SCORE Placeholder Sheet for IFW Content

Application Number: 12460139

Issue Date: 11/06/2012

The presence of this form in the IFW record indicates that the following document type was delivered in electronic format on the issue date identified above. This content is stored in the SCORE database.

- Patent Grant with Color/Grayscale Drawings

To access the documents in the SCORE database, refer to instructions below.
At the time of document entry (noted above):

- Examiners may access SCORE content via the eDAN interface.
- Other USPTO employees can bookmark the current SCORE URL (http://es/ScoreAccessWeb/).
- External customers may access SCORE content via the Public and Private PAIR interfaces.

Form Revision Date: December 9, 2011

APPLICATION NO.	ISSUE DATE	PATENT NO.	ATTORNEY DOCKET NO.
$12 / 460,139$	$11 / 06 / 2012$	8305840	$038495 / 369324$
826	$10 / 17 / 2012$		
ALSTON \& BIRD LLP			
BANK OF AMERICA PLAZA			
101 SOUTH TRYON STREET, SUITE 4000			
CHARLOTTE, NC 28280-4000			

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)
The Patent Term Adjustment is 284 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Brian T. Maguire, Broken Arrow, OK;

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The USA offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to encourage and facilitate business investment. To learn more about why the USA is the best country in the world to develop technology, manufacture products, and grow your business, visit SelectUSA.gov. RAY-1002

Appl. No.: 12/460,139
Amdt. dated: 11/30/2011
Reply to Office Action dated 09/22/2011
Change(s) applied
to document,

Amendments to the Specification

At page 11, please amend paragraph 0056 as follows:
[0055]
f0050 The sonar signal processor 32 may be any means such as a device or circuitry operating in accordance with software or otherwise embodied in hardware or a combination of hardware and software (e.g., a processor operating under software control or the processor embodied as an application specific integrated circuit (ASIC) or field programmable gate array (FPGA) specifically configured to perform the operations described herein, or a combination thereof) thereby configuring the device or circuitry to perform the corresponding functions of the sonar signal processor 32 as described herein. In this regard, the sonar signal processor 32 may be configured to analyze electrical signals communicated thereto by the transceiver 34 to provide sonar data indicative of the size, location, shape, etc. of objects detected by the sonar system 30 . In some cases, the sonar signal processor 32 may include a processor, a processing element, a coprocessor, a controller or various other processing means or devices including integrated circuits such as, for example, an ASIC, FPGA or hardware accelerator, that is configured to execute various programmed operations or instructions stored in a memory device. The sonar signal processor may further or alternatively embody multiple compatible additional hardware or hardware and software items to implement signal processing or enhancement features to improve the display characteristics or data or images, collect or process additional data, such as time, temperature, GPS information, waypoint designations, or others, or may filter extraneous data to better analyze the collected data. It may further implement notices and alarms, such as those determined or adjusted by a user, to reflect depth, presence of fish, proximity of other watercraft, etc. Still further, the processor, in combination with suitable memory, may store incoming transducer data or screen images for future playback or transfer, or alter images with additional processing to implement zoom or lateral movement, or to correlate data, such as fish or bottom features to a GPS position or temperature. In an exemplary embodiment, the sonar signal processor 32 may execute commercially available software for controlling the transceiver 34 and/or transducer array 36 and for processing data received therefrom. Further capabilities of the sonar signal processor 32 and other aspects related to the sonar module are described in U.S.

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Eax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

826
7590
07/23/2012
ALSTON \& BIRD LLP
BANK OF AMERICA PLAZA
101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000
Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

	(Depositor's name)
	(Signature)
	(Date)

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$12 / 460,139$	$07 / 14 / 2009$	Brian T. Maguire	$038495 / 369324$	

TITLE OF INVENTION: DOWNSCAN IMAGING SONAR

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAD ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1740	\$300	\$0	\$2040	10/23/2012
		ART UNIT	CLASS-SUBCLASS			
HULK	MES R	3645	367-088000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively,		1 \qquad Alston 2 \qquad to is 3 \qquad	d LLP

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

NAVICO, INC.

TULSA, OKLAHOMA

Please check the appropriate assignee category or categories (will not be printed on the patent): \square Individual \mathbb{X} Corporation or other private group entity \square

4a. The following fee(s) are submitted:
Issue Fee
\triangle Publication Fee (No small entity discount permitted)
\square Advance Order - \# of Copies \qquad
4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number 160605 (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. \square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR $1.27(\mathrm{~g})(2)$.

NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.
Authorized Signature
Typed or printed name Patrick L. Kartes

Date September 26, 2012
Registration No. 64,678

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Application Number:	12460139			
Filing Date:	14-Jul-2009			
Title of Invention:	DOWNSCAN IMAGING SONAR			
First Named Inventor/Applicant Name:	Brian T. Maguire			
Filer:	Patrick L. Kartes			
Attorney Docket Number:	038495/369324			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)

Basic Filing:

Pages:

Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Utility Appl issue fee	1501	1	1740	1740
Publ. Fee-early, voluntary, or normal	1504	1	300	3006 of 787

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:				
	Total in USD (\$)			2040

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 2040$
RAM confirmation Number	7546
Deposit Account	160605
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Issue Fee Payment (PTO-85B)	369324_Issue_Fee_Transmittal. pdf	113870	no	1
			157235901 ca378dacobcca720e647 75860 8 8a43		
Warnings:					
Information:					
2	Fee Worksheet (SB06)	fee-info.pdf	32172	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			146042		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

United States Patent and Trademark Office
P.O. Box 1450

Alexandria, Virginia 22313-1450

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/460,139	07/14/2009	Brian T. Maguire	038495/369324	9769
ALSTON \& BIRD LLP	- 08/14/2012		EXAMINER	
BANK OF AMERICA PLAZA 101 SOUTH TRYON STREET, SUITE 4000 CHARLOTTE, NC 28280-4000			HULKA, JAMES R	
			ART UNIT	PAPER NUMBER
			3645	
			NOTIFICATION DATE	DELIVERY MODE
			08/14/2012	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):
usptomail@alston.com

UNITED STATES DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450

APPLICATION NO. $/$ CONTROL NO.	FILING DATE	FIRST NAMED INVENTOR / PATENT IN REEXAMINATION	ATTORNEY DOCKET NO.
$12 / 460,139$			

		EXAMINER	
ALSTON \& BIRD LLP BANK OF AMERICA PLAZA 101 SOUTH TRYON STREET, SUITE 4000 CHARLOTTE, NC 28280-4000		JAMES HULKA	
		ART UNIT	
	PAPER		

DATE MAILED:

Please find below and/or attached an Office communication concerning this application or proceeding.

IDS dated 31 July 2012 has been considered, and is attached to this office action.
/ISAM ALSOMIRI/
Supervisory Patent Examiner, Art Unit 3645

[^0]
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

Substitute for form 1449/PTO (Revised 07/2007)			Complete if Known		
			Application Number	12/460,139	
			Filing Date	July 14, 2009	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)			First Named Inventor	Maguire	
			Art Unit	3645	
			Examiner Name	J. R. Hulka	
Sheet	2	of $\quad 4$	Attorney Docket Number	038495/369324	
OTHER DOCUMENTS					
Examiner Initials*	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.			English Language Translation Attached
	11	Communication for European Patent Application No. 05782717.2-2220 dated May 11, 2012; 9 pages			
	12	AUSTRALIAN GOVERNMENT, DEPARTMENT OF SUSTAINABILITY, ENVIRONMENT, WATER, POPULATION AND COMMUNITIES; Fact Sheet - The RV Tangaroa; date unknown; 3 pages			
	13	BLONDEL, PHILIPPE; The Handbook of Sidescan Sonar; © 2009; 316 pages			
	14	CALCUTT, RON; Lowrance Book of Sonar \& GPS; © 1986; and Lowrance Book of Sonar \& GPS Update; 1997; collectively 122 pages			
	15	DERROW, II, ROBERT W. ET AL., A Narrow-Beam, Side-Looking Sonar for Observing and Counting Fish in Shallow Aquaculture Ponds; 1996; 34 pages			
	16	DSME E\&R LTD.; Remotely Operated Sonar Boat System (SB-100S); http://dsmeu.en.ec21.com/Remotely_Operated_Sonar_Boat_System618904 2479905.html; printed on February 12, 2010; 3 pages			
	17	EAGLE ELECTRONICS; Ultra 3D Installation and Operation Manual; © 2002; 24 pages			
	18	FURUNO ELECTRIC CO., LTD.; Side Looking Sonar, Model SL-16, 1983; 4 pages			
	19	GEOACOUSTICS; GeoPulse, Profiler System; February 2006, 2 pages			
	20	HUMMINBIRD 1198C Review for Catfishing, Catfishing "How To" Catfishing Techniques, October 31, 2011,9 pages			
	21	IMAGENEX TECHNOLOGY CORP., Model 881 SportScan, Single or Dual Frequency Digital Sidescan Sonar, Software User's Manual; May 9, 2003; 16 pages			
	22	KLEIN ASSOCIATES, INC.; Modular Side Scan Sonar and Sub-Bottom Profiler System Components for Customized Configurations; date unknown; 10 pages			
	23	KLEIN, MARTIN; Side Scan Sonar; UnderSea Technology; April 1967; 4 pages			
	24	KLEIN, M. ET AL., Sonar-a modern technique for ocean exploitation; IEEE Spectrum; June 1968; pp. 40-46 and Authors page			
	25	KLEIN, MARTIN; New Developments in Side Scan Sonar for Hydrography; date unknown; 14 pages			
Examiner Signature		James Hulka/	Date Cons	08/03/2012	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known		
				Application Number	12/460,139	
				Filing Date	July 14, 2009	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				First Named Inventor	Maguire	
				Art Unit	3645	
				Examiner Name	J. R. Hulka	
Sheet	3	of	4	Attorney Docket Number	038495/369324	
OTHER DOCUMENTS						
Examiner Initials*	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.				English Language Translation Attached
	26	KLEIN, MARTIN; Side Scan Sonar; Offshore Services; April 1977, pp. 67, 68, 71,72, 75				
	27	KLEIN, MARTIN; New Capabilities of Side Scan Sonar Systems; date unknown; pp. 142-147				
	28	KLEIN, MARTIN; Sea Floor Investigations Using Hybrid Analog/Digital Side Scan Sonar; date unknown; 18 pages				
	29	KONGSBERG MARITIME AS; Side Looking Transducer, $200 \mathrm{kHz}-0.5 \times 49$, 200 kHz side looking transducer for shallow water and surveying and high resolution; date unknown; 2 pages				
	30	KONGSBERG SIMRAD AS; ConCat Containerised Catamaran, Inshore hydrographic survey vessel that fits in a container, Rev. B, April 2004; 4 pages				
	31	KVITEK, RIKK ET AL.; Final Report, Early Implementation of Nearshore Ecosystem Database Project Tasks 2 and 3; http://seafloor.csumb.edu/taskforce/html $\% 202 \% 20 \mathrm{web} /$ finalreport.htm; July 29, 1999; 92 pages				
	32	LAW, G., Sideways Glance, Side- and down-scan Imaging Open New Windows in Fishing Finding, Electronics, November 2011, pp. 28-29				
	33	LEONARD, JOHN L.; Cooperative Autonomous Mobile Robots; date unknown; 11 pages				
	34	Maritime surveys takes delivery of SeaBat 8160; Sea Technology, Jul 2001; http://findarticles.com/p/articles/mi_qa5367/is_200107/ai_n21475675/; webside printed June 30, 2010				
	35	MARINE SONIC TECHNOLOGY, LTD.; Sea Scan® PC Side Scan Sonar System Information/Specifications Sheet; September 9, 2002; 10 pages				
	36	MESOTECH; Mesotech Model 971 Sonar System Summary; March 26, 1985, 2 pages				
	37	OUGHTERSON, B., Sophisticated Sonar Reveals Detailed Images Recently Unimaginable. Is It Too Much too Soon?, Basic Instincts, pp. 75-78				
	38	RAYMARINE, L750 Fishfinder, Operation Handbook; date unknown; 93 pages				
	39	RAYTHEON MARINE COMPANY; Installation Instructions; October 1998; 2 pages				
Examiner Signature		James Hulka/		Date Cons	0803	12

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known		
				Application Number	12/460,139	
				Filing Date	July 14, 2009	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				First Named Inventor	Maguire	
				Art Unit	3645	
				Examiner Name	J. R. Hulka	
Sheet	3	of	4	Attorney Docket Number	038495/369324	
OTHER DOCUMENTS						
Examiner Initials*	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.				English Language Translation Attached
	26	KLEIN, MARTIN; Side Scan Sonar; Offshore Services; April 1977, pp. 67, 68, 71,72, 75				
	27	KLEIN, MARTIN; New Capabilities of Side Scan Sonar Systems; date unknown; pp. 142-147				
	28	KLEIN, MARTIN; Sea Floor Investigations Using Hybrid Analog/Digital Side Scan Sonar; date unknown; 18 pages				
	29	KONGSBERG MARITIME AS; Side Looking Transducer, $200 \mathrm{kHz}-0.5 \mathrm{x} 49$, 200 kHz side looking transducer for shallow water and surveying and high resolution; date unknown; 2 pages				
	30	KONGSBERG SIMRAD AS; ConCat Containerised Catamaran, Inshore hydrographic survey vessel that fits in a container, Rev. B, April 2004; 4 pages				
	31	KVITEK, RIKK ET AL.; Final Report, Early Implementation of Nearshore Ecosystem Database Project Tasks 2 and 3; http://seafloor.csumb.edu/taskforce/html $\% 202 \% 20 \mathrm{web} /$ finalreport.htm; July 29 , 1999; 92 pages				
	32	LAW, G., Sideways Glance, Side- and down-scan Imaging Open New Windows in Fishing Finding, Electronics, November 2011, pp. 28-29				
	33	LEONARD, JOHN L.; Cooperative Autonomous Mobile Robots; date unknown; 11 pages				
	34	Maritime surveys takes delivery of SeaBat 8160; Sea Technology, Jul 2001; http://findarticles.com/p/articles/mi_qa5367/is_200107/ai_n21475675/; webside printed June 30, 2010				
	35	MARINE SONIC TECHNOLOGY, LTD.; Sea Scan® PC Side Scan Sonar System Information/Specifications Sheet; September 9, 2002; 10 pages				
	36	MESOTECH; Mesotech Model 971 Sonar System Summary; March 26, 1985, 2 pages				
	37	OUGHTERSON, B., Sophisticated Sonar Reveals Detailed Images Recently Unimaginable. Is It Too Much too Soon?, Basic Instincts, pp. 75-78				
	38	RAYMARINE, L750 Fishfinder, Operation Handbook; date unknown; 93 pages				
	39	RAYTHEON MARINE COMPANY; Installation Instructions; October 1998; 2 pages				
Examiner Signature				Date Considered		

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. LEGAL02/33545027v1

Submitted July 31, 2012

Espacenet

Bibliographic data: JP4357487 (A) - 1992-12-10

SIDE LOOKING SONAR

Inventor(s):
 Applicant(s):
 Classification:
 Application number:
 Priority number(s):

MORIMATSU HIDEJI; SHIBUYA SHOZO \pm FURUNO ELECTRIC CO \pm

- international: G01S15/89; (IPC1-7): G01S15/89
- European:

JP19910172240 19910712
JP19910172240 19910712 ; JP19900212189 19900810

Abstract of JP4357487 (A)

PURPOSE:To measure the position of an object under water accurately by a method wherein a phase difference is determined at input points of two receivers with respect to a measuring point by calculation and a phase difference is measured with two receivers for the same measuring point to obtain a deviation of phase so that the phase difference measured is corrected by the deviation of phase.
CONSTITUTION:When a trigger pulse from a trigger pulse generator 3 is inputted into a CPU21 through an input device 22, a measuring position of own ship and the bearing of navigation are read in form a highly accurate position measuring device 23 and a bearing measuring device 24 to determine an intersection with a contour line based on the value and a probing range inputted from a keyboard 25 beforehand.
 Distances are determined from the centers of receivers R1 and R2 to the sea surface below the intersection to obtain a phase difference phi" corresponding thereto. A phase difference phi' is measured between two receivers for the same measuring point to obtain phi'-phi"=dphi as deviation of phase between the two receivers. The phase difference measured actually thereafter is corrected by the deviation dphi of phase to remove the deviation of phase difference generated between two receiving systems thereby measuring the position of an object under water accurately.
（51）Int．Cl．${ }^{5}$
G01S 15／89

識別記号 庁内整理番号
A 8113－5J

審査請求 未請求 請求項の数 2 （全 11 頁）

（54）【発明の名称】 サイドルツキングソナー
（57）［要約］
【目的】 2 つの受信系間で生じ位相のずれをなくして正確な水中探知を可能にする。
【構成】 予め正確に測定されたある測定点に対し，計算により， 2 つの受波器の入力点での位相差 $\phi^{\prime \prime}$ を求め ておき，そして同じ測定点に対して 2 つの受波器により位相差 ϕ^{\prime} を測定し，$\phi^{\prime}-\phi^{\prime}=\mathrm{d} \phi$ を 2 つの受信系間 での位相のずれとして，これ以降に実際に測定した位相差をこの位相のずれ d ϕ で補正することにより， 2 組の受信系間で生じる位相差のずれを除去して水中物体の位置を正碓に測定する。

【特許請求の範囲】

【請求項1】鈴直線に対し所定角を形成する直線上の所定距離離れた位置に設けられた一対の第 1 および第 2 の受波器を備え，いずれか一方の受波器より，垂直方向 に広くて水平方向に狭い送波ビームを形成し，前記ビー ムのエコーを第1及び第2の受波器で捕捉し，これら第 1 および第2の受波器にそれぞれ接続される第 1 および第2の受信回路より得られる両受信号間の位相差を位相差検出手段で検出し，該位相差とエコーの帰来に要した時間とに基づき被探知物体の深度および自船からの被探知物体までの水平距離を算出表示するサイドルッキング ソナーにおいて，予め計測した海底の深度情報を記憶す る深度情報記憶手段と；海底のある測定点よりのエコー に対して上記位相差検出手段で検出された位相差 ϕ^{\prime} と，前記と同じ測定点に対して前記深度情報記譩手段よ り読み出した深度及び，測位装置で得られる前記測定点 に対する自船位置の水平距離により求められる，第1お よび第2の受波器の入力点での位相差 ϕ＂とから，第1 の受波器および受信回路と，第2の受波器および受信回路との位相特性の差異により，兩受信系を通過する信号間に生じる位相のずれとして $\phi^{\prime}-\phi "=\mathrm{d} \phi$ を演算する位相ずれ演算手段と；測定時に前記位相差検出手段で検出される位相差を，前記位相ずれ演算手段で演算された位相のずれd ϕ で補正する補正手段と；を備えたことを特徵とするサイドルッキングソナー。
【請求項2】鑵直線に対し所定角を形成する直線上の所定距離離れた位置に設けられた一対の第 1 および第 2 の受波器を備え，いずれか一方の受波器より，垂直方向 に広くて水平方向に狭い送波ビームを形成し，前記ビー ムのエコーを第 1 及び第 2 の受波器で捕捉し，これら第 1 および第2の受波器にそれぞれ接続される第 1 および第2の受信回路より得られる両受信号間の位相差を位相差検出手段で検出し，該位相差とエコーの帰来に要した時間とに基づき被探知物体の深度および自船からの被探知物体までの水平距離を算出表示するサイドルッキング ソナーにおいて，当硋サイドルッキングソナーの送受波 ビームと一部重なる多数のペンシル形送受波ビームを自船の下方および側方に形成し，エコーの帰来するまでに要する時間と，各ペンシルビームの方向から被探知物体 の深度および自船からの被探知物体までの水平距離を算出するスキャニングソナーで計測した前記深度および水平距離を受ける深度情報入力部と；水中のある測定対象 よりのエコーに対して上記位相差検出手段で検出された位相差 ϕ^{\prime} と，前記深度情報入力部に入力された，前記同じ測定対象に対する深度および水平距離により求めら れる，第1および第2の受波器の入力点での位相差 $\phi^{\prime \prime}$ とから，第1の受波器および受信回路と，第2の受波器 および受信回路との位相特性の差異により，両受信系を通過する信号間に生じる位相のずれとして $\phi^{\prime}-\phi^{\prime \prime}=\mathrm{d}$ ϕ を演算する位相ずれ演算手段と；測定時に前記位相差 50

検出手段で検出される位相差を，前記位相ずれ演算手段 で演算された位相のずれd ϕ で補正する補正手段と；を備えたことを特箌とするサイドルッキングソナー。【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は，自船の側方に対し広範囲に水中を探知するサイドルッキングソナーに関する。
【0002】
【従来の技術】サイドルッキングソナーは，図1に示す 10 ように，自船の両舷に装備した送受波器から左右に拡が る扇状の超音波ビーム（例えば扇形角 60° ，航行方向 の拡がり角 1.6° ）を送波し，そのエコーを同送受波器 にて検出することにより，海底の起伏，底質変化，魚群等を検出レベルに応じて濃淡あるいは色別表示するもの である。
【0003】図2は送受波器の取り付け例を示してお り，両舷にそれぞれ二つの受波器 R_{1}, R_{2} を備え，一方の受波器 R_{2} は送波兼用としている。以下に，これらの送受波器を用いた水中物体の深度および水平距離の測定法 20 を図3を用いて説明する。
•0004】 R_{1} およびR2は右較側の受波器であり，S を水中物体とする。両受波器 R_{1}, R_{2} 間の距離をD，鉛直方向に対して両受波器 R_{1}, R_{2} を結ぶラインのなす角度を α ，両受波器 $\mathrm{R}_{1}, \mathrm{R}_{2}$ の中点 O と水中物体 S とを結 ぶ線分OSの長さをr，中点Oに対する水中物体 S の水平および深度を h, d ，両受波器 $R_{1}, ~ R_{2}$ を結ぶラインに垂直な方向と線分OSのなす角度を θ とする。
【0005】線分 $\mathrm{R}_{1}-\mathrm{S}$ と線分 $\mathrm{R}_{2}-\mathrm{S}$ との長さの差を ΔY とすると，
$30 \Delta Y=2 \cdot(D / 2) \cdot \sin \theta$
とみなせ，用いた音波の波長を入とすると ΔY における位相差 ϕ は，
$\phi=360^{\circ} \cdot \Delta \mathrm{Y} / \lambda$
$=360^{\circ} \cdot \mathrm{D} \cdot \sin \theta / \lambda$
となる。（2）式より，
$\theta=\sin ^{-1}\left\{\phi \cdot \lambda /\left(360^{\circ} \cdot \mathrm{D}\right)\right\}$
中点 O からみた水中物体 S の方向を $\theta \mathrm{h}$ とすると，
$\theta \mathrm{h}=\alpha+\theta$（4）
が得られる。
【0006】水中音速をC，線分OSを音波が往復する時間を t とすると直線距離 r は，
$\mathrm{r}=\mathrm{t} \cdot \mathrm{c} / 2$
従って，
$\mathrm{d}=\mathrm{r} \cdot \sin \theta \mathrm{h}$
$\mathrm{h}=\mathrm{r} \cdot \cos \theta \mathrm{h}$
が得られる。尚，t は，$O-S$ を往復する時間である が， $\mathrm{R}_{2}-\mathrm{S} \fallingdotseq \mathrm{O}-\mathrm{S}$ とみなせるので線分 $\mathrm{R}_{2}-\mathrm{S}$ を往復 する時間とした。
【0007】このように，受波器 R_{2} で送波したビーム に伴う同一水中物体よりのエコーを二つの受波器 R_{1} ，R

RAY－1002
23 of 737

3
2にて受波し，このときの受波信号の位相差，つまり距離差を測定することにより，二つの受波器に対する水中物体の方向が求まる。一方，水中物体S までの直線距離 r は，音波の要した往復時間より求まるので（ 6 ）および （7）式から水中物体の深度 d および自船直下からの水平距離hが決定される。
【0 00 8】
【発明が解決しようとする課題】上記の従来の測定装置 では，各舷毎に受波器およびこれらに接続される受信回路の 2 組の受信系が設けられているため，上記位相差を正確に求めるためには，2組の受信系の間で位相特性が同じになるように，つまり両受信系で生じる位相遅れが等しくなるように調整する必要があるが，経年変化や温度変化等により，受波器および受信回路で位相特性に差 が生じ，測定した前記位相差にこのような位相特性の差異による位相のずれが含まれると，水中物体の正確な位置を測定できなくなるといった課題があった。本発明 は，上述した課題を解決するためになされたものであ り， 2 組の受信系間で生じる位相のずれを補正すること により，水中物体の位置を正確に測定できるサイドルッ キングソナーを提供することを目的とする。【0009】
【課題を解決するための手段】第1発明のサイドルッキ ングソナーは，鉛直線に対し所定角を形成する直線上の所定距離離れた位蒖に設けられた一対の第 1 および第 2 の受波器を備え，いずれか一方の受波器より，垂直方向 に広くて水平方向に狭い送波ビームを形成し，前記ビー ムのエコーを第 1 及び第 2 の受波器で捕捉し，これら第 1 および第2の受波器にそれぞれ接続される第 1 および第2の受信回路より得られる両受信号間の位相差を位相差検出手段で検出し，該位相差とエコーの帰来に要した時間とに基づき被探知物体の深度および自船からの被探知物体までの水平距離を算出表示するサイドルッキング ソナーにおいて，予め計測した海底の深度情報を記億す る深度情報記憶手段と；海底のある測定点よりのエコー に対して上記位相差検出手段で検出された位相差 ϕ^{\prime} と，前記と同じ測定点に対して前記深度情報記憶手段よ り読み出した深度及び，測位装置で得られる前記測定点 に対する自船位置の水平距離により求められる，第 1 お よび第 2 の受波器の入力点での位相差 ϕ^{\prime}＂から，第 1 の受波器および受信回路と，第2の受波器および受信回路との位相特性の差異により，両受信系を通過する信号間に生じる位相のずれとして $\phi^{\prime}-\phi "=d \phi$ を演算する位相ずれ演算手段と；測定時に前記位相差検出手段で検出される位相差を，前記位相ずれ演算手段で演算された位相のずれd ϕ で補正する補正手段と；を備えたことを特徵とする。
【0 0 1 0 】 第2発明のサイドルッキングソナーは，鉛直線に対し所定角を形成する直線上の所定距離離れた位置に設けられた一対の第1および第2の受波器を備え，

いずれか一方の受波器より，垂直方向に広くて水平方向 に狭い送波ピームを形成し，前記ビームのエコーを第1及び第 2 の受波器で捕捉し，これら第 1 および第 2 の受波器にそれぞれ接続される第 1 および第 2 の受信回路よ り得られる両受信号間の位相差を位相差検出手段で検出 し，該位相差とエコーの帰来に要した時間とに基づき被搩知物体の深度および自船からの被探知物体までの水平距離を算出表示するサイドルッキングソナーにおいて，当該サイドルッキングソナーの送受波ビームと一部重な 10 る多数のペンシル形送受波ビームを自船の下方および側方に形成し，エコーの帰来するまでに要する時間と，各 ペンシルビームの方向から被探知物体の深度および自船 からの被探知物体までの水平距離を算出するスキャニン グソナーで計測した前記深度および水平距離を受ける深度情報入力部と；水中のある測定対象よりのエコーに対 して上記位相差検出手段で検出された位相差 ϕ^{\prime} と，前記深度情報入力部に入力された，前記同じ測定対象に対 する深度および水平距離により求められる，第1および第2の受波器の入力点での位相差 ϕ＂とから，第 1 の受 20 波器および受信回路と，第2の受波器および受信回路と の位相特性の差異により，両受信系を通過する信号間に生じる位相のずれとして $\phi^{\prime}-\phi "=\mathrm{d} \phi$ を演算する位相 ずれ演算手段と；測定時に前記位相差検出手段で検出さ れる位相差を，前記位相ずれ演算手段で演算された位相 のずれd ϕ で補正する補正手段と；を備えたことを特徴 とする。

【0011】

【作用】図4において，ある海底点からのエコーが受波器 R_{1} および R_{2} に入射するときの位相差が ϕ であって ϕ_{1} ，受波器 R_{2} および受信回路 S_{2} で生じる位相遅れを $\mathrm{d} \phi_{2}$ とすると，位相差検出回路Tより出力される位相差中＇は，
$\phi^{\prime}=\phi+\left(\mathrm{d} \phi_{1}-\mathrm{d} \phi_{2}\right)$
となる。 $\mathrm{d} \phi_{1}-\mathrm{d} \phi_{2}=\mathrm{d} \phi$ が二つの受信系間で生じる位相のずれである。
【0012】一方，等深線図などから各海底点に対する深度を記憶させた深度情報記譩手段から珫み出し，この深度と，前記測定点に対して測位装置の出力する自船位 40 置を用いて演算した自船からの水平距離とに基づき，第 1 および第2の受波器の入力点での位相差 ϕ＂が演算に より求められる。深度情報記憶手段から読み出した深度 が正確でかつ，二つの受信系統間で位相のずれがなけれ ば，$\phi^{\prime \prime}=\phi^{\prime}$ となるが実際には二つの受信系統間に位相 のずれd ϕ があり，この位相のずれ ϕ は，次式で求ま る。
$\phi^{\prime}-\phi "=d \phi \quad$（9）
【0013】このようにして位相差のずれ d ϕ がわかれ ば，測定時に位相差検出手段で検出された位相差 ϕ^{\prime} に 50 対して，補正手段により位相差のずれd ϕ で補正すれ

RAY－1002 24 of 737

5
ば，前記位相差 ϕ^{\prime} に含まれていた位相差のずれd ϕ が除去される。
【0 0 1 4 】 第2発明は，上記の予め計測した海底の深度情報に代えて，スキャニングソナーによる正確な深度情報を用いるものであり，ここでサイドルッキングソナ ーとスキャニングソナーとの相異点について説明する。 サイドルッキングソナーは図5に示すように，船底から船首方向には狭い角度（ $\Phi \mathrm{L}$ ）で左舷および右舷方向には それぞれ広い角度（ $\theta \mathrm{L}$ ）の送受波ビーム 100 を形成す ることにより，X，Yで示す領域が探査される。このソ ナーは，航行方向の分解能が優れており，これにより海底を探査すれば水中俯瞰図ともいうべきものが得られ，例えば朝日に照らされた山々を飛行機から眺めているか のごとく，遠方まで海底の起伏が㢿影でもって細かに表示されるので海底質を的確に知ることができる。しか し，このソナーでは，上述した両受波系統における位相差が原因で探知物体に対する深度および水平距離が不正確であるという欠点がある。
【0 0 1 5 】 一方，スキャニグソナーでは図6に示すよ うに，船底より，船首方向に狭く（例えば 1.6° ），両舷側方向に扇状に広い（ 90° ）送波ビーム 101 を形成 し，一方，この送波ビーム101と直交するように，船首方向に広く（ 20° ），側方向に狭い（ 2° ）受波ビーム 102 を形成し，かつこの受波ビーム102を側方向に走査することにより，送波ピーム101による領域 Z が順に探査される。船の真下付近での探知物体の深度およ び水平距離を正確に検出できるという利点があるが，俯角が小さくなる側方遠方で分解能が悪くなり，そのため海底の細かな起伏がわからず，深度および水平距離も不正確になるという欠点がある。
【0016】このようにスキャニングソナーにおいては船の直下方向で高い分解能が得られるので，この直下方向の正確な探査結果でもってサイドルッキングソナーに おける両送受波系統の位相差を補正しようとしたもので あり，その具体的な構成についてほ実施例にて説明する こととする。
【0017】
【実施例】図7は，本発明のサイドルッキングソナーの一実施例を示す制御ブロック図であり，この図7では，右舷側の 2 つの受波器 R_{1} ， R_{2} の受信系における位相差 を検出する部分のみを示しており，左触側も同じ構成と なる。 R 1_{1} および R_{2} は既述の受波器であり，いずれも I個の超音波振動子で構成され，一方の受波器 R 2 は送波兼用としている。 3 は，トリカパルスを発生するトリカ パルス発生器であり，4は，トリガパルス発生器3より のトリガパルスにより受波器R2に送信電力を供給する送信増幅器である。 5 および 6 は，受波器 R_{1} および R_{2} で検出されたそれぞれ I 個の受波信号を増幅する受信増幅器である。 7 及び 8 は受信増幅器 5 および $6 よ り の$ 出力信号が零点を負から正に横切る時点を検出してパルス

6
を出力するゼロクロス立上り検出器である。9は，クロ ックパルスを発生するクロックパルス回路であり，10 は，カウンタであり，ゼロクロス立上り検出器 8 よりの パルスがリセット信号として入力されると，クロックパ ルス回路9よりのクロックバルスを0からカウントす る。11は，ラッチ回路であり，ゼロクロス立上り検出器7よりのパルスがセット信号として入力されたとき， カウンタ10におけるカウント値をラッチし，その値 は，加算器 12 とメモリ13とに送出される。
10 【0 0 1 8 〕 1 4 は，クロックバルス回路であり，15 は，カウンタであり，前記トリガパルス発生器 3 より出 カされるトリガがリセット信号としてス力されたときに クロックパルス 14 よりのクロックパルスを 0 からカウ ントする。そのカウント値は，切替器16に供給される と共に，Rゅax値と比較する比較器 17 に入力され，こ の比較器 17 の出力信号は，切替器 16 の切替信号とし て送出されるとともにパルス発生器 18 に入力される。
【0019】21は，CPUであり，ROM27に格納 された制御プログラムに従って後で述べるような演算を
20 行う。 22 は入力装置であり，自船の位置を検出する高精度測位装置 23 ，方位を㛟出する方位測定装置 24 お よびキーボード 25 よりの信号が入力されるとともに，前記トリカパルス発生器3よりのトリガパルスおよびパ ルス発生器 1 8 より出力されるメモり完了パルスがス力 される。26は，CPU21での演算に必要となる各種 データを随時記憶するRAMである。28は，深度情報記憶手段である等深線ROMであり，各等深線毎の位置 を緯度経度で表したものをROM化したものであり，位置をアクセスすることによりその地点の海底深度が得ら

$-\mathrm{d} \phi$ の値を前記加算器 12 に送出する。

〔0020】上記構成の制御回路の動作を説明する。図 8 に示す時点 T_{0} ， T_{2} ， T_{4} は受波器 R_{2} の送信タイミン グを示しており，時点 T 0 にて送信のためにトリガパル ス発生器3よりトリカパルスが出力されると，カウンタ 15は＂0＂にリセットされクロックパルス回路14よ りのクロックパルスがカウントされると共に，送信増幅器 4 より送信信号が出力され，受波器 R_{2} より図 1 に示 したような右䮄側に屝状に拡がる超音波のビームが送波 される。この超音波ビームの送波により，最初に自船直下の海底面よりのエコーが受波器 R_{2} で検出され，次に わずかな時間差をおいて受波器 R1 て検出され，受信増幅器 6,5 より図 9 に示すような信号が出力される。受信増幅器 6 の出力信号に対して，ゼロクロス立上り検出器8により零レベルを負から正に横切ったときの時点 t 1 が検出されてパルスが出力される。このパルスがリセ ット信号としてカウンタ10に供給されることにより， カウンタ10はクリアされクロックパルス回路9より出 カされるクロックパルスがカウントされ，そのカウント 50 値が逐次にラッチ回路11に入力される。

RAY－1002
25 of 737

【0021】一方，受信増幅器5 の出力信号に対して は，ゼロクロス立上り検出器7により需レベルを負から正に横切ったときの時点 t 。が検出されてパルスが出力 され，このパルスがセット信号としてラッチ回路11に供給されると，このラッチ回路11は，入力されていた カウント値をラッチする。従ってラッチ回路11は，時点 t_{1} から時点 t_{2} までの間のクロックバルスの数をラッ チすることになる。このパルス数は，ニつの受波器 R_{1} ， R_{2} の取り付け位置と水平物体の方向に起因する時間差 であり，クロックパルス回路 9 のパルスの周期を，用い た音波の周期の1／360にすれば，この時間差は上記 の位相差 ϕ^{\prime} で表され，この値 ϕ^{\prime} は加算器 12 およびメ モり 13 に入力される。続く時点 t_{3} から t_{4} 間において も同様にして位相差 ϕ^{\prime} が求められ，このようにして時間が経過するにつれて自船直下より右方に次第に弾ざか る海底面よりのエコーが次々に検出されてそれらの位相差中＇がメモり13に送出される。
【0022】一方，カウンタ15のカウント值が切替器 16 を介してメモリ13にアドレスとして送出されててお り，かつ，この切替器 16 を介してライト信号が印加さ れているので，メモリ13に入力される位相差中＇は所定のアドレスに次々に格納される。又，時点T。以降に おいてはCPU21にて図10のフローチャートに示し た動作が並行して行われる。
〔0023】即ち，トリカパルス発生器3よりのトリガ パルスがス力装置 22 を介してCPU21に入力される と，ステップS 1 からステップS 2へと進み，高精度測位装㯰 23 および方位測定装置 24 よりの自船の測位置 および航行の方位を読み込み，この値と予めキーボード 25 により入力されている探査䉓囲（本実施例では両形㑡方向に 1000 m ）をもとにして，図 11 に示す等深線図において右胘㑡の探査範囲での等深線との交点A， B，C，D，Eを求める。次のステップS 3 で前記の各交点までの水平距睢 h を求め，この h と，このときの深度 d （等深線の値）とを（6）式及び（7）式に入力することに より，受波器 R_{1} と R_{2} の中心から各交点下の海面までの距離 r を求め，又，そのときの位相差 ϕ＂を（2）式から求める。ステップS 4では，カウンタ15のカウント値 がRmaxとなり，パルス発生回路18からメモリ完了パ ルスが出力される時点 T_{1} になるのを待つ。尚，ステッ プS 2 およびステップS 3 の処理時間は短く，メモリ完了パルスが出力される時点 T_{1} で既に終了している。
〔0024】さて，時点 T_{1} になり，比較器 17 から切替器 16 に対して切替信号が送出され，切替器 16 の接点が右方に切り替わることにより，CPU 21 は，ステ ップS5において，この切替器16を介してメモリ13 に，リード信号を送出し，更に距離 r における測定位相差 ϕ^{\prime} を読外出すべく，所定のアドレス信号Rをメモリ 13 に送出することにより，メモリ13に記檍されてい た交点AないしEに対する位相差 ϕ^{\prime} を順次謊み出す。

ここで $\mathrm{r}=\mathrm{R} \times \Delta \mathrm{r}$ である。 $\Delta \mathrm{r}$ はカウンタ15のスカ クロックバルス周期 $\mathrm{t} p$ とすると，$\Delta \mathrm{r}=\mathrm{c} \cdot \mathrm{t} \mathrm{p} / 2$ と なる。以上の説明でわかるように，時点 T_{0} ないし T_{1} の間がエコー取り込み期間であり，従って，この期間で所望の範囲よりのエコーが検出されるよう，比較器 17 に対するRmaxの設定値が決められる。なお，比較器 17 はカウンタ15のカウント値が 0 になった時，切替器 1 6 を左方へ切り替える。
〔0025】図12は，各交点AないしEに対する，実 10 測の位相差 ${ }^{\prime}$（ （記号で示す）と等深線図より求めた位相差 ${ }^{\prime}$＂（記号で示す）とを示したものであり，ステップ S6では，これらの各交点で対応する両位相差の引き算，$\phi^{\prime}-\phi^{\prime}$ を行い，それらの平均値を上記の位相差の ずれd ϕ とする。このステップS 5 およびステップS 6 の処理時間は短く，次にトリガパルスが出力される時点 T2には終了している。
介して加算器 12 に送出されることにより，この加算器 12 において，$\phi^{\prime}-\mathrm{d} \phi$ の演算が行われ，両受波器 $20 \mathrm{R}_{1}, ~ \mathrm{R}_{2}$ の入射時の位相差 ϕ が出力される。尚，ここで補正される位相差 ϕ^{\prime} は前回の送信で得た一 $\mathrm{d} \phi$ で補正 されることになるが，送信間隔程度の垁い時間では ${ }^{(1)} \phi$ の値は変化しないので差し支えない。もし，今回の送信 に基づくd ϕ で今回の位相差 ϕ^{\prime} を補正するには，メモ リ 13 を 2 檤使用して，次回の送信時に片方のメモリに次回の位相差 ϕ^{\prime} を記億させると共に今回の位相差 ϕ^{\prime} を カウンタ15の値に従って珫み出し，d ϕ で補正すれぼ よい。
【0027】第2発明になるサイドルッキングソナーの 30 一実施例を図 13 および図 14 に示している。図 13 に おいては図7と異なる箇所について述べる。31は，後 で述べるスキャニングソナーにおける受波ビーム数Mと同值としたM進のHカウンタであり，トリカパルス発生器3より出力されるトリカがリセット信号として入力さ れたときクロックパルス14よりのクロックパルスを0 からカウントする。そのカウント値は，図14の切替器 46 に供給され，又，図14の切换器43の切換信号と して送出され，更にそのカウント値が（ $\mathrm{M}-1$ ）から 0 に なる時の析上げパルスがRカウンタ15に送出される。 Rカウンタ15はN進カウンタであり，トリガバルス発生器3より出力されるトリカがリセット信号としてスカ されたとき，Hカウンタ31よりの晰上げパルスを0か らカウントする。そのカウント値は，切換器16および図14の切換器 46 に供給されると共に， $\mathrm{R} \max \left(\mathrm{R}_{\max }\right.$ $<\mathrm{N})$ 値と比較する比較器 17 に入力される。この比較器 17 の出力は，パルス発生器 18 と，切換器 16 およ び図 14 の切換器 46 の各々の切換信号として送出され る。入力䒾直 22 にはパルス発生器 18 より出力される メモリ完了パルスが入力される。

RAY－1002 26 of 737

一に付加されるスキャニングソナー部の一実施例を示し ている。 R 3 およびTXは，受波器および送波器であ り，図15の展開図に示されるように，受波器 R 3 は，航行方向と直角の方向に」個の超音波振動子か配列され ており，送波器TXは，航行方向にk個の超音波振動子 が配列されている。右側にある $R_{1}, ~ R_{2}$ は，図 13 にお ける受波器であり，左側の R_{1}＇， R_{2}＇は左㱞㑡の受波器 である。
【0029】40は，送信增幅器であり，41は，受波器 R 3 の j 個の超音波振動子よりの受波信号をそれぞれ増幅する受信増幅器である。 42 は，位相合成回路であ り， j 系統の各受波信号を公知の技法で位相合成するこ とにより，図6で示されるように，側方向に順に走查さ れるM個の受波ビームを形成する。切換器43は，位相合成回路42により形成されたM個の受波ビームを順に取り出し，A／D変換器 44 にてデシタル化した後にメ モり45に供給する。
【0 0 3 0 】 上記冓成の制御回路の坋作を再び図8およ び図 9 を用いて説明する。図 8 に示す時点 $T_{0}, ~ T_{2}, ~ T$ 4は受波器 R_{2} およぴ送波器TXの送信タイミングを示し ており，時点Toにて送信のためにトリカバルス発生器 3よりトリカバルスが出力されると，Rカウンタ15お よびHカウンタ31は＂0＂にリセットされると共に，送信增幅器4，40より予め定められたパワー，パルス幅および周波数の送信信号が出力され，受波器R2によ り図5に示したように右舷側に康状に执がる送波ビーム 100 が形成され，又，送波器TXにより，図6に示し たように両玆方向に拡がる送波ビーム101が形成され る。そして，海底から反射された探知信号は受波器 $R_{1}, ~ R_{2}, ~ R_{3}$ で受波され，受信增幅器5，6，41に て増幅される。
〔0031】図13のサイドルッキングソナーにおいて は，超音波ビームの送波により，最初に自船直下の海底面よりのエコーが受波器R2で検出され，次にわずかな時間差をおいて受波器 R_{1} で検出され，受信増幅器 6,5 より図9に示すような信号が出力される。受信増幅器 6 の出力信号に対して，ゼロクロス立上り検出器 8 により零しベルを負から正に横切ったときの時点 t_{1} が検出さ そてパルスが出力される。このパルスがリセット信号と してカウンタ10に供給されることにより，カウンタ1 0 はクリアされクロックパルス回路9より出力されるク ロックパルスがカウントされ，そのカウント値が逐次に ラッチ回路11に入力される。
【0032】受信増幅器5の出力信号に対しては，ゼロ クロス立上り検出器7により零とベリを負から正に横切 ったときの時点 t_{2} が検出されてパルスが出力され，こ のパルスがセット信号としてラッチ回路11に供給され ると，このラッチ回路 11 は，入力されていたカウント值をラッチする。従ってラッチ回路 11 は，時点 t_{1} か ら時点 t 2 までの間のクロックバルスの数をラッチする 50

ことになる。このパルス数は，二つの受波器 $\mathrm{R}_{1}, \mathrm{R}_{2}$ の取り付け位置と水平物体の方向に起因する時間差であ り，クロックパルス回路 9 のパルスの周期を，用いた音波の周期の1／360にすそば，この時間差は上記の位相差 ϕ^{\prime} で表され，この値 ϕ^{\prime} は加算器 12 およびメモリ 13 に入力される。続く時点 t_{3} から t_{4} 間においても同様にして位相差 ϕ^{\prime} が求められ，このようにして時間が経過するにつれて自船直下より右方に次第に遠ざかる海底面よりのエコーが次々に検出されてそれらの位相差

【0 0 3 3 】 一方，図 1 4 のスキャニングソナー部にお いては，送波器TXによる送波により，海底面よりのエ コーが受波器Rsで受波される。このJ個の受波信号 は，位相合成回路42により位相合成され，走查角の異 なるM個の受波ビームが形成される。Hカウンタ31よ りの切換信号により切換器 43 が制御されることによ D，M個の受波ビームの中からHカウンタ31のカウン ト値が示す方向の受波ビームが選択され，A／D変換器 44を介してメモリ45に格納される。
20【0034】ここでスキャニングソナーにおける動作を図17を用いて更に詳しく述べる。 θ smは，m番目のビ一ムの直下方向dよりの角度（右絃側を＋）を示し，θ sm $=\Delta \theta \mathrm{s}\{(\mathrm{M}-1) / 2-\mathrm{m}\}$ ，ここで M は奇数であ D，（ $\mathrm{M}-1$ ）／ 2 番目のビームは直下方向である。 Rm は，m番目のビーム内に存在していた海底のメモリ45 におけるR方向の位置を示す。rmは，m番目のビーム内に存在していた海底の自船からの直線距離（単位m）を示し， $\mathrm{rm}=\Delta \mathrm{r} \times \mathrm{Rm}$ である。 hm ， d 畨， m 番目のビ一ム内に存在していた海底の自船からの水平距離と進度 30 である。h m は右形㑡を＋， d 㥸下方を＋としておら， いずれも単位はメートルである。 $\mathrm{hm}=\mathrm{rm} \times \sin \theta \mathrm{sm}, ~ d m=r m \times \cos \theta \mathrm{sm}$ の関係がある。又，$\Delta \mathrm{r}$ はメモリ13およびメモリ 45
夕 31 の山力する标上げパルスの周期をtpとすると， $\Delta \mathrm{r}=\mathrm{c}$ • $\mathrm{tp} / 2$ となる。
〔0035］図13，図14に戻り，メモリ13および メモり 4 5には，それぞれサイドルッキングソナーの位相差とスキャニングソナーの探知信号が $\Delta \mathrm{r}(\mathrm{m})$ ことに 10 rmax まで 1 送信分記境される。 rmax は，本発明装置が使用される海域において図5におけるビーム端でも海底 に到達するのに十分な船からの直線距離である。ここで $\mathrm{r} \max =\mathrm{R} \max \times \Delta \mathrm{r}$ である。ラッチ回路11およびA／ D変換器 44 の出カビット数を β_{1} ，β_{2} とすると，メモ リ13，45の記境容量は，それぞれ $\beta_{1} \times R \max , ~ \beta_{2}$ $\times \mathrm{Rmax} \times \mathrm{M}$ となる。
【0036】Rカウンタ15のカウント値がRmaxにな るまでのToないしT I_{1} 間は切換器 $16, ~ 46$ は図示した ように左方に切り替わっており，従って，Rカウンタ1 5のカウント値は切换器 16 を介してメモリ13にアド

RAY－1002
27 of 737

11
レスとして送出され，かつ，この切換器 16 を介してラ イト信号が印加されているので，メモり13に入力され る位相差 Φ^{\prime} ほ所定のRアドレスに次々に格納される。
【0 0 3 7 】 一方，Hカウンタ31およびRカウンタ1 5 のカウント値が切換器 46 を介してメモリ 38 に送出 されており，かつ，この切換器 46 を介してライト信号 が印加されているので，メモリ45に入力される探知信号は所定のRとHで決まるアドレスに次々に格納され る。
【0038】さて，時点 T_{1} になり，メモリ 13 ， 45 への信号の書込みが終了すると，比較器 17 から切替器 16，46に対して切替信号が送出され，切替器 16 ， 34 の接点が右方に切り替わると同時に，パルス発生器 18 よりのメモリ完了パルスが入力装置22を介してC PU21に入力されると，CPU21は，図16のステ ップS 1 1 からステップS 1 2へと進み，切愌器 4 6 を介してメモリ45にリード信号を送出し，スキャニング ソナーのm番目のビームで受信した $\mathrm{r}=0$ ないし r max までの探知信号を読み出すべく，所定のアドレス信号を メモリ45に送出する。つまりHアドレスはmとし，R アドレスを 0 から順にRmax－1とする。
【0039】次に読み出したRmax個の探知信号中，例 えば最大の探知信号が存在している位置すなわちRアド レス値 R m を海底位置とする。そしてRm，$\theta \mathrm{sm}$ よりr m，d II，h凹を求め，その時の位相差 ϕ＂を（2），（4）， （6），（7）式から求める。なお，図17と図3の0点は一致しているものとみなす。
【0040】次にCPU21は，ステップS 1 3 におい て，切替器16を介してメモリ13に，リード信号を送出し，Rmのアドレス信号をメモリ13に送出すること により，メモり13に記憶されていた r mに対する位相差 \mathbf{D}^{\prime} を茜み出す。これをスキャニングソナーの右半分 のビームに対して，即ち $m=0$ から $(M-1) / 2$ まで繰 り返す。
【0041】以上の説明でわかるように，時点Toない しT T_{1} の間がエコー取り込み期間であり，従って，この期間で所望の範囲よりのエコーが検出されるよう，比較器17に対するRmaxの設定値が決められる。
【0042】図18は，スキャニングソナーによる実測 の位相差 Φ（（記号で示す）と同じ距離上のサイドルッ キングソナーにより求めた位相差 ${ }^{\text {＂}}$（記号で示す）とを示したものであり，ステップS 4では，これらの各点で両位相差の引き算，$\phi \mathrm{m}^{\prime}-\phi \mathrm{m}^{\prime \prime}$ を行い，それらの平均値 を上記の位相差のずれd ϕ とする。このステップS 1 1 およびステップS 14の処理時間は短く，次にトリカパ ルスが出力される時点 T_{2} には終了している。
【0043】この位相差のずれーd Φ が出力装置29を介して加算器 12 に送出されることにより，この加算器 12 において，$\phi^{\prime}-\mathrm{d} \phi$ の演算が行われ，両受波器 R_{1} ， R_{2} の入射時の位相差 ϕ が出力される。尚，ここで しないよう異なるものでなければならないが，送波器T X と受波器 R_{3} は同じ周波数のものであり，受波器 R_{1} と R_{2} とは同じものである。又，受波器 $R_{1}, ~ R_{2}, ~ R_{3}$ をす べて同じ周波数のものにして送波器TXを省路すること もできる。
【0044】
【発明の効果】以上説明したように，本第1発明では，予め正確に測定されたある測定点に対し，計算により， 2 つの受波器の入力点での位相差 ${ }^{\prime}$＂を求めておき，そ して同じ測定点に対して 2 つの受波器により位相差 ϕ^{\prime} 20 を測定し，$\phi^{\prime}-\phi^{\prime \prime}=\mathrm{d} \phi$ を 2 つの受信系間での位相 のずれとして，これ以降に実際に測定した位相差をこの位相のずれd ϕ で補正するようにしたので， 2 組の受信系間で生じる位相差のずれを除去することができ，よっ て水中物体の位置を正確に測定できる。第2発明は，上記の予め計測した海底の深度情報に代えて，スキャニン グソナーによる正確な深度情報を用いるものであり，こ の装置によれはリアルタイムで正確な水中探知を行え る。

【図面の簡単な説明】

30 【図1】サイドルッキングソナーで形成されるビーム を示す斜視図
【図2】 サイドルッキングソナーにおける送受波器の取付け例を示す図
【図 3】 サイドルッキングソナーの動作原理を説明す るために用いた図
【図4】 本発明の原理を説明するために用いた図
【図5】 サイドルッキングソナーにおける送受波ビー ムを示す図
【図6】 スキャニングソナーにおける送受波ビームを 40 示す図

【図 7】 本第1発明のサイドルッキングソナーの一実施例を示す制御ブロック図
【図8】図7の制御ブロック図の動作を示すタイムチ ャート
【図9】図7の制御ブロック図の動作を示すタイムチ ャート
【図10】図7の制御ブロック図の動作を示すフロー チャート
【図11】右舷方向の探査範囲内における等深線図と の交点を示す図

RAY－1002 28 of 737

【図12】実測により得た位相差と，等深線からのテ ータに基つ゚き得た位相差とを示すグラフ
【図13】 本第2発明のサイドルッキングソナーの一実施例を示す制御プロック図
【図14】図13の装置に付加されるスキャニングソ ナー部の一実施例を示すブロック図
【図15】図13の装直における送受波器の取り付け例を示した展開図
【図16】図13の装置の動作を示すフローチャート
【図17】図13の装㯰において位相差の計算を説明 するために用いた図
【図18】スキャニングソナーにおけるビームの走查
を示した図
【符号の説明】
R 受波器
3 トリカパルス発生器
4 送信増幅器
5 受信増幅器
6 受信増幅器
7 ゼロクロス立上り検出器
8 ゼロクロス立上り検出器
9 クロックバルス回路
10 カウンタ
11 ラッチ回路
12 加算器

14
13 メモリ
14 クロックパルス回路
15 カウンタ
16 切替器
17 比較器
18 パルス発生器
21 CPU
22 入力装置
23 高精度測位装置
1024 方位測定装直
25 キーボード
26 RAM
27 ROM
28 等深線ROM
29 出力装置
31 カウンタ
TX 送波器
40 送信増幅器
41 受信増幅器
2042 位相合成回路
43 切換器
$44 \mathrm{~A} / \mathrm{D}$ 変換器
45 メモリ
46 切換器

【図1】

【図4】

【図2】

【図5】

（図3）

【図6】

［図7］

［図9］

【図10】

【図12】

【図11】

【図15】

〔図13】

【図14】

【図16】

【図17】

【図18】

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ${ }^{3}$:		(11) International Publication Number:	WO 84/01833
G01S 7/56, 15/93, 15/96 G01S 15/46	A1	(43) International Publication Date:	10 May 1984 (10.05.84)

(21) International Application Number: PCT/AU83/00159
(22) International Filing Date: 28 October 1983 (28.10.83)
(31) Priority Application Numbers:
(32) Priority Dates:
(33) Priority Country:
(71) Applicant (for all designated States except US): LEVY, Marilyn, Kay [AU/AU]; 45 Glenworth Road, Mount White, NSW 2250 (AU).
(71)(72) Applicant and Inventor: LEVY, Desmond, James [AU/AU]; 45 Glenworth Road, Mount White, NSW 2250 (AU).
(74) Agent: SPRUSON \& FERGUSON; G.P.O. Box 3898, Sydney, NSW 2001 (AU).
(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.
With amended claims.
(54) Title: SONAR SYSTEM

(57) Abstract

A sonar system suitable for small and medium sized boats which scans ahead, to port and to starboard, preferably at a distance related to depth below. The system includes a display (40) using series of LCD segments orientated in directions representative of the directions of scanning so that the displayed information can be instantly interpreted. Signals are dis- 3 played continuously until updated. The system also includes a transducer assembly for scanning in a plurality of discrete

Codes used to identify States party to the PCT on the front pages of pamphiets publishing international applications under the PCT.

AT	Austria
AU	Australia
BE	Beigium
BR	Brazil
CE	Central African Republic
CG	Congo
CH	Switzeriand
CM	Cameroon
DE	Germany, Federal Republic of
DK	Denmark
FI	Finland
FR	France
GA	Gabon
GB	United Kingdom
HU	Hungary
JP	Japan
KP	Democratic Peopie's Republic of Korea

LI	Liechtenstein
LK	Sri Lanka
LU	Luxembourg
MC	Monaco
MG	Madagascar
MR	Mauritania
MW	Malawi
NL	Netherlands
NO	Norway
RO	Romania
SE	Sweden
SN	Senegal
SU	Soviet Union
TD	Chad
TG	Togo
US	United States of America

- 1 -

"SONAR SYSTEM"
The present invention relates to a sonar system which is particularly, but not solely, suited for small and medium sized vessels such as private pleasure yachts and small commercial vessels. The invention is particularly useful When cruising near coral reefs and navigating narrow channels through mud and sand banks since the invention not only measures depth, but also scans ahead and to port and starboard.

Although lateral.scanning radar and sonar systems are known, such systems are complex and expensive, and as such, are only suitable for large scale vessels such as navy craft.

In known lateral scanning radars and sonar, rotating cathode ray tube displays are used. In such displays, the old signals fade as new signals on the rotating arm are displayed. Moreover, the cathode ray tube is difficult to read in bright sunlight as it does not provide a high contrast display.

SUMMARY OF THE INVENTION

It is an object of the present invention to overcome, or substantially ameliorate, at least one of the above described disadvantages by providing an economical sonar system suitable for small and medium sized boats which provides forward, port and starboard scanning as well as depth scanning.

According to the present invention, there is provided a sonar system for a boat for scanning ahead, to port and to starboard, said system comprising transducer means for transmitting scanning signals in a plurality of discreet scanning directions including ahead of the boat, to port and to starboard; electronic control means for activating said transducer means to transmit said scanning signals sequentially in said plurality of directions; receiving means for receiving the transmitted signal after reflection from objects; signal processing means connected to the output of said receiving means for determining distances of said objects from the received signals; and display means

- 2 -
connected to said signal processing means for displaying the determined distances in their respective directions.

Preferably, the sonar system has a display which utilises liquid crystal display (LCD) segments which display a measured value continuousiy until superceded by a newly measured signal.

Preferably, the sonar system monitors depth ahead at a distance related to the depth below. The depth ahead range can be set manually, or calculated automatically from the depth below. Typically, depth ahead (as well as depth to port and depth to starboard) are measured at a distance approximately six times the depth below. If desired, the sonar system can incorporate transducer means and associated display means for measuring and displaying depth abeam, or even depth aft.

Since the measured signals representing depth to port, ahead, starboard and below, are displayed continuously until updated, a simultaneous display of all signals is obtained. Moreover, by arranging the LCD segments in a suitable pattern, a quasi-analog display can be obtained.

Preferably, the sonar system incorporates an alarm Which is activated when the depth ahead varies more than a selected amount. This amount may be related to the depth below. Typically, the alarm volume increases and/or its pitch increases as the vessel approaches an obstacle such as a reef. In further preferred embodiments, different alarm tones are provided so that the operator is immediately able to distinguish audibly between obstacles to port, starboard and ahead.

Typically, the display means is capable of displaying a number of depth ranges. If the measured signal falls outside the selected range, an alarm is activated to indicate that the range selection requires changing or the gain requires adjustment.

The sonar system incorporates a transducer arrangement for transmitting and receiving signals in the required directions. In one embodiment, a transducer is provided for each scanning direction. Each transducer is connected

- 3 -
sequentially for a period of time sufficient to transmit and receive an echo from the maximum range selected. In another embodiment, a single transducer is physically orientated to the required scanning direction. The received echo is quantised to a number of time levels, and stored and displayed until the next echo is received for that particular scanning direction. The number of time levels is related to the number of display segments selected for the display means.

The transducer arrangement is preferably mounted on a single gimballed assembly mounted inside the hull of a glass reinforced plastic vessel, or mounted externally and protected by a glass reinforced plastic or ABS plastic hydrofoil protective cover.

Notwithstanding any other forms of the present invention, preferred embodiments thereof will now be described with reference to the accompanying drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic plan view of a scanning pattern of a sonar system according to one embodiment of the present invention:

Fig. 2 is a side elevational view of the scanning pattern of Fig. $1 ;$

Fig. 3 is a plan view of the scanning pattern of one beam of Fig. 1;

Fig. 4 illustrates one display layout for the sonar system;

Fig. 5 is a schematic block circuit diagram of the sonar system according to another embodiment of the present invention;

Fig. 6 is a schematic block circuit diagram of the signal processing circuit of Fig. 5;

Fig. 7 is a schematic block circuit diagram of part of the circuit of Fig. 6;

Fig. 8 is a schematic block circuit diagram of a clock circuit for use with the embodiment of Fig. 5;

Fig. 9 illustrates timing pulses for the circuit of

Figs. 5 to 8;
Fig. 10 is a cross-sectional plan view of a transducer arrangement of one embodiment;

Fig. 11 is a cross-sectional plan view of a transducer arrangement of another embodiment;

Fig. 12 is a side elevational view of part of the transducer arrangement of Fig. 11; and

Fig. 13 is a cross-sectional side elevational view of the transducer arrangement of Fig. 11.

DESCRIPTION OF PREFERRED EMBODIMENT
As shown in Figs. 1 to 3 , the sonar system of one embodiment of the present invention is designed to scan ahead and to port and starboard, as well as measuring depth (not shown). The beams typically have a horizontal beamwidth between 15° and 30°, and a vertical beamwidth of 7 to 10°. The transducer assembly is gimballed so that the beams are tilted almost straight ahead to provide maximum range in shallow water. Although five scanning directions are shown in Fig. 1 , any reasonable number of scanning directions can be obtained by suitable design of the transducer means. The design of the transducer means will be described below. For the sake of simplicity, the following description relates to a scanning pattern having three beams: port (F), ahead (A) and starboard (S) as well as depth measurement.

The circuit diagram for the sonar system is shown in Figs. 5 to 8. A first clock 50 generates a pulse train as shown in Fig. 9. The period of the first clock is greater than the maximum time required for a signal to be transmitted and received from the maximum desired range. An output of the clock 50 drives a 1 to 5 and restart decade counter 53 which provides sequential outputs MD, P, A, S and D as shown in Fig. 9. The output of the counter 53 is connected to a transducer multiplexer/driver 55 which sequentially activates the respective transducer for the port, ahead, starboard and depth beams, or orientates a single transducer in either the port, ahead, starboard or depth direction. The latter system will be described in
more detail below.
Each pulse from the first clock 50 also passes to a delay circuit 51 where it is delayed, typically by 10ms. A narrow pulse (typically 2 ms) is generated for every pulse from the clock pulse 50 as shown in wave form T in Fig. 9. The narrow pulses T activate a transmitter 52 having an oscillator therein, and also reset a counter 61 in a signal processing circuit 60 . The loms delay is provided in order to allow reed switches which connect the transducers to operate before the transmitter pulse is fired. This prevents sparking across the contacts and radio frequency interference. On receipt of each narrow pulse, the transmitter 52 will transmit a signal through the transducer 54 selected by the transducer multiplexer/driver 55. The signal is of suitable frequency e.g. 160 KHz . The signal is transmitted in the direction in which the transducer 54 is orientated, and received by receiver 56 after reflection from obstacles such as reefs, sandbanks, etc. The received signal is amplified in a tuned amplifier stage 57 with manual gain control andor automatic gain compensation in which the signal level is multiplied by a ramp voltage proportional to the time delay between the transmitted and received pulse. This time varying gain (TVG) compensates for normal attenuation of the signal through the water. An additional gain control stage can be included to reduce the gain for distances between zero and five times the depth below. This gain stage would be controlled by the period of the received echo from the bottom. Such gain controllers can be provided on the front panel of the sonar display 40 (Fig. 4) to enable the operator to adjust the gain of signals close to the vessel, and those further away from the vessel which in turn, permits the operator to choose between the detection of fish nearby or the distant detection of reefs and other obstacles. The amplified received pulse is then envelope detected in detector stage 58 and thereafter passed through a filter stage 59 to remove short radio frequency interference spikes. The signal output from the filter stage 59 is then input to a signal processing stage

60 shown in more detail in Fig. 6.
As shown in Fig. 6, the signal is passed through circuit 62 if it represents a longer, higher level echo or through circuit 63 if it represents a shorter, small echo such as would be caused by fish. A discriminator circuit can be used to distinguish between the two types of echoes. A three position switch 65 allows the operator to choose whether to display long or short echoes, or both. An external control (not shown) can be provided on the front panel of the display so that it is possible to adjust the threshold level of the small echoes. An adđitional "white line" stage as used in chart recorders can be included to display fish close to the bottom which would not normally be displayed separately from the bottom signal.

Signals which have been recognised by circuit 62 as being long echoes are used to trigger monostable 64 which has sufficient pulse length to trip all levels of the display. If both short and long echoes are chosen by switch 65, the short echoes (e.g. fish echoes) are displayed by the illumination of extra LCD bars above the depth reading.

The signal processing circuit 60 comprises a cyclic counter 61 which provides 21 sequential pulse outputs and then resets. The counter 61 is reset by every narrow pulse derived from the clock 50 and is used to measure the time difference between the transmitted and received pulses. Connected to outputs 5 to 21 of the counter 61 are 16 sub-circuits A1, A2 Al6. The number of sub-circuits corresponds to the number of LCD segments in each beam display (see Fig. 4); this number can be varied as desired by appropriate modification of the counter 61.

One sub-circuit is illustrated in more detail in Fig. 7. The echo signal selected by switch 65, the (reset) narrow pulses from clock 50 and an output (timing) pulse from the appropriate output of counter 61 are input to an AND gate 71, the output of which is connected to monostable 70. Hence, the monostable which is tripped corresponds to the elapsed time of the received echo. The time period of the monostables 70 is greater than the period of the first

- 7 -
clock 50. The output of each monostable 70 is switched by switch/multiplexer 72 to one of four flip-flops (FFP, FFA, FFS, FFD) according to the signal from a corresponding output ($\mathrm{P}, \mathrm{A}, \mathrm{S}, \mathrm{D}$) from counter 53.

The control signals $P_{R}, A_{R}, S_{R}, D_{R}$ which operate the filp-flops are derived from the output 21 of counter 61 via circuit 69. The outputs of the flip-flops FFP, FFA, FFS, FFD for sub-circuit $A(N)$ are connected to the Nth segments of the port, ahead, starboard, depth displays respectively.

Changing the range of the display can be accomplished by changing the frequency of the "range clock" input of counter 61. The range clock frequency can be set manually to a predetermined fraction of the clock 50 frequency, or it may be set automatically by using an automatic range selection circuit such as that shown in Fig. 8. In the automatic range selection circuit, the full scale range of the port, ahead and starboard channels is made nominally ten times the distance of the depth below.

In the automatic range selection circuit, a second clock 80 drives a decade counter 82 via a divider (20) stage 81. The decade counter 19 is reset by each MD pulse generated by the counter 53. In addition the counter 19 is stopped by the echo signal at the output of monostable 64. The value of the counter (between 1 to 200) at the time when the "stop" signal is received is stored by the counter 82 until the next MD pulse from counter 53. This value represents the depth of water below the boat and is used to set the divider stage 83 so that the output of the divider stage 83 is the frequency of the clock 80 divided by the currently stored count in counter 82.

An additional divider (10) stage 84 is switched in on the P, A, S cycles of counter 53. The stored count of the counter 82 is displayed in a digital display 85 on the display panel 40.

Alarm circuits are provided to warn of any decreage in depth to port, ahead or starboard in advance without travelling directly over that spot. In addition, the alarm

circuits perform this function without requiring constant manual adjustment of the minimum depth to be alarmed as in conventional depth founders. The use of an automatic range selection circuit, as illustrated in Fig. 8, allows the alarm circuit to be simplified. As shown in Fig. 7, the output of each flip-flop (FFP, FFA, FFS) on the port, ahead and starboard display outputs is taken to a resistor adder circuit 68 so that the more display levels illuminated, the greater the alarm volume andor the higher the alarm pitch. In the long echo pulse threshold mode, the closer the boat gets to an obstacle such as a reef, the more flip-flops are switched on and hence, the louder the alarm and/or the higher its pitch.

An additional alarm circuit can be included to warn of minimum depth below. This can be adjustable to select a depth, typically between one and twenty metres.
Furthermore, another alarm can be added to the depth below circuit to alarm if the depth exceeds a selected value, thereby acting as an anchor watch alarm.

A typical display panel 40 is illustrated in Fig. 4. Five scanning directions are illustrated on the panel: two to port, two to starboard and one ahead, as well as a digital depth measurement. Each LCD segment of the display forms an arcuate band of the displayed scanning beam. Such an arrangement of the LCD segments creates a quasi-analog display thereby allowing the operator to tell at a glance whether any obstacles lie ahead, to port, or to starboard.

The flip-flops driving the LCD segments are held on or off during each cycle, rather than flashed on and off rapidly as in multiplex display systems which appear constant due to the persistence of vision but which do not provide maximum contrast in bright sunlight. Moreover, the operator is able to tell immediately whether objects detected by the sonar are obstacles such as reefs, sandbanks or merely reflections due to fish.

Other suitable display means such as cathode ray tubes, multi-pen chart recorders or digital printers, can be fitted to the apparatus of the present invention to suit particular

- 9 -
applications such as the charting of channels. Such display means operate on each cycle of the first clock 50.

It will be apparent to those skilled in the art that much of the hardware in the abovedescribed circuits can be replaced by a programmed microprocessor. For example, the microprocessor can be programmed to determine the interval between transmission and reception of a signal, and to display the measured interval on the appropriate beam on the display 40.

A transducer assembly is shown in Fig. 10. Separate transducers T_{P}, T_{A}, T_{S} and provided to scan port, ahead and starboard. The transducers are embedded in a casting 101 made from epoxy and granulated cork. A lead balance weight 100 is provided to balance the casting 101 about the shaft 102. When the shaft 102 is mounted on suitable bearings (not shown), the angle of scan of the transducers can be varied quite simply. The casting 101 can also be mounted in a special frame (described below) in order to stabilise the transducer assembly against pitch and roll. Another transducer T_{D} (not shown) is provided in a downward orientation for depth measurement.

The abovedescribed transducer arrangement can be replaced by a single pivotable transducer as shown in figs. 11 to 13. In this embodiment, a single transducer T_{1} is used to scan port, ahead and starboard. The transducer T_{1} is set in a casting 110 made from a mix of epoxy and granulated cork in order to reduce the effect of signals from the back face of the transducer. The casting 110 also contains an iron bar or permanent magnet 118 , and lead balance weights 115 which balance the casting 110 about a shaft 111. The casting 110 is pivotable about its shaft 111 on bearings 112 set in a gunmetal housing 116. Electromagnets E_{P}, E_{A}, E_{S} are also mounted on housing 116. Each electromagnet E_{F}, E_{A}, E_{S} corresponds to a respective scanning direction port, ahead, starboard. In order to scan in the different directions, the electromagnets are energised sequentially to cause the casting 110 to rotate until the iron member 118 in the

- 10 -
casting 110 is opposite the energised electromagnet. Each electromagnet is energised for a sufficient period of time to allow a signal to be transmitted and received from the maximum range selected. Means are also provided to switch the output of the transducer T_{1} to the display beam corresponding to the energised electromagnet. Although only three electromagnets are shown, it will be apparent to those skilled in the art that any suitable number of electromagnets at spaced intervals can be provided in order to scan in a plurality of directions.

The housing 116 is pivoted about spindles 117 in frame 120 so that the housing 116 remains level as the vessel pitches up and down. In addition, the frame 120 is pivoted about bearings 113 so that the frame 120 and casing 116 remain level as the vessel rolls from side to side. The bearings 113 are mounted in a gunmetal casting (not shown) fixed to the bottom of the hull of the vessel.

A second transducer T_{2} is provided to measure the depth below. The transducer T_{2} is pivoted about an axis 114 on frame 120 and is stabilised against pitch.

Instead of providing a separate transducer T_{2} for measuring depth below, the transducer T_{1} can be pivoted at point 119 so that it can be tilted to scan downwardiy. An additional set of electromagnets 121 are installed along arc 122 and an additional iron bar is set above T_{1} in order to implement the downward tilting of T_{1}. The additional electromagnets 121 become part of casting 110 and T_{1} rotates within casting 110 . The casting 110 would also need to be re-balanced about shaft 111.

The iron bar 118 in casting 110 can be replaced by a permanent magnet or an electromagnet energised at the same time as E_{P}, E_{A}, E_{S}. In addition, opposing magnetic fields can be generated by reversing the current direction through the electromagnets not being scanned, i.e. E_{p} and E_{S} would have opposing fields to the iron bar 118 while E_{A} and iron bar 118 are energised by attracting fields. On a cruising yacht where only limited electric power is available, the iron member 118 is preferably a permanent

- 11 -
magnet. A reverse field applied to each electromagnet E_{p}, $E_{A} E_{S}$ for a short instant when the energising electric field is turned off leaves a weak opposing field on each unenergised electromagnet due to the magnetic hysteresis of its iron core. Thus, only the energised electromagnet would be attracting the iron bar or magnet 118 while the unenergised electromagnets would be repelling the iron bar or magnet 118 .

The foregoing describes only some embodiments of the present invention, and modifications, which are obvious to those skilled in the art may be made thereto without departing from the scope of the invention as defined in the following claims.

CLAIMS

1. A sonar system for a boat for scanning ahead, to port and to starboard, said system comprising transducer means for transmitting scanning signals in a plurality of discreet scanning directions including ahead of the boat, to port and to starboard; electronic control means for activating said transducer means to transmit said scanning signals sequentially in said plurality of directions; receiving means for receiving the transmitted signal after reflection from objects; signal processing means connected to the output of said receiving means for determining distances of said objects from the received signals; and display means connected to said signal processing means for displaying the determined distances in their respective directions.
2. A sonar system as claimed in claim 1 wherein said display means comprises a plurality of series of liquid crystal display segments, each orientated in a direction representative of a respective one of said scanning directions, the distance of an object detected in a particular direction being indicated by the number of LCD segements illuminated in the corresponding series.
3. A sonar system as claimed in claim 1 or 2 , wherein said transducer means comprises a plurality of transducer elements each orientated in a respective one of said scanning directions.
4. A sonar system as claimed in claim 1 or 2, wherein said transducer means comprises a transducer element givotable for orientation in any one of said scanning airections.
5. A sonar system as claimed in claim 4, wherein said transducer is pivotable in a casing comprising a plurality of electromagnets orientated in directions corresponding to said scanning directions, whereby said transducer element is orientated sequentially in said scanning directions by sequential energisation of said electromagnets.
6. A sonar system as claimed in any preceding claim,

- 13 -
further comprising depth measurement and display means.

7. A sonar system as claimed in claim 6, wherein said transducer means scans at a distance related to depth of water below said boat.
8. A sonar system as claimed in any preceding claim, further comprising alarm means connected to the output of said signal processing means for providing an alarm upon detection of objects within a predetermined distance.
9. A sonar system as claimed in claim 8 wherein said alarm provides an audio signal whose volume is indicative of the distance of a detected object.
10. A sonar system as claimed in claim 8 wherein said alarm provides an audio signal whose tone is indicative of the distance of a detected object.
11. A sonar system as claimed in any preceding claim, wherein said signal processing means comprises a microprocessor.

AMENDED CLADMS
 (received by the International Bureau on 14 February 1984 (14.02.84))

1. (Amended) A sonar system for a boat for scanning ahead, to port and to starboard, said system comprisng transducer means for transmitting scanning signals in a plurality of discreet scanning directions including ahead of the boat, to port and to starboard; electronic control means for activating said transducer means to transmit said scanning signals sequentially in said plurality of directions; receiving means for receiving the transmitted signals after reflection from objects in said directions: signal processing means connected to the output of said receiving means for determining the distances of said objects and their respective directions from the received signals; and solid state electronic display means connected to said signal processing means [for displaying the determined distances in their respective directions], said display means having a display panel comprising a plurality of electro-optical elements arranged in arrays corresponding to the orientation of said scanning directions, both the distance and direction of objects detected by said sonar system being indicated by the operational state of said electro-optical elements.
2. (Amended) A sonar system as claimed in claim 1 wherein said electro-optical elements are [display means comprises a plurality of series of liquid crystal display segments. [each orientated in a direction representative of a respective one of said scanning directions, the distance of an object detected in a particular direction being indicated by the number of LCD segments illuminated in the corresponding series].
3. A sonar system as claimed in claim 2, wherein the distance and direction of an object detected by said sonar system are displayed by activation of a corresponding LCD segment, and activation of the further LCD seqments in that array indicates that object to be the bottom or a bank.
[3] 4. A sonar system as claimed in claim [1 or 2,] $\underline{3}$ wherein said transducer means comprises a plurality of transducer elements each orientated in a respective one of
said scanning directions．
［4］5．A sonar system as claimed in claim 1 ［or 2］， wherein said transducer means comprises a transducer element ［pivotable for orientation in any one of said scanning directions．

5．A sonar system as claimed in claim 4，wherein said transducer is］pivotable［in］within a casing ［comprising］having a plurality of electromagnets orientated in directions corresponding to said scanning directions， whereby said transducer element is orientated sequentially in said scanning directions by sequential energisation of said electromagnets．

6．A sonar system as claimed in claim 4 or 5 wherein said transducer means is located in a housing on the hull of the boat，and gimballed with respect to the hull．
［6．］7．A sonar system as claimed in［any preceding］ claim 4 or 5，further comprising depth measurement and display means．
［7．］8．A sonar system as claimed in claim［6］7． wherein said transducer means scans at a distance related ro depth of water below said boat．
［8．］2．A sonar system as claimed in［any preceding］ claim 7 ．further comprising alarm means connected to the output of said signal processing means for providing an alarm upon detection of objects within a predetermined distance．
［9．］10．A sonar system as claimed in claim［8］9 wherein said alarm provides an audio signal whose volume and／or tone is indicative of the distance of a detected object．
［10．A sonar system as claimed in claim 8 wherein said alarm provides an audio signal whose tone is indicative of the distance of a detected object．］

11．A sonar system as claimed in any preceding claim， wherein said signal processing means comprises a microprocessor．

FIG. 4

anatain

FIG. 2

FIG. 10

FURTHER IMFORMATION CONTIMUED FROM THE SECOMD SHEET		
Y	US, A, 3806861 (OKUMURA \& WATANABE) 23 April 1974 (23.04.74)	$(1-3,6-10)$
Y	GB, A, 1370424 (SMITHS INDUSTRIES LID.) 16 October 1974 (16.10.74)	$(1-3,6-10)$
Y	WO 83/01515 (KABUSHIKI KAISHA KODEN SEISAKUSHO) 28 April 1983 (28.04.83)	(4)

This international search report has not been establlshed in raspect of certain ciaims under Artele 17(2) (a) for the following raasons:Claim numberz \qquad because they reiate to subject matter ${ }^{15}$ not required to be semehed by this Authority, namaly:Claim numbers \qquad , becausa thay reiata to parts of the Inturnational agplication that do not comply with the praseribed requirsments to such an extent that no meaningfui intermational search can be eartiod out is, spectically:

VI \square OTSERYATIONS WHERE UNITY OF INVENTION IS LACXING 12
This International Squrehing Acribority found multipie inventions in this international appilestion as follows:
 of the intemational application.As onily some of the requirad additional sarch faes were timely paid by the appticant, this lntarnational seereh ragort covers onty those claime of the intarnational application for which faes were paid, specticaly chaime:No required addfional search fees were timely pald by the applicant Consequently, this Intemational seareh report is restricted to the invention frat mentioned in the efartis; it fo covered by ciatm numbers:As all semrahabieclaims couid be sanrehed without offort justifying an additional foe, the intarnational Samrehing Authority did not invite payment of any additional tee.

The addidonal swarch faes wore accompanied by apolientis protastNo protent zceompanied the payment of addifionail warch fowt
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date

30 January 2003 (30.01.2003)

PCT

(10) International Publication Number WO 03/009276 A2
(51) International Patent Classification ${ }^{7}$:
(21) International Application Number: PCT/US02/22967
(22) International Filing Date: 19 July 2002 (19.07.2002)
(25) Filing Language: English
(26) Publication Language:
(30) Priority Data:

09/909,141
19 July 2001 (19.07.2001)
US
(71) Applicant (for all designated States except US): TERA TECH CORPORATION [US/US]; 77-79 Terrace Hall Avenue, Burlington, MA 01803 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): CHIANG, Alice, M. [US/US]; 4 Glenfeld East, Weston, MA 02493 (US). broadstone, Steven, R. [US/US]; 14 Hammond Place, Woburn, MA 01801 (US).
(74) Agents: HOOVER, Thomas, O. et al.; Bowditch \& Dewey, LLP, 161 Worcester Road, P.O. Box 9320, Framingham, MA 01701-9320 (US).
(81) Designated States (national): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}, \mathrm{AT}, \mathrm{AU}$, $A Z, B A, B B, B G, B R, B Y, B Z, C A, C H, C N, C O, C R, C U$, $\mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DZ}, \mathrm{EC}, \mathrm{EE}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GD}, \mathrm{GE}, \mathrm{GH}$, GM, HR, HU, ID, LL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: The present invention relates to sonar beamforming systems and methods, using a forward-looking sonar having transmit and receive transducer arrays with a beamforming device and at least one side-looking sonar having dynamically range-focused beams. The forward-looking sonar provides for obstacle avoidance and undersea survey. The systems include one-dimensional transmit and receive transducer arrays with beamforming electronics, a computing controller such as, for example, a personal computer host controller. The arrays and beamforming electronics can be packaged in a hermetically sealed housing unit and mounted in Unmanned Underwater Vehicles (UUV). The side-looking sonar system includes for example, 32-element, one- dimensional arrays that are mounted on either side of the UUVs. Further, a downward looking Bathymetric sonar may be mounted on the underside of RAY-1002 the vehicle for high-resolution mapping.

CROSS REFERENCES TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. Patent Application 09/909,141 filed on July 19, 2001 which is a continuation-in-part of U.S. Patent Application No. 09/828,266 filed on April 6, 2001 which claims priority to U.S. Patent Application No. 60/195,587 filed on April 6, 2000 and U.S. Patent Application No. 09/842,311 filed on April 25, 2001, and a continuation-in-part of U.S. Patent Application No. 08/965,663 filed November 6, 1997 which claims benefit of U.S. Provisional Application No. 60/036,837 filed on February 3, 1997, the contents of these applications being incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

In numerous applications there is a need to perform sonar beamforming operations to acquire spatial information regarding a particular area of interest. Sonar systems make use of sensor arrays to process underwater acoustic signals to determine the location of a noise source. Array processing techniques for isolating received signals are known as beamforming and when the same or analogous principles are applied to focus the transmission of signals, the techniques are referred to as beamsteering. Various systems have been developed to perform such beamforming operations that frequently depend upon the particular applications.

One such application involves undersea search and survey that has various uses such as, but not limited to, terrain mapping and dredging operations. Further, undersea acoustic mine-field reconnaissance and mine hunting applications benefit from high-resolution imaging sonars for clutter rejection, obstacle avoidance, and identification of foreign objects. Currently, the discovery of underwater mines and obstructions is performed by touch in cold, murky water, often at night, under lowlight conditions. Navy salvage, explosive ordinance disposal, and other military and civilian applications operate in zero-visibility water where "seeing with sound" using unmanned vehicles would make their jobs significantly more efficient and safer. Commercial applications which include, for example, commercial navigation or aiding search and rescue dive teams would benefit from an improvement in imaging systems.

There is still a need for a light-weight, low-power, low-cost, unmanned selfpropelled sonar system for remote undersea imaging or surface imaging.

SUMMARY OF THE INVENTION

The system and method of the present invention is directed to a sonar imaging system. The system and method of the present invention can be used, for example, in a self-propelled vehicle using a compact, light- weight system with an internal power supply such as batteries supplying power to the system for the duration of a particular imaging operation. One application of the sonar beamforming system is for underwater detection and reconnaissance. In waters up to 150 meters deep it is often the most difficult for military and commercial applications, as personnel need to traverse water containing underwater mines and obstructions.

In accordance with a preferred embodiment, the sonar beamforming system and method of the present invention includes, for example, a first beamforming device connected to a first transducer array that transmits and receives signals in a first direction and a second beamforming device connected to a second transducer array that transmits and receives signals in a second direction. This system can be used in a forward-looking sonar for obstacle avoidance and undersea survey. The system can include one-dimensional transmit and receive transducer arrays with beamforming electronics, a computing controller such as, for example, a personal computer host controller. The arrays and beamforming electronics are packaged in an environmentally or hermetically sealed housing unit and mounted in at least the nose of an Unmanned Underwater Vehicle (UUV) for scanning of underwater objects or surfaces. The system and method of the present invention further includes at least one side-looking sonar, and preferably two side-looking sonars. The side-looking sonar system may include 32-element, one-dimensional arrays that are mounted on either side of the UUVs. Further, a downward-looking Bathymetric sonar may be mounted on the underside of the vehicle for high-resolution mapping.

In accordance with a preferred embodiment of the present invention, the sonar imaging systems such as, for example, the forward-looking scan, the side-looking sonar and downward-looking sonar use charge-domain-processing (CDP) such as charge coupled device (CCD/CMOS) integrated circuits that allow electronic lenses to
focus reflected energy following detection by a one-dimensional array. The low power attributes of CCD/CMOS technology in beamformers facilitate the use of batteries to provide the life span of missions. Further, beamformers are used to emulate an acoustic lens for the sonar and are made smaller with fewer mechanical parts that are susceptible to failure. Electronic beamformers provide better imaging with minimal or no reflection artifacts.

The foregoing and other features and advantages of the sonar beamforming system and method will be apparent from the following more particular description of preferred embodiments of the system and method as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention are described with reference to the following drawings, wherein:

Figure 1 is a diagram illustrating a preferred embodiment of a sonar beamforming system in accordance with the present invention;

Figure 2 is a diagram illustrating another preferred embodiment of a sonar beamforming system in accordance with the present invention;

Figure 3 is a block diagram illustrating an electronic focusing sonar imaging system in accordance with a preferred embodiment of the present invention;

Figure 4 is a block diagram illustrating a sonar imaging system in accordance with another preferred embodiment of the present invention;

Figure 5 is a block diagram illustrating a flow chart of the image fusion process of the sonar imaging system in accordance with a preferred embodiment of the present invention;

Figure 6 is a schematic illustration of transmit and receive beam configurations of the sonar imaging system in accordance with a preferred embodiment of the present invention; and

Figure 7 is a graphical illustration of a curvilinear array of a sonar imaging system in accordance with a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Under water research scientists continue to seek small, low power acoustic sensor technology for transition to an Autonomous Unmanned Vehicle (AUV) or an Unmanned Underwater Vehicle (UUV) such as the Semi-Autonomous Hydrographic Reconnaissance Vehicle (SAHRV). High resolution is desired for undersea search and survey and to maximize the vehicle's ability to perform target detection and classification. Existing multi-beam forward-looking sonars (FLS) with nominally half-degree resolution and greater than thirty degree field of view need to be improved to provide adequate imaging performance. The present invention is directed to a system and method for a sonar beamforming systems such as, for example, AUV's with FLS requiring substantially less power and volume than existing systems. This is accomplished by using programmable, low-power, high-throughput charge-domainprocessing technology such as charge coupled devices (CCD/CMOS) integrated circuit technologies for electronic beamforming in conjunction with sonar arrays fabricated by, for example, Material Systems Technology (MSI). For example, at a 40 MHz clock rate, the beamformer provides a continuous computation throughput of approximately 10 billion operations per second and a delay update rate of approximately 22 billion bits per second and dissipates less than about 1 Watt of electric power.

The forward-looking sonar provides the vehicle's operational requirement for obstacle avoidance and search of the bottom area beneath the vehicle that is not covered by an additional side-scan sonar or side-looking sonar (gap-filler sonar). A high frequency multi-element curvilinear receive array is used in conjunction with separate acoustic projectors, one aimed straight ahead for obstacle avoidance and a separate projector aimed at a depression angle suitable for the gap-filler application.

In a preferred embodiment, the existing unfocused side-looking sonar (SLS) in underwater vehicles is replaced with a low power focused sonar. In a second preferred embodiment, a downward-looking sonar (DLS) capable of providing realtime Bathymetric surveys suitable for military and commercial ships to negotiate navigable routes into port is additionally provided. Each of the preferred embodiments of the beamforming systems is based on the CCD/CMOS integrated circuit technologies for electronic beamforming. Card assemblies are designed to
maximize commonality among the subsystems. Replacing the existing SLS minimizes the power requirements of the suite of sonar sensors and minimizes the impact of the additional sonar sensors on the total vehicle cost.

An example of a low-cost autonomous underwater vehicle (AUV) for coastal monitoring and multiple vehicle survey operations is the Remote Environmental Monitoring UnitS (REMUS). In a preferred embodiment the vehicle is approximately 53 inches long with a body diameter of about 7.5 inches, although the length may be increased to support any reasonable payload. The AUV is neutrally buoyant, preferably weighing, without limitation, only 68 pounds in air, and is powered by sealed lead acid batteries. The vehicle can be operated in fresh or salt water. Because the preferred embodiment of the AUV is so small, it can be easily transported, launched and recovered from a small vessel and special handling equipment is not required.

Although small in size, the AUV vehicle is configured to support a variety of sensor packages. The vehicle has a conductivity/temperature/depth (CTD) sensor system and an optical backscatter sensor on board. Telemetry data provides time of day, depth, heading, and a geographic fix for the data.

Another preferred embodiment of the AUV includes a longer version of REMUS with an acoustic Doppler current profiler and Global Positioning System (GPS). Additional personal computer slots such as, for example, PC-104 slots and RS-232 ports are available for user-designed payloads.

In a preferred embodiment, the AUV has three motors forward of the propeller. The propulsion assembly is optimized to provide 1.5 pounds of thrust at a forward speed of four knots. At this speed a 40-nautical-mile track can be completed in 10 hours. A preferred embodiment of the AUV runs from a 24 -volt power supply and draws approximately 32 watts while maneuvering through the ocean, enabling the vehicle to operate at four knots for 14 hours.

In a preferred embodiment the AUV control computer is based on PC-104 technology, a small form factor version of the common IBM-PC hardware. The Central Processing Unit (CPU) is housed in a custom motherboard, and has eight 12bit analog to digital channels, input/output ports, power supplies, and other interface circuitry. Internally, the AUV runs at least one operating system program such as, for
example, a DOS program written in C++ language that executes out of an autoexec.bat file. The vehicle user interface may run on a laptop computer.

A preferred embodiment of the AUV possesses an acoustical system with a digital signal processor. A receiving array of four hydrophones is located in the nose, and on the bottom is a hydrophone sensor that can both transmit and receive. To determine its position, the AUV transmits a coded ping to a transponder and listens for a reply. The range and bearing of the reply allows the AUV to determine its location. The AUV can be programmed to interrogate a plurality of transponders, approaching each transponder by minimizing the range. When the range to a transponder is below a predetermined threshold, the vehicle then listens on a different channel for the next transponder and approaches it using the same technique. By setting the transponders once using GPS, a known track line may be followed on subsequent imaging operations. This system be used to autonomously dock the vehicle.

In a preferred embodiment, the specifications of the AUV are described in Table 1 as follows:

Table 1

Parameter	Approximate Dimensions
Length	53 inches (1.3)
Beam	5.5 feet
Diameter	7.5 inches (19.1cm)
Maximum Operating Depth	492 feet (150m)
Gross Weight	68 lbs. in the air, neutrally buoyant in water
Dive Duration	14 hours at 4 knots
Propulsion	Three motors; one direct drive thruster and sprocket driven rudder, two pitch motors, and one stem propeller
Power requirements	24-volt supply, 32 watts while maneuvering at 4 knots
Power Source	Rechargeable lead acid batteries

Figure 1 is a diagram illustrating a preferred embodiment of a sonar beamforming system 10 as implemented in an AUV in accordance with the present invention. The system 10 includes a forward-looking sonar (FLS) 14 having forwardlooking sonar transmit beams 16 and forward-looking sonar receive beams 18. The following are exemplary values for the forward-looking sonar:

Table 2

Parameter	Approximate Dimensions
Operating frequency	$500 \mathrm{KHz}-1.2 \mathrm{MHz}$
Beam resolution	<1 degree
Field of view	>30 degrees
Number of elements	Minimum of 128, preferably 128 or 192
Aperture	$>14 \mathrm{~cm}$
Element pitch	$(0.5$ lambda $)$
Image ranges	3 to $5,10,20,40$ or 60 m
Independent beams	64
Range resolution	$<1 \mathrm{~cm}$

The forward-looking sonar has a capability of at least 0.5° azimuth resolution, 30° Field of View (FOV); and reducing volume and power requirements by about one third such as, for example, 700 cubic inches and a range of 25 to 100 watts.

In a preferred embodiment, the forward-looking sonar comprises bistatic transducer arrays, preamplification and beamforming electronics and a commercially available computer. Further, an industry-standard personal computer such as PC -104 computer and a high speed serial bus such as, for example, without limitation, Institute of Electrical and Electronics Engineers, Inc. (IEEE) 1394 or Universal Serial Bus (USB) 2.0 peripheral interface provide for data collection and archiving of the data generated by the front-end beamforming electronics. The IEEE 1394 data transport bus supports both asynchronous and isochronous data. In another preferred embodiment, a parallel interface such as a peripheral component interconnect (PCI) may be used.

The system further includes at least one side-looking sonar (SLS) 20 , and preferably two side scan or SLS sonars. Exemplary values of the side-looking sonar are as follows:

Table 3

Parameter	Approximate Dimensions
Range	$2 \mathrm{~m}-50 \mathrm{~m}$
Aperture	$>40 \mathrm{~cm}$
Frequency	$500 \mathrm{KHz}-1 \mathrm{MHz}$
Beam width	<1 degree
Cross-range resolution	$<0.2 \mathrm{~m}$

In a preferred embodiment, the side-looking scan or sonar consists of two multi-element receive arrays, preamplification and a single beamforming integrated circuit to realize a dynamically range-focused side-looking sonar system. The arrays, in a preferred embodiment, have 32 elements and are sized to have a vertical beamwidth of $+/-30$ degrees. A common aperture may be used for both the transmitter and receiver.

Another preferred embodiment includes multi-mode arrays such as, for example a first search and detection mode and a second high resolution target recognition mode. The beamformer is integrated with onboard processing which enables automatic obstacle detection and target recognition.

The beamforming system focuses signals received from an image point onto a transducer array. By inserting proper delays in a beamformer to align wavefronts that are propagating in a particular direction, signals arriving from the direction of interest are added coherently, while those from other directions do not add coherently or cancel. However, as the array is scanning through the imaging plane, there are three difficult implementation issues: first, each delay line has to be long enough to compensate for the path differences of a large linear array; second, the delay value has to be adjusted periodically for proper beam steering; and finally, the long round-trip delays when performing long-range imaging must be processed in parallel to provide reasonable display update rates. Ideally, the time-of-flight from the radiation source to the focal point can be calculated at every clock cycle for every channel from multiple directions of arrival in parallel. In a conventional implementation, separate electronic circuitry is necessary for each beam; for a multi-beam system, the resulting electronics rapidly become both bulky and
costly as the number of beams increases. A single-chip multiple beamforming processor based on a time-multiplexed delay generation architecture is used in a preferred embodiment of the present invention. The integrated circuit combines programmable delays with a sequentially addressable digital delay selection resulting in a compact, low-power implementation of a multiple beamforming processor.

A delay-and-sum beamformer allows a transducer array to "look" for signals propagating in a particular direction. By adjusting the delays associated with each element of the array, the array's look direction can be electronically steered toward the source of radiation. The multi-beamforming chip consists of N parallel beamforming modules, a summing circuit and a Finite-Impulse-Response (FIR) filter. Within each module, there is a sampling circuit, a programmable delay line, an apodization multiplier and a bank of delay controls that are addressable sequentially. The delay control can be a real-time "time-of-flight" (TOF) computing circuit. Further, the arrays may be built directly on the hulls of the vehicles and then encapsulated as a single unit. This simplifies the fabrication process and minimizes, and preferably eliminates the need for expensive electrical feed through. Preamplifiers may optionally be incorporated in the encapsulation.

Acoustic communication devices 24 which are preferably steerable are also included in the system 10. These arrays may be fabricated by, for example, Material Systems Technology (MSI). Thus, the system 10 includes the integrated arrays -forward-looking sonar (FLS), side-looking sonar (SLS), and acoustic communication devices.

Figure 2 is a diagram illustrating another preferred embodiment of a sonar beamforming system 40 in accordance with the present invention. This system 40 includes a forward-looking sonar 44 having forward-looking sonar transmit beams 48 and forward-looking sonar receive beams 50. In addition, the system 40 has two side scan sonars 46. Further acoustic communication devices 54 which are preferably steerable are also present in this preferred embodiment of the system. At least one identification sonar 60 or a downward-looking Bathymetric Sonar is also mounted on the underside of the vehicle that transmits beam 58 and receives beams 56 . This

Bathymetric sonar 60 is a downward-looking sonar (DLS) for high-resolution terrain mapping and object identification. In a preferred embodiment, the sonar 60 can include bistatic or alternatively monostatic transducer arrays.

In a preferred embodiment, the downward-looking sonar 60 is made with a similar construction as the forward-looking sonar and is housed in its own replaceable hull section. This allows the UUV to adapt to imaging operation requirements by adding payload sections as needed. The downward-looking sonar is cylindrically shaped and is conformed to the vehicle hull. As it is preferably, but without limitation, housed in its own section, the surfaces of the arrays are flush with the hull as there is no mechanical interference with the on-board systems. The arrays thus are conformal and are not appendages protruding from the vehicle that can be damaged during deployment, operation or retrieval. The downward-looking sonar array preferably includes, but is not limited to, a single element projector to provide the illumination for a 128 -element receiver array 58 . The 128 elements may be each spaced a distance of 0.5λ apart to minimize grating lobes.

In a preferred embodiment, the FLS is housed in a replaceable nose cone, the SLS is conformed on a hull section of the vehicle and the DLS is fabricated in its own hull section.

Figure 3 is a block diagram illustrating an electronic focusing sonar imaging system 70 in accordance with a preferred embodiment of the present invention. Signals such as transducer signal 74 and output signals 76 form the input to a low noise preamplifier 72 having time-gain control. The output of the preamplifier 72 forms the input into a sampling subsystem 80 . The output of the sampler forms the input to programmable delays 82 associated with beamsteering and focusing functions, the output of which forms an input into a weighting subsystem 84 . The outputs of the weighting function are then summed in a summer 86 . In a preferred embodiment the sampler 80 , the programmable delays 82 , the weighting function 84 and summer 86 functions are integrated on a single chip which accomplishes beamforming, preferably using a charge-domain-processing (CDP) structure. A preferred implementation of a beamforming device using CDP technology, including a programmable tapped delay line structure, is described in a co-pending PCT International Application Number PCT/US98/02291, filed on 3 February 1998, by

Jeffrey Gilbert, Alice Chiang, and Steven Broadstone, the entire contents of which is hereby incorporated by reference.

In a CDP circuit, sampled information is represented by analog charge packets. If the information is accurate to 10 -bit words, instead of representing it by 10 separate digital bits, each charge packet represents a 10 -bit value and these charge packets can be manipulated at a high speed with a high level of accuracy, for example, approximately 10 -bit, in a very small chip area. The CCDs of the present invention have a charge sensing method that eliminates clock feed-through. Furthermore, a charge domain multiplier that maintains the output accuracy to more than 8 -bits is also included. The CCD signal processors have an output dynamic range of at least 60 dB . The CDP technology used in the systems of the present invention combine high speed, low-power charge-domain units with conventional CMOS digital control and memory circuits.

The output of the summer 86 forms the input to a demodulator 88 , whose output is manipulated in a square law function 90 . The output of the square law function 90 forms the input of a display 92 such as a monitor. Post processing reformats data to then be displayed on a monitor.

Figure 4 is a block diagram illustrating a sonar imaging system 100 in accordance with another preferred embodiment of the present invention. The imaging system 100 includes a front-end 102 which interfaces with a back-end host computer 104. The front-end electronics including the beamformer is mounted on small-sized printed circuit boards that can be completely housed in the nose of the UUV, for example. The output of the back-end provides the input to a display system 108 or is downloaded via ethernet to a display platform.

The front-end 102 of the system 100 is an integration of many subsystems. A waveform transmit function 112 forms an input to a transmitter 114 which in turn transmits waveforms to a target image 106. An array 116 is received at the front-end 102 from the target image and is then processed in the front-end. The array in a preferred embodiment is a one-dimensional array. The processing signals of the received array begins with preamplification in a low noise preamplifier 118 having time-gain control. The output of the preamplifier 118 forms the input into a beamforming function 124 , preferably using CDP. A memory device 122 interfaces
with the preamplifier 118 and the beamformer 124 . The memory device 122 may be a single memory device or plurality of memory devices. Such a memory device may be, but is not limited to, a random access memory, read-only memory, floppy disk memory, hard drive memory, extended memory, magnetic tape memory, zip drive memory and/or any device that stores digital information. A front-end host interface processing module or controller 120 interfaces with the memory 122 . The controller 120 may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, microcomputer, digital signal processor, central processing unit of a computer or work station, digital circuitry, state machine, and/or any device that manipulates signals, for example, analog and/or digital, based on operational instructions. It should be noted that when the processing module implements one or more functions, via a state machine or logic circuitry, the memory storing the corresponding operational instructions is embedded within the circuitry comprising the state machine or logic circuitry. A standard interface such as, for example, a high-speed serial bus IEEE 1394/Firewire chip set 126 interfaces with both the host interface controller 120 and the memory 122.

Thus, in a preferred embodiment, the forward-looking sonar is comprised of bistatic transducer arrays, preamplification and beamforming electronics and a commercially available computer. An industry-standard personal computer such as PC-104 computer and a high-speed serial bus such as IEEE 1394 peripheral interface provide for data collection and archiving of the data generated by the front-end beamforming electronics. The PC-104 computer and its disc driver, memories, input/output, the high-speed serial bus (IEEE 1394) interface are integrated into a hermetically sealed portion of the AUV or UUV. Data is retrieved by connecting through a standard Ethernet interface mounted on the body of the vehicle.

The back-end 104 includes a microprocessor 130 that sends inputs to an Interface chip (IEEE 1394) 134 and then to a buffer 128 and a post signal processor 132. The Firewire (IEEE 1394) chip set 126 in the front-end 102 interfaces with the interface chip set 134 in the back-end through an interface 110. The back-end preferably includes a receiving parallel data bus interface, for example, PCI or a serial bus interface, for example, a Firewire chip set 134. The buffer 128 interfaces with the post signal processor 132. Further details regarding interface structure can be found
in U.S. Application No. 09/791,491 filed on February 22, 2001, the entire contents of which is incorporated herein by reference.

The output of the back-end 104 forms the input into a display 108 such as at least, without limitation, a monitor, a video recorder and/or a digitizer. The system of the present invention permits real-time analysis of data to assess the images as well as permits data analysis via post collection.

Figure 5 is a block diagram illustrating a flow chart of the image fusion process 150 of the sonar imaging system in accordance with a preferred embodiment of the present invention. Data from at least one side scan 152 are meshed with forward scan data 156 derived from a forward-looking scan such as described with respect to Figures 1 and 2. This data from the side scan and the forward scan are first normalized or scaled in a normalizing process 158. The process of normalization addresses spatial resolution. This normalization process is preferably performed, without limitation, on a standard personal computer platform. The fan shaped data is then meshed in an image fusion process 160. The data fusion process enables multisensor target classification and identification. The data fusion process may be accomplished, without limitation, using commercial products which provide threedimensional rendering of data that is stacked such as, for example, 3D EchoTech that is provided commercially by EchoTech.

Figure 6 is a schematic illustration of transmit and receive beam configurations of the sonar imaging system in accordance with a preferred embodiment of the present invention. The forward-looking sonar scan 172 includes at least one transmit beam 174, and preferably multiple receive beams. The receive beams are discrete beams such as, for example, beam 176.

Figure 7 is a graphical illustration 190 of a curvilinear array of a sonar imaging system in accordance with a preferred embodiment of the present invention. The FLS curvilinear receive array has a center frequency between 500 Hz to 1 MHz with 192 elements.

The performance of the FLS is a function of the array's design frequency and aperture. The aperture is limited by the diameter of the vehicle, which may be 7.5 inches. In a preferred embodiment, a curvilinear array with approximately a 3.125inch radius is recommended. This radius allows the array to be encapsulated in a
protective cover to protect against damage if the vehicle impacts an obstacle during an imaging operation. For this radius of curvature, the 3 dB beam width, or azimuth resolution in degrees, is determined by the arrays center frequency (Fo) and number of elements spaced at one-half wavelength spacing ($\lambda / 2$).

In another preferred embodiment of the system of the present invention, the FLS curve linear receive array has a center frequency of 750 KHz with 128 elements, and a 3 inch radius of curvature. The transmit projector consists of a single element looking ahead for obstacle avoidance and a three element transmit array looking forward and downward for gap filling and navigation. The three-element projector array may be three discrete wide beam elements or a three element curved array.

The arrays consist of full-scale receiver and projector arrays mounted on a pressure plate and encapsulated in $\rho-\mathrm{c}$ polyurethane. A simple hemispherical shape is used in a preferred embodiment for the outer shape of the array. In yet preferred another embodiment of the present invention, the sonars are mounted on a pivotable mechanism to provide a sonar that provides for forward scan and side scans.

The system of the present invention is contemplated to have at least two modes of operation- an identification mode which provides a zoom capability and a detection mode which allows for a survey with a large range for scanning. The detection mode operates at a lower frequency as compared with the identification mode such as, for example, but not limited to, 500 KHz . This provides a longer range for scanning in the detection mode. The frequency is at least doubled for the identification mode and allows a zoom function. Thus a frequency shift allows for the two modes or operation.

The following table details an exemplary power estimate (Wattage/size) in accordance with a preferred embodiment of the system of the present invention:

Table 5

```
PC HOST CONTROLLER SUBSYSTEM
Processor: P133 with up to 128MB Memory and Mass Storage Power
requirements: 10W (effective), estimated size: 3.5 x 2 x 6 inch
BEAMFORMING ELECTRONICS SUBSYSTEM
FLS power requirements (192 channels): 11 W (effective), estimated size: 9 x 6
x }1\mathrm{ inch
SLS power requirement (32 channels): 4W (effective), estimated size: 3 x 6 x 1
inch
TRANSMITTER SUBSYSTEM
FLS power requirements: 2.5 W (effective)
SLS power requirements: ~5 W (effective)
```

A preferred embodiment of the system includes the following design criteria:
SLS gap $=+/-6 \mathrm{~m}$
Typical mission duration 8 to 10 hours

Frame rate $=1$ image $/$ second (AUV speed $=2 \mathrm{~m} /$ second)
For range resolution $=5.25 \mathrm{in}$. (match SLS); 64×256 class image covers 10 m .
-44 m . (16 Kbyte file); Azimuth resolution $=0.7^{\circ}$ range $/ 64$; 9 hr mission raw data file $=531 \mathrm{Mbytes}$.

Further preferred embodiments of the present invention provide mean and long range forward-looking sonar performance, short range focusing of the forwardlooking sonar for high resolution classification, three-dimensional imaging with the forward-looking sonar, side-looking sonar with emphasis on short range focusing to minimize gap width, downward-looking sonar to define resolution and corridor width limitations for bathymetric surveys and downward-looking sonar three-dimensional imaging capabilities to evaluate image skew, and near field focusing update rate requirements.

It should be understood that the programs, processes, methods and systems described herein are not related or limited to any particular type of computer or network system (hardware or software), unless indicated otherwise. Various types of general purpose or specialized computer systems may be used with or perform operations in accordance with the teachings described herein.

In view of the wide variety of embodiments to which the principles of the present invention can be applied, it should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the present invention. For example, the steps of the flow diagrams may be taken in sequences other than those described, and more or fewer elements may be used in the block diagrams. While various elements of the preferred embodiments have been described as being implemented in software, other embodiments in hardware or firmware implementations may alternatively be used, and vice-versa.

It will be apparent to those of ordinary skill in the art that methods involved in the sonar beamforming system and method may be embodied in a computer program product that includes a computer usable medium. For example, such a computer usable medium can include a readable memory device, such as, a hard drive device, a CD-ROM, a DVD-ROM, or a computer diskette, having computer readable program code segments stored thereon. The computer readable medium can also include a communications or transmission medium, such as, a bus or a communications link, either optical, wired, or wireless having program code segments carried thereon as digital or analog data signals.

The claims should not be read as limited to the described order or elements unless stated to that effect. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed as the invention.

CLAIMS

What is claimed:

1. A sonar beamforming system, comprising in combination:
a first sonar directed in a first direction, the first sonar having transmit and receive transducer arrays and a first beamforming device; and at least one sonar directed in a second direction, the at least one sonar having multi-element arrays and a second beamforming device.
2. The system of claim 1, wherein the first sonar is a forward-looking sonar which scans in a direction forward of a vehicle.
3. The system of claim 1, wherein the at least one sonar is a side-looking sonar which scans in a direction that is orthogonal to the first sonar.
4. The system of claim 1, further comprising a third sonar which is a downwardlooking sonar for high-resolution terrain mapping and object identification, the third sonar scans in a direction orthogonal to both the first and the at least one sonar.
5. The system of claim 1, wherein at least one of the first sonar and at least one sonar are mounted on a pivotable motorized array.
6. The system of claim 1, wherein at least one of the first sonar and the at least one sonar include multi-mode arrays for at least a detection mode and an identification mode.
7. The system of claim 1 , wherein the system further comprises multi-element acoustic communication receive arrays.
8. The system of claim 1, further comprising at least one processor in communication with the first and second beamforming device.
9. The system of claim 1, wherein the first sonar comprises a plurality of bistatic transducer arrays.
10. The system of claim 1, wherein the first and the second beamforming device comprises a plurality of charge coupled device delay lines.
11. The system of claim 1, further comprising a memory circuit connected to the first and the second beamforming device.
12. The system of claim 1, further comprising a Firewire interface connected to an interface controller and the processor.
13. The system of claim 12, wherein the interface controller is in communication with a memory circuit.
14. A water craft, comprising in combination at least one of:
a first sonar directed in a first direction that is forward-looking, the first sonar having a transmit and receive transducer array and a beamforming device; and
a second sonar directed in a second direction that is orthogonal to the first sonar, the second sonar having multi-element arrays and a beamforming device.
15. The water craft of claim 14 , further comprising a third sonar scanning in a third direction that is downward-looking for high resolution terrain mapping and object identification, the third sonar having a transmit and receive transducer array and a beamforming device.
16. The water craft of claim 14, wherein at least one of the first sonar and at least one second sonar are mounted on a pivotable motorized array.
17. The water craft of claim 14, wherein at least one of the first sonar and the second sonar include multi-mode arrays for at least a detection mode and an identification mode.
18. The water craft of claim 14, wherein the system further comprises multi- element acoustic communication receive arrays.
19. The water craft of claim 14, further comprising at least one processor in communication with the beamforming device.
20. The water craft of claim 14, wherein the second sonar is a side-looking sonar.
21. The water craft of claim 14, wherein the first sonar comprises a plurality of bistatic transducer arrays.
22. The water craft of claim 14, wherein the beamforming device comprises a plurality of charge coupled device delay lines.
23. The water craft of claim 14, further comprising a memory circuit connected to the beamforming device.
24. The water craft of claim 14, further comprising a Firewire interface connected to an interface controller and the processor.
25. The water craft of claim 24 , wherein the interface controller is in communication with a memory circuit.
26. A sonar scanning in a first direction comprising in combination:
a bistatic transducer array having a first transmit transducer array and a second receive transducer array;
a beamforming device; and a processing unit.
27. The sonar of claim 26 , wherein the beamforming device comprises a plurality of charge coupled device delay lines.
28. The sonar of claim 26 , wherein the beamforming device comprises a sampling circuit connected to a programmable delay circuit, a weighting circuit and a summing circuit.
29. The sonar of claim 26 , further comprising a memory circuit connected to the beamforming device.
30. The sonar of claim 29, further comprising an interface controller connected to the memory circuit.

15 33. A method for forming an integrated image comprising the steps of: obtaining array signals from a first sonar directed in a first direction that is forward-looking;
obtaining array signals from at least one second sonar scanning in a second direction orthogonal to the first sonar;
normalizing the array signals from the first sonar and the at least one second sonar to generate normalized data; and fusing the normalized data to generate an image.
34. An underwater unmanned vehicle system comprising in combination:
a first sonar scanning in a first direction, the first sonar having a transmit and receive transducer array and a beamforming device; and
at least one sonar having a second transducer array and a beamforming device, the at least one sonar scanning in a second direction.
35. The system of claim 34, further comprising a third sonar for high-resolution terrain and object identification, the third sonar scanning in a third direction orthogonal to the first direction and the second direction.
36. The system of claim 34, wherein at least one of the first sonar and the at least one sonar are mounted on a pivotable motorized array.
37. The system of claim 34, wherein at least one of the first sonar and the sonar include multi-mode arrays for at least a detection mode and an identification mode.
38. The system of claim 34, wherein the system further comprises multi-element acoustic communication receive arrays.
39. The system of claim 34, wherein the beamforming device further comprises a plurality of charge domain delay lines.
40. The system of claim 34, wherein the beamforming device comprises a sampling circuit connected to a programmable delay circuit, a weighting circuit, and a summing circuit.
41. The system of claim 34, further comprising a memory circuit connected to the beamforming device.
42. The system of claim 41, further comprising an interface controller connected to the memory circuit.
43. The system of claim 42, further comprising a Firewire interface connected to the interface controller and the memory circuit, the Firewire interface communicating with a central processor.
44. The system of claim 34, wherein the beamforming device comprises a charge 5 domain delay line.
45. The system of claim 44, further comprising a plurality of charge coupled device delay lines, each delay line having a programmable tap selection circuit.

FIG. 1

FIG. 2

FIG. 3

5/7

FIG. 5
FIG. 6

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL PRELIMINARY REPORT ON PATENTABILITY

(Chapter I of the Patent Cooperation Treaty)
(PCT Rule 44bis)

Applicant's or agent's file reference J285.13-3	FOR FURTHER ACTION	See item 4 below
International application No. PCT/US2005/027436	International filing date (day/month/year) 02 August 2005 (02.08.2005)	Priority date (day/month/year) 02 August 2004 (02.08.2004)
International Patent Classification (8th edition unless older edition indicated) See relevant information in Form PCT/ISA/237		
Applicant JOHNSON OUTDOORS INC.		

1. This international preliminary report on patentability (Chapter I) is issued by the International Bureau on behalf of the International Searching Authority under Rule 44 bis.1(a).
2. This REPORT consists of a total of 5 sheets, including this cover sheet.

In the attached sheets, any reference to the written opinion of the International Searching Authority should be read as a reference to the international preliminary report on patentability (Chapter I) instead.
3. This report contains indications relating to the following items:

Box No.I Basis of the report
Box No. II Priority

Box No. III
Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

Box No. IV
Lack of unity of invention
Box No.
Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

Box No. VI
Certain documents cited
Box No. VII
Certain defects in the international application
Box No. VIII
Certain observations on the international application
4. The International Bureau will communicate this report to designated Offices in accordance with Rules 44bis.3(c) and 93bis.I but not, except where the applicant makes an express request under Article 23(2), before the expiration of 30 months from the priority date (Rule 44bis .2).

	Date of issuance of this report 06 December 2007 (06.12.2007)
The International Bureau of WIPO	
34, chemin des Colombettes	
1211 Geneva 20. Switzerland	Authorized officer
Facsimile No. +41223388270	Nora Lindner

Form PCT/IB/373 (January 2004)

1. This opinion contains indications relating to the following items:

\square	Box No. I	Basis of the opinion
\square	Box No. II	Priority
\square	Box No. III	Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
\square	Box No. IV	Lack of unity of invention
\square	Box No. V	Reasoned statement under Rule 43bis.l(a)(i) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
\square	Box No. VI	Certain documents cited
\square	Box No. VII	Certain defects in the international application
\square	Box No. VIII	Certain observations on the international application

2. FURTHER ACTION

If a demand for international preliminary examination is made, this opinion will be considered to be a written opinion of the International Preliminary Examining Authority ("IPEA") except that this does not apply where the applicant chooses an Authority other than this one to be the IPEA and the chosen IPEA has notified the International Bureau under Rule 66.1 bis(b) that written opinions of this International Searching Authority will not be so considered.

If this opinion is, as provided above, considered to be a written opinion of the IPEA, the applicant is invited to submit to the IPEA a written reply together, where appropriate, with amendments, before the expiration of 3 months from the date of mailing of Form PCT/ISA/220 or before the expiration of 22 months from the priority date, whichever expires later.
For further options, see Form PCT/ISA/220.
3. For further details, see notes to Form PCT/ISA/220.

Name and mailing address of the ISA/US	Date of completion of this opinion	Authorized officer
Mail Stop PCT, Attn: ISA/US		
Commissioner for Patents P. O. Box 1450	07 November 2007 (07.11.2007)	Ian J. Lobo
Alexandria, Virginia 22313-1450		Telephone No. (571) 272-6974
Facsimile No. (571) 273-3201		Teplone No. (571) 272-697

Form PCT/SA//237 (cover sheet) (April 2005)

Box No. I Basis of this opinion

1. With regard to the language, this opinion has been established on the basis of:
\triangle the international application in the language in which it was filed a translation of the international application into \qquad , which is the language of a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b)).
2. With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed invention, this opinion has been established on the basis of:
a. type of materiala sequence listingtable(s) related to the sequence listing
b. format of materialon paperin electronic form
c. time of filing/furnishingcontained in the international application as filed.filed together with the international application in electronic form.furnished subsequently to this Authority for the purposes of search.
3.In addition, in the case that more than one version or copy of a sequence listing and/or table(s) relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Additional comments:

Box No. V Reasoned statement under Rule 43 bis.1(a)(i) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims $1-24$	Claims NONE
	Claims NONE	NO
Inventive step (IS)	Claims $1-24$	NO
	Claims $1-24$	YES
Industrial applicability (IA)	Claims NONE	

2. Citations and explanations:

Claims 1-24 lack an inventive step under PCT Article 33(3) as being obvious over Boucher et al ('152) in view of any one of Gilmour et al ('700), Kosalos et al, ('599) Delignieres, ('537) or Lowrance et al ('697) and Morgera ('620).

The patent to Boucher et al discloses a transducer assembly that includes a housing (34) having mounting members (30), a forward scan acoustic element (15) and a down scan acoustic element (14) and an electronically controlled head (see Fig. 2).

The difference between claims 1,21 and 25 and Boucher et al is the claims specifies "at least one side scan acoustic element" or "a pair of side scan acoustic elements.", respectively. As aforementioned, Boucher et al discloses a "forward scan acoustic element".

Morgera teaches that it is advantageous to utilize side looking or side scanning sonar imaging to provide greater coverage along the sides of a ship or vessel to thereby minimize the number of passes that the ship must make for complete mapping.

Side scan acoustic elements in sonar imaging systems are well known as evidenced by figures 9-11 of Gilmour et al, figures 2-4 of Kosalos et al, figures 1 and 2 of Deligneres and figures 1-4 of Lowrance et al.

Therefore, in view of Mogera, to modify Boucher et al to include at least one or a pair of side scan acoustic elements, as evidenced by the well-known examples shown in Gilmour et al, Kosalos etal, Deligneres or Lowrance et al, so as to increase the coverage of the mapping at a minimum of passes would not include an inventive step. Claims 1,21 and 25 are so rejected.

Dependent claims 2-20 and 22-24 are further provided by the above noted combination of prior art.

Claims 1-24 meet the criteria set out in PCT Article 33(4), and thus have industrial applicability because the subject matter claimed can be made or used in industry.

Box No. VIII Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the questions whether the claims are fully supported by the description, are made:

Claims 23-24 are objected to under PCT Rule 66.2(a)(v) as lacking clarity under PCT Article 6 because claims 23 is indefinite for the following reason(s): There are two claims numbered 23.

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		IDS369324.PDF	397553	yes	6

	Multipart Description/PDF files in .zip description						
	Document Description		Start		End		
	Transmittal Letter		1		2		
	Information Disclosure Statement (IDS) Form (SB08)		3	6			
Warnings:							
Information:							
2		1ART038495.PDF	5960985	yes	104		
			80acdd8007fecoda8866bdb9489ee87a4ff				
Multipart Description/PDF files in .zip description							
	Document Description		Start	End			
	Foreign Reference		1	13			
	Foreign Reference		14	40			
	Foreign Reference		41	70			
	Non Patent Literature		71	71			
	Non Patent Literature		72	76			
	Non Patent Literature		77	80			
	Non Patent Literature		81	92			
	Non Patent Literature		93	101			
	Non Patent Literature		102	104			
Warnings:							
Information:							
3	Non Patent Literature	Blondel.pdf	18656393	no	108		
			$733513546 a 19969469 \mathrm{ebb63} 12 \mathrm{~d} 9 \mathrm{a} 894 \mathrm{f} 16 \mathrm{~d}$ dbbb7				
Warnings:							
Information:							
4	Non Patent Literature	2Blondel.pdf	18282209	no	70		
Warnings:						RAY-1002 97 of 737	
Information:							

5	Non Patent Literature	3Blondel.pdf	15861586	no	53
			ale0234312bBe55e881218C1 99154688 c3a		
Warnings:					
Information:					
	Non Patent Literature	4Blondel.pdf	23584038	no	117
Warnings:					
Information:					
	Non Patent Literature	Calcutt.pdf	25376754	no	122
Warnings:					
Information:					
Total Files Size (in bytes):			108119518		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re: Maguire
Appl. No.: 12/460,139
Filed: July 14, 2009
For: DOWNSCAN IMAGING SONAR

Confirmation No.: 9769
Group Art Unit: 3645
Examiner: J. R. Hulka

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. § 1.97(d)

This Information Disclosure Statement is being filed after a Notice of Allowance under 37 C.F.R. § 1.311 , but before payment of the Issue Fee. The Notice of Allowance was mailed on July 23, 2012.

Attached is a list of documents on form PTO-1449 along with any cited foreign patent documents and non-patent literature documents in accordance with 37 CFR 1.98(a)(2). Also enclosed is a translation or a concise explanation of each non-English language document.

By identifying the listed documents, Applicant in no way makes any admission as to the prior art status of the listed documents, but is instead identifying the listed documents for the sake of full disclosure.

In accordance with the requirements of 37 C.F.R. § 1.97(d)(2), the following statement as specified in 37 C.F.R. § 1.97(e) is made:

No item of information contained in this statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge the person signing this document after making reasonable inquiry, no item of information contained in this statement was known to any individual designated in 37 C.F.R. § 1.56(c) more than three (3) months prior to the filing of this statement.

In re: Maguire
Appl. No.: 12/460,139
Filed: July 14, 2009
Page 2
The $\$ 180.00$ fee specified in 37 C.F.R. $\S 1.17(p)$ is being paid at the time of e-filing. The Commissioner is authorized to charge any additional fee, or credit any refund, to our Deposit Account No. 16-0605.

> Respectfully submitted,

Patrick L. Kartes
Registration No. 64,678
Customer No. 00826
ALSTON \& BIRD LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Charlotte Office (704) 444-1000
Fax Charlotte Office (704) 444-1111

ELECTRONICALLY FILED USING THE EFS-WEB ELECTRONIC FILING SYSTEM OF THE UNITED STATES PATENT \& TRADEMARK OFFICE ON July 31, 2012.
\#33544993vl

Electronic Patent Application Fee Transmittal

Application Number:	12460139
Tilitle of Ing Date:-2009	
	Downsention:
First Named Inventor/Applicant Name:	
Filer:	Brian T. Maguire
Attorney Docket Number:	Donald Merton Hill/Joyce Smith SONAR

Filed as Large Entity
Utility under 35 USC 111 (a) Filing Fees

Description	Fee Code	Quantity	Sub-Total in USD(\$)
Basic Filing:			
Pages:			
Claims:			
Miscellaneous-Filing:			
Petition:			
Patent-Appeals-and-Interference:			
Extension-of-Time:			

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)		
Miscellaneous:						
Submission- Information Disclosure Stmt	1806	1	180	180		
Total in USD (\$)						$\mathbf{1 8 0}$

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 180$
RAM confirmation Number	7685
Deposit Account	160605
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	RAY-103 of

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)
File Listing:

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Payment information:

5		Non Patent Literature	2Trabant.pdf	21721740	no	98	
		63 eb08393edfcdcac44690b476246f150324 550a					
Warnings:							
Information:							
6			Non Patent Literature	3Trabant.pdf	13988256	no	86
Warnings:							
Information:							
Total Files Size (in bytes):				99524423			
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.							
New Applications Under 35 U.S.C. 111							
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.							
National Stage of an International Application under 35 U.S.C. 371							
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.							
New International Application Filed with the USPTO as a Receiving Office							
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.							

NOTICE OF ALLOWANCE AND FEE(S) DUE

${ }^{826} \quad 7590$ 07/23/2012
ALSTON \& BIRD LLP
BANK OF AMERICA PLAZA
101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000

DATE MAILED: 07/23/2012

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$12 / 460,139$	$07 / 14 / 2009$	Brian T. Maguire	$038495 / 369324$	

TITLE OF INVENTION: DOWNSCAN IMAGING SONAR

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	$\$ 1740$	$\$ 300$	$\$ 0$	$\$ 2040$	$10 / 23 / 2012$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box $5 b$ on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
 Commissioner for Patents
 P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

07/23/2012

```
\({ }^{826} \quad{ }^{7590}\)
ALSTON \& BIRD LLP
BANK OF AMERICA PLAZA
101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000
```

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

	(Depositor's name)
(Signature)	
(Date)	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$12 / 460,139$	$07 / 14 / 2009$	Brian T. Maguire	$038495 / 369324$	

TITLE OF INVENTION: DOWNSCAN IMAGING SONAR

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1740	\$300	\$0	\$2040	10/23/2012
		ART UNIT	CLASS-SUBCLASS			
HULK	MES R	3645	367-088000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively,		$\begin{array}{ll}\text { ys } & 1 \\ \text { a } & 2 \\ \text { is } & \\ \text { in }\end{array}$	

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)
$\underline{\text { Please check the appropriate assignee category or categories (will not be printed on the patent) : } \square \text { Individual } \square \text { Corporation or other private group entity } \square \text { Government }}$

4a. The following fee(s) are submitted:
\square Issue Fee
\square Publication Fee (No small entity discount permitted)
\square Advance Order - \# of Copies \qquad

4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
\square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
\square The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number_(enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
\square a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27.
\square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR $1.27(\mathrm{~g})(2)$.

NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature

Typed or printed name

Date

Registration No.

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450
www.uspto.gov

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b) (application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 299 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 299 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Application No.		Applicant(s)	
$12 / 460,139$	MAGUIRE, BRIAN T.		
Examiner	Art Unit		
JAMES HULKA	3645		

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37CFR 1.313 and MPEP 1308.

1. \boxtimes This communication is responsive to 22 June 2012.
2. \square An election was made by the applicant in response to a restriction requirement set forth during the interview on \qquad ; the restriction requirement and election have been incorporated into this action.
3. \boxtimes The allowed claim(s) is/are 57-84,86,88-125,127-131 and 134.
4. \square \square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) \square All
b) \square Some*
c) \square None of the:
5. \square Certified copies of the priority documents have been received.Certified copies of the priority documents have been received in Application No. \qquad .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad —.
Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
5.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

6. \square CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a) \square including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \square hereto or 2) \square to Paper No./Mail Date \qquad _.
(b) \square including changes required by the attached Examiner's Amendment / Comment or in the Office action of

Paper No./Mail Date \qquad .
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
7.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. \square Notice of References Cited (PTO-892)Notice of Draftperson's Patent Drawing Review (PTO-948)
2. \boxtimes Information Disclosure Statements (PTO/SB/08),

Paper No./Mail Date 20120622
4.Examiner's Comment Regarding Requirement for Deposit of Biological Material
/J. H./
Examiner, Art Unit 3645
5. \square Notice of Informal Patent Application
6. \squareInterview Summary (PTO-413), Paper No./Mail Date \qquad .
7.Examiner's Amendment/Comment
8.Examiner's Statement of Reasons for Allowance
9. \square Oth \qquad -.

Supervisory Patent Examiner, Art Unit 3645

\square	Claims renumbered in the same order as presented by applicant							\square	CPA		$\square \quad$ т.D.	$\square \quad \mathrm{R}$		R.1.47	
Final	Original														
1	57	17	73	34	89	47	105	61	121		137				
2	58	18	74	35	90	48	106	62	122						
3	59	19	75	36	91	49	107	63	123						
4	60	23	76	37	92	50	108	66	124						
5	61	24	77	38	93	51	109	67	125						
6	62	25	78	39	94	52	110		126						
7	63	26	79	42	95	64	111	68	127						
8	64	27	80	40	96	65	112	69	128						
9	65	28	81	41	97	53	113	70	129						
10	66	29	82	43	98	54	114	71	130						
11	67	30	83	44	99	55	115	72	131						
12	68	31	84	20	100	56	116		132						
13	69		85	45	101	57	117		133						
14	70	32	86	21	102	58	118	73	134						
15	71		87	22	103	59	119		135						
16	72	33	88	46	104	60	120		136						

/J.H./ Examiner.Art Unit 3645 (Assistant Examiner)	06/25/2012 (Date)	Total Claims Allowed: 73	
/ISAM ALSOMIRI/ Supervisory Patent Examiner.Art Unit 3645 (Primary Examiner)	07/14/2012 (Date)	O.G. Print Claim(s) 76	O.G. Print Figure 5
U.S. Patent and Trademark Office			

Examiner Signature	Names Huka	Date Considered	$06 / 25 / 2012$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3645

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
I	Interference

\mathbf{A}	Appeal
\mathbf{O}	Objected

\square Claims renumbered in the same order as presented by applicant							\square	CPA	\square	т.D.	\square	R.1.47
CLAIM		DATE										
Final	Original	07/26/2011	09/13/2011	12/08/2011	03/07/2012							
	1	\div	N	-								
	2	\div	N	-	-							
	3	\div	N	-	-							
	4	\div	N	-	-							
	5	\div	N	-	-							
	6	\div	N	-	\cdot							
	7	\div	N	-	-							
	8	\div	N	-	\cdot							
	9	\div	N	-	-							
	10	\div	N	-	-							
	11	\div	N	-	-							
	12	\div	N	.	.							
	13	\div	N	-	-							
	14	\div	N	-	-							
	15	\div	N	-	-							
	16	\div	N	-	-							
	17	\div	N	-	-							
	18	\div	N	-	-							
	19	\div	N	-	-							
	20	\div	N	-	-							
	21	\div	N	-	-							
	22	\div	N	-	-							
	23	\div	N	-	-							
	24	\div	N	-	\cdot							
	25	\div	N	-	-							
	26	\div	N	-	-							
	27	\div	N	-	-							
	28	\div	N	-	-							
	29	\div	N	-	-							
	30	\div	N	-	-							
	31	\div	N	-	-							
	32	\div	N	-	-							
	33	\div	N	-	-							
	34	\div	N	-	-							
	35	\div	N	-	-							
	36	\div	N	.	-							

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3645

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
I	Interference

\mathbf{A}	Appeal
\mathbf{O}	Objected

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3645

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
I	Interference

A	Appeal
\mathbf{O}	Objected

\square Claims renumbered in the same order as presented by applicant							\square	CPA	\square	т.D.	\square	R.1.47
CLAIM		DATE										
Final	Original	07/26/2011	09/13/2011	12/08/2011	03/07/2012							
17	73	\div	\checkmark	\checkmark	=							
18	74	\div	\checkmark	\checkmark	=							
19	75	\div	\checkmark	\checkmark	=							
23	76	\div	\checkmark	\checkmark	=							
24	77	\div	\checkmark	\checkmark	=							
25	78	\div	\checkmark	\checkmark	=							
26	79	\div	\checkmark	\checkmark	=							
27	80	\div	\checkmark	\checkmark	=							
28	81	\div	\checkmark	\checkmark	$=$							
29	82	\div	\checkmark	\checkmark	=							
30	83	\div	\checkmark	\checkmark	=							
31	84	\div	\checkmark	\checkmark	=							
	85	\div	\checkmark	-	-							
32	86	\div	\checkmark	\checkmark	=							
	87	\div	\checkmark	-	-							
33	88	\div	\checkmark	\checkmark	=							
34	89	\div	\checkmark	\checkmark	$=$							
35	90	\div	\checkmark	\checkmark	=							
36	91	\div	\checkmark	\checkmark	=							
37	92	\div	\checkmark	\checkmark	$=$							
38	93	\div	\checkmark	\checkmark	=							
39	94	\div	\checkmark	\checkmark	=							
42	95	\div	\checkmark	\checkmark	=							
40	96	\div	\checkmark	\checkmark	$=$							
41	97	\div	\checkmark	\checkmark	=							
43	98	\div	\checkmark	\checkmark	$=$							
44	99	\div	\checkmark	\checkmark	=							
20	100			\checkmark	=							
45	101			\checkmark	$=$							
21	102			\checkmark	=							
22	103			\checkmark	=							
46	104			\checkmark	=							
47	105			\checkmark	=							
48	106			\checkmark	=							
49	107			\checkmark	=							
50	108			\checkmark	=							

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3645

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

Search Notes	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3645

SEARCHED					
Class	Subclass	Date	Examiner		
367	88		$9 / 13 / 2011$	JH	

SEARCH NOTES

Search Notes	Date	Examiner
EAST (Keyword and Class Limited)	$6 / 25 / 2012$	JH
PALM (Inventor Name)	$9 / 13 / 2011$	JH
Google (Keyword)	$9 / 13 / 2011$	JH
Consulted Primary Examiner (D. Pihulic)	$4 / 2 / 2012$	JH

INTERFERENCE SEARCH			
Class	Subclass	Date	Examiner
367	Searched Claim Language	$3 / 7 / 2012$	JH

J.H./ Examiner.Art Unit 3645 	

| REQUEST |
| :---: | :--- |
| For |
| FONTINUED EXAMINATION (RCE) |
| TRANSMITTAL |\quad Application Number: 12/460,139

1. Submission required under 37 C.F.R. \& 1.114 Note: if the RCE is proper, any previously filed unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such amendment(s).
a. \square Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
i. \square Consider the arguments in the Appeal Brief or Reply Brief previously filed on
ii. \square Other
b. \boxtimes Enclosed
i. \square Amendment/Reply
ii. \square Affidavits(s)/Declarations(s)
iii. \boxtimes Information Disclosure Statement (IDS); fourteen (14) cites listed on PTO Form 1449
iv. \square Other

2. Miscellaneous

a. \square Suspension of action on the above-identified application is requested under 37 C.F.R. §1.103(c) for a period of __ months. (Period of suspension shall not exceed 3 months; Fee under 37 C.F.R. § 1.17 (g) required)
b. \square Other

In re: Brian T. Maguire
Appl. No.: 12/460,139
Filed: July 14, 2009
Page 2
3. Fees The RCE fee under 37 C.F.R. § $1.17(\mathrm{e})$ is required by 37 C.F.R. § 1.114 when the RCE is filed.
a. The Director is hereby authorized to charge any fee deficiencies, or credit any overpayments to Deposit Account No. 16-0605.
i. \boxtimes RCE fee required under 37 C.F.R. § 1.17(e) ($\$ 930.00$ large entity; $\$ 465.00$ small entity)
ii. \square Extension of Time Fee (37 C.F. R. §§ 1.136 and 1.17)
iii.

Other
b. \square Check in the amount of $\$$ \qquad enclosed

Respectfully submitted,

Patrick L. Kartes
Registration No. 64,678
Customer No. 00826
ALSTON \& BIRD LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Charlotte Office (704) 444-1000
Fax Charlotte Office (704) 444-1111
ELECTRONICALLY FILED USING THE EFS-WEB ELECTRONIC FILING SYSTEM OF THE UNITED STATES PATENT \& TRADEMARK OFFICE ON JUNE 22, 2012.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re: \quad Brian T. Maguire
Appl. No.: 12/460,139
Filed: July 14, 2009
For: DOWNSCAN IMAGING SONAR

Confirmation No.: 9769
Art Unit: 3645
Examiner: HULKA, James R.

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

CITATION UNDER 37 C.F.R. § 1.97
Attached is a list of documents on form PTO-1449 along with a copy of any cited foreign patent documents and non-patent literature documents in accordance with 37 CFR 1.98(a)(2).

It is requested that the Examiner consider these documents and officially make them of record in accordance with the provisions of 37 C.F.R. $\S 1.97$ and Section 609 of the MPEP. By identifying the listed documents, Applicant in no way makes any admission as to the prior art status of the listed documents, but is instead identifying the listed documents for the sake of full disclosure.

Respectfully submitted,

Patrick L. Kartes
Registration No. 64,678

Customer No. 00826
ALSTON \& BIRD LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Charlotte Office (704) 444-1000
Fax Charlotte Office (704) 444-1111

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3645
				Examiner Name	HULKA, James R.
Sheet	1	of	1	Attorney Docket Number	038495/369324

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Espacenet

Bibliographic data: JP50109389 (U) - 1975-09-06

No title available

Inventor(s):
Applicant(s):
Classification:
Application number:
Priority number(s):

- E04H6/18; E04H6/28; (IPC1-
international: 7): E04H6/28
- European:

JP19740018291U 19740215
JP19740018291U 19740215

Abstract not available for JP50109389 (U)

明 ：䋑
1．発明 つ名称
水中用＂船普波送受波装爱
2．特踇酳求の笨囲
－水中用超音波送受波器を，本水中用超音波送受波器の樃角を敛定する修正俯角信号を発生す
 に応した流量の海水を喷出广る電気一海水流瀵犾換器と，本電気一海水流量変換器の海水喷流 を受けて複教の出力ボートから海水を流出させ， かつある出力ボートからの咉出流罝と他の出力 ボートの噴胐流量との比を，前舐電気一海水硫
制御素子と，本流体制御素子と前記水中用赤音波送受波器とを一体として回動自在に船底て保特する手段とを僙え，欮眍出力ボートすしくは出力ボートに取り付けられ龙喷出ンズから海中へ海水を喷出させるととによつて水中用超音浓送受波器の㼡角を制御するとを学特権とした ※中＂用疑音波送受波装慨。

8．発明の詳細な説明
特に船絈の動播に対して，結底師に装撯した超音波送受波器指向方向を安定化させ，百を力の侟角の制衡に関けるものである。

珹的方法により行をつていた。しかし従来のね

 た。

との涨明は，そのよ5な欠点を取り際く龙め，
 の動摇に対して安定に保つよ5にしたたのです る。以下ての発明を図について跘明する。

なぁ超音波送受波畄は超音波送波器，超音波。愛波器，忘をは超音波送波箱受波器を意珠し以下単に送受波器という。

以下本発明の一実施例として，船のビシチ方向の動择に対して船底に葠贔した超音波送受波

犾然を示している。第工図のうは始底， 2 は結底機器部て文点 3 て保持さえビッチ方向に最大

胸3．は は空になっている。第2図は本実施例 のブロックダイヤクラムを示している。

第2図にまにて，はは送受波器の希放作角を段定する椨角酸定器， 5 は振 b子型の動搯検出器， 6 は加算器， 7 と8は魝御增啧器， 9 は電禹升で体管路の断面涨を要化させ，入カとし て与えられた個呂。に応して磺出流量を変化さ せる裡勻一海水流量変換器，10は一定生従つ て一定流量の海水を取り，入れて供給する海水供給教置，14は分流器であり，とれらは～10，
 にて，1ゴは，純流体需子部ですり，第8図に

特開 昭50－109389
示す如く分流器12，，解御流の。が与えられる。制御ホート1！bと一定の部部潅 Q_{g} が与えられ石解御ふート110．と一定の主磪が与えられる。

出する流禺の此を変化させ方すのでする。

同しく第2図において， 12 は，䡩3』をロ －どしかつステージ交狳底機器部えそ固定し たシンクロ発電機型の植度鈢出器ですり，結庞
 の碰言を検出するものである。

収容され，ま庄信号伝送湶12 2 ，硞体移送管

フルチユーブや管を用にるとをによつて船底機器郡監から算スするとともてをる。

的作についで述ごる。先ず送受波器4により
綥に応してもの時のビッチ角的が得られる。一

 （ $\theta_{i}-\theta_{\text {p }}$ ）－θ_{0} 古算し出力する。との信号

器」なにより一定生の海水が加えられてまり，畣御聕楅器 7 の出力倍号に比例し尤删御流量借号の。をつくつてんる。郎ちとの作号もの大ぎさ
 －化する夕のである。

比㑬增霹型种跣体素子の制御ホートの一方に
器i4からの海水を召炜して一定流量の海水Q日

を加きできく，主喷流は分流器 14 から分紣し

 ら等流罝の海水加哄雄し船底機器部2は絡底！ K対して闃度 0° に保持される。合，$Q_{\mathrm{c}}-Q_{\mathrm{a}}$ の差のモーメンタム火比例して主
 つの磺出ノ゙メルから磺出する硫量は䍃化する。。 －即を一方は従来よ よ 流量加墲大し，他方は浗少 する。その結果ニつの唤流によるネョストも同
 つた角度れは上向の傾度位貫炕保持するととに虎る。
従つてシステム全体として，超音波送受波器，
 に対して自動的に㮩正動作を行なわせその結果超音波送受波器志慕準水平面に対して规定の䈐角値に保持させるととができる。更比射角值を
 で䘸維厷機㳟を必要としない利点がある。

なま第2迤における㑯斜検出器とし，ては，抵坑排私型をの他のタイブな使用するととができ，
 る。

またい船底機器䣵2が受ける硫体抵抗に抗し て蟿3．2を支点として結底機器部2を可動させ る长めに必要なスデストを得なた的に被数假の比例増褔型䖻体素子な用いるとともあるし，

 トがきのあま磺出ノ゙メルとなるよりに制作する。 ととも叮能である。

また旅体制御素子副 ！1は制御ボートから喷
 ボートから哄出守る流体の方向を変える ので あるから第4図Aに示すように一つの制御ボー $ト と こ つ の$ 出カボート在有するもの第4図BK゙
 トを有するものその僻の流体素子を用いるとと もてき石。

2113

$$
42(12
$$

以上䂱明した上ちに，との発明は總流体䱥御素子を使用した単練な機機により機成されてお り，可動部分がなにととによる耐久性，長带命及び酎唇境特性を有する利点がある。又以上の利点からまとして小型船船に容易に港備すると とが可能になつた。
4．図面の简単な脱明
第1図は本発明に标る一実施例の断面畧て，結府に超站波送受波器卽が先畳してている犾況を示す図，箄2図は，本発明による—実施㱪のプ ロックダ！ヤタラムを示す図，「第8図と第4図。 は本発明に用いる流体制㗜亚子部の具体傑を示 す図である。
$I \cdots$ 船底： $2 \cdots$ 結虐機器部； $3 . .$. 支点， $3 a$

体素子部，I2…顝度検出器， 13 …送受波器， 14．…分流器。

九3

8440

（B）

氏名 媒

力形

Espacenet

Bibliographic data: JP54054365 (U) - 1979-04-14

No title available
Inventor(s):
Applicant(s):

Classification:	international:	B63B49/00; B63B5/00; G01S7/52; G01S7/521; (IPC1-7): B63B5/00; G01S7/52
	- European:	

Application number:	JP19770128135U 19770922
Priority number (s): JP19770128135U 19770922	

Abstract not available for JP54054365 (U)

JAPANESE UTILITY MODEL REGISTRATION APPLICATION

Date: September 22, 1977
Attn: Director General of the Patent Office

1. Title of the Idea

MOUNTING DEVICE OF UNDERWATER SEARCH ECHO SOUNDER TRANSDUCER TO NONMETAL VESSEL HULL
2. Designer
Address: 9-52 Ashihara-cho, Nishinomiya city, Hyogo Prefecture Furuno Denki, Co. Ltd.
Name: SATO, Yuji
3. Utility Model Registration Applicant

Address: $\quad 4160$ Kuchinotsu Machitei, Minamitakaki-gun, Nagasaki Prefecture
Name: \quad Furuno Denki, Co. Ltd.
Representative: FURUNO, Kiyotaka
(Postal Delivery) Postal Code 662
9-52 Ashihara-cho, Nishinomiya city, Hyogo Prefecture Furuno Denki, Co. Ltd.
4. List of Attached Documents
(1) Specification 1
(2) Figures 1
(3) Copy of Application 1
[Stamp: Patent Office
September 24, 1977
Sec. 2 Applications
Tsunoda]
54-54365
52128135

Specification

1. Title of the Idea

MOUNTING DEVICE OF ECHO SOUNDER TRANSDUCER FOR HYDROSPACE SENSOR TO NON-METALLIC SHIP

2. Scope of Registered Utility Model

A mounting device of an echo sounder transducer for a hydrospace sensor to a nonmetallic ship configured with an echo sounder transducer case that is held so that a radiation surface of the ultrasonic transducer appears on the lower end surface with a flange in the periphery of the upper end surface, a frame in the form of rectangular parallelepiped shape having a hitch part that is embedded in advance in the bottom of the ship and formed so as to be held after at least two mutually opposing flanges of the echo sounder transducer case are slid and engaged, and a latch provided on the remaining side of the frame to latch the flanges.

3. Detailed Description of the Idea

The present idea relates to an echo sounder transducer mounting device to mount in the bottom of a ship in which an echo sounder transducer for the hydrospace sensor is projected a specified length below the bottom of the ship, and particularly relates to an echo sounder transducer mounting device in which an echo sounder transducer can be mounted extremely easily on the bottom of a non-metallic ship.

A hydrospace sensor that detects a school of fish, the bottom of the ocean, or the like to observe an underwater condition sends an ultrasonic pulse signal of a specified frequency at a constant cycle from an echo sounder transducer mounted on the undersurface of the bottom of a ship, receives a reflected wave from a school of fish or the like, and displays the received signals on a recorder to provide precise hydrospace information to a user. Because the reflected signals that come back to the echo sounder
receiver are extremely weak by being faded considerably due to undersea factors, and when these are amplified in a high degree, various noises are also amplified likewise, so a clear display image is difficult to obtain. Accordingly, it is desirable to minimize to the utmost the fading of the ultrasonic reflected signal that occurs until reaching the echo sounder receiver.

Originally, the ultrasound signal has a characteristic to fade considerably due to an air bubbling layer or an eddy layer, and particularly an air bubbling layer generated when waves crash against the bow as the ship travels the water, and an eddy or the like due to a projection structure of the bottom of the ship covering the surface of the echo sounder transducer, the reception performance of the hydrospace sensor is considerably deteriorated. In order to avoid the air bubbling layer that rushes through the bottom of the ship, conventionally the echo sounder transducer have been held by projecting anywhere from 20 to 40 [cm] from the bottom surface of the ship. More specifically, The upper surface of an steel made echo sounder transducer case has been cut in conformity to an inclination of the bottom of the ship part and the cut surface was weld to the board of the bottom of the ship. This method has been a suitable installation method for a steel ship that was the mainstream in the past; however, this could not be applied to a FRP (fiberglass reinforced plastics) ship that has been popularized rapidly in recent years.

This idea is to provide a suitable echo sounder transducer mounting device to install the echo sounder transducer into FRP ships.

Descriptions of embodiments of the present idea will be given hereinafter with reference to drawings.

FIG. 1 is a conventional device in which an echo sounder transducer is mounted in the bottom of the ship of a steel ship.

In FIG. 1, ultrasonic transducers 3 and 4 are mounted on a plate 2 that configures an echo sounder transducer case 1 , and the plate 2 is fixed by a bolt 5 . The upper surface of the echo sounder transducer case 1 is welded and fixed continuously on the bottom sheathing 6.

On the other hand, in the case of an FRP ship in which the body is formed by a laminating material of FRP resin, a welding method cannot be used so a fastening method that uses a bolt or the like is considered.

FIG. 2 is a conventional device where an echo sounder transducer is mounted to a wooden ship. This was widely performed in the previous stage transitioning to the steel ship.

In FIG. 2, flange 7 where an appropriate number of mounting holes are provided in the periphery is welded on the upper surface of an iron echo sounder transducer case 1 , and the echo sounder transducer case 1 is fixed to the top and bottom of the bottom sheathing 8 by using a bolt 12 and a nut 13 that penetrate filler pieces 10 and 11 to compensate the inclination of the bottom part of the ship.

Although the same mounting method as the mounting method to the wood ship in FIG. 2 may be considered for use, a partial deterioration of strength is likely to occur because the mounting holes are drilled into the bottom sheathing, and this leads to deficiency requiring a preventive treatment for water leakage.

FIG. 3 illustrates an embodiment of the present idea. FIG. 4 illustrates an explanatory drawing for a mounting process of the embodiment. FIG. 5 illustrates the essential part of the embodiment. FIG. 6 is a cross-sectional view of the embodiment described above. FIG. 7 and FIG. 8 are cross-sectional views of another embodiment.

In FIG. 3, ultrasonic transducers 3 and 4 are held on the bottom surface of the echo sounder transducer case 15 so that those radiation surfaces appear from the case, and a flange 16 is provided integrally on the upper surface of the echo sounder transducer case.

A U-shaped or L-shaped hitch part 17 is provided on three sides as illustrated in FIG. 5 and a frame shape having notch 18 is formed on the remaining side in the bottom of an RFP ship. Frame 19 is embedded in advance when forming the ship body with FRP resin. The hitch part 17 may be integrally formed with the frame 19 , or may be configured by welding a U-shaped or I-shaped metal fitting to the frame, and when embedding in the bottom of the ship in advance, the hitch part 17 is outside the bottom of the ship. Screw hole 20 is cut in the notch part 18 of the frame.

The echo sounder transducer case 15 is held in the bottom of the ship 14 by engaging the flange 16 into the hitch part 17 and pressure welding with an L -shaped pressure welding plate 21 . Through holes for a bolt to be through are provided in the pressure welding plate 21 , and the pressure welding plate 21 is fastened to the frame 19 by the bolt so these through holes are arranged opposing each other to the screw hole of the frame 19. Arrow A indicates a traveling direction of the ship.

In FIG. 4, an echo sounder transducer case 15 having ultrasonic transducers 3 and 4 and flange 16 are engaged so as to slide within a U-shaped hitch part 17 in the arrow B direction, and subsequently, L-shaped pressure welding plate 21 is pressed against one side of the flange and secured with a bolt to be fixed on the bottom of the ship.

In FIG. 6, an echo sounder transducer case 15 is held by being engaged into a hitch part 17 of a frame 19 where the flange 16 is embedded in the bottom of the ship in advance. A section 22 where the frame of the bottom of the ship 14 is embedded is formed in a convex shape in order to prevent the deterioration of strength or is formed in a streamlined shape or the like in order to reduce traveling resistance. As illustrated in FIG. 7, when the flange is doubly provided so as to be on either side of the hitch part 17, the echo sounder transducer case 15 can be held securely, and also wave receiving noise can be reduced because a lash can be suppressed.

When compensating for the inclination of the bottom of the ship 14, the height may be adjusted when molding the ship bottom convex part 22 as illustrated in FIG. 8(A), or the upper part of the echo sounder transducer case 15 may be formed to conform to an inclination of the bottom of the ship as illustrated in FIG. 8(B).

According to the idea described above, the ultrasonic echo sounder transducer can be mounted extremely easily to the bottom of the ship with no occurrence of deterioration in the strength of the bottom of the ship, and the only object penetrating the bottom of the ship is an echo sounder transducer cable, so a well commonly used marine watertight cable gland can be used without needing special preventive treatment for water leakage or the like, and thereby, an excellent effect can be achieved.

In addition, holding strength is given by using the pressure welding plate 21 after the echo sounder transducer case is engaged and held into the hitch part 17 as well as prevented from the echo sounder transducer case to be slipped out in the above
embodiments; however, this should not be limited to this method, and for example the through holes may be provided in the flange itself to lock the echo sounder transducer case by utilizing these.

4. Brief Description of Drawings

FIG. 1 and FIG. 2 illustrate a conventional device;
FIG. 3 illustrates an embodiment of the present idea;
FIG. 4 is an explanatory drawing of installing process of an embodiment of the present idea;

FIG. 5 is an essential part of an embodiment;
FIG. 6 is a cross-sectional view of the embodiment described above; and FIG. 7 and FIG. 8 are cross-sectional views of another embodiment.

Numerical reference number 1 is an echo sounder transducer case, 3 and 4 are ultrasonic transducers, 6 is the bottom of the steel ship, 7 is a flange, 8 is the bottom of a wooden ship, 10 and 11 are penetrate filler pieces, 14 is the bottom of a FRP ship, 15 is an echo sounder transducer case, 16 is a flange, 17 is a hitch part, 19 is a frame, 21 is a pressure welding plate, and 22 is a convex part of the bottom of a ship.

Applicant of the JP Utility Model Registration: Furuno Electric Co., Ltd.

公開実用 照和 $54-754365$

\because 実用新案登録願

昭和52年9月22日
特許庁長官
殿

への最符盗番
2．芳 案 者

古㩾電気株式会社内

3．実用新案登録出頋人

名 称 古野電気気株式会社
代表者 啫 野 清 抙
（郵送先） $\boldsymbol{7} \overline{6}: \overline{2}$

フルノ゙゚ンキ
活野電気株式会社
4．添付書類の目録
（1）明 細 書
1 通
（2）図 侕
1 通
（3）願書副本

$$
19{ }^{2} 2
$$

52128135

1．考案の名称

水中探知用送受波器の非金喓製船体への取付装㨁

2．実用新案登録請求の範囲
その下端面におんて超音波振動子の輻射面が現出するように保持されその上端面の周进にフラン ジを有する送受波器ケースと，船底に予め埋設さ れ少くともその相対する二辺に上記送受波器ケー スのフランジが摺䡃して欥入された後保持され得 るよう成批される引掛部を有する直方体状の枠体 と，上記フランジを係止するために上記枠体の残 りの过に設けられる係止具とで構成される水中探知用送受波器の非金属製船体への取付装量。
3．考案の詳細な説明
この考案は，水中探知用送受波器を船底下に特定長さ突出させて船底に取付ける送受波器取付装真に関し，特に送受波器を非金属製船の船底に極 めて容易に取付けるととがてぎる送受波器取付装葍に関する。

$$
54-54365
$$

魚群や海底等を探知し水中㧋況を観測する水中探知装值は，船氐下面に取付けた送受波器から特定周波数の超音波パルス信岇を一定周期にて送出 して魚群等からの友射波を受信しての受倌々号を記録器に表示せしめることにより利用者に的確な水中探知情報を提供する。受波器に帰来する反射信号は海中の諸因子により著しく隇率されて極め て微弱なものであり，とれを高度に増瀶すると諸雑音も河様に媲幅されるので明瞭な表示像が得ら れにくん。従つて，受波器に到達するまでに生じ る超音波反射信号の淢取を㙝力少なくするととが囦まれる。

元来，超音波信号は父泡層や涔流層で著しく減衰する性質をもち，特に船の走行により波が船首 で破确される際に生じる気泡層や船底の突出構造物による消流などが送受波器面を復5とをは著し く水中探知装直 コ受信性能が低下する。旧来より船底を流過する気泡層を避けるために，送受波器 を船底面から20～40〔酒〕突出させて保持すると とが行なわさていた。具体的には，鉄製の送受波

带ケースの上面を船底部の傾斜に合せて切断し切断面の風曲を沿底板に溶接することにより行つて いた。との方法は说来主流を占めていた鉄鋼粘に適した装備法であつたが，近年急速に普及してき たFRP（Fiberglass Reinforced Plastics．強化ブラス チック）船には採用てきなかつた。

この考案は，FRP船に送受波器を装備するのに好適な送受波器取付装惪を提供するものである。

以下，缶面を併せ用いてこの考案の泱施例を説旳するの

第1図は，送受波器が跌鋼船の船底に取付けら れる従来装道を示す。

第1図において，送受波器ケース1を構成する平板 2 には超音波振動子 3 及び 4 が取付けられて おり，平板2はボルトБにより固着されている。送受波谷ケース1は船底板6にその上间が連続的 に溶接され固定される。

一方，胎体を FRP樹脂の樍層材料で成形したFMP胎の場合には榕接法を採用てをず，ボルト等を用 いた締䊅法が考えられる。

第2兇は，送受坡器を木造船に取付けた従来装惪を示す。とれは鉄鋼船に移行する前の段階て広 く行なわれていた。

当2図において，鉄鄨の送受波器ケース10上面にその哇断に適当数の取付穴を設けたフランジ 7 が溶接され，船底板 8 の上下に船底部の傾斜を補正する間坐10．11が当てられ鿓通されるボルト 12及びナット13を用いて送受波器ケース1估固定 される。

FRP船の場合にも第2仪の木造船への取付方法 と同じ取付法を採用できるとも考えられるが，船底板を貫通して取付爸を穿つたためた部分的な強度低下を生じやすく，漏水の防止処飓が必要とな るといら不其台が生じる。

第3凶は，との考案の実施例を示す。第4凶は実施例の装備過栓詋明凶在示す。弟5図は，実施例の主雬部を示す。第6図上記実施例か断面図を，第7及び单8図は他の実施例の断面㐍を示す。

第3図におんて，送叕波兴ケース15の下面には超音波振䵢子3．4がそれら蝠射通をケースから規

出する如く保持されており，送受波谷ケースツ上四にはフランジ16が一体的に設けられている。 FRP船の船底14には，第5図になすよ5にその三边にコ型又は山型の引掛部17が設けられ残りの一辺に切欠き部18を有する枰型状に形成されてい る。枠体19がFRP樹脂で船体を成栊する時に予め埋設される。引掛部17は，枠体19と一体的に形成 しあるいは枠体にコ型又はエ型の金具を溶接して傋成するととがてき，予め胎底に埋設する際には引掛部17は船底外にあるよ5になされる。枠体の切尣を部18にはネジ穴20が切られている。

送栄波器ケース15は，そのフランジ16か引掛部 17 V曒入されそして山字型の匡接板21でE接され
 ボルトを通す貫迪穴が設けられており，圧接板21 はとれらの貫通穴が上記枠体19のねじ穴に相対す るように配値されボルトにより上記枠体19に䋻制 きなる。矢印Aは船の進行方向を示す。䍓4図において，超音波振動子3．4及びフラン ジ16を有する送栄波器ヶース15は，矢印B方向に

フランジ16がコ字型の引掛部17内を挨勤するよ5 に欥入された後，L字型の正接板改がフランジの

一辺に押し当てられボルトを用いて固看すること により，船底に固定される。

讶6図において，送受波發ケース15は，そのフ ランジ16が予め唄底に塌設される枠体19の引掛部 17K娭入されるととにより保持される。船底14の枠体が埋設される部分 22 は强度低下を防ぐために』状に且つ走行抵抗の軽減をはかるために流線形等に成形されるの第7図に示すように，引掛部17 を挾むよ5にフランジを2段設ければ送受波器ヶ ース150保持を碓実にするととができしかも遊隙 を抑えるととがてきるので受波ノイズわ減少させ るととができる。

船底140）傾斜を補正する場合には，第8図（A）V がすように沿底凸部22成型時にその高さを調節す るか，あるいは同図（B）に示すように送受波葀ヶー ス15の上部を粘底の傾紏に合わせて成形すればよ い。

上述のよよにくの考案によれば，吿底の強度低

下を生ずるととなく检めて容易に超羔波送受波茳 を船底に取付けるととができ，しかも船底の貟通物は送栄波器のケーブルのみとなるので通常よく用いられ方粘用電緑貝进金物を用いるととがてき痒別な漏水防止策を施しす必要を生じない等ひ優 れた㕮果を乲する。

なお，上記実施例においては，送受波器ケース を引掛部17へ顿人して保持した後佂接板21を用い て保持力を与え目つ送受波然ヶ一スか抜け出るの を防止しているが，との方法に限定されるととな く例えばフランジ自身に貫通穴を設けとれらを利用して送受波劵ヶースを係止するととも可能で西 る。

4．図面の簡単を說明
 この考案の実施例を，第4図はとの考案の実施例
第6図は上記芙施例の断因図を亦す。弟7及び第 8 図は他 つ尖施例 く断面図を示す。

1は送栄波茄ヶース，3 ふび4は超音波振動子

运完実用 昭和54－J54365

6は鉄銅船の船低，7はフランジ，8は木造船の船底， 10 代び 11 は間坐， 14 は FRP船の船厎， 15 は送栄波器ケース，16はフランジ，17は引引掛部，19 は枠体，21は圧接板，22は㫟底の凸部を示す。

実用新案登録出願人 古野電㸚怢式会社

$54 \div 65$
学
出厥人 古时黄気林式会社

忩開実用 昭和 54 － 54365

RAY－1002

Espacenet

Bibliographic data: JP62099877 (U) - 1987-06-25

No title available

Inventor(s):
Applicant(s):

		B63B49/00; G01S7/52; G01S7/521;
Classification:	international: \quadH04R1/44; (IPC1-7): B63B49/00; G01S7/52	
	- European:	

Application	JP19850191674U 19851213
number:	
Priority number JP19850191674U 19851213 (s): Also published JP1043658(Y2) as: ,l	

Abstract not available for JP62099877 (U)

JAPANESE UNEXAMINED UTILITY MODEL PUBLICATION S62-99877

(19) Japan Patent Office (JP)
(11) Utility Model Publication No. S62-99877
(12) JAPANESE UNEXAMINED UTLITTY MODEL PUBLICATION (U)
(43) Publication Date: June 25, 1987 (Showa 62)

(51) Int. Cl. 4	
G 01 S	$7 / 52$
B 63 B	$49 / 00$

In-House Reference. No.
B-6707-5J
8309-3D

Examination request: YES \qquad
(54) Title of the Idea

HOUSING CASE OF HYDROACOUSTIC EQUIPMENT
(21) Application No.
(22) Date of Application Filing
(72) Designer
(72) Designer
(72) Designer
(71) Applicant
(74) Agent

UMA S60-191674
December 13, 1985 (Showa 60)
c/o NIPPI Corporation
AKUZAWA, Shojiro
3175 Showa-machi, Kanazawa-ku,
Yokohama, Japan
c/o NIPPI Corporation
ISHIKAWA, Nariaki
3175 Showa-machi, Kanazawa-ku,
Yokohama, Japan
c/o Japan Aircraft Mfg. Co. Ltd.
OHNO, Toshihito
3175 Showa-machi, Kanazawa-ku,
Yokohama, Japan
NIPPI Corporation
3175 Showa-machi, Kanazawa-ku, Yokohama, Japan
Attorney SUZUE, Takehiko and two others

SPECIFICATION

1. Name of Idea

Housing Case of Acoustic Equipment
2. Scope of Utility Model Registered Claims

A housing case of hydroacoustic equipment mounted outside a vessel, comprising water conducting holes that connect inside and outside of a case body and which are mounted on the top and bottom surfaces of a hollow case body in which the bottom surface is flat and the top surface is made to have a streamlined expansion along the front to back direction of the vessel.
3. Detailed Description of the Idea
[Field of Industrial Application]
The present idea relates to a housing case of hydroacoustic equipment mounted outside a vessel.
[Related Art]
Devices are available in which hydroacoustic equipment such as an acoustic current meter, echo sounding machine, fish finder, or the like, are provided in a vessel body such as an oceanographic investigation vessel, fishing vessel, or the like, and those that mount the hydroacoustic equipment outside the vessel are also available.

FIGS. 8 and 9 illustrate a mounting method of hydroacoustic equipment mounted outside a vessel, and hydroacoustic equipment A is housed within a case B so as not to receive direct water current pressure that accompanies the operation of the vessel 1. FIG. 8 illustrates the case B attached and mounted to the bottom end of a support pipe 3 vertically lowered from a boom 2 that is extended laterally of the vessel 1. FIG. 9 illustrates the case B attached and mounted to the outer surface of the side of the vessel 1 .

Conventionally, a box shape having flat top and bottom surfaces has been used as a housing case of hydroacoustic equipment mounted outside a vessel, and the acoustic equipment is equipped on the bottom panel within the case with the acoustic wave transmitter and receiver facing downward.
[Problems to be Solved by the Idea]
However, the housing case of the hydroacoustic equipment generates bubbles due to the cavitation of the flow on the corner parts of the case when moving in the water in conjunction with the operation of the vessel while being supported outside the vessel as described above, and these bubbles surround the case as they travel to the rear of the case. Because these bubbles also pass by the bottom surface of the case, there is the problem that the bubbles that pass by the bottom surface of the case have a negative effect on the acoustic wave transmitting and receiving of the hydroacoustic equipment. Further, when the vessel especially operates at a high speed thereby generating a stronger cavitation, it becomes impossible for the hydroacoustic equipment to perform its proper function due to the increased amount of bubbles.
[Means for Solving the Problem]

The present idea is configured such that a housing case of hydroacoustic equipment is provided with water conducting holes that connect inside and outside of a case body and which are mounted on the top and bottom surfaces of a hollow case body in which the bottom surface is flat and the top surface is made to have a streamlined expansion along the front to back direction of the vessel to thereby remove bubbles that pass by the bottom surface of the case so that the proper function of the hydroacoustic equipment can be sufficiently demonstrated.
[Operation]
In other words, the present invention provides an expansion in the flow line shape along the front to back direction of the vessel on the top surface of the case body that makes the current speed of the current flowing along the case top surface to be faster than the current flowing on the case bottom surface, and by this, bubbles flow more easily on the top side of the case while also utilizing the negative pressure made by the high flow rate area on the top side of the case to blow out water inside the case to the case top surface side by passing such water through water conducting holes on the case top surface thereby drawing the water that is flowing along the case bottom surface, together with the bubbles, into the case body from the water conducting holes on the case bottom surface to remove bubbles on the bottom surface side of the case.
[Embodiment of the Idea]
An embodiment of the present idea is given hereinafter with reference to FIGS. 1 to 5 of the housing case of hydroacoustic equipment vertically lowered into water.

In FIGS. 1 to 4, reference numeral 10 is a hollow case body that houses hydroacoustic equipment. This case body 10 is given a flat vessel shape having an expansion in the flow line shape on both sides. The case body 10 is formed in a dual divided shape composed of a lower case 10 a and an upper case 10 b made of fiber reinforced plastic (FRP) reinforced by glass fiber, and the lower case 10a and the upper case $10 b$ are assembled by connecting flanges $11 a$ and $11 b$ formed on the outer periphery of the connecting area by screws 12 and 12 .

The lower case 10a is made up of a bottom panel part together with perimeter wall parts that rise substantially perpendicular from the periphery thereof on which the flange 11a is formed on the outer periphery, and thus, the lower surface (bottom surface) of the lower case 10a becomes a flat surface. The corner areas of the bottom surface and the perimeter wall surfaces are curved so as to reduce the cavitation of the water flow generated in the corner areas. In addition, reinforcing walls 13 and 13 are integrally formed on the bottom panel part of the lower case 10a in a crisscross around the mountings of the hydroacoustic equipment arranged on the bottom panel part. Further, the upper case 10b provides an expansion in the flow line shape along the front to back direction of the vessel, which is to say the front to back direction of the case body, on the upper surface portion surrounded by the flange 11 b of the outer periphery thereof, and reinforcing ribs 14 and 14 are integrally formed in a crisscross also on the inner surface of the upper case 10 b . Additionally, a cylindrical support pipe assembly metal fitting 15 bolted to the lower end of the support pipe 3 that perpendicularly supports the case body 10 in the water is anchored by anchoring bolts 16 and 16 to the center of the top surface
of the upper case 10b, and a cable through hole 17 for passing a cable through is provided on the part opposite in the support pipe assembly metal fitting 15 of the upper case 10 b .

Meanwhile, A is the hydroacoustic equipment (acoustic current meter, echo sounding machine, fish finder, or the like) housed in the case body 10 , and the hydroacoustic equipment A is water proof with a water proof covering over the outside thereof. The hydroacoustic equipment A is normally housed within a 2 set case body 10 , and the hydroacoustic equipment A and A is installed on the bottom panel part of the lower case 10a in an arrangement as illustrated in FIG. 4 with the acoustic wave transmitting and receiving surface on the bottom side and is fixed to the bottom panel part of the lower case 10 a by press fittings not illustrated. Note that (a) and (a) are cables leading from the hydracoustic equipment A and A, and these cables (a) and (a) lead out from the cable pass through hole 17 on the top surface of the case body 10 to inside the support pipe assembly fitting 15 and pass through the inside of the support pipe 3 and are connected to a measurement device or the like within the vessel.

In addition, multiplicities of water conducting holes 18 and 18 that connect the inner part of the case body 10 to the case body exterior are provided on the bottom surface of the bottom case 10a at the front and back thereof so as to avoid the installation position of the hydroacoustic equipment A and A as illustrated in FIG. I and FIG. 4, and multiplicities of water conducting holes 19 and 19 that connect the inner part of the case body 10 to the case body exterior, as illustrated in FIG. 1 and FIG. 3 , are also provided on the top surface of the upper case 10 b that has an expansion in the flow line shape. These water conducting holes 18 and 18 and 19 and 19 are provided to draw in water from the bottom surface side of the case body 10 into the case body 10 and then expel the water inside the case body 10 to the top surface side of the case body 10 such that the inside of the case body 10 is always filled with water when the case body 10 is in a lowered state into the water.

The housing case of hydroacoustic equipment is attached to the bottom end of the support pipe 3 that is vertically lowered by being extended from a vessel body 1 as illustrated in FIG. 8, and therefore, this case is lowered into the water so that the axis line in the front to back direction thereof is parallel to the axis direction of the front to back direction of the vessel body 1 .

However, because an expansion in the flow line shape along the back to front direction of the vessel is provided on the top surface of the case body 10 in the housing case of the hydroacoustic equipment, the current speed of the current flowing along the case top surface is faster than the current flowing on the case bottom surface, and bubbles flow more easily on the top side of the case while also utilizing the negative pressure made by the high flow rate area on the top side of the case thereby drawing the water that is flowing along the case bottom surface, together with the bubbles, into the case body 10 from the water conducting holes 18 and 18 on the case bottom surface and thus bubbles on the bottom surface side of the case can be removed.

In other words, FIG. 5 illustrates the water flow around the case periphery when moving in conjunction with the operation of the vessel, and because the case body 10 has an expansion in the flow line shape while having a flat bottom surface, the water flow that is divided to the top and bottom
of the case body 10 flows as illustrated by the broken line in the drawing, and thus, the flow velocity V_{1} of the water flow that flows along the top surface of the case is faster than the flow velocity V_{2} of the water flow that flows along the bottom surface of the case. Accordingly, even if bubbles are generated by cavitation of the water flow at the front of the case body 10 , the majority of those bubbles will flow to the upper side of the case being drawn by the water flow having the faster current, and thus, the amount of bubbles around the bottom surface of the case will be fewer. In addition, when the flow velocity V1 of the water flowing along the top surface of the case is faster than the flow velocity V2 of the water flow flowing along the bottom surface of the case, the water pressure P1 of the top surface side of the case becomes negative pressure relative to the water pressure P 2 of the bottom surface side of the case, and therefore, the water filled in the case body 10 on account of the water pressure difference between the top and bottom surfaces of the case passes through the water conducting holes 19 and 19 on the top surface of the case as illustrated by the arrow in FIG. 1 and is expelled at the top surface side of the case, while the water that flows along the bottom surface of the case is drawn into the case body 10 from the water conducting holes 18 and 18 of the bottom surface of the case, and accordingly, the bubbles that entered at the bottom surface side of the case and traveled along the bottom surface of the case are drawn, along with the water, into the case body 10, and thus bubbles on the bottom surface side of the case can be removed.

In other words, because the housing case of hydroacoustic equipment has a flat bottom surface and provides water conducting holes 19 and 18 that connect the inside and outside of the case body on the top and bottom surfaces of the hollow case body 10 that has an expansion in the flow line shape along the back to front direction of the vessel on the top surface, bubbles passing by on the case bottom surface can be removed and the proper function of the hydroacoustic equipment housed within the case can be sufficiently demonstrated. Further, according to the housing case of hydroacoustic equipment, because the water in the case body 10 is filled, a water temperature measuring instrument and the like may also be housed within the case body 10 in addition to the hydroacoustic equipment A and A, and measurement of the water temperature and the like can also be performed.

Note that in the embodiment given above, a description was given of a housing case of hydroacoustic equipment that is vertically dropped into the water such as that illustrated in FIG. 8, however, the present idea may also be applied to a housing case of hydroacoustic equipment attached to the vessel side such as that illustrated in FIG. 9. In other words, FIGS. 6 and 7 illustrate another embodiment of the present idea, and this embodiment provides a boat body attaching metal fitting 20 that attaches to the side of the vessel 1 on the top surface of a hollow case body 10 that is provided with a flat bottom surface and an expansion in the flow line shape along the front to back direction of the vessel on the top surface, wherein, such other configurations are similar to the embodiment given above. Note that in this embodiment protruding objects such as a flange are eliminated from the peripheral side surface of the case body 10 by aligning the lowercase 10 a and the upper case 10 b that configures the case body 10 by connecting with screws 21 and 21 . By doing this, the water drawn
and together with the bubbles from the bottom surface side of the case due to the water pressure difference between the top and bottom surfaces of the case flows not only within the case body but also across the outer wall surface of the case body to the top surface side of the case as illustrated by the broken line arrow in FIG. 6, and thus can more favorably remove the bubbles on the bottom surface of the case.

Note that with the embodiment given above, although the case body 10 is made from FRP, this case body may be formed by metal plating, and the flat shape of the case body 10 does not need to be shaped like a hull.
[Effect of the Idea]
The present idea provides an expansion in the flow line shape along the front to back direction of the vessel on the top surface of the case body that makes the current speed of the current flowing along the case top surface to be faster than the current flowing on the case bottom surface, and by this, bubbles flow more easily on the top side of the case while also utilizing the negative pressure made by the high flow rate area on the top surface side of the case to blow out water inside the case to the case top surface side by passing such water through water conducting holes on the case top surface thereby drawing the water that is flowing along the case bottom surface, together with the bubbles, into the case body from the water conducting holes on the case bottom surface to remove bubbles on the bottom surface side of the case; and therefore, bubbles of pass by the bottom surface of the case can be removed, and the proper function of the hydroacoustic equipment housed in the case can be sufficiently demonstrated.
4. Brief Description of Drawings

FIGS. 1 to 5 illustrate one embodiment of the present idea. FIG. 1 and FIG. 2 are a vertical cross-sectional side view and a vertical cross-sectional front view of the housing case. FIG. 3 and FIG. 4 are plan view and a bottom view of the housing case. FIG. 5 is a side view illustrating of water flowing around the case periphery. FIG. 6 and FIG. 7 are a lateral view and a front view of the housing case illustrating another embodiment of the present idea. FIG. 8 and FIG. 9 are drawings illustrating the mounting method of the hydroacoustic equipment mounted to the outside of the vessel.

10 case body
10a lower case
10b upper case
18,19 water conducting holes
A hydroacoustic equipment

Applicant Agent Attorney Takehiko SUZUE

FIG. 1
18 water conducting hole
19 water conducting hole
A hydroacoustic equipment
10 case body

801
Japanese Unexamined Utility Model Application No. S62-99877
Applicant: NIPPI Corporation
Agent: Takehiko SUZUE

公開実用 昭和62－99877

（3）清案の名称 水中音響機器の収納ケース
（21）実 賏 昭60－191674
（3）出 順 昭60（1985）12月13日

（27）${ }^{\text {考 }}$	案	者	阿久沢	祥ニ郎	桠兵市金沢区昭和甽3175番地	日本莽行機株式会社内
（8）考	案	者	石 川	成 明	椣浜市金沢区昭和町3175番地	日本狘行樓䏭式会社内
（12）${ }^{\text {㐋 }}$	案	者	大 野	俊	横浜市金汇区昭和甽3175番地	日本形行機株式会社内
（1）3	㒹	人	日本开行	朱式会社	横浜市侖沢区昭和町3175番地	
（32）代	理	人	升理土 秴	武产	外2名	

明 細 苚
1．考案の名称
水山音構機器の収納ケース
2．实川新案登跳諵求の範四
䚀外に荠体される水中音響機器の収納ケースで あって，下面を水平にしかつ上面に船体の前後方向に沿う流線䚲の狘らみをもたせた中空ケース体 の上下雨に，ケース体队外を連通する通水孔を設 けたことを特微とする水中音摖機器の収納ケース。

3．考案の群細な説明
〔姪深上の利円分野〕
この洘案は版外に装㳸される水中音響機器の収納ヶ一スに関するものである。

〔従来技術〕
深機，俔群探知機等の水中音䋿機器を船体内にも っているものと，上記水中音婹機器を船外に装僻 しているもの上がある。
腹機器の获做方式を示したもので，水中音揞機器

$$
-1-
$$

公開実用 昭和62－99877

Aは船体1の航行にともなう流水圧を直接受けな いようにするためにケースB内に収納されており，笷8図に示すように船体1の侧方に張出したプー ム 2 から垂下した支持バィプ 3 の下端に前記ヶー ス Bを取付けて荠觬されるか，あるいは第9図に示すように前乱ヶースBを船体1の船㑭外画に取付けて裴储されている。

上䟕船外に落借される水巾音響機器の収納ヶ一 スとしては，従柬，上下面が水平な箱形のものが使川きれており，咅輹機器は，その音波送受信的 を下に向けてこのケース内の底板上に設觜されて いる。

ところで，小紀水小育響機器の収納ヶースは，上祋のように般处に支据されて船体の航行にとも ない水㺪を移䡃するために，ケースのコーナー部 における水流のキャビテーションにより気沈がを発生し，この坟泡がケースの周固をケース後方に向かって通逝するが，この気泡はヶースの下面も通週するために，このケース下画を通過する気萢

$$
-2-
$$

 いう洲赼があり，特に船体が高速で航行するとき にはキャビテーションも強く発生して気泡昜も多 くなるから，水悩罯機器に本来の機能を発据さ せることができなくなる。
（用越点を解汱する手段〕
この考案は，水㸺咅䇾譏器の収納ヶースを，下西を水丑にしかつ上面に船体の前後方向に沿う流線帅の服らみをもたせた中空ヶース体の上下面に， ヶース体队外を連通する通水孔を設けた桃成とす ることにより，ケース下面を通る気泡をなくして，水中皆嚮機器に本来の機能を十分に発押させられ るようにしたものである。
（作川〕
すなわち，この考案は，ケース体の上面に䚀体 の前後力向に沿う流線形の服らみをもたせること によってヶース上栭に沿って流れる水流の流速が ケース下陋の流速よりも速くなるようにし，これ により全泡がケース上部㑡に流れやすくするとと もに，ケース法佰側の高流速城が負圧となるのを

$$
-3-
$$

公開実用 昭和62－99877

利四してケース体内の水をケース体上面の通水孔 を通してケース！泊㑬に吸出すことにより，ケー ス下而に沿って流れる水を気泡とともにケース体下面の通水孔からケース体内に吸込んで，ケース下何侧の父泡を除去するようにしたものである。
（莎案の爫施例）
以下，この劵絲の一兆施倒を，水中に垂下され る水悩管機器の収納ヶースについて第1図～第 5兇を参㬴し説明する。
 を収納するれ空のケース体であり，このケース体 10 は，两侧に流線彤の服らみをもたせた平面船非のものとされている。このヶース体10は，カ
製のドィース10aおよび上ケース10bからな る二分制䚲のもので，下ヶース10aよ上ケース 10 bは，その接合部の外風に形成したフランジ部11a，11bをビス12，12により接合し て納立てられている。

前祋下ヶース10aは，底板部とをの周囲から

$$
-4-
$$

ほぼ霊犆に蓝上がる外周に前記フランジ11aを形成した周壁部とからなるもので，この下ヶース 10 aの下侕（底画）は水平面とされており，こ の下洦と用壁罒とのコーナー部は，このコーナー部において発生する水流のキャビテーションを小 さくするために曲活とされている。またこの下ヶ ース10aの废帔部上には，この底板部の上に配
節1壁13，13が一倠に形成されている。また，前記上ケース10bは，その外用の前記フランジ 11 bで明まれた」画部分に，ケース体前後方向 つまり船体の前後办向に沿う流線形の服らみをも たせたもので，このエケース10bの内面にも縃横に粍強リブ14，14が一体に形成されている。 またこの上ケース10bの中央部上面には，ケー ス体10を水中に車下支持する支持バイフ3の下端にボルト止めされる简状の支持パイフ取付け金具15が固定ボルト16，16によって固定され ておう，上ヶース10bの支持パイプ取付け金具 15 内に対向する部分には，ケーフル通し孔17

公開実用 昭和62－99877

が設けられている。
一な，Aは前乱ケース体10内に収納された水
機等）であり，この水中音楆機器Aは，その外㑬 を捄水波淡した阬水型ものとされている。この水川染筫機器Aは，逆常2セットケース体10内に収納されており，この水中音響機器A，Aは，そ の梁波达㐍低闲を下侧にして第4図に示すような
示しない排え企具により下ケース10aの底板部 に划灾されている。なお，a，aは水中音就機器 A，Aから倠出されたケーブルであり，このケー ブルa．aは，ヶース体10上西のケーブル道し
 れ，支持パイプ 3 内を通して船体内の测定装置等 に接続されるようになっている。

また，前記下ケース10aの下画には，水巾音缹機器A，Aの設滥位㯰を避けてその前後に，ケ ース体10の队部とケース体外を速道する多数の逆水孔18，18が䬣1図および篚4図に示すよ

$$
-6 .
$$

うに設けられており，さらに流線形の服らみをも たせた上ケース10bの上面にも，ケース体10 の内部とケース休外を連递する多数の通水孔19。 19 が第1図および篚3図に示すように設けられ ている。この迪水孔18，18および19，19 は，ケース体10の下面侧からケース体10内に水を吸込むとともにケース体10内の水をケース体10の上面侧に流出させるために設けられたも ので，ケース体10を水中に垂下させた状態では， ヶース体10円には党に水が充啮するようになっ ている。

この水中音算機器の取納ケースは，第8図に示 したように船体1から根出させて亚下された支持 パイプ3の下端に収付けられるもので，このケー スは，その前後方向の軸線が船体1の前後方向の軸線と平行になるようにして水巾に垂下される。

しかして，この水隠音機器の収納ヶースにお いては，ケース体10の上面に船体の前後方向に沿う流線䚲の服らみをもたせているから，ケース」面に汾って流扎る水流の流速をケ一ス下面の流

$$
-7-795
$$

公開実用 昭和62－99877

逨よりも速くして気泡かヶース上部側に流れやす くするとともに，ケース上面側の演流速域が負日 となるのを利川して，ヶース下画に沿って流れる水を仝泡とともにケース体下酒の逆水孔18，

18 からヶ一ス体10内に收込んでケース下迪側 の父沈を除むすることができる。

つまり，筂5仪は船体の航行にともなって移娌 するヶース間朋の水流を示したもので，前記ヶ一 ス体10は，その下面が水平で，上面は流線非の服らみをもっているから，ケース体10の上下に分流される水流はほに破線で示すように流れるこ とになりをのためにケース上面に沿って流れる水流の流速 Vュはケース下西に沿って流れる水流の流速 V2よりも速くなる。従って，ケース体10 の前部において水流のキャビテーションにより处染が発生した場合でも，この気泡の大部分は，流速の速い水流に引かれてケース上部側に流れるこ とになり，そのためにヶース下面に回り込む匃泡 の田は少なくなる。また，ケース上面に沿って流 れる水流の流速 V1 がヶース下面に沿って流れる

水流の流速 V_{2} よりも速くなれば，ケ一ス上面側 の水止 P_{1} がヶ一ス下面側の水注 P_{2} に対して負运となるから，このケース上下㑇の水止前により ヶース体10内に充啮している水が第1図に矢用 で示すようにヶ一ス体上面の递水孔19，19を递してケース」䏚侧に吸出されるとともに，そー ス下涌に沿って流れる水がケース体下面の通水乱 18，18からケース体10内に緲込まれること になり，従って，ケース下面㑡に入り込んでケー ス下而を伀って移動してくる気泡も水とともにケ ース体10内に收込まれるから，ケース下面側の父泡を除むすることができる。

すなわち，この水中音䈗機器の収納ケースは，下面を水平にしかつ上西に船体の前後方向に沿う流線形の股らみをもたせた中空ケース体10の上下面に，ケース体队外を遇通する通水孔19，

18 を設けたものであるから，ケース下画を通る気沈をなくして，ケース内に収納した水中羔藘機器A，Aに本來の機能を十分に発押させることが できる。また，この水中音響機器の収納ケ一スに

公開実用 昭和62－99877

よれば，ケース体10内に水が充啮するから，水 け音鷘機器A，Aの他にケース体10内に水湜測定器符も収納して，水湂の測定等も行なうことか できる。

なお，上記夾施例では，筛8図に示すように水
 て説明したが，この宩案は，第9図に示すように
 も適肌することができる。すなわち，第6図およ び符7図はこの考琛の他の実施例を示したもので， この实施例は，下优を水平にしかつ上面に船体の前後な向に渭う流線非の服らみをもたせた中空ケ ース体10の上面に，船体1の船㑡に取付けられ石船体取付け企具20を設けたものであって，そ
 の灯施例では，ケース体10を模成する下ケース 10 aとよケース10bとを侅め合わせてビス 21，21 で接合することによってケース体10 の周侧面からフランジ等の突起物をなくしており， このようにすれば，ケース上下面の水圧美により

ケース下佰側から気泡とともに吸引される水が， ヶース体队だけでなくヶース体外壁面も伝って第 6図に破線矢印で示すようにケース上面側に流れ るから，さらに良好にヶース下面の気泪を除去す ることができる。

なお，上記実牌㑬では，ケース体10をFRP製としているが，このケース体は金属板で形成し てもよいし，またケース体10の平面形状は必ず しも船釗でなくてもよい。

〔考案の糼果〕
この为案は，ケース体の上画に船体の前後方向 に沿う流線形の胜らみをもたせることによってケ ース上面に沿って流れる水流の流速がケース下䣲 の流速よりも速くなるようにし，これにより気泡 がヶース上部侧に流れやすくするとともに，ケー ス上活側の高流速域が臽圧となるのを利用してケ ース体内の水をケース体上而の道水孔を通してケ ース 上佰側に收出すことにより，ケース下面に沿 って流れる水を父沈とともにケース体下面の通水孔からケース体内に收込んで，ケース下面們の気

$$
-11-
$$

公開実用 昭和62－99877

㕱を除むするようにしたものであるから，ケース下面を逆る刘沈をなくして，ヶース内に収納した水中音緊機器に本来の機能を十分に発钾させるこ とができる。
4．図攸の䬻単な説明
笠1図～第5図はこの考案の一実施例を示した もので，第1仪および第2図は取納ケースの継断侧的龱および綎断正面図，第3図および第4図は
 ス閉州を流れる水流を示す側面図である。第6図 および筛7図はこの考案の他の実施例を示す取納 ヶースの唰面図おょび正面図である。第8図およ び第9図は舩外に装碝される水中音響機器の装错方式を示す図である。

$$
10 \cdots ヶ ー ス \text { 体, } 10 \text { a…下ヶース, } 10 \text { b … }
$$

上ヶース，18，19…通水孔，A…水中音響機器。

出䝠人代理人 升理士 跉江武联

$$
-12-
$$

第 1 図

第 2 図 801
\therefore 跠朋62－99877 ；
出䂸人日本飛行機株式会社
代理人鮯汀武颜

公開実用 昭和62－99877

第 3 図

第 4 図

第 5 図

－实閎62－99877 ；
出旗人日本発行機株式会社

第 6 図

第 7 図
803 ：－：
曳開62－99877
山涖 人 日本飛㹞機株式会社

$$
\text { A: รाm : An }-\quad \rightarrow \quad .
$$

公開実用 昭和62－99877

第 8 図

第 9 図
804
実阴 $62-99877$出願人 日本飛行機株式会社

Espacenet

Bibliographic data: JP62190480 (A) - 1987-08-20

PROTECTING DEVICE FOR SONAR TRANSMITTER AND RECEIVER

Inventor(s):

Applicant(s):

Classification:

Application number:
Priority number(s):
Also published as:

HYODO TAKAYOSHI; KAMEI AKIHIRO \pm JAPAN TECH RES \& DEV INST; YOKOHAMA RUBBER CO LTD \pm
-
international:

- European:

JP19860030682 19860217
JP19860030682 19860217
JP5028792 (B) JP1822078 (C)

G01S7/52; G01S7/521; (IPC1-
7): G01S7/52

Abstract of JP62190480 (A)

PURPOSE:To improve prevention effect against noises from the bottom of a ship by fitting the columnar coupling material of a protecting device to the ship bottom through a rubber vibration insulator, mounting a sound shield material on the ship bottom, and covering the head part which contains a sonar transmitter and receiver with a rubber type elastic body.

CONSTITUTION:The protecting device 3 which contains the sonar transmitter and receiver 17 is separated from and coupled with the ship bottom 1 through the columnar coupling material 13 which streamlined section.; The device 3 is formed by joining the head part which contains the transmitter and receiver 17 with a tail part 12 made of a rigid body and the jacket of the head part is covered with the rubber elastic body 11 embedded in a fiber reinforcing material and isolated in a watertight state by a clamp 16 and a shield member 19. The upper end part of the coupling material 13 is fitted to the ship bottom 1 through the rubber vibration insulator 21 and the sound shield material 22 is mounted on the ship bottom 1. Air bubbles 24 are generated from an air discharge opening 23 to cover the ship bottom 1. Consequently, the prevention effect against noises from the ship bottom is improved without increase forward projection area.

（18）日本国特許手（JP）
 （1）特許出䤄公開
 （2）公 開特許公報（A）昭62－190480

篓查喑求 有 発明の数1（全3頁）

（1）出 閴 人 防衛应技術研究本部長
（3）出 願 人 横浜ゴム株式会社 東宗都港区新㛢5丁目36番11号
（21）代理人 弁理士 小川信一

明細業
1．発明の名称

> ソーナー送受波器用保䥽妓椬

2．特敂請求の筑囲
船底から流線形断面の柱状連結材を介してソ

前紀柱状遇結材の上端部を防婮支持部材を介し て船底に支持させるとともに，船底に遮音材料 な㥄落し，前諨柱状連結材の下䇅部に速結した保㙏装䒸本体を，ソーナー送受波器を収容する頭部と㨄体撃尾部とで挼合させて糗成すると共 に，前記ソーナー送受波器を収容する顕部の外皮を，繙維補強材を埋設したコム状恓性体によ り構成したことを特微とするソーナー送受波器用保臤装逗。
3．発明の群細な裞明
(産樂上の利用分野)

この発明は，ソーナー送受波器用保護装瘇に係わり，更に詳しくはソーナー送爱波器を船底

からできるたけ䌖して取付けることにより騷音功止効果を上げることが出来，しかも航を抵阬 を小さくすることが出来るソーナー送受波器用保源装遈に関するものである。

〔従来技術〕
従来，この種のソーナー送受波器用保硬装䈌 としては，例えば第1図の投影図に示すように，船底1から柱枤連結材2を分してソーナー送受波器を取容した保磼装霞3を分離串結し，その保楼猿运3はコム膜製の外皮が使用されていた。

然し乍ら，このような従来の保煡装得3は，躦音源としての船底1から出来るだけ嶉して取
 か增大し，腑走抵抗の增加を招くので，侱かな分踓で済ませており，また船底1と装旔との辰大西積て結合されているのて，ソーナー送爱波器に対する据動エネルギーは大きく，据動伝迢业の小さいコム骐に対しても多くの吸収材料を必要とする等の問题があった。
（発明の目的）

この発明は，かかる従来の問題点に着目して案出されたもので，その目的とするところは馶音源としての船底から保㷪装䔎本体を必䍗とす るだけ分離させても，その場合前方投影面䅡の剒大を招くことがなく，またソーナー送受波器 を保姫装槌本体の中心位語に据えることが出来 るため，ソーナー这受波器のソーナー送受波器膜面に対する偏りが小さくでき，騦音防止効果 を五しく高めることが出来るソーナー送受波器用保誡装证を提供するものである。

（発明の捁成）

この発明は上記目的を速成するため，沿底か ら流綡形断面の柱状遇結材を介してソーナー送受波器を収容した保䃀凊照本体を分唯連結した ソーナー送受波器用保諢装涩において，前記柱状这結材の上湍鄓を防振支持邹材を介して船底 に支持させるとともに，酷底に遮音材料を婈著 し，前記柱状連結材の下满部に遇結した保賣㨬路本体を，ソーナー送受波器を収容する頑部と㴊体製尾部とで接合させて構成すると共に，肠

記ソーナー送受波器を収容する熼部の外皮を，蟣維啸強材を埋設したコム状弾珄体により樌成 したことを要旨とするものである。
（発明の実施湖）
以下添付図画に基いて，この発明の実施例を説朋する。
なぁ以下の説明て，上記従来例と同一楧成要素は同一符号を付して䫓明する。

第2図は，この発明の保擭装這の前方投影図 を示し，船底1から分雜しても増加する面積 5 1は蕉んとないことを示している。
次に，第3図及び第4図はこの発明を実施し
 3aは保援装高本体，暊部の外皮は補崛解を埋陪したコム製膜から成るコム状紼性体11によ り構成されている。
また12は流絽形の剛体堑の尾部，13は尾部12を船庶1に取付けるための流線形昕面の
 3 の尾部12に適結支持されている。14は尾

部12の骨粗であり，その外部は滑かな外扳1 5で罳われており，内部に送受波器用のケーブ ルや加压用配等等が通っている。

16はコム状弾性体11を尾部12に水宓性 をもって取付けるためのクランプて，尾部12 の前緑に一周配置してあり，また17はソーナ一送受波器てあって，送受波器支持具18て尾部12に結合されている。クランブ16の側面 の前西には，吸音材，反射材を組合世た後方か らの音管を遮断する㵂断部材19配設され，同馶にコム状弾性体11の内潩に罗える水生に対する階壁をなしている。20はコム状彈性体 11 の内逆空間部であって，この空間部20に は水又は海水が充茼され，内压が加えられてコ ム状誁珄体11の外形を維持している。
次に，第4図に示す保峺装语3を敬明すると 21 は柱状連結材 13 な沿底 1 と結合する時に使用する防据コム等の防搌支持部材てあって，船哌1の搌動を柱状連結材13等を伝わる保摄装征3に到虺することを防止するためのものて

ある。また船底1には遮音材料22か取付けら れ，船底1からの音の放射を減らす効果を与え る。また 23 は保諼装语 3 に䇃府する船庶部に つけた空気放出口であって，空気を供給するこ とにより気泡24を発生させ，気泡24により船底1杂覆うことにより船底！からの音の放射 を防く効果を与えるものである。

更に必要に応じて柱状連結材13の柱を昇降 させる機样を付加することも可能であり，また保誕婊擦3全体を船底1に収納することも付加 できる。

（発明の効果）

この発明は上祋のように船底から流䋊形断面 の柱状連結材を介してリーナー送受波器を収容 した保振装要本体を分蜼連結したソーナー送受波器用保浬装亚において，前諨拄状连結材の上端部を防振支持部材を介して船底に支持させる とともに，船庶に墌音材料を装者し，向配柱状
 ーナー送受波器を収容する䫄部と欮体製尾邹と

特開昭62－190480（3）

で挼合させて捬成すると共に，前記ソーナー送受波器を収容する顕部の外皮を，䌟維補強材を理設したコム状弹珄体により栱成したため，以下のような優れた効果を劵するものである。
（a）．ソーナー送受波器を䮶音源としての船底か ら必要とするだけ分䊒しても前方からの投影面稿の増大を招くことがない。
（b）ソーナー送受波器を円形断面の保嗳装霆の中心に据えられるため，ソーナー送受彼器の保誮装疽膜面に対する偏りが小さくてきる。
効果は继来の半周から全周となるために増加 できる。
（d）船底との柱状連秸材は断面猜が小さいため防榐支持が容易となり，船内觹音の伝速を清 らすことがきる。
結底からの放时䧻音を遮音材（気泡入りコム。気泡の放出等）の配登により大市に低減てき る。

4．図面の簡単な説朋
第1図は従来の保潰装㳡を前方から見た投颜面図，第2図はこの発明の保護装证を前方から
第 4 図は保誮装㳔の正酮図である。
体，11…コム状弾性体，12…尾部，13…拄状遮結材，17…ソーナー送受波器，21…阴搌支持部材，22…遮晋材料。

代理入 弁理士 小 III倍一

第1 図

第2図

第 3 図

㫌4 図

Japanese Unexamined Utility Model Registration No. 62-134084
(19) Japan Patent Office (JP)
(11) JP Utility Model Publication No. 62-134084
(12) JAPANESE UNEXAMINED UTILITY MODEL PUBLICATION (U)
(43) Publication Date: Aug. 24, 1987

(51) Int. CJ. ${ }^{4}$	Identification Code
G 01 S 7/52	B-Ho $6903-5 \mathrm{~J}$
B 63 B 49/00	$8309-3 D$

Examination request: Not yet (total pages _)
(54) Title of the Invention

SONAR DOME MOUNTING STRUCTURE
(21) Application No.
(22) Date of Application Filing
(72) Conceiver
(72) Conceiver
(72) Conceiver

UMA S60-20918
February 18, 1986 (Showa 61)

SHIGEMATSU, Shozo
c/o Tokyo Plant 1, Ishikawa Harima Heavy Industries
2-1-1 Toyosu Koto-ku, Tokyo

SAITO, Junichi
c/o Tokyo Plant 1, Ishikawa Harima Heavy
Industries
2-1-1 Toyosu Koto-ku, Tokyo

KINOSHITA, Shohei
c/o Tokyo Plant 1, Ishikawa Harima Heavy
Industries
2-1-1 Toyosu Koto-ku, Tokyo
(72) Conceiver
(72) Conceiver
(71) Applicant
(71) Applicant
(74) Agent

OKAMURA, Naoaki
c/o Engineering Laboratory, Ishikawajima
Harima Heavy Industries
1 Nakahara-machi Isogo-ku, Yokohama-shi

ITO, Hitoshi
c/o IHI Craft Co., Ltd.
1 Nakahara-machi Isogo-ku, Yokohama-shi

Ishikawajima Harima Heavy Industries
2-2-1 Ote-machi, Chiyoda-Ku, Tokyo

IHI Craft Co., Ltd.
1 Nakahara-machi Isogo-ku, Yokohama-shi

KINUTANI, Nobuo, Attorney

Espacenet

Bibliographic data: JP62134084 (U) - 1987-08-24
No title available

Inventor(s):
Applicant(s):

Classification:
$\begin{array}{ll}\text { - international: } & \begin{array}{l}\text { B63B49/00; G01S7/52; G01S7/521; } \\ \text { (IPC1-7): B63B49/00; G01S7/52 }\end{array} \\ \text { - European: } & \end{array}$
Application number:
Priority number
(s):

Also published
as:
JP19860020918U 19860218
JP19860020918U 19860218
JP4032621 (Y2)

Abstract not available for JP62134084 (U)

明 明 書
1．考案の名称
ソーナドームの取付耩造
2．実用新案登録蓢求の節囲
水没される船体外板から灾出させて設けられ るソーナドームの取付備造において，上思ソー ナドームと上视船体外板との取付昭に，周㳄を流れる水流の流腺に留ってこれら間を接続して水流を案内する载唯強化プラスチックで形成し たフェアリングフレートを設けたことを特俨と するソーナドームの取付僲洗。

3．考案の群組な説明
［産業上の利用分野］
本考案はソーナドームの取付搆造に䖻り，特 にソーナドームの取付趴周辺における維音（フ ローノイス）の発生を抑制するソーナドームの取付構浩に閉する。
［従米の技截］
一般に結解，特に漁解等にあっては，水中へ音波を放射するためや水中を伀犕してくる音波

公開実用 昭和62－134084

等を捕えるためにソーナが設備されている。この ソーナはソーナドームに内蔵されており，このソ ーナドームaは第4図に示すように，水没される船体外板bに，これより水中へ实出させて設けら れている。
［考案が解沈しようとする周遁点］
ところで従来このソーナドーム，は第4図及び第5図に示すように，流体力学的础濾から流袙形状で形成されているが，この形状的眍慮はソーナ ドーム，単体のみについてであって，絡体形状と は別堛独立のものとして取り扱われていた。㥸ち， ソーナドームaと，これが取り的けられる結休外板bとの関の取付部のについては持に往意が払わ れていなかった。

ここに本順出唃人がこの茧な形状のドームにつ いて検时したところによれば，その取付部くから は水流に泊ってコーナ漏のが，またソーナドーム
発生する可能性のあることが判㥸した。これら洞 d，fが発生すればそれかフローノイスに関供す

ることは明らかであり，ソーナに悪影を与える問題があった。

㱤に水中放射雅音刘策がソーナの性能を充分に発揮させるようになつた今目においては，フロー ノイズ低蔵の観点からこれら焵d，fの発生の抑制か望まれている。
［閏題点を解決するための手段］
本考案は，水没される維体外板から突出させて設けられるソーナ゙ドームの取付貄造において，ソ一ナドームと綸体外板との取付颠に，周辺を流れ る水流の流線に沿ってこれら間を接続して水流を案内する糗䊒強化フラスチックで形成したフェア リンダプレートを設けたものである。

［作 用］

フェアリングプレートは，夫々独立に流線形状 で形成された従来の船体外板とソーナドームとの間の取的部に介在し，これら船体外板とソーナド一ムとを清がに接糛して周辺を流れる水流を，そ の流線の乱れをできる腿り㧕制しつつ案内して整 －流化するようになっている。またフェアリングフ

レートを織維㢱化プラスチックで形成することに より，フェアリングプレート自体のエ作性を良好 なものとできるものである。

［実城挒］

以下に本考案の好適一実施例を添的图面に従っ て詳述する。

第1図～第3図に示すように，水没される紷底外板等の船体外板1には，これより水中へ突出さ せてソーナドーム2が設けられる。このソーナド ーム 2 は，ソーナが内蔵される本体部2aと，こ の本体邜2aを給体外板1に支持させるためのス カート部2bとから褠成される。またこのソーナ ドーム 2 は第 2 图に示すように，全体の平面副面 か治線形状で形成される。

このように構成されたソーナドーム2，具体的 にはソーナドーム2のスカート郎2bと，このス カート部2bが直接取り付けられる貽休外板1と の取付郡 4 には，この部分を倳ってフェアリング フレート5が談けられる。このフェアリングフレ ート5は，取付部4の周讱を流れる水流の渗粰に

沿って結体外板1とソーナドーム2との間を接続
して水流を案内するように抝朧する。図示例にあ つてはフェアリングフレート5は第3図に示すよ うに，横颙面において，頋紏した綗体外板1と，鉛面下方に延びるスカート部2もとの取付部4を，相当の傾叙で滑らかに接靚して，水流をスムーズ に案内するようになっている。また，フェアリン グフレート5は第2図に示すように，平面甽面に おいて，流線形状のスカート部2bをより大きな曲象半怪の抔で囲紶して船体外板1た接読して水流をスム一スに案内するようになっている。この ようにフェアリングプレート5は全体として第2図に示すように，取付部 4 の急蜮な形状変更邜や曲象半径の小さい部分等を境かな曲事半緊で三次元的に滑らかに接続する形状で形成される。

またここで，フェアリングフレート5は樴䒨強化プラスチック（以下「FRP」という）で形成 される。勖ち，フェアリングフレート5を蜆板制 とすると，次のょうな問还がある。

さから，成型が困贅である。
（2）防飿塗装工程が必要となり，工数の增加や コストアッブを招く。
（3）綢板でフェアリングフレートを製造した場合，取仢方法として溶接援合が考えられるが，

 ス時，フェアリングフレートを脱節した眫に， ソーナの動作を保証するためた，調整微旧エ事を行なう必要が生ずる。

これに対し本考案にあつては，フェアリンクフ レート5をFRPで形成することにより，復難な曲面であっても，曲串半怪の小さな部分が存在し ても闌监に一体成型することができる。また防鉵鏨装を施す必要もない。

他方，本実施例にあっては，・フェアリングプレ ート5は水流の流れ方向に治って2分割された分割片5aを䓨み合わせることて所定の形状となる ように糗成される。フェアリングフレート5につ いて更に詳述すると，フレレート5は表四5bが強

度の高いグラファィト織維強化プラスチック（以下「GFRP」といろ）で形成され，この表甬 5 bと秥体外板1及びソーナドーム2との間のコ ア部5cは，水中での外圧によるプレート5自体 の氏清を防止するために，ボリエステル苞略が充崸されて形成される。またフェアリングフレート 5は，自重によりこれと結体外板1との取付部分 に大きな応力が生じないようにするため，没水時 みかけの比重が1．0と尔るように，コア部5ck

このょうに閏されたフェアリングプレート5

は，結体外板 1 に対しては，外板 1 に予め溶接し ておいたスタッドボルト或いはブラケット（図示 せず）を利用して取り付けられる。またスタッド ボルトに蛽合するフェアリングフレレート刨のナッ卜取付部分は，レセス埽造とされ，一般的なゅる み防止対策を施した後术リエステル制酸を充呂し， その上にGFRPを喘閐して表面を強化した後，周㳄形択に合わせて整形される。このような取付方法を探用することにより，ソーナに対する然的

$$
-7-
$$

赈影筑を防止でき，メンテナンス作業を容易化 できる。
［考案の济果］
以上要するに本考案によれば，次のような後 れた効果を発揮する。
（1）水没される船体外板と，これより突出させ て設けられるソーナドームとの取付部に，フ ェアリングブレートを設けたので，取付部周辺で絧が発生するのを抑制でき，フローノイ スの低減を澾成できる。
（2）フェアリングブレートをFRPで形成した ので，複橉な曲面部分や曲街半徎の小さい部分が存在しても谷易に一体成型でき，また塗装も不要なことから良好な工作性，笠作コス トの低減を確保できる。

4．図面の間単な説时
第1図は本考案の好適一実雗例を示す钢面図，第2図はその平面明面図，第3 ${ }^{\text {® }}$ 紶第2図にお
従来䧎を示す四面図及び平面図である。

図中， 1 は船体外板， 2 はソーナド－ム， 4 は取付部，5はフェアリングフレートである。

実用新案登録出願人
石川岛㧌磨重工業林式会社
アィ・エィチ・アイ・クラフト株式会社
代理人弁理士
細 谷 信 雄
－ 9 －

公開実用 昭和62－134084

第2図

夹留62－134084

第4 図

第 5 図

878

実澵62－1340

Espacenet

Bibliographic data: JP63261181 (A) - 1988-10-27

SONAR DOME

Abstract of JP63261181 (A)

PURPOSE:To remove an unnecessary sound wave effectively without using any baffle plate whose machining is complicated by providing a sound absorber at the rear
 part so that a sound wave from the rear is intercepted and setting the front surface part of the sound absorber at an acute angle to the fitting surface for a sonar dome. CONSTITUTION:The sonar dome 12 is formed in a streamline lower-half shape and the reflection of a sound at the upper part of the dome is minimized by using a sound absorber. A sound absorber 3 is charged in the dome, the rear part slants gently as shown by 3 a, and the side of a transmitter and receiver 2 is at an acute angle theta to the surface of a skirt part 4. Then when a ship body radiation noise 11 arrives from the rear, the sound absorber 3
 absorbs the noise 11 and a noise reaching the transmitter and receiver 2 is extremely small. Further, a sound from the front reaches the front surface of the sound absorber 3 and the majority of it is absorbed, but the remainder is reflected. The reflected component is reflected toward the skirt part 4 because the front surface of the sound absorber 3 is at the acute angle to the skirt part 4, and absorbed by the skirt part 4. A component reflected by the skirt part 4 is extremely small and there is no influence upon the transmitter and receiver 2.
（12）公 開特許公報（A）
（5int． $\mathrm{Cl}{ }^{4}$
G $01 \mathrm{~S} \quad 7 / 52$

識別記号
庁内整理番号 B－6903－5J

䉒査諳求 未㜔求 発明の数 1 （全 4 頁）
（96）発明の名称 ソーナードーム
（21）特 願 昭62－94689
（26）出 領 昭62（1987）4月17日
（12）発 明 者 岩 瀬 行 治 東京都港区芝5丁目33番1号 日本電気株式会社内
 （24）代理人 升理士 井ノ口 咱

細

雷

1．皃明の各称

ソーナートーム

2．特許梛求の解男

流線形状の下半分の形状をなし，中央部に送受波黄を収容するソーナードームにないて，後
波器に对して遮学さらよりに敬け，かつ，吸开材の前面部が，ソーナードームの取付面に対し鋔角になるよ なた角度とし，前方からの者波の当辟吸音材で吸収されない成召を前肜送受波器以外の部分に反射するよのに棈成したととを脳䩤とするンーナードーム。
8．発明の群細な說明

（産菜上の利用分堷）

本名明はンーナードームの㯕造，さらに群し く云えば後方から発せられら炤体の放射維等に対すえ距要の䠛波化を考庶したソーナードーム に関する。
（従来の技術）
ソーナー掕にになける間䂓のーつに船体後方 から放射される難齐かある。

従来はとの誰億の低減化方法として第5図ま よび第 6 図に示すよりにドーム内後方にハッフ几板を取付けている。
第 5 国はンーナードームのB－B断面図ですり。第6図はソーナードーム外媇を取除にて底面か ら見た図である。各図において，ンーナートー ム10は船底 9 に固䇮されてまり，スカート部 8 とソーナードーム外溊部 5 より撰成されてい る。
ソーナードーム10の中央部には送受波器 6 か取容されている。吿体後方加らの放射䧾意21 な上述のように送受波器6の後方に設けられて いまバッフル板7によつて遜ざられる。
（䇗明が解决しよ 5 とする間题点）
し加しなから従来の低減化方法は
（1）ソーチードーム以外にドーム内部にバッフ几板を設けなけむばならない。
（2）また，昔波の回折する角茛は大䔔にととか ら，バッフル树のエッジより首が回折して送受破器に維昏か入射さる。
（3）従来のバッフル板はその的面部を吸舌郎•後面部を槴営村としているのでバッフル板の加工か復雄になる，といの年点かあつた。本名明の目的は上述の尣点を解決したりーナ －ドームを提供するととにある。
（問题点を塀决するれめの手段）
前䦿目的を達成するために本算明によるン一 ナードームは流被形状の下半分の形状をなし。中央部に送受被器を収䈶するソーナードームに
 を前貃送受波器に対して遮普する上のに酘け， かつ，敗共材の前面䣋が，ソーナードームの取
 らの晋波の当弱吸昏村で叫収されない成句を前郋送受波器以外の部分汇反射するよりに期成し てある。
（实 施 例）

あのとなる。
第4臤は前方からの意波で，昄首材3の前面比入射し，大部分は吸収されるが，その一郡が反射する。反射成かは叹吾材3の前面の佰斜かス カート部4に対して兟角であるので，スカート郡4に向かつて反射され，スカート部 4 で吸晋 され，さられその一部か反射する。しかし，ス カート解4で反时される成分は微少であるので送受波器2に任とんど新热を及ほなととはない。 また，収首材3の剪面の中央付近ではなく左右几入射した晋波は大部分か加吸晋され，反射成分 は界2図の3bの曲線形状上り明らかなよりに送受波器2の方向ではなく外側に反射される。 （㠰明の怰来）

以上，眖明したよりに本癸明はソーナードー ムの啳，部に吸辛材を充垻し，後方部からの船体の放射雄留を送受波器に対し遮ぎるよりな形状とし，かつ送受波條の面を，ドームスカート邻に对し兟角にして前方からの音波の反射成分 が送受破器以外の方向に反射されるよりに㗢成

以下，図面を忩照して本品明をさらに単しく説明する。第工図は本罂明によるンーナードー ムの実施侧を示すA－A断面図，第2図はンー ナードームの外衩を取除にた底面図である。 リーナートーム12は研体唯音の少ない流線形 の下半分の形状をしている。
ドームのスカート部4には吸音材を用にて，ド ーム上即での省の反射を取小限になるよりにし ている。

ドーム内後部に吸音材3を㐫堿し，第1図，第 2図に示すよりな形状を形成している。 すなわち啳力部は䜌やかな湎解る a とし，送受波器㑡はエカート部4の面に詨し锐角6になる よりに，かつ底面から見た场合，外延が曲線3 bになるよらな形状である。
 のンーナードームの断面図である。罤3 図は結体放射維晋が後方から入射した斶合 の図で，吸首材 3 Kよつて船体放射維音11加吹晋をれ，送受波器 2 に到達す力維晋は䩸少な

$$
-4-
$$

されているので，加工が䙮襍であるバックル板 を用いるととなく奻果的に不受晋波を除去でき るとにの効果がある。

4．図面の䦐象な敞明

第1図は本発明によるソーナードームの実施䜀を示すA－A断面図，第2図は弗1図のソー ナードームで，その外投を取除いて底面から見
 めの図で，䀛 3 国は音源が後方にある場合，第 4図は音源か前方にある埸合である。第5図は従来のンーナードームの一侧を示すB
－B 断面匡，第6図は従来のンーナードームで， その外役を取除にて底面から見な区である。

1 …流湶形ソーナードーム
2 …送受波器 3 …吸筸林
4 …ソーナードームスカート暗（昅晋材施行）
$5 … ソ ー ナ ー ト ゙ ~ ム$ 外段 6 …送受液器
7 ‥ パッフル板
8 … ンーナードームスカート部
9 …船底10…シーナードーム

－495－

Bibliographic data: JP7031042 (A) - 1995-01-31

LAYING METHOD OF UNDERWATER CABLE

Inventor(s):	YAMADA NORIO; OTONARI TADAMASA \pm
Applicant(s):	FUJIKURA LTD \pm

Abstract of JP7031042 (A)

PURPOSE:To avoid an obstacle positively while monitoring the bottom face of water by scanning the advancing direction of a cable laying boat over the width thereof using a side-scan sonar provided for the cable laying boat. CONSTITUTION:A cable laying boat 11 sails on a cable laying route and feeds a underwater cable 12 continuously thus laying the cable on the bottom face of water. In this regard, a sidescan sonar 19 scans the advancing direction (shown by an arrow) of the boat 11 while reciprocating in the breadthwise direction of the boat 11 perpendicular to the advancing direction of the boat 11. Consequently, the forward position of the boat 11 can be monitored over some range in the breadthwise direction from the cable laying position. This method can find and avoid an obstacle located on the cable laying route or in the vicinity thereof and can lay the cable 12 in safety.
(12) Official Gazette of Unexamined Patent Applications (A)
(11) Patent Application Publication No. Hei 7[1995]-31042
(43) Publication Date January 31, 1995

(54) [Title] Method for Laying Underwater Cable
(57) Abstract

Objective
To avoid obstructions reliably and lay underwater cable while monitoring the seafloor surface.

Constitution

A side-scan sonar 19 that scans to the front of and behind the direction of advance of a cablelaying ship 11 is provided on the cable-laying ship so as to be capable of moving in a reciprocating manner in the width direction of the ship. The cable-laying ship 11 buries an underwater cable 12 by means of an underwater cable burying machine 15 while monitoring the seafloor surface 16 in front of the ship for a range that is the width of the ship 11 by means of the side-scan sonar 19 , which scans to the front of and behind the direction of advance of the ship. If an obstruction exists on or in the vicinity of the laying route, this obstruction can be discovered and avoided with sufficient leeway, and the cable-laying operation can be performed safely.

Claims

Claim 1

A method for laying underwater cable characterized in that underwater cable on a cable-laying ship is continuously laid on the sea floor [literally, 'bottom of the water'] while a side-scan sonar, which moves in a reciprocating manner in the lateral direction of the ship, perpendicularly with respect to the direction of advance of the cable-laying ship, scans in front of and behind the direction of advance of the cablelaying ship to monitor the surface of the sea floor.

Detailed Explanation of the Invention [0001]
Industrial Application Field
This invention pertains to a method for laying underwater cable whereby underwater cable is reeled out from a cable-laying ship that is traveling, and this cable is laid on and buried in the sea floor; in particular, it pertains to a method for laying underwater cable that is executed while monitoring for the presence of obstructions on the surface of the sea floor.

[0002]

Prior Art
During an underwater cable laying operation whereby an underwater cable (primarily a seafloor cable) is reeled out from a cable-laying ship and is laid and buried simultaneously using a burying machine that is towed by the cable-laying ship, when there is an obstruction on the surface of the sea floor, it becomes impossible to lay and bury the underwater cable, or there is the risk of an accident, such as when the burying machine strikes the obstruction and overturns; therefore, to avoid this situation it is necessary to scan the surface of the sea floor on the underwater cable laying route to confirm whether obstructions exist. Therefore, as shown in Figure 4, with the prior art a side-scan sonar 1 is towed along the laying route by a tow 2 prior to the operation to lay the underwater cable, and as shown in Figure 5 a suitable width B of the surface of the sea floor 3) is scanned to the left and right, at right angles with respect to the cable-laying route, to check for the presence of obstructions. In addition, as described above the suitable width B is scanned because the actual location where the cable is laid sometimes varies slightly from the predetermined location, so the scanning must be performed with some amount of a margin (range) in the left/right directions.

Problem to be Solved by the Invention
As described above, with the conventional method the check for the presence of obstructions is not performed simultaneously with the operation of laying the underwater cable; in other words, the check is performed prior to the laying of the cable. Therefore, if there is any change on the surface of the sea floor in the interval between the completion of the investigation of the seafloor surface and the start of the laying work - for example, if anything that would become an obstruction to the burying machine on the laying route is illegally dumped - the laying operation is performed without recognizing this situation,
despite this dangerous change in the laying route due to this [literally, 'inconvenience'], and therefore there is a risk that an unforeseen accident may occur.
[0004]
The present invention has been devised in light of the aforementioned points, the objective being to provide a novel method for laying underwater cable with which it is possible to lay and bury an underwater cable safely by monitoring the seafloor surface and reliably avoiding obstructions when laying and burying, by means of a burying machine, an underwater cable that is reeled out from a cablelaying ship.
[0005]
Means to Solve the Problem
The method of the present invention, which solves the aforementioned problem, is characterized in that underwater cable on a cable-laying ship is continuously laid on the sea floor while a side-scan sonar, which moves in a reciprocating manner in the lateral direction of the cable-laying ship perpendicularly with respect to the direction of advance of the cable-laying ship, scans in front of and behind the direction of advance of the cable-laying ship to monitor the surface of the sea floor.
[0006]
Operation
With the aforementioned configuration the cable-laying ship travels on the cable-laying route and continuously reels out and lays on the sea floor the underwater cable that is stacked [on the ship]. In this case, the side-scan sonar moves in a reciprocating manner in the lateral direction of the ship, perpendicularly with respect to the direction of advance of the cable-laying ship, scanning in front of and behind the direction of advance of the cable-laying ship; therefore, it is possible to monitor the area in front of the cable-laying ship some distance to the left and right of the planned location for laying of the cable. Accordingly, if an obstruction exists on or in the vicinity of the laying route, this obstruction can be discovered and avoided with sufficient leeway, and the cable can be laid safely.
[0007]
Application Example
In the following, one application example of the present invention will be explained with reference to Figure 1 and Figure 2. In Figure 1, code 11 is a cable-laying ship. This cable-laying ship 11 performs an operation whereby, for example, an underwater cable 12 from a cable coil 12' passes through a tower 13, a brake 14 , a stern sieve 15 , and the like, and the underwater cable 12 is buried simultaneously with the excavation of the seafloor surface 16 by a burying machine 15 towed with a wire rope. Typically a waterjet burying machine or a ski-type burying machine is used for the burying machine 15. The burying machine 15 shown in the figure is water-jet burying machine equipped with a nozzle 15 a that sprays water.
[0008]
The aforementioned configuration is the typical conventional configuration, but with the application example of this invention a rail-type frame 17 , which extends in the width direction of the ship (the direction of arrow (a) in Figure 2) and is for attachment of the-side scan sonar, is installed at the bow of the ship. A side-scan sonar 19, which scans in the direction perpendicular to the direction of movement along the frame 17 (in other words, the width direction of the ship), is attached to the lower end of a reverse-L-shaped support member 18 that moves in a reciprocating manner in the width direction of the ship along this frame 17. Accordingly, as shown in Figure 1 this side-scan sonar 19 scans to the front of and behind the direction of advance of cable-laying ship 11.
[0009]

When the operation to lay the underwater cable is performed by cable-laying ship 11 and burying machine 15 , the underwater cable 12 is continuously reeled out from the cable coil 12 ' and laid and buried on the seafloor surface 16 as the cable-laying ship 11 travels along the laying route and the seafloor surface is excavated by underwater cable burying machine 15. In this case, side-scan sonar 19 moves along frame 17 in a reciprocating manner in the width direction of the ship (the arrow (a) direction), which is the direction perpendicular to the direction of advance of cable-laying ship 11. Accordingly, side-scan sonar 19 scans thoroughly to the front of and behind the direction of advance of cable-laying ship 11 as far as the width B' of cable-laying ship 11. Thus, the area in front of the ship can be monitored for a range having a margin that is the width B^{\prime} to the left and right from the predetermined cable-laying (burying) location. Accordingly, if an obstruction exists on or in the vicinity of the laying route, this obstruction can be discovered and avoided with sufficient leeway, and the cable-laying operation can be performed safely.
[0010]
In addition, as in the application example the position where the side-scan sonar 19 is provided suitably is the bow of the ship, but it is not necessarily restricted to the bow of the ship; it can be an intermediate position, or the stern of the ship. Furthermore, with the application example the explanation involved the burying of the underwater cable 12 using the underwater cable burying machine 15 , but the present invention also can be applied when the cable is merely laid without excavating the seafloor surface 16 . Furthermore, the cable-laying ship can be a self-propelled type or can be a towed type.

[0011]

Effect of the Invention
By means of the present invention an underwater cable is laid on the sea floor while a side-scan sonar, which is provided on the cable-laying ship so as to be capable of moving in a reciprocating manner in the width direction of the ship, scans to the front of and behind the direction of advance of the cable-laying ship and monitors the seafloor surface for a range that is almost the same as the width of the ship. Therefore, it is possible to scan the area in front of the cable-laying ship over a range that is [almost] the same as the width of the ship. Accordingly, if an obstruction exists on or in the vicinity of the laying route, this obstruction can be discovered and avoided with sufficient leeway, and the cable-laying operation can be performed appropriately and safely. This is particularly effective for underwater cable laying and burying operations wherein an underwater cable is buried using an underwater cable burying machine.

Brief Description of the Figures

Figure 1 is a schematic explanatory diagram showing the laying of underwater cable by the method of one application example of the present invention.
Figure 2 is a plan view of Figure 1.
Figure 3 is a front view of Figure 1.
Figure 4 is a diagram for the purpose of explaining the conventional method; it illustrates the state in which the sea floor is being investigated by means of a side-scan sonar towed body prior to the laying of a underwater cable.
Figure 5 is a front view of Figure 4.
Explanation of Codes
11 Cable-laying ship
12 Underwater cable
15 Underwater cable burying machine
16 Sea floor
17 Frame
18 Support member

19 Side-scan sonar

Fig. 1

Fig. 2
(a)

Fig. 3

Fig. 4

Fig. 5

審査請求 末醏求 讋求項の数1 FD（全3員）

（54）【発明の名称】 水底ケーブルの布敬方法
（57）【要約】
【目的】水底面を監視しながら障害物を確実に回避し て水底ケーブルを布設する。
【構成】 ケーブル布設船11に，ケーブル布設船進行方向の前後を走査するサイドスキャンソナー19を布設船幅方向に往復移動可能に設ける。ケーブル布設船 11 は進行方向前後に走査するサイドスキャンソナー 19に
 より前方の水底面 16 を布設船 11 の幅の範囲にわたつ て監視しながら，水底ケーブル埋設機15により水底ケ ーブル12を埋設する。布設ルートおよびその近傍に障害物があれば，その障害物を十分余裕を持って発見して回避することができ，水底ケーブルの布設作業を安全に行うことができる。

【特許請求の範囲】
【請求項1】 ケーブル布設船の進行方向と直交する布設船幅方向に往復移動するサイドスキャンソナーにより ケーブル布設船進行方向の前後を走査して水底面を監視 しつつ，ケーブル布設船上の水底ケーブルを水底に繰り出し布設していくことを特徵とする水底ケーブルの布設方法。

【発明の詳細な説明】

【0001】
【産業上の利用分野】この発明は，航行するケーブル布設船から水底ケーブルを繰り出して，これを水底に布設埋設していく水底ケーブルの布設方法に関し，特に，水底面の障害物の有無を監視しつつ行う水底ケーブルの布設方法に関するものである。
【0002】
【従来の技術】ケーブル布設船により电航される埋設機 を用いて，ケーブル布設船からり繰り出ざれる水底ケー ブル（主として海底ケーブル）を水底面の掘削と周時に布設埋設していく水底ケーブルの布設作業において，水底面に障害物があると，水底ケーブルを布設理設してい くことができなくなるばかりか，埋設機が障害物に㣫突 して転倒する等の事故を生じるおそれがあるので，これ を避けるために，水底ケーブル布設ルートの水底面を調査して，障害物の有無を碓認する必要がある。このため従来は，水底ケーブルの布設作業に先立ち，予め図4に示すようにサイドスキャンソナー1を布設ルートに沿っ て电船2で电航しつつ，図5に示すように布設ルートと直交守る左右方向の適宣幅Bの水底面3を走查して，障害物の有無の確認を行っている。なお，上述のように適宜幅Bを走査しておくのは，実際のケーブル布設位置が予め決定しておいた位置から若干左右にずれる場合があ るので，左右方向にある程度の余裕（範囲）を持たせて調査する必要があるからである。
【0003】
【発明が解決しようとする課題】上記のように従来の方法では，障害物の有無の碓認が水底ケーブルの布設作業 と同時に行われるものではないため，つまりケーーブルの布設に先立ち予め行っておくものであるため，水底面調査を終了してから布設作業を開始するまでの間に布設ル ートの水底面に何らかの変化があった場合，例えば布設 ルート上に埋設機にとって障害となるものが不法投冓さ れた場合等には，布設ルートがこのように不都合で危険 な状態に変化しているにもかかわらず，このような状況 を把握し得ないまま布設作業を行ってしまうことにな り，そのため不虑の事故に遭遇するおそれがあった。【0004】本発明は上記の点に鑶みなされたもので， ケーブル布設船から繰り出した水底ケーブルを理設構に よって布設埋設していく際に，水底面を監視しつつ障害物を確実に回避して水底ケーブルを安全に布設埋設する ことのできる新規な水底ケーブルの布設方法を提供する

ことを目的とする。
【0005】
【課題を解決守るための手段】上記課題を解決する本発明の水底ケーブルの布設方法は，ケーブル布設船の進行方向と直交する布設船愊方向に往復移動するサイドスキ ヤンソナーによりケーブル布設船進行方向の前後を走査 して水底面を監視しつつ，ケーブル布設船上の水底ケー ブルを水底に繰り出し布設していくことを特徴とする。【0006】
【作用】上記構成において，ケーブル布設船は布設ルー ト上を航行し，積載した水底ケーブルを連続的に繰り出 して水底に布設まる。その際，サイドスキャンソナー は，ケーブル布設船の進行方向と直角な布設船幅方向に往復移動しながら布設船進行方向の前後を走査するの で，ケーブルの布設予定位置から左右方向にある程度の幅をもった範囲でケーブル布設船の前方位置を監視する ことができる。したかっって，布設ルートおよびその近傍 に障害物があれば，この障害物を十分余裕を持のて発見 して回退することができ，ケーブルを安全に布設してい くことができる。
【0007】
【実施例】以下，本発明方法の一実施例を図1，図2を参照して説明する。図1において，符号11はみーブル布設船である。このケーブル布設船 11 は，例えばケー ブルコイル12＇よりヤグラ13，ブレーキ14，船尾 シーブ15等を経て水底ケーブル12を繰り出し，ワイ ヤロープで冓引する埋設機15で水底面16を掘削する と同時に水底ケーブル12を埋設する作業を行う。前記埋設機15は，ウォータジェット埋設機またはスキ式埋設機が通常用いられる。図示例の埋設機15はウォータ ジェット埋設機であり，水を噴射するノズル15aを備 えている。
【0008】上述の構成は従来の一般的な構成である
が，この発明の実施例では，ケーブル布設船 11 の例え ば船首側に布設船幅方向（図2の矢印（イ）方向）に延 びるサイドスキャンソナー取付用のレール状の架台17 を設直し，この架台 17 に沿って布設船䒇方向に往復駆動される逆L字形の支持部材18の下端に，架台17に沿う移動方向（すなわち布設船幅方向）に対して直交す る方向に走查するサイドスキャンソナー19を取り付け ている。したがって，このサイドスキャンソナー19 は，図1に示すようにケーブル布設船11の進行方向の前後に走查する。
【0009】上記のケーブル布設船11および埋設機1 5により水底ケーブルの布設作業を行う場合，ケーブル布設船11は布設ルート上を航行し，水底ケーブル埋設機15により水底面16を掘削しながら，ケーブルコイ ル12＇より水底ケーブル12を連続的に繰り出して水底面に布設埋設する。その際，サイドスキャンソナー1 9は，架台17に沿ってケーブル布設船11の進行方向

と直角な布設船幅方向（矢印（イ）方向）に往復移動す る。したがって，サイドスキャンソサー 19は，ケーブ ル布設船11の進行方向前後をほぼケーブル布設船 11 の幅B＇の範囲についてくまなく走査する。これにより ゲーブルの布設（埋設）予定位置から左右方向に幅B＇ なる余裕をもった範囲の布設船 11 の前方位置が監視さ れ，障害物の有無の碓認がなされる。したがって，布設 ルートおよびその近傽に障書物があれば，その障害物を十分余裕をもって発見して回避することができ，ケーブ ルの布設作業を安全に実施することができる。
【0010】なお，サイドスキャンソナー19を設ける位䈯は実施例のように船首側が適当であるが，必ずしも船首に限定されず，中間位置あるいは船尾でもよい。ま た，実施例では，水底ケーブル理設譏15を用いて水底 ケーブル12を埋設する場合について説明したが，水底面16を掘削せずに布設する単なるケーブル布設だけの場合にも本発明の適用が可能である。さらに，ケーブル布設段は自航式でも曳船式でもよい。【0011】
【発明の効果】本発明によれば，ケーブル布設船に布設船幅方向に往復移動可能に設けたサイドスキャンソナー でケーブル布設船進行方向前後をほぼ布設船の幅の範囲 にわたって走査して水底面を監視しながら，水底ケーブ ルを水底に布設するものであるから，走行中のケーブル

布設船の前方位置を布設船の幅の範囲にわたつて監視す ることができる。したがって，布設ルートおよびその近傍に障害物があれば，その障害物を十分余裕を持って発見して回避することができ，ケーブル布設作業を適切か つ安全に実施することができる。特に，水底ケーブル埋設機を用いて水底ケーブルを埋設する水底ケーブル布設埋設作業において効果的である。
【図面の簡単な説明】
【図1】本発明の一実施例の方法により水底ケーブルを布設している状況を示す楖略説明図である。
【図2】図1の平面図である。
【図3】図1の正面図である。
【図4】従来方法を說明するもので，水底ケーブルの布
設作業に先き立って，サイドスキャンソナー実航体によ り水底面の調査を行っている状態の説明図である。【図5】図4の正面図である。
【符号の説明】
11 ケーブル布設船
12 水底ケーブル
15 水底ケーブル埋設機
16 水底面
17 架台
18 支持部材
19 サイドスキャンソナー
［図1］

【図2】

【図5】

【図3】

Espacenet

Bibliographic data: JP10186030 (A) - 1998-07-14

DIRECTION DETECTABLE FISH FINDER

Inventor(s):	ISHIKAWA YOSHINAO; KATO TAKESHI; NAGAREGO
SHIGERU \pm	

Abstract of JP10186030 (A)

PROBLEM TO BE SOLVED: To detect the fish school position by a vertical fish finder. SOLUTION: Langevin oscillators 11A, 11B, 11 C having the same characteristic of half value total angle or 40 deg. are arranged at an angle space of 120 deg . so that their normal lines 12A, 12B, 12C are crossed at an angle of 20 deg . in one point on a vertical line 13. Ultrasonic pulses are emitted from the oscillators 11A, 11B, 11C, each reflected wave is received by the corresponding emitting oscillator, each received level is detected, and the this school position is determined by the relative ratio of the three received levels from the same fish school.

品

（54）【発明の名称】方向検出可能魚群探知械
（57）【要約】
【課題】 垂直魚群探知機で魚群位置の検出を可能とす る。

【解決手段】半減全角か 40° の同一特性のシンジュ バン振動子11A，11B，11Cを，その法線12
A， 12 B ， 12 C が鉛直線 13 上の 1 点で 20° の角度で交差し， 120° 角間隔で配惪し，振動子 11 A ， 11B，11Cよりそれぞれ超音波バルスを放射し，そ の各反射波を対応放射振動子でそれぞれ受波し，その各受波レベルを検出し，同一色群からの3つの受波レベル の相対比により，その魚群位置を求める。

A

【特許請求の範囲】

【請求項1】比較的広い指向性ビームが一部を互いに重ねて設けられた第1，第2超音波送受波器と，
これら第1，第2送受波器から，それぞれ超音波パルス を放射する手段と，
上記放射超音波の反射波の対応放射送受波器での受波レ ベルを検出する手段と，
同一反射物標よりの反射波に対する上記第1，第2送受波器の相対的受波しベルの差から上記反射物標の方向を求める手段とを具備する方向検出可能魚群探知機。
【請求項2】 比較的広い指向性ビームを有し，上記超音波送受波器の各指向性ビームと一部が重ねられて設け られた第3超音波送受波器と，
その第3送受波器から超音波パルスを放射する手段と， その第3送受波器からの放射超音波と対する反射波のそ の第3送受波器での受波レベルを検出する手段と，同一反射物骠よりの上記第 1 乃至第 3 送受波器の各相対的受波レベルからその反射物標の位置を求める手段とを含むことを特徴とする請求項1記載の方向検出可能魚群探知機。
【請求項3】上記複数の超音波送受波器はほほほ水平面上で直線的に配列されていることを特徴とする請求項1又は2記截の方向検出可能色拜探知機。
【請求項4】上記第1，第2，第3送受波器の受波信号をそれぞれ検波する手段と，その検波出力を合成する手段と，各放射パルスごとの上記検波出力の合成信号を 1本の表示線として表示し，その表示を新旧の順に配列 したBスコープ表示と，原点に船の図形を配した座標 と，その座標に上記求めた物標位置を示す像及び上記求 めた方向を示す線を示す表示とを行う表示器とを含む請求項2記載の方向検出可能魚群探知機。
【請求項5】上記第1，第2，第3送受波器は，その法線が鉛直線上の一点で交差し，かつ鉛直線を中心とし等角間隔となるように，等角間隔にかつ送受波面が水平面に対し，わずか傾をいて配されていることを特㟟とす る請求項2又は4記輚の方向検出可能争群探知機。
【請求項6】上記第1，第2，第3送受波器侍，何れ の水平面上で直線的に配列され，これらの各送受波面が水平面に対し，わずか傾いており，その真中の送受波器 の送受波面の法線の交点を通る鉛直線に対し，両側の送受波器の各法線状を，上記交点で交差するように移動き せたとすると上記ろつの法線は上記鉛直線を中心として等角間隔になるように，上記第1，第2，第3送受波器 の向きが選定されていることを特徴とする請求項2又は 4記載の方向検出可能魚群探知機。
【請求項7】上記第1，第2，第3送受波器の合成探知信号より探知信号上の物標反射位置を検出する手段 と，上記第1，第2，第3送受波器の各受波信号から上記検出した物標反射位置の信号をそれぞれ抽出する手段 と，これら抽出信号中の最大ピーク値を基準として第

1，第2，第3送受波器の各検出信号に対して自動利得制御を行う手段と，これら自動利得制御かなされた各抽出信号をそれぞれ検波して上記各受波しベルを得る手段 とを有することを特徴とする請求項4乃至6の何れかに記載の方向検出可能魚群探知機。
【発明の詳細な説明】
【0001】
【発明が属する技術分野】この発明は魚群の方向又は及び位置をも検出可能とする魚群探知擈に関する。
【0002】
【従来の技術】一般に魚群の位置や移動方向を検出する装置として，電子スキャンニングソナーや，サーチライ トソナーが用いられてきた。又その変形的ソナーとして サイドスキャンソナー，セクタスキャンソナー等も利用 されている。これらの装蒖は，海面下を3次元的に表現出来る点で優れている。しかし電子スキャンニングソナ一等は装置が大がかりとなり，コストも高く嶬装も大変 である。比較的小型のサーチライトソナー等はコストも比較的低く押さえられるが，メカニックスキャンの為早 い探索や魚群の早い動きに追従出来ない場合があった。又映像表示がPPI表示のため操作には，熟練を要する と言われている。サイドスキャンニングソナーには，電子スキャンニング法とメカニックスキャンニング法があ る。又，両者を組み合わせたセクタ電子スキャンニング法等種々の方法が開発されているが同様の欠点がある。【0003】その他，電子スキャンソナーやサーチライ トソサーは，超音波ビームをできるだけ狭く絞って方位分解能を上げようとするため，海底の底質（岩盤，砂地，等）の判断は難しい事が上げられる。【0004】
【発明が解決しようとする課題】この発明の目的は紹音波ビームを走査（スキャンニング）することなく，反射物標の方向又は／及び位置を検出でき，しかも小型，安価に構成することができる魚群探知譏を提供することに ある。
【0005】
【課題を解決するための手段】この発明によれば，比較的広い指向性ビームをもちその指向性ビームが一部互い に重ねられた第1，第2超音波送受波器より超音波パル スがそれぞれ放射され，その反射波の対応放射送受波器 での受波レベルがそれぞれ検出され，同一反射物標より の反射波に対する第1，第2送受波器の受波レベルの差 からその反射物標の方向が検出される。
【0006】第1，第2送受波器の各指向性ビームと一部が重ねられた比較的広い指向性ビームの第3超音波送受波器か更に設けられ，この第3送受波器より放射され た超音波パルスの反射波についての第3送受波器での受波レベルが㭲出され，同一反射物楥よりの第1 乃至第3送受波器の各受波しベルからその反射物標の位置が求め られる。

【0007】
【発明の実施の形態】この発明ではサイドローブが非常 に少なく，比較的広い，例えば半減全角が 40° 程度の指向性ビームをもつ超音波送受波器が用いられる。この ような送受波器としては図1Aに示すランジュバン円形振動子を用いることができる。ランジュバン振動子の例 えばTGM50／200B／12Lの指向特性の50k Hzでの実測データを図1Bに示す。この指向特性から わかるようにサイドローブはほとんどない。ランジュバ ン振動子は円形振動子であるため，全周にうたり対称性 がよい指向特性が得られる。
【0008】このような同一の広い指向性の2つの养受波器がその指向性ビームを一部互いに重ねて設けられ
る。例えば図2Aに示すように，2つのランジュバン振動子11A，11Bがその中心線12A，12Bを鉛直線13に対し，互いに反対側に 20° 傾斜させて設けら れる。送受波器11A，11Bの送受波面をそれぞれ2 0° の俯角を与える。両送受波器の指向特性は図2Bの曲線14A，14Bとなる。いま図2Bに示すように，鉛直方向に対し，-30° の方向から 10° づつ順次異 なる方向で $+30^{\circ}$ 方向にそれぞれ反射物標 $P_{1} \sim P_{7}$ があったとすると，これら各物僄よりの反射波の送受波器11 A，11Bでの各受波しベルはそれぞれ異なのた ものとなる。例えば物摽 P_{2} についてみると，送受波器 11 Aの感度が一 0 dB ，送受波器11 Bの感度は一2 0dBであるから，送受波器11Aの方が送受波器11 Bより受波レベルが20dB大きい，物標 P_{4} について は，送受波器11A，11Bの感度が共に一4dBであ り，受波レベルに差がない。各物標 $P_{1} \sim P_{7}$ について の送受波器 11 A ， 11 B の感度は図2Cに示すように なる。
【0009】従って送受波器 11 A ，11 Bの各法線1 2A，12Bの内側にある物標については，送受波器1 1A，11Bの感度差，つまり受波しベル差から，物僄 の方向（方位）を求めることができる。物標の方向を決 めることができるのは両送受波器11A，11Bとも感度が得られる角度範囲であり，一方の送受波器のみしか感度が得られない場合は，例え优送受波器 11 A のみし か受波レベルが検出できない場合はその物標は一30․ ～-60° の概略方向に在ることと判断される。
【0010】このように2つの送受波器 11 A ， 11 B により物標方向を検出する場合におけるBスコープ表示 には，送受波器11A，11Bの両検出受信しベルを加算した信号を用いる。更にこの発明では同一の広い指向 ビーム特性をもつろつの送受波器を用いて，物標位置の検出を可能とする。このため，図3Aに示守ように3つ の送受波器11A，11B，11Cの法線方向12A， 12B，12Cか鉛直線13に対し120等角間隔 となり，かつ図2Aに示したようにそれぞれ送受波面が水平面に対して 20° の俯角を互いに外側にもつように

送受波器11A，11B，11Cか配される。この時図 3 B に示すように送受波器11A，11B，11Cの各放射ビーム16A，16B，16Cは互いに一部重なつ た状態となる。送受波器11A，11B，11Cの位置加ら100m下における法線12A，12B，12Cの各位置，各送受波器 $11 \mathrm{~A}, 11 \mathrm{~B}, 11 \mathrm{C}$ の各等感度線（等音圧分布線）17A，17B，17Cは図4Aに示すようになる。各放射ビーム16A，16B，16C は鉛直線13に対し，それぞれ 20° 傾斜しているた め，図4Bに示すように 100 m の深度で水平に切断す れば，その断面は煷円となるから，感度線17A，17 B，17Cは実際にはそれぞれ棈円となる。【0011】もし送受波器11A，11B，11Cの相対感度差が 20 dB まで測定可能であれば，1辺が11 6 m の正三角形18の内側の範囲では送受波器 11 A ， $11 \mathrm{~B}, 11 \mathrm{C}$ 相対感度差が測定できる。この正三角形18の内側の各点は3つの等感度線17A，17B， 17 C の交点と対府し，よって送受波器 11 A ， 11 B，11Cの各感度の組により，位置が一義的に定ま る。従って正三角形18の内側における1点にある物標 からの反射波の送受波器11A，11B，11Cでの受信しべルを求めれば，その組合せよりその物標の位置を求めることができる。送受波器11A，11B，11C の感度差が12dBまでしか測定することができなけれ ば，1辺が58mの正三角形19の内側にある物標の位置を測定できる。ここで送受波器11A，11B，11 Cの感度及び指向特性がよく揃っているものとする。【0012】以上の説明から，3つの送受波器 11 A ， 11 B ， 11 C を用い，水深100mで感度差が 20 d Bまで測定できれば，図4Cに示すように領域ウ内の物標は3つの送受波器 11 A ， 11 B ， 11 C でその反射波の受信レベルを検出できるから位置を正確に求めるこ とができる。領域イ内の物標は，2つの送受波器11A と11B，11Bと11C，11Cと11Aの何れかで その反射波の受信しベルを検出できるから方向を正確に検出することができる。領域ア内の物標はその反射波の受信レベルは送受波器 11 A ， 11 B ， 11 C の何れか 1 つでしか検出できないから，概略の方向が判断され る。
【0013】以上の測定原理を用いたこの発明の魚群穼知機の実施例を図5に示す。送受波器 11 A ， 11 B ， 11Cほ図3を参照して說明したものと同樣のものであ り，これらに対し，送信部21A，21B，21Cから それぞれ独立に矿振パルスを印加することができるよう にされる。このように広角超音波ビームの送受波を行う と，他魚船の魚群探知機との干渉か問題となる。この点 から，同一周波数帯での送受波器の使用を避けること，超音波パルス放射周期をランダム（規則性かない）にす ることが考えられる。図5の例では乱数発生部22によ り，例えば送信周期の1／10程度の範囲内で発信タイ

ミングをランダムに変化させ，その発信タイミング，つ まり 0 m 位置信号により送信制御部23が起動され，送信制御部23は送信部21A，21B，21Cを順次制御し，送受波器11A，11B，11Cよりシーケンス的に超音波パルスが放射される。
【0014】送受波器11A，11B，11Cはその指向特性と感度がよく揃ったものが望ましい。指向特性は送受波器の形状などで决まりかなり揃うが，感度に関し ては，固有振動周波数 f_{0} などのずれ，その他の素因に より嚴密に揃えることは困難である。そこで送受波器1 1A，11B，11Cの感度差を予め測定し，これら3 つの送受波器11A，11B，11Cの感度が捕うよう に，受信前置增幅器24の前段に設けた電子減衰器25 A，25B，25Cで補正する。この感度補正データは感度補正ROM26に記憶され，また発信時の感度を下 げると共に，遠方よりの反射波の受信感度を上げるいわ ゆるSTC用制御信号がSTC用ROM27に記憶され ている。
【0015】送受波器11A；11B，11Cの各受波信号はそれぞれ電子減衰器 25 A ， 25 B ， 25 C へ供給され，電子減袞器 25 A ， 25 B ， 25 C の出力は受信切換器28で順次切換えられて受信前㯰増幅器 24 へ供給される。シールンクス切換制御部29により，何れの送受波器による送受波を行うかの順序のタイミングが制御され，そのタイミングにより乱数発生部22よりの乱数発生が行われ，また送信制御部22の送信タイミング が制御をれ，更にSTC特性，感度校正部31を通じ，更に感度補正用ROM26の補正データが隇衰器制御3 2 を通じて電子減衰器 $25 \mathrm{~A}, ~ 25 \mathrm{~B}$ ， 25 C に対し，初期設定がなされ，またSTC用ROM27のデータに よる電子減衰器制御部32を通せる電子減衰器25A， 25B，25Cに対するSTC制御が行われ，更に受信機切換器 28 が制御され，廟振送受波器，例えば 11 A と対応した電子減衰器25Aの選択がなされる。
【0016】前置増幅器24の出力に手動感度調整器3 3を通じ，更に後段增幅器34を通じて検波器35へ供給されて検波され，その検波出力はA／D変㒜器36で デジタル信号に変換され，その変換デジタルの探知信号 39Aは加算器37で加算をれて，バッファメモリ3 8，領域38Aに書込まれる。バッファメモリ38への書込みは，次に送受波器11Bが謜振されると，その時 の探知信号 39 B が前回の探知信号 39 A と加算され て，領域38Aに書込まれ，次に送受波器11Cの励振 により得られた探知信号39Cが領域38Aの信号と加算されて領域38Aに書込まれる。領域38Aには探知信号39A，39B，39Cが加算され，1つの探知信号39が得られる。
【0017】この探知信号39は海底愌出部41及び夕 ーゲット自動検出部42へ供給される。海底検出部41 は乱数発生部22よりの0位置信号（発信信号）とその

入力されて探知信号39から海底位置を検出する。この検出は従来の魚群探知機て行われている手法と同様に行 われる。ターゲット自動検出部42䖵前記0位置信号と检出海底位置信号との間の探知信号39中から魚群など の物標からの反射信号を検出し，その検出した各物摽反射波信号ごとにそのタイミングできた対応する時間だけ アナログスイッチ43を開にする自動ダート信号を生成 する。
【0018】バッファメモリ38よりの探知信号39は Bスコープ映像化処理部44で処理され，更にビデオ信号変換部45を通じてラスタスキャン表示器46へ供給 され，例えば表示面に上下方向へ1本の表示線に1探知信号39が表示され，その表示線が表示面の左右の一端 より他端にないものから順に表示される。例えば図6に示すように通常の魚群探知機における表示が得られる。 この表示には発信線表示47，水底像48，魚群像49 が表示される。
【0019】操作員はこの表示画像を見て最新データに おける，例えば魚群像49の右端にカーソルを位惪ざせ てヒットすることによりターゲット手動検出部51から魚群反射位置，その長さと対応した手動ゲート信号が生成され，これら手動，自動切換スイッチ50により自動 ゲート信号と切換えられてアウログスイッチ43へ供給 される。
【0020】アナログスイッチ43は物䅺からの反射波 か受信されている間オンとされ，これを受信前置増幅器 24 の出力が通過され，AGC回路52へ供給され，更 に後段増幅器53で増幅された後検波器54で検波され る。この検波出力のピークがピーク検出器 55 で検出さ れ，この検出出力に店じてAGC制御部56によりAG C回路52の利得が制御され，受信信号のレベルの変化範囲がほぼ一定とされるが，送受波器11A，11B， 11 Cの各受波信号中の最も高いレベルの信号に対して AGC制御が行われ，それ以外の受波信号に対しては最 も高いレベルの信号に対して制御された利得に保持され る。つまり3つの送受波器 11 A ， 11 B ， 11 C によ る同一物標からの反射波の受波信号中の，最も強い信号 レベルが飽和しない基準上ベルになるようにAGCがか けられ，そのAGC感度（利得）で他の送受波器の受波信号も増幅され，これら送受波器 $11 \mathrm{~A}, 11 \mathrm{~B}$ ， 11 Cの同一物標からの反射波の受波レベル差が，最大樎尺率で計測される。
【0021】検波器54の検波出力はA／D変換器57 でデジタル信号に変換され，そのデジタル信号の物謤反射波受波信号は送受波器11A，11B，11Cの受波信号別に切換器58で切換えられてバッファメモリ59 の領域59A，59B，59Cに物標信号61A，61 B，61Cとして記憶される。このようにして，同一物標からの物禋信号61A，61B，61Cほその物標の方向に応じて互いに異なる受信しベルとなる。ターゲッ

ト位置方位計算部62でバッファメモリ59よりの物標信号から同一物標について先に述べた手法により，その物標の位置又は方向が計算され，その計算結果が，模式図化し，又は方位，距離，深度など数値化して表示器4 6に表示される。
【0022】例えば図6において，表示面上の物標像が ない部分に上側の魚群像491に対し，円とその中心を通る直交線の座標像 64 とその原点位置の維軸と平行し た船像 65 に対し，魚群像49の検出位置が丸点像 66 のブリンキング表示とされ，かつ，その魚群探知機を装備した魚船の船首方向に対する魚群像49の魚群の方位 θ と，魚船からその魚群までの距離Rと，魚群補正の深度Dとの数値表示67が，座標表示64の近くになされ る。同栐に下側の魚群像 49 に対し，座磦表示 6 4^{\prime} ，船像 65^{\prime} に検出した船首方向に対する方位表示 68と，その方位の θ^{\prime} の数値表示 67^{\prime} が行われる。角群像492は送受波器11A，11B，11C中の2 つから反射波を受波できず，位䈯の检出ができなかった場合である。
【0023】この魚船に取付けられた傾斜センサ71の出力が傾斜センサ処理部 72 に入力され，色船が規定の角度より傾斜して，物標反射信号61A，61B，61 Cのレベルが変化して正確に位置，方位を計算できない状態になると，ターゲット位置方位計算部62の計算を中止させ，あるいは傾斜センサ71て検出した傾き角度，傾き方位に応じて，ターダット垃置方位計算部 62 での計算を補正するようにする。
【0024】図5中の切換器28，57を省略し，かつ送信部 21 A ， 21 B ， 21 C から互いに異なる周波数 の超音波パルスで同時に送受波器11A，11B，11 Cを砳振する場合の例を図7に図5と対応する部分に同一符号を付けて示す。この場合は送信制御部22により送信部 21 A ， 21 B ， 21 C に対し同時に送信制御が なされ，電子減衰器 25 A ， 25 B ， 25 C の出力はそ れそれ前逼增幅器 24 A ， 24 B ， 24 C へ供給され， これより，手動底度調整手段 33^{\prime} により調整される電子減衰器 $81 \mathrm{~A}, ~ 81 \mathrm{~B}, ~ 81 \mathrm{C}$ へ供給され，更に後段増幅器 34 A ， 34 B ， 34 C を通じて，検波器 35
A， 35 B ， 35 C へ供給され，それぞれ検波され，こ れら検波出力は加算回路82で電圧加算されてA／D変換器36へ供給され，これよりデジタルの探知信号39 が得られる。つまり図6中の加算器37，バッファメモ リ38は省略される。
【0025】また前䈯增幅器24A，24B，24Cの各出力はアナログゲート43A，43B，43Cに分岐供粭され，これよりそれぞれ，AGC回路52A，52 B，52C，更に後段增幅器 53 A ， 53 B ， 53 C を それぞれ通して検波器54A，54B，54Cで蚞波さ れ，これら検波出力はピーク検出回路55へ供給される と共に，A／D変換器57A，57B，57Cへ供給さ

れ，これらA／D変換出力がターゲット位置方位計算部 62 へ供給をれる。この図7の構成はハードウェフ規模 が図6に示したものより大になるが，高速の探査が可能 である。
【0026】送受波器11A，11B，11Cの各受波 レべルの相対値は，深度に関係しない，つまり，2つの受波レベルの差で決まる方向（方位）は比でみれば，距離に関係しないで，一定であり，同様に3つの受波しベ ルの比でみれば，これにより決る位置の相対関係は深度 に関係なく，つまり，深度が深くなれば，これに比例し て，隣接位置の間隔が大となるだけで，相対関係はかかう りない。従って，送受波器 11 A ， 11 B ， 11 C の各受信レベルの相対比と，相対位置を予め求めておき，こ れをメモリに記憶しておき，そのメモリを物㮩信号61 A，61B，61Cの相対比で読み出し，相対位㯰を求 め，その相対位置を，その物標の深度により絶対位䈯に変換するようにしてもよい。同㥞に2つの物標信号61 Aと61B，61Bと61C，61Cと61Aの各相対比と方向（方位）との関係を予め求め，これをメモリに記億しておき，このメモリと検出した2つの物標信号の相対比で読出して方向を決定してもよい。
【0027】上述において送受波器を4つ以上設けても よい。上迅では2又は3つの送受波器を鉛直線13を中心として各送受波器の送受波面の中心法線が 1 点で交差 するように配したが，この交差点をわずかずらすことに より，水平面内で直線的に配置してもよい。その実施例 を図10に示す。図2A，図3Aに示した配置関係の例 えばランジュバン振動子よりなる送受波器11A，11 B，11Cをそれぞれの角度姿勢を保持したまま，送受波器11Aの両則に送受波器11B，11Cを配し，こ れらがほぼ水平面内でほぼい直線上に，その送受波面の中心点が位䈯するように配蹎する。
【0028】この場合，送受波器 11 A の送受波面中心 を通る鉛直線13に対し，その両則の送受波器11B （11C）の法線12Bは図11A，Bの破線で示すよ うに，水平方向に前記中心間の距離Rcだけずれる。送受波面の各中心間の距離Rc（図10）は例えば15c m 程度である。各送受波器の送受波面の水平線に対する角度，前記例では 20° に保持されているため，鉛直線 13 と法線12B（12C）とのなす角度は変わらない ため，図2A，図3Aの配置状の鉛直線13と法線12 Bとの関係が図11A，Bに実線で示す状態から，破線 で示す状態に，水平方向にRcだけずれるだげであり， このずれは深きが10mでも100mでも同じである。従って図10の右に示したように直線状に配㐤して前述 のように検出方向を測定した場合の測定誤差は，深さの大きさに関わらず一定で，Rc，前記例では15cmに過ぎず，この程度の䛊差は実質的には無視できる。
【0029】図 2 A ，図3Aに示したように送受波器 1 1A，11B，11Cを円形配置した場合は，その全体

としての送受波器101は図12Bに示すように厚みの ある円板状のモールド品とされるが，図10の右則に示 すように直線状に配置した場合の全体としての送受波器 102は図13Bに示すように細長の長方体状のモール ド品と構成される。従って，この送受波器102を，例 えば漁船に対し，その船首方向，つまり進行方向と平行 になるように取付けられると，図12Bの送受波器10 1と比較して，体積が3割程度小とすることができ，か つ液体抵抗が小さい。
【0030】このように送受波器をほぼき水平でほぼは直線的に配置する適用例は送受波器の数が3個に限らず，2個， 4 個以上でもよい。また送受波器をほぼ水平面内で ほぼ直線状に配列する場合に限らず，ほぽ鉛直面内で， ほぼ直線状に配列してもよい。
【0031】
【発明の効果】以上述べたようにこの発明によれば，機械的走查をさせないで，物標の方位，位置を検出するこ とができ，可動部のない安定度が高いものが得られる。 また電子走査をさせないで物標の方位，位置を検出でき るので，電子回路が簡単になり，設計が容易であって，送受波器において位相合成などの処理を必要とせず，送受波器の配線なども简単になる。従来の何れの走查方式 より小形かつ安価に構成することができる。
【0032】サイドローブの少ない送受波器を用いるの で偽像がほとんどなく，諯った判断が少ない。各探知信号を1本の表示線として表示し，その表示線を配列す る。Bスコープ表示をすることができ，従来の記録紙に よる記録表示形式になれている操作層に見易い表示を行 うことができ，しかも物標の位置，方位を検出すること ができる。
【0033】広い超音波ビームの送受波器を複数用いる ため，その合戌ビームの指向角は前記具体例では 80° にもおよび，従来のサイドスキャンニングソナーと同程度の探查範囲を探索することができ，探査漏れが少な
い。本船とこれに対する物標の位置の相対関係を模式図 で表示することにより，読み取りに熱練を要しない，か つ物標の移動方向も知ることができる。また，数值表示 により正確な値を知らせることができる。
【0034】送受波器の合成指向角が梠めて広いため，水底の地質の判断か可能となる。つまり狭い指向角の送受波器を用いた場合は図8Aに示すように超音波の水底 92への到達時間差はそのビームの軸心91aと周辺9 1 b とでわずかである。従って図8Bに示すように送信 パルス93のパルス幅Tcと，ほぼ等しいパルス幅Tc の反射波 94 が受波される。水底 92 が岩盤の場合はそ の反射波94の受波レベルが大きなものとなる。水底9 2か砂地の場合は図9Cに示すように反射波 94 の幅は同様にTcであるが，受波レベルが小さくなる。しか し，これら図8B，Cの両反射波の差により地質を推定 することは比較的困難である。

【0035】しかし，超音波ビーム91が広角の場合は図9Aに示すように，超音波ビーム9の中心91aと周辺 91 b とで超音波が水底 92 に到達する時間に比較的大きな差Tbが生じる。このため，水底92が岩盤の場合は，反射波94の波形は図9Bに示すように急に大き く立上り，送信パルス幅Tcの後に徐々に低下した後， Tcだけ一定値を保持して，立下るものとなる。一方水底92が砂地の場合は，砂地中に超音波が入り大きく減衰し，その減衰は中心線91aよりも周辺91bの方が著しく，反射波94は図9Cに示すように，レベルが小 さく，図9Bの反射波94のあるレベル以上に相当する部分の波形となる。従って，この図9B，Cの両反射波 94 の波形が図8B，Cの場合と比較して，大きく相違 し，反射波 94 の波形により水底 92 の地質を推定する ことができる。
【0036】更に，図10に示したように送受波器を直線状に配列すると，円形配置の場合より3割程度小さく なり，それだけ水の抵抗が小となり，例えばこの魚群探知機が取付けられる船体の船首方向，つまり進行方向と平行にすることにより，水の抵抗を著しく小さくするこ とができる。またランジュバン振動子の場合は，一般の直線配列のモールドであり，方向検出可能な魚群探知機用送受波器でも同じ型を用いて作ることができ，安価に構成することができる。
【0037】更に直線状であるため，方向検出可能な魚群罙知機用送受波器の特徴である送受波器取付けの際の方向が見分け易い。

【図面の簡単な說明】

【図1】Aは広い指向角の超音波ビーム特性をもつ超音波送受波器の例を示す図，Bはその指向角特性を示す図 である。
〔図2】Aは超音波ビームを一部重ねた2つの送受波器 の配置例を示す図，Bはその指向角特性を示す図，Cは同図B中の物標 $P_{1} \sim P_{7}$ に対する両ビームの感度を示 す図である。
【図3】Aは超音波ビームを互いに一部重ねた3つの送受波器の配惪例を示す図，Bはその3つの超音波ビーム の模式図である。
【図4】Aは図3Bの水深100mでの各超音波ビーム の等感度（等音㞋）曲線及び位置検出領域を示す図，B は送受波器位置とその法線の水深 100 m での鉛直線に対する距離の関係を示す図，Cは図3Bにおける物標位置検出領域，物磦方位検出領域，物標僛略方位㭥出領域 を示す図である。
【図5】この発明の実施例の機能構成を示すブロック図。
【図6】図5中の表示器46の表示例を示す図。
【図7】この発明の他の実施例の機能構成を示すブロッ ク図。
【図8】Aは狭角ビームによる水底探植を示す図，Bは

送信パルスと反射波を示す図，Cは反射波の他の例を示 す図である。
【図9】Aは広角ビームによる水底探査を示す図，Bは送信パルスと反射波を示す図，Cは反射波の他の例を示 す図である。
【図10】送受波器の円形配列と直線状配列と配置関係例を示す図。

【図1】

B

【図11】送受波器の円形配列と直線状配列とにおける鉛直線と送受波器の法線方向の関係を示す図。
【図12】Aは送受波器の円形配列を示す図，Bはその全体を示す斜視図である。
【図13】Aは送受波器の直線状配置を示す図，Bはそ の全体を示す斜視図である。
（図2】

B

C

物樓		11Bビ－ム䯚度
P_{1}	－2dB	受信感度ナシ
P_{2}	OdB	－20dB
P_{3}	－2dB	－11dB
Pa_{4}	－4dB	－4018
P_{5}	－11dB	－2d8
P_{6}	－20018	0dB
P_{7}	受信感庶ナ	－2dB

【図10】

> 【図3】

A

图3
（図6）

＊ 6

【図4】

（図11）

〔図12】

【図5】

【図13】

Espacenet

Bibliographic data: JP2001074840 (A) - 2001-03-23

ATTACHMENT FOR FISH-FINDER

Inventor(s):	USUI HIROHISA \pm	
Applicant(s):	ACHILLES CORP \pm	
Classification:	international:	A01K75/00; B63B7/08; G01S15/96; (IPC1-7): A01K75/00; B63B7/08; G01S15/96
	- European:	

Application number:

Priority number
(s):

Also published as:

JP19990245391 19990831

JP19990245391 19990831
JP4183217 (B2)

Abstract of JP2001074840 (A)

PROBLEM TO BE SOLVED: To install a fish-finder at a place suitable for fish finding so that the space in the boat can widely be used, when installed in a small boat or the like. SOLUTION: The attachment has its main body 2 fixed to a fitting seat (g) provided to the float part Bf of an inflatable boat B, and a sensor 4 is fitted at the tip end of an arm 3 extending into water from the main body 2 , and a monitor part 7 is fitted to the upper part of the main body 2 , so that a signal detected by the sensor 4 is displayed on the screen of the monitor part 7. Further, the arm 3 is made freely rotatable on the axis of an arm support shaft 13, and an intermediate part of the arm 3 is made foldable.

（21）出駺番号	特願平11－245391	（71）出頑人 000000077
（22）和願日	平成11年8月31日（1999．8．31）	アキレス株式会社 東京都新宿区大京做22番栬の！
		（79）発明者 溥井 宏久 板木県是利市西宫町 $3003-1$.
		（74）代理人 1001031 26 升理士 片岡 修
		$\begin{array}{cl} \text { Fターム(参侍) } & \text { 2B106 PA01 } \\ & \text { 5J083 AA02 ABO1 AC31 AB04 AF15 } \\ & \text { CA01 CA32 EB04 } \end{array}$

（54）【と発明の名称】 魚群探知機用アタッヂメント
（57）【要約】
【課題】小型ボート等に魚群探知機を設置する際，船内のスペースを広く活用出来，また，魚群探知に適した䓢所に適切に配䈯出来るようにする。
【解決手段】 インフレータブルボートBのフロート部 Bfに設けられる取付座gにアタッチメント1の本体2 を固定し，この本体2から水中に向けて延出するアーム 3の先端にセンサ4を取付けるとともに，本体2の上部 にモニター部7を取り付け，センサ4で検知した信号を モニター部7の画面に表示する。また，アーム3をアッ ム支持軸13の軸周りに回動自在にし，更にアーム3の中間部を折り畳み可能にする。

【特許請求の範囲】

【請求項1】船体の一部に取付けられる本体と，この本体から水中に向けて延出するアームと，このアームの先端に形成されるセンサ取付部を備えた魚群探知機用厂 タッチメントであって，前記アームの根元部は，所定方向に揺動可能にされることを特徴とする魚群探知機用厂 タッチメント。
【請求項2】請求項1に記載の魚群罙知機用アタッチ メントにおいて，前記アームはま折り畳み可能にされるこ とを特徴とする魚群探知機用アタッチメント。
【請求項3】請求項1又は請求項2に記載の魚群探知機用アタッチメントにおいて，前記本体には，魚群探知機のモニター部を取付けるためのモニター取付部が形成 されることを特塂とする色群探知機用アタッチメント。【請求項4】請求項1乃至請求項3のいずれか1項に記載の魚群探知栱用アタッチメントにおいて，前記本体 は，インフレータブルボートのフロート部の取付座に取付け可能にされることを特徵とする魚群探知機用アタッ チメント。
【発明の詳細な說明】
【0001】
【発明の属字る技術分野】本発明は，例えぼ小型船舶等
に魚群探知機を装着する際の補助治具となる魚群探知機用アタッチメントに関する。
【0002】
【従来の技術】近年，マリンレジャーの普及に連れてイ ンフレータブルボート等の小型ボートを使用したボート鈞りが盛んになっており，またポータブル式の魚群探知機が安価に出回るようになたため，ボート釣りで茟群探知機を使用する機会が増えている。この際，エンジン取付用のトランサム板を備えた船外機付きボートト等であれ ば，トランサム板等を利用して魚群探知機のセンサを取付けることが可能であるが，チューブ式のフロート部が主体となるゴムボート等では，例えば両舷のフロート部 の間に架け渡される座席板や，底板等を利用して魚群探知機のセンサやモニター部等を固定せざるを得なかっ た。
【0003】
【発明が解決しようとする課題】ところが，上記のよう に座席板や底板を利用して魚群探知機を固定する場合 は，狭い船内での各種作業等の邪䈭になりやすく，また船内スペースも制約されて乗員の移動や物品搭載等に不便であった。
「0004】そこで本発明は，船内のスペースを広く活用することが出来，また，魚释探知に適した箇所に適切 に配置出来るようにすることを目的とする。【0005】
【課題を解决するための手段】上記目的を違成するため本発明は，船体の一部に取付けられる本体と，この本体 から水中に向けて延出するアームと，このアームの先端

に形成されるセンサ取付部を備えた魚群罙知機用アタッ チメントを設け，アームの根元部を，所定方向に揺動可能にした。
【0006】そして，アタッチメントの本体を船体の一部に取り付け，先端にセンザを取忖けたアームを水中を延出させて魚群探知を行い，任意の䈯所に設置したモニ ター部で監視するが，この際，本体の取付部を船体の船 べり等に設けれぼ，乗員の作業の邪䖝にならず，船内ス ペースを広く活用することが出来る。また，アームの根元部を揺動自在にしておけば，例えば水上の浮遊物等が アームの先端に引っ掛かったり，アームの先端が傷害物等に衝突したような時でも，アームに無理な力が作用せ ず，アームの損傷等が防止される。このため，少なくと も船の進行方向に揺動可能にしておくことが好ましい。【0007】ここで，船のタイプ等はインフレータボー トやFRP製等の小型ボートに好適であり，手潧き式の小型ボートでも，船外楎付きのボートでも，帆走式のボ ートでも良いが，その他のタイプの船舶でも良い。【0008】また請求項2では，前記アームを折り畳み可能にした。このように折り畳み可能にすれば，例えば アーム長を長くしても，収納時等にコンパクトに折り畳 んで搬送等を行うことが出来，便利である。
【0009】また請求項3でほ，前記本体に，魚群探知譏のモニター部を取付けるためのモニター取付部を形成 するようにした。こうすれば，魚群探知栱の構成部品一式を總めてアタッチメントに取付けることが可能とな り，また本体周囲の空間を有効に活用出来る。
【0010】また請求項4では，本体を，インフレータ ブルボートのフロート部の取付座に取付け可能にした。 ここで，インフレータブルボートのフロート部の取付座 とは，例えば銫竿支持用の受具等を固定するため，既に チューブ式のフロート部に貼着されている直方体ブロッ ク状の弾性部材であり，この取付座を利用してアタッチ メント本体を取付けるようにすれば，場所的にも好適で あり，また既存のインフレータブルボートをそのまま活用出来て便利である。
【0011】
【発明の実施の形態】本発明の実施の形態について添付 した図面に基づき説明する。ここで図1は本魚群探知機用アタッチメントが取付けられるボートの一例を示す全体図，図2は本魚群探知機用アタッチメントの一例を示 す說明図，図3は本体に形戌されるモニ夕取付部の説明図，図4はアームの構造の一例を示す説明園である。【0012】本発明に係る魚群探知機用アタッチメント 1は，例えば図1に示すようなインフレータブルボート Bのフロート部Bfにポータブル式等の魚群探知機を取付ける際の補助治具として構成され，図2にも示すよう に，フロート部Bfの上面の取付座gに取付けられる本体2と，この本体2から水中に向けて延出するアーム3 を備えており，このアーム3の先端には，センサ4を取

付けるためのセンサ取付部5が設けられている。
【0013】そしてこの実施形態では本体2の上部にモ ニター取付部6が形成されており，このモニター取付部 6にモニター部7か取付けられるとともに，このモニタ一部7の背面側に接続される按続コード8の延出端部が前記センサ4に接続されている。
【0014】前記取付座gは，例えば釣等を支持する受具等を固定するため，殆どのインフレータブルボートB のフロート部Bfの上面に接着等て固定されているもの であり，ソリッドゴム等の弾性部村から直方体ブロック状に構成されるとともに，中間部に貫通孔が形成されて いる。
【0015】前記本体2は，取付座gに嵌合可能な嵌合部2pと，フロート部Bfの上面形状に做った円孤部2 r を備えており，嵌合部 2 p には，取付座gに腅合させ た際に取付座gの貫通孔に連通する軸挿通孔角（図3） が形成されている。そしてこの軸挿通孔hには，後述す るアーム支持軸 13 が取付座 8 の貫通孔を通して挿通さ れ，アーム支持軸 13 の一端側に形成されるネジ部にナ ット14を蜀合させて本体2を取付座gに固定出来るよ うにしている。
【0016】また，前記モニター取付部6は，図3にも示すように，嵌合部2pの上面にピン9により枢着され て所定角度範囲（実施形態では45度範囲）内で水平に摇動自在な水平板 10 と，この水平板 10 の両端部にヒ ンジ等を介して起伏自在に設けられる一対の取付板11 を備えており，この取付板11には，モニター7を固定 するためのネジ掩通孔i が設けられている。
【0017】そして，両方の取付板11を起こした状態 で，間にモニター部7をセットし，ネジ挿通孔iを通し たネジ12（図2）によりモニター部7を固定するよう にし，また収納時には，取付板11を倒してスペースが広がらないようにしている。
【0018】前記アーム3は，図4にも示すように，前記アーム支持軸 13 の一端側に，軸周りに回動自在に設 けられており，また中間部が分割されてピン軸15で枢着されている。このため，アーム3全体をアーム支持軸 13 の軸周りに回動させると，アーム3の下端部のセン サ取付部5か揺動し，またアーム3の下方部をビン軸1 5回りに揺動させると，図4の鎖線に示すように折り畳 むことが出来るようにされている。またアーム3の下端部のセンサ取付部5は，センサ4をネジ止めで固定出来 るようにされている。
【0019】以上のように構成される魚群探知機用アタ ッチメント1において，本体2上部のモニター取付部6 にモニター部7を取り付け，このモニター部7に接続コ ード8を介して接続されるセンサ4を，アーム3先端の センサ取付部5に取付けるとともに，本体の2の嵌合部 2 p を，図2に示すフロート部Bfの取付座gに取付け る。

【0020】そして図2に示すようにアーム3の先端の センサ4を水中に浸漬し，センサ4から音波を発振し，反射波を受信してその信号をモニター部7の画面に表示 することで，魚群を探知する。この際，モニター部7を保持する水平板10は，所定角度揺動字るため，見やす い方向にセットして監視することが出来る。
【0021】こうしてセットした魚群探知機によりモニ夕ー部7の画像を監視しつつ，例えばボートBを走行ざ せるような場合，アーム3は，少なくともボートBの進行方向に揺動可能にされているため，走行中にアーム3 の下端部が傷害物等に衝突したり，水上浮遊物等がアー ム3の下端部に引っ掛かっても，アーム3の下端部はア一ム支持軸13周りに揺動し，アーム3に無理な力がか かるようなことがなく，アーム3の折損等を未然に防止 することが出来る。
【0022】また，このような魚群探知機用アタッチメ ント1は，インフレータブルボートBを使用しないで収納するような際，簡単に取外して持ち運ぶことが可能で あるが，アーム3が折り畳み可能であるため，コンパク トな形態で姵張らないようにして艟送することが出来 る。
【0023】尚，本発明は以上のような実施形息に限定 されるものではない。本発明の特許請求の範囲に記載し た事項と実質的に同一の構成を有し，同一の作用効果を奏するものは本発明の技術的範囲に属する。例えば，上記の実施形態では，モニター部7をアタッチメント1の上部に取り付けるようにしているが，アタッチメント1 の上部に釣华支持用の受具等を取付け，モニター部7を別の箅所に設けるようにしても良い。また，アタッチメ ント1をフロート部Bfの取付座g以外の筒所，例えば図1のインフレータブルボートBのトランサム板Bt等 に設けるようにしても良い。
【0024】更に，本アタッチメント1が取り付けられ る船は，インフレータブルボート以外のFRP製の小型 ボートや，木製のボート等でも良く，またインフレータ ブルボートの種類等も任意である。
【0025】
【発明の訤果】以上のように本発明に係る魚群探知機用 アタッチメントは，船体の一部に取付けられる本体から水中に向けてアームを延出させ，このアームの先端にセ ンサを取付けるようにしたため，アタッチメントを船体 の船べり等に取付ければ，乗員の作業の邪魔にならず，船内スペースを広くすることが出来る。またアームの根元部を，所定方向に対して揺動可能にしているため，例 えば水上の浮遊物等がアームの先端に引っ䐻かったよう な時でも，アームに無理な力が作用せず，アームの損傷等が防止される。
【0026】また請求項2のように，アームを折り畳み可能にすれば，収納時等にコンパクトに折り畳んで搬送等を行うことが出来る。また請求項3のように，本体に
（4）開2001－74840（P2001－74840A）

モニター取付部を形成すれば，魚群探知機の構威部品一式を縷めてアタッチメントに取付けることが可能となり便利である。更に，誚求項4のように，本体をインフレ ータブルボートのフロート部の取付座に取付㚈可能にす れば，既存のインフレータブルボートをそのまま活用し て取付けることが可能である。【図面の簡単な説明】
【図1】本魚群探知栱用アタッチメントが取付けられる ボートの一例を示す全体図

【図2】本魚群探知機用アタッチメントの一例を示す説明図
【図3】本体に形成されるモニ夕取付部の説明図【図4】アームの構造の一例を示す説明図【符号の説明】
$1 \cdots$ 魚群梁知機用アタッチメント， $2 \cdots$ 本体， $3 \cdots$ •・アー ム， $4 \cdots$ センサ， $5 \cdots$ センサ取付部， $6 \cdots$ モニター取付部，7…モニター部，B…インフレータブルボート，g \cdots ．．取付座。

【図1】

【図3】

【図4】

Espacenet

Bibliographic data: JP2004020276 (A) - 2004-01-22
FISH FINDER

Inventor(s):
Applicant(s):
Classification:
Application number: JP20020173113 20020613
Priority number(s): JP20020173113 20020613

Abstract of JP2004020276 (A)

PROBLEM TO BE SOLVED: To find fish swimming in an area near to a water surface.; SOLUTION: This finder is provided with a clump 7 attached to a ship, a support rod 9 attached to the clump 7 to position an end part 23 under the surface 5 of the water, an ultrasonic oscillator 13 supported adjustably in oscillation to the end part 23 of the support rod 9 , and for making an emission and reception direction of an ultrasonic wave change-regulatable to a water depth direction and a direction crossed therewith, and an operation means 15 for change-regulating the emission and reception direction of the ultrasonic oscillator 13. A turning means 11 for
 supporting rotatably an intermediate part of the support rod 9 is provided between the clump 7 and the support rod 9 , an the turning means 11 rotation-moves the support rod 9 to be switched between a using condition where the ultrasonic oscillator 13 is positioned in the underwater and a storing condition where it is positioned on the water surface. ; COPYRIGHT: (C)2004,JPO

（43）公開日 平慮16年1月22日（2004，1，22）

（51）int． $\mathrm{Cl}{ }^{7}$	F 1	テーアコード（类教）
GO1S 15／96	GO1S 15／96	5J083

（57）【要効】
【誐題】水面近くを泳いでいる魚群の探知を可能とする
【解决手段】船に取り付けられるクランプ7と，クラン プ7に取り付けられ端部23を水面5下に位置させ得る支持杆9と，支持杆9の端部 23 に首振り調整可能に支持され超音波の発受信方向を水深方向及びこれに交差す る方向へ変更調整可能な超音波振動子13と，超音波振
動子13の発受信方向を変更調整する操作手段15とを備え，クランプ7と支持杆9との間に，支持杆9の中周部を回転可能に支持する回動手段11を設け，回動手段 11 は，支持杆 9 を超音波振動子 13 が水中に位置する使用状態と水面上に位酤する格納状態とに回輸移動をせ得ることを特畋とする。【選択図】 図1

【特䛲請求の解囲】

【請求項1】

船に取り付けられるクランプと，
該クランプに取り付けられ端部を水面下に位稙をせ得る支持杆と，
前記支持杆の端部に首振り調整可能に支持をれ超音波の発受信方向を水深方向及びこれに交差する方向へ変更調整可能な超音波搏動子と，
前記超音汸振動子の発受信方向を変更調整する操作手段とを備えたことを特微とする茟群探知装置。
【諹求項2】
請求項1記載の魚群探知装置であって，
前記クランブと支持杆との間に，談支持杆の中間部を回転可能に支持する回動手段を設け
該回動手段は，前記支持杆を前記超音波振動子が水中に位直する使用状態と水面上に位置 する格納状能とに回転移動をせ得ることを特徴とする魚群探知荌置。【請求項3】
請求項2記載の魚群探知蒋置であって，
前記回動手段は，前記支持杆を前記超音波振動子が水中に位置する使用状態に付劳する付勢手段及ひ該付埱手段による付簒力を受け止めて前記支持杆を前記使用状態に対応して位置決めるストッパ手段と，前記支持杆を前記超音波振動子が水面上に位鎮する格移状能に対応して位真決めるロック手段とを備えたことを特倠とする魚群探知竝直。
【請求項4】
請求項2又は 3 記載の魚㸷探知菨置であって，
前記回動手段は，前記クランプにより前記支持杆が前記腺の右胘又は左旆に取り付けられ たとき該回動手段を境として前記支持杆の起音波振動子賏を前記船の進行方向後方側へ回転移動させることを特徽とする茟群㩒知接㯰。
【請求項5】
請求項2又は3記載の魚群探知奨置であって，
前記回動手段は，前記クランプにより前記支持杆が前記船の後部の右胘寄り又は主左胘寄り に取り付けられたとき該回動手段を境として前記支持杆の超音波振動子側を前記牊の中央部測へ回転移動させることを特撤とする魚群探知装㯰。

【発明の䛨細な説明】

【0001】
【発明の属する技術分野】
本発明は，小型船等に取り付けられる简易な魚群探知装逼に関主る。
【0002】
【従来の技術】
従来より小型的等で用いられる簡易な角群探知悋置としては，例えば特開2002－60 38 号公報に記贱されたものなどがある。この魚群探知晆置恃，超音波を発受信する超音波振動子がガイド竿に紋を介して吊り下汚られたものである。また，超音波振動子か小型船の船底に取り付けられたものも等も存在する。いずれの場合も水深方向にのみ超音波を発信することにより，どれぐらいの水深位䈯に茟群が存在するかを検出できるようになっ ている。
【0003】
【発明が解決しようとする謤題】
しかしなからら，上記のように水深方向でのみ魚群を探知する搆成であると，例えば沿の真下から少し離れた所にいるバス等のような魚を探知することは困難であるという問題があ
った。【0004】
これに対し，大型結などでは超音波の発受信方向を変更調整可能にしたものが存在する。 しかしながら，大型船の樟造をそのまま単繯に小さくして小型船に適用することはできず

[^1]
く，船の進行を円滑に行わせることができる。

【0015】
請求項3の発明では，請求項2の発明の効果に加え，前記回動手段は，前記支持杆を前記超音波层動子が水中に位置する使用状態に付势する付勢手段及び該付勢手段による付勢力 を受け止めて前記支持杆を前記使用状態に対応して位置決めるストッパ手段を備えたため ，支持杆を使用状態で碓実に位置决め，超音波振動子による超音波の発受信を調整された方向に対し的確に行うことができる。
【0016】
また前記支持杆を前記超音波层動子が水面上に位置する格納状態に対応してロック手段に よって確実に位罝決めることができる。従って，船が進行宣る際に支持杆の超音波振動子側が水の抵抗を受けることがなく，船の進行をより碓実且つ円滑に行わせることができる

【0017】

請求項4の発明では，誚求項2又は3の発明の効果に加え，前記回動手段は，前記クラン プにより前記支持杆が前記船の右効又は左胘に取り付けられたとき該回動手段を境として前記支持杆の超音波振動子側を前記船の進行方向後方側へ回転移動させることができる。従って，超音波振動子により魚群探知をしながら船を進行させるとき，水中の異物が支持杆に当たつて支持杆に船の進行方向後方側へ無理な力が作用しても，前記のように回動手段を境として前記支持杆の超音波振動子側か韶の進行方向後方側へ回転移動することで異物を逃がすことができる。このため，水中の異物が支持杆に当たってもクランプ等に無理 な力が㗢くのを抑制することができ，クランプ等の破損，船からの離脱等を抑制すること ができ，簡単な構造で魚群探知を正確に行わせることができる。
【0018】
請求項5の発明では，請求項2又は3の発明の効果に加え，前記クランプにより支持杆を前記船の後縁の右舷寄り又は庄觟寄りに取り付けたとき，前記回動手段によって前記支持杆の超音波振動子側を前記船の中央部隕へ回動移動させることができる。従って，支持杆 の超音波振動子側が船の右玆答り又は左玆寄りに突出するのを抑制することができ，右嵫側又は左新側を按岸するような場合等にも，支持杆の超音波振動子側が雅魔にならず，接岸等を円滑に行わせることができる。

【0019】

【発明の実施の形態】

図1，図2は本発明の一実施形態に保り，図1は魚群探知装置1を備えた船として小型船 であるボート3を水面5との関係で示した正面図，図2は同右舷側測面図，図3は同平面図である。この図1，図2，図3のように，前記魚群探知装置1はクランプ7と，支持杆 9 と，回動手段11と，超音波振動子13と，操作手段15とを備えている。前記超音波振動子13は，配線17によって探知器19に接紗されている。
【0020】
前記クランプ7は，船の縁である前記ボード 3 の右舷の緑部21に取り付けられている。前記支持杆9は，前記クランプ7に取り付けられ，一方の端部23が水面5下に位置して いる。前記回動手段 11 は，前記クランプ 7 と支持杆 9 との間に設けられ，支持杆 9 の中間部を回転可能に支持している。
【0021】
前記超音波振動子 13 は，前記支持杆 9 の端部 23 に首振り調整可能に支持され，超音波 の発受信方向を水深方向及びこれに交差する方向である斜め方向，水平方向などに変更調整可能となっている。
【0022】
前記操作手段15は，前記超音波振動子130発受信方向を変更調整するものである。【0023】
また本実施形態では，支持杆9を回動手段11に対し軸周りに回䡌させることができ，例 えば『 1 のように超音波振動子 13 を水深方向に対し θ の角度を有して斜めに変更調整さ

れた状態で，さらに水平方向に回動させることができる。
【0024】
前記探知器19はバッテリによって駆動され，前記超音波振動子13を駆動して超音波を発信させ，超音波振動子13が受信した信号を受けて発信から受信までの往復時間を距離 に換算し，発受信方向が水深方向である場合には深度として表示する。また反射波の強弱 により魚群の大きさや密度あるいはは海底の形状や底質を画像に識別表示する。【0025】
前記超音波振動子 13 による超音波の発受信方向が水深方向に交差する図 1 のような場合 には，超音波の発信から受信までの往復時間を距離Lに換算する。また深度としては超音波振動子13の水深方向に対する斜めの角度 θ 及び水面5からの水深H1を探知器 19 に テンキー操作などによって入力し，あるいは愌出によって自動的に入力することにより，水深H及び水平距雚 Sを例えば次のように演算する。
【0026】
$H=H 1+H 2=H 1+L \cos \theta \quad \cdots(1)$
$\mathrm{S}=\mathrm{L} \mathrm{sin} \theta \quad \cdots(2)$
なお，前記超音波振動子13の水面5からの水深H1をセンサによって検出する場合には ，回動手段11と支持杆9との間に位置センサを設け，該位置センサの検出値から換算す ることになる。またH1をテンキーの操作によって手動で入力する場合には，支持杆9と回動手段11との間に目盛りを付けておき，該目盛りを読み込むさととによってH1を入力 することができる。
【0027】
前記水深方向に対する角度 θ は，支持杆 9 と超音波振動子 13 との間に設けた回転勇セン サ等により検出し，探知器19に入力することができる。また角度 θ を手動で入力する場合には，操作手段 15 と支持杆 9 との間に角度 θ に対応した目盛りを付けておくことによ り，該目盛りを読み込んて探知器19に入力することができる。
【0028】
前記支持杆9の超音波振動子13側は，その使用状態で水中に位置しているため，ボート 3を進行させる場合には水の抵抗を受け易くなっている。このため前記回動手段11によ って前記支持杆9を前記超音波振動子13が水中に位置する使用状㦔と水面上に位置する図2鎖線図視上位側の格爯状態とに回転移動させ得る構成となっている。【0029】
すなわち図 2 の格納状態では，支持秆 9 の超音波捡動子 13 側が水面5上に位置し，ボー ト3の進行に伴って支持杆9の超音波振動子13側が水の抵抗を受けることがなく，ボー ト3を円滑に進行させることができる。
【0030】
また，前記回動手段 11 は，前記クランプ7により前記支持杆 9 が前記ボート 3 の右舷に取り付けられたとき該回動手段11を境として前記支持杆9の超音波振動子13側を前記 ボート3の進行方向後方劕へ図2鎖線図視中位のように回転移動させることができる。従 つて，超音波振動子13により魚群探知をしながらボート3を進行させるとき，水中の異物Wが支持杆9に当たって支持杆9にボート3の進行方向後方側へ無理な力が作用しても ，前記のように回動手段11を境として前記支持杆9の超音波振動子13側が船の進行方向後方側へ回転移動することで異物Wを逃がすことができる。このため，水中の異物Wが支持杆 9 に当たってもクランプ7等に無理な力が㗢くのを抑制することができ，クランプ 7等の破損，船からの離脱等を抑制することができ，簡単な構造で魚群探知を正確に行わ せることができる。
【0031】
なお，魚群探知装置1のクランプ7，支持杆9等を，ボート3の左玆に取り付けたときも同様に構成することができる。
【0032】
次に，図4～図13を用いて具体的構造をさらに説明する。図4はクランプ 7 及び支持杆

9などをボート3から取り外して示す斜視図，図5は同則面図，図6は同平面図，図7は クランプの正面図，図8は回動手段を説明する要部の拡大断面図，図9は回動手段を説明 する同正面図，図10は押さえプレートを示し，（a）は正面図，（b）は側面図，図1 1は付勢手段として右狡用のコイルスプリングを示し，（a）は断面図，（b）は則面図 ，図12，図13は超音波振動子の回動操作を説明する斜視図である。【0033】
図4～図7のように，前記クランプ7は，クランプブラケット25と締結具27とからな っている。前記クランブブラケット 25 は樹脂で形成され，一対の足部29，31を備え ている。一方の足部29には，前記䋨結共27が緊合支持されている。締結具27の螺合支持は前記足部29に固定された六角ナット33に締結具27のねじ軸35が螺合するこ とによって行われている。䋨結具27には，ねじ軸35の前端にスラストパッド37が設 けられ，後端にノブ39か設けられている。
【0034】
前記足部31の後面41は，ボート3の緑部21の外面に当接する固定面として構成され ている。前記足部 31 には，外筒部43か設けられている。外筒部43の前面には，フラ ンジ部45か設けられている。フランジ部45の上下中央において左右一側に図7のよう にストッパピン47か笑設されている。前記外筒部43の先端側上部には，ロック孔48 が費通形成きれている。前記外簡部43に対し，ヒンジブラケット49か軸周りに回転可能に支持されている。
【0035】
図8，図9をも参照すると，前記ヒンジブラクット49には，上下に支持部51，53が設けられている。前記支持部 51 は，固定測部 55 と着脱可能な押さえプレート57とを備えている。固定側部55は，円弧状の回部59と両則の突き当て部61とからなってい る。突き当て部61には锯ねじ部63が設けられている。【0036】
前記押さえプレート57は，図10をも参照すると，円张状の田部65と突き当て部67 とからなっている。突き当て部67には貫通孔69が設けられている。この押さえプレー ト57の突き当て部67を前記固定測部55の突き当て部67に対何させ，凹部59，6 5で支持杆 9 の外面を包囲して支持する円弧を構成することができる。
【0037】
前記押さえプレート57は，貫通孔69を貫通させた図6で示す締結具71を固定側部5 5の雄ねじ部63に締め込むことによって，凹部59，65により支持杆9を締結支持す ることができる。支持杆9の䋨結状態において対向部61，67間には図8のように隙間 73 が構成されている。従って，支持杆9をヒンジブラケット49に䋨結具71の綃め込 みによって所定の締結力により支持させることができる。この状態で支持杆9は支持部5 1 において一定の締結力により軸周りに回転可能かつ軸方向へは摩擦係合によって移動不能に支持されている
前記支持部53は，図8，図9のように壁部75によって囲まれた断面U字状の凹部77
成されている。従って，凹部77により支持杆9の外面をガイド支持することができる。【0038】
前記ヒンジブラケット49には，前記外筒部43に嵌合する内筒部79が設けられている －外筒部43と内筒部 79 との間には，付勢手段としてコイルスプリング 81 が介設され ている。
【0039】
前記コイルスプリング81には，図11に示すように，両端部に係合部83，85が設け られている。係合部83は前記外筒部430係止凹部87に周方向に係合し，前記係合部 85は前記内筒部 79 の係止穴部 89 に嵌合倸止されている。【0040】
前記コイルスプリング81の後端には，外筒部43と内筒部79との間において樹指ワッ

シャ91か配置され，内筒部79に係合する止め輪93によって㧍け止めが行われている －
【0041】
前記外筒部43，内筒部79，及びコイルスプリング81は，前記回動手段11を構成し ている。守なわち前記ヒンジブラケット49をクランプブラケット25に対し図9の矢印 A方向の格納状態へ回転移動させることができる。前記コイルスプリング81は，図9の使用状態を維持するようにヒンジブラケット49をクランプブラケット25に対して回動付勢している。この図9の状態は，前記超音波振動子13が水中に位置する図1の使用状態となっている。【0042】
前記内筒部 79 の根元側には，図9のように外筒部 43 外においてストッパ保合部 95 ， 97が設けられている。ストッパ係合部95は右舷用であり，ストッパ係合部97は左舷用となっている。従って，ヒンジブラケット49は右觟用，左玆用に共用することができ る。
【0043】
本実施形態は，右旆用として用いられているため，前記コイルスプリング81の付勢力に対しストッパ係合部95が前記ストッパピン47に係合して受け止め，前記支持杆9を前記使用状態に対応して位置決める構威となっている。従って，本実箩形態においてストッ バ係合部95，ストッパピン47はストッパ手段を構成している。【0044】
前記内筒部79には，図8のようにロック孔99が設けられている，ロック孔99は，前記支持杆9を前記超音波振動子13が水面上に位置する格納状態としたとき，前記外筒部 43のロック孔48に対向する。この両ロック孔48，99に対し，図4で示すロックピ ン101を差し达むことによって，クランプブラケット25に対しヒンジブラケット49 を格納状態でロックすることができる。この状態で前記支持杆9を前記超音波振動子13 が水面5上に位置する格納状態に対応して位置決めることができ，ロック孔48，99， ロックピン101は本実施形態においてロック手段を構成している。前記ロックピン10 1は，前記ねし軸 35 等に紐 102 で支持されている。 10045】
前記支持杆9は，例えばアルミバイブで形成され，その中間部が前記ヒンジブラケット4 9に支持されている。前記支持杆9の上下には，樹脂キャップ103，105か設けられ ている。
【0046】
前記操作手段15は，操作ノブ107と操作ロッド109とを備えている。あた本実施形態において，前記操作手段15は前記樹脂キャップ103に一体に設けられた操作アーム 111を備えている。【0047】
前記操作ノブ107は，前記操作ロッド109の先端に取り付けられている。操作ロッド 109には，操作ノブ107側においてストッパ113が設けられている。ストッパ11 3は前記澍指キャップ103の端面に当接して操作ロッド109の樹脂キャップ103に対する押し込め移動を位置決める。前記樹脂キャップ103には，固定具115が屬合を れている。固定真115を締め込むことによって，固定長115先端が前記操作ロッド1 09に突き当たり，操作ロッド109を任意の位置で位置决めることができる。【0048】
前記操作ロッド109の他端は，前記尌脂キャップ105を貫通してベルクランク117 の一端に回転自在に結合されている。ベルクランク117は，前記樹脂キャップ105に設けられたブラケット119に回転自在に支持されている。ベルクランク117には，前記超音波振動子13が支持されている。なお，配線17は，前記支持杆9内を通されてい る。【0049】

[^2]【0059】
図14のように，左购用のクランプ7Aでは，ストッパビン47Aか前記区7の右艈用の ストッパピン47に対し180․ずれた反対側に設けられている。またコイルスプリング 81 A は，前記図 11 の右觟用のものに対して係合部 83.85 の位置か逆位置に設定さ れている。これに応じて，クランプ7の外筒部43に形成された係止以部87，ヒンジブ ラケット49の内筒部79に形成された保止穴部89も逆位置に設定されている。
【0060】
このようなクランプ7Aとコイルスプリング81Aを用いた場合には，クランプ7Aによ って支持杆9がボート3の左能に取り付けられることになる。また支持杆 9 の格种位置で は，図2と同椂にボート3の後方馿へ回動させた形態となる。
【0061】
このようにクランプ7，7A，コイルスプリング81，81Aを交換するだけで右战用，左㬵用のい守れにも道用することができ，部品の共用化かな図れ，容易かつ安侕に対応する ことができる。
10062】
また回動手段 11 は，右䗑用，左舷用のいずれかっ方にのみ対応する構造にすることなく ，コイルスプリングのばね力が両方向に作用するように構成し，右左龍両用とすることも可能である。例えば，右㑷用，左觪用のコイルスプリングを一対設け，いずれの方向から も使用状態に付勢なる構造とし，支持杆9の使用状想にあまいて双方のばね力が釣り合うよ らに構成する。これにより右舫用，左玆用のいずれにも対応することができる。この場合 ，ストッパピン47，47Aは不要となる。
〔0063】
なお，超音波振動子13は上下方向にのみ発受信方向を調整可能に構成することもできる －
【0064】
またボート3は小型の船であればモーターボート，クルーザ等にも適用することは可能で ある。
〔0065〕
前記操作手段15は，手動によって操作する搆成としたが，小型モータとラックアンドビ ニオン等を用いることによって駆動することも可能である。
【0066】
上記実施形態では支持杆9をボート3の右觟又は左旜に取り付ける構造としたが，ボート 3の先踹部あるいはは後緌部に取り付けることもできる。
【0067】
図16，図17は，前記クランプ7により支持杆9を，ボート3の後部に取り付けた実施形態を示し，図16は使用状態の平面図，図17は格稞状鳥の平面区である。なお，苗群探知装置1の全体的な構成恃上記実施形態のものと同栐であり，対応する構成には同符号 を付して說明する。
【0068】
本実施形態において，回動手段 11 は，前記クランプ7により前記支持杆 9 等がボート3 の後縁部21Aの右的寄りに取り付けられたとき，回動手段11を境として前記支持杆9 の超音波振動子13側を前記ボート3の中央部隕へ回動変位させるようにしている。回動手段11は，前記クランク゚7により前記支持杆9等が前記ボート3の後縁部21Aの庄能寄りに取り付けられたとまは，図17とは逆の状態に回動することになる。
【0069】
このような回動によって，格約状態において支持杆9の超音波振動子13側がボート3の右能側又は左雄側に大きく笑出することがなく，ボート3を接岸させるような場合におい ても支持杆9の超音波振動子13側か邪䈭になることかか扣制をれ，接岸等を円滑に行うこ とができる。
【0070】

本実施形態では，支持杆9全体をボート3のほぼ幅内に収める形態となつておらり，ボート 3の操作に際して格納状態の支持杆9全体がボート3操作等の障害になることを抑制でき る。
【図面の䉍単な説明】
【図1】本発明の一実施形態に係る魚群探知装置を備えたボートの正面図である。
【図2】一実施形態に係り，支持杆使用状態のボートの右玆則の側面図である。
【図3】一実施形態に係り，支持杆格納状態のボートの平面図である。
【図4】一実施形態に倸り，クランブ及び支持杆周辺の視図である。
【図5】一実施形態に係り，クランプ及び支持杆周辺の側面図である。
【図6】一実施形態に係り，クランプ及び支持杆周辺の平面図である。
【図7】一実施形態に係り，クランプの正面図である。
【図8】一実施形態に係り，回動手段周辺の要部拡大断面図である。
【図9】一実施形態に係り，ヒンジブラケットの正面図である。
【図10】一実施形態に係り，（a）は押さえプレートの圙図，（b）は同正面図であ る。

【図11】一実施形態に傹り，（a）はコイルスプリングの断面図，（b）は同側面図で ある。
【図12】一実施形態に係り，操作状態を示す側面図である。
【図13】一実施形態に係り，操作状態を示す側面図である。
【図14】一実施形態に係り，左舷用のクランプを示す正面図である。
【図15】左脑用のコイルスプリングを示し，（a）は断面図，（b）は側面図である。
【図16】本発明の他の実施形態に係り，支持杆使用状態のボートの平面図である。
【図17】他の実施形態に係り，支持杆格納状態のボートの平面図である。
【符号の説明】
1 魚群探知装置
3 ボート（船）
5 水面
7，7A クランプ
9 支持杆
11 回動手段
13 超音波振動子
15 操作手段
23 端部
47，47A ストッパピン（ストッパ手段）
48， 99 ロック孔（ロック手段）
81，81A コイルスプリング（付鈖手段）
95，97ストッパ係合部（ストッパ手段）
101 ロックピン（ロック手段）

【図1】

［図3］

【図4】

〔（図5〕

【図6】

【図7】

【図10】

【図11】

（b）

（図8）

【図9】

【図12】

（13）

【図14】

【図15】
（2）

（b）

【図16】

【図17】

Electronic Patent Application Fee Transmittal

Application Number:	12460139
	Filing Date:
Title of Invention:	DownsCAN IMAGING SONAR
First Named Inventor/Applicant Name:	Brian T. Maguire
Filer:	Michael D. McCoy/Judy Creel
Attorney Docket Number:	038495/369324

Filed as Large Entity
Utility under 35 USC 111 (a) Filing Fees

Description	Fee Code	Quantity	AmountSub-Total in USD(\$)
Basic Filing:			
Pages:			
Claims:			
Miscellaneous-Filing:			
Petition:			
Patent-Appeals-and-Interference:			
Extension-of-Time:			

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)		
Miscellaneous:						
Request for continued examination	1801	1	930	930		
Total in USD (\$)						$\mathbf{9 3 0}$

Payment information:

	Non Patent Literature		114	135	
Warnings:					
Information:					
4	Fee Worksheet (SB06)	fee-info.pdf	30364	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			6377832		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

United States Patent and Trademark Office

APPLICATION NUMBER
FILING OR 371(C) DATE
12/460,139
07/14/2009
FIRST NAMED APPLICANT
Brian T. Maguire

826
ALSTON \& BIRD LLP
BANK OF AMERICA PLAZA
101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000
Date Mailed: 04/12/2012

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 04/03/2012.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33 .
/ttkim/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PO. Box 1450
Alexandria, Virginia 22313-1450
www:uspto.gov

$$
\begin{array}{|l|c|c|c}
\hline \text { APPLICATION NUMBER } & \text { FLING OR 371(C) DATE } & \text { FIRST NAMED APPLICANT } & \text { ATTY. DOCKET NO./TITLE } \\
\hline
\end{array}
$$

12/460,139 07/14/2009 Brian T. Maguire $\quad 038495 / 369324$
CONFIRMATION NO. 9769
826
POWER OF ATTORNEY NOTICE
ALSTON \& BIRD LLP
BANK OF AMERICA PLAZA
101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000
Date Mailed: 04/12/2012

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 04/03/2012.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).
/ttkim/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

NOTICE OF ALLOWANCE AND FEE(S) DUE

${ }^{826} \quad 7590$ 04/11/2012
BANK OF AMERICA PLAZA
101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000

ART UNIT	PAPER NUMBER
3645	

DATE MAILED: 04/11/2012

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$12 / 460,139$	$07 / 14 / 2009$	Brian T. Maguire	$038495 / 369324$	

TITLE OF INVENTION: DOWNSCAN IMAGING SONAR

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	$\$ 1740$	$\$ 300$	$\$ 0$	$\$ 2040$	$07 / 11 / 2012$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box $5 b$ on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

826
7590
04/11/2012

```
ALSTON \& BIRD LLP
BANK OF AMERICA PLAZA
101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000
```

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

	(Depositor's name)
(Signature)	
(Date)	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.

TITLE OF INVENTION: DOWNSCAN IMAGING SONAR

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1740	\$300	\$0	\$2040	07/11/2012
		ART UNIT	CLASS-SUBCLASS			
HULK	MES R	3645	367-088000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. \square "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively,			

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent): $\square_{\text {Individual }} \square_{\text {Corporation or other private group entity }} \square_{\text {Government }}$

4a. The following fee(s) are submitted:
\square Issue Fee
\square Publication Fee (No small entity discount permitted)
\square Advance Order - \# of Copies \qquad

4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
\square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
\square The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number__(enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
\square a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. \square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR $1.27(\mathrm{~g})(2)$.
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature
Typed or printed name

Date

Registration No.

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450
www.uspto.gov

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b) (application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 299 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 299 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Notice of Allowability

Application No.	Applicant(s)	
$12 / 460,139$	MAGUIRE, BRIAN T.	
Examiner	Art Unit	
JAMES HULKA	3645	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. \boxtimes This communication is responsive to 5 March 2012.
2. \square An election was made by the applicant in response to a restriction requirement set forth during the interview on \qquad ; the restriction requirement and election have been incorporated into this action.
3. \boxtimes The allowed claim(s) is/are 57-84,86,88-125,127-131 and 134.
4. \square \square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)
\square All
b) \square Some*
c) \square
None of the:
5. \square Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \qquad .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad —.
Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
5.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

6. \square CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a) \square including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached
\qquad
1) \square hereto or 2) \square to Paper No./Mail Date _.
(b) \square including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \qquad .
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
7. \square DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. \square Notice of References Cited (PTO-892)
2.Notice of Draftperson's Patent Drawing Review (PTO-948)
2. \boxtimes Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date 20120221
4.Examiner's Comment Regarding Requirement for Deposit of Biological Material
IJ. H./
Examiner, Art Unit 3645
5.Notice of Informal Patent Application
6.Interview Summary (PTO-413), Paper No./Mail Date \qquad .
7.Examiner's Amendment/Comment
8.Examiner's Statement of Reasons for Allowance
9.Other \qquad .
/JACK W KEITH/
Supervisory Patent Examiner, Art Unit 3646

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3662

\checkmark	Rejected
$=$	Allowed
-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3662

\checkmark	Rejected
$=$	Allowed
-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3662

\checkmark	Rejected
$=$	Allowed
-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

\square Claims renumbered in the same order as presented by applicant							\square	CPA	\square	т.D.	\square	R.1.47
CLAIM		DATE										
Final	Original	07/26/2011	09/13/2011	12/08/2011	03/07/2012							
17	73	\div	\checkmark	\checkmark	=							
18	74	\div	\checkmark	\checkmark	=							
19	75	\div	\checkmark	\checkmark	=							
23	76	\div	\checkmark	\checkmark	=							
24	77	\div	\checkmark	\checkmark	$=$							
25	78	\div	\checkmark	\checkmark	=							
26	79	\div	\checkmark	\checkmark	=							
27	80	\div	\checkmark	\checkmark	$=$							
28	81	\div	\checkmark	\checkmark	$=$							
29	82	\div	\checkmark	\checkmark	$=$							
30	83	\div	\checkmark	\checkmark	=							
31	84	\div	\checkmark	\checkmark	=							
	85	\div	\checkmark	-	-							
32	86	\div	\checkmark	\checkmark	=							
	87	\div	\checkmark	-	-							
33	88	\div	\checkmark	\checkmark	$=$							
34	89	\div	\checkmark	\checkmark	$=$							
35	90	\div	\checkmark	\checkmark	=							
36	91	\div	\checkmark	\checkmark	=							
37	92	\div	\checkmark	\checkmark	$=$							
38	93	\div	\checkmark	\checkmark	=							
39	94	\div	\checkmark	\checkmark	$=$							
42	95	\div	\checkmark	\checkmark	=							
40	96	\div	\checkmark	\checkmark	$=$							
41	97	\div	\checkmark	\checkmark	=							
43	98	\div	\checkmark	\checkmark	$=$							
44	99	\div	\checkmark	\checkmark	$=$							
20	100			\checkmark	=							
45	101			\checkmark	$=$							
21	102			\checkmark	$=$							
22	103			\checkmark	=							
46	104			\checkmark	$=$							
47	105			\checkmark	$=$							
48	106			\checkmark	$=$							
49	107			\checkmark	=							
50	108			\checkmark	=							

Index of Claims	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3662

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

N	Non-Elected
I	Interference

A	Appeal
O	Objected

\square	Claims renumbered in the same order as presented by applicant							\square	CPA		\square T.D.	$\square \quad \mathrm{R}$		R.1.47	
Final	Original														
1	57	17	73	34	89	47	105	61	121		137				
2	58	18	74	35	90	48	106	62	122						
3	59	19	75	36	91	49	107	63	123						
4	60	23	76	37	92	50	108	66	124						
5	61	24	77	38	93	51	109	67	125						
6	62	25	78	39	94	52	110		126						
7	63	26	79	42	95	64	111	68	127						
8	64	27	80	40	96	65	112	69	128						
9	65	28	81	41	97	53	113	70	129						
10	66	29	82	43	98	54	114	71	130						
11	67	30	83	44	99	55	115	72	131						
12	68	31	84	20	100	56	116		132						
13	69		85	45	101	57	117		133						
14	70	32	86	21	102	58	118	73	134						
15	71		87	22	103	59	119		135						
16	72	33	88	46	104	60	120		136						

/J.H./ Examiner. Art Unit 3645 (Assistant Examiner)	03/07/2012 (Date)	Total Claims Allowed:73	
/JACK W KEITH/ Supervisory Patent Examiner, Art Unit 3646 (Primary Examiner)	(Date)	O.G. Print Claim(s) 76	O.G. Print Figure 5
U.S. Patent and Trademark Office			

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	1	of	1	Attorney Docket Number	038495/369324

Examiner Signature	James Hulka/	Date Considered	$03 / 27 / 2012$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: MARCH 23, 2012

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	1	of	1	Attorney Docket Number	038495/369324

| Examiner
 Initials* | | | Cite
 No. | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book,
 magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or
 country where published. |
| :--- | :---: | :--- | :--- | :--- | | English
 Language
 Translation
 Attached |
| :---: |

Examiner Signature	James Hulkai	Date Considered	$0307 / 2012$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

EAST Search History

EAST Search History (Interference)

$\begin{aligned} & \text { Ref } \\ & \hline \end{aligned}$	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	0	((linear\$2 or rectang\$4) same ((down\$2 near4 scan\$3) or downscan\$3) same (fan\$5 near6 beam\$2) same sonar same (conic\$3 or circu(\$3)). clm .	USPGPUB; USPAT; UPAD	OR	OFF	3
L2	0	(linear\$2 or rectang\$4) same ((down\$2 near4 scan\$3) or downscan\$3) same (fan\$5 near6 beam\$2) same sonar same transducer\$2).clm.	USPGPUB; USPAT; UPAD	OR	OFF	$\sqrt{2012 / 03 / 07}$

3/7/2012 12:23:48 PM
H: 12 -400 12460139 b.wsp

Search Notes	Application/Control No. 12460139	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.
	Examiner JAMES HULKA	Art Unit 3645

SEARCHED				
Class	Subclass	Date	Examiner	
367	88		$9 / 13 / 2011$	JH

SEARCH NOTES

Search Notes	Date	Examiner
EAST (Keyword and Class Limited)	$9 / 13 / 2011$	JH
PALM (Inventor Name)	$9 / 13 / 2011$	JH
Google (Keyword)	$9 / 13 / 2011$	JH
Consulted Primary Examiner (D. Pihulic)	$4 / 2 / 2012$	JH

INTERFERENCE SEARCH			
Class	Subclass	Date	Examiner
367	Searched Claim Language	$3 / 7 / 2012$	JH

/J.H./	
Examiner.Art Unit 3645	

POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO

I hereby appoint:
Practitioners associated with the Customer Number: \square
OR
$\square \quad$ Practitioners) named below (if more than ten patent practitioners are to be named, then a customer number must be used):
as attorneys) or agents) to represent the undersigned before the United States Patent and Trademark Office (USPTO) and are authorized to act on behalf of the Assignee in connection with any and all patent applications assigned only to the undersigned according to the USPTO assignment records or assignment documents attached to this form in accordance with 37 CFR 3.73(b).

Assignee Name and Address:
NAVICO, INC.
12000 East Skelly Drive
Tulsa, OK 74128-2486

A copy of this form, together with a statement under 37 CFR 3.73(b) (Form PTO/SB/96 or equivalent) is required to be filed in each application in which this form is used. The statement under 37 CFR 3.73(b) may be completed by one of the practitioners appointed in this form if the appointed practitioner is authorized to act on behalf of the assignee, and must identify the application in which this Power of Attorney is to be filed.

SIGNATURE of Assignee of Record
The individual whose signature and title is supplied below is authorized to act on behalf of the assignee

Payment information:

Submitted with	Payment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Assignee showing of ownership per 37 CFR 3.73(b).	Statement369324.pdf	52306	no	1
			6da63a2d0d920f19178de8c4594efc65354 97 d 8 d		
Warnings:					RAY-1002
Information:					261 of

2	Power of Attorney	NavicoPOA.pdf	52885	no	1
			Oa3305a751300e0ffiz237714fa15471cb78 blbo		
Warnings:					
Information:					
		Total Files Size (in	105191		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

In The United States Patent and Trademark Office

In re:	Brian T. Maguire		
Appl No.:	12/460,139	Confirmation No.:	9769
Filed:	July 14, 2009	Group Art Unit:	3645

For: DOWNSCAN IMAGING SONAR

STATEMENT UNDER 37 CFR 3.73(b)
NAVICO, INC. is:

1. \boxtimes the assignee of the entire right, title and interest; or
2. \square an assignee of less than the entire right, title and interest (The extent (by percentage) of its ownership interest is \qquad \%)
in the patent application/patent identified above by virtue of either:
A. \boxtimes An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the Patent and Trademark Office at Reel 023181, Frame 0828, or a true copy of the original assignment is attached.
OR
B. \square A chain of title from the inventor(s) of the patent application/patent identified above, to the current assignee as follows:
3. From: To:

The document was recorded in the Patent and Trademark Office at Reel , Frame , or for which a copy thereof is attached.
2. From: To:

The document was recorded in the Patent and Trademark Office at Reel , Frame , or for which a copy thereof is attached.
\square Additional documents in the chain of title are listed on a supplemental sheet.

As required by 37 CFR 3.73 (b)(1)(i), the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11

The undersigned is empowered to sign this statement on behalf of the assignee.

Michael D. Mocoy, Registration No. 28,098

Correspondence Address is Customer No. 00826 (Alston \& Bird LLP)

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	1	of	1	Attorney Docket Number	038495/369324

$\left.\begin{array}{|l|l|l|l|}\hline \text { Examiner } & & \begin{array}{l}\text { Date } \\ \text { Signature }\end{array} & \\ \text { Considered }\end{array}\right]$
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: MARCH 23, 2012

Electronic Acknowledgement Receipt	
EFS ID:	12375680
Application Number:	12460139
International Application Number:	
Confirmation Number:	9769
Title of Invention:	Downscan imaging sonar
First Named Inventor/Applicant Name:	Brian T. Maguire
Customer Number:	826
Filer:	Michael D. McCoy/Judy Creel
Filer Authorized By:	Michael D. McCoy
Attorney Docket Number:	038495/369324
Receipt Date:	23-MAR-2012
Filing Date:	14-JUL-2009
Time Stamp:	08:53:47
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		369324_IDS.PDF	101147	yes	2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re:	Brian T. Maguire	Confirmation No.:	9769
Appl. No.:	12/460,139	Art Unit:	3662
Filed:	July 14, 2009	Examiner: HULKA, James R.	
For:	DOWNSCAN IMAGING SONAR		

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT

 CITATION UNDER 37 C.F.R. § 1.97Attached is a list of documents on form PTO-1449 along with a copy of any cited foreign patent documents and non-patent literature documents in accordance with 37 CFR § 1.98(a)(2).

It is requested that the Examiner consider these documents and officially make them of record in accordance with the provisions of 37 C.F.R. § 1.97 and Section 609 of the MPEP. By identifying the listed documents, Applicant in no way makes any admission as to the prior art status of the listed documents, but is instead identifying the listed documents for the sake of full disclosure.

Customer No. 00826
ALSTON \& BIRD LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Charlotte Office (704) 444-1000
Fax Charlotte Office (704) 444-1111

ELECTRONICALLY FILED USING THE EFS-WEB ELECTRONIC FILING SYSTEM OF THE UNITED STATES PATENT \& TRADEMARK OFFICE ON MARCH 23, 2012.

Signature of Registered U.S. Patent Practitioner					
Signature	/Donald M. Hill, Jr./	Date (YYYY-MM-DD)	$2012-03-05$		
Name	Donald M. Hill, Jr.	Registration Number	40646		

This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these records.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Electronic Patent Application Fee Transmittal

Application Number:	12460139
Tilitle of Ing Date:-2009	
	Downscan imaging sonar
First Named Inventor/Applicant Name:	Brian T. Maguire
Filer:	Donald Merton Hill/Grace Rippy
Attorney Docket Number:	038495/369324

Filed as Large Entity
Utility under 35 USC 111 (a) Filing Fees

Description	Fee Code	Quantity	Sub-Total in USD(\$)
Basic Filing:			
Pages:			
Claims:			
Miscellaneous-Filing:			
Petition:			
Post-Allowance-and-Post-Issuance:			
RAY-1			

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)		
Miscellaneous:						
Request for continued examination	1801	1	930	930		
Total in USD (\$)						$\mathbf{9 3 0}$

Payment information:

1	Request for Continued Examination (RCE)	369324_RCETransmittal.pdf	697813	no	3
			7 f 3 a 2 d 6 d 33513 d 475 e 64 bdec 35 d 546 e 1072 $9 b 908$		
Warnings:					
Information:					
	Fee Worksheet (SB06)	fee-info.pdf	30035	no	2
			a0f77a22be0731 Oefffeed5f43cbce4b9261 45 ea		
Warnings:					
Information:					
Total Files Size (in bytes)			727848		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

Alexandria, Virginia 22313-1450

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/460,139	07/14/2009	Brian T. Maguire	038495/369324	9769
ALSTON \& BIRD LLP	I P 02/27/2012		EXAMINER	
BANK OF AMERICA PLAZA 101 SOUTH TRYON STREET, SUITE 4000 CHARLOTTE, NC 28280-4000			HULKA, JAMES R	
			ART UNIT	PAPER NUMBER
			3662	
			MAIL DATE	DELIVERY MODE
			02/27/2012	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Advisory Action Before the Filing of an Appeal Brief

Application No.	Applicant(s)
$12 / 460,139$	MAGUIRE, BRIAN T.
Examiner	Art Unit
JAMES HULKA	3662

--The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
 THE REPLY FILED 21 February 2012 FAILS TO PLACE THIS APPLICATION IN CONDITION FOR ALLOWANCE.
 1. \square The reply was filed after a final rejection, but prior to or on the same day as filing a Notice of Appeal. To avoid abandonment of this application, applicant must timely file one of the following replies: (1) an amendment, affidavit, or other evidence, which places the application in condition for allowance; (2) a Notice of Appeal (with appeal fee) in compliance with 37 CFR 41.31 ; or (3) a Request for Continued Examination (RCE) in compliance with 37 CFR 1.114. The reply must be filed within one of the following time

 periods:a)

The period for reply expires \qquad months from the mailing date of the final rejection.
b) The period for reply expires on: (1) the mailing date of this Advisory Action, or (2) the date set forth in the final rejection, whichever is later. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of the final rejection.
Examiner Note: If box 1 is checked, check either box (a) or (b). ONLY CHECK BOX (b) WHEN THE FIRST REPLY WAS FILED WITHIN TWO MONTHS OF THE FINAL REJECTION. See MPEP 706.07(f).
Extensions of time may be obtained under 37 CFR 1.136(a). The date on which the petition under 37 CFR 1.136(a) and the appropriate extension fee have been filed is the date for purposes of determining the period of extension and the corresponding amount of the fee. The appropriate extension fee under 37 CFR 1.17 (a) is calculated from: (1) the expiration date of the shortened statutory period for reply originally set in the final Office action; or (2) as set forth in (b) above, if checked. Any reply received by the Office later than three months after the mailing date of the final rejection, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

NOTICE OF APPEAL

2. \square The Notice of Appeal was filed on \qquad . A brief in compliance with 37 CFR 41.37 must be filed within two months of the date of filing the Notice of Appeal (37 CFR 41.37(a)), or any extension thereof (37CFR 41.37(e)), to avoid dismissal of the appeal. Since a Notice of Appeal has been filed, any reply must be filed within the time period set forth in 37 CFR 41.37(a).

AMENDMENTS

3. \boxtimes The proposed amendment(s) filed after a final rejection, but prior to the date of filing a brief, will not be entered because
(a) \boxtimes They raise new issues that would require further consideration and/or search (see NOTE below);
(b) \square They raise the issue of new matter (see NOTE below);
(c) \square They are not deemed to place the application in better form for appeal by materially reducing or simplifying the issues for appeal; and/or
(d) \square They present additional claims without canceling a corresponding number of finally rejected claims.

NOTE: The claims have been amended to introduce new limitations (images of fan-shaped regions arranged in a progressive order) that require new search for patentability. (See 37 CFR 1.116 and 41.33(a)). The amendments are not in compliance with 37 CFR 1.121. See attached Notice of Non-Compliant Amendment (PTOL-324). Applicant's reply has overcome the following rejection(s): \qquad -
6. \square Newly proposed or amended claim(s) \qquad would be allowable if submitted in a separate, timely filed amendment canceling the non-allowable claim(s).
7. \square For purposes of appeal, the proposed amendment(s): a) \square will not be entered, or b) \square will be entered and an explanation of how the new or amended claims would be rejected is provided below or appended.
The status of the claim(s) is (or will be) as follows:
Claim(s) allowed:
Claim(s) objected to:
Claim(s) rejected: \qquad
Claim(s) withdrawn from consideration: \qquad .

AFFIDAVIT OR OTHER EVIDENCE

8. \square The affidavit or other evidence filed after a final action, but before or on the date of filing a Notice of Appeal will not be entered because applicant failed to provide a showing of good and sufficient reasons why the affidavit or other evidence is necessary and was not earlier presented. See 37 CFR $1.116(\mathrm{e})$.
9. \square The affidavit or other evidence filed after the date of filing a Notice of Appeal, but prior to the date of filing a brief, will not be entered because the affidavit or other evidence failed to overcome all rejections under appeal and/or appellant fails to provide a showing a good and sufficient reasons why it is necessary and was not earlier presented. See 37 CFR 41.33(d)(1).
10. \square The affidavit or other evidence is entered. An explanation of the status of the claims after entry is below or attached.

REQUEST FOR RECONSIDERATION/OTHER
11. \square The request for reconsideration has been considered but does NOT place the application in condition for allowance because:
12. \square Note the attached Information Disclosure Statement(s). (PTO/SB/08) Paper No(s).
13. \square Other: \qquad
/Thomas H. Tarcza/
Supervisory Patent Examiner, Art Unit 3662

[^3]United States Patent and Trademark Office

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/460,139	07/14/2009	Brian T. Maguire	038495/369324	9769
ALSTON \& BIRD LLP	- 02/21/2012		EXAMINER	
BANK OF AMERICA PLAZA 101 SOUTH TRYON STREET, SUITE 4000 CHARLOTTE, NC 28280-4000			HULKA, JAMES R	
			ART UNIT	PAPER NUMBER
			3662	
			MAIL DATE	DELIVERY MODE
			02/21/2012	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Applicant-Initiated Interview Summary	Application No. $12 / 460,139$	Applicant(s) MAGUIRE, BRIAN T	
	Examiner JAMES HULKA	Art Unit 3662	

All participants (applicant, applicant's representative, PTO personnel):
(1) JAMES HULKA.
(2) Aaron Coleman (applicant).

Date of Interview: 16 February 2012.
Type: \square Telephonic \square Video Conference区 Personal [copy given to: \boxtimes applicant
(3) Donald Hill (Reg. No. 40,646).
(4) \qquad -

Exhibit shown or demonstration conducted: \boxtimes Yes
No.
If Yes, brief description: Printed Sonar Images.

Issues Discussed $\square 101 \quad \square 112 \quad \square 102 \quad$ இ103 \square Others
(For each of the checked box(es) above, please describe below the issue and detailed description of the discussion)
Claim(s) discussed: 57,76 and 134.
Identification of prior art discussed: Hamada.

Substance of Interview

(For each issue discussed, provide a detailed description and indicate if agreement was reached. Some topics may include: identification or clarification of a reference or a portion thereof, claim interpretation, proposed amendments, arguments of any applied references etc...)

Representative and applicant discussed teachings of prior art. Examiner clarified interpretation of references discussed in rejection. Possible amendments were discussed. Procedures going forward regarding after-final amendments, advisory actions and filing of RCE were quickly reviewed. No formal agreement was reached.

Applicant recordation instructions: The formal written reply to the last Office action must include the substance of the interview. (See MPEP section 713.04). If a reply to the last Office action has already been filed, applicant is given a non-extendable period of the longer of one month or thirty days from this interview date, or the mailing date of this interview summary form, whichever is later, to file a statement of the substance of the interview

Examiner recordation instructions: Examiners must summarize the substance of any interview of record. A complete and proper recordation of the substance of an interview should include the items listed in MPEP 713.04 for complete and proper recordation including the identification of the general thrust of each argument or issue discussed, a general indication of any other pertinent matters discussed regarding patentability and the general results or outcome of the interview, to include an indication as to whether or not agreement was reached on the issues raised.

Attachment
/JAMES HULKA/
Examiner, Art Unit 3662

Summary of Record of Interview Requirements

Manual of Patent Examining Procedure (MPEP), Section 713.04, Substance of Interview Must be Made of Record
 application whether or not an agreement with the examiner was reached at the interview.

Title 37 Code of Federal Regulations (CFR) § 1.133 Interviews
Paragraph (b)

In every instance where reconsideration is requested in view of an interview with an examiner, a complete written statement of the reasons presented at the interview as

37 CFR $\S 1.2$ Business to be transacted in writing.

All business with the Patent or Trademark Office should be transacted in writing. The personal attendance of applicants or their attorneys or agents at the Patent and
 any alleged oral promise, stipulation, or understanding in relation to which there is disagreement or doubt.

The action of the Patent and Trademark Office cannot be based exclusively on the written record in the Office if that record is itself incomplete through the failure to record the substance of interviews.

It is the responsibility of the applicant or the attorney or agent to make the substance of an interview of record in the application file, unless the examiner indicates he or she will do so. It is the examiner's responsibility to see that such a record is made and to correct material inaccuracies which bear directly on the question of patentability.

Examiners must complete an Interview Summary Form for each interview held where a matter of substance has been discussed during the interview by checking the appropriate boxes and filling in the blanks. Discussions regarding only procedural matters, directed solely to restriction requirements for which interview recordation is otherwise provided for in Section 812.01 of the Manual of Patent Examining Procedure, or pointing out typographical errors or unreadable script in Office actions or the like, are excluded from the interview recordation procedures below. Where the substance of an interview is completely recorded in an Examiners Amendment, no separate Interview Summary Record is required.

The Interview Summary Form shall be given an appropriate Paper No., placed in the right hand portion of the file, and listed on the "Contents" section of the file wrapper. In a personal interview, a duplicate of the Form is given to the applicant (or attorney or agent) at the conclusion of the interview. In the case of a telephone or video-conference interview, the copy is mailed to the applicant's correspondence address either with or prior to the next official communication. If additional correspondence from the examiner is not likely before an allowance or if other circumstances dictate, the Form should be mailed promptly after the interview rather than with the next official communication.

The Form provides for recordation of the following information:

- Application Number (Series Code and Serial Number)
- Name of applicant
- Name of examiner
- Date of interview
- Type of interview (telephonic, video-conference, or personal)
- Name of participant(s) (applicant, attorney or agent, examiner, other PTO personnel, etc.)
- An indication whether or not an exhibit was shown or a demonstration conducted
- An identification of the specific prior art discussed
- An indication whether an agreement was reached and if so, a description of the general nature of the agreement (may be by attachment of a copy of amendments or claims agreed as being allowable). Note: Agreement as to allowability is tentative and does not restrict further action by the examiner to the contrary.
- The signature of the examiner who conducted the interview (if Form is not an attachment to a signed Office action)

It is desirable that the examiner orally remind the applicant of his or her obligation to record the substance of the interview of each case. It should be noted, however, that the Interview Summary Form will not normally be considered a complete and proper recordation of the interview unless it includes, or is supplemented by the applicant or the examiner to include, all of the applicable items required below concerning the substance of the interview.

A complete and proper recordation of the substance of any interview should include at least the following applicable items:

1) A brief description of the nature of any exhibit shown or any demonstration conducted,
2) an identification of the claims discussed,
3) an identification of the specific prior art discussed,
4) an identification of the principal proposed amendments of a substantive nature discussed, unless these are already described on the Interview Summary Form completed by the Examiner,
5) a brief identification of the general thrust of the principal arguments presented to the examiner,
(The identification of arguments need not be lengthy or elaborate. A verbatim or highly detailed description of the arguments is not required. The identification of the arguments is sufficient if the general nature or thrust of the principal arguments made to the examiner can be understood in the context of the application file. Of course, the applicant may desire to emphasize and fully describe those arguments which he or she feels were or might be persuasive to the examiner.)
6) a general indication of any other pertinent matters discussed, and
7) if appropriate, the general results or outcome of the interview unless already described in the Interview Summary Form completed by the examiner.
Examiners are expected to carefully review the applicant's record of the substance of an interview. If the record is not complete and accurate, the examiner will give the applicant an extendable one month time period to correct the record.

Examiner to Check for Accuracy

If the claims are allowable for other reasons of record, the examiner should send a letter setting forth the examiner's version of the statement attributed to him or her. If the record is complete and accurate, the examiner should place the indication, "Interview Record OK" on the paper recording the substance of the interview along with the date and the examiner's initials.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appl. No.:	$12 / 460,139$	Confirmation No.: 9769
Applicant(s):	Hebert et al.	
Filed:	$07 / 14 / 2009$	
Art Unit:	3662	
Examiner:	James R. Hulka	
Title:	DOWNSCAN IMAGING SONAR	

Docket No.: 038495/369324
Customer No.: 00826
Mail Stop AF
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

AMENDMENT AFTER FINAL UNDER 37 C.F.R. § 1.116

Sir:

In response to the final Office Action dated December 20, 2011, please reconsider the above-identified application in light of the following amendments and remarks:

Amendments to the Claims are reflected on the listing of claims that begins on page 2 of this paper.

Remarks begin on page 15 of this paper.

Amendments to the Claims:

1-56. (Canceled)
57. (Currently Amended) Atransducer sonar assembly for imaging an underwater environment beneath a watercraft traveling on a surface of a body of water, the sonar assembly comprising:
a housing mountable to a the watercrafteapable of traversing a surface of a bedy of water; and
a single linear downscan transducer element positioned within the housing, the linear downscan transducer element having a substantially rectangular shape configured to produce a fan-shaped sonar beam having a relatively narrow beamwidth in a direction parallel to a longitudinal length of the linear downscan transducer element and a relatively wide beamwidth in a direction perpendicular to the longitudinal length of the transducer element, the linear downscan transducer element being positioned with the longitudinal length thereof extending in a fore-to-aft direction of the housing;
wherein the linear downscan transducer element is positioned within the housing to project fan-shaped sonar-pulses beams in a direction substantially perpendicular to a plane corresponding to the surface of the body of water, said sonar beams being repeatedly emitted so as to sequentially insonify different fan-shaped regions of the underwater environment as the watercraft travels; and
a sonar signal processor receiving signals representative of sonar returns resulting from each of the fan-shaped sonar beams and processing the signals to produce sonar image data for each fan-shaped region and to create an image of the underwater environment as a composite of images of the fan-shaped regions arranged in a progressive order corresponding to the travel of the watercraft.
58. (Currently Amended) The transducer sonar assembly of claim 57, wherein the linear downscan transducer element is configured to operate at a selected one of at least two selectable operating frequencies.
59. (Currently Amended) The transdueer sonar assembly of claim 57, wherein the selectable operating frequencies include about 455 kHz and 800 kHz .
60. (Currently Amended) The transducer sonar assembly of claim 57, wherein the beamwidth of the linear downscan transducer element is about 0.8 degrees by about 32 degrees or about 1.4 degrees by about 56 degrees.
61. (Currently Amended) The transdueer sonar assembly of claim 57, wherein the linear downscan transducer-assembly element is configured to communicate with a single transceiver.
62. (Currently Amended) The transdueer sonar assembly of claim 57, wherein a length of a rectangular face of the linear downscan transducer element is about 120 mm and a width of the rectangular face of the linear downscan transducer element is about 3 mm .
63. (Previously Presented) The transducer sonar assembly of claim 57, wherein the housing is mountable to the watercraft such that the fan-shaped beam extends from one side of the watercraft to an opposite side of the watercraft.
64. (Currently Amended) The-transducer sonar assembly of claim 57, wherein the housing has a streamlined shape.
65. (Currently Amended) The-transducer sonar assembly of claim 57, wherein the beamwidth in the direction parallel to a longitudinal length of the linear downscan transducer element is less than about five percent as large as the beamwidth of the sonar beam in the direction perpendicular to the longitudinal length of the linear downscan transducer element.
66. (Currently Amended) The transducer sonar assembly of claim 57, wherein the linear downscan transducer element is configured to provide data displayable as sonar data images in which images corresponding to data received via the linear downscan transducer element provide data regarding bottom features over less than fifty percent of a display screen when displayed.
67. (Currently Amended) Thetransdueer sonar assembly of claim 57, wherein the linear downscan transducer element is configured to provide data displayable as sonar data images in which images corresponding to data received via the linear downscan transducer element provide data regarding bottom features over less than twenty percent of a display screen when displayed.
68. (Currently Amended) Thetransdueer sonar assembly of claim 57, wherein the linear downscan transducer element is configured to provide data displayable as sonar data images in which images corresponding to data received via the linear downscan transducer element provide data indicative of bottom depth.
69. (Currently Amended) Thetransdueer sonar assembly of claim 57, wherein the linear downscan transducer element is configured to provide data displayable as sonar data images in which images corresponding to data received via the linear downscan transducer element provide data indicative of water column features.
70. (Currently Amended) The transducer sonar assembly of claim 57, wherein the linear downscan transducer element is configured to provide data displayable as sonar data images indicative of bottom data.
71. (Currently Amended) The transducer sonar assembly of claim 57, wherein the linear downscan transducer element is configured to provide data displayable as sonar data images indicative of two or more of depth data water column data and bottom data.
72. (Currently Amended) The transducer sonar assembly of claim 57, further comprising a circular transducer element positioned to project conical sonar pulses in a direction substantially perpendicular to the plane corresponding to the surface.
73. (Currently Amended) The-transdueer sonar assembly of claim 72, wherein the linear downscan and circular transducer elements are in the same housing.
74. (Currently Amended) The transducer sonar assembly of claim 72, wherein the linear downscan transducer and circular transducer elements are positioned to project fan-shaped and conical sonar beams that at least partially overlap.
75. (Currently Amended) The transdueer sonar assembly of claim 72, wherein the sonar signal returns from the circular transducer element and linear downscan transducer element provide generally simultaneous data.
76. (Currently Amended) A sonar system for imaging an underwater environment beneath a watercraft traveling on a surface of a body of water, the sonar system comprising:
a single linear downscan transducer element positioned within a housing that is mountable to a the watercraft that traverses a surface of a body of water, the linear downscan transducer element having a substantially rectangular shape configured to produce a fan-shaped sonar beam having a relatively narrow beamwidth in a direction parallel to longitudinal length of the linear downscan transducer element and a relatively wide beamwidth in a direction perpendicular to the longitudinal length of the transducer element, the linear downscan transducer element being positioned with the longitudinal length thereof extending in a fore-toaft direction of the housing;
wherein the linear downscan transducer element is positioned to project fan-shaped sonar pulses beams in a direction substantially perpendicular to a plane corresponding to the surface of the body of water, said sonar beams being repeatedly emitted so as to sequentially insonify different fan-shaped regions of the underwater environment as the watercraft travels;
a sonar module configured to enable operable communication with the linear downscan transducer element, the sonar module including:
a sonar signal processor to process sonar return signals, and
at least one transceiver configured to provide communication between the linear downscan transducer element and the sonar signal processor,
the sonar signal processor receiving signals representative of sonar returns resulting from each of the fan-shaped sonar beams and processing the signals to produce sonar image data for each fan-shaped region and to create an image of the underwater environment as a composite of images of the fan-shaped regions arranged in a progressive order corresponding to the travel of the watercraft.
77. (Original) The sonar system of claim 76, wherein the sonar module further comprises an Ethernet hub in communication with the signal processor.
78. (Original) The sonar system of claim 76, wherein the sonar module is provided within a separate housing.
79. (Currently Amended) The sonar system of claim 76, further comprising at least one visual display presenting an the image-representing the processed senar return signats.
80. (Original) The sonar system of claim 79, wherein the display and the sonar module are in the same housing.
81. (Original) The sonar system of claim 79, wherein at least one display of the plurality of displays is enabled to simultaneously provide different images representing different information from the processed sonar return signals.
82. (Original) The sonar system of claim 76, wherein the sonar module further comprises configuration settings defining a predefined set of display images that may be presented.

Appl. No.: 12/460,139
Amdt. dated: 2/21/2012
Reply to Office Action dated 12/20/2011
83. (Currently Amended) The sonar system of claim 76, wherein the linear downscan transducer element is configured to operate at a selected one of at least two selectable operating frequencies.
84. (Original) The sonar system of claim 76, wherein the selectable operating frequencies include about 455 kHz and 800 kHz .
85. (Canceled)
86. (Previously Presented) The sonar system of claim 76, wherein the housing is mountable to the watercraft such that the fan-shaped beam extends from one side of the watercraft to an opposite side of the watercraft.
87. (Canceled)
88. (Currently Amended) The sonar system of claim 76, wherein the sonar signal processor is configured to display images of sonar data in which images corresponding to data received via the linear downscan transducer element provide data regarding bottom features over less than fifty percent of a display screen when displayed.
89. (Currently Amended) The sonar system of claim 76, wherein the sonar signal processor is configured to display images of sonar data corresponding to data received via the linear downscan transducer element representing bottom data.
90. (Currently Amended) The sonar system of claim 76, wherein the sonar signal processor is configured to display images of sonar data corresponding to data received via the linear downscan transducer element representing water column data.
91. (Currently Amended) The sonar system of claim 76, wherein the sonar signal processor is configured to display images of sonar data corresponding to data received via the linear downscan transducer element representing depth data.
92. (Currently Amended) The sonar system of claim 76, wherein the sonar signal processor is configured to display images of sonar data corresponding to data received via the linear downscan transducer element representing two or more of depth data, water column data and bottom data.
93. (Currently Amended) The sonar system of claim 76, wherein the sonar signal processor is configured to display images of sonar data corresponding to data received via the linear downscan transducer element representing data vertically below the linear transducer element.
94. (Original) The sonar system of claim 76, further comprising a circular transducer element producing a conical downscan beam.
95. (Original) The sonar system of claim 76, further comprising a circular transducer element producing a conical downscan beam from within the housing.
96. (Currently Amended) The sonar system of claim 94, wherein the fan-shaped sonar pulses beams from the linear downscan transducer element and the sonar pulses from the circular transducer element insonify areas of the bottom that at least partially overlap.
97. (Currently Amended) The sonar system of claim 94, wherein the sonar signal returns from the circular transducer element and linear downscan downscan element provide generally simultaneous data.

Appl. No.: 12/460,139
Amdt. dated: 2/21/2012
Reply to Office Action dated 12/20/2011
98. (Original) The sonar system of claim 76, further comprising sources of data from at least one of the group of radar, GPS, digital mapping, time and temperature.
99. (Original) The sonar system of claim 98, wherein a display format for display of the data is in a user selectable format.
100. (Currently Amended) The sonar assembly of claim 57, wherein the linear downscan transducer element is configured to emit fan-shaped sonar-pulses beams as well to receive echo returns and convert sound energy of the echo returns into electrical signals.
101. (Currently Amended) The sonar system of claim 76, wherein the linear downscan transducer element is configured to emit fan-shaped sonar-pulses beams as well to receive echo returns and convert sound energy of the echo returns into electrical signals.
102. (Previously Presented) The sonar assembly of claim 57, wherein the housing is mounted to the watercraft.
103. (Currently Amended) The sonar assembly of claim 57, wherein the linear downscan transducer element is configured to produce a generally planar fan-shaped beam.
104. (Previously Presented) The sonar system of claim 76, further comprising a display in communication with the sonar module.
105. (Previously Presented) The sonar system of claim 104, wherein the sonar module and display communicate with each other via a network.
106. (Previously Presented) The sonar system of claim 104, further comprising at least one additional display in communication with the sonar module.

Appl. No.: 12/460,139
Amdt. dated: 2/21/2012
Reply to Office Action dated 12/20/2011
107. (Previously Presented) The sonar system of claim 104, further comprising a user interface in communication with the sonar module and configured to receive an input from a user.
108. (Previously Presented) The sonar system of claim 107, wherein the display, the sonar signal processor, and the user interface are all contained in a single housing.
109. (Previously Presented) The sonar system of claim 107, wherein the user interface is part of the display.
110. (Currently Amended) The sonar system of claim 104, wherein the linear downscan transducer element, the transceiver, and the display respectively comprise at least two separate modules.
111. (Currently Amended) The sonar system of claim 76, wherein the housing containing the linear downscan transducer element is mounted to the watercraft.
112. (Currently Amended) The sonar system of claim 76, wherein the housing containing the linear downscan transducer element is mounted on an intermediate structure that in turn is mounted to the watercraft.
113. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to implement signal processing or enhancement to improve display characteristics.
114. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to process GPS information.
115. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to process waypoint designations.
116. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to process time data.
117. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to process temperature data.
118. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to implement a notice or alarm regarding depth.
119. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to implement a notice or alarm regarding presence of fish.
120. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to implement a notice or alarm regarding proximity of other watercraft.
121. (Previously Presented) The sonar system of claim 104, wherein the processor, in combination with a memory, stores incoming transducer data or screen images for future playback or transfer.
122. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to perform additional processing to implement zoom.
123. (Previously Presented) The sonar system of claim 104, wherein the sonar signal processor is further configured to perform additional processing to correlate sonar data to a GPS position.
124. (Currently Amended) The sonar system of claim 76, wherein the housing containing the linear downscan transducer element has a streamlined profile.
125. (Currently Amended) The sonar system of claim 76, wherein the housing containing the linear downscan transducer element is mounted on an accessory on the watercraft enabling the fan-shaped beam to assume various orientations with respect to the watercraft.
126. (Withdrawn, Currently Amended) The sonar system of claim 76, further comprising a linear side scan transducer element positioned and configured to produce a fan-shaped beam
aimed downwardly and outwardly to one side of the watercraft, wherein dimensions and operating frequencies of the linear downscan transducer element and the linear side scan transducer element are selected to minimize or eliminate any gap between the respective fanshaped beams.
127. (Previously Presented) The sonar system of claim 76, further comprising a display in communication with the sonar module, and wherein the system is configured to indicate a position of the watercraft on the display.
128. (Previously Presented) The sonar system of claim 76, further comprising a display in communication with the sonar module, and wherein the system is configured to indicate water depth on the display.
129. (Previously Presented) The sonar system of claim 76, further comprising a second transducer positioned and configured to produce a conical sonar beam directed downwardly from the watercraft, wherein the system further includes a display in communication with the sonar module, and wherein the system is configured to indicate on the display an intensity of a return echo received from the conical sonar beam.
130. (Currently Amended) The sonar system of claim 129, wherein the linear downscan transducer element and the second transducer are both contained in the housing.
131. (Currently Amended) The sonar system of claim 129, wherein the linear downscan transducer element and the second transducer operate at different respective frequencies.
132. (Withdrawn, Currently Amended) The sonar system of claim 76, further comprising a linear side scan transducer element positioned and configured to produce a fan-shaped beam aimed downwardly and outwardly to one side of the watercraft, wherein the linear downscan transducer element and the linear side scan transducer element are both contained in the housing.
133. (Withdrawn, Currently Amended) The sonar system of claim 132, further comprising a second linear side scan transducer element positioned and configured to produce a
fan-shaped beam aimed downwardly and outwardly to an opposite side of the watercraft, wherein the linear downscan transducer element and the linear side scan transducer elements are all contained in the housing.
134. (Currently Amended) A sonar imaging apparatus comprising:
a housing mountable to a watercraft that traverses a surface of a body of water, the watercraft defining a center plane that extends from fore to aft and that is perpendicular to the surface of the body of water; and
a linear transducer element positioned within the housing, the linear transducer element being configured to produce a fan-shaped sonar beam having a longitudinal beamwidth in a direction parallel to a longitudinal length of the linear transducer element that is significantly less than a transverse beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer element;
wherein the housing is configured for mounting to the watercraft such that the longitudinal length of the linear transducer element is parallel to said center plane, and
wherein the transverse beamwidth of the sonar beam is sufficiently wide in relation to a direction in which the linear transducer element is aimed such that the transverse beamwidth spans from a port side of said center plane to a starboard side of said center plane, said fanshaped sonar beam being repeatedly emitted so as to sequentially insonify different fan-shaped regions of an underwater environment beneath the watercraft as the watercraft travels across the surface of the water; and
a sonar signal processor receiving signals representative of sonar returns resulting from each of the fan-shaped sonar beams and processing the signals to produce sonar image data for each fan-shaped region and to create an image of the underwater environment as a composite of images of the fan-shaped regions arranged in a progressive order corresponding to the travel of the watercraft.
135. (Withdrawn) The sonar imaging apparatus of claim 134, further comprising:

Appl. No.: 12/460,139
Amdt. dated: 2/21/2012
Reply to Office Action dated 12/20/2011
a second linear transducer element positioned within the housing, the second linear transducer element being configured to produce a second sonar beam having a longitudinal beamwidth in a direction parallel to a longitudinal length of the second linear transducer element that is significantly less than a transverse beamwidth of the second sonar beam in a direction perpendicular to the longitudinal length of the second linear transducer element.
136. (Withdrawn) The sonar imaging apparatus of claim 135, wherein the housing is configured for mounting to the watercraft such that the longitudinal length of the second linear transducer element is parallel to said center plane, and wherein the second linear transducer element is arranged such that the second sonar beam extends primarily in a direction different from the sonar beam of the first linear transducer element.
137. (Withdrawn) The sonar imaging apparatus of claim 136, wherein the transverse beam width of the second sonar beam spans generally to a port side or a starboard side of said center plane.

REMARKS

Claims 57-84, 86, and 88-125, 127-131, and 134 are pending in the present application. Claims 126, 132-133, and 135-137 have been withdrawn from consideration by the Examiner.

In the Office Action, Claims 57, 60-61, 63, 65, 68-71, 76, 78-80, 86, 89-93, 100-104, 107-108, 110-113, 119, 121, 125, 127-128, and 134 were rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 5,805,528 to Hamada ("Hamada") in view of Imagenex Sonar Theory and Applications - Model 855 ("Imagenex"). Claim 62 was rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada and Imagenex, in further view of U.S. Patent $5,850,372$ to Blue and U.S. Patent 4,774,837 to Bird. Claims 64, 77, 105, and 124 were rejected as unpatentable over Hamada and Imagenex, in further view of U.S. Patent 7,542,376 to Thompson. Claims $58,66-67,81,83$, and 88 were rejected as unpatentable over Hamada and Imagenex, in further view of U.S. Patent Application Publication 2007/0025183 to Zimmerman. Claims 98-99, 106, 109, 114-118, 120, and 122-123 were rejected as unpatentable over Hamada and Imagenex, in further view of Matrix 97 GPS Trackplotter - Operations Manual. Claims 59 and 84 were rejected as unpatentable over Hamada and Imagenex, in further view of U.S. Patent 4,538,249 to Richard and U.S. Patent 5,184,330 to Adams. Claim 82 was rejected as unpatentable over Hamada and Imagenex, in further view of U.S. Patent 5,142,502 to Thompson. Claims $72,75,94,97,129-131$ were rejected as unpatentable over Hamada and Imagenex, in further view of U.S. Patent Application Publication 2006/0023570 to Betts. Claims 73-74 and 95-96 were rejected as unpatentable over Hamada and Imagenex, in further view of U.S. Patent 5,991,239 to Fatemi-Booshehri.

Information Disclosure Statement

The Office Action noted that the previously filed information disclosure statement is being considered by the Examiner. However, the Office Action also stated that "due to the excessive number of references, they have only been given a cursory review to gather relevance to the claimed inventions." Applicant requests that these references be given full review and consideration for proper placement on the record.

Election of Claims

In addition to withdrawing Claims 126, 132-133, and 135-137 from consideration, the Office Action also required election between two species. Species I encompasses a downscan linear transducer element with or without an optional conical downscan transducer element. Species II encompasses a downscan linear transducer element with an additional linear side scan transducer element. The Office Action indicated that Claims 57-84, 86, and 88-99 are generic to both species. Additionally, the Office Action indicated that Applicant constructively elected an invention that does not include a side scan transducer element. Thus, it appears that the Office Action takes the position that Species I has been constructively elected. In any event, Applicant hereby elects Species I for examination. The claims that read, either generically or specifically, on Species I are: Claims 57-84, 86, 88-125, 127-131, and 134.

Summary of Interview

Applicant thanks the Examiner for his courtesy in conducting a personal interview on February 16, 2012, with the undersigned as well as Aaron Coleman, Applicant's employee. In the interview, the Examiner explained his interpretation of the claims and the cited references. Applicant's representatives explained the differences between the claimed invention and the references, particularly with respect to Hamada's failure to teach any linear downscan transducer element producing a fan-shaped sonar beam, as further elaborated on below. A number of possible claim amendments were discussed, but no formal agreement was reached.

Summary of Claim Amendments

Applicant has amended each of independent Claims 57, 76, and 134 in generally similar fashion. Specifically, these claims now recite that the fan-shaped sonar beams are repeatedly emitted so as to sequentially insonify different fan-shaped regions of the underwater environment beneath the watercraft as the watercraft travels. The claims now further include a sonar signal processor to process sonar return signals, the sonar signal processor receiving the sonar return signals representative of each of the fan-shaped sonar beams and processing the signals to
produce sonar image data for each fan-shaped region and to create an image of the underwater environment as a composite of images of the fan-shaped regions arranged in a progressive order corresponding to the travel of the watercraft. Support for these amendments is provided in the application as filed (see, e.g., Figures 5 and 12B-12F, paragraphs 0051-0056, and paragraph 0068), such that no new matter has been added.

Claims 57 and 76 additionally have been amended, for clarity, to refer to a linear downscan transducer element (to distinguish from a linear side scan transducer element, for example), and to recite that there is a single such linear downscan transducer element (to distinguish over an array-type transducer having multiple elements arranged in some type of array for use in phased-array beam steering). Support for this amendment is present throughout the application as filed, such that no new matter has been added. It will be understood, of course, that the recitation of a "single linear downscan transducer element" does not require the single element to be a monolithic structure formed of a single crystal of material. It is well known in the transducer field that a plurality of such crystals can be arranged (e.g., end-to-end) and can be electrically connected to circuitry such that the plurality of crystals act together as if they were a single crystal or element. Claims 57 and 76 encompass any "single downscan transducer element" (whether monolithic or not) as distinct from a multi-element phased array-type transducer.

Response to Rejections under 35 U.S.C. 103(a)

Claims 57, 60-61, 63, 65, 68-71, 76, 78-80, 86, 89-93, 100-104, 107-108, 110-113, 119, $121,125,127-128$, and 134 were rejected under 35 U.S.C. §103(a) as being unpatentable over Hamada in view of Imagenex.

The present application currently includes independent Claims 57 and 76 directed to a transducer assembly and sonar system, respectively. Independent Claim 57 currently recites:
57. A sonar assembly for imaging an underwater environment beneath a watercraft traveling on a surface of a body of water, the sonar assembly comprising:
a housing mountable to the watercraft;
a single linear downscan transducer element positioned within the housing, the linear downscan transducer element having a substantially rectangular shape configured to produce a fan-shaped sonar beam having a relatively narrow beamwidth in a direction parallel to a longitudinal length of the linear downscan transducer element and a relatively wide beamwidth in a direction perpendicular to the longitudinal length of the transducer element, the linear downscan transducer element being positioned with the longitudinal length thereof extending in a fore-to-aft direction of the housing;
wherein the linear downscan transducer element is positioned within the housing to project fan-shaped sonar beams in a direction substantially perpendicular to a plane corresponding to the surface of the body of water, said fan-shaped sonar beams being repeatedly emitted so as to sequentially insonify different fan-shaped regions of the underwater environment as the watercraft travels; and
a sonar signal processor receiving signals representative of sonar returns resulting from each of the fan-shaped sonar beams and processing the signals to produce sonar image data for each fan-shaped region and to create an image of the underwater environment as a composite of images of the fan-shaped regions arranged in a progressive order corresponding to the travel of the watercraft.

Independent Claim 76 includes similar recitations in the context of a sonar system.
With regard to independent Claims 57 and 76 as examined, the final Office Action asserted that Hamada and Imagenex render the claimed invention unpatentable. The Office Action asserted that.Hamada teaches a transducer assembly with a linear transducer element configured to produce a fan-shaped beam in a direction substantially perpendicular to a plane corresponding to the surface. The Office Action referred to the Abstract, FIGS. 9 and 10, and col. 8, lines 10-20 of Hamada as support for this assertion. Additionally, the Office Action asserted that Imagenex teaches a linear transducer element being positioned with the longitudinal length extending in a fore-to-aft direction of a housing. Finally, the Office Action asserted that it
would have been obvious to position the transducer assembly taught by Hamada in the fore-to-aft direction, as allegedly taught by Imagenex.

Applicant respectfully disagrees with the rejections. Applicant submits that an erroneous interpretation of Hamada has led to the conclusion that Hamada teaches "a linear transducer element...having a rectangular shape configured to produce a fan-shaped sonar beam" and positioned to project these fan-shaped sonar beams "in a direction substantially perpendicular to a plane corresponding to the surface of the body of water" as recited by independent Claim 57. The Final Office Action pointed to the Abstract, FIGS. 9 and 10, and col. 8, lines 10-20 of Hamada and alleged, in relevant part, that Hamada teaches a linear transducer element configured to project a fan-shaped beam in a direction perpendicular to the surface of the water (e.g., a linear downscan transducer element). When Hamada is evaluated for all of what it teaches, however, it becomes apparent that no "linear transducer element" producing a "fanshaped sonar beam" is taught or suggested.

Applicant particularly notes that the Office Action's reliance on FIGS. 9 and 10 is misplaced, and an incorrect conclusion has been drawn based primarily on those two figures. Hamada discloses an underwater detection system with the purpose of mapping the bottom sea floor in a circle underneath the boat (shown in FIGS. 9-11). Hamada describes that a transducer in the form of a multi-element array (see FIGS. 18-19) is used in connection with the conceptual drawing of FIG. 9. The transducer $\mathbf{1}$ consists of multiple transducer elements 1A arranged in a linear array. Hamada's transducer transmits sonar pulses in a "wide area" underneath the boat (col. 7, lines 46-50). Hamada's apparatus then uses a phase-shifting beam forming technique to receive the sonar returns (see, e.g., the arrow directly below the boat in FIG. 9) from a "narrow" area (col. 8, lines 16-19). Clearly the "wide" area into which the sonar pulse is transmitted must be different from the "narrow" area scanned by the receiver, or else Hamada would not have used the term "wide" to describe the transmission, while describing the fan-like area as "narrow."

It is important to recognize the difference between a transmitted (or produced) sonar beam, and a so-called "receiving beam". In particular, Hamada states that "the transducer 1 transmits ultrasonic waves into a wide area" and then "the receiving beam is caused to scan a fan-like area passing through a vertical line extended exactly downward from the ship Q" (col. 7, lines 47-50). Thus, transmission of the wide-area sonar pulses in Hamada is not from a "linear transducer element" producing a "fan-shaped beam" in a "direction substantially perpendicular to a plane corresponding to the surface of the body of water" as recited in the present claims.

While FIG. 9 appears to show a "fan-shaped" insonified area S1 below the boat, this area is conceptual in nature and misleading. In particular, Hamada describes that a "receiving beam is steered in the direction of the array of transducer elements (arrow A in FIG. 9) to scan a narrow strip of bottom area S1 beneath the ship" (col. 3, lines 3-6, italics added). Additionally, with reference to FIGS. 18 and 19, Hamada states that "[w]hen receiving echo signals, adjacent transducer elements 1 A of the array are successively given constant time delays or phase differences so that received signal phases of the individual transducer elements 1 A align each other with regard to echoes from a particular direction. This means that the transducer 1 as a whole forms a receiving beam pointing in that particular direction." See col. 6, lines 25-33. Therefore, Hamada requires the use of multiple transducer elements that are physically distributed in an array, as distinct from a single linear transducer element. Moreover, only by imposing time delays or phase differences is the receiving beam of Hamada steered or scanned underneath the boat to capture sonar data.

Thus, the "receiving beam" of Hamada represents the window that is "listened to" by the multi-element transducer array as it receives sonar returns from the "wide area" insonified by the transmitted sonar pulse. This "receiving beam" (like a lighthouse beam) is steered or scanned in a line from one side of the boat to the other side, thus covering one narrow strip per sweep. It is then necessary for Hamada's transducer to transmit another "wide area" pulse, but this time the "receiving beam" is incrementally rotated a small amount (by mechanically rotating the transducer array) relative to the previous receiving beam. Ultimately, by repeating this process, the full circular area underneath the boat is covered, as shown for example in FIG. 11. Note that
the locations sea floor objects/features, with respect to port and starboard sides of the boat, are indicated.

In contrast, a linear downscan transducer element as used in Applicant's claimed invention produces a narrow, single transmission of a non-steered fan-shaped beam. The sonar returns based on the fan-shaped beam are received in a single receipt, which provides the sonar data for the narrow fan-shaped region. These sonar returns, while they provide rather highquality detail of a narrow strip extending transversely with respect to the boat, are not able to distinguish between port and starboard sides in terms of location of an object.

It can thus be seen that Hamada describes a complex phased-array sonar device and process employing a multi-element array and requiring electronic beam steering of a receiving beam. Only wide-area sonar pulses are employed. In contrast, Applicant's claimed invention uses a single linear transducer element to produce a single-transmission fan-shaped beam directed beneath the boat, and sonar returns from the narrow region insonified by the fan-shaped beam are received with no phased-array beam steering required.

Applicant believes the above detailed explanation brings to light the many differences between the multi-element phased array insonifying a wide area as disclosed in Hamada, and the claimed linear transducer element producing a fan-shaped beam in a direction substantially perpendicular to the plane of the surface of the water. Neither Hamada nor any other reference of record in this application discloses a linear transducer element that directs a fan-shaped sonar beam downwardly as set forth in Claim 57.

Additionally, Applicant submits that Imagenex fails to remedy the deficiency of Hamada. In particular, Imagenex likewise fails to teach or suggest "a linear transducer element...configured to produce a fan-shaped sonar beam...in a direction substantially perpendicular to a plane corresponding to the surface of the body of water" as recited by independent Claim 57. FIG. 1 of Imagenex shows a transducer element emitting a fan-shaped beam to the side, not substantially perpendicular to the plane of the water surface. Thus, this element does not insonify an area beneath the boat.

Therefore, neither Hamada nor Imagenex, whether taken alone or in combination, teaches or suggests "a linear transducer element...configured to produce a fan-shaped sonar beam...in a direction substantially perpendicular to a plane corresponding to the surface of the body of water," as recited by independent Claim 57. Independent Claim 76 includes similar recitations, as does independent Claim 134. As such, Applicant submits that for at least the above-noted reasons, independent Claims 57, 76, and 134 are patentable over the cited references.

Moreover, these independent claims have been amended to recite that the fan-shaped sonar beams are repeatedly emitted so as to sequentially insonify different fan-shaped regions of the underwater environment as the watercraft travels, and a sonar signal processor receives signals representative of sonar returns resulting from each of the fan-shaped sonar beams and processes the signals to produce sonar image data for each fan-shaped region and to create an image of the underwater environment as a composite of images of the fan-shaped regions arranged in a progressive order corresponding to the travel of the watercraft. There is no suggestion in Hamada of creating such an image. Imagenex also fails to suggest creating such an image from linear downscan sonar data.

For at least the above-noted reasons, Claims 57,76, and 134 are patentable over the cited references.

The claims dependent on these independent claims are patentable at least because they include all of the features of their respective independent claim, and further because the cited references fail to teach or suggest the combination of such features with the additional limitations recited in each of the dependent claims.

As such, all pending claims (including the withdrawn claims, and those claims that read specifically on non-elected Species II) are patentable.

Appl. No.: 12/460,139
Amdt. dated: 2/21/2012
Reply to Office Action dated 12/20/2011

CONCLUSION

Based on the above amendments and remarks, it is respectfully submitted that all pending claims are patentable and the application is in condition for allowance.

It is not believed that extensions of time or fees for net addition of claims are required, beyond those that may otherwise be provided for in documents accompanying this paper.
However, in the event that additional extensions of time are necessary to allow consideration of this paper, such extensions are hereby petitioned under 37 CFR § 1.136(a), and any fee required therefor (including fees for net addition of claims) is hereby authorized to be charged to Deposit Account No. 16-0605.

ALSTON \& BIRD LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Charlotte Office (704) 444-1000

ELECTRONICALLY FILED USING THE EFS-WEB ELECTRONIC FILING SYSTEM OF THE UNITED STATES PATENT \& TRADEMARK OFFICE ON February 21, 2012.

Payment information:

Submitted with	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		$\begin{aligned} & \text { 369324_AmendAfterFinal0221 } \\ & \text { 2012.pdf } \end{aligned}$		yes	23

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	1	of	1	Attorney Docket Number	038495/369324

OTHER DOCUMENTS			
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	English Language Translation Attached
	267	BALLANTYNE, J.; "Find and Catch More Fish, Quickly and Easily, with the FISHIN" BUDDY 2255"; [Online]; [Retrieved on 12-7-2011]; Retrieved from the Internet URL:http://www.articleslash.net/Recreation-and-Sports/Fishing/67018_Find-and-Catch-More-Fish-Quickly-and-Easily-with-the-FISHIN-BUDDY-2255.html; 4 pages	
	268	Deep Vision Side Scan Sonar Systems; [Online]; [Retrieved on 12-2-2011]; Retrieved from the Internet URL:http://www.deepvision.se/products.htm; 5 pages	
	269	Fishin' Buddy 4200 ${ }^{\text {m }}$ Operations Manual; Dated 12/21/2005; 16 pages	
	270	Fishing Tool Reviews - Bottom Line Fishin Buddy 1200 Fishfinder; [Online]; [Retrieved on 12-7-2011]; Retrieved from the Internet URL:http://www.tackletour.com/reviewbottomline1200.html; 4 pages	
	271	HUMMINBIRD 100 Series $^{\text {TM }}$ Fishin' Buddy $(\mathbb{B} ; 110,120,130$ and 140c Product Manual; © 2007; 2 pages	
	272	Sidefinder - Reviews \& Brand Information - Techsonic Industries, Inc.; [Online]; [Retrieved on 12-7-2011]; Retrieved from the Internet <URL: http://www.trademarkia.com/sidefinder74113182.html>; 4 pages	
	273	Trademark Electronic Search System (TESS); Word Mark: Sidefinder; [Online]; [Retrieved on 12-7-2011]; Retrieved from the Internet <URL: http://tess2.uspto.gov/bin/showfield?f=doc\&state=4009:qi4jkj.2.1>; 2 pages	

Examiner		Date	
Signature		Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		369324_IDS.PDF	142330	yes	3

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

$\begin{array}{lll}\text { In re: } & \text { Brian T. Maguire } & \text { Confirmation No.: } 9769 \\ \text { Appl. No.: } & 12 / 460,139 & \text { Art Unit: } \\ \text { Filed: } & \text { July 14, 2009 } & \text { Examiner: HULKA, James R. } \\ \text { For: } & \text { DOWNSCAN IMAGING } & \\ & \text { SONAR } & \end{array}$

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT CITATION UNDER 37 C.F.R. § 1.97

Attached is a list of documents on form PTO-1449 along with a copy of any cited foreign patent documents and non-patent literature document in accordance with 37 CFR 1.98(a)(2). Also enclosed is a translation or a concise explanation of each nonEnglish language document.

It is requested that the Examiner consider these documents and officially make them of record in accordance with the provisions of 37 C.F.R. $\S 1.97$ and Section 609 of the MPEP. By identifying the listed documents, Applicant in no way makes any admission as to the prior art status of the listed documents, but is instead identifying the listed documents for the sake of full disclosure.

This Information Disclosure Statement is submitted in accordance with 37 C.F.R. § 1.97(c), before final Office Action or Allowance, whichever is earlier.

In re: Brian T. Maguire
Appl. No.: 12/460,139
Filed: July 14, 2009

In accordance with the requirements of 37 C.F.R. § 1.97(c), the following statement as specified in 37 C.F.R. § 1.97(e) is made:

No item of information contained in this statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing this document after making reasonable inquiry, no item of information contained in this statement was known to any individual designated in 37 C.F.R. § 1.56(c) more than three (3) months prior to the filing of this information disclosure statement.

Donald M. Hill, Jr.
Registration No. 40,646

Customer No. 00826

ALSTON \& BIRD LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Charlotte Office (704) 444-1000
Fax Charlotte Office (704) 444-1111

ELECTRONICALLY FILED USING THE EFS-WEB ELECTRONIC FILING SYSTEM OF THE UNITED STATES PATENT \& TRADEMARK OFFICE ON FEBRUARY 21, 2012.

PATENT APPLICATION FEE DETERMINATION RECORD Substitute for Form PTO-875			Application or Docket Number$12 / 460,139$		$\begin{gathered} \text { Filing Date } \\ 07 / 14 / 2009 \end{gathered}$		To be Mailed
APPLI	ION AS FILED - (Column 1)	(Column 2)	SMALL	ITY	OR		THAN NTITY
FOR	NUMBER FILED	NUMBER EXTRA	RATE (\$)	FEE (\$)	OR	RATE (\$)	FEE (\$)
BASIC FEE (37 CFR $1.16(\mathrm{a})$, (b), or (c))	N/A	N/A	N/A			N/A	
SEARCH FEE (37 CFR $1.16(\mathrm{k})$, (i , or (m))	N/A	N/A	N/A			N/A	
EXAMINATION FEE (37 CFR $1.16(\mathrm{o})$, (p), or (q))	N/A	N/A	N/A			N/A	
TOTAL CLAIMS (37 CFR 1.16(i))	minus 2		X \$ =			X \$ =	
INDEPENDENT CLAIMS (37 CFR 1.16(h))	minus		X \$ =			X \$ =	
APPLICATION SIZE FEE (37 CFR 1.16(s))	If the specification sheets of paper, is $\$ 250$ ($\$ 125$ for additional 50 she 35 U.S.C. 41 (a) (1)	rawings exceed 100 cation size fee due tity) for each ction thereof. See 37 CFR 1.16(s).					
MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR 1.16 (j))							
* If the difference in column 1 is less than zero, enter " 0 " in column 2.			TOTAL			TOTAL	

APPLICATION AS AMENDED - PART II

		(Column 1)		(Column 2)	(Column 3)	SMAL	ENTITY	OR	$\begin{aligned} & \text { OTH } \\ & \text { SM } \end{aligned}$	THAN ENTITY
$\stackrel{\llcorner }{\sum}$$\sum$$\sum$$\sum$$\sum$$\vdots$	02/21/2012	CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NUMBER PREVIOUSLY PAID FOR	$\begin{aligned} & \text { PRESENT } \\ & \text { EXTRA } \end{aligned}$	RATE (\$)	ADDITIONAL FEE (\$)		RATE (\$)	ADDITIONAL FEE (\$)
	Total (37 CFR	* 79	Minus	** 99	$=0$	x \$ $=$		OR	x $\$ 60=$	0
	Independent (37 CFR 1.16(h))	* 3	Minus	***4	$=0$	人 \$ =		OR	X \$250=	0
	Application Size Fee (37 CFR 1.16(s))									
	\square FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16 (jj)							OR		
	(Column 1)			(Column 2)	(Column 3)	$\begin{aligned} & \text { TOTAL } \\ & \text { ADD'L } \\ & \text { FEE } \end{aligned}$		OR	$\begin{aligned} & \text { TOTAL } \\ & \text { ADD'L } \\ & \text { FEE } \end{aligned}$	0
		CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NUMBER PREVIOUSLY PAID FOR	PRESENT EXTRA	RATE (\$)	ADDITIONAL FEE (\$)	OR or OR	RATE (\$)	ADDITIONAL FEE (\$)
	$\begin{array}{\|l\|l\|} \hline \text { Total (37 CFR } \\ 1.16(j)) \end{array}$	*	Minus	**	=	x \$ $=$			$x \$=$	
	$\begin{aligned} & \text { Independent } \\ & \text { (37 CFR } 1.16(\mathrm{~h})) \end{aligned}$	*	Minus	***	$=$	X \$ =			< \$ =	
	\square Application Size Fee (37 CFR 1.16(s))									
	\square FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16 (j))									
* If the entry in column 1 is less than the entry in column 2, write " 0 " in column 3. ** If the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter " 20 ". *** If the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter " 3 ". The "Highest Number Previously Paid For" (Total or Independent) is the highest number fo						$\begin{aligned} & \text { TOTAL } \\ & \text { ADD'L } \\ & \text { FEE } \end{aligned}$		OR	$\begin{aligned} & \text { TOTAL } \\ & \text { ADD'L } \\ & \text { FEE } \end{aligned}$	
						Legal Instrument Examiner: /ERIC DANTZLER/ in the appropriate box in column 1.				

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Applicant Initiated Interview Request Form

Application No.: 12/460,139
Examiner: James R. Hulks

First Named Applicant: Maguire Art Unit: 3662

(2) Donald M. Hill. Jr.
(4)

February 16, $2012 \quad$ Proposed Time: 1:00 PM_(AM/PM)
\qquad

Type of Interview Requested;

(3) I I Video Conference
(1) $\mid\rceil$ Telephonic
(2) $\Gamma+]$ Personal

Exhibit To Be Shown or Demonstrated: [] YES
[1] NO
If yes, provide brief description:

Brief Description of Arguments to be Presented: Appiceme proposes to axpelin why me offro Action has armeneusily commodus hal Hammda teaches a linear downscan transducer as dalmoc in Applicants claims, and thus why the calms are patentable over ing combination of references.
An interview was conducted on the above-identified application on
NOTE: This form should be completed and filed by applicant in advance of the interview (gee MPEP § 713.01). If this form is signed by a registered practitioner not of record, the Office will accept this as an indication that he or she is authorized to conduct an interview on behalf of the principal (37 CFR 1.32(a)(3)) pursuant to 37 CR 1.34. This is not a power of attorney to any above named practitioner. See the Instruction Sheet for this form, which is incorporated by reference. By signing this form, applicant or practitioner is certifying that he or she has read the Instruction Sheet. After the interview is conducted, applicant is advised to file a statement of the substance of this interview (37 CR $1.133(\mathrm{~b})$) as son n as possible. This application will not be delayed from issue because of applictat's failure to supmil-angitten record of this interview.

Donald M. Hill, Jr.
Typed/Printed Name of Applicant or Representative 40,646 Registration Number, if applicable

This facsimile message and its contents are legally privileged and confidential information intended solely for the addressec. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, copying or other use of this message and its contents is strictly prohibited. If you have received this telecopy in error, please notify us immediately by telephone and return the original message to us at the address shown below via the Postal Service. Thank You.

ALSTON\&BIRDLLP

101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
704-444-1000
Fax: 704-444-1111

TELECOPY
 PLEASE DELIVER AS SOON AS POSSIBLE

Date:
February 10, 2012

Recipient: Examiner James Hulka	Company: U.S. Patent \& Trac
Fax Number: (571$)$ $273-8300$	Voice Number:

Appln. No. 12/460,139
Group Art No: 3662

Number of Pages: (including cover page) \square IF NOT RECEIVED PROPERLX, PLEASE NOTIFY US IMMEDIATELY AT 704-444-1000.

USER CODE: \quad HILLD	REQUESTED BY: \quad Grace Rippy
CLIENT/MATTER: $038495 / 369324$	OPERATOR:

United States Patent and Trademark Office

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/460,139	07/14/2009	Brian T. Maguire	038495/369324	9769
${ }^{826}$ ALSTON \& BIRD LLP \quad7590 12/20/2011	I P 12/20/2011		EXAMINER	
BANK OF AMERICA PLAZA 101 SOUTH TRYON STREET, SUITE 4000 CHARLOTTE, NC 28280-4000			HULKA, JAMES R	
			ART UNIT	PAPER NUMBER
			3662	
			MAIL DATE	DELIVERY MODE
			12/20/2011	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

| Office Action Summary | Application No.
 $12 / 460,139$ | Applicant(s)
 MAGUIRE, BRIAN T. |
| :---: | :--- | :--- | :--- |
| | Examiner | |
| | JAMES HULKA | Art Unit |
| 3662 | | |

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR $1.136(a)$. In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) \boxtimes Responsive to communication(s) filed on 30 November 2011.

2a) \boxtimes This action is FINAL. 2b) \square This action is non-final.
3) \square An election was made by the applicant in response to a restriction requirement set forth during the interview on
\qquad ; the restriction requirement and election have been incorporated into this action.
4) \square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

5) \boxtimes Claim(s) 57-84,86 and 88 -137 is/are pending in the application.

5a) Of the above claim(s) 126,132,133 and 135-137 is/are withdrawn from consideration.
6) \square Claim(s) \qquad is/are allowed.
7) Claim(s) 57-84,86,88-125,127-131 and 134 is/are rejected.
8) \square Claim(s) \qquad is/are objected to.
9) \square Claim(s) \qquad are subject to restriction and/or election requirement.

Application Papers

10) \square The specification is objected to by the Examiner.
11) \square The drawing(s) filed on \qquad is/are: a) \square accepted or b) \square objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
12) \square The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119
13) \square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § $119(\mathrm{a})$-(d) or (f).
a) \square All b) \square Some * c) \square None of:

1. \square Certified copies of the priority documents have been received.
2. \square Certified copies of the priority documents have been received in Application No. \qquad .
3. \square Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) \boxtimes Notice of References Cited (PTO-892)
2) \square Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) \boxtimes Information Disclosure Statement(s) (PTO/SB/08)

Paper No(s)/Mail Date 20111115 .
4)Interview Summary (PTO-413) Paper No(s)/Mail Date
5) \square Notice of Informal Patent Application
6) \square Other: \qquad

DETAILED ACTION

Response to Amendment

Claims 1-56, 85, 87 have been cancelled.
Claims 57-76, 86, 88, and 96 have been amended.
Claims 100-137 are new. Claims 57-84, 86, and 88-137 are pending.

Information Disclosure Statement

The information disclosure statement (IDS) submitted on 15 November 2011 was filed after the mailing date of the Non-final rejection on 22 September 2011. The submission is in compliance with the provisions of 37 CFR 1.97. Accordingly, the information disclosure statement is being considered by the examiner. However, due to the excessive number of references, they have only been given a cursory review to gather relevance to the claimed inventions.

Election/Restrictions

1. Claim(s) 57-84, 86, and 88-99 is/are generic to the following disclosed patentably distinct species: Species I describes a singular downscan linear transducer element with optional conical downscan transducer element. The species are independent or distinct because Species II discloses an additional linear side scan transducer element. In addition, these species are not obvious variants of each other based on the current record.

Applicant is required under 35 U.S.C. 121 to elect a single disclosed species, or a single grouping of patentably indistinct species, for prosecution on the merits to which the claims shall be restricted if no generic claim is finally held to be allowable.

There is a search and/or examination burden for the patentably distinct species as set forth above because at least the following reason(s) apply:

Species I and II require different fields of search based on the additional linear transducer element described in new claims for purposes of sidescanning.

Applicant is advised that the reply to this requirement to be complete must include (i) an election of a species or a grouping of patentably indistinct species to be examined even though the requirement may be traversed (37 CFR 1.143) and (ii) identification of the claims encompassing the elected species or grouping of patentably indistinct species, including any claims subsequently added. An argument that a claim is allowable or that all claims are generic is considered nonresponsive unless accompanied by an election.

The election may be made with or without traverse. To preserve a right to petition, the election must be made with traverse. If the reply does not distinctly and specifically point out supposed errors in the election of species requirement, the election shall be treated as an election without traverse. Traversal must be presented at the time of election in order to be considered timely. Failure to timely traverse the requirement will result in the loss of right to petition under 37 CFR 1.144. If claims are added after the election, applicant must indicate which of these claims are readable on the elected species or grouping of patentably indistinct species.

Should applicant traverse on the ground that the species, or groupings of patentably indistinct species from which election is required, are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing them to be obvious variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the species unpatentable over the prior art, the evidence or admission may be used in a rejection under 35 U.S.C. 103(a) of the other species.

Upon the allowance of a generic claim, applicant will be entitled to consideration of claims to additional species which depend from or otherwise require all the limitations of an allowable generic claim as provided by 37 CFR 1.141.
2. Newly submitted claims 126, 132-133, and 135-137 are directed to an invention that is independent or distinct from the invention originally claimed for the following reasons: The new species describes an additional linear transducer element for purposes of sidescanning

Since applicant has received an action on the merits for the originally presented invention, this invention has been constructively elected by original presentation for prosecution on the merits. Accordingly, claims 126, 132-133, and 135-137 are withdrawn from consideration as being directed to a non-elected invention. See 37 CFR 1.142(b) and MPEP § 821.03.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
4. Claims 57, 60-61, 63, 65, 68-71, 76, 78-80, 86, 89-93, 100-104, 107-108, 110-$113,119,121,125,127-128$, and 134 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications - Model 855).
5. Regarding Claim 57, Hamada teaches a transducer assembly comprising: a housing mountable to a watercraft ... [Abstract] a linear transducer element positioned within the housing, the linear transducer element having a substantially rectangular shape configured to produce a fan-shaped sonar beam having a relatively narrow beam width in a direction parallel to longitudinal length of the linear transducer element ... [Fig. 9 \& 10] wherein the linear transducer element is positioned within the housing to project sonar pulses in a direction substantially perpendicular to a plane corresponding to the surface [Col. 8 Lines 10-20]. Hamada does not explicitly teach a linear transducer element being positioned with the longitudinal length thereof extending in a fore-to-aft direction in the housing. Imagenex teaches a linear transducer element being positioned with the longitudinal length thereof extending in a fore-to-aft direction in the housing [Fig. 1a]. It would have been obvious to modify the assembly of Hamada with a housing
mountable to a watercraft aligned longitudinally fore-to-aft in order to get a clear image of the area below and to each side of the watercraft.

Regarding Claim 76, Hamada teaches a sonar system comprising: a linear transducer element positioned within a housing that is mountable to a watercraft ... [Abstract] the linear transducer element having a substantially rectangular shape configured to produce a fan-shaped sonar beam having a relatively narrow beam width in a direction parallel to longitudinal length of the linear transducer element ... [Fig. 9 \& 10] wherein the linear transducer element is positioned within the housing to project sonar pulses in a direction substantially perpendicular to a plane corresponding to the surface of a body of water [Col. 8 Lines 10-20], a sonar module configured to enable operable communication ... [Fig. 17] including a sonar signal processor ... and at least one transceiver... [5 of Fig. 17]. Hamada does not explicitly teach a linear transducer element being positioned with the longitudinal length thereof extending in a fore-to-aft direction in the housing. Imagenex teaches a linear transducer element being positioned with the longitudinal length thereof extending in a fore-to-aft direction in the housing [Fig. 1a]. It would have been obvious to modify the system of Hamada with a housing mountable to a watercraft aligned longitudinally fore-to-aft in order to get a clear image of the area below and to each side of the watercraft.

Regarding Claim 134, Hamada teaches a sonar imaging apparatus comprising: a housing mountable to a watercraft ... [Abstract], a linear transducer element positioned within the housing, the linear transducer element being configured to produce a sonar beam having a longitudinal beamwidth in a direction parallel to a longitudinal length ...
[Fig. 9], wherein the transverse beamwidth of the sonar beam is sufficiently wide in relation to a direction in which the linear transducer element is aimed such that the transverse beamwidth spans from a port side [Fig. 10, Col 8 Lines 10-20]. Hamada does not explicitly teach a longitudinal length of the linear transducer element is parallel to said center plane. Imagenex teaches teach a longitudinal length of the linear transducer element is parallel to said center plane [Fig. 1a]. It would have been obvious to modify the apparatus of Hamada with a housing mountable to a watercraft aligned longitudinally parallel to a center plane in order to get a clear image of the area below and to each side of the watercraft.

Regarding Claim 60, Hamada does not teach a beam width of a linear transducer element is about 0.8 degrees by about 32 degrees or about 1.4 degrees by about 56 degrees. Imagenex teaches a beam width of a linear transducer element is about 0.8 degrees by about 32 degrees or about 1.4 degrees by about 56 degrees [Fig. 1a]. It would have been obvious to modify the assembly of Hamada to produce a wide, thin beam to cover a large area while also producing higher resolution sonar images.

Regarding Claim 61, Hamada also teaches communicating with a single transceiver [5 of Fig. 17].

Regarding Claims 63 and 86, Hamada also teaches a fan-shaped beam extending from one side of the watercraft to an opposite side of the watercraft [Fig. 9 \& 10].

Regarding Claim 65, Hamada does not explicitly teach a beam width in the direction parallel to a longitudinal length of the linear transducer element is less than
about five percent as large as the beam width of the sonar beam in the direction perpendicular to the longitudinal length of the linear transducer element. Imagenex teaches a beam width in the direction parallel to a longitudinal length of the linear transducer element is less than about five percent as large ... [Fig. 1a]. It would have been obvious to modify the system of Nishimori to include a narrow beam in one direction to increase resolution of successive 2-D images.

Regarding Claims 68-70, 89-91 and 93, Hamada also teaches images of sonar data corresponding to data received via the linear transducer element representing bottom data, depth, data water column data, or data below the linear transducer element [Col. 8, Lines 10-20, 45-60].

Regarding Claims 71 and 92, Hamada also teaches sonar data images of two or more of ... [Col. 8, Lines 10-20, 45-60].

Regarding Claim 78, Hamada inherently teaches a sonar module is provided within a separate housing [Fig. 17, Col. 3, Lines 1-15]. Putting a sonar module (processor and communications link) in a separate housing is common in the art of sonar imaging as the sensors are submerged in the water, while the processor is above water and is being used by an operator.

Regarding Claim 79, Hamada also teaches at least one visual display ... [19 of Fig. 17].

Regarding Claim 80, Hamada inherently teaches a display and the sonar module are in the same housing [Fig. 17, Col. 3 Lines 1-15]. It is common in the art to combine the sonar module (processor and communications) and display in the same housing as
to make the system portable, with a wired or wireless link between the sonar module and submerged sensors so the user can operate the system in real-time.

Regarding Claims 100 and 101, Hamada also teaches a linear transducer element is configured to emit sonar pulses as well to receive echo returns ... [3, 4, 5 of Fig. 17].

Regarding Claims 102, 111, and 112, Hamada inherently teaches a housing (containing the linear transducer element) is mounted to a watercraft, or on an intermediate structure mounted to a water craft [Abstract, Fig. 9]. It is common in the art to mount a sonar receiver on the side or underneath a watercraft directly or indirectly as the beams need to be created in the water for correct use and data collection. An intermediate structure might reduce damage to the watercraft, sensor, or make attachment and removal of the sensor element easier.

Regarding Claim 103, Hamada also teaches a linear transducer element is configured to produce a generally planar fan-shaped beam [Fig. 9 \& 10].

Regarding Claim 104, Hamada also teaches a display in communication with the sonar module [19 of Fig. 17].

Regarding Claim 107, Hamada also teaches a user interface in communication ... [Col. 7 Lines 40-50].

Regarding Claim 108, Hamada inherently teaches a display, sonar signal processor and user interface are all contained in a single housing [Abstract, Fig. 17]. It is common in the art to provide a personal computer or laptop with all three features that can easily be connected to the sonar sensors for easier operator use.

Regarding Claim 110, Hamada inherently teaches a linear transducer element, transceiver, and display respectively comprise at least two separate modules [Abstract, Col. 3 Lines 1-15]. It is common in the art to have at least one separate housing for nonsubmerged electronics (display, transceiver) to allow the operator easier use without having to worry about water damage to certain electronic elements.

Regarding Claim 113, Hamada also teaches a sonar signal processor is further configured to implement signal processing or enhancement to improve display characteristics [Col. 8 Lines 30-40].

Regarding Claim 119, Hamada also teaches a sonar signal processor is configured to implement a notice or alarm ... [Col. 8 Lines 45-55].

Regarding Claim 121, Hamada also teaches a processor, in combination with a memory, stores incoming transducer data ... [Col. 8 Lines 45-60].

Regarding Claim 125, Hamada inherently teaches a housing containing the linear transducer element is mounted on an accessory on the watercraft enabling the fanshaped beam to assume various orientations [Fig. $9 \& 10$].

Regarding Claim 127, Hamada teaches indicating a position of the watercraft on the display [Col. 8 Lines 20-30].

Regarding Claim 128, Hamada also teaches indicating water depth on the display [Col. 8 Lines 10-20].
6. Claim 62 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications - Model
$855)$ as applied to claim 57 above, and further in view of Blue $(5,850,372)$ and Bird $(4,774,837)$.
7. Regarding Claim 62, Hamada does not teach a length of a rectangular face of the linear transducer element is about 120 mm and a width of the rectangular face of the linear transducer element is about 3 mm. Blue [Col 6, Lines 1-5] and Bird [Col 2. Lines 40-60] teach a length of a rectangular face of the linear transducer element is about 120 mm and a width of the rectangular face of the linear transducer element is about 3 mm . It would have been obvious to modify the system of Hamada to make a specific size transducer to produce a beam for desired applications and also to eliminate unnecessary costs.
8. Claims 64, 77 and 105 and 124 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications - Model 855) as applied to claims 57, 76 and 104 above, and further in view of Thompson $(7,542,376)$.
9. Regarding Claims 64 and 124, Hamada does not teach a housing (containing the linear transducer element) has a streamlined shape(profile). Thompson teaches a housing has a streamlined shape [Col. 2, Lines 35-55]. It would have been obvious to modify the system of Hamada to include a streamlined housing in order to protect the sensors from being damaged.

Regarding Claims 77 and 105, Hamada does not explicitly teach an Ethernet hub ... or communication via a network. Thompson teaches an Ethernet Hub ... or
communication via a network [Col. 6, Lines 10-15]. It would have been obvious to modify the system of Hamada to include an Ethernet hub to allow multiple users to analyze the sonar data and images, or to increase the speed of data transfer.
10. Claims 58, 66-67, 81, 83 and 88 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications - Model 855) as applied to claims 57 and 76 above, and further in view of Zimmerman (2007/0025183).
11. Regarding Claims 58 and 83, Hamada does not explicitly teach a linear transducer element is configured to operate at a selected one of at least two selectable operating frequencies. Zimmerman teaches a linear transducer element is configured to operate at a selected one of at least two selectable operating frequencies [0003]. It would have been obvious to modify the system of Hamada to be able to detect different types of objects effectively.

Regarding Claims 66, 67 and 88, Hamada does not explicitly teach images corresponding to data received via the linear transducer provide data regarding bottom features over less than fifty (or twenty) percent of a display screen when displayed. Zimmerman teaches images corresponding to data received via the linear transducer provide data regarding bottom features over less than fifty (or twenty) percent of a display screen when displayed [Claim 9]. It would have been obvious to modify the system of Hamada to include display of images on less than fifty or twenty percent of a
display screen to be able to see multiple images at one time, or to analyze a time series of data.

Regarding Claim 81, Hamada does not explicitly teach at least one display of the plurality of displays is enabled to simultaneously provide different images... Zimmerman teaches at least one display of the plurality of displays is enabled to simultaneously provide different images... [Claim 9]. It would have been obvious to modify the system of Hamada to include display of different images simultaneously to be able to see multiple images at one time, or to analyze a time series of data.
12. Claims $98-99,106,109,114-118,120,122-123$ are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications - Model 855) as applied to claims 76 and 104 above, and further in view of Matrix 97 GPS Trackplotter (Operations Manual).

Regarding Claims 98 and 114-117, Hamada does not explicitly teach data from at least one of the group of radar, GPS, digital mapping, time and temperature, or waypoint designations. Matrix 97 GPS teaches data from at least one of the group of radar, GPS, digital mapping, , time and temperature [Page 4]. It would have been obvious to modify the system of Hamada to include data from at least one of those resources to improve location tracking of desired underwater targets.

Regarding Claim 99, Hamada does not explicitly teach display of the data is in a user-selectable format. Matrix 97 GPS teaches display of the data is in a userselectable format [Page 66]. It would have been obvious to modify the system of

Hamada to include a user selectable display format screen to be able to see multiple images at one time, or to analyze a time series of data.

Regarding Claim 106, Hamada does not explicitly teach at least one additional display... Matrix 97 GPS teaches at least one additional display [Page 27]. It would have been obvious to modify the system of Hamada for expansion bus options for computer electronics or sensors to include additional displays to view multiple images at the same time.

Regarding Claim 109, Hamada does not explicitly teach a user interface is part of the display. Matrix 97 GPS teaches teach a user interface is part of the display [Page 24]. It would have been obvious to modify the system of Hamada to include a combined user interface/display to reduce size and make the unit more portable.

Regarding Claims 118 and 120, Hamada does not explicitly teach a sonar signal processor is further configured to implement a notice or alarm regarding depth or proximity of other watercraft. Matrix 97 GPS teaches a sonar signal processor is further configured to implement a notice or alarm regarding depth or proximity of other watercraft [Page 46-49]. It would have been obvious to modify the system of Hamada to include notification of depth or watercraft proximity to let the user know of a possible collision for damage to the watercraft or sensor.

Regarding Claim 122, Hamada does not explicitly teach performing additional processing to implement zoom. Matrix 97 GPS teaches performing additional processing to implement zoom [Page 34]. It would have been obvious to modify the
system of Hamada to include zoom in order to provide the user with more details in the image.

Regarding Claim 123, Hamada does not explicitly teach additional processing to correlate sonar to GPS data. Matrix 97 GPS teaches teach additional processing to correlate sonar to GPS data [Page 18]. It would have been obvious to modify the system of Hamada to include additional processing for sonar and GPS to provide the user with a more detailed map of routes, points, and features.
13. Claims 59 and 84 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications Model 855), and Zimmerman (2007/0025183), as applied to claims 58 and 83 above, and further in view of Richard $(4,538,249)$ and Adams $(5,184,330)$.
14. Regarding Claim 59, Hamada does not explicitly teach selectable operating frequencies include about 455 kHz and 800 KHz . Zimmerman [0003], Adams [Col. 5, Lines 1-5], and Richard [Col. 8, Lines 45-60] teach selectable operating frequencies include about 455 kHz and 800 KHz . It would have been obvious to modify the system of Nishimori to include specific frequencies depending on the types of objects being tracked by the sonar in the water.
15. Claim 82 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications - Model $855)$ as applied to claim 76 above, and further in view of Wilcox $(5,142,502)$.
16. Regarding Claim 82, Hamada does not explicitly teach configuration settings defining a predefined set of display images ... Wilcox teaches configuration settings defining a predefined set of display images ... [Col. 3, Lines 50-70]. It would have been obvious to modify the system of Hamada to include configuration settings to allow the user to compare different sonar images taken during different surveys.
17. Claim 72, 75, 94, 97, 129-131 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and Applications - Model 855) as applied to claims 57 and 76 above, and further in view of Betts (2006/0023570).
18. Regarding Claims 72 and 94, Hamada does not explicitly teach a circular transducer element ... Betts also teaches a circular transducer element ... [0031]. It would have been obvious to modify the assembly and system of Hamada to include a circular transducer element in order to display sonar images with accurate scale and depth information.

Regarding Claims 75 and 97, Hamada does not explicitly teach sonar signal returns from the circular transducer element and linear transducer element provide generally simultaneous data Betts teaches sonar signal returns from the circular transducer element and linear transducer element provide generally simultaneous data [0049-0051]. It would have been obvious to modify the system of Hamada to include generally simultaneous data display to provide the user with a complete, real-time sonar image.

Regarding Claim 129, Hamada does not explicitly teach a second transducer ...wherein the system is configured to indicate on the display an intensity of a return echo received ... Betts teaches a second transducer ...[72 of Fig. 1] wherein the system is configured to indicate on the display an intensity of a return echo received ... [0048]. It would have been obvious to modify the system of Hamada to include a second transducer ...wherein the system is configured to indicate on the display an intensity of a return echo received ... to provide the user with a complete, real-time sonar image.

Regarding Claim 130, Hamada does not explicitly teach a linear transducer element and the second transducer are both contained in the same housing. Betts teaches a linear transducer element and the second transducer are both contained in the same housing [Fig .1]. It would have been obvious to modify the system of Hamada to include a housing for both transducers to reduce cost, save space, and prevent unnecessary damage.

Regarding Claim 131, Hamada does not explicitly teach a linear transducer element and the second transducer operate at different respective frequencies. Betts teaches a linear transducer element and the second transducer operate at different respective frequencies [0053]. It would have been obvious to modify the system of Hamada to include operation of different transducers at different frequencies to provide the user with a complete, real-time sonar image.
19. Claim 73-74 and 95-96 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada $(5,805,528)$ in view of Imagenex (Sonar Theory and

Applications - Model 855) and Betts (2006/0023570) as applied to claims 72 and 94 above, and further in view of Fatemi-Booshehri $(5,991,239)$.

20. Regarding Claims 73 and 95, Hamada does not explicitly teach linear and circular transducer elements are in the same housing or that the circular transducer element produces a conical downscan beam from within the same housing. FatemiBooshehri teaches ... elements are in the same housing or that the circular transducer element produces a conical downscan beam from within the same housing [Col. 4, Lines 60-70]. It would have been obvious to modify the system of Hamada to include putting both transducers in the same housing to reduce material cost.

Regarding Claims 74 and 96, Hamada does not teach linear transducer and circular transducer elements are positioned to project fan-shaped and conical sonar beams ... to sonify areas of the bottom that at least partially overlap. Fatemi-Booshehri teaches linear transducer and circular transducer elements are positioned to project fanshaped and conical sonar beams ... to sonify areas of the bottom that at least partially overlap [Abstract]. It would have been obvious to modify the system of Hamada to include overlapping circular and linear transducer beams to improve sonar image resolution.

Response to Arguments

21. Applicant's arguments with respect to claims 57-99 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

22. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. HUMMINBIRD - Fish Wide Open (IDS Citation \#228) teaches direct and indirect mounting methods, and accessories/structures for mounting the sonar.
23. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP $\S 706.07(\mathrm{a})$. Applicant is reminded of the extension of time policy as set forth in 37 CFR $1.136(\mathrm{a})$.

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JAMES HULKA whose telephone number is (571)2707553. The examiner can normally be reached on Monday thru Thursday 7:30am-5pm, Every 2nd Friday, 7:30am-4pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Thomas Tarcza can be reached on 571-272-6979. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
/J. H./
Examiner, Art Unit 3662
/Thomas H. Tarcza/
Supervisory Patent Examiner, Art Unit 3662

Notice of References Cited	Application/Control No. $12 / 460,139$	Applicant(s)/Patent Under Reexamination MAGUIRE, BRIAN T.	
	Examiner JAMES HULKA	$\begin{array}{\|l\|} \hline \text { Art Unit } \\ 3662 \end{array}$	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Name	Classification
$*$	A	US-2002/0071029 A1	$06-2002$	Zell et al.	$348 / 97$
$*$	B	US-2005/0216487 A1	$09-2005$	Fisher et al.	$707 / 100$
$*$	C	US-2006/0023570 A1	$02-2006$	Betts et al.	$367 / 088$
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

*		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	U	
	v	
	W	
	X	

[^4]INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Use as many sheets as necessary)

Sheet	1	of	16

	Complete if Known
Application Number	$12 / 460,139$
Filing Date	July 14, 2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number Number - Kind Code (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages of Relevant Figures Appear
	1.	US-1,823,329	09-15-1931	Marrison	
	2.	US-2,416,338	02-25-1947	Mason	
	3.	US-3,005,973	10-24-1961	Kietz	
	4.	US-3,090,030	05-14-1963	Schuck	
	5.	US-3,142,032	07-21-1964	Jones	
	6.	US-3,144,631	08-11-1964	Lustig, et al.	
	7.	US-3,296,579	01-03-1967	Farr, et al.	
	8.	US-3,359,537	12-19-1967	Geil, et al.	
	9.	US-3,381,264	04-30-1968	Lavergne, et al.	
	10.	US-3,451,038	06-17-1969	Maass	
	11.	US-3,458,854	07-29-1969	Murphree	
	12.	US-3,484,737	12-16-1969	Walsh	
	13.	US-3,553,638	01-05-1971	Sublett	
	14.	US-3,585,578	06-15-1971	Fischer, Jr., eta.	
	15.	US-3,585,579	06-15-1971	Dorr, et al.	
	16.	US-3,618,006	11-02-1971	Wright	
	17.	US-3,624,596	11-30-1971	Dickenson, et al.	
	18.	US-3,716,824	02-13-1973	Door, et al.	
	19.	US-3,742,436	06-26-1973	Jones	
	20.	US-3,757,287	09-04-1973	Bealor, Jr.	
	21.	US-3,895,339	07-15-1975	Jones, et al.	
	22.	US-3,895,340	07-15-1975	Gilmour	
	23.	US-3,898,608	08-05-1975	Jones, et al.	
	24.	US-3,949,348	04-06-1976	Dorr	
	25.	US-3,950,723	04-13-1976	Gilmour	
Examiner Signature		Wames Huka/		Date Considered	12/12/2011

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

INFORMATION DISCLOSURE
STATEMENT BY APPLICANT
(Use as many sheets as necessary)

Sheet	2	of	16

Complete if Known	
Application Number	$12 / 460,139$
Filing Date	July 14,2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

					U
		Document Number			

U. S. PATENT DOCUMENTS

Examiner Initials*	Cite No.	Document Number Number - Kind Code (if known)
	26.	US-3,953,828

Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages of Relevant Figures Appear
04-27-1976	Cook	
06-22-1976	Hagemann	
06-29-1976	Jones	
06-14-1977	Stevens, et al.	
09-06-1977	Hagemann	
10-04-1977	Gilmour	
12-13-1977	Sublett	
01-10-1978	Lagier	
02-21-1978	Kosalos, et al.	
01-15-1980	Hageman	
04-08-1980	Hagemann	
04-15-1980	Clifford	
04-22-1980	Jones, et al.	
04-29-1980	Hagemann	
05-20-1980	Hagemann	
06-10-1980	Morgera	
08-05-1980	Delignieres	
11-04-1980	Caron, et al.	
01-27-1987	De Kok	
04-14-1981	Gilmour	
09-01-1981	Heyser	
12-20-1983	Klein	
06-26-1984	McBride	
01-08-1985	Odero, et al.	
08-27-1985	Richard	

Examiner Signature	James Hulkal	Date Considered	$12 / 12 / 2011$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: NOVEMBER 15, 2011 RAY-1002

INFORMATION DISCLOSURE

 STATEMENT BY APPLICANTUse as many sheets as necessary)

Sheet	3	of	16

	Complete if Known
Application Number	$12 / 460,139$
Filing Date	July 14, 2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number Number - Kind Code (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages of Relevant Figures Appear
	53.	US-4,635,240	01-06-1987	Geohegan, Jr., et al.	
	54.	US-4,641,290	02-03-1987	Massa, et al.	
	55.	US-4,642,801	02-10-1987	Perny	
	56.	US-4,751,645	06-14-1988	Abrams, et al.	
	57.	US-4,774,837	10-04-1988	Bird	
	58.	US-4,796,238	01-03-1989	Bourgeois, et al.	
	59.	US-4,802,148	01-31-1989	Gilmour	
	60.	US-4,815,045	03-21-1989	Nakamura	
	61.	US-4,855,961	08-08-1989	Jaffe, et al.	
	62.	US-4,879,697	11-07-1989	Lowrance, et al.	
	63.	US-4,907,208	03-06-1990	Lowrance et al.	
	64.	US-4,912,685	03-27-1990	Gilmour	
	65.	US-4,924,448	05-08-1990	Gaer	
	66.	US-4,939,700	07-03-1990	Breton	
	67.	US-4,958,330	09-18-1990	Higgins	
	68.	US-4,970,700	11-13-1990	Gilmour, et al.	
	69.	US-4,975,887	12-04-1990	Maccabee, et al.	
	70.	US-4,982,924	01-08-1991	Havins	
	71.	US-5,033,029	07-16-1991	Jones	
	72.	US-5,109,364	04-28-1992	Stiner	
	73.	US-5,113,377	05-12-1992	Johnson	
	74.	US-5,142,502	08-25-1992	Wilcox, et al.	
	75.	US-5,155,706	10-13-1992	Haley, et al.	
	76.	US-5,182,732	01-26-1993	Pichowkin	
	77.	US-5,184,330	02-02-1993	Adams, et al.	

Examiner Signature	James Hulka/	Date Considered	$12 / 12 / 2011$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: NOVEMBER 15, 2011 RAY-1002

Substitute for form 1449/PTO
(Revised 07/2007)
INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Use as many sheets as necessary)

Sheet	4	of	16

	Complete if Known
Application Number	$12 / 460,139$
Filing Date	July 14, 2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

U.S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number Number - Kind Code (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages of Relevant Figures Appear
	78.	US-5,200,931	04-06-1993	Kosalos, et al.	
	79.	US-5,214,744	05-25-1993	Schweizer, et al.	
	80.	US-5,241,314	08-31-1993	Keeler, et al.	
	81.	US-5,245,587	09-14-1993	Hutson	
	82.	US-5,243,567	09-07-1993	Gingerich	
	83.	US-5,257,241	10-26-1993	Henderson, et al.	
	84.	US-5,260,912	11-09-1993	Latham	
	85.	US-5,303,208	04-12-1994	Dorr	
	86.	US-5,376,933	12-27-1994	Tupper, et al.	
	87.	US-5,390,152	02-14-1995	Boucher, et al.	
	88.	US-5,412,618	05-02-1995	Gilmour	
	89.	US-5,438,552	08-01-1995	Audi, et al.	
	90.	US-5,442,358	08-15-1995	Keeler, et al.	
	91.	US-5,455,806	10-03-1995	Hutson	
	92.	US-5,493,619	02-20-1996	Haley, et al.	
	93.	US-5,515,337	05-07-1996	Gilmour, et al.	
	94.	US-5,537,366	07-16-1996	Gilmour	
	95.	US-5,546,356	08-13-1996	Zehner	
	96.	US-5,561,641	10-01-1996	Nishimori, et al.	
	97.	US-5,574,700	11-12-1996	Chapman	
	98.	US-5,596,549	01-21-1997	Sheriff	
	99.	US-5,602,801	02-11-1997	Nussbaum, et al.	
	100.	US-5,612,928	03-18-1997	Haley, et al.	
	101.	US-5,694,372	12-02-1997	Perennes	
	102.	US-5,805,528	09-08-1998	Hamada et al.	

Examiner Signature	James Hulka/	Date Considered	$12 / 12 / 2011$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: NOVEMBER 15, 2011 RAY-1002

Substiute for form 1449PTO
(Revised 072007$)$
INFORMATION DISCLOSURE

(Use as many sheets as necessary)			
Sheet	5	of	16

	Complete if Known
Application Number	$12 / 460,139$
Filing Date	July 14, 2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: NOVEMBER 15, 2011 RAY-1002
341 of 737

INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Use as many sheets as necessary)

Sheet	6	of	16

	Complete if Known
Application Number	$12 / 460,139$
Filing Date	July 14, 2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

U. S. PATENT DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number Number - Kind Code (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages of Relevant Figures Appear	
	129.	US 2004/0184351 Al	09-23-2004	Nishimori, et al.		
	130.	US 2005/0043619 Al	02-24-2005	Sumanaweera, et al.		
	131.	US 2005/0099887 A1	05-12-2005	Zimmerman, et al.		
	132.	US 2006/0002232 Al	01-05-2006	Shah, et al.		
	133.	US 2007/0025183 A1	02-01-2007	Zimmerman, et al.		
	134.	US 2007/0091723 A1	04-26-2007	Zhu, et al.		
	135.	US-2011/0013484 A1	01-20-2011	Coleman et al.		
	136.	US-2011/0013485 A1	01-20-2011	Maguire		
	137.	US-Des. 329,615	09-22-1992	Stiner		
	138.	US-Des. 329,616	09-22-1992	Stiner		
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Foreign Patent Document Country Code - Number Kind Code (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	English Language Translation Attached
	139.	GB 1,316,138	05-09-1973	Dickinson, et al.		
	140.	JP 57-046173 (A)	03-16-1982	Furuno Electric Co.		Abstract
	141.	JP 61-116678 (A)	06-04-1986	Furuno Electric Co.		Abstract
	142.	JP 4357487 (A)	12-10-1992	Furuno Electric Co.		Abstract
	143.	WO 98/15846	04-16-1998	Rowe-Deines Instruments, Incorporated		

Examiner
Signature

JJames Hulka/
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: NOVEMBER 15, 2011
RAY-1002
342 of 737

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	7	of	16	Attorney Docket Number	038495/369324

| Examiner
 Signature | Wate
 Considered | $12 / 12 / 2011$ |
| :--- | :---: | :--- | :--- |

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	8	of	16	Attorney Docket Number	038495/369324

Examiner Signature	James Hukal	Date Considered	$12 / 12 / 2011$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(Use as many sheets as necessary)

Sheet	9	of	16

	Complete if Known
Application Number	$12 / 460,139$
Filing Date	July 14, 2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

OTHER DOCUMENTS

OTHER DOCUMENTS			
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	English Language Translation Attached
	167.	MELVIN, G., et al.; Commercial fishing vessels, automatic acoustic logging systems and 3D data visualization"; ICES; Journal of Marine Science; Vol. 59; Issue 1; 2002; pp. 179189	
	168.	NEWMAN, P.M.; "MOOS-Mission Orientated Operating Suite"; Department of Ocean Engineering; Massachusetts Institute of Technology; 2002	
	169.	OLLIVIER, F., et al.; "Side scan sonar using phased arrays for high resolution imaging and wide swath bathymetry"; IEEE Proceedings on Radar, Sonar and Navigation; Volume 143; Issue 3; June 1996; pp. 163-168	
	170.	PRICKETT, T.; "Underwater Inspection of Coastal Structures"; The REMR Bulletin; Vol. 14; No. 2; August, 1997;	
	171.	PRATSON, L.F., et al.; "Introduction to advances in seafloor mapping using sidescan sonar and multibeam bathymetry data"; Marine Geophysical Research; Springer Netherlands; Volume 18; Issue 6; 1996; pp. 601-605	
	172.	PRYOR, Donald E.; "Theory and Test of Bathymetric Side Scan Sonar"; Office of Charting and Geodetic Services; National Ocean Service; National Oceanic and Atmospheric Administration; Post 1987; pp. 379-384	
	173.	SHONO, K., et al.; "Integrated Hydro-Acoustic Survey Scheme for Mapping of Sea Bottom Ecology"; Ocean Research Institute; Tokyo, Japan; November 2004	
	174.	TREVORROW, M.V., et al.; "Description and Evaluation of a Four-Channel, Coherent 100kHz Sidescan Sonar"; Defence R\&D Canada-Atlantic; December 2004	
	175.	VAGANAY, J., et al.; "Experimental validation of the Moving Long Base-Line Navigation Concept"; 2004 IEEE/OES Autonomous Underwater Vehicles; June 2004	
	176.	VANECK, T.W., et al.; "Automated Bathymetry Using an Autonomous Surface Craft"; Journal of the Institute of Navigation; Volume 43; Issue 4; Winter 1996; pp. 329-334	
	177.	WAITE, A.D.; "Sonar for Practising Engineers"; Third Edition; John Wiley \& Sons, Ltd.; West Sussex, England; © 2002; 323 pages	
	178.	Alpine Geophysical Data Programmer Model 485C Brochure and letter dated February 17, 1976; 2 pages	
	179.	Benthos C3D Sonar Imaging System; "High Resolution Side Scan Imagery with Bathymetry"; Benthos, Inc.; © May 2002	

Examiner Signature	James Hulka/	Date Considered	$12 / 2 / 2011$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(Use as many sheets as necessary)			
Sheet	10	of	16

	Complete if Known	
Application Number	$12 / 460,139$	
Filing Date	July 14, 2009	
First Named Inventor	Brian T. Maguire	
Art Unit	3662	
Examiner Name	HULKA, James R.	
Attorney Docket Number	$038495 / 369324$	

OTHER DOCUMENTS			
Examiner Initials*	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	English Language Translation Attached
	180.	Coastal Engineering Technical Note; "Side-Scan Sonar for Inspecting Coastal Structures"; U.S. Army Engineer Waterways Experiment Station; Revised 11/1983	
	181.	ConCAT Containerised Catamaran; Inshore hydrographic survey vessel that fits in a container; In Cooperation with Uniteam International; Kongsberg Simrad AS; April 2004	
	182.	Datasonics SIS-1000 Seafloor Imaging System; Combined Chirp Side Scan Sonar/Chirp SubBottom Profiling for high resolution seafloor imaging; One System, All the Answers; Benthos, Inc.; (C) 2000	
	183.	Detailed Sonar Transducer Product Information; Transducer Products; Side Scans; Models T36, T63, T62, and T403; 12/30/2003; Retrieved from internet: URL:http://www.neptunesonar.com/products.as btype=Side-Scan + Transducers\&category=; 4 pages	
	184.	Kongsberg Brochure EA 400 Survey; "A complete, integrated survey system"; Kongsberg Maritime AS; October 2003	
	185.	Kongsberg Brochure EA 400/600 "Sidescan Echo sounder with combined sidescan and depth soundings"; Kongsberg Maritime AS; May 2004	
	186.	EDO CORPORATION GLOBAL TECHNOLOGY REACH, Model 6400 Fan Beam Transducer; http:/web/archive/org/web/20040608054923/www.edoceramic.con/NavDucers.htm; June 3, 2004	
	187.	EM1110-2-1003; Department of the Army; U.S. Army Corps of Engineers; Engineering and Design; Hydrographic Surveying; April 1, 2004	
	188.	File Wrapper of Provisional Application Serial No. 60/552,769; Filed: 3/12/04; Applicant: Terrence Schoreder	
	189.	Final Report; Early Implementation of Nearshore Ecosystem Database Project Tasks 2 and 3; [online]; Retrieved on 2/26/2010 from the Internet <URL: http://seafloor.csumb.edu/taskforce/html $\% 202 \% 20$ web/finalreport.htm; 90 pages	
	190.	FishFinder L265 Instruction Manual; Raymarine; 79 pages	
	191.	FishFinder L365 Instruction Manual; Raymarine; 83 pages	

Examiner Signature	James Hulka/	Date Considered	$12 / 2 / 2011$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(Use as many sheets as necessary)

Sheet	11	of	16

Complete if Known

	Complete if Known	
Application Number	$12 / 460,139$	
Filing Date	July 14, 2009	
First Named Inventor	Brian T. Maguire	
Art Unit	3662	
Examiner Name	HULKA, James R.	
Attorney Docket Number	$038495 / 369324$	

OTHER DOCUMENTS

Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.			English Language Translation Attached
	192.	FishFinder L470 Instruction Manual; Raymarine; 102 pages			
	193.	FishFinder L750 Instruction Manual; Raymarine; 93 pages			
	194.	GeoAcoustics; A Kongsberg Company; GeoSwath Plus Brochure; "Wide swath bathymetry and georeferenced side scan"; [Online]; Retrieved from the internet <URL: http://www.km.kongsberg.com/ks/web/nokbg0397.nsf/AllWeb/F4B7FD3461368388C12575990 $02 \mathrm{D} 34 \mathrm{BC} /$ Sfile/GeoSwath-Plus-brochure.pdf? OpenElement;			
	195.	GeoPulse; "GeoAcoustics Pinger Sub-Bottom Profiler; Retrieved from the Internet $<$ URL: http://www.km.kongsberg.com/ks/web/nokbg0397.nsf/AllWeb/D1084BB7DD0FD21DC12574 C0003E01EA/Sfile/GeoPulse Profiler.pdf?OpenElement; GeoAcoustics Limited, UK; A Kongsberg Company			
	196.	GlobalMap Sport; Installation and Operation Instructions; Lowrance Electronics, Inc.; ©1996; 61 pages			
	197.	GPS Speed Correction; Sidescan Sonar; [online]; Retrieved from the Internet URL: <www.hydrakula.uni-kiel.de/downloads/Sidescan\%20Sonar.doc; 10 pages			
	198.	HUMMINBIRD 1197c Operations Manual; 11/6/2007; 188 pages			
	199.	HUMMINBIRD 200DX DUAL BEAM Operations Manual; 43 pages			
	200.	HUMMINBIRD 500 Series; 550, 560, 570 and 570 DI Operations Manual; © 2010; 84 pages			
	201.	Humminbird: America's favorite Fishfinder - the leading innovator of Side Imaging technology; [Online]; [Retrieved on 03-16-2011]; Retrieved from the Internet <URL: http://www.humminbird.com/support/ProductManuals.aspx>; 20 pages			
	202.	Humminbird: America's favorite Fishfinder - the leading innovator of Side Imaging technology; [Online]; [Retrieved on 03-16-2011]; Retrieved from the Internet <URL: http://www.humminbird.com/support/ProductManuals.aspx>; 5 pages			
	203.	HUMMINBIRD Dimension 3 Sonar 600 Operations Manual; 24 pages			
	204.	THE HUMMINBIRD GPS NAVIGATIONAL SYSTEM. NOTHING ELSE EVEN CLOSE; HUMMINBIRD Marine Information Systems $\mathbb{\circledR}$; 1992; 10 pages			
	205.	HUMMINBIRD GPS NS 10 Operations Manual; 75 pages			
Examiner Signature		James Huka	Date Considered	$1212 / 2011$	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

$\begin{array}{l}\text { Substitute for form 1449/PTO } \\ \text { (Revised 07/2007) } \\ \\ \text { INFORMATION DISCLOSURE }\end{array}$
STOT

(Use as many sheets as necessary)

Sheet	12	of	16

Complete if Known

Complete if Known	
Application Number	$12 / 460,139$
Filing Date	July 14, 2009
First Named Inventor	Brian T. Maguire
Art Unit	3662
Examiner Name	HULKA, James R.
Attorney Docket Number	$038495 / 369324$

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SUBMITTED: NOVEMBER 15, 2011 RAY-1002
348 of 737
ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /J.H./

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	13	of	16	Attorney Docket Number	038495/369324

OTHER DOCUMENTS					
Examiner Initials*	Cite No .	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.			English Language Translation Attached
	225.	HUMMINBIRD Wide 3D Vision Operations Manual; 38 pages			
	226.	HUMMINBIRD Wide 3D Vista Operations Manual; 38 pages			
	227.	HUMMINBIRD Wide Eye Operations Manual; 32 pages			
	228.	HUMMINBIRD Wide Paramount Operations Manual; fish wide open!; 32 pages			
	229.	HUMMINBIRD "Wideside"; Schematic; December 15, 1994; 5 pages			
	230.	Hydro Products; A Tetra Tech Company; 4000 Series Gifft Precision Depth Recorder Product Brochure; date stamped 1977			
	231.	The Hydrographic Society - Corporate Member News - KONGSBERG SIMRAD; July 3, 2008; 7 pages			
	232.	Imagenex Model 855 Brochure: Online; Documents retrieved from internet web archives as follows: URL:http://web.archive.org/web/20021023212210/http:/www.imagenex.com/Products/855 858 /855 858.html; 1 page; Archived on October 23, 2002 URL:http://web.archive.org/web/20021024124035/http:/www.imagenex.com/Products/855 858 /855/855.html; 1 page; Archived on October 24, 2002 URL:http://web.archive.org/web/20021024125254/http:/www.imagenex.com/Products/855 858 /858/858.html; 1 page; Archived on October 24, 2002 URL:http://web.archive.org/web/20030424071306/http:/www.imagenex.com//855 Page_l.jpg; 1 page; Archived on April 24, 2003 URL:http://web.archive.org/web/20030424091547/http:/www.imagenex.com/855 Page 2.jpg; 1 page; Archived on April 24, 2003 URL:http://web.archive.org/web/20030424094158/http:/www.imagenex.com/855_Page 3.jpg; 1 page; Archived on April 24, 2003 URL:http://web.archive.org/web/20030424101301/http:/www.imagenex.com/855_Page_4.jpg; 1 page; Archived on April 24, 2003 URL:http://web.archive.org/web/20030424101939/http;/www.imagenex.com/855 Page 5.jpg; 1 page; Archived on April 24, 2003 URL:http://web.archive.org/web/20030424135458/http:/www.imagenex.com/855_Page 6.jpg; 1 page; Archived on April 24, 2003 URL:http://web.archive.org/web/20030424141232/http:/www.imagenex.com/855_Page 7.jpg; 1 page; Archived on April 24, 2003 URL:http://web.archive.org/web/20030424143158/http:/www.imagenex.com/855 Page 8.jpg; 1 page; Archived on April 24, 2003			
Examiner Signature		James Hulka/Date Considered		12/12/2011	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Substitute for form 1449/PTO (Revised 07/2007)				Complete if Known	
				Application Number	12/460,139
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Filing Date	July 14, 2009
				First Named Inventor	Brian T. Maguire
				Art Unit	3662
				Examiner Name	HULKA, James R.
Sheet	14	of	16	Attorney Docket Number	038495/369324

OTHER DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.			English Language Translation Attached
	233.	Imagenex Model 872 "Yellowfin" Sidescan Sonar; Imagenex Technology Corp.; © 2004-2009			
	234.	The Imagenex SportScan; Digital Sidescan Sonar; "Redefining Image Clarity"; Imagenex Technology Corp.; © 2002			
	235.	Imagenex SportScan Digital SideScan Sonar Brochure: Online; Documents retrieved from internet web archives as follows: URL:http://web.archive.org/web/20030212030409/http://www.imagenex.com/Products/products .html; 1 page; Archived on February 12, 2003 URL:http://web.archive.org/web/20030214044915/http://www.imagenex.com/Products/SportSc an/sportscan.html; 1 page; Archived on February 14, 2003 URL:http://web.archive.org/web/20030222152337/http://www.imagenex.com/Products/SportSc an/SportScan_Specs/sportscan specs.html; 3 pages; Archived on February 22, 2003 URL:http://web.archive.org/web/20030222161450/http://www.imagenex.com/Products/SportSc an/FAQ_s/faq_s.html; 4 pages; Archived on February 22, 2003 URL:http://web.archive.org/web/20030419024526/http://www.imagenex.com/Products/SportSc an/distributors.html; 2 page; Archived on April 19, 2003			
	236.	IMAGENEX (Various) Technical Specifications and User's Manual; Prior to August 2003			
	237.	Innomar - Products; "System Variants: SES Side Scan Option"; Retrieved from internet URL:http://www.innomar.com/produ 2000sidescan.htm; 12/30/2003; 2 pages			
	238.	International Search Report and Written Opinion for Application No. PCT/US2010/039441 dated October 11, 2010			
	239.	International Search Report and Written Opinion for Application No. PCT/US2010/039443 dated October 6, 2010			
	240.	"ITC Application Equations for Underwater Sound Transducers"; Published by International Transducer Corporation, 1995, Rev. 8/00; 3 pages			
	241.	Kelvin Hughes Transit Sonar; ". . . a new dimension in shallow water survey to assist in . . "; Hydrography; Dredging; Salvage; Underwater Construction and Similar Works; March 1966; 8 pages			
	242.	KLEIN DIGITAL SONAR SYSTEMS, "...The Next Generation From the World Leader in Side Scan Sonar and Sub-bottom Profiling Systems," 1988			
ExaminerSignature		Wames Huka/	Date Considered	12/12/2011	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[^0]: /J. H./
 Examiner, Art Unit 3645

[^1]: ，構造が褑雑となり著しく高価な魚群探知装置となるという問題がある。【0005】
 本発明は，簡易かつ安価でありながら超音波の発受信方向を水深方向及びこれに交差する方向へ変更調整可能な魚群探知蒚置の提供を課題とする。
 【0006】
 【課題を解決するための手段】
 請求項1の発明は，船に取り付けられるクランプと，該クランプに取り付けられ端部を水面下に位䈯させ得る支持杆と，前記支持杆の端部に首振り調整可能に支持され超音波の発受信方向を水深方向及びこれに交差する方向へ変更調整可能な超音波振動子と，前記超音波振動子の発受信方向を公更調整する操作手段とを備えたことを特徵とする。【0007】
 請求項2の発明は，請求項1記載の魚群探知装置であって，前記クランプと支持杆との間 に，該支持杆の中間部を回転可能に支持する回動手段を設怄，該回動手段は，前記支持杆 を前記超音波振動子が水中に位置する使用状態と水面上に位置する格納状態とに回転移動 させ得ることを特銜とする。
 【0008】
 請求項3の発明は，請求項2記載の魚群探知搇置であって，前記回動手段は，前記支持杆 を前記超音波振動子が水中に位督する使用状態に付勢する付勢手段及び該付勢手段による付勢力を受け止めて前記支持杆を前記使用状態に対応して位置決めるストッパ手段と，前記支持杆を前記超音波振動子が水面上に位置する格納状態に対応して位質決めるロック手段とを備えたことを特徵とする。
 【0009】
 請求項4の発明は，請求項2 又は3記載の魚群探知装置であって，前記回動手段は，前記 クランプにより前記支持秆が前記沿の右踣又は左舷に取り付けられたとき該回動手段を境 として前記支持杆の超音波振動子側を前記船の進行方向後方側へ回転移動させることを特徴とする。
 【0010】
 請求項5の発明は，請求項2又は3記載の魚群探知装置であって，前記回動手段は，前記 クランプにより前記支持杆が前記船の後部の右玆寄り又は左舷寄りに取り付けられたとき該回動手段を境として前記支持杆の超音波振動子側を前記船の中央部側へ回転移動させる ことを特徴とする。
 【0011】
 【発明の効果】
 請求項1の発明では，船にクランプを取り付け，該クランプに支持杆を支持して水面下に位置する支持杆の端部に超音波振動子を首振り調整可能に支持することができる。そして ，操作手段によって超音波振動子の発受信方向を変更調整し，超音波の発受信方向を水深方向及びこれに交差する方向へ変更調整することが可能となる。【0012】
 従って，魚群が船に対して水深方向に位植する場合に限らず，船から少し離れた位置にい る魚群に対しても超音波振動子を向けて超音波の発受信を行うことができ，水面よりすぐ下を泳いでいる魚群を的碓に探知することができる。
 【0013】
 しかも，超音波振動子を船に取り付けられるクランプに取り付けられた支持杆に首振り調整可能に支持し，操作手段によって変更調整するという簡単な構造によって，超音波の発受信方向を変更調整することができ，簡易な構造によって安価に製造することができる。【0014】
 請求項2の発明では，請求項1の発明の効果に加え，前記クランプと支持杆との間に該支持杆の中間部を回転可能に支持する回動手段を設けたため，前記支持杆を前記超音波振動子が水中に位置する使用状態と水面上に位置する格納状態とに回転移動させることができ る。従って，船が進行する場合に，支持杆及び超音波振動子が水の抵抗を受けることがな

[^2]: 前記支持杆9等を前記ポート3の右舷の緣部21に取り付けるには，クランプ7の䌐結具 27 を綬め，後面41とスラストパッド37との間の間隔を広げる。この状想において， クランプ7をボート3の緑部21の上縁を跨がせるように装着する。この状態でクランプ 7 の後面41はホート3の緑部21外面に対向し，スラストバッド37は同内面に対向す る。
 【0050】
 次いで，䋨結具 27 のノブ39を回して，ねんし軸 35 を六角ナット33に対して蝶合移動 させ，スラストパッド37をボート3の右脑の緩部21内面に笑き当てる。さらに緑部2 1を後面41とスラストパッド37とで綀め上げることによって支持杆9等は図1，図2 のようにボート3の右胘の縁部21に簡単に取り付げられる。
 【0051】
 このような支持杆 9 の取り付けにより，図2のように超音波坛動子13が水中に位置する使用状態にセットすることができる。この状駺は，コイルスプリング 81 の付筇力によっ て外筒部43に対し内筒部79が回転付势をれ，ストッパ係合部95がストッパビン47 に係合することによって位置決められ，支持杆9をほほぞ垂直状態の使用状息に碓奏にセッ トすることができる。
 【0052】
 図1～図3，図5の使用状態で，前記固定具115を綅め，操作ノブ107を押し込めあ るいは押し上げることによって，操作ロッド109を介しベルクランク117をブラケッ ト119に対して回動きせることができる。
 〔0053】
 このベルクランク117の回動によって，超音波振動子13を図5の英線図示及び図12 の状態から図5一点鎖線図示及び図13へのほぼ 90° の㑷囲で回動をせ，発受信方向を変更調整することができる。なお角度 θ は年 90° 以上の範囲，同以下の範囲で調整するよ らに構成字ることも可能である。
 【0054】
 また支持杆9は支持部51において一定の䋨結力により䡉周りに回転可能から䡛方向へは摩擦係合によって移動不能に支持されているため，操作アーム111を把持して支持杆9 をヒンジブラケット49に対し輖周りに回転きせることができる。これによって例えば図 5の一点鋇䤼図示の方向に向いた超音波振動子13を紙面直交方向に回動させることによ り，ほぼ 360° 回転させてて超音波振動子 13 を振り向けることができる。【0055】
 このような超音波振動子13の変更調整によって，図1のようにボート3の真下から少し蜼れた所にいるバス等の魚群Gを的碓から容易に探知することができる。また前記のよう に，超音波振動子 13 を水深方向及びこれに交差する方向と水平方向の回動によって変更調整することができるため，魚群Gが水面5の近くにおいてでート3の後方，側方，前方 のいずれにいる場合でも的碓に探知することができる。
 【0056】
 前記支持杆9を図3の鎖缐図視の格就状態とするには，支持杆9を把持して超音波振動子 13 側がボート3の中央側へ回動するように操作する。これによってヒンジブラケット4 9がクラングブラケット7に対して図9の矢印A方向へ回動する。
 【0057】
 前記支持杆9がほぼ 90° 回転移動したところで，ロックれ48，99か対向する。この対向位䈯で，図4で示すロックビン101をロック孔48，99に差し込み，ヒンジブラ ケット49をクランプ7に対し固定する。従って，支持杆9を図3の格樠状態で雊実に固定することができる。
 【0058】
 図14，図15は左竝用のクランプ7A及びコイルスプリング81Aを示している。図1 4はクランプ7Aの正面図，図15（a）はコイルスプリング81Aの断面図，（b）は同側面図である。

[^3]: /J. H./
 Examiner, Art Unit 3662

[^4]: *A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
 Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

