponding to said ad placement information stored
in said table.

5. The system of claim 2, wherein said request directed to
said host address is a hypertext transfer protocol request, and
wherein second server is further configured to:

extract information identifying a host name from said

hypertext transfer protocol request;

retrieve a hypertext markup language template corre-

sponding to said information identifying said host
name;

fetch template values corresponding to said host name;

insert said template values into said template; and

return said hypertext markup language template including
said template values as a response to said hypertext
transfer protocol request.

6. The system of claim 5, wherein said second server is
further configured to:

retrieve an advertisement corresponding to said host

name;

insert said advertisement into a frame that surrounds a

body of said template; and

store advertisement placement information indicating that

said advertisement has been inserted into a hypertext
markup language template.

7. The system of claim 1, further configured to transmit
said advertisement to said forwarding address synchro-
nously with said forwarding of said electronic message to
said forwarding address.

8. The system of claim 1, further configured to transmit
said advertisement asynchronously relative to said forward-
ing of said electronic message to said forwarding address.

New Bay Capital, LLC
Ex.1014-Page 25 of 25

