
Petitioner Apple - Ex. 1002, p. 1

20/00/60

 Lil. it'll ii?" iii}; ”-51% 1It! ‘132313 0-0.. ii iii}! Zr£31
Please type a plus Sign (+) inSide this box —> MODIHED PTO/SB/05 (03 (i t

Approved for use through 10/31/2002 OMB 0651-(,’
U S Patent and Trademark Office US DEPARTMENT OF COMMEF.

:L

E: Under the Papenivork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control numbi= N
=— s 000479 00082

5: UTILITY . y ,
3.; PATENT APPLICATION Edmond Colby Munger= m

: ' TRANSMITTAL IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR
“ "U SECURE COMMUNICATIONS WITH ASSURED SYSTEM

.4 AVAILABILITY= o
' (Only for new nonprowswna/ applications under 37 C F R 1 53(b)) Express Mail Label No

Assistant Commissmner for Patents

APPLICATION ELEMENTS ADDRESS TO: Box Patent Application
See MPEP chapter 600 concerning utility patent application contents Washington, DC 20231

Fee Transmittal Form (e g , PTO/SB/17) 7 I: CD-ROM or CD-R In duplicate, large table or
(Submit an original and a duplicate for fee processing) Computer Program (Appendix)
Applicant claims small entity status 8. Nucleotide and/or Amino Acid Sequence Submissmn
See 37 CFR 1.27 (if applicable, all necessary)
Specification [Total Pages [£1] a 1:] Computer Readable Form (CRF)
(preferred arrangement set forth below) b Specification Sequence Listing on
» Descriptive title of the Invention i. [:1 CD-ROM or CD-R (2 copies), or
- Cross Reference to Related Applications ii E] paper
, Statement Regarding Fed sponsored R 8. D [j . . ._ Reference to sequence “5mg! 3 table, c Statements van in- identit of above c0ies

Or a computer program listlng appendix ACCOMPANYING APPLICATIONS PARTS
- Background ofthe Invention
- Brief Summary of the Invention 9. |:] Assugnment Papers (cover sheet & document(s))

- grief Description of the Drawmgs (if filed) 10. :i 37 C F R §3.73(b) Statement D Power of- etailed Description
_ Claim(s) (when there is an assignee) Attorney

'AbStraCt Of the D'Sdosure 11 3 English Translation Document (if applicable)

4. IX] Drawmg(s) (35 U S C 113) [Total Sheets-] 12. E Information Disclosure El Copies of IDS
Statement (IDS)/PTO—1449 Citations

a IX Formal, or . .

b D Informal RPrelimirliaary Amendment M E 03turn eceipt Postcard (P P 5)5. Oath or Declaration Total Pa es 12 e . .
[g 1 (Should be speCifically itemized)

a D Newly executed (0“9'”a' or COPY)‘ or Certified Copy of Priority Document(s)
b IE Copy from a prior application (37 CFR 1 63 (d)) (if foreign priority IS claimed)

(fora continuation/divisional with Box 18 completed) Nonpublication Request under 35 U S C 122

i D DELET‘ON OF INVENTOR(S) (b)(2)(B)(l) Applicant must attach form PTO/SB/35
Signed statement attached deleting inventor(s) or 'ts equwalent
named in the prior application, see 37 CFR Other _
1 63(d)(2) and 1 33(b)

‘ 6. IE Application Data Sheet. See 37 CFR 1.76

18. If a CONTINUING APPLICATION, check appropriate box, and supply the requi5ite information below and in a preliminary amendment,
' or in an Application Data Sheet under 37 CFR 1 76

El Continuation IE Divi5ional El Continuation»in-part (CIP) of prior application No. @l 504 783
Prior application information Examiner Krisna LIm Group / Art Unit 2153

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied
under Box 5b, is considered a part of the disclosure of the accompanying or divisional application and is hereby Incorporated by reference.
The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS
22907

‘ or E] Correspondence address belowE Customer Number or Bar Code Label
(Insert Customer No or Attach bar code label here)

Address

City 1 State
Country Telephone

Name (Print/Type) Ross A Dannenberg Registration No (Attorney/Agent) 49,024

Signature September 30, 2002

Burden Hour Statement This form is estimated to take 0 2 hours to complete Time Will vary depending upon the needs of the indIVIdual case Any
comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, US. Patent and Trademark
Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for
Patents, Box Patent Application, Washington, DC 20231.

Petitioner Apple - EX. 1002, p. 1

Petitioner Apple - Ex. 1002, p. 2

t:"““ - I" ' “'1 ' 1"“: 5“ a ”1- um;

i. 23:” 1L}; “'11 111'?) “"1" ill 11-131 sluleuflIfiV‘fl-IJL
Approved for use through 10/31/2002 0MB 0651-003.

U S Patent and Trademark Office U S DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

F E E TRANS M |TTAL Appleton Number TBA
for FY 2002 Filing Date September 30, 2002

First Named Inventor Edmond Colby Munger

Complete If Known

Patent fees are sublect to annual rewsmn

Examiner Name TBA

El Applicant claims small entity status. See 37 CFR 1.27 Group [Ari Unit 2153

TOTAL AMOUNT OF PAYMENT ($) Attorne Docket No 000479 00082

 3. ADDITIONAL FEES

 DCheck El Credit card El Money El Other E] NoneOrder

Small Entit

IE Deposn Account

Fee Fee
Code ($) Fee Descrlptlon Fee paid

Deposit
Account 19.0733 205 65 Surcharge ~ late filing fee or oath
Number 227 25 Surcharge - late prowsmnal filing fee

or cover sheet

DepOSIt 139 130 NoneEnglish specification
Account Banner 3‘ WI‘W“. “‘1 147 2,520 For filing a request for reexaminationName

112 920' Requesting publication of SIR prior toExaminer action

113 1,840‘ Requesting publication of SIR afterExaminer action

The Commissioner is authorized to: (check all that apply)
E Charge fee(s) indicated below IE Credit any overpayments
E] Charge any additional fee(s) during the pendency of this application
El Charge fee(s) indicated below, except for the filing fee

215 55 Extension for reply Within first month

to the above'ldem'fied de'os't account 216 200 Extensmn for reply Within secondFEE CALCULATION month
 217 460 Extension for reply Within third month

218 720 Ex1en5ion for reply Within fourth
month

228 980 Extensmn for reply Within fifth month
219 160 Notice of Appeal
220 160 Filing a brief in support of an appeal
221 140 Request for oral hearing

 BASIC FILING FEE

 Fee Descrlptlon

Utility filing fee
De5ign filing fee

Plant flllng fee _

Reissue filing fee 13B 1 510 Petition to institute a public use, ' proceedingProvwional filling fee 240 55 Petition to reVIve — unaVOIdable

 SUBTOTAL (1)
242

2. EXTRA CLAIM FEES 243

 640
Petition to revwe — unintentional
Utility issue fee (or reissue)

 230 DeSign issue fee

Plant issue fee
Petitions to the Commisswner

 otal Claims 20 "

Independent 1213 50 Processmg fee under 37 CFR1 17 (q)
Claims - *3 “ Submissmn of Information Disclosure126 180

Stmt

ggugzem Recording each patent aSSIQnmentp 581 40 581 40 per property (times number ofLar e Entlt properties)

Fee 146 740 246 370 Filing a submission afterfinal rejection
Code (s) Fee Desc" “°" (37 CFR § 1 129(a))203 9 Claims in excess of 20 149 740 249 370 For each additional invention to be

202 42 Independent claims in excess of3 examined (37 CFR § 1 129(b))

204 140 Multiple dependent claim, If not paid 179 740 279 370 Request for Continued Examination (ROE)
209 42 "' Reissue independent claims overorlglnal patent 169 900 169 900 Request I0i expedited examination.. of a de5ign application
210 9 Reissue claims in excess of 20 andover original patent

“or number previously paid, ifgreater, For Reissues, see above

Other fee (speCify)

'Reduced by BaSIC Filing Fee Paid SUBTOTAL (3) ($) 0

SUBMITTED BY , Comrlete (If applicable)

Name (Print/Type) RossA Dannenberg I Registration No Attorney/Agent) I 49,024 Telephone (202) 508-9153
Signature , Date September 30, 2002

WARNING: Informatlon on thls form may become publlct Credit card Information should not be
Included on thls form. Provide credlt card Informatlon and authorlzatlon on PTO-2038.

Burden Hour Statement This form is estimated to take 0 2 hours to complete Time WIII vary depending upon the needs of the indIVIdual case Any comments on the
amount of time you are reqUIred to complete this form should be sent to the Chief Information Officer, U S Patent and Trademark Office, Washington, DC 20231
DO NOT SEND FEES 0R COMPLETED FORMS TO THIS ADDRESS SEND TO A55istant Commissmner for Patents, Washington. DC 20231

Petitioner Apple - EX. 1002, p. 2

Petitioner Apple - Ex. 1002, p. 3

,231.,ii:il .1115!) 133:3} ”€321 liti‘l‘tfii Ml it}! Ei1233! 3???? illiil It?! 35:?
I m. I

Application Data Sheet

Application Information

Application number:

Filing Date:

Application Type: Regular

Subject Matter: Utility

Suggested classification:

Suggested Group Art Unit:

CD-ROM or CD-R?: None

Number of CD disks:

Number of copies of CDs:

Sequence submission?::

Computer Readable Form (CRF)?::

Number of copies of CRF:

Title: IMPROVEMENTS TO AN AGILE NETWORK

PROTOCOL FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

Attorney Docket Number: 00047900082

Request for Early Publication?:: NO

Request for Non-Publication?:: NO

Suggested Drawing Figure:

Total Drawing Sheets: 35

Small Entity?: NO

Latin name:

Variety denomination name:

Petition included?:: NO

Petition Type:

Licensed US Govt. Agency:

Contract or Grant Numbers:

1 Initial 09/30/02

Petitioner Apple - EX. 1002, p. 3

Petitioner Apple - Ex. 1002, p. 4

Secrecy Order in Parent App|.?:

Applicant Information

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name:

Middle Name:

Family Name:

Name Suffix:

City of Residence:

State or Province of Residence:

Country of Residence:

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name:

Middle Name:

Family Name:

Name Suffix:

City of Residence:

State or Province of Residence:

Country of Residence:

Street of mailing address::

11., 31.31 35:53 33:3: ““15 “Xingu-ll “at!"

NO

Inventor

USA

Full Capacity

Edward

Colby

Munger

Crownsville

MD

USA

1101 Opaca Court

Crownsville

MD

USA

21032

Inventor

USA

Full Capacity

Douglas

Charles

Schmidt

Severna Park

MD

USA

230 Oak Court

fl 5 4:. 1r“.
‘ in MI "71‘ .4613, Mi Mi 13:11:.

2 Initial 09/30/02

Petitioner Apple - EX. 1002, p. 4

Petitioner Apple - Ex. 1002, p. 5

City of mailing address:

State or Province of mailing address:

Country of mailing address:

Postal or Zip Code of mailing address:

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name:

Middle Name:

Family Name:

Name Suffix:

City of Residence:

State or Province of Residence:

Country of Residence:

Street of mailing address:

City of mailing address:

State or Province of mailing address:

Country of mailing address:

Postal or Zip Code of mailing address:

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name:

Middle Name:

Family Name:

Name Suffix:

City of Residence:

State or Province of Residence:

ill“ lifll 3353’? 3531?: “2211‘ all: {5:131 Min ii}: ”323% 2311:2111}! liliil £33315

Serverna Park

MD

USA

21146

Inventor

USA

Full Capacity

Robert

Dunham

Shon

Ill

Leesburg

VA

USA

38710 Goose Creek Lane

Leesburg

VA

USA

20175

Inventor

USA

Full Capacity

Victor

Larson

Fairfax

VA

Initial 09/30/02

Petitioner Apple - EX. 1002, p. 5

Petitioner Apple - Ex. 1002, p. 6

Country of Residence:

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name::

Middle Name::

Family Name::

Name Suffix:

City of Residence:

State or Province of Residence:

Country of Residence:

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Correspondence Information

Correspondence Customer Number:

Representative Information

Representative Customer Number:

USA

.:.li.. lit-Iii 3E}? i522}; “Ell it’ll-WI all-- n. lliiil ‘13??? 1233331 lift! Stilt i823?

12026 Lisa Marie Court

Fairfax

VA

USA

22033

Inventor

USA

Full Capacity

Michael

Williamson

South Riding

VA

USA

26203 Ocala Circle

South Riding

VA

USA

20152

22907

22907

Initial 09/30/02

Petitioner Apple - EX. 1002, p. 6

Petitioner Apple - Ex. 1002, p. 7

ii? :i are" 122:; “nil-3‘15? iii: 1:3: ”21:14 Iii fl :2231 52‘“

Domestic Priority Information

Application:: Continuity Type:: Parent Application:: Parent Filing Date::

This Application Division of 09/504,783 02/15/00

i
Foreign Priority Information

Country:: A lication numberzz Filing Date:: Priority Claimedz:

Assignee Information

Assignee namezz Science Applications International Corporation

Street of mailing address:: 10260 Campus Point Drive

City of mailing address:: San Diego

State or Province of mailing address:: CA

Country of mailing address:: USA

Postal or Zip Code of mailing address:: 92121

5 initial 09/30/02

Petitioner Apple - EX. 1002, p. 7

Petitioner Apple - Ex. 1002, p. 8

Iii- 11.33 iii???1.351%"???ail-”“331423’3 a. 512.}! $334 :21}; illfii 212.31 £1533

00047900082

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL
FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

CROSS-REFERENCE TO RELATED APPLICATIONS

[01] This application is a divisional application of 09/504,783 (filed February 15, 2000),

which claims priority from and is a continuation-in-part of previously filed US. application

serial number 09/429,643 (filed October 29, 1999). The subject matter of that application, which

is bodily incorporated herein, derives from provisional U.S. application numbers 60/ 106,261

(filed October 30, 1998) and 60/137,704 (filed June 7, 1999).

BACKGROUND OF THE INVENTION

[02] A tremendous variety of methods have been proposed and implemented to provide

security and anonymity for communications over the Internet. The variety stems, in part, from

the different needs of different Internet users. A basic heuristic framework to aid in discussing

these different security techniques is illustrated in FIG. 1. Two terminals, an originating terminal

100 and a destination terminal 110 are in communication over the Internet. It is desired for the

communications to be secure, that is, immune to eavesdropping. For example, terminal 100 may

transmit secret information to terminal 110 over the Internet 107. Also, it may be desired to

prevent an eavesdropper from discovering that terminal 100 is in communication with terminal

110. For example, if terminal 100 is a user and terminal 110 hosts a web site, terminal 100’s user

may not want anyone in the intervening networks to know what web sites he is "visiting."

Anonymity would thus be an issue, for example, for companies that want to keep their market

research interests private and thus would prefer to prevent outsiders from knowing which web-

sites or other Internet resources they are “visiting.” These two security issues may be called data

security and anonymity, respectively.

[03] Data security is usually tackled using some form of data encryption. An encryption key

48 is known at both the originating and terminating terminals 100 and 110. The keys may be

private and public at the originating and destination terminals 100 and 1 10, respectively or they

may be symmetrical keys (the same key is used by both parties to encrypt and decrypt). Many
encryption methods are known and usable in this context.

Petitioner Apple - EX. 1002, p. 8

Petitioner Apple - Ex. 1002, p. 9

73L. 51.?! ii??? iii} "32“] il l “iii! “41!" £31 till $1.3le3:333}???

000479.00082

[04] To hide traffic from a local administrator or ISP, a user can employ a local proxy server

in communicating over an encrypted channel with an outside proxy such that the local

administrator or ISP only sees the encrypted traffic. Proxy servers prevent destination servers

from determining the identities of the originating clients. This system employs an intermediate

server interposed between client and destination server. The destination server sees only the

Internet Protocol (IP) address of the proxy server and not the originating client. The target server

only sees the address of the outside proxy. This scheme relies on a trusted outside proxy server.

Also, proxy schemes are vulnerable to traffic analysis methods of determining identities of

transmitters and receivers. Another important limitation of proxy servers is that the server knows

the identities of both calling and called parties. In many instances, an originating terminal, such

as terminal A, would prefer to keep its identity concealed from the proxy, for example, if the

proxy server is provided by an Internet service provider (ISP).

[05] To defeat traffic analysis, a scheme called Chaum’s mixes employs a proxy server that

transmits and receives fixed length messages, including dummy messages. Multiple originating

terminals are connected through a mix (a server) to multiple target servers. It is difficult to tell

which of the originating terminals are communicating to which of the connected target servers,

and the dummy messages confuse eavesdroppers’ efforts to detect communicating pairs by

analyzing traffic. A drawback is that there is a risk that the mix server could be compromised.

One way to deal with this risk is to spread the trust among multiple mixes. If one mix is

compromised, the identities of the originating and target terminals may remain concealed. This

strategy requires a number of alternative mixes so that the intermediate servers interposed

between the originating and target terminals are not determinable except by compromising more

than one mix. The strategy wraps the message with multiple layers of encrypted addresses. The

first mix in a sequence can decrypt only the outer layer of the message to reveal the next

destination mix in sequence. The second mix can decrypt the message to reveal the next mix and

so on. The target server receives the message and, optionally, a multi—layer encrypted payload

containing return information to send data back in the same fashion. The only way to defeat such

a mix scheme is to collude among mixes. If the packets are all fixed-length and intermixed with

dummy packets, there is no way to do any kind of traffic analysis.

Petitioner Apple - Ex. 1002, p. 9

Petitioner Apple - Ex. 1002, p. 10

.131. $113} in? 937-3; 11-73? 21%;- “Eli “-13 8 "ll ”3??! 1:32? 6:35 3331 in???
. .u . a

00047900082

[06] Still another anonymity technique, called ‘crowds,’ protects the identity of the originating

terminal from the intermediate proxies by providing that originating terminals belong to groups

of proxies called crowds. The crowd proxies are interposed between originating and target

terminals. Each proxy through which the message is sent is randomly chosen by an upstream

proxy. Each intermediate proxy can send the message either to another randomly chosen proxy

in the “crowd” or to the destination. Thus, even crowd members cannot determine if a preceding

proxy is the originator of the message or if it was simply passed from another proxy.

[07] ZKS (Zero-Knowledge Systems) Anonymous IP Protocol allows users to select up to any

of five different pseudonyms, while desktop software encrypts outgoing traffic and wraps it in

User Datagram Protocol (UDP) packets. The first server in a 2+-hop system gets the UDP

packets, strips off one layer of encryption to add another, then sends the traffic to the next server,

which strips off yet another layer of encryption and adds a new one. The user is permitted to

control the number of hops. At the final server, traffic is decrypted with an untraceable IP

address. The technique is called onion-routing. This method can be defeated using traffic

analysis. For a simple example, bursts of packets from a user during low-duty periods can reveal
the identities of sender and receiver.

[08] Firewalls attempt to protect LANs from unauthorized access and hostile exploitation or

damage to computers connected to the LAN. Firewalls provide a server through which all access

to the LAN must pass. Firewalls are centralized systems that require administrative overhead to

maintain. They can be compromised by virtual-machine applications (“applets”). They instill a

false sense of security that leads to security breaches for example by users sending sensitive

information to servers outside the firewall or encouraging use of modems to sidestep the firewall

security. Firewalls are not useful for distributed systems such as business travelers, extranets,

small teams, etc.

SUMMARY OF THE INVENTION

[09] A secure mechanism for communicating over the intemet, including a protocol referred

to as the Tunneled Agile Routing Protocol (TARP), uses a unique two-layer encryption format

and special TARP routers. TARP routers are similar in function to regular IP routers. Each

TARP router has one or more IP addresses and uses normal IP protocol to send IP packet

Petitioner Apple - Ex. 1002, p. 10

Petitioner Apple - Ex. 1002, p. 11

.221. iii}! if??? ES} ”'53? ""3 3’32?“ W: 3K?! “3??? iii}; iiiiéiélfiil if???

000479.00082

messages (“‘packets” or “datagrams”). The IP packets exchanged between TARP terminals via

TARP routers are actually encrypted packets whose true destination address is concealed except

to TARP routers and servers. The normal or “clear” or “outside” IP header attached to TARP IP

packets contains only the address of a next hop router or destination server. That is, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s IP

header always points to a next-hop in a series of TARP router hops, or to the final destination.

This means there is no overt indication from an intercepted TARP packet of the true destination

of the TARP packet since the destination could always be next-hop TARP router as well as the
final destination.

[10] Each TARP packet’s true destination is concealed behind a layer of encryption generated

using a link key. The link key is the encryption key used for encrypted communication between

the hops intervening between an originating TARP terminal and a destination TARP terminal.

Each TARP router can remove the outer layer of encryption to reveal the destination router for

each TARP packet. To identify the link key needed to decrypt the outer layer of encryption of a

TARP packet, a receiving TARP or routing terminal may identify the transmitting terminal by

the sender/receiver IP numbers in the cleartext IP header.

[11] Once the outer layer of encryption is removed, the TARP router determines the final

destination. Each TARP packet 140 undergoes a minimum number of hops to help foil traffic

analysis. The hops may be chosen at random or by a fixed value. As a result, each TARP packet

may make random trips among a number of geographically disparate routers before reaching its

destination. Each trip is highly likely to be different for each packet composing a given message

because each trip is independently randomly determined. This feature is called agile routing. The

fact that different packets take different routes provides distinct advantages by making it difficult

for an interloper to obtain all the packets forming an entire multi—packet message. The associated

advantages have to do with the inner layer of encryption discussed below. Agile routing is

combined with another feature that furthers this purpose; a feature that ensures that any message

is broken into multiple packets.

[12] The IP address of a TARP router can be changed, a feature called IP agility. Each TARP

router, independently or under direction from another TARP terminal or router, can change its IP

Petitioner Apple - Ex. 1002, p. 11

Petitioner Apple - Ex. 1002, p. 12

533.. 32.}?! ii??? iii»? “7:113 “(Eli-3‘33! ill-- till “‘33“ 2:3}; it}! 4213! iii?!

000479.00082

address. A separate, unchangeable identifier or address is also defined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs.

[13] The message payload is hidden behind an inner layer of encryption in the TARP packet

that can only be unlocked using a session key. The session key is not available to any of the

intervening TARP routers. The session key is used to decrypt the payloads of the TARP packets

permitting the data stream to be reconstructed.

[14] Communication may be made private using link and session keys, which in turn may be

shared and used according to any desired method. For example, public/private keys or symmetric

keys may be used.

[15] To transmit a data stream, a TARP originating terminal constructs a series of TARP

packets from a series of IP packets generated by a network (IP) layer process. (Note that the

terms “network layer,” “data link layer,” “application layer,” etc. used in this specification

correspond to the Open Systems Interconnection (OSI) network terminology.) The payloads of

these packets are assembled into a block and chain-block encrypted using the session key. This

assumes, of course, that all the IP packets are destined for the same TARP terminal. The block is

then interleaved and the interleaved encrypted block is broken into a series of payloads, one for

each TARP packet to be generated. Special TARP headers IPT are then added to each payload

using the IP headers from the data stream packets. The TARP headers can be identical to normal

IP headers or customized in some way. They should contain a formula or data for deinterleaving

the data at the destination TARP terminal, a time—to-live (TTL) parameter to indicate the number

of hops still to be executed, a data type identifier which indicates whether the payload contains,

for example, TCP or UDP data, the sender’s TARP address, the destination TARP address, and

an indicator as to whether the packet contains real or decoy data or a formula for filtering out

decoy data if decoy data is spread in some way through the TARP payload data.

Petitioner Apple - Ex. 1002, p. 12

Petitioner Apple - Ex. 1002, p. 13

.2: :3: :3: :2: 1:: :,,:;,,:;;. u: :3: :2: :3:; :3: :3: :3::

00047900082

[16] Note that although chain-block encryption is discussed here with reference to the session

key, any encryption method may be used. Preferably, as in chain block encryption, a method

should be used that makes unauthorized decryption difficult without an entire result of the

encryption process. Thus, by separating the encrypted block among multiple packets and making

it difficult for an interloper to obtain access to all of such packets, the contents of the

communications are provided an extra layer of security.

[17] Decoy or dummy data can be added to a stream to help foil traffic analysis by reducing

the peak-to-average network load. It may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet cannot be tied to

communication bursts at another point to reveal the communicating endpoints.

[18] Dummy data also helps to break the data into a larger number of inconspicuously—sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to portion, or entirety, of a message, and

that portion or entirety then interleaved into a number of separate packets. Considering the agile

IP routing of the packets, and the attendant difficulty of reconstructing an entire sequence of

packets to form a single block-encrypted message element, decoy packets can significantly

increase the difficulty of reconstructing an entire data stream.

[19] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Because the encryption system described above is insertable between the data link and network

layers, the processes involved in supporting the encrypted communication may be completely

transparent to processes at the IP (network) layer and above. The TARP processes may also be

completely transparent to the data link layer processes as well. Thus, no operations at or above

the Network layer, or at or below the data link layer, are affected by the insertion of the TARP

stack. This provides additional security to all processes at or above the network layer, since the

Petitioner Apple - EX. 1002, p. 13

Petitioner Apple - Ex. 1002, p. 14

.Ziil. ii}? ii? iii} “1}??? i153)!" “2511* ”Ill" .. 5213} ”{5}? 35}??? £33 33:??? iii???

000479.00082

difficulty of unauthorized penetration of the network layer (by, for example, a hacker) is

increased substantially. Even newly developed servers running at the session layer leave all

processes below the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[20] IP address changes made by TARP terminals and routers can be done at regular intervals,

at random intervals, or upon detection of “attacks.” The variation of IP addresses hinders traffic

analysis that might reveal which computers are communicating, and also provides a degree of

immunity from attack. The level of immunity from attack is roughly proportional to the rate at

which the IP address of the host is changing.

[21] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicating that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. In addition, it may create a subprocess that maintains the original IP

address and continues interacting with the attacker in some manner.

[22] Decoy packets may be generated by each TARP terminal on some basis determined by an

algorithm. For example, the algorithm may be a random one which calls for the generation of a

packet on a random basis when the terminal is idle. Alternatively, the algorithm may be

responsive to time of day or detection of low traffic to generate more decoy packets during low

traffic times. Note that packets are preferably generated in groups, rather than one by one, the

groups being sized to simulate real messages. In addition, so that decoy packets may be inserted

in normal TARP message streams, the background loop may have a latch that makes it more

likely to insert decoy packets when a message stream is being received. Alternatively, if a large

number of decoy packets is received along with regular TARP packets, the algorithm may

increase the rate of dropping of decoy packets rather than forwarding them. The result of

dropping and generating decoy packets in this way is to make the apparent incoming message

size different from the apparent outgoing message size to help foil traffic analysis.

Petitioner Apple - Ex. 1002, p. 14

Petitioner Apple - Ex. 1002, p. 15

000479.00082

[23] In various other embodiments of the invention, a scalable version of the system may be

constructed in which a plurality of IP addresses are preassigned to each pair of communicating

nodes in the network. Each pair of nodes agrees upon an algorithm for “hopping” between IP

addresses (both sending and receiving), such that an eavesdropper sees apparently continuously

random IP address pairs (source and destination) for packets transmitted between the pair.

Overlapping or “reusable” IP addresses may be allocated to different users on the same subnet,

since each node merely verifies that a particular packet includes a valid source/destination pair

from the agreed-upon algorithm. Source/destination pairs are preferably not reused between any

two nodes during any given end—to-end session, though limited IP block sizes or lengthy sessions

might require it.

[24] Further improvements described in this continuation—impart application include: (1) a

load balancer that distributes packets across different transmission paths according to

transmission path quality; (2) a DNS proxy server that transparently creates a virtual private

network in response to a domain name inquiry; (3) a large-to-small link bandwidth management

feature that prevents denial-of-service attacks at system chokepoints; (4) a traffic limiter that

regulates incoming packets by limiting the rate at which a transmitter can be synchronized with a

receiver; and (5) a signaling synchronizer that allows a large number of nodes to communicate

with a central node by partitioning the communication function between two separate entities

BRIEF DESCRIPTION OF THE DRAWINGS

[25] FIG. 1 is an illustration of secure communications over the Internet according to a prior
art embodiment.

[26] FIG. 2 is an illustration of secure communications over the Internet according to a an
embodiment of the invention.

[27] FIG. 3a is an illustration of a process of forming a tunneled IP packet according to an
embodiment of the invention.

[28] FIG. 3b is an illustration of a process of forming a tunneled IP packet according to

another embodiment of the invention.

Petitioner Apple - EX. 1002, p. 15

Petitioner Apple - Ex. 1002, p. 16

.31. 9‘23} {Eff i533}: “3331 “nil "5521:" 3i 52% 31:3 ‘I-EEii 13331 $31521}! e25???

000479.00082

[29] FIG. 4 is an illustration of an OSI layer location of processes that may be used to

implement the invention.

[30] FIG. 5 is a flow chart illustrating a process for routing a tunneled packet according to an

embodiment of the invention.

[31] FIG. 6 is a flow chart illustrating a process for forming a tunneled packet according to an
embodiment of the invention.

[32] FIG. 7 is a flow chart illustrating a process for receiving a tunneled packet according to

an embodiment of the invention.

[33] FIG. 8 shows how a secure session is established and synchronized between a client and a

TARP router.

[34] FIG. 9 shows an IP address hopping scheme between a client computer and TARP router

using transmit and receive tables in each computer.

[35] FIG. 10 shows physical link redundancy among three Internet Service Providers (ISPs)

and a client computer.

[36] FIG. 11 shows how multiple IP packets can be embedded into a single “frame” such as an

Ethernet frame, and further shows the use of a discriminator field to camouflage true packet

recipients.

[37] FIG. 12A shows a system that employs hopped hardware addresses, hopped IP addresses,

and hopped discriminator fields.

[38] FIG. 12B shows several different approaches for hopping hardware addresses, IP

addresses, and discriminator fields in combination.

Petitioner Apple - EX. 1002, p. 16

Petitioner Apple - Ex. 1002, p. 17

ammmwwmm.wwnwwm
1.:

000479.00082

[39] FIG. 13 shows a technique for automatically re—establishing synchronization between

sender and receiver through the use of a partially public sync value.

[40] FIG. 14 shows a “checkpoint” scheme for regaining synchronization between a sender

and recipient.

[41] FIG. 15 shows further details of the checkpoint scheme of FIG. 14.

[42] FIG. 16 shows how two addresses can be decomposed into a plurality of segments for

comparison with presence vectors.

[43] FIG. 17 shows a storage array for a receiver’s active addresses.

[44] FIG. 18 shows the receiver’s storage array afler receiving a sync request.

[45] FIG. 19 shows the receiver’s storage array afler new addresses have been generated.

[46] FIG. 20 shows a system employing distributed transmission paths.

[47] FIG. 21 shows a plurality of link transmission tables that can be used to route packets in

the system of FIG. 20.

[48] FIG. 22A shows a flowchart for adjusting weight value distributions associated with a

plurality of transmission links.

[49] FIG. 22B shows a flowchart for setting a weight value to zero if a transmitter turns off.

[50] FIG. 23 shows a system employing distributed transmission paths with adjusted weight

value distributions for each path.

[51] FIG. 24 shows an example using the system of FIG. 23.

[52] FIG. 25 shows a conventional domain—name look-up service.

10

Petitioner Apple - EX. 1002, p. 17

Petitioner Apple - Ex. 1002, p. 18

ammwmmmw mafimmm
1 in

000479.00082

[53] FIG. 26 shows a system employing a DNS proxy server with transparent VPN creation.

[54] FIG. 27 shows steps that can be carried out to implement transparent VPN creation based

on a DNS look—up function.

[55] FIG. 28 shows a system including a link guard function that prevents packet overloading
on a low-bandwidth link LOW BW.

[56] FIG. 29 shows one embodiment of a system employing the principles of FIG. 28.

[57] FIG. 30 shows a system that regulates packet transmission rates by throttling the rate at

which synchronizations are performed.

[58] FIG. 31 shows a signaling server 3101 and a transport server 3102 used to establish a

VPN with a client computer.

[59] FIG. 32 shows message flows relating to synchronization protocols of FIG. 31.

DETAILED DESCRIPTION OF THE INVENTION

[60] Referring to FIG. 2, a secure mechanism for communicating over the intemet employs a

number of special routers or servers, called TARP routers 122-127 that are similar to regular IP

routers 128-132 in that each has one or more IP addresses and uses normal IP protocol to send

normal-looking IP packet messages, called TARP packets 140. TARP packets 140 are identical

to normal IP packet messages that are routed by regular IP routers 128-132 because each TARP

packet 140 contains a destination address as in a normal IP packet. However, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s 140 IP

header always points to a next-hop in a series of TARP router hops, or the final destination,

TARP terminal 110. Because the header of the TARP packet contains only the next-hop

destination, there is no overt indication from an intercepted TARP packet of the true destination

of the TARP packet 140 since the destination could always be the next-hop TARP router as well

as the final destination, TARP terminal 110.

11

Petitioner Apple - EX. 1002, p. 18

Petitioner Apple - Ex. 1002, p. 19

2:1. 1111:111353131’i3313 “3311 ““11“ “133311 ”~11" 31:31! “£311 35331? 31:11 11:11 115332

00047900082

[61] Each TARP packet’s true destination is concealed behind an outer layer of encryption

generated using a link key 146. The link key 146 is the encryption key used for encrypted

communication between the end points (TARP terminals or TARP routers) of a single link in the

chain of hops connecting the originating TARP terminal 100 and the destination TARP terminal

110. Each TARP router 122-127, using the link key 146 it uses to communicate with the

previous hop in a chain, can use the link key to reveal the true destination of a TARP packet. To

identify the link key needed to decrypt the outer layer of encryption of a TARP packet, a

receiving TARP or routing terminal may identify the transmitting terminal (which may indicate

the link key used) by the sender field of the clear IP header. Alternatively, this identity may be

hidden behind another layer of encryption in available bits in the clear IP header. Each TARP

router, upon receiving a TARP message, determines if the message is a TARP message by using

authentication data in the TARP packet. This could be recorded in available bytes in the TARP

packet’s IP header. Alternatively, TARP packets could be authenticated by attempting to decrypt

using the link key 146 and determining if the results are as expected. The former may have

computational advantages because it does not involve a decryption process.

[62] Once the outer layer of decryption is completed by a TARP router 122—127, the TARP

router determines the final destination. The system is preferably designed to cause each TARP

packet 140 to undergo a minimum number of hops to help foil traffic analysis. The time to live

counter in the IP header of the TARP message may be used to indicate a number of TARP router

hops yet to be completed. Each TARP router then would decrement the counter and determine

from that whether it should forward the TARP packet 140 to another TARP router 122—127 or to

the destination TARP terminal 110. If the time to live counter is zero or below zero after

decrementing, for an example of usage, the TARP router receiving the TARP packet 140 may

forward the TARP packet 140 to the destination TARP terminal 110. If the time to live counter is

above zero after decrementing, for an example of usage, the TARP router receiving the TARP

packet 140 may forward the TARP packet 140 to a TARP router 122-127 that the current TARP

terminal chooses at random. As a result, each TARP packet 140 is routed through some

minimum number of hops of TARP routers 122—127 which are chosen at random.

12

Petitioner Apple - Ex. 1002, p. 19

Petitioner Apple - Ex. 1002, p. 20

iii. ’l'jlliiitrfi 35:“)??- ‘fi-fl “Iii"‘i‘iill 3-3?” ... ll ll “531 if}? '51:}? it}? 2333i?

00047900082

[63] Thus, each TARP packet, irrespective of the traditional factors determining traffic in the

Internet, makes random trips among a number of geographically disparate routers before

reaching its destination and each trip is highly likely to be different for each packet composing a

given message because each trip is independently randomly determined as described above. This

feature is called agile routing. For reasons that will become clear shortly, the fact that different

packets take different routes provides distinct advantages by making it difficult for an interloper

to obtain all the packets forming an entire multi-packet message. Agile routing is combined with

another feature that fiirthers this purpose, a feature that ensures that any message is broken into

multiple packets.

[64] A TARP router receives a TARP packet when an IP address used by the TARP router

coincides with the IP address in the TARP packet’s IP header IPC. The IP address of a TARP

router, however, may not remain constant. To avoid and manage attacks, each TARP router,

independently or under direction from another TARP terminal or router, may change its IP

address. A separate, unchangeable identifier or address is also defined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using 8. Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs. In reality, whenever a TARP router looks up the address of a

destination in the encrypted header, it must convert a TARP address to a real IP address using its
LUT.

[65] While every TARP router receiving a TARP packet has the ability to determine the

packet’s final destination, the message payload is embedded behind an inner layer of encryption

in the TARP packet that can only be unlocked using a session key. The session key is not

available to any of the TARP routers 122—127 intervening between the originating 100 and

destination 110 TARP terminals. The session key is used to decrypt the payloads of the TARP

packets 140 permitting an entire message to be reconstructed.

[66] In one embodiment, communication may be made private using link and session keys,

which in turn may be shared and used according any desired method. For example, a public key

or symmetric keys may be communicated between link or session endpoints using a public key

13

Petitioner Apple - EX. 1002, p. 20

Petitioner Apple - Ex. 1002, p. 21

.311. 11:11 133553 35333; “'3‘?! 11.13-114.33 ”"31" .1. 31231 $1331.35 1133 11:3! 3233???

00047900082

method. Any of a variety of other mechanisms for securing data to ensure that only authorized

computers can have access to the private information in the TARP packets 140 may be used as
desired.

[67] Referring to FIG. 3a, to construct a series of TARP packets, a data stream 300 of IP

packets 207a, 207b, 207e, etc., such series of packets being formed by a network (IP) layer

process, is broken into a series of small sized segments. In the present example, equal—sized

segments 1—9 are defined and used to construct a set of interleaved data packets A, B, and C.

Here it is assumed that the number of interleaved packets A, B, and C formed is three and that

the number of IP packets 207a—207c used to form the three interleaved packets A, B, and C is

exactly three. Of course, the number of IP packets spread over a group of interleaved packets

may be any convenient number as may be the number of interleaved packets over which the

incoming data stream is spread. The latter, the number of interleaved packets over which the data

stream is spread, is called the interleave window.

[68] To create a packet, the transmitting software interleaves the normal IP packets 207a et.

seq. to form a new set of interleaved payload data 320. This payload data 320 is then encrypted

using a session key to form a set of session-key-encrypted payload data 330, each of which, A,

B, and C, will form the payload of a TARP packet. Using the IP header data, from the original

packets 207a—207c, new TARP headers IPT are formed. The TARP headers IPT can be identical

to normal IP headers or customized in some way. In a preferred embodiment, the TARP headers

IP-r are IP headers with added data providing the following information required for routing and

reconstruction of messages, some of which data is ordinarily, or capable of being, contained in
normal 1P headers:

l. A window sequence number — an identifier that indicates where the packet

belongs in the original message sequence.

2. An interleave sequence number — an identifier that indicates the interleaving

sequence used to form the packet so that the packet can be deinterleaved along

with other packets in the interleave window.

3. A time-to-live (TTL) datum — indicates the number of TARP-router—hops to

be executed before the packet reaches its destination. Note that the TTL parameter

14

Petitioner Apple - Ex. 1002, p. 21

Petitioner Apple - Ex. 1002, p. 22

um" 11;}:.. n...” is”...w lifii “5:5?!

000479.00082

may provide a datum to be used in a probabilistic formula for determining

whether to route the packet to the destination or to another hop.

4. Data type identifier — indicates whether the payload contains, for example,
TCP or UDP data.

5. Sender’s address — indicates the sender’s address in the TARP network.

6. Destination address — indicates the destination terminal’s address in the TARP

network.

7. Decoy/Real — an indicator of whether the packet contains real message data or

dummy decoy data or a combination.

[69] Obviously, the packets going into a single interleave window must include only packets

with a common destination. Thus, it is assumed in the depicted example that the IP headers of IP

packets 207a-207c all contain the same destination address or at least will be received by the

same terminal so that they can be deinterleaved. Note that dummy or decoy data or packets can

be added to form a larger interleave window than would otherwise be required by the size of a

given message. Decoy or dummy data can be added to a stream to help foil traffic analysis by

leveling the load on the network. Thus, it may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet cannot be tied to

communication bursts at another point to reveal the communicating endpoints.

[70] Dummy data also helps to break the data into a larger number of inconspicuously-sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to a portion, or the entirety, of a message,

and that portion or entirety then interleaved into a number of separate packets.

[71] Referring to FIG. 3b, in an alternative mode of TARP packet construction, a series of IP

packets are accumulated to make up a predefined interleave window. The payloads of the

packets are used to construct a single block 520 for chain block encryption using the session key.

15

Petitioner Apple - EX. 1002, p. 22

Petitioner Apple - Ex. 1002, p. 23

,liil illili if??? ESE; “:22?! “viii-“(Eli “all" m 512%! “5le 22%”? Eli"?! $3.9 £33333

00047900082

The payloads used to form the block are presumed to be destined for the same terminal. The

block size may coincide with the interleave window as depicted in the example embodiment of

FIG. 3b. Afier encryption, the encrypted block is broken into separate payloads and segments

which are interleaved as in the embodiment of Fig 3a. The resulting interleaved packets A, B,

and C, are then packaged as TARP packets with TARP headers as in the Example of FIG. 3a.

The remaining process is as shown in, and discussed with reference to, FIG. 3a.

[72] Once the TARP packets 340 are formed, each entire TARP packet 340, including the

TARP header IPT, is encrypted using the link key for communication with the first-hop-TARP

router. The first hop TARP router is randomly chosen. A final unencrypted IP header IPc is

added to each encrypted TARP packet 340 to form a normal IP packet 360 that can be

transmitted to a TARP router. Note that the process of constructing the TARP packet 360 does

not have to be done in stages as described. The above description is just a useful heuristic for

describing the final product, namely, the TARP packet.

[73] Note that, TARP header IPT could be a completely custom header configuration with no

similarity to a normal IP header except that it contain the information identified above. This is so

since this header is interpreted by only TARP routers.

[74] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Referring to FIG. 4, a TARP transceiver 405 can be an originating terminal 100, a destination

terminal 110, or a TARP router 122-127. In each TARP Transceiver 405, a transmitting process

is generated to receive normal packets from the Network (IP) layer and generate TARP packets

for communication over the network. A receiving process is generated to receive normal IP

packets containing TARP packets and generate from these normal IP packets which are “passed

up” to the Network (IP) layer. Note that where the TARP Transceiver 405 is a router, the

received TARP packets 140 are not processed into a stream of IP packets 415 because they need

only be authenticated as proper TARP packets and then passed to another TARP router or a

TARP destination terminal 110. The intervening process, a “TARP Layer” 420, could be

combined with either the data link layer 430 or the Network layer 410. In either case, it would

intervene between the data link layer 430 so that the process would receive regular IP packets

l6

Petitioner Apple - Ex. 1002, p. 23

Petitioner Apple - Ex. 1002, p. 24

mmmfiwwmwimwmmmfi

000479.00082

containing embedded TARP packets and “hand up” a series of reassembled IP packets to the

Network layer 410. As an example of combining the TARP layer 420 with the data link layer

430, a program may augment the normal processes running a communications card, for example,

an Ethernet card. Alternatively, the TARP layer processes may form part of a dynamically

loadable module that is loaded and executed to support communications between the network

and data link layers.

[75] Because the encryption system described above can be inserted between the data link and

network layers, the processes involved in supporting the encrypted communication may be

completely transparent to processes at the IP (network) layer and above. The TARP processes

may also be completely transparent to the data link layer processes as well. Thus, no operations

at or above the network layer, or at or below the data link layer, are affected by the insertion of

the TARP stack. This provides additional security to all processes at or above the network layer,

since the difficulty of unauthorized penetration of the network layer (by, for example, a hacker)

is increased substantially. Even newly developed servers running at the session layer leave all

processes below the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[76] Note that IP address changes made by TARP terminals and routers can be done at regular

intervals, at random intervals, or upon detection of “attacks.” The variation of IP addresses

hinders traffic analysis that might reveal which computers are communicating, and also provides

a degree of immunity from attack. The level of immunity from attack is roughly proportional to

the rate at which the IP address of the host is changing.

[77] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicates that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. To accomplish this, the TARP process will construct a TARP-formatted

message, in the style of Internet Control Message Protocol (ICMP) datagrams as an example;

this message will contain the machine’s TARP address, its previous IP address, and its new IP

address. The TARP layer will transmit this packet to at least one known TARP router; then upon

17

Petitioner Apple - Ex. 1002, p. 24

Petitioner Apple - Ex. 1002, p. 25

amflmwwwwmmmwmmm

000479.00082

receipt and validation of the message, the TARP router will update its LUT with the new IP

address for the stated TARP address. The TARP router will then format a similar message, and

broadcast it to the other TARP routers so that they may update their LUTs. Since the total

number of TARP routers on any given subnet is expected to be relatively small, this process of

updating the LUTs should be relatively fast. It may not, however, work as well when there is a

relatively large number of TARP routers and/or a relatively large number of clients; this has

motivated a refinement of this architecture to provide scalability; this refinement has led to a

second embodiment, which is discussed below.

[78] Upon detection of an attack, the TARP process may also create a subprocess that

maintains the original IP address and continues interacting with the attacker. The latter may

provide an opportunity to trace the attacker or study the attacker’s methods (called “fishbowling”

drawing upon the analogy of a small fish in a fish bowl that “thinks” it is in the ocean but is

actually under captive observation). A history of the communication between the attacker and the

abandoned (fishbowled) IP address can be recorded or transmitted for human analysis or further

synthesized for purposes of responding in some way.

[79] As mentioned above, decoy or dummy data or packets can be added to outgoing data

streams by TARP terminals or routers. In addition to making it convenient to spread data over a

larger number of separate packets, such decoy packets can also help to level the load on inactive

portions of the Internet to help foil traffic analysis efforts.

[80] Decoy packets may be generated by each TARP terminal 100, 110 or each router 122—

127 on some basis determined by an algorithm. For example, the algorithm may be a random one

which calls for the generation of a packet on a random basis when the terminal is idle.

Alternatively, the algorithm may be responsive to time of day or detection of low traffic to

generate more decoy packets during low traffic times. Note that packets are preferably generated

in groups, rather than one by one, the groups being sized to simulate real messages. In addition,

so that decoy packets may be inserted in normal TARP message streams, the background loop

may have a latch that makes it more likely to insert decoy packets when a message stream is

being received. That is, when a series of messages are received, the decoy packet generation rate

may be increased. Alternatively, if a large number of decoy packets is received along with

18

Petitioner Apple - EX. 1002, p. 25

Petitioner Apple - Ex. 1002, p. 26

ammwwwwwmmmxmmm

000479.00082

regular TARP packets, the algorithm may increase the rate of dropping of decoy packets rather

than forwarding them. The result of dropping and generating decoy packets in this way is to

make the apparent incoming message size different from the apparent outgoing message size to

help foil traffic analysis. The rate of reception of packets, decoy or otherwise, may be indicated

to the decoy packet dropping and generating processes through perishable decoy and regular

packet counters. (A perishable counter is one that resets or decrements its value in response to

time so that it contains a high value when it is incremented in rapid succession and a small value

when incremented either slowly or a small number of times in rapid succession.) Note that

destination TARP terminal 1 10 may generate decoy packets equal in number and size to those

TARP packets received to make it appear it is merely routing packets and is therefore not the
destination terminal.

[81] Referring to FIG. 5, the following particular steps may be employed in the above-

described method for routing TARP packets.

0 SO. A background loop operation is performed which applies 'an algorithm which determines

the generation of decoy IP packets. The loop is interrupted when an encrypted TARP packet
is received.

0 S2. The TARP packet may be probed in some way to authenticate the packet before

attempting to decrypt it using the link key. That is, the router may determine that the packet

is an authentic TARP packet by performing a selected operation on some data included with

the clear IP header attached to the encrypted TARP packet contained in the payload. This

makes it possible to avoid performing decryption on packets that are not authentic TARP

packets.

0 S3. The TARP packet is decrypted to expose the destination TARP address and an indication

of whether the packet is a decoy packet or part of a real message.

0 S4. If the packet is a decoy packet, the perishable decoy counter is incremented.

0 S5. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the router may choose to throw it away. If the received

packet is a decoy packet and it is determined that it should be thrown away (S6), control

returns to step SO.

19

Petitioner Apple - EX. 1002, p. 26

Petitioner Apple - Ex. 1002, p. 27

.333. ilijli iii?“ $153331 finilnmiiil “"33! iii]! ‘52}?! £3331 Hill? 3113! iii?

000479.00082

0 S7. The TTL parameter of the TARP header is decremented and it is determined if the TTL

parameter is greater than zero.

0 S8. If the TTL parameter is greater than zero, a TARP address is randomly chosen from a list

of TARP addresses maintained by the router and the link key and IP address corresponding

to that TARP address memorized for use in creating a new IP packet containing the TARP
packet.

0 S9. If the TTL parameter is zero or less, the link key and IP address corresponding to the

TARP address of the destination are memorized for use in creating the new IP packet

containing the TARP packet.

0 $10. The TARP packet is encrypted using the memorized link key.

o S] 1. An IP header is added to the packet that contains the stored IP address, the encrypted

TARP packet wrapped with an IP header, and the completed packet transmitted to the next

hop or destination.

[82] Referring to FIG. 6, the following particular steps may be employed in the above-

described method for generating TARP packets.

0 $20. A background loop operation applies an algorithm that determines the generation of

decoy IP packets. The loop is interrupted when a data stream containing IP packets is
received for transmission.

0 $21. The received IP packets are grouped into a set consisting of messages with a constant IP

destination address. The set is further broken down to coincide with a maximum size of an

interleave window The set is encrypted, and interleaved into a set of payloads destined to

become TARP packets.

o 822. The TARP address corresponding to the IP address is determined from a lookup table

and stored to generate the TARP header. An initial TTL count is generated and stored in the

header. The TTL count may be random with minimum and maximum values or it may be

fixed or determined by some other parameter.

0 $23. The window sequence numbers and interleave sequence numbers are recorded in the

TARP headers of each packet.

0 824. One TARP router address is randomly chosen for each TARP packet and the IP address

corresponding to it stored for use in the clear IP header. The link key corresponding to this

20

Petitioner Apple - Ex. 1002, p. 27

Petitioner Apple - Ex. 1002, p. 28

mmwmwwwwhmmammfi

000479.00082

router is identified and used to encrypt TARP packets containing interleaved and encrypted
data and TARP headers.

0 S25. A clear IP header with the first hop router’s real IP address is generated and added to

each of the encrypted TARP packets and the resulting packets.

[83] Referring to FIG. 7, the following particular steps may be employed in the above-

described method for receiving TARP packets.

0 S40. A background loop operation is performed which applies an algorithm which

determines the generation of decoy IP packets. The loop is interrupted when an encrypted
TARP packet is received.

0 S42. The TARP packet may be probed to authenticate the packet before attempting to

decrypt it using the link key.

0 S43. The TARP packet is decrypted with the appropriate link key to expose the destination

TARP address and an indication of whether the packet is a decoy packet or part of a real
message.

0 S44. If the packet is a decoy packet, the perishable decoy counter is incremented.

0 S45. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the receiver may choose to throw it away.

0 S46. The TARP packets are cached until all packets forming an interleave window are
received.

0 S47. Once all packets of an interleave window are received, the packets are deinterleaved.

0 S48. The packets block of combined packets defining the interleave window is then

decrypted using the session key.

0 S49. The decrypted block is then divided using the window sequence data and the IPT

headers are converted into normal IPc headers. The window sequence numbers are integrated
in the IPc headers.

0 S50. The packets are then handed up to the IP layer processes.

1. SCALABILITY ENHANCEMENTS

[84] The IP agility feature described above relies on the ability to transmit IP address changes

to all TARP routers. The embodiments including this feature will be referred to as “boutique”

embodiments due to potential limitations in scaling these features up for a large network, such as

2]

Petitioner Apple - EX. 1002, p. 28

Petitioner Apple - Ex. 1002, p. 29

wmmwmmm r.. [r um;
ammmmwmw

00047900082

the Internet. (The “boutique” embodiments would, however, be robust for use in smaller

networks, such as small virtual private networks, for example). One problem with the boutique

embodiments is that if IP address changes are to occur frequently, the message traffic required to

update all routers sufficiently quickly creates a serious burden on the Internet when the TARP

router and/or client population gets large. The bandwidth burden added to the networks, for

example in ICMP packets, that would be used to update all the TARP routers could overwhelm

the Internet for a large scale implementation that approached the scale of the Internet. In other

words, the boutique system’s scalability is limited.

[85] A system can be constructed which trades some of the features of the above embodiments

to provide the benefits of IP agility without the additional messaging burden. This is

accomplished by IP address—hopping according to shared algorithms that govern IP addresses

used between links participating in communications sessions between nodes such as TARP

nodes. (Note that the IP hopping technique is also applicable to the boutique embodiment.) The

IP agility feature discussed with respect to the boutique system can be modified so that it

becomes decentralized under this scalable regime and governed by the above-described shared

algorithm. Other features of the boutique system may be combined with this new type of IP-

agility.

[86] The new embodiment has the advantage of providing IP agility governed by a local

algorithm and set of IP addresses exchanged by each communicating pair of nodes. This local

governance is session-independent in that it may govern communications between a pair of

nodes, irrespective of the session or end points being transferred between the directly

communicating pair of nodes.

[87] In the scalable embodiments, blocks of IP addresses are allocated to each node in the

network. (This scalability will increase in the future, when Internet Protocol addresses are

increased to 128-bit fields, vastly increasing the number of distinctly addressable nodes). Each

node can thus use any of the IP addresses assigned to that node to communicate with other nodes

in the network. Indeed, each pair of communicating nodes can use a plurality of source IP

addresses and destination IP addresses for communicating with each other.

22

Petitioner Apple - Ex. 1002, p. 29

Petitioner Apple - Ex. 1002, p. 30

ii}, iii}? i535? iii} €331 ‘iuii “1:43! “nil" M “13333 1333335?! 31,13 iii???

000479.00082

[88] Each communicating pair of nodes in a chain participating in any session stores two

blocks of IP addresses, called netblocks, and an algorithm and randomization seed for selecting,

from each netblock, the next pair of source/destination IP addresses that will be used to transmit

the next message. In other words, the algorithm governs the sequential selection of IP-address

pairs, one sender and one receiver IP address, from each netblock. The combination of algorithm,

seed, and netblock (IP address block) will be called a “hopblock.” A router issues separate
transmit and receive hopblocks to its clients. The send address and the receive address of the IP

header of each outgoing packet sent by the client are filled with the send and receive IP

addresses generated by the algorithm. The algorithm is “clocked” (indexed) by a counter so that

each time a pair is used, the algorithm turns out a new transmit pair for the next packet to be sent.

[89] The router’s receive hopblock is identical to the client’s transmit hopblock. The router

uses the receive hopblock to predict what the send and receive IP address pair for the next

expected packet from that client will be. Since packets can be received out of order, it is not

possible for the router to predict with certainty what IP address pair will be on the next

sequential packet. To account for this problem, the router generates a range of predictions

encompassing the number of possible transmitted packet send/receive addresses, of which the

next packet received could leap ahead. Thus, if there is a vanishingly small probability that a

given packet will arrive at the router ahead of 5 packets transmitted by the client before the given

packet, then the router can generate a series of 6 send/receive IP address pairs (or “hop window”)

to compare with the next received packet. When a packet is received, it is marked in the hop

window as such, so that a second packet with the same IP address pair will be discarded. If an

out-of—sequence packet does not arrive within a predetermined timeout period, it can be

requested for retransmission or simply discarded from the receive table, depending upon the

protocol in use for that communications session, or possibly by convention.

[90] When the router receives the client’s packet, it compares the send and receive IP

addresses of the packet with the next N predicted send and receive IP address pairs and rejects

the packet if it is not a member of this set. Received packets that do not have the predicted

source/destination IP addresses falling with the window are rejected, thus thwarting possible

hackers. (With the number of possible combinations, even a fairly large window would be hard

23

Petitioner Apple - Ex. 1002, p. 30

Petitioner Apple - Ex. 1002, p. 31

:11. 11:11 13a:3122111211111111122111111, 115111 1132111 .531: 11:11 1: 113221:

000479.00082

to fall into at random.) If it is a member of this set, the router accepts the packet and processes it

further. This link—based IP-hopping strategy, referred to as “IHOP,” is a network element that

stands on its own and is not necessarily accompanied by elements of the boutique system

described above. If the routing agility feature described in connection with the boutique

embodiment is combined with this link—based IP-hopping strategy, the router’s next step would

be to decrypt the TARP header to determine the destination TARP router for the packet and

determine what should be the next hop for the packet. The TARP router would then forward the

packet to a random TARP router or the destination TARP router with which the source TARP

router has a link-based IP hopping communication established.

[91] Figure 8 shows how a client computer 801 and a TARP router 811 can establish a secure

session. When client 801 seeks to establish an IHOP session with TARP router 811, the client

801 sends “secure synchronization” request (“SSYN”) packet 821 to the TARP router 811. This

SYN packet 821 contains the client’s 801 authentication token, and may be sent to the router 811

in an encrypted format. The source and destination IP numbers on the packet 821 are the client’s

801 current fixed IP address, and a “known” fixed IP address for the router 811. (For security

purposes, it may be desirable to reject any packets from outside of the local network that are

destined for the router’s known fixed IP address.) Upon receipt and validation of the client’s 801

SSYN packet 821, the router 811 responds by sending an encrypted “secure synchronization

acknowledgment” (“SSYN ACK”) 822 to the client 801. This SSYN ACK 822 will contain the

transmit and receive hopblocks that the client 801 will use when communicating with the TARP

router 811. The client 801 will acknowledge the TARP router’s 811 response packet 822 by

generating an encrypted SSYN ACK ACK packet 823 which will be sent from the client’s 801

fixed IP address and to the TARP router’s 811 known fixed IP address. The client 80] will

simultaneously generate a SSYN ACK ACK packet; this SSYN ACK packet, referred to as the

Secure Session Initiation (SSI) packet 824, will be sent with the first {sender, receiver} 1P pair in

the client’s transmit table 921 (FIG. 9), as specified in the transmit hopblock provided by the

TARP router 811 in the SSYN ACK packet 822. The TARP router 811 will respond to the SSI

packet 824 with an SSI ACK packet 825, which will be sent with the first {sender, receiver} IP

pair in the TARP router’s transmit table 923. Once these packets have been successfully

exchanged, the secure communications session is established, and all further secure

24

Petitioner Apple - Ex. 1002, p. 31

Petitioner Apple - Ex. 1002, p. 32

.251. 1113‘! iii?’ 5153383 ““531 “"1?" "3233 “nil" a. M “1315 ZZZ-Eli; 123%! 11:31:12}?

000479.00082

communications between the client 801 and the TARP router 811 will be conducted via this

secure session, as long as synchronization is maintained. If synchronization is lost, then the client

801 and TARP router 802 may re—establish the secure session by the procedure outlined in

Figure 8 and described above.

[92] While the secure session is active, both the client 901 and TARP router 911 (FIG. 9) will

maintain their respective transmit tables 921, 923 and receive tables 922, 924, as provided by the

TARP router during session synchronization 822. It is important that the sequence of IP pairs in

the client’s transmit table 921 be identical to those in the TARP router’s receive table 924;

similarly, the sequence of IP pairs in the client’s receive table 922 must be identical to those in

the router’s transmit table 923. This is required for the session synchronization to be maintained.

The client 901 need maintain only one transmit table 921 and one receive table 922 during the

course of the secure session. Each sequential packet sent by the client 901 will employ the next

{send, receive} IP address pair in the transmit table, regardless of TCP or UDP session. The

TARP router 911 will expect each packet arriving from the client 901 to bear the next IP address

pair shown in its receive table.

[93] Since packets can arrive out of order, however, the router 911 can maintain a “look

ahea ” buffer in its receive table, and will mark previously-received IP pairs as invalid for filture

packets; any future packet containing an IP pair that is in the look-ahead buffer but is marked as

previously received will be discarded. Communications from the TARP router 911 to the client

901 are maintained in an identical manner; in particular, the router 911 will select the next IP

address pair from its transmit table 923 when constructing a packet to send to the client 901, and

the client 901 will maintain a look—ahead buffer of expected IP pairs on packets that it is

receiving. Each TARP router will maintain separate pairs of transmit and receive tables for each

client that is currently engaged in a secure session with or through that TARP router.

[94] While clients receive their hopblocks from the first server linking them to the Internet,

routers exchange hopblocks. When a router establishes a link—based IP-hopping communication

regime with another router, each router of the pair exchanges its transmit hopblock. The transmit

hopblock of each router becomes the receive hopblock of the other router. The communication

25

Petitioner Apple - Ex. 1002, p. 32

Petitioner Apple - Ex. 1002, p. 33

,3!” 31323; iii? H3335 ”3.7:” W'- 331%} “vi" 331'}! $1239 235‘}; 33:]! 12:33 553??

000479.00082

between routers is governed as described by the example of a client sending a packet to the first
router.

[95] While the above strategy works fine in the IP milieu, many local networks that are

connected to the Internet are Ethernet systems. In Ethernet, the IP addresses of the destination

devices must be translated into hardware addresses, and vice versa, using known processes

(“address resolution protocol,” and “reverse address resolution protocol”). However, if the link-

based IP-hopping strategy is employed, the correlation process would become explosive and

burdensome. An alternative to the link—based IP hopping strategy may be employed within an

Ethernet network. The solution is to provide that the node linking the Internet to the Ethernet

(call it the border node) use the link-based IP-hopping communication regime to communicate

with nodes outside the Ethernet LAN. Within the Ethernet LAN, each TARP node would have a

single IP address which would be addressed in the conventional way. Instead of comparing the

{sender, receiver} IP address pairs to authenticate a packet, the intra—LAN TARP node would

use one of the IP header extension fields to do so. Thus, the border node uses an algorithm

shared by the intra-LAN TARP node to generate a symbol that is stored in the free field in the IP

header, and the intra—LAN TARP node generates a range .of symbols based on its prediction of

the next expected packet to be received from that particular source IP address. The packet is

rejected if it does not fall into the set of predicted symbols (for example, numerical values) or is

accepted if it does. Communications from the intra-LAN TARP node to the border node are

accomplished in the same manner, though the algorithm will necessarily be different for security

reasons. Thus, each of the communicating nodes will generate transmit and receive tables in a

similar manner to that of Figure 9; the intra—LAN TARP nodes transmit table will be identical to

the border node’s receive table, and the intra-LAN TARP node’s receive table will be identical to

the border node’s transmit table.

[96] The algorithm used for IP address-hopping can be any desired algorithm. For example,

the algorithm can be a given pseudo-random number generator that generates numbers of the

range covering the allowed IP addresses with a given seed. Alternatively, the session participants

can assume a certain type of algorithm and specify simply a parameter for applying the

26

Petitioner Apple - Ex. 1002, p. 33

Petitioner Apple - Ex. 1002, p. 34

.231. iii?! 51%;: 53:} ‘53? flail-“12431 “nil“ in 31.3] “131133;; 313%! i331"

000479.00082

algorithm. For example the assumed algorithm could be a particular pseudo-random number

generator and the session participants could simply exchange seed values.

[97] Note that there is no permanent physical distinction between the originating and

destination terminal nodes. Either device at either end point can initiate a synchronization of the

pair. Note also that the authentication/synchronization—request (and acknowledgment) and

hopblock—exchange may all be served by a single message so that separate message exchanges

may not be required.

[98] As another extension to the stated architecture, multiple physical paths can be used by a

client, in order to provide link redundancy and further thwart attempts at denial of service and

traffic monitoring. As shown in Figure 10, for example, client 1001 can establish three

simultaneous sessions with each of three TARP routers provided by different ISPs 1011, 1012,

1013. As an example, the client 1001 can use three different telephone lines 1021, 1022, 1023 to

connect to the ISPs, or two telephone lines and a cable modem, etc. In this scheme, transmitted

packets will be sent in a random fashion among the different physical paths. This architecture

provides a high degree of communications redundancy, with improved immunity from denial-of-

service attacks and traffic monitoring.

2. FURTHER EXTENSIONS

[99] The following describes various extensions to the techniques, systems, and methods

described above. As described above, the security of communications occurring between

computers in a computer network (such as the Internet, an Ethernet, or others) can be enhanced

by using seemingly random source and destination Internet Protocol (IP) addresses for data

packets transmitted over the network. This feature prevents eavesdroppers from determining

which computers in the network are communicating with each other while permitting the two

communicating computers to easily recognize whether a given received data packet is legitimate

or not. In one embodiment of the above-described systems, an IP header extension field is used

to authenticate incoming packets on an Ethernet.

[100] Various extensions to the previously described techniques described herein include: (1)

use of hopped hardware or “MAC” addresses in broadcast type network; (2) a self—

27

Petitioner Apple - Ex. 1002, p. 34

Petitioner Apple - Ex. 1002, p. 35

.ifii. ii::iiiii§l.’i?::3§ 1!.323‘HL31..1€;1§hag- £13233 1333? IE3}? ii? 331%}???
1'

00047900082

synchronization technique that permits a computer to automatically regain synchronization with

a sender; (3) synchronization algorithms that allow transmitting and receiving computers to

quickly re-establish synchronization in the event of lost packets or other events; and (4) a fast—

packet rejection mechanism for rejecting invalid packets. Any or all of these extensions can be

combined with the features described above in any of various ways.

A. Hardware Address Hopping

[101] Internet protocol-based communications techniques on a LAN—or across any dedicated

physical medium—typically embed the IP packets within lower-level packets, ofien referred to9

as “frames’ As shown in FIG. 11, for example, a first Ethernet frame 1 150 comprises a frame

header 1101 and two embedded IP packets IF] and 1P2, while a second Ethernet frame 1160

comprises a different frame header 1104 and a single IP packet 1P3. Each frame header

generally includes a source hardware address 1101A and a destination hardware address 1101B;

other well-known fields in frame headers are omitted from FIG. 11 for clarity. Two hardware

nodes communicating over a physical communication channel insert appropriate source and

destination hardware addresses to indicate which nodes on the channel or network should receive

the frame.

[102] It may be possible for a nefarious listener to acquire information about the contents of a

frame and/or its communicants by examining frames on a local network rather than (or in

addition to) the IP packets themselves. This is especially true in broadcast media, such as

Ethernet, where it is necessary to insert into the frame header the hardware address of the

machine that generated the frame and the hardware address of the machine to which frame is

being sent. All nodes on the network can potentially “see” all packets transmitted across the

network. This can be a problem for secure communications, especially in cases where the

communicants do not want for any third party to be able to identify who is engaging in the

information exchange. One way to address this problem is to push the address—hopping scheme

down to the hardware layer. In accordance with various embodiments of the invention, hardware

addresses are “hopped” in a manner similar to that used to change IP addresses, such that a

listener cannot determine which hardware node generated a particular message nor which node is

the intended recipient.

28

Petitioner Apple - Ex. 1002, p. 35

Petitioner Apple - Ex. 1002, p. 36

000479.00082

[103] FIG. 12A shows a system in which Media Access Control (“MAC”) hardware addresses

are “hopped” in order to increase security over a network such as an Ethernet. While the

description refers to the exemplary case of an Ethernet environment, the inventive principles are

equally applicable to other types of communications media. In the Ethernet case, the MAC

address of the sender and receiver are inserted into the Ethernet frame and can be observed by

anyone on the LAN who is within the broadcast range for that frame. For secure

communications, it becomes desirable to generate frames with MAC addresses that are not

attributable to any specific sender or receiver.

[104] As shown in FIG. 12A, two computer nodes 1201 and 1202 communicate over a

communication charmel such as an Ethernet. Each node executes one or more application

programs 1203 and 1218 that communicate by transmitting packets through communication

software 1204 and 1217, respectively. Examples of application programs include video

conferencing, e-mail, word processing programs, telephony, and the like. Communication

software 1204 and 1217 can comprise, for example, an 081 layered architecture or “stac ” that

standardizes various services provided at different levels of functionality.

[105] The lowest levels of communication software 1204 and 1217 communicate with

hardware components 1206 and 1214 respectively, each of which can include one or more

registers 1207 and 1215 that allow the hardware to be reconfigured or controlled in accordance

with various communication protocols. The hardware components (an Ethernet network

interface card, for example) communicate with each other over the communication medium.

Each hardware component is typically pre-assigned a fixed hardware address or MAC number

that identifies the hardware component to other nodes on the network. One or more interface

drivers control the operation of each card and can, for example, be configured to accept or reject

packets from certain hardware addresses. As will be described in more detail below, various

embodiments of the inventive principles provide for “hopping” different addresses using one or

more algorithms and one or more moving windows that track a range of valid addresses to

validate received packets. Packets transmitted according to one or more of the inventive

principles will be generally referred to as “secure” packets or “secure communications” to

29

Petitioner Apple - Ex. 1002, p. 36

Petitioner Apple - Ex. 1002, p. 37

.Ziijtiiimillifin‘3?§2$!31~-il5“§?l“mil" 1.. 313131133 33‘: .

000479.00082

differentiate them from ordinary data packets that are transmitted in the clear using ordinary,
machine—correlated addresses.

[106] One straightforward method of generating non-attributable MAC addresses is an

extension of the IP hopping scheme. In this scenario, two machines on the same LAN that desire

to communicate in a secure fashion exchange random-number generators and seeds, and create

sequences of quasi—random MAC addresses for synchronized hopping. The implementation and

synchronization issues are then similar to that of IP hopping.

[107] This approach, however, runs the risk of using MAC addresses that are currently active

on the LAN—which, in turn, could interrupt communications for those machines. Since an

Ethernet MAC address is at present 48 bits in length, the chance of randomly misusing an active

MAC address is actually quite small. However, if that figure is multiplied by a large number of

nodes (as would be found on an extensive LAN), by a large number of frames (as might be the

case with packet voice or streaming video), and by a large number of concurrent Virtual Private

Networks (VPNs), then the chance that a non—secure machine’s MAC address could be used in

an address-hopped frame can become non-trivial. In short, any scheme that runs even a small

risk of interrupting communications for other machines on the LAN is bound to receive

resistance from prospective system administrators. Nevertheless, it is technically feasible, and

can be implemented without risk on a LAN on which there is a small number of machines, or if

all of the machines on the LAN are engaging in MAC-hopped communications.

[108] Synchronized MAC address hopping may incur some overhead in the course of session

establishment, especially if there are multiple sessions or multiple nodes involved in the

communications. A simpler method of randomizing MAC addresses is to allow each node to

receive and process every incident frame on the network. Typically, each network interface

driver will check the destination MAC address in the header of every incident frame to see if it

matches that machine’s MAC address; if there is no match, then the frame is discarded. In one

embodiment, however, these checks can be disabled, and every incident packet is passed to the

TARP stack for processing. This will be referred to as “promiscuous” mode, since every incident

frame is processed. Promiscuous mode allows the sender to use completely random,

unsynchronized MAC addresses, since the destination machine is guaranteed to process the

30

Petitioner Apple - Ex. 1002, p. 37

Petitioner Apple - Ex. 1002, p. 38

 ama wwwwtwwamwm

000479.00082

frame. The decision as to whether the packet was truly intended for that machine is handled by

the TARP stack, which checks the source and destination IP addresses for a match in its IP

synchronization tables. If no match is found, the packet is discarded; if there is a match, the

packet is unwrapped, the inner header is evaluated, and if the inner header indicates that the

packet is destined for that machine then the packet is forwarded to the IP stack—otherwise it is

discarded.

[109] One disadvantage of purely-random MAC address hopping is its impact on processing

overhead; that is, since every incident frame must be processed, the machine’s CPU is engaged

considerably more oflen than if the network interface driver is discriminating and rejecting

packets unilaterally. A compromise approach is to select either a single fixed MAC address or a

small number of MAC addresses (e.g., one for each virtual private network on an Ethernet) to

use for MAC-hopped communications, regardless of the actual recipient for which the message

is intended. In this mode, the network interface driver can check each incident frame against one

(or a few) pre-established MAC addresses, thereby freeing the CPU from the task of physical-

layer packet discrimination. This scheme does not betray any useful information to an interloper

on the LAN; in particular, every secure packet can already be identified by a unique packet type

in the outer header. However, since all machines engaged in secure communications would

either be using the same MAC address, or be selecting from a small pool of predetermined MAC

addresses, the association between a specific machine and a specific MAC address is effectively
broken.

[110] In this scheme, the CPU will be engaged more ofien than it would be in non-secure

communications (or in synchronized MAC address hopping), since the network interface driver

cannot always unilaterally discriminate between secure packets that are destined for that

machine, and secure packets from other VPNs. However, the non—secure traffic is easily

eliminated at the network interface, thereby reducing the amount of processing required of the

CPU. There are boundary conditions where these statements would not hold, of course—e.g., if

all of the traffic on the LAN is secure traffic, then the CPU would be engaged to the same degree

as it is in the purely-random address hopping case; alternatively, if each VPN on the LAN uses a

different MAC address, then the network interface can perfectly discriminate secure frames

31

Petitioner Apple - EX. 1002, p. 38

Petitioner Apple - Ex. 1002, p. 39

mmmwwwww.mwsmmw

000479.00082

destined for the local machine from those constituting other VPNs. These are engineering

tradeoffs that might be best handled by providing administrative options for the users when

installing the software and/or establishing VPNs.

[111] Even in this scenario, however, there still remains a slight risk of selecting MAC

addresses that are being used by one or more nodes on the LAN. One solution to this problem is

to formally assign one address or a range of addresses for use in MAC-hopped communications.

This is typically done via an assigned numbers registration authority; e.g., in the case of

Ethernet, MAC address ranges are assigred to vendors by the Institute of Electrical and

Electronics Engineers (IEEE). A for-mally-assigied range of addresses would ensure that secure

frames do not conflict with any properly-configured and properly-functioning machines on the
LAN.

[112] Reference will now be made to FIGS. 12A and 12B in order to describe the many

combinations and features that follow the inventive principles. As explained above, two

computer nodes 120] and 1202 are assumed to be communicating over a network or

communication medium such as an Ethernet. A communication protocol in each node (1204 and

1217, respectively) contains a modified element 1205 and 1216 that performs certain functions

that deviate from the standard communication protocols. In particular, computer node 1201

implements a first “hop” algorithm 1208X that selects seemingly random source and destination

IP addresses (and, in one embodiment, seemingly random IP header discriminator fields) in order

to transmit each packet to the other computer node. For example, node 1201 maintains a

transmit table 1208 containing triplets of source (S), destination (D), and discriminator fields

(DS) that are inserted into outgoing IP packet headers. The table is generated through the use of

an appropriate algorithm (e.g., a random number generator that is seeded with an appropriate

seed) that is known to the recipient node 1202. As each new IP packet is formed, the next

sequential entry out of the sender’s transmit table 1208 is used to populate the IP source, IP

destination, and IP header extension field (e.g., discriminator field). It will be appreciated that

the transmit table need not be created in advance but could instead be created on-the-fly by

executing the algorithm when each packet is formed.

32

Petitioner Apple - Ex. 1002, p. 39

Petitioner Apple - Ex. 1002, p. 40

£33,, till 513?? “3351' 39-2-33 1433113151 “ii-- Lu iii! ‘33le .323; Hill 1123315533

000479.00082

[113] At the receiving node 1202, the same IP hop algorithm 1222X is maintained and used to

generate a receive table 1222 that lists valid triplets of source IP address, destination IP address,

and discriminator field. This is shown by virtue of the first five entries of transmit table 1208

matching the second five entries of receive table 1222. (The tables may be slightly offset at any

particular time due to lost packets, misordered packets, or transmission delays). Additionally,

node 1202 maintains a receive window W3 that represents a list of valid 1P source, IP

destination, and discriminator fields that will be accepted when received as part of an incoming

IP packet. As packets are received, window W3 slides down the list of valid entries, such that

the possible valid entries change over time. Two packets that arrive out of order but are

nevertheless matched to entries within window W3 will be accepted; those falling outside of

window W3 will be rejected as invalid. The length of window W3 can be adjusted as necessary

to reflect network delays or other factors.

[114] Node 1202 maintains a similar transmit table 1221 for creating IP packets and flames

destined for node 1201 using a potentially different hopping algorithm 1221X, and node 1201

maintains a matching receive table 1209 using the same algorithm 1209X. As node 1202

transmits packets to node 1201 using seemingly random IP source, IP destination, and/or

discriminator fields, node 1201 matches the incoming packet values to those falling within

window W1 maintained in its receive table. In effect, transmit table 1208 of node 1201 is

synchronized (i.e., entries are selected in the same order) to receive table 1222 of receiving node

1202. Similarly, transmit table 1221 of node 1202 is synchronized to receive table 1209 of node

1201. It will be appreciated that although a common algorithm is shown for the source,

destination and discriminator fields in FIG. 12A (using, e.g., a different seed for each of the three

fields), an entirely different algorithm could in fact be used to establish values for each of these

fields. It will also be appreciated that one or two of the fields can be “hopped” rather than all

three as illustrated.

[115] In accordance with another aspect of the invention, hardware or “MAC” addresses are

hopped instead of or in addition to IP addresses and/or the discriminator field in order to improve

security in a local area or broadcast-type network. To that end, node 1201 further maintains a

transmit table 1210 using a transmit algorithm 1210X to generate source and destination

33

Petitioner Apple - EX. 1002, p. 40

Petitioner Apple - Ex. 1002, p. 41

“Til. 11:11! 353:3?! if}; 113:1 31113:? 111-?!" 3:13:11 131331 3753?; £331 21:?! iii???

000479.00082

hardware addresses that are inserted into frame headers (e.g., fields 1101A and 11013 in FIG.

11) that are synchronized to a corresponding receive table 1224 at node 1202. Similarly, node

1202 maintains a different transmit table 1223 containing source and destination hardware

addresses that is synchronized with a corresponding receive table 1211 at node 1201. In this

manner, outgoing hardware frames appear to be originating from and going to completely

random nodes on the network, even though each recipient can determine whether a given packet

is intended for it or not. It will be appreciated that the hardware hopping feature can be

implemented at a different level in the communications protocol than the IP hopping feature

(e.g., in a card driver or in a hardware card itself to improve performance).

[116] FIG. 12B shows three different embodiments or modes that can be employed using the

aforementioned principles. In a first mode referred to as “promiscuous” mode, a common

hardware address (e.g., a fixed address for source and another for destination) or else a

completely random hardware address is used by all nodes on the network, such that a particular

packet cannot be attributed to any one node. Each node must initially accept all packets

containing the common (or random) hardware address and inspect the IP addresses or

discriminator field to determine whether the packet is intended for that node. In this regard,

either the IP addresses or the discriminator field or both can be varied in accordance with an

algorithm as described above. As explained previously, this may increase each node’s overhead

since additional processing is involved to determine whether a given packet has valid source and

destination hardware addresses.

[117] In a second mode referred to as “promiscuous per VPN” mode, a small set of fixed

hardware addresses are used, with a fixed source/destination hardware address used for all nodes

communicating over a virtual private network. For example, if there are six nodes on an

Ethernet, and the network is to be split up into two private virtual networks such that nodes on

one VPN can communicate with only the other two nodes on its own VPN, then two sets of

hardware addresses could be used: one set for the first VPN and a second set for the second

VPN. This would reduce the amount of overhead involved in checking for valid frames since

only packets arriving from the designated VPN would need to be checked. IP addresses and one

or more discriminator fields could still be hopped as before for secure communication within the

34

Petitioner Apple - Ex. 1002, p. 41

Petitioner Apple - Ex. 1002, p. 42

.3331. it??? 3533? @3335} 1331311141113??? “"1?- llj’l “£31.! 5333; Elli! 111133 52331;

000479.00082

VPN. Of course, this solution compromises the anonymity of the VPNs (i.e., an outsider can

easily tell what traffic belongs in which VPN, though he cannot correlate it to a specific

machine/person). It also requires the use of a discriminator field to mitigate the vulnerability to

certain types of DoS attacks. (For example, without the discriminator field, an attacker on the

LAN could stream frames containing the MAC addresses being used by the VPN; rejecting those

frames could lead to excessive processing overhead. The discriminator field would provide a

low—overhead means of rejecting the false packets.)

[118] In a third mode referred to as “hardware hopping” mode, hardware addresses are varied

as illustrated in FIG. 12A, such that hardware source and destination addresses are changed

constantly in order to provide non-attributable addressing. Variations on these embodiments are

of course possible, and the invention is not intended to be limited in any respect by these

illustrative examples.

B. Extending the Address Space

[119] Address hopping provides security and privacy. However, the level of protection is

limited by the number of addresses in the blocks being hopped. A hopblock denotes a field or

fields modulated on a packet-wise basis for the purpose of providing a VPN. For instance, if two

nodes communicate with IP address hopping using hopblocks of 4 addresses (2 bits) each, there

would be 16 possible address-pair combinations. A window of size 16 would result in most

address pairs being accepted as valid most of the time. This limitation can be overcome by using

a discriminator field in addition to or instead of the hopped address fields. The discriminator

field would be hopped in exactly the same fashion as the address fields and it would be used to

determine whether a packet should be processed by a receiver.

[120] Suppose that two clients, each using four-bit hopblocks, would like the same level of

protection afforded to clients communicating via IP hopping between two A blocks (24 address

bits eligible for hopping). A discriminator field of 20 bits, used in conjunction with the 4 address

bits eligible for hopping in the IP address field, provides this level of protection. A 24-bit

discriminator field would provide a similar level of protection if the address fields were not

hopped or ignored. Using a discriminator field offers the following advantages: (1) an arbitrarily

35

Petitioner Apple - Ex. 1002, p. 42

Petitioner Apple - Ex. 1002, p. 43

 "-251 214243543; w.- sma real 2356;} 33:13:

000479.00082

high level of protection can be provided, and (2) address hopping is unnecessary to provide

protection. This may be important in environments where address hopping would cause routing

problems.

C. Smchronization Technigues

[121] It is generally assumed that once a sending node and receiving node have exchanged

algorithms and seeds (or similar information sufficient to generate quasi-random source and

destination tables), subsequent communication between the two nodes will proceed smoothly.

Realistically, however, two nodes may lose synchronization due to network delays or outages, or

other problems. Consequently, it is desirable to provide means for re—establishing

synchronization between nodes in a network that have lost synchronization.

[122] One possible technique is to require that each node provide an acknowledgment upon

successful receipt of each packet and, if no acknowledgment is received within a certain period

of time, to re—send the unacknowledged packet. This approach, however, drives up overhead

costs and may be prohibitive in high—throughput environments such as streaming video or audio,

for example.

[123] A different approach is to employ an automatic synchronizing technique that will be

referred to herein as “self-synchronization.” In this approach, synchronization information is

embedded into each packet, thereby enabling the receiver to re—synchronize itself upon receipt of

a single packet if it determines that is has lost synchronization with the sender. (If

communications are already in progress, and the receiver determines that it is still in sync with

the sender, then there is no need to re-synchronize.) A receiver could detect that it was out of

synchronization by, for example, employing a “dead-man” timer that expires after a certain

period of time, wherein the timer is reset with each valid packet. A time stamp could be hashed

into the public sync field (see below) to preclude packet-retry attacks.

[124] In one embodiment, a “sync field” is added to the header of each packet sent out by the

sender. This sync field could appear in the clear or as part of an encrypted portion of the packet.

Assuming that a sender and receiver have selected a random-number generator (RNG) and seed

value, this combination of RNG and seed can be used to generate a random—number sequence

36

Petitioner Apple - Ex. 1002, p. 43

Petitioner Apple - Ex. 1002, p. 44

ii! iii?! iii??? 75531: €33}?! till-“E931 “nil- ilfii ”13.41 .313 if}? 3:31:53???

000479.00082

(RNS). The RNS is then used to generate a sequence of source/destination IP pairs (and, if

desired, discriminator fields and hardware source and destination addresses), as described above.

It is not necessary, however, to generate the entire sequence (or the first N-l values) in order to

generate the Nth random number in the sequence; if the sequence index N is known, the random

value corresponding to that index can be directly generated (see below). Different RNGs (and

seeds) with different fundamental periods could be used to generate the source and destination IP

sequences, but the basic concepts would still apply. For the sake of simplicity, the following

discussion will assume that IP source and destination address pairs (only) are hopped using a

single RNG sequencing mechanism.

[125] In accordance with a “self-synchronization” feature, a sync field in each packet header

provides an index (i.e., a sequence number) into the RNS that is being used to generate IP pairs.

Plugging this index into the RNG that is being used to generate the RNS yields a specific random

number value, which in turn yields a specific IP pair. That is, an IP pair can be generated directly

from knowledge of the RNG, seed, and index number; it is not necessary, in this scheme, to

generate the entire sequence of random numbers that precede the sequence value associated with

the index number provided.

[126] Since the communicants have presumably previously exchanged RNGs and seeds, the

only new information that must be provided in order to generate an IP pair is the sequence

number. If this number is provided by the sender in the packet header, then the receiver need

only plug this number into the RNG in order to generate an IP pair — and thus verify that the IP

pair appearing in the header of the packet is valid. In this scheme, if the sender and receiver lose

synchronization, the receiver can immediately re-sy'nchronize upon receipt of a single packet by

Simply comparing the IP pair in the packet header to the IP pair generated from the index

number. Thus, synchronized communications can be resumed upon receipt of a single packet,

making this scheme ideal for multicast communications. Taken to the extreme, it could obviate

the need for synchronization tables entirely; that is, the sender and receiver could simply rely on

the index number in the sync field to validate the 1P pair on each packet, and thereby eliminate

the tables entirely.

37

Petitioner Apple - Ex. 1002, p. 44

Petitioner Apple - Ex. 1002, p. 45

Ill, 33:5 5553 iii} ‘41??? i1 33.3133; Hull" ,,. if}: ”133! :15}; iii-ll if}? iii???

000479.00082

[127] The aforementioned scheme may have some inherent security issues associated with it —

namely, the placement of the sync field. If the field is placed in the outer header, then an

interloper could observe the values of the field and their relationship to the IP stream. This could

potentially compromise the algorithm that is being used to generate the IP—address sequence,

which would compromise the security of the communications. If, however, the value is placed in

the inner header, then the sender must decrypt the inner header before it can extract the sync

value and validate the IP pair; this opens up the receiver to certain types of denial-of—service

(DOS) attacks, such as packet replay. That is, if the receiver must decrypt a packet before it can

validate the IP pair, then it could potentially be forced to expend a significant amount of

processing on decryption if an attacker simply retransmits previously valid packets. Other attack

methodologies are possible in this scenario.

[128] A possible compromise between algorithm security and processing speed is to split up the

sync value between an inner (encrypted) and outer (unencrypted) header. That is, if the sync

value is sufficiently long, it could potentially be split into a rapidly—changing part that can be

viewed in the clear, and a fixed (or very slowly changing) part that must be protected. The part

that can be viewed in the clear will be called the “public sync” portion and the part that must be

protected will be called the “private sync” portion.

[129] Both the public sync and private sync portions are needed to generate the complete sync

value. The private portion, however, can be selected such that it is fixed or will change only

occasionally. Thus, the private sync value can be stored by the recipient, thereby obviating the

need to decrypt the header in order to retrieve it. If the sender and receiver have previously

agreed upon the frequency with which the private part of the sync will change, then the receiver

can selectively decrypt a single header in order to extract the new private sync if the

communications gap that has led to lost synchronization has exceeded the lifetime of the

previous private sync. This should not represent a burdensome amount of decryption, and thus

should not open up the receiver to denial-of—service attack simply based on the need to

occasionally decrypt a single header.

[130] One implementation of this is to use a hashing function with a one—to—one mapping to

generate the private and public sync portions from the sync value. This implementation is shown

38

Petitioner Apple - Ex. 1002, p. 45

Petitioner Apple - Ex. 1002, p. 46

“31.25.13 2er2? 35:5} “Elli 51-11-3952?! 43-43" 4. $1131 “3:331 * 31:14: 11:35! 5:33?
“a

00047900082

in FIG. 13, where (for example) a first ISP 1302 is the sender and a second ISP 1303 is the

receiver. (Other alternatives are possible from FIG. 13.) A transmitted packet comprises a public

or “outer” header 1305 that is not encrypted, and a private or “inner” header 1306 that is

encrypted using for example a link key. Outer header 1305 includes a public sync portion while

inner header 1306 contains the private sync portion. A receiving node decrypts the inner header

using a decryption function 1307 in order to extract the private sync portion. This step is

necessary only if the lifetime of the currently buffered private sync has expired. (If the

currently—buffered private sync is still valid, then it is simply extracted from memory and

“added” (which could be an inverse hash) to the public sync, as shown in step 1308.) The public

and decrypted private sync portions are combined in function 1308 in order to generate the

combined sync 1309. The combined sync (1309) is then fed into the RNG (1310) and compared

to the IP address pair (1311) to validate or reject the packet.

[131] An important consideration in this architecture is the concept of “future” and “past”

Where the public sync values are concerned. Though the sync values, themselves, should be

random to prevent spoofing attacks, it may be important that the receiver be able to quickly

identify a sync value that has already been sent —— even if the packet containing that sync value

was never actually received by the receiver. One solution is to hash a time stamp or sequence

number into the public sync portion, which could be quickly extracted, checked, and discarded,

thereby validating the public sync portion itself.

[132] In one embodiment, packets can be checked by comparing the source/destination IP pair

generated by the sync field with the pair appearing in the packet header. If (1) they match, (2) the

time stamp is valid, and (3) the dead—man timer has expired, then re—synchronization occurs;

otherwise, the packet is rejected. If enough processing power is available, the dead-man timer

and synchronization tables can be avoided altogether, and the receiver would simply

resynchronize (e.g., validate) on every packet.

[133] The foregoing scheme may require large-integer (e.g., 160-bit) math, which may affect its

implementation. Without such large-integer registers, processing throughput would be affected,

thus potentially affecting security from a denial—of-service standpoint. Nevertheless, as large-

39

Petitioner Apple - Ex. 1002, p. 46

Petitioner Apple - Ex. 1002, p. 47

iii. {Iii i353: TEE; “533% EL??- ‘15??? “mil: 511.133 “3343* 1:53? 413.! $133! 3133???

000479.00082

integer math processing features become more prevalent, the costs of implementing such a
feature will be reduced.

D. Other Smchronization Schemes

[134] As explained above, if W or more consecutive packets are lost between a transmitter and

receiver in a VPN (where W is the window size), the receiver’s window will not have been

updated and the transmitter will be transmitting packets not in the receiver’s window. The sender

and receiver will not recover synchronization until perhaps the random pairs in the window are

repeated by chance. Therefore, there is a need to keep a transmitter and receiver in

synchronization whenever possible and to re—establish synchronization whenever it is lost.

[135] A “checkpoint” scheme can be used to regain synchronization between a sender and a

receiver that have fallen out of synchronization. In this scheme, a checkpoint message

comprising a random IP address pair is used for communicating synchronization information. In

one embodiment, two messages are used to communicate synchronization information between a

sender and a recipient:

1. SYNC_REQ is a message used by the sender to indicate that it wants to synchronize;
and

2. SYNC_ACK is a message used by the receiver to inform the transmitter that it has

been synchronized.

[136] According to one variation of this approach, both the transmitter and receiver maintain

three checkpoints (see FIG. 14):

1. In the transmitter, ckpt_o (“checkpoint old”) is the IP pair that was used to re-send the

last SYNC_REQ packet to the receiver. In the receiver, ckpt_o (“checkpoint old”) is

the IP pair that receives repeated SYNC_REQ packets from the transmitter.

2. In the transmitter, ckpt_n (“checkpoint new”) is the IP pair that will be used to send

the next SYNC_REQ packet to the receiver. In the receiver, ckpt_n (“checkpoint

new”) is the IP pair that receives a new SYNC_REQ packet from the transmitter and

which causes the receiver’s window to be re-aligned, ckpt_o set to ckpt_n, a new

ckpt_n to be generated and a new ckpt_r to be generated.

40

Petitioner Apple - EX. 1002, p. 47

Petitioner Apple - Ex. 1002, p. 48

Lil. H 531’ 51.35;} W till-.4931 “vii” .1, £31 “323% 13553} if}! £23! iii?

000479.00082

3. In the transmitter, ckpt_r is the IP pair that will be used to send the next SYNC_ACK

packet to the receiver. In the receiver, ckpt_r is the IP pair that receives a new

SYNC_ACK packet from the transmitter and which causes a new ckpt_n to be

generated. Since SYNC_ACK is transmitted from the receiver ISP to the sender ISP,

the transmitter ckpt_r refers to the ckpt_r of the receiver and the receiver ckpt_r refers

to the ckpthr of the transmitter (see FIG. 14).

[137] When a transmitter initiates synchronization, the IP pair it will use to transmit the next

data packet is set to a predetermined value and when a receiver first receives a SYNC_REQ, the

receiver window is updated to be centered on the transmitter’s next IP pair. This is the primary

mechanism for checkpoint synchronization.

[138] Synchronization can be initiated by a packet counter (e.g., afier every N packets

transmitted, initiate a synchronization) or by a timer (every S seconds, initiate a synchronization)

or a combination of both. See FIG. 15. From the transmitter’s perspective, this technique

operates as follows: (1) Each transmitter periodically transmits a “sync request” message to the

receiver to make sure that it is in sync. (2) If the receiver is still in sync, it sends back a “sync

ack” message. (If this works, no further action is necessary). (3) If no “sync ack” has been

received within a period of time, the transmitter retransmits the sync request again. If the

transmitter reaches the next checkpoint without receiving a “sync ack” response, then

synchronization is broken, and the transmitter should stop transmitting, The transmitter will

continue to send sync__reqs until it receives a sync__ack , at which point transmission is
reestablished.

[139] From the receiver’s perspective, the scheme operates as follows: (1) when it receives a

“sync request” request from the transmitter, it advances its window to the next checkpoint

position (even skipping pairs if necessary), and sends a “sync ac ” message to the transmitter. If

sync was never lost, then the “jump ahead” really just advances to the next available pair of

addresses in the table (i.e., normal advancement).

41

Petitioner Apple - Ex. 1002, p. 48

Petitioner Apple - Ex. 1002, p. 49

53].. fl £33331 $3339 $5432?! tidbit}? “ii" 9. 9:9 3323* .3331 1133! 313333933"

000479.00082

[140] If an interloper intercepts the “sync request” messages and tries to interfere with

communication by sending new ones, it will be ignored if the synchronization has been

established or it it will actually help to re—establish synchronization.

[141] A window is realigned whenever a re—synchronization occurs. This realignment entails

updating the receiver’s window to straddle the address pairs used by the packet transmitted

immediately afier the transmission of the SYNC_REQ packet. Normally, the transmitter and

receiver are in synchronization with one another. However, when network events occur, the

receiver’s window may have to be advanced by many steps during resynchronization. In this

case, it is desirable to move the window ahead without having to step through the intervening

random numbers sequentially. (This feature is also desirable for the auto—sync approach

discussed above).

E. Random Number Generator with a Jump-Ahead capability

[142] An attractive method for generating randomly hopped addresses is to use identical

random number generators in the transmitter and receiver and advance them as packets are

transmitted and received. There are many random number generation algorithms that could be

used. Each one has strengths and weaknesses for address hopping applications.

[143] Linear congruential random number generators (LCRs) are fast, simple and well

characterized random number generators that can be made to jump ahead n steps efficiently. An

LCR generates random numbers X1, X2, X3 Xk starting with seed X0 using a recurrence

Xi=(a XH + b) mod c (l)

where a, b and c define a panicular LCR. Another expression for X,

Xi=((ai(Xo+b)—b)/(a-1)) mod 0 (2)

enables the jump—ahead capability. The factor ai can grow very large even for modest i if left

unfettered. Therefore some special properties of the modulo operation can be used to control the

size and processing time required to compute (2). (2) can be rewritten as:

Xi=(ai (Xo(a-1)+b)-b)/(a-1) mod c (3)

[144] It can be shown that:

42

Petitioner Apple - EX. 1002, p. 49

Petitioner Apple - Ex. 1002, p. 50

wwamwmwmmwmmmm33 .

000479.00082

(ai(Xo(a-1)+b)-b)/(a-1) mod 0 =((aimod((a—1)c)(Xo(a-1)+b) -b) /(a-l)) mod c (4)

(Xo(a—1)+b) can be stored as (X0(a-1)+b) mod 0, b as b mod c and compute ai mod((a—1)c) (this

requires O(log(i)) steps).

[145] A practical implementation of this algorithm would jump a fixed distance, 11,

between synchronizations; this is tantamount to synchronizing every n packets. The window

would commence 11 IP pairs from the start of the previous window. Using ij, the random

number at the jth checkpoint, as X0 and n as i, a node can store an mod((a-1)c) once per LCR and
set

Xj+1w=Xn0+1)=((an mod((a—1)c) (ij (a-l)+b)—b)/(a-1))mod c, (5)

to generate the random number for the j+1th synchronization. Using this construction, a node

could jump ahead an arbitrary (but fixed) distance between synchronizations in a constant

amount of time (independent ofn).

[146] Pseudo-random number generators, in general, and LCRs, in particular, will eventually

repeat their cycles. This repetition may present vulnerability in the IP hopping scheme. An

adversary would simply have to wait for a repeat to predict future sequences. One way of coping

with this vulnerability is to create a random number generator with a known long cycle. A

random sequence can be replaced by a new random number generator before it repeats. LCRS

can be constructed with known long cycles. This is not currently true of many random number

generators.

[147] Random number generators can be cryptographically insecure. An adversary can derive

the RNG parameters by examining the output or part of the output. This is true of LCGs. This

vulnerability can be mitigated by incorporating an encryptor, designed to scramble the output as

part of the random number generator. The random number generator prevents an adversary from

mounting an attack—cg, a known plaintext attack—against the encryptor.

F. Random Number Generator Example

[148] Consider a RNG where a=31,b=4 and c=15. For this case equation (1) becomes:

xi=(31 XH + 4) mod 15. (6)

43

Petitioner Apple - Ex. 1002, p. 50

Petitioner Apple - Ex. 1002, p. 51

.x
.‘lil. £13331??? $5323 “131i? “-rtl' “133}! “”11" 3:33 “19%! 1.3;} 3:11 illili r

000479.00082

[149] If one sets Xo=1, equation (6) will produce the sequence 1, 5, 9, 13, 2, 6, 10, 14,

3, 7, 11, O, 4, 8, 12. This sequence will repeat indefinitely. For a jump ahead of 3 numbers in this

sequence a“= 313=29791, c*(a—1)=1 5 *30=450 and an mod((a—1)c) =

313mod(15*30)=29791mod(450)=91. Equation (5) becomes:

((91 (Xi30+4)-4)/30)mod 15 (7)

[150] Table 1 shows the jump ahead calculations from (7) . The calculations start at 5 and jump

ahead 3.

TABLE 1

((91 (Xi30+4)-4)/30

54

-4

G. Fast Packet Filter

[151] Address hopping VPNs must rapidly determine whether a packet has a valid header and

thus requires further processing, or has an invalid header (a hostile packet) and should be

immediately rejected. Such rapid determinations will be referred to as “fast packet filtering.”

This capability protects the VPN from attacks by an adversary who streams hostile packets at the

receiver at a high rate of speed in the hope of saturating the receiver’s processor (a so-called

“denial of service” attack). Fast packet filtering is an important feature for implementing VPNs

on shared media such as Ethernet.

[152] Assuming that all participants in a VPN share an unassigned “A” block of addresses, one

possibility is to use an experimental “A” block that will never be assigned to any machine that is

not address hopping on the shared medium. “A” blocks have a 24 bits of address that can be

hopped as opposed to the 8 bits in “C” blocks. In this case a hopblock will be the “A” block.

The use of the experimental “A” block is a likely option on an Ethernet because:

44

Petitioner Apple - EX. 1002, p. 51

Petitioner Apple - Ex. 1002, p. 52

.3119. ii?! iii“? iii-:1? ”13?! “41.531 ”"3!" r. 313:1!“433*?3529112?!{131163333

00047900082

1. The addresses have no validity outside of the Ethernet and will not be routed out to a valid

outside destination by a gateway.

2. There are 224 (~16 million) addresses that can be hopped within each “A” block. This yields

>280 trillion possible address pairs making it very unlikely that an adversary would guess a

valid address. It also provides acceptably low probability of collision between separate VPNs

(all VPNs on a shared medium independently generate random address pairs from the same

“A” block).

3. The packets will not be received by someone on the Ethernet who is not on a VPN (unless

the machine is in promiscuous mode) minimizing impact on non-VPN computers.

[153] The Ethernet example will be used to describe one implementation of fast packet

filtering. The ideal algorithm would quickly examine a packet header, determine whether the

packet is hostile, and reject any hostile packets or determine which active 1P pair the packet

header matches. The problem is a classical associative memory problem. A variety of techniques

have been developed to solve this problem (hashing, B—trees etc). Each of these approaches has

its strengths and weaknesses. For instance, hash tables can be made to operate quite fast in a

statistical sense, but can occasionally degenerate into a much slower algorithm. This slowness

can persist for a period of time. Since there is a need to discard hostile packets quickly at all

times, hashing would be unacceptable.

H. Presence Vector Algorithm

[154] A presence vector is a bit vector of length 2" that can be indexed by n-bit numbers (each

ranging from O to 2"—1). One can indicate the presence of k n-bit numbers (not necessarily

unique), by setting the bits in the presence vector indexed by each number to 1. Otherwise, the

bits in the presence vector are 0. An n-bit number, x, is one of the k numbers if and only if the x‘h

bit of the presence vector is 1. A fast packet filter can be implemented by indexing the presence

vector and looking for a 1, which will be referred to as the “test.”

[155] For example, suppose one wanted to represent the number 135 using a presence vector.

The 135th bit of the vector would be set. Consequently, one could very quickly determine

whether an address of 135 was valid by checking only one bit: the 135‘h bit. The presence

vectors could be created in advance corresponding to the table entries for the IP addresses. In

45

Petitioner Apple - Ex. 1002, p. 52

Petitioner Apple - Ex. 1002, p. 53

.13.. 123! iii?) 9:2}? ‘53? iii?“ it?! “it" 1.. 31:1 ”1313? .331 lift 513! ii"???

000479.00082

effect, the incoming addresses can be used as indices into a long vector, making comparisons

very fast. As each RNG generates a new address, the presence vector is updated to reflect the

information. As the window moves, the presence vector is updated to zero out addresses that are

no longer valid.

[156] There is a trade-off between efficiency of the test and the amount of memory required for

storing the presence vector(s). For instance, if one were to use the 48 bits of hopping addresses

as an index, the presence vector would have to be 35 terabytes. Clearly, this is too large for

practical purposes. Instead, the 48 bits can be divided into several smaller fields. For instance,

one could subdivide the 48 bits into four 12-bit fields (see FIG. 16). This reduces the storage

requirement to 2048 bytes at the expense of occasionally having to process a hostile packet. In

effect, instead of one long presence vector, the decomposed address portions must match all four

shorter presence vectors before filrther processing is allowed. (If the first part of the address

portion doesn’t match the first presence vector, there is no need to check the remaining three

presence vectors).

[157] A presence vector will have a 1 in the yth bit if and only if one or more addresses with a

corresponding field of y are active. An address is active only if each presence vector indexed by

the appropriate sub-field of the address is 1.

[158] Consider a window of 32 active addresses and 3 checkpoints. A hostile packet will be

rejected by the indexing of one presence vector more than 99% of the time. A hostile packet will

be rejected by the indexing of all 4 presence vectors more than 99.9999995% of the time. On

average, hostile packets will be rejected in less than 1.02 presence vector index operations.

[159] The small percentage of hostile packets that pass the fast packet filter will be rejected

when matching pairs are not found in the active window or are active checkpoints. Hostile

packets that serendipitously match a header will be rejected when the VPN sofiware attempts to

decrypt the header. However, these cases will be extremely rare. There are many other ways this

method can be configured to arbitrate the space/speed tradeoffs.

1. Further Smchronization Enhancements

46

Petitioner Apple - Ex. 1002, p. 53

Petitioner Apple - Ex. 1002, p. 54

.21.; ililii iii? €335} 34:19 “wiiv‘iéll “-321- n. 1123! 13.33%} 2235111231 fill 3E???

000479.00082

[160] A slightly modified form of the synchronization techniques described above can be

employed. The basic principles of the previously described checkpoint synchronization scheme

remain unchanged. The actions resulting from the reception of the checkpoints are, however,

slightly different. In this variation, the receiver will maintain between 000 (“Out of Order”) and

2><WINDOW_SIZE+OoO active addresses (1 $000 WINDOW_SIZE and WINDOW_SIZE

21). 000 and WINDOW_SIZE are engineerable parameters, where 000 is the minimum

number of addresses needed to accommodate lost packets due to events in the network or out of

order arrivals and WINDOW_SIZE is the number of packets transmitted before a SYNC_REQ is

issued. FIG. 17 depicts a storage array for a receiver’s active addresses.

[161] The receiver starts with the first 2XWINDOW_SIZE addresses loaded and active (ready

to receive data). As packets are received, the corresponding entries are marked as “used” and are

no longer eligible to receive packets. The transmitter maintains a packet counter, initially set to

0, containing the number of data packets transmitted since the last initial transmission of a

SYNC_REQ for which SYNC_ACK has been received. When the transmitter packet counter

equals WINDOW_SIZE, the transmitter generates a SYNC_REQ and does its initial

transmission. When the receiver receives a SYNC_REQ corresponding to its current CKPT__N, it

generates the next WINDOW_SIZE addresses and starts loading them in order starting at the

first location afier the last active address wrapping around to the beginning of the array after the

end of the array has been reached. The receiver’s array might look like FIG. 18 when a

SYNC_REQ has been received. In this case a couple of packets have been either lost or will be

received out of order when the SYNC_REQ is received.

[162] FIG. 19 shows the receiver’s array after the new addresses have been generated. If the

transmitter does not receive a SYNC_ACK, it will re-issue the SYNC_REQ at regular intervals.

When the transmitter receives a SYNC_ACK, the packet counter is decremented by

WINDOW_SIZE. If the packet counter reaches 2XWINDOW_SIZE - 000 then the transmitter

ceases sending data packets until the appropriate SYNC_ACK is finally received. The

transmitter then resumes sending data packets. Future behavior is essentially a repetition of this

initial cycle. The advantages of this approach are:

1. There is no need for an efficient jump ahead in the random number generator,

47

Petitioner Apple - EX. 1002, p. 54

Petitioner Apple - Ex. 1002, p. 55

ammwwwmw.MMAMMH

000479.00082

2. No packet is ever transmitted that does not have a corresponding entry in the receiver side

3. No timer based re-synchronization is necessary. This is a consequence of 2.

4. The receiver will always have the ability to accept data messages transmitted within 000

messages of the most recently transmitted message.

J. Distributed Transmission Path Variant

[163] Another embodiment incorporating various inventive principles is shown in FIG. 20. In

this embodiment, a message transmission system includes a first computer 2001 in

communication with a second computer 2002 through a network 2011 of intermediary

computers. In one variant of this embodiment, the network includes two edge routers 2003 and

2004 each of which is linked to a plurality of Internet Service Providers (ISPS) 2005 through

2010. Each ISP is coupled to a plurality of other ISPs in an arrangement as shown in FIG. 20,

which is a representative configuration only and is not intended to be limiting. Each connection

between ISPs is labeled in FIG. 20 to indicate a specific physical transmission path (e.g., AD is a

physical path that links ISP A (element 2005) to ISP D (element 2008)). Packets arriving at each

edge router are selectively transmitted to one of the ISPs to which the router is attached on the

basis of a randomly or quasi-randomly selected basis.

[164] As shown in FIG. 21, computer 2001 or edge router 2003 incorporates a plurality of link

transmission tables 2100 that identify, for each potential transmission path through the network,

valid sets of IP addresses that can be used to transmit the packet. For example, AD table 2101

contains a plurality of IP source/destination pairs that are randomly or quasi-randomly generated.

When a packet is to be transmitted from first computer 2001 to second computer 2002, one of the

link tables is randomly (or quasi-randomly) selected, and the next valid source/destination

address pair from that table is used to transmit the packet through the network. If path AD is

randomly selected, for example, the next source/destination IP address pair (which is pre—

determined to transmit between ISP A (element 2005) and ISP B (element 2008)) is used to

transmit the packet. If one of the transmission paths becomes degraded or inoperative, that link

table can be set to a “down” condition as shown in table 2105, thus preventing addresses from

being selected from that table. Other transmission paths would be unaffected by this broken link.

48

Petitioner Apple - Ex. 1002, p. 55

Petitioner Apple - Ex. 1002, p. 56

ammawmmwmmwamwfi

000479.00082

3. CONTINUATION-IN—PART IMPROVEMENTS

[165] The following describes various improvements and features that can be applied to the

embodiments described above. The improvements include: (1) a load balancer that distributes

packets across different transmission paths according to transmission path quality; (2) a DNS

proxy server that transparently creates a virtual private network in response to a domain name

inquiry; (3) a large-to-small link bandwidth management feature that prevents denial-of—service

attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by limiting the

rate at which a transmitter can be synchronized with a receiver; and (5) a signaling synchronizer

that allows a large number of nodes to communicate with a central node by partitioning the

communication function between two separate entities. Each is discussed separately below.

AM

[166] Various embodiments described above include a system in which a transmitting node and

a receiving node are coupled through a plurality of transmission paths, and wherein successive

packets are distributed quasi-randomly over the plurality of paths. See, for example, FIGS. 20

and 21 and accompanying description. The improvement extends this basic concept to

encompass distributing packets across different paths in such a manner that the loads on the

paths are generally balanced according to transmission link quality.

[167] In one embodiment, a system includes a transmitting node and a receiving node that are

linked via a plurality of transmission paths having potentially varying transmission quality.

Successive packets are transmitted over the paths based on a weight value distribution function

for each path. The rate that packets will be transmitted over a given path can be different for

each path. The relative “health” of each transmission path is monitored in order to identify paths

that have become degraded. In one embodiment, the health of each path is monitored in the

transmitter by comparing the number of packets transmitted to the number of packet

acknowledgements received. Each transmission path may comprise a physically separate path

(e.g., via dial-up phone line, computer network, router, bridge, or the like), or may comprise

logically separate paths contained Within a broadband communication medium (e.g., separate

channels in an FDM, TDM, CDMA, or other type of modulated or unmodulated transmission

link).

49

Petitioner Apple - Ex. 1002, p. 56

Petitioner Apple - Ex. 1002, p. 57

Jill, flil’ii iii}? iii: 333335 it'll-33133 ii--ll~ l.

000479.00082

[168] When the transmission quality of a path falls below a predetermined threshold and there

are other paths that can transmit packets, the transmitter changes the weight value used for that

path, making it less likely that a given packet will be transmitted over that path. The weight will

preferably be set no lower than a minimum value that keeps nominal traffic on the path. The

weights of the other available paths are altered to compensate for the change in the affected path.

When the quality of a path degrades to where the transmitter is turned off by the synchronization

function (i.e., no packets are arriving at the destination), the weight is set to zero. If all

transmitters are turned off, no packets are sent.

[169] Conventional TCP/IP protocols include a “throttling” feature that reduces the

transmission rate of packets when it is determined that delays or errors are occurring in

transmission. In this respect, timers are sometimes used to determine whether packets have been

received. These conventional techniques for limiting transmission of packets, however, do not

involve multiple transmission paths between two nodes wherein transmission across a particular

path relative to the others is changed based on link quality.

[170] According to certain embodiments, in order to damp oscillations that might otherwise

occur if weight distributions are changed drastically (e.g., according to a step function), a linear

or an exponential decay formula can be applied to gradually decrease the weight value over time

that a degrading path will be used. Similarly, if the health of a degraded path improves, the

weight value for that path is gradually increased.

[171] Transmission link health can be evaluated by comparing the number of packets that are

acknowledged within the transmission window (see embodiments discussed above) to the

number of packets transmitted within that window and by the state of the transmitter (i.e., on or

off). In other words, rather than accumulating general transmission statistics over time for a

path, one specific implementation uses the “windowing” concepts described above to evaluate

transmission path health.

[172] The same scheme can be used to shifi virtual circuit paths from an “unhealthy” path to a

“healthy” one, and to select a path for a new virtual circuit.

50

Petitioner Apple - EX. 1002, p. 57

Petitioner Apple - Ex. 1002, p. 58

Iii. if}?! if}? 9:35 “3231 “xii-4 ”321?! “nil" 311.31 111111352} ill—3! 32:31 iii}?!

000479.00082

[173] FIG. 22A shows a flowchart for adjusting weight values associated with a plurality of

transmission links. It is assumed that software executing in one or more computer nodes

executes the steps shown in FIG. 22A. It is also assumed that the sofiware can be stored on a

computer—readable medium such as a magnetic or optical disk for execution by a computer.

[174] Beginning in step 2201, the transmission quality of a given transmission path is

measured. As described above, this measurement can be based on a comparison between the

number of packets transmitted over a particular link to the number of packet acknowledgements

received over the link (e.g., per unit time, or in absolute terms). Alternatively, the quality can be

evaluated by comparing the number of packets that are acknowledged within the transmission

window to the number of packets that were transmitted within that window. In yet another

variation, the number of missed synchronization messages can be used to indicate link quality.

Many other variations are of course possible.

[175] In step 2202, a check is made to determine whether more than one transmitter (e.g.,

transmission path) is turned on. If not, the process is terminated and resumes at step 2201.

[176] In step 2203, the link quality is compared to a given threshold (e.g., 50%, or any arbitrary

number). If the quality falls below the threshold, then in step 2207 a check is made to determine

whether the weight is above a minimum level (e.g., 1%). If not, then in step 2209 the weight is

set to the minimum level and processing resumes at step 2201. If the weight is above the

minimum level, then in step 2208 the weight is gradually decreased for the path, then in step

2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they are

increased).

[177] If in step 2203 the quality of the path was greater than or equal to the threshold, then in

step 2204 a check is made to determine whether the weight is less than a steady-state value for

that path. If so, then in step 2205 the weight is increased toward the steady-state value, and in

step 2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they

are decreased). If in step 2204 the weight is not less than the steady-state value, then processing

resumes at step 2201 without adjusting the weights.

51

Petitioner Apple - Ex. 1002, p. 58

Petitioner Apple - Ex. 1002, p. 59

Jill, ill‘fil iii??? 35:2}: $5333 “WE-l! “-31 11:3! “iii :33}; 11231—11231 iii}???

000479 .00082

[178] The weights can be adjusted incrementally according to various functions, preferably by

changing the value gradually. In one embodiment, a linearly decreasing fimction is used to

adjust the weights; according to another embodiment, an exponential decay fianction is used.

Gradually changing the weights helps to damp oscillators that might otherwise occur if the

probabilities were abruptly.

[179] Although not explicitly shown in FIG. 22A the process can be performed only

periodically (e.g., according to a time schedule), or it can be continuously run, such as in a

background mode of operation. In one embodiment, the combined weights of all potential paths

should add up to unity (e.g., when the weighting for one path is decreased, the corresponding

weights that the other paths will be selected will increase).

[180] Adjustments to weight values for other paths can be prorated. For example, a decrease of

10% in weight value for one path could result in an evenly distributed increase in the weights for

the remaining paths. Alternatively, weightings could be adjusted according to a weighted

fonnula as desired (e.g., favoring healthy paths over less healthy paths). In yet another variation,

the difference in weight value can be amortized over the remaining links in a manner that is

proportional to their traffic weighting.

[181] FIG. 22B shows steps that can be executed to shut down transmission links where a

transmitter turns off. In step 2210, a transmitter shut—down event occurs. In step 2211, a test is

made to determine whether at least one transmitter is still turned on. If not, then in step 2215 all

packets are dropped until a transmitter turns on. If in step 2211 at least one transmitter is turned

on, then in step 2212 the weight for the path is set to zero, and the weights for the remaining

paths are adjusted accordingly.

[182] FIG. 23 shows a computer node 2301 employing various principles of the above-

described embodiments. It is assumed that two computer nodes of the type shown in FIG. 23

communicate over a plurality of separate physical transmission paths. As shown in FIG. 23, four

transmission paths X1 through X4 are defined for communicating between the two nodes. Each

node includes a packet transmitter 2302 that operates in accordance with a transmit table 2308 as

described above. (The packet transmitter could also operate without using the IP-hopping

52

Petitioner Apple - Ex. 1002, p. 59

Petitioner Apple - Ex. 1002, p. 60

u; "w. amt-arm- ,. ._. =3, 1. i In nu; v xiv v”: “=1 "1”:
mummww%meMmMMm

000479.00082

features described above, but the following description assumes that some form of hopping is

employed in conjunction with the path selection mechanism). The computer node also includes

a packet receiver 2303 that operates in accordance with a receive table 2309, including a moving

window W that moves as valid packets are received. Invalid packets having source and

destination addresses that do not fall within window W are rejected.

[183] As each packet is readied for transmission, source and destination IP addresses (or other

discriminator values) are selected from transmit table 2308 according to any of the various

algorithms described above, and packets containing these source/destination address pairs, which

correspond to the node to which the four transmission paths are linked, are generated to a

transmission path switch 2307. Switch 2307, which can comprise a sofiware function, selects

from one of the available transmission paths according to a weight distribution table 2306. For

example, if the weight for path X1 is 0.2, then every fifth packet will be transmitted on path X1.

A similar regime holds true for the other paths as shown. Initially, each link’s weight value can

be set such that it is proportional to its bandwidth, which will be referred to as its “steady-state”
value.

[184] Packet receiver 2303 generates an output to a link quality measurement function 2304

that Operates as described above to determine the quality of each transmission path. (The input

to packet receiver 2303 for receiving incoming packets is omitted for clarity). Link quality

measurement function 2304 compares the link quality to a threshold for each transmission link

and, if necessary, generates an output to weight adjustment function 2305. If a weight

adjustment is required, then the weights in table 2306 are adjusted accordingly, preferably

according to a gradual (e.g., linearly or exponentially declining) function. In one embodiment,

the weight values for all available paths are initially set to the same value, and only when paths

degrade in quality are the weights changed to reflect differences.

[185] Link quality measurement function 2304 can be made to operate as part of a synchronizer

function as described above. That is, if resynchronization occurs and the receiver detects that

synchronization has been lost (e.g., resulting in the synchronization window W being advanced

out of sequence), that fact can be used to drive link quality measurement function 2304.

According to one embodiment, load balancing is performed using information gameer during

53

Pefifionerfiqnfle-REX.1002,p.60

Petitioner Apple - Ex. 1002, p. 61

Iii. if}! £15353 i535} ii}??? 51:33”??? “1“" ll]: “7:3! 133332 llifll illfil 5&3?

000479.00082

the normal synchronization, augmented slightly to communicate link health from the receiver to

the transmitter. The receiver maintains a count, MESS_R(W), of the messages received in

synchronization window W. When it receives a synchronization request (SYNC_REQ)

corresponding to the end of window W, the receiver includes counter MESS_R in the resulting

synchronization acknowledgement (SYNC_ACK) sent back to the transmitter. This allows the

transmitter to compare messages sent to messages received in order to asses the health of the

link.

[186] If synchronization is completely lost, weight adjustment function 2305 decreases the

weight value on the affected path to zero. When synchronization is regained, the weight value

for the affected path is gradually increased to its original value. Alternatively, link quality can be

measured by evaluating the length of time required for the receiver to acknowledge a

synchronization request. In one embodiment, separate transmit and receive tables are used for

each transmission path.

[187] When the transmitter receives a SYNC_ACK, the MES S_R is compared with the number

of messages transmitted in a window (MESS_T). When the transmitter receives a SYNC__ACK,

the traffic probabilities will be examined and adjusted if necessary. MESS_R is compared with

the number ofmessages transmitted in a window (MESS_T). There are two possibilities:

I. If MESS_R is less than a threshold value, THRESH, then the link will be deemed to

be unhealthy. If the transmitter was turned off, the transmitter is turned on and the weight P for

that link will be set to a minimum value MIN. This will keep a trickle of traffic on the link for

monitoring purposes until it recovers. If the transmitter was turned on, the weight P for that link

will be set to:

P’=oo< MIN +(1- oc)><P (1)

Equation 1 will exponentially damp the traffic weight value to MlN during sustained periods of

degraded service.

2. If MESS_R for a link is greater than or equal to THRESH, the link will be deemed

healthy. 1f the weight P for that link is greater than or equal to the steady state value S for that

link, then P is left unaltered. If the weight P for that link is less than THRESH then P will be set

to:

54

Petitioner Apple - EX. 1002, p. 61

Petitioner Apple - Ex. 1002, p. 62

ii. iii iii??? 55335113: iii-"1155‘ ii" 1.. if}! “iii if??? if?! ill iii?

000479.00082

P’=Bx S +(1- [3)xP (2)

where B is a parameter such that 0<=|3<=1 that determines the damping rate of P.

[188] Equation 2 will increase the traffic weight to S during sustained periods of acceptable

service in a damped exponential fashion.

[189] A detailed example will now be provided with reference to FIG. 24. As shown in FIG.

24, a first computer 2401 communicates with a second computer 2402 through two routers 2403

and 2404. Each router is coupled to the other router through three transmission links. As

described above, these may be physically diverse links or logical links (including virtual private

networks). .

[190] Suppose that a first link L1 can sustain a transmission bandwidth of 100 Mb/s and has a

window size of 32; link L2 can sustain 75 Mb/s and has a window size of 24; and link L3 can

sustain 25 Mb/s and has a window size of 8. The combined links can thus sustain 200Mb/s. The

steady state traffic weights are 0.5 for link Ll; 0.375 for link L2, and 0.125 for link L3.

MIN=1Mb/s, THRESH =0.8 MESS_T for each link, 0L:.75 and B=.5. These traffic weights will

remain stable until a link stops for synchronization or reports a number of packets received less

than its THRESH. Consider the following sequence of events:

1. Link L1 receives a SYNC_ACK containing a MESS_R of 24, indicating that only 75%

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link 1 would be below THRESH (0.8). Consequently, link L1 ’5 traffic

weight value would be reduced to 0.12825, while link L2’s traffic weight value would

be increased to 0.65812 and link L3’s traffic weight value would be increased to

0.217938.

2. Link L2 and L3 remained healthy and link L1 stopped to synchronize. Then link L1 ’5

traffic weight value would be set to 0, link L2’s traffic weight value would be set to

0.75, and link L33’s traffic weight value would be set to 0.25.

3. Link L1 finally received a SYNC_ACK containing a MESS_R of 0 indicating that none

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link L1 would be below THRESH. Link L1 ’3 traffic weight value would be

55

Petitioner Apple - EX. 1002, p. 62

Petitioner Apple - Ex. 1002, p. 63

33%. till?! 5555?: “13:51 “xii-“3??! “~11“ 1.. 11:5] ”32331 1931 31,131 311.3! 533?.”

000479.00082

increased to .005, link L2’s traffic weight value would be decreased to 0.74625, and

link L3 ’5 traffic weight value would be decreased to 0.24875.

4. Link L1 received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MESS_T (32) messages transmitted in the last window were successfully received.

Link L1 would be above THRESH. Link L1 ’5 traffic weight value would be increased

to 0.2525, while link L2’s traffic weight value would be decreased to 0.560625 and link

L3 ’5 traffic weight value would be decreased to .186875.

5. Link L1 received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MESS_T (32) messages transmitted in the last window were successfully received.

Link L1 would be above THRESH. Link L1 ’5 traffic weight value would be increased

to 0.37625; link L2’s traffic weight value would be decreased to 0.4678125, and link

L3 ’3 traffic weight value would be decreased to 0.1559375.

6. Link L1 remains healthy and the traffic probabilities approach their steady state traffic

probabilities.

B. Use of a DNS Proxy to Transparently Create Virtual Private Networks

[191] A second improvement concerns the automatic creation of a virtual private network

(VPN) in response to a domain-name server look-up function.

[192] Conventional Domain Name Servers (DNSs) provide a look—up function that returns the

IP address of a requested computer or host. For example, when a computer user types in the web

name “Yahoo.com,” the user’s web browser transmits a request to a DNS, which converts the

name into a four-part IP address that is returned to the user’s browser and then used by the

browser to contact the destination web site.

[193] This conventional scheme is shown in FIG. 25. A user’s computer 2501 includes a client

application 2504 (for example, a web browser) and an IP protocol stack 2505. When the user

enters the name of a destination host, a request DNS REQ is made (through IP protocol stack

2505) to a DNS 2502 to look up the IP address associated with the name. The DNS returns the

IP address DNS RESP to client application 2504, which is then able to use the IP address to

communicate with the host 2503 through separate transactions such as PAGE REQ and PAGE
RESP.

56

Petitioner Apple - EX. 1002, p. 63

Petitioner Apple - Ex. 1002, p. 64

“ii, ii}? iii??? “‘55 I??? $33313}? IE iE- 6:31! ”37425 1???? 13:3! EL}? if???

000479.00082

[194] In the conventional architecture shown in FIG. 25, nefarious listeners on the Internet

could intercept the DNS REQ and DNS RESP packets and thus learn what IP addresses the user

was contacting. For example, if a user wanted to set up a secure communication path with a web

site having the name “Targetcom,” when the user’s browser contacted a DNS to find the IP

address for that web site, the true IP address of that web site would be revealed over the Internet

as part of the DNS inquiry. This would hamper anonymous communications on the Internet.

[195] One conventional scheme that provides secure virtual private networks over the Internet

provides the DNS server with the public keys of the machines that the DNS server has the

addresses for. This allows hosts to retrieve automatically the public keys of a host that the host

is to communicate with so that the host can set up a VPN without having the user enter the public

key of the destination host. One implementation of this standard is presently being developed as

part of the FreeS/WAN project(RFC 2535).

[196] The conventional scheme suffers from certain drawbacks. For example, any user can

perform a DNS request. Moreover, DNS requests resolve to the same value for all users.

[197] According to certain aspects of the invention, a specialized DNS server traps DNS

requests and, if the request is from a special type of user (e.g., one for which secure

communication services are defined), the server does not return the true IP address of the target

node, but instead automatically sets up a virtual private network between the target node and the

user. The VPN is preferably implemented using the IP address “hopping” features of the basic

invention described above, such that the true identity of the two nodes cannot be determined

even ifpackets during the communication are intercepted. For DNS requests that are determined

to not require secure services (e. g., an unregistered user), the DNS server transparently “passes

through” the request to provide a normal look—up function and return the IP address of the target

web server, provided that the requesting host has permissions to resolve unsecured sites.

Different users who make an identical DNS request could be provided with different results.

[198] FIG. 26 shows a system employing various principles summarized above. A user’s

computer 2601 includes a conventional client (e.g., a web browser) 2605 and an IP protocol

stack 2606 that preferably operates in accordance with an IP hopping function 2607 as outlined

57

Petitioner Apple - EX. 1002, p. 64

Petitioner Apple - Ex. 1002, p. 65

.Ziil. $133.11 55*? 1333.71 “iv-ii M“ 325331 “vii: 11:32! 335:1 SEES? 3111]] 1113131533

000479.00082

above. A modified DNS server 2602 includes a conventional DNS server function 2609 and a

DNS proxy 2610. A gatekeeper server 2603 is interposed between the modified DNS server and

a secure target site 2704. An “unsecure” target site 2611 is also accessible via conventional IP

protocols.

[199] According to one embodiment, DNS proxy 2610 intercepts all DNS lookup functions

from client 2605 and determines whether access to a secure site has been requested. If access to

a secure site has been requested (as determined, for example, by a domain name extension, or by

reference to an internal table of such sites), DNS proxy 2610 determines whether the user has

sufficient security privileges to access the site. If so, DNS proxy 2610 transmits a message to

gatekeeper 2603 requesting that a virtual private network be created between user computer 2601

and secure target site 2604. In one embodiment, gatekeeper 2603 creates “hopblocks” to be used

by computer 2601 and secure target site 2604 for secure communication. Then, gatekeeper 2603

communicates these to user computer 2601. Thereafier, DNS proxy 2610 returns to user

computer 2601 the resolved address passed to it by the gatekeeper (this address could be

different from the actual target computer) 2604, preferably using a secure administrative VPN.

The address that is returned need not be the actual address of the destination computer.

[200] Had the user requested lookup of a non-secure web site such as site 2611, DNS proxy

would merely pass through to conventional DNS server 2609 the look-up request, which would

be handled in a conventional manner, returning the IP address of non-secure web site 2611. If

the user had requested lookup of a secure web site but lacked credentials to create such a

connection, DNS proxy 2610 would return a “host unknown” error to the user. In this manner,

different users requesting access to the same DNS name could be provided with different look-up
results.

[201] Gatekeeper 2603 can be implemented on a separate computer (as shown in FIG. 26) or as

a function within modified DNS server 2602. In general, it is anticipated that gatekeeper 2703

facilitates the allocation and exchange of information needed to communicate securely, such as

using “hopped” IP addresses. Secure hosts such as site 2604 are assumed to be equipped with a

secure communication function such as an IP hopping function 2608.

58

Petitioner Apple - Ex. 1002, p. 65

Petitioner Apple - Ex. 1002, p. 66

.1143 311:,le5:35?$5551}“12331iii-liii‘unifiu ii}! 15—311 :52 31:33 i133 fir?

000479.00082

[202] It will be appreciated that the functions of DNS proxy 2610 and DNS server 2609 can be

combined into a single server for convenience. Moreover, although element 2602 is shown as

combining the functions of two servers, the two servers can be made to operate independently.

[203] FIG. 27 shows steps that can be executed by DNS proxy server 2610 to handle requests

for DNS look-up for secure hosts. In step 2701, a DNS look—up request is received for a target

host. In step 2702, a check is made to determine whether access to a secure host was requested.

If not, then in step 2703 the DNS request is passed to conventional DNS server 2609, which

looks up the IP address of the target site and returns it to the user’s application for further

processing.

[204] In step 2702, if access to a secure host was requested, then in step 2704 a further check is

made to determine whether the user is authorized to connect to the secure host. Such a check can

be made with reference to an internally stored list of authorized IP addresses, or can be made by

communicating with gatekeeper 2603 (e.g., over an “administrative” VPN that is secure). It will

be appreciated that different levels of security can also be provided for different categories of

hosts. For example, some sites may be designated as having a certain security level, and the

security level of the user requesting access must match that security level. The user’s security

level can also be determined by transmitting a request message back to the user’s computer

requiring that it prove that it has sufficient privileges.

[205] If the user is not authorized to access the secure site, then a “host unknown” message is

returned (step 2705). If the user has sufficient security privileges, then in step 2706 a secure

VPN is established between the user’s computer and the secure target site. As described above,

this is preferably done by allocating a hopping regime that will be carried out between the user’s

computer and the secure target site, and is preferably performed transparently to the user (i.e., the

user need not be involved in creating the secure link). As described in various embodiments of

this application, any of various fields can be “hopped” (e.g., IP source/destination addresses; a

field in the header; etc.) in order to communicate securely.

[206] Some or all of the security functions can be embedded in gatekeeper 2603, such that it

handles all requests to connect to secure sites. In this embodiment, DNS proxy 2610

59

Petitioner Apple - Ex. 1002, p. 66

Petitioner Apple - Ex. 1002, p. 67

$33., #316135? ‘EEEEié a}??? it‘ll-#32311 Min .1 i931 ”3531 I33??? till $13! 333255?

000479.00082

communicates with gatekeeper 2603 to determine (preferably over a secure administrative VPN)

whether the user has access to a particular web site. Various scenarios for implementing these

features are described by way of example below:

Scenario #1: Client has permission to access target computer, and gatekeeper has a rule

to make a VPN for the client. In this scenario, the client’s DNS request would be received by the

DNS proxy server 2610, which would forward the request to gatekeeper 2603. The gatekeeper

would establish a VPN between the client and the requested target. The gatekeeper would

provide the address of the destination to the DNS proxy, which would then return the resolved

name as a result. The resolved address can be transmitted back to the client in a secure

administrative VPN.

Scenario #2: Client does not have permission to access target computer. In this scenario,

the client’s DNS request would be received by the DNS proxy server 2610, which would forward

the request to gatekeeper 2603. The gatekeeper would reject the request, informing DNS proxy

server 2610 that it was unable to find the target computer. The DNS proxy 2610 would then

return a “host unknown” error message to the client.

Scenario #3: Client has permission to connect using a normal non—VPN link, and the

gatekeeper does not have a rule to set up a VPN for the client to the target site. In this scenario,

the client’s DNS request is received by DNS proxy server 2610, which would check its rules and

determine that no VPN is needed. Gatekeeper 2603 would then inform the DNS proxy server to

forward the request to conventional DNS server 2609, which would resolve the request and

return the result to the DNS proxy server and then back to the client.

Scenario #4: Client does not have permission to establish a normal/non-VPN link, and

the gatekeeper does not have a rule to make a VPN for the client to the target site. In this

scenario, the DNS proxy server would receive the client’s DNS request and forward it to

gatekeeper 2603. Gatekeeper 2603 would determine that no special VPN was needed, but that

the client is not authorized to communicate with non-VPN members. The gatekeeper would

reject the request, causing DNS proxy server 2610 to return an error message to the client.

C. Large Link to Small Link Bandwidth Management

[207] One feature of the basic architecture is the ability to prevent so-called “denial of service”

attacks that can occur if a computer hacker floods a known Internet node with packets, thus

60

Petitioner Apple - Ex. 1002, p. 67

Petitioner Apple - Ex. 1002, p. 68

.133. 312% 55:33 3253:} ““5531 “1493‘ “all" ,1. ~11]! "3:1! L125??? 113! i173! £35.55"?

000479.00082

preventing the node from communicating with other nodes. Because IP addresses or other fields

are “hopped” and packets arriving with invalid addresses are quickly discarded, Internet nodes

are protected against flooding targeted at a single IP address.

[208] In a system in which a computer is coupled through a link having a limited bandwidth

(e.g., an edge router) to a node that can support a much higher-bandwidth link (e.g., an Internet

Service Provider), a potential weakness could be exploited by a determined hacker. Referring to

FIG. 28, suppose that a first host computer 2801 is communicating with a second host computer

2804 using the IP address hopping principles described above. The first host computer is
coupled through an edge router 2802 to an Internet Service Provider (ISP) 2803 through a low

bandwidth link (LOW BW'), and is in turn coupled to second host computer 2804 through parts

of the Internet through a high bandwidth link (HIGH BW'). In this architecture, the ISP is able to

support a high bandwidth to the intemet, but a much lower bandwidth to the edge router 2802.

[209] Suppose that a computer hacker is able to transmit a large quantity of dummy packets

addressed to first host computer 2801 across high bandwidth link HIGH BW. Normally, host

computer 2801 would be able to quickly reject the packets since they would not fall within the

acceptance window permitted by the IP address hopping scheme. However, because the packets

must travel across low bandwidth link LOW BW, the packets overwhelm the lower bandwidth

link before they are received by host computer 2801. Consequently, the link to host computer

2801 is effectively flooded before the packets can be discarded.

[210] According to one inventive improvement, a “link guard” function 2805 is inserted into

the high-bandwidth node (e.g., ISP 2803) that quickly discards packets destined for a low—

bandwidth target node if they are not valid packets. Each packet destined for a low-bandwidth

node is cryptographically authenticated to determine whether it belongs to a VPN. If it is not a

valid VPN packet, the packet is discarded at the high-bandwidth node. If the packet is

authenticated as belonging to a VPN, the packet is passed with high preference. If the packet is a

valid non—VPN packet, it is passed with a lower quality of service (e.g., lower priority).

[211] In one embodiment, the ISP distinguishes between VPN and non-VPN packets using the

protocol of the packet. In the case of IPSEC [rfc 2401], the packets have IP protocols 420 and

61

Petitioner Apple - EX. 1002, p. 68

Petitioner Apple - Ex. 1002, p. 69

.iiil- if}? i??? ~f§§€§§ $323] if 5% “13311 “~31" ill?! “-35?! 23322 Milli}! iii???

000479.00082

421. In the case of the TARP VPN, the packets will have an IP protocol that is not yet defined.

The ISP’s link guard, 2805, maintains a table of valid VPNs which it uses to validate whether

VPN packets are cryptographically valid.

[212] According to one embodiment, packets that do not fall within any hop windows used by

nodes on the low—bandwidth link are rejected, or are sent with a lower quality of service. One

approach for doing this is to provide a copy of the IP hopping tables used by the low-bandwidth

nodes to the high-bandwidth node, such that both the high-bandwidth and low—bandwidth nodes

track hopped packets (e.g., the high-bandwidth node moves its hopping window as valid packets

are received). In such a scenario, the high-bandwidth node discards packets that do not fall

within the hopping window before they are transmitted over the low-bandwidth link. Thus, for

example, ISP 2903 maintains a copy 2910 of the receive table used by host computer 2901.

Incoming packets that do not fall within this receive table are discarded. According to a different

embodiment, link guard 2805 validates each WN packet using a keyed hashed message

authentication code (HMAC) [rfc 2104]. According to another embodiment, separate VPNs

(using, for example, hopblocks) can be established for communicating between the low-

bandwidth node and the high-bandwidth node (i.e., packets arriving at the high-bandwidth node

are converted into different packets before being transmitted to the low-bandwidth node).

[213] As shown in FIG. 29, for example, suppose that a first host computer 2900 is

communicating with a second host computer 2902 over the Internet, and the path includes a high

bandwidth link HIGH BW to an ISP 2901 and a low bandwidth link LOW BW through an edge

router 2904. In accordance with the basic architecture described above, first host computer 2900

and second host computer 2902 would exchange hopblocks (or a hopblock algorithm) and would

be able to create matching transmit and receive tables 2905, 2906, 2912 and 2913. Then in

accordance with the basic architecture, the two computers would transmit packets having

seemingly random IP source and destination addresses, and each would move a corresponding

hopping window in its receive table as valid packets were received.

[214] Suppose that a nefarious computer hacker 2903 was able to deduce that packets having a

certain range of IP addresses (e.g., addresses 100 to 200 for the sake of simplicity) are being

transmitted to ISP 2901, and that these packets are being forwarded over a low—bandwidth link.

62

Petitioner Apple - Ex. 1002, p. 69

Petitioner Apple - Ex. 1002, p. 70

.131131,:iiiffi'fiiiii’fii’i‘“ii-""931 ”vii" i131 if:“il IiS‘iQ 11.7}! 131.11

000479.00082

Hacker computer 2903 could thus “flood” packets having addresses falling into the range 100 to

200, expecting that they would be forwarded along low bandwidth link LOW BW, thus causing

the low bandwidth link to become overwhelmed. The fast packet reject mechanism in first host

computer 3000 would be of little use in rejecting these packets, since the low bandwidth link was

effectively jammed before the packets could be rejected. In accordance with one aspect of the

improvement, however, VPN link guard 2911 would prevent the attack from impacting the

performance of VPN traffic because the packets would either be rejected as invalid VPN packets

or given a lower quality of service than VPN traffic over the lower bandwidth link. A denial-of-

service flood attack could, however, still disrupt non-VPN traffic.

[215] According to one embodiment of the improvement, ISP 2901 maintains a separate VPN

with first host computer 2900, and thus translates packets arriving at the ISP into packets having

a different IP header before they are transmitted to host computer 2900. The cryptographic keys

used to authenticate VPN packets at the link guard 2911 and the cryptographic keys used to

encrypt and decrypt the VPN packets at host 2902 and host 2901 can be different, so that link

guard 2911 does not have access to the private host data; it only has the capability to authenticate

those packets.

[216] According to yet a third embodiment, the low—bandwidth node can transmit a special

message to the high-bandwidth node instructing it to shut down all transmissions on a particular

IP address, such that only hopped packets will pass through to the low—bandwidth node. This

embodiment would prevent a hacker from flooding packets using a single IP address. According

to yet a fourth embodiment, the high—bandwidth node can be configured to discard packets

transmitted to the low-bandwidth node if the transmission rate exceeds a certain predetermined

threshold for any given IP address; this would allow hopped packets to go through. In this

respect, link guard 2911 can be used to detect that the rate of packets on a given IP address are

exceeding a threshold rate; further packets addressed to that same IP address would be dropped

or transmitted at a lower priority (e.g., delayed).

D. Traffic Limiter

[217] In a system in which multiple nodes are communicating using “hopping” technology, a

treasonous insider could internally flood the system with packets. In order to prevent this

63

Petitioner Apple - EX. 1002, p. 70

Petitioner Apple - Ex. 1002, p. 71

ii. iii; 3333?? “115‘; "1335 “zit-"3213* “hil- 313333}?! 133?}; ii}! iii it???

000479.00082

possibility, one inventive improvement involves setting up “contracts” between nodes in the

system, such that a receiver can impose a bandwidth limitation on each packet sender. One

technique for doing this is to delay acceptance of a checkpoint synchronization request from a

sender until a certain time period (e.g., one minute) has elapsed. Each receiver can effectively

control the rate at which its hopping window moves by delaying “SYNC ACK” responses to

“SYNC_REQ” messages.

[218] A simple modification to the checkpoint synchronizer will serve to protect a receiver

from accidental or deliberate overload from an internally treasonous client. This modification is

based on the observation that a receiver will not update its tables until a SYNC_REQ is received

on hopped address CKPT_N. It is a simple matter of deferring the generation of a new CKPT_N

until an appropriate interval after previous checkpoints.

[219] Suppose a receiver wished to restrict reception fiom a transmitter to 100 packets a

second, and that checkpoint synchronization messages were triggered every 50 packets. A

compliant transmitter would not issue new SYNC_REQ messages more often than every 0.5

seconds. The receiver could delay a non-compliant transmitter from synchronizing by delaying

the issuance of CKPT_N for 0.5 second after the last SYNC_REQ was accepted.

[220] In general, if M receivers need to restrict N transmitters issuing new SYNC_REQ

messages after every W messages to sending R messages a second in aggregate, each receiver

could defer issuing a new CKPT_N until MxNxW/R seconds have elapsed since the last

SYNC_REQ has been received and accepted. If the transmitter exceeds this rate between a pair

of checkpoints, it will issue the new checkpoint before the receiver is ready to receive it, and the

SYNC_REQ will be discarded by the receiver. After this, the transmitter will re-issue the

SYNC_REQ every T1 seconds until it receives a SYNC_ACK. The receiver will eventually

update CKPT_N and the SYNC_REQ will be acknowledged. If the transmission rate greatly

exceeds the allowed rate, the transmitter will stop until it is compliant. If the transmitter exceeds

the allowed rate by a little, it will eventually stop after several rounds of delayed synchronization

until it is in compliance. Hacking the transmitter’s code to not shut off only permits the

transmitter to lose the acceptance window. In this case it can recover the window and proceed

only after it is compliant again.

64

Petitioner Apple - Ex. 1002, p. 71

Petitioner Apple - Ex. 1002, p. 72

ii iii? :53? 3233.- ‘Q‘? “iii-1'5??? “-iie‘ m it}! “25?! 1:53: 132%! silt? iii-:5?

000479.00082

[221] Two practical issues should be considered when implementing the above scheme:

1. The receiver rate should be slightly higher than the permitted rate in order to allow for

statistical fluctuations in traffic arrival times and non-uniform load balancing.

2. Since a transmitter will rightfully continue to transmit for a period after a SYNC_REQ

is transmitted, the algorithm above can artificially reduce the transmitter’s bandwidth. If events

prevent a compliant transmitter fiom synchronizing for a period (e.g. the network dropping a

SYNC_REQ or a SYNC_ACK) a SYNC_REQ will be accepted later than expected. After this,

the transmitter will transmit fewer than expected messages before encountering the next

checkpoint. The new checkpoint will not have been activated and the transmitter will have to

retransmit the SYNC_REQ. This will appear to the receiver as if the transmitter is not

compliant. Therefore, the next checkpoint will be accepted late from the transmitter’s

perspective. This has the effect of reducing the transmitter’s allowed packet rate until the

transmitter transmits at a packet rate below the agreed upon rate for a period of time.

[222] To guard against this, the receiver should keep track of the times that the last C

SYNC_REQs were received and accepted and use the minimum of MxNxW/R seconds after the

last SYNC_REQ has been received and accepted, 2xMxNxW/R seconds after next to the last

SYNC_REQ has been received and accepted, CxMxNxW/R seconds after (C-l)th to the last

SYNC_REQ has been received, as the time to activate CKPT_N. This prevents the receiver

from inappropriately limiting the transmitter’s packet rate if at least one out of the last C

SYNCHREQs was processed on the first attempt.

[223] FIG. 30 shows a system employing the above-described principles. In FIG. 30, two

computers 3000 and 3001 are assumed to be communicating over a network N in accordance

with the “hopping” principles described above (e. g., hopped IP addresses, discriminator values,

etc.). For the sake of simplicity, computer 3000 will be referred to as the receiving computer and

computer 3001 will be referred to as the transmitting computer, although full duplex operation is

of course contemplated. Moreover, although only a single transmitter is shown, multiple

transmitters can transmit to receiver 3000.

[224] As described above, receiving computer 3000 maintains a receive table 3002 including a

window W that defines valid IP address pairs that will be accepted when appearing in incoming

65

Petitioner Apple - Ex. 1002, p. 72

Petitioner Apple - Ex. 1002, p. 73

.311 {1315 ii??? 1:3}; ”:33? 11.31.1123; ""11" .3 1:31 “3:331 3323; 11:31 11711159235?

00047900082

data packets. Transmitting computer 3001 maintains a transmit table 3003 from which the next

IP address pairs will be selected when transmitting a packet to receiving computer 3000. (For

the sake of illustration, window W is also illustrated with reference to transmit table 3003). As

transmitting computer moves through its table, it will eventually generate a SYNC*REQ

message as illustrated in function 3010. This is a request to receiver 3000 to synchronize the

receive table 3002, from which transmitter 3001 expects a response in the form of a CKPT_N

(included as part of a SYNC_ACK message). If transmitting computer 3001 transmits more

messages than its allotment, it will prematurely generate the SYNC_REQ message. (If it has

been altered to remove the SYNC_REQ message generation altogether, it will fall out of

synchronization since receiver 3000 will quickly reject packets that fall outside of window W,

and the extra packets generated by transmitter 3001 will be discarded).

[225] In accordance with the improvements described above, receiving computer 3000

performs certain steps when a SYNC_REQ message is received, as illustrated in FIG. 30. In step

3004, receiving computer 3000 receives the SYNC_REQ message. In step 3005, a check is

made to determine whether the request is a duplicate. If so, it is discarded in step 3006. In step

3007, a check is made to determine whether the SYNC_REQ received from transmitter 3001 was

received at a rate that exceeds the allowable rate R (i.e., the period between the time of the last

SYNC_REQ message). The value R can be a constant, or it can be made to fluctuate as desired.

If the rate exceeds R, then in step 3008 the next activation of the next CKPT_N hopping table

entry is delayed by W/R seconds afier the last SYNC_REQ has been accepted.

[226] Otherwise, if the rate has not been exceeded, then in step 3109 the next CKPT_N value is

calculated and inserted into the receiver’s hopping table prior to the next SYNC_REQ from the

transmitter 3101. Transmitter 3101 then processes the SYNC_REQ in the normal manner.

E. Signaling Smchronizer

[227] In a system in which a large number of users communicate with a central node using

secure hopping technology, a large amount of memory must be set aside for hopping tables and

their supporting data structures. For example, if one million subscribers to a web site

occasionally communicate with the web site, the site must maintain one million hopping tables,

thus using up valuable computer resources, even though only a small percentage of the users may

66

Petitioner Apple - Ex. 1002, p. 73

Petitioner Apple - Ex. 1002, p. 74

31.133 ii}? iii-3%} “14??! flail-31753! M}. m it}! “1:735 L592 ii}? i113! iiliti.’

000479.00082

actually be using the system at any one time. A desirable solution would be a system that

permits a certain maximum number of simultaneous links to be maintained, but which would

“recognize” millions of registered users at any one time. In other words, out of a population of a

million registered users, a few thousand at a time could simultaneously communicate with a

central server, without requiring that the server maintain one million hopping tables of

appreciable size.

[228] One solution is to partition the central node into two nodes: a signaling server that

performs session initiation for user log-on and log-off (and requires only minimally sized tables),

and a transport server that contains larger hopping tables for the users. The signaling server

listens for the millions ofknown users and performs a fast-packet reject of other (bogus) packets.

When a packet is received from a known user, the signaling server activates a virtual private link

(VPL) between the user and the transport server, where hopping tables are allocated and

maintained. When the user logs onto the signaling server, the user’s computer is provided with

hop tables for communicating with the transport server, thus activating the VPL. The VPLs can

be torn down when they become inactive for a time period, or they can be torn down upon user

log—out. Communication with the signaling server to allow user log-on and log—off can be

accomplished using a specialized version of the checkpoint scheme described above.

[229] FIG. 31 shows a system employing certain of the above-described principles. In FIG. 31,

a signaling server 3101 and a transport server 3102 communicate over a link. Signaling server

3101 contains a large number of small tables 3106 and 3107 that contain enough information to

authenticate a communication request with one or more clients 3103 and 3104. As described in

more detail below, these small tables may advantageously be constructed as a special case of the

synchronizing checkpoint tables described previously. Transport server 3102, which is

preferably a separate computer in communication with signaling server 3101, contains a smaller

number of larger hopping tables 3108, 3109, and 3110 that can be allocated to create a VPN with

one of the client computers.

[230] According to one embodiment, a client that has previously registered with the system

(e.g., via a system administration function, a user registration procedure, or some other method)

transmits a request for information from a computer (e.g., a web site). In one variation, the

67

Petitioner Apple - EX. 1002, p. 74

Petitioner Apple - Ex. 1002, p. 75

iii if?) if??? 5155?: ‘1??? 31131-11311 it‘ll" 11:3 31:11! 32; ‘13! lilliilii‘ii‘

000479.00082

request is made using a “hopped” packet, such that signaling server 3101 will quickly reject

invalid packets from unauthorized computers such as hacker computer 3105. An

“administrative” VPN can be established between all of the clients and the signaling server in

order to ensure that a hacker cannot flood signaling server 3101 with bogus packets. Details of

this scheme are provided below.

[231] Signaling server 310] receives the request 3111 and uses it to determine that client 3103

is a validly registered user. Next, signaling server 3101 issues a request to transport server 3102

to allocate a hopping table (or hopping algorithm or other regime) for the purpose of creating a

VPN with client 3103. The allocated hopping parameters are returned to signaling server 3101

(path 3113), which then supplies the hopping parameters to client 3103 via path 3114, preferably

in encrypted form.

[232] Thereafter, client 3103 communicates with transport server 3102 using the normal

hopping techniques described above. It will be appreciated that although signaling server 3101

and transport server 3102 are illustrated as being two separate computers, they could of course be

combined into a single computer and their functions performed on the single computer.

Alternatively, it is possible to partition the functions shown in FIG. 31 differently from as shown

without departing from the inventive principles.

[233] One advantage of the above-described architecture is that signaling server 3101 need only

maintain a small amount of information on a large number of potential users, yet it retains the

capability of quickly rejecting packets from unauthorized users such as hacker computer 3105.

Larger data tables needed to perform the hopping and synchronization functions are instead

maintained in a transport server 3102, and a smaller number of these tables are needed since they

are only allocated for “active” links. After a VPN has become inactive for a certain time period

(e.g., one hour), the VPN can be automatically torn down by transport server 3102 or signaling

server 3101.

[234] A more detailed description will now be provided regarding how a special case of the

checkpoint synchronization feature can be used to implement the signaling scheme described

above.

68

Petitioner Apple - EX. 1002, p. 75

Petitioner Apple - Ex. 1002, p. 76

,...... ,, , ‘ ,

.35.. Lil 3:31:33 15:31 *1 :‘l! “- H" 4 :11! ““5!“ .n 3L1! ‘er ..:ifn ital IL}! 3::

000479.00082

[235] The signaling synchronizer may be required to support many (millions) of standing, low

bandwidth connections. It therefore should minimize per—VPL memory usage while providing

the security offered by hopping technology. In order to reduce memory usage in the signaling

server, the data hopping tables can be completely eliminated and data can be carried as part of

the SYNC_REQ message. The table used by the server side (receiver) and client side

(transmitter) is shown schematically as element 3106 in FIG. 31.

[236] The meaning and behaviors of CKPT_N, CKPT_O and CKPT_R remain the same from

the previous description, except that CKPT_N can receive a combined data and SYNC_REQ

message or a SYNC_REQ message without the data.

[237] The protocol is a straightforward extension of the earlier synchronizer. Assume that a

client transmitter is on and the tables are synchronized. The initial tables can be generated “out

of band.” For example, a client can log into a web server to establish an account over the

Internet. The client will receive keys etc encrypted over the Internet. Meanwhile, the server will

set up the signaling VPN on the signaling server.

[238] Assuming that a client application wishes to send a packet to the server on the client’s

standing signaling VPL:

l. The client sends the message marked as a data message on the inner header using the

transmitter’s CKPT_N address. It turns the transmitter off and starts a timer T1 noting

CKPT_O. Messages can be one of three types: DATA, SYNC_REQ and SYNC_ACK.

In the normal algorithm, some potential problems can be prevented by identifying each

message type as part of the encrypted inner header field. In this algorithm, it is important

to distinguish a data packet and a SYNC_REQ in the signaling synchronizer since the

data and the SYNC_REQ come in on the same address.

2. When the server receives a data message on its CKPT_N, it verifies the message and

passes it up the stack. The message can be verified by checking message type and and

other information (i.e user credentials) contained in the inner header It replaces its

CKPT_O with CKPT_N and generates the next CKPT_N. It updates its transmitter side

69

Petitioner Apple - Ex. 1002, p. 76

Petitioner Apple - Ex. 1002, p. 77

.131. £231 ii” "iii ”:43! “r‘il-liii‘éi'HX-ii" 'lliljfiii $33! 233333 Elli! 513: 31?}???

000479.00082

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

3. When the client side receiver receives a SYNC_ACK on its CKPT_R with a payload

matching its transmitter side CKPT_O and the transmitter is off, the transmitter is turned

on and the receiver side CKPT_R is updated. If the SYNC_ACK’s payload does not

match the transmitter side CKPT_O or the transmitter is on, the SYNC_ACK is simply

discarded.

4. T1 expires: If the transmitter is off and the client’s transmitter side CKPT_O matches the

CKPT_O associated with the timer, it starts timer Tl noting CKPT_O again, and a

SYNC_REQ is sent using the transmitter’s CKPT_O address. Otherwise, no action is

taken.

5. When the server receives a SYNC_REQ on its CKPT_N, it replaces its CKPT_O with

CKPT_N and generates the next CKPT_N. It updates its transmitter side CKPT_R to

correspond to the client’s receiver side CKPT_R and transmits a SYNC_ACK containing

CKPT_O in its payload.

6. When the server receives a SYNC_REQ on its CKPT_O, it updates its transmitter side

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

[239] FIG. 32 shows message flows to highlight the protocol. Reading from top to bottom, the

client sends data to the server using its transmitter side CKPT_N. The client side transmitter is

turned off and a retry timer is turned off. The transmitter will not transmit messages as long as

the transmitter is turned off. The client side transmitter then loads CKPT_N into CKPT_O and

updates CKPT_N. This message is successfully received and a passed up the stack. It also

synchronizes the receiver i.e, the server loads CKPT_N into CKPT_O and generates a new

CKPT_N, it generates a new CKPT_R in the server side transmitter and transmits a SYNC_ACK

containing the server side receiver’s CKPT_O the server. The SYNC_ACK is successfully

received at the client. The client side receiver’s CKPT_R is updated, the transmitter is turned on

and the retry timer is killed. The client side transmitter is ready to transmit a new data message.

[240] Next, the client sends data to the server using its transmitter side CKPT_N. The client

side transmitter is turned off and a retry timer is turned off. The transmitter will not transmit

70

Petitioner Apple - EX. 1002, p. 77

Petitioner Apple - Ex. 1002, p. 78

000479.00082

messages as long as the transmitter is turned off. The client side transmitter then loads CKPTflN

into CKPT_O and updates CKPT_N. This message is lost. The client side timer expires and as a

result a SYNC_REQ is transmitted on the client side transmitter’s CKPT.O (this will keep

happening until the SYNC_ACK has been received at the client). The SYNC_REQ is

successfully received at the server. It synchronizes the receiver i.e, the server loads CKPT_N

into CKPT_O and generates a new CKPT_N, it generates an new CKPT_R in the server side

transmitter and transmits a SYNC_ACK containing the server side receiver’s CKPT_O the

server. The SYNC_ACK is successfully received at the client. The client side receiver’s

CKPT_R is updated, the transmitter is turned off and the retry timer is killed. The client side

transmitter is ready to transmit a new data message.

[241] There are numerous other scenarios that follow this flow. For example, the SYNC_ACK

could be lost. The transmitter would continue to re-send the SYNC_REQ until the receiver

synchronizes and responds.

[242] The above-described procedures allow a client to be authenticated at signaling server

3201 while maintaining the ability of signaling server 3201 to quickly reject invalid packets,

such as might be generated by hacker computer 3205. In various embodiments, the signaling

synchronizer is really a derivative of the synchronizer. It provides the same protection as the

hopping protocol, and it does so for a large number of low bandwidth connections.

71

Petitioner Apple - EX. 1002, p. 78

Petitioner Apple - Ex. 1002, p. 79

231.1131 “73113111393231 1133- 2131 3:211 13553} 313.3!

000479.00082

CLAIMS

We Claim:

1. A method for establishing an encrypted channel between a client and a target

computer, comprising the steps of:

(i) intercepting a DNS request sent by the client; and

(ii) based on the DNS request, establishing the encrypted channel between the client

and the target.

2. The method of claim 1, wherein step (ii) comprises steps of:

a) determining whether the client is authorized to access the target;

b) when the client is authorized to access the target, initiating the encrypted channel;

and

c) when the client is not authorized to access the target, sending an error message to

the client.

3. The method of claim 2, wherein step b) comprises sending encrypted channel

parameters to the client.

4. The method of claim 1, wherein step (ii) occurs in a communication protocol

independently of an application program.

5. The method of claim 1, wherein step (i) comprises a DNS proxy server

intercepting the DNS request sent by the client.

6. The method of claim 1, wherein step (ii) comprises establishing the encrypted

channel responsive to intercepting a DNS request for a domain name comprising a

predetermined domain name extension.

7. A method for establishing an encrypted channel between a client and a secure

host, comprising the step of automatically creating the encrypted channel upon intercepting a

DNS request for a domain name comprising a predetermined domain name extension.

72

Petitioner Apple - Ex. 1002, p. 79

Petitioner Apple - Ex. 1002, p. 80

00047900082

8. The method of claim 7, wherein the creating step is performed in a

communication protocol independently of an application program.

9. A method for establishing an encrypted channel between a client and a secure

host, comprising the step of automatically creating the encrypted channel in response to detecting

a request for access to a predetermined IP address.

10. The method of claim 9, wherein the creating step is performed in a

communication protocol independently ofan application program.

11. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, perfonns the steps of:

(i) determining whether the intercepted DNS request corresponds to a secure server;

(ii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS fimction that returns an IP address of a

nonsecure computer; and

(iii) when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted channel between the client and the secure server.

12. The data processing device of claim 11, wherein step (iii) comprises the steps of:

(a)~ determining whether the client is authorized to access the secure server; and

(b) when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted channel between the secure server and the

client.

13. The data processing device of claim 12, wherein step (iii) further comprises the

step of:

(c) when the client is not authorized to access the secure server, returning a host

unknown error message to the client.

73

Petitioner Apple - EX. 1002, p. 80

Petitioner Apple - Ex. 1002, p. 81

:31. iii} $3}??? 15:31: 25211! 31-31" ”3?“ ‘5‘ i l-- Ti? ’51}? 773?? if}! {11* 5:53

000479.00082

14. The data processing device of claim 13, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

15. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, when the intercepted DNS request corresponds to a secure server, determines whether

the client is authorized to access the secure server and, if so, automatically initiates an encrypted

channel between the client and the secure server.

16. A computer readable medium storing a domain name server (DNS) proxy module

comprised of computer readable instructions that, when executed, cause a data processing device

to perform the steps of:

(i) intercepting a DNS request sent by a client;

(ii) determining whether the intercepted DNS request corresponds to a secure server;

(iii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS function that returns an IP address of a

nonsecure computer; and

(iv) when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted channel between the client and the secure server.

17. The computer readable medium of claim 16, wherein step (iii) comprises the steps
of:

(a) determining whether the client is authorized to access the secure server; and

(b) when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted channel between the secure server and the

client.

18. The computer readable medium of claim 17, wherein step (iii) further comprises

the step of:

74

Petitioner Apple - Ex. 1002, p. 81

Petitioner Apple - Ex. 1002, p. 82

.Ziii £33] 53:32? 55:35? “7:331 him}?! “xii- m 31:31 “2E?! :33}? 31:?! ii]! £3313?

00047900082

(0) when the client is not authorized to access the secure server, returning a host

unknown error message to the client.

19. The computer readable medium of claim 18, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

20. A computer readable medium comprising computer readable instructions that,

when executed, cause a domain name server (DNS) proxy module to intercept DNS requests sent

by a client and, for each intercepted DNS request, when the intercepted DNS request corresponds

to a secure server, determines whether the client is authorized to access the secure server and, if

so, automatically initiates an encrypted channel between the client and the secure server.

75

Petitioner Apple - EX. 1002, p. 82

Petitioner Apple - Ex. 1002, p. 83

Sill. 9.333 1%??? @532} ‘11}?! “all-“321M “will" u. £131 3323‘! 33331 ill! 13‘le :ixfi?

000479.00082

ABSTRACT

A plurality of computer nodes communicate using seemingly random Internet Protocol

source and destination addresses. Data packets matching criteria defined by a moving window

of valid addresses are accepted for further processing, while those that do not meet the criteria

are quickly rejected. Improvements to the basic design include (1) a load balancer that

distributes packets across different transmission paths according to transmission path quality; (2)

a DNS proxy server that transparently creates a virtual private network in response to a domain

name inquiry; (3) a large-to—small link bandwidth management feature that prevents denial-of-

service attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by

limiting the rate at which a transmitter can be synchronized with a receiver; and (5) a signaling

synchronizer that allows a large number of nodes to communicate with a central node by

partitioning the communication fimction between two separate entities.

76

Petitioner Apple - EX. 1002, p. 83

Petitioner Apple - Ex. 1002, p. 84

1/35

100

ORIGINATING

TERMINAL

40

IP PACKET

IP IP

ROUTER ROUTER

29 25 INTERNET

IP IP
ROUTER ROUTER

27

ENCRYPTION KEY

FIG. 1

107

Petitioner Apple - EX. 1002, p. 84

Petitioner Apple - Ex. 1002, p. 85

53135 E22: 2235:; IR: Animals: :2 :‘I~ ELIE $213: 1212:; T13: isiiif

2/35

TARP

TERMINAL

107

1A
146 TARP PACKET

100

40

122

LINK KEY TARP ROUTER
ROUTER a.“

123 0.11 130 LINK KEY 124
LINK KEY

TARP IP TARP

ROUTER ROUTER ROUTER

125 INTERNET
129 128

TARP IP ROUTER
ROUTER ROUTER ROUTER

LINK KEY a126

127

TARP

REfiRrFE’R 0'“ ROUTER
143 LINK KEY M

W LINK KEY
SESSION KEY TARP PACKET

110

TARP

TERMINAL
FIG. 2

Petitioner Apple - EX. 1002, p. 85‘

Petitioner Apple - Ex. 1002, p. 86

3/35

207a 207b 207c 207d - - -

flifllli___ ' ° °

78 DATA STREAM ggg
INTERLEAVED

PAYLOAD DATA

339

INTERLEAVE WINDOW 32_o

SESSION-KEY-ENCRYPTED

PAYLOAD DATA @

TARP PACKET WITH

ENCRYPTED PAYLOADS go

LINK-KEY-ENCRYPTED

TARP PACKETS gag

'7 1:1;.;:_.-;~_. lP PACKETS W/ ENCRYPTED
' TARP PACKETS AS

PAYLOAD @

TARP TARP

ROUTER 1 ROUTER 2

TARP

ROUTER 7 TARP
ROUTER 3

TARP

ROUTER 4

TARP

ROUTER 5

TARP

ROUTER 6

 TARP

FIG. 3A

Petitioner Apple - EX. 1002, p. 86

Petitioner Apple - Ex. 1002, p. 87

 w.figsimazzozm1Eémménams

$835;83:527:Boss59m853%

”$83515;85:52.;955553mQmEEUZm

4/35

Nlmm85:50.2892950$ow._.n_>mozm....

o|1$mozmsgmo<o._><n_

385$:

329$meQEEzfiogm
<._.<omo953m>228

32515331.“...ENENEN28
Petitioner Apple - EX. 1002, p. 87

Petitioner Apple - Ex. 1002, p. 88

.h‘}
ifli?!“3122§* 1335333131331 ‘33: 3"“

X
,3},

" :1 a:
L’ ”1'3 Stand?“ In

.333!" s‘i'll'll 15

5/35

ammlmég585%v2:Ea
 —IIIIIIIIIIIIIIIIIIIIIIIImOmmmuoEgm6TE;ozammoommmmSmzazooo._.m>_._.<zw._m:<mzo

ammfixzjsg
vGE %isEvagEzfimmzamzézms

Agomm

9282;2%.3mommmoomm.3_._._._>>ozawmoommmas.mzagooo._.m>c<zmmb<mm:5

Petitioner Apple - EX. 1002, p. 88

Petitioner Apple - Ex. 1002, p. 89

6/35

BACKGROUND LOOP-DECOY

GENERATION SO

AUTHENTICATE TARP PACKET 82

OUTER LAYER DECRYPTION OF

TARP PACKET USING LINK KEY S3

CHECK FOR DECOY AND

INCREMENT PERISHABLE DECOY S4
COUNTER AS APPROPRIATE

86

DUMP DECOY

TRANSMIT DECOY?

S5

YES

DECREMENT

SQ

DETERMINE DESTINATION TARP GENERATE NEXT-HOP TARP

ADDRESS AND STORE LINK KEY ADDRESS AND STORE LINK KEY SB
AND IP ADDRESS AND IP ADDRESS

GENERATE NEXT-HOP TARP

ADDRESS AND STORE LINK KEY 810
AND IP ADDRESS

GENERATE IP HEADER

AND TRANSMIT 7 s11

Petitioner Apple - EX. 1002, p. 89
FIG. 5

Petitioner Apple - Ex. 1002, p. 90

”1!, ‘IDE II::,‘3 ’5'2‘II ".sz II‘II-I” III “"II II III "':II ““33: IIMII ILA? 23:“

7/35

BACKGROUND LOOP-DECOY

GENERATION 520

GROUP RECEIVED IP PACKETS

INTO INTERLEAVE WINDOW 821

DETERMINE DESTINATION TARP

ADDRESS, INITIALIZE TTL, STORE 822
IN TARP HEADER

RECORD WINDOW SEQ. NOS. AND

INTERLEAVE SEQ. NOS IN TARP 323
HEADERS

CHOOSE FIRST HOP TARP

ROUTER, LOOK UP IP ADDRESS

AND STORE IN CLEAR IP HEADER,
OUTER LAYER ENCRYPT

INSTALL CLEAR IP HEADER

AND TRANSMIT 825

FIG. 6

824
Petitioner Apple - EX. 1002, p. 90

Petitioner Apple - Ex. 1002, p. 91

.1311, I313 3%? TEST? ’1‘}?! 3313515! 54L “I 11"}; “’2'?! TE‘fiZ SI'III LIL}? if?

8/35

S40

AGBCKROUND LOOP-DECOY

GENERATION

S42

AUTHENTICATE TARP PACKET S49
RECEIVED

DIVIDE BLOCK INTO PACKETS

 S43 USING WINDOW SEQUENCE DATA,
ADD CLEAR |P HEADERS

DECRYPT OUTER LAYER GENERflflEfiW TARP
ENCRYPTION WITH LINK KEY

S44 S50

INCREMENT PERISHABLE HAN?§$TK§EEB§S£Q§§ETS
COUNTER IF DECOY

S45

THROW AWAY DECOY OR KEEP

IN RESPONSE TO ALGORITHM

S46

CACHE TARP PACKETS UNTIL

WINDOW IS ASSEMBLED

S47

DEINTERLEAVE PACKETS

FORMING WINDOW

S48

DECRYPT BLOCK

FIG. 7

V Petitioner Apple - EX. 1002, p. 91

Petitioner Apple - Ex. 1002, p. 92

9/35

:»$52$3.

w.0_u_Qva<zo:.<:._z_223mmmmsommQzo:.<Ez_205memmsommmESEva<VG<z>mmN3655v5<z>mm_@555z>mm

‘
am.22sz.9520

Petitioner Apple - EX. 1002, p. 92

Petitioner Apple - Ex. 1002, p. 93

10/35

 2.33%232%RENEE_533%EgNEE_3%.35$325.5_F2333$32223
BEEEQQESEEQSENQNE$335.5

Negméfifl338.232FNNSNQNE@38822 EmEms.m>_m_om_m

:m$.58nag.

 2§§§2.33:3REENE.5ngng$8.25.8%.25353$_EgNEE$32:sz£8.25e233%€8.35.Egaé3.53%.5:3258§2N§N82353Elmwas:zmzé§:sz

Petitioner Apple - EX. 1002, p. 93

Petitioner Apple - Ex. 1002, p. 94

fig?.mv_nw
”$52

.322has
:2

Foo?

mmHDOmmm<Fmag

11/35

Hzmjo

mmpaommm<p<m2

Petitioner Apple - EX. 1002, p. 94

Petitioner Apple - Ex. 1002, p. 95

mu":jiii $3..

12/35

m
a

g:

3

m2

Q23%;dd:25%aamigo/E5%E”mmmmog&momDOmmmoEIEonm_3”mmmmog>>IEmmamm”mwmmog>>I.Qmm13$:5:52$th>f8:

:.o_u_
ME08:m8:<8:9%:<5:

a“23?;

NE08:m8:<8:

2”3m:2203a”mammoggEmma2amps?m_momDOm$55:55%n:

Na:

z“292m

S:08:m8:<8:

R”ad:2385:amino/EHmmo2“mmmmoggmomDOmmmofixBEEn__3”wmmmoe‘>>I“Emamm”wmmmoe‘>>I.omm

E_

m5:

<5:5:«mew:mszE52%th
>(on:

Petitioner Apple - EX.‘ 1002, p. 95

Petitioner Apple - Ex. 1002, p. 96

13/35

8:E

03:0ng8.2%ng<o._<¢oIn__zo:.<o_._&<$5:

:2es
SN

8QmEmo._<moi:fl3

_

<mr.OE

2Nx0

E.“-Bfi83

F833QmA:
5x8?83asBNF

mmw:

é.§_zo:<o_._&<
828amE

x83

Petitioner Apple - EX. 1002, p. 96

Petitioner Apple - Ex. 1002, p. 97

m3.o_n_oz>mz_oz>mz_oz>mz_oon:a82%mmz<oBigmmz<oBE<>mmz<omm<§om<x.m025;0252_E353%:ng$23ng2%65%3E
80:83“qu.N

14/35

282%

oz>mz_oz>mz_

Emmi—zoomo.82%mmz<oBagmmz<ommooz._._<m8mszm808229:F
Hzmzogzm

$3;82552omiozzsgmammmmmma:52%:mm?
Petitioner Apple - EX. 1002, p. 97

Petitioner Apple - Ex. 1002, p. 98

u..."
mmwmmm

§1H .
ewwnu;xii“. £13117Li!“ M

15/35

.5on$685

$55$59:wm>
:2

2.sz32

2.o_n_

 .w._<02¢02%82528
83

REED

No2

2821$5555$222:2058Egan:was/oz;

AzofiofiaimagozawwmmogHmmon__mmmmonzmom:8n:52mg

SQ

828?

Petitioner Apple - EX. 1002, p. 98

Petitioner Apple - Ex. 1002, p. 99

16/35

n_m_mpzmaammmm._.-_.__>_mz<E
3%A---

9%o.%m2;atEmmmzommzmomm
3%

3%....-::
I
I

I'll

3%A--------:2;g:-
Nmin:E2:n__

3GE

$528525mmozmmo._.REESEm0;025z_5%amazomzozé52.3%9.$5memo;02%2_.Ex
n_m_mamozmm$26M:

---v3%5%3%>>”:5g

u26oz;
NazigE5m_

mmEEmz<E3%
--:Y:-%o.%

IIIIIY

Petitioner Apple - EX. 1002, p. 99

Petitioner Apple - Ex. 1002, p. 100

17/35

3%m2;n:mmEzwzfi:z_5%Eamxomxo2&202%:m2;n:Eamxomfov6<02$H_2mz<m._..Ezwkémzmo
5%"mag:0238;1:3ng

figmzéz_3%En:5395

>52$22?v22%Ex:mmzmommz_cEU#m_<m>mfimm%w%.53239102,82%mzons.>>$28memm>mbmm>525%mEzmommEémzmooz<c3%miu”mo/m:02:28;TEEn:EamxomxommEzmz<E32%8m02;2%)?5202538102$
€35:st5.2059me:2mzémmvHafiz/Ewzammzopézomxozé2%;©

2,8x025@
Petitioner Apple - EX. 1002, p. 100

Petitioner Apple - Ex. 1002, p. 101

(ETHERNETLAN-DNOAADDRESSBLOCKS
20

20

18/35

4095

0

4095

0

4095

0

4095

:33. 33':
i .. um,“ m i. W Mi)
‘ :1 ’72?" "“5 "4! :3 a! 421432: 1:..0 32.3! a?"

co
‘_

9
LL

Petitioner Apple - EX. 1002, p. 101

Petitioner Apple - Ex. 1002, p. 102

19/35

000

Vl/I/I/I/I/I/I/I/I/I/I/A

7/I/I/I/I/I/I/I/I/I/IM
7W
T/I/I/I/I/I/I/I/I/I/I/fl
7/[I/I/I/I/I/I/I/I/I/I/A

W|NDOW_S|ZE

I INACTIVE
% ACTIVE

0: USED

W|NDOW_S|ZE

Vl/I/I/I/I/I/l/I/I/I/I/A
V/I/I/I/I/I/I/I’I/I’l/I/IA
V/I/I/I/I/I/I/I/I/I/I/IA
Vl/I/I/I/I/I/I/I/I/I/I/A

FIG. 17

Petitioner Apple - EX. 1002, p. 102

Petitioner Apple - Ex. 1002, p. 103

mmfiflwwmwmwwmmmm

20/35

000

INACTIVE

WINDOW_S|ZE
7/I/I/I/I/I/I/I/I/I/IM USED
7/I/I/I/l/I/l/I/I/I/I/I.
W
VII/Illllllllllllllllfl
7/l/I/I/I/l/I/I/I/I/Ifl

WINDOW_SIZE ,
u

FIG. 18

Petitioner Apple - EX. 1002, p. 103

Petitioner Apple - Ex. 1002, p. 104

21/35

Vl/I/I/I/I/I/I/I/I/I/I/A

000

7/l/I/I/I/I/I/I/I/I/l/A
VII/l/l/l/l/l/l/l/l/IM
W/I/"l/I/I/I/l/I/l/I/IA

: I INACTIVE
. a ACTIVE

Vl/l/l/l/l/l/l/l/l/l/l/A I USED
7/I/I/l/l/l/l/l/l/l/I/IA
7/[l/l/l/l/l/l/l/I/l/M

7/I/I/I/I/I/I/I/I/I/Ifl

W|NDOW_S|ZE

000

W|NDOW_S|ZE

////

7/////////////////////A

FIG. 19

Petitioner Apple - Ex. 1002, p. 104

Petitioner Apple - Ex. 1002, p. 105

22/35

NwmmhsmgooNOON

om.0_u_:om(Aas1%.meb."69e82
sa

8m<meowmeow

mmhsommeow

F%mmhsmzooFoom

Petitioner Apple - EX. 1002, p. 105

Petitioner Apple - Ex. 1002, p. 106

”'3‘? Eiffiini"?{337:5‘32-?!11,1!"1333135311’ .J 513133 ‘33?“ 1:31; 11"}? 121.}? iii???

23/35

AD TABLE

1P1 |P2

|P3 |P4

AE TABLE

2101

2102

AF TABLE

2103

BD TABLE

2104

BE TABLE

2105
LINK DOWN

BF TABLE

2106IIT'AI
2100/ CD TABLE

- 2107
CE TABLE

- 2108
CF TABLE

2109

FIG. 21

Petitioner Apple - EX. 1002, p. 106

Petitioner Apple - Ex. 1002, p. 107

fiflflflMWWWNHWWWflm

24/35

MEASURE

QUALITY OF

TRANSMISSION

PATH X

MORE

THAN ONE

TRANSMITTER

TURNED

ON?

2209

SET WEIGHT

TO MIN. VALUE

PATH X

QUALITY <

THRESHOLD?

PATH X

WEIGHT LESS DECREASE

THAN STEADY WEIGHT FOR

STATE PATH X

VALUE?

INCREASE WEIGHT

FOR PATH X

TOWARD STEADY

STATE VALUE

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

FIG. 22A

Petitioner Apple - EX. 1002, p. 107

Petitioner Apple - Ex. 1002, p. 108

Aflfifiwmwwmmmmmmm

25/35

(EVENT) TRANSMITTER
FOR PATH x

TURNS OFF

2210

AT LEAST

ONE TRANSMlTI'ER

TURNED ON?

SET WEIGHT

TO ZERO

ADJUST WEIGHTS

2213 FOR REMAINING
PATHS so THAT

WEIGHTS EQUAL ONE

DROP ALL PACKETS

UNTILA TRANSMITTER

TURNS ON

2211

2212

2214

FIG. 228

Petitioner Apple - EX. 1002, p. 108

Petitioner Apple - Ex. 1002, p. 109

1
MHMfi.. m In:amwmmmww

26/35

mm.oE

22.522EmzmmamfizE230x2:

202.022EEEEEEma;

5mm

8mm

3%?\
82:22;

555mmm
4ow.HESm>_momm

mm>momm

 8m

AA

mmEzmz<E

Q55SEE

QIE;

mom3%32$:/88

SA:2;

Petitioner Apple - EX. 1002, p. 109

Petitioner Apple - Ex. 1002, p. 110

if” ’1 s
.1. ‘..1.“ 31 .1

j!H g] H:
mu:—xn“.3 “saga; m. ,

u;xI"

27/35

$5228

em.OEmu._.m8:E:Q.582£2E
ENm

H8%

£208

$5328

Petitioner Apple - EX. 1002, p. 110

Petitioner Apple - Ex. 1002, p. 111

28/35

83

Hamm;50%;

Cm<moan:mmGEmmmxme
8mmoimmmmmzo

0mmwzo

xmmgoxmmm;
Petitioner Apple - EX. 1002, p. 111

Petitioner Apple - Ex. 1002, p. 112

29/35

2mm58

m._._mEomfimmDBmz:3%025010:5.5moms.magma8%
88

mmmmmx5.5
mm.oE ozzmo:mm>mmmmzo

 mmmgommmm;

Petitioner Apple - EX. 1002, p. 112

Petitioner Apple - Ex. 1002, p. 113

$23.. 2‘13} IE??? 333:}: {iii gIuII--’?-21II“4'3" 31:3! $291}! If? 'II‘TZII $133553}?

30/35

 RECEIVE DNS

REQUEST FOR

TARGET SITE

2701

ACCESS TO2702 PASS THRU
SECURE SITE REQUEST TO

REQUESTED? DNS SERVER

USER

AUTHORIZED TO

CONNECT?

RETURN

"HOST UNKNOWN"

ERROR

2704

ESTABLISH

VPN WITH

TARGET SITE

2706

FIG. 27

Petitioner Apple - EX. 1002, p. 113

Petitioner Apple - Ex. 1002, p. 114

1h . 1,‘1 2.11%:
Wis:5’111 m. x,m:.1 -m

2E2 :1 3'.
um

,;;; 411331 ii .§'

31/35

gmxoi
momm

momm

mm.oE NfimMHszooHmoImmksommeowmomm

F%mMHDQEOuHmoI

Petitioner Apple - EX. 1002, p. 114

Petitioner Apple - Ex. 1002, p. 115

 832Va&8%$5128E2:8%
1ENEN.,saw5AlNa:50:m03.82“:E;8

3

25:9:835mm8%8mm88E53

5%

$52menu

2%88

3%E$sz850:
Petitioner Apple - EX. 1002, p. 115

Petitioner Apple - Ex. 1002, p. 116

“U.ui K;
$711 i1,1fi..3i;ll§i m}

n; " ‘ 2:3: m:
1H in. 3 1,3;

xa

33/35

862$255330E

0mmoz>mmh<mmzmo

5%cm.OE
mAm<HxHawkczmz<mk

lemxowh<mmzwo
328me‘aE>mafia

><4maom<ogm

ommloz>mm>momm

ooom
m4m<Hxxmm>momm

Petitioner Apple - EX. 1002, p. 116

Petitioner Apple - Ex. 1002, p. 117

:31 11:34 5335313333;"139311311"341113111 u. 11131 51410 [533? 13:11 33;?

34/35

C")O‘—
C’) 3104 3105

CUENT#2 HACKER

FIG.31

 EéEéjEgggiEgigg 320832093210

3102

Petitioner Apple - EX. 1002, p. 117

Petitioner Apple - Ex. 1002, p. 118

CLIENT

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N

START TIMER, SHUT
TRANSMITTER OFF

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT,R

KILL TIMER, TURN
TRANSMITTER ON

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N

START TIMER, SHUT
TRANSMITTER OFF

WHEN TIMER EXPIRES

TRANSMIT SYNC_REQ
USING TRANSMITTERS

CKPT_O, START TIMER

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R

KILL TIMER, TURN
TRANSMITTER ON

35/35

SYNC_REQ
FIG. 32

$1.. SIT??? Iii}? 13::35': “E123 “HIE-35%} “niI- ‘31:??? E? 5?}; 31:33 53 33:3?

SERVER

PASS DATA UP STACK

CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

Petitioner Apple - EX. 1002, p. 118

Petitioner Apple - Ex. 1002, p. 119

3: 11:13:; 4.5221; “233i iii-“Eli! all. 1:3; 11:;

Anomc'y Docket No. 0047935672

JOINT DECLARATION AND POWER OF ATTORNEY

FOR PATENT APPLICATION

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

U was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37,
Code of Federal Regulations, §1.56.

Prior Foreign Applicationls)

We hereby claim foreign priority benefits under Title 35, United States Code, §1 19la)—(d) or 365lb) of any foreign
applicationls) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least
one country other than the United States of America, listed below and have also identified below any foreign application(s)
for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

El Additional provisional application numbers
are listed on a supplemental priority data
sheet PTO/SBIOZB attached hereto.

60/ 1 06.26 1 1 0/30/98

60/1 37.704 6/7/99

Page 1 of 4

Petitioner Apple - EX. 1002, p. 119

Petitioner Apple - Ex. 1002, p. 120

.I'ii. iii}? iii? 3333332 ii1:31 “ii-”iii! iii" in 113i *2

Attorney Docket No. 00479.85672

We hereby claim the benefit under Title 35, United States Code, 5120 of any United States applicationis) listed below
and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States
application in the manner provided by the first paragraph of Title 35, United States Code, 511 2, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the

filing date of the prior application and the national or PCT international filing date of this application:

Power of Attorney

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to
prosecute this application and transact all business in the US. Patent and Trademark Office connected herewith as well

as before any office or agency of a foreign country or any international organization in connection with any foreign
counterpart application claiming priority to this application, including the power to appoint agents and local representatives
in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers being
listed after their names:

Robert Aitherr, Reg. No. 31,810, Donald W. Banner, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,335; William
W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.
Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg. No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.
Medlock, Reg. No. 29,673; William J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19,724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,1 62; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061 . '

%

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.
Washington, D.C. 20001—4597

.- 7 Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on
information and belief are believed to be true; and further that these statements were made with the knowledge that willful
false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such
willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature Date
Full Name of

Joint Inventor MUNGER Edmund Colby
Family Name First Given Name Second Given Name

Residence 1101 Opaca Court, Crownsville, Mamland 21032

Citizenship U.S. .._Post Office

Address 1101 Ogaca CourtI CrownsvilleK Magland 21032

Page 2 of 4

Petitioner Apple - EX. 1002, p. 120

Petitioner Apple - Ex. 1002, p. 121

Attorney Docket No. 0047935672

Signature Date

Full Name of

Joint Inventor SCHMIDT Douglas Charles
Family Name First Given Name Second Given Name

Residence 230 Oak CourtI Severna ParkI Magland 21146

Citizenship U.S.
Post Office "M-

Address 230 Oak CourtI Severna ParkI Magland 21146

Signature—W Date__a_L_fl/fig- _
Full Name of

Joint Inventor SHORT Robefl Dunham, lll
Family Name First Given Name Second Given Name

Residence 38710 Goose Creek Lanel Leesburg. Virginia 20175

Citizenship U.S.
Post Office

Address 38710 Goose Creek Lane. Leesburg, Virginia 20175

Signature ark—IQ3 fiamg Date 2/ 142 20(1)
Full Name of

Joint’lnventor LARSON Victor

Family Name First Given Name Second Given Name

Residence 12026 Lisa Marie Courtl Fairfax. Virginia 22033

Citizenship U.S.
Post Office

Address 12026 Lisa Marie Courtl Fairfax‘ Virginia 22033

Page 3 of 4

Petitioner Apple - EX. 1002, p. 121

Petitioner Apple - Ex. 1002, p. 122

333. $33! if}??? $3}; 51:53 ‘i-L‘J “333% Mr ~53??? “:33 iii}: $31,152:?

Anomey Docket No. 0047935672

Date 21 /f(2500

Full Name of

Joint Inventor WILLIAMSON Mighael

 Signature

Family Name First Given Name Second Given Name

Residence 26203 Ocala CircleI South Riding. Virginia 20152

Citizenship U.S.
Post Office

Address 26203 Qcala CircleI South Riding, Virginia 20152

LAW OFFICES

BANNER & Wncorr, LTD.
IOOI G STREET, N.W.

WASHINGTON, D.C. 2000 I -4597
(202) 508-9 I 00

Page 4 of 4

Petitioner Apple - EX. 1002, p. 122

Petitioner Apple - Ex. 1002, p. 123

33%.. ilLil ii??? EEG ”13$! Ml “23311 “nil- M ii}! ‘1??? 13%??? iii! fill iii?

Attorney Docket No. 00479.85672

JOINT DECLARATION AND POWER OF ATTORNEY

FOR PATENT APPLICATION

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

El was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37,
Code of Federal Regulations, €31.56.

Prior Foreign Application(s)

We hereby claim foreign priority benefits under Title 35, United States Code, §1 19(a)-(d) or 365(b) of any foreign
application(s) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least
one country other than the United States of America, listed below and have also identified below any foreign applicationls)
for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior United States Application(s)

We h_ _ claim the benefit under 35 U.S.C. 1 19(e) of an United States rovisional a. .lication(s) listed below:

E] Additional provisional application numbers
are listed on a supplemental priority data
sheet PTO/SBIOZB attached hereto.

60/ 1 06.26 1 1 0/30/98

60/ 1 37.704 6/7/99

Page 1 of 4

Petitioner Apple - EX. 1002, p. 123

Petitioner Apple - Ex. 1002, p. 124

5le. i! "ii i333??? iii}: iéiii “-93195332353ini' .m iii ‘55?“ T3332} £31 i}

Aflomey Docket No. 00479.85672

We hereby claim the benefit under Title 35, United States Code, 5120 of any United States application(s) listed below
and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States

application in the manner provided by the first paragraph of Title 35, United States Code, § 11 2, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the
filing date of the prior application and the national or PCT international filing date of this application:

-‘ '- is... :mmrenar .

99429949 192999

Power of Attorney

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to
prosecute this application and transact all business in the U.S. Patent and Trademark Office connected herewith as well

as before any office or agency of a foreign country or any international organization in connection with any foreign
counterpart application claiming priority to this application, including the power to appoint agents and local representatives

in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers being
listed after their names:

Robert Altherr, Reg. No. 31,810, Donald W. Banner, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,335; William
W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.
Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg. No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.
Medlock, Reg. No. 29,673; William J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19,724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,162; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061.

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.
Washington, D.C. 20001-4597

Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on
information and belief are believed to be true; and further that these statements were made with the knowledge that willful
false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1 001 and that such
willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature Date
Full Name of

Joint Inventor MUNGER Edmund Colby
Family Name First Given Name Second Given Name

Residence 1101 Opaca Court, Crownsville, Magland 21032

Citizenship us.
Post Office

Address 11010 aca Court Crownsville Ma land 21032

Page 2 of 4

Petitioner Apple - EX. 1002, p. 124

Petitioner Apple - Ex. 1002, p. 125

u “I

I‘ll. ilfiil £33??? 42315;} ”*5? 31.3319}: “iii" 5;, ii 31 ”gill 253$ ill}! £3! {riff

Aflomey Docket No. 0047935672

Signature C Date :1} /21 00
Full Name of

Joint Inventor SCHMIDT Douglas Charles
Family Name First Given Name Second Given Name

Residence 230 Oak Court. Severna Park. Mamland 21146

Citizenship U.S.
Post Office

Address 230 Oak CourtI Severna ParkI Magland 21146

 Signature Date

Full Name of

Joint inventor SHORT Robert Dunham Ill

Family Name First Given Name Second Given Name

Residence 38710 Goose Creek Lanel Leesburg, Virginia 20175

Citizenship U.S.M
Post Office

Address 38710 Goose Creek LaneI Leesburgl Virginia 20175

 Signature Date

Full Name of

Joint Inventor LARSON Victor
Family Name Fll’St Given Name Second Given Name

Residence 12026 Lisa Marie Courtl Fairfax. Virginia 22033

Citizenship U.S.W
Post Office

Address 12026 Lisa Marie Courtl Fairfax. Virginia 22033

Page 3 of 4

Petitioner Apple - EX. 1002, p. 125

Petitioner Apple - Ex. 1002, p. 126

:3“ 3111.4! iiii‘ff’ifizy} “3331* iii-4123* “"13" H. 3531 “iii 1:32 133! 13133 $1233

Anomcy Docket No. 0047935672

Signature . Date

Full Name of

Joint Inventor WILLIAMSON Michael

. Family Name First Given Name Second Given Name

Residence 26203 Ocala CircleI South Riding‘ Virginia 20152

Citizenship U.S.
Post Office

Address 26203 Ocala CircleI South RidingI Virginia 20152

LAW OFFICES

BANNER & Wrrcov-‘F, LTD.
IOOI G STREET, N.W.

WASHINGTON. D.C. 2000i-4597
(202) 508-9 I 00

Page4of 4

Petitioner Apple - EX. 1002, p. 126

Petitioner Apple - Ex. 1002, p. 127

4 ID LOU J uuru ..“_,.. vfl.v V.._‘...

02/15/00 14:21 FAX

MmDub!No. 0047933672

JOINT DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION

Aombulownanmdinvmors. wehcrehydecloreu-m:

Ourrosldnnces, postofficoaddmmsanddfiunshimmasmmdbclownentoow names:

Wu believe we are the original, first and joint inmtnrs of the subject matter which is claimed and for which a
patent is mom on tho invonfion unified:

IMPROVING“! TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURE!) SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

U was filed on as Appliemion Serial Number and was amenlud on G! applicable).

We mmmaMmewmmmmummmwmmwmm
the claims, as amended by any mndmm refund to above-

We acknowledge the duty to disclose Information which it mmorlnl to mutability in accordance with T‘nlo 37,
Code of Fsdoml Regulations. {1.56.

Prior Furelgn Application“)

Wu hereby claim fumign pfiofily benefits under Title 35, United Sims Codi, 51 ‘IBIaHdl or 365th) of any foreign
appucationlsl for patent or lnvonmr's certificate. or 365m of any PCT Wand application which designated at least
one country other than the United States of America. listed below and have also idsmlflod below any foreign opplicoxlonlsl
for patent or inventors com‘rlcuo luvlno a filing date before am of the application on which priority In claimed:

I '.' was AW 5:39:91.- v’ I,- ‘ «m ‘ ‘ '\ Jill-In.”.m ”‘h§4‘h~‘% J‘. _ ".'- ’. .- _ 3mg: {u'a‘mmM:
4&2:film".Weffiwdfln1 iii-RQ‘fiéfg&‘ .V'Cfit‘nm%fi«395mmfi‘é‘i’éfi

I 0 Additional provlsional application number:

' arelisted on a supplemental priority data
M1114

Petitioner Apple - EX. 1002, p. 127

Petitioner Apple - Ex. 1002, p. 128

Z“"b~dww DILLUVIVI T‘I'KUIVI QH;_/__)IL_r-\L_Lrvo. VH I ugly: HUG-.4.
XL 41.?! n??? 353%: “£1“§‘-'§3"“‘::;3"§L§§" .6. 1m! “33‘ “:33: [:31 i3 3] iii???

,___92/1_,yoo 14:3,; [AX __ @003,

mDacha No. 0047935672

We may claim we em under This as. United States Code. 5120 of any United Slates Wills) lined below
and. insofar as the whim mm of each of the claims of this ewlicarion is not disclosed in rho prior United Stakes
applmuon in the mama provided by rho firstmm0! Title 35, United Status Code. 51 'l 2. We acknowledge the dun!
to disclose materiel inlenmdon as defined in Title 37. Code of Fedwal Regulation. 51 .56 which occurred between the
filing dam of the prior amputation and the national or PCT intern-um filing daze of this application:

Four of Am

And we hereby uppom both ioimly end swarm. as our attorneys with full power of mammalian and mention. to
prowcute this application and man all business in “I. U.S. Patent and Trademark Office comma herewith as well
as berm. any office or agency of a foreign country or any intommional organization In connection with any foreign
counterpart application claiming priority no this awlcafion, Won the Down: appoint agents end local mmnmfivea
in connecflon with such foreign evaluations. the followino my: of Burner & thofl‘, thuit registration rumors being
listed ah" M names:

Robert Althea, Roa- No. 31.810. Donald W. Rumor, m No. 17,037; Edward F. MoKie. Jr.. Flag. No. 17.335; William
W. Beckett. Reg. No. 18.262: Dale H. Hoscholl. Reg. No. 19,090; Jon?“ M- Potenze, Reg. No. 28,175; Jam: A.
Niogowski. Reg. No. 28,331; Joseph M. She-man. Reg. No. 29.884; Thomas L Peterson, Reg. No. 30.989; Nina L.
Medlock. Reg. No. 29.673; William J. Flam. Reg. No. 32.133; Mums H. Jackson, Reg. No. 29,808; Franklin D. Wollfe,
Reg. No. 19.724; Susan A. Wolffo. Boa. No. 33.558; Daniel E. Fisher, Reg. No. 84.162; Kevin A. Wolff. Reg. No. 42,233
and Bradley C. Wtioh‘l. Reg. No. 38.081.

“In G Street. NW.

WflshiW. D.C. 20001-4597
Tel. No. 1201) 508-8100

Wehuebydecluramntalmmmmadahminolourownlmowhdgemmendrhntnllmmmmsmedoon
Mamienardbelinfambefiwodwbewe;WmemmemWi‘hwmwledoomar willful
Mummwfinhbmnwdemmwmummmwbom.m180.33. 1001 andthatsuch
willful false mmmemsnwyioopardlzetluvefidity ohm apflicadonor any patent issuing Moon.

Slnnature pm /.5_ /FC’ 200:)
FullNamaof

J0“memfwMLMLfib
Family Name First Given Name Socvnd Given Name

Residence 11321 gm mm Qmwmjllg. Mayan! 21933 _ . __ ,.

15$.de

Petitioner Apple - EX. 1002, p. 128

Petitioner Apple - Ex. 1002, p. 129

4—.

é. ID t—uu .r an." u- . u.

. n3; ”W, m“ :~—-h Wm M n 'K: 1 1‘“; 19‘". "um I ' 3'" *"u

02/ 15/00 14 2 23 “x mm 2L,an.::’1:3::.u ”2-2: *h-isr'”:r1i‘3«li<~ 1]., :1 why; Mi M gr“?

WMNG. 00479.35671

Date .__ __,_______...__..—-—

Signaturc___________._—-——--———-——

 Foil Namu of IDT s C 'Joi I vontor
m n Family Namu Fits! Given Nnmo Socond Given Name

Residence 23 Sev M l 1 1

Date________________.
Sionotura_____________...————-————

Full Namo of
Joint Invontnr P! ham III

first Given Name Second Given NameFamily Name

Signatuve‘_____r______.___..___.———- Dm____________________

Hail-Name of

Job!lme
Fam‘ly Name First Givm Name Second Gwen Name

Residence 1 2026 ‘ in ‘

szmW
Post Office

Addm 1 25 ‘d' lnla 033

Pan 3 of 0

Petitioner Apple - EX. 1002, p. 129

Petitioner Apple - Ex. 1002, p. 130

/V d ’l b 4106 .5 Dun/M r'HUI"! QHJ.\.,_;> l :npuvu. VA [(10 [OI .104...r5! 1...;“1;“ 2...:/

02415100 14:23 FAX, _ __,—.—-.—-v
a___..— .

Residence 03 0 ~ h Ridin ' ' -

Citizo
P05!

nshlp

Mung—AWW

MW mm

BANNER 6. Wncorr. L‘m-
IODI 6 mm. NAN.

WASHINGTON. o.c. zOOOI~4597
(20:) 30” I oo

Petitioner Apple - EX. 1002, p. 130

Petitioner Apple - Ex. 1002, p. 131

IXAPPL NUM FILING DATE CLASS SU ASS GAU XAMINER

10259494 ~ 09/30/2003 709 U’Q 1.5 1v—
“APPLICA NTS: MangerEdmund; Schmidt Doug hort Robert; Larson Victor;

Williamson Michael; M

«CONTINUING DATA VERIFIED: + N3 ‘4’};This application is a DIV of 09/504,783 02/15/2000 ho w U ~ 5- P‘Iev‘ j
which is a CIP ofo9/429,643 10/29/1999 Ac, é/ 5051/ 35
which ci-iims benefit of 50/106,261 10/30/1998

and claims benefit of 60/137,704 06/07/1999

" FOREIGN APPLICATIONS VERIFIED:

PG-PU DO NOT PUBLISH CI ‘ ‘ RESCIND CI _
Foreign :ricrity claimed 1:] yes I! o ‘ TTORNEY DOCKET NO
35 USC 119 conditions met El yes MVerified and Acknowledged Examiners's ihtials /<:

. I1TLE: Agile network protocol forsecure communications with assured system availabilityU.SDEPT OF COMMIPATATM PTO~436L(Rev l2-94)

‘ ‘Afifountipue is Date Pald“

DISCLAMER -WARNING: The information disclosedherein ybe re
' ' I "I: - " suneudiorized disclosure imy beprohibited bythé Umied S

Sections 122,181 and 368 Possession outside the U.S. Paton & T
:0fi'iceiis restricted toauthorized - "Io ’eee and:connectors on] . es

, FILED WITH: [:IDISK (CRF)
‘x .« e , \s (AttachedIn pocket on right Inside than»V

Petitioner Apple - EX. 1002, p. 131

Petitioner Apple - Ex. 1002, p. 132

rm““w-v-.
MWewe.“:'

EARHEDINTERFERENCE 3

SEARCH NOTES
(List databases searched. Attach

search stra’t- inside.

Petitioner Apple - EX. 1002, p. 132

Petitioner Apple - Ex. 1002, p. 133

IMIm

IIm
I

mEmmmmmmmmmmmmmmmmmmmmmm@mwmmmmmmmmmmmmmmmmmmmmmmEI-III.. IInWWEmam.BEammammmmmmammmflnflnflflfimflflmmmmmmmfimm
I

CROSS REFERENCE

N ..

SUBCLASS ONE SUBC

INDEX OF CLAIMS

ISSUING CLASSIFICATION

Canceled
ResIIIcIed

IImIIIDIIu"IIJIIIIIfl.-flIIIII.1IIIII.EIIIIIIIIIIIIIIIIIIIIIIIIIIIII1.__mgwflflnflflflgflmfiflmmm.mmE@EEEWEEEmmmmfim‘flmfiflmummmmmm—EfiflmfiflIBM-IIIIIIIIIItIIIIIIIIWEIIIIIIIIIIIIIIIIIIIII
20

ISSUE SLIP STAPLE AREA for additional dose-references

— (Through numeral)+I......

If mote than 150 claims or 9 actions staple additional sheet here

IIImIIIIIIIIlImIIIIIII

Rejected
Allowed

ORIGINAL

INTERNATIONAL
CLASSIFICATION

,p.133EX. 1002Petitioner Apple

Petitioner Apple - Ex. 1002, p. 134

zu/uc/eo
I

unneedewmmmemmm
Please type a plus sign (+) inside ““box —> MODIFIED PTO/SBl05 (03-0'

‘ Approved through 10/31/2002. OMB 0651-0"
=: US. Patent and Trademark US. DEPARTMENT OF COMMEI—s.
E.+ H Under the Paperwork Reduction Act of .435, no persons are required to respond to a collection of infonnation' unless it displays a valid OMB control numbi= N .

Em UTILITY . 000479-000”
=c
E PATENT APPLICATION Edmond Com, Munser_=_ m

= ‘ TRANSM ITTAL IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR
E 'U SECURE COMMUNICATIONS WITH ASSURED SYSTEM
E ._| AVAILABILITY
— o
_‘ (Only for new nonprovisional applications under 37 OF. R. 1.53(b))

APPLI I L Assistant Commissioner for Patents
CAT ON E EMENTS ADDRESS TO: Box Patent Application

See MPEP chapter 600 concerning utility patent application contents. Washington. DC 20231

Fee Transmittal Form (e.g., PTO/SB/17) 7. [:I CD-ROM or CD-R in duplicate, large table or
(Submit an original and a duplicate for fee processing) Computer Program (Appendix)
Applicant claims small entity status. 8. Nucleotide and/or Amino Acid Sequence Submission

See 37 CFR 1.27. '1! (ifr applicable, all necessary)Specification [Total Pages] a. I] Computer Readable Form (CRF)
(preferred arrangement set forth below) b. Specification Sequence Listing on:
- Descriptive title of the Invention i. El CD-ROM or CD—R (2 copies); or
- Cross Reference to Related Applications ii El paper
- Statement Regarding Fed sponsored R 8. D E'] .- Reference to sequence listing, a table, c. Statements verI

or a computer program listing appendix
- Background of the Invention

- Brief Summary of the Invention 9. El Assignment Papers (cover sheet 8. document(s))- Brief Description of the Drawings (if filed)
- Detailed Description 10. El 37 C.F.R.§3,_73(b) Statement El Power of
_ Claim(s) (when there IS an assignee) Attorney

' Absuaa “the D'scmsme 11. El English Translation Document (iir applicable)

4. E Drawing(s) (35 U. 8.0 113) 12. E] Information Disclosure El Copies of IDS

a. IX] Formal; or Statement (lDS)/PTO-1449 Citations
b. El Informal Preliminary Amendment

- . Return Receipt Postcard (MPEP 503)5. Oath or Declarati n t . .

El 0 . . _ (Should be specrfically itemized)
a, Newly executed (°”g'"a' or copy). or . Certified Copy of Priority Document(s)
b, E Copy from a prior application (37 CFR 1.63 (d)) (iir foreign priority is claimed)

(fora continuation/divisional with Box 18 completed) . Nonpublication Request under 35 U.S.C. 122

i. D DELETION OF INVENTOR(S) (b)(2)(B)(I). Applicant must attach form PTO/SB/35
Signed statement attached deleting inventor(s) or 'ts eqUIvaIent.
named in the prior application. see 37 CFR . Other:_
1.63(d)(2) and 1.330;).

' 6. [Z Application Data Sheet. See 37 CFR 1.76

18. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment,
" or in an Application Data Sheet under 37 CFR 1. 76:

E] Continuation IE Divisional E] Continuation-in-part (CIP) of prior application No: @l 504 783
Pn'or application information: Examiner Krisna Lim Group / Art Unit: 2153

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied
under Box 5b, is considered a part of the disclosure of the accompanying or divisional application and is hereby Incorporated by reference.
The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

or E] Correspondence address below

! ((CIEEILQHflQLHQLNSt.9!..fifléfifl.RELEQEQJEQSMECEZ..........

r,

L .
Zip Code

Name (Print/Type) Ross A. Dannenberg Registration No. (Attomey/Agent)

' ’

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any
comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, US. Patent and Trademark
Office. Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for
Patents. Box Patent Application. Washington, DC 20231.

8 Customer Number or Bar Code Label

Petitioner Apple - EX. 1002, p. 134

Petitioner Apple - Ex. 1002, p. 135

__‘ , .. p m,

...lL til ml! 1:31 “ell lLIl- “Ell ll~ll-- lift ll: atlillilliil ill:
Approve for use through 10I31l2002. 0MB 0651-003:-

U.S. Patent and Tradem -: US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1 persons are required to respond to a collection of information it displays a valid OMB control number.

FE E TRANSM ITTAL —ApplicationNumber _TBAcomplemif Known
for FY 2002

First Named Inventor Edmond Colby Munger
Patent fees are subject to annual revision.

C] Applicant claims small entity status. See 37 CFR 1.27 Group/Art Unit _
ToTALAmoumoF PAYMENT s) 1076

METHOD OF PAYMENT (check all that apply) FEE CALCULATION continued
3. ADDITIONAL FEES

EJCheck E] Creditcard C] Money C] Other E] None
Order '

8 Deposit Account:

Deposit

Number

Deposit

Name

The Commissioner is authorized to: (check all that apply)
8 Charge feels) indicated below IE Credit any overpayments
[:1 Charge any additional tee(s) during the pendency of this application
E] Charge tee(s) indicated below, except for the filing fee
to the above-identified deosit account.

FEE CALCULATION

BASIC FILING FEE
Small Entlt

22:9 {50,3 Fee Descrlptlon Fee Paid

205 65 Surcharge - late filing fee or oath
227 25 Surcharge - late provisional filing feeor cover sheet.

139 130 Non-English specification
147 2,520 For filing a request for reexamination
112 920' Requesting publication of SIR prior toExaminer action

113 1.840' Requesting publication of SIR after
Examiner action

215 55 Extension for reply within first month
216 200 Extension for reply within second

month

217 460 Extension for reply within third month
218 720 Extension for reply within fourth

month

Fee Fee Fee Description . . .
Code (5) Fee pald 228 980 Extension for reply wrthin fifth month
201 370 Utility filing fee 740 219 160 Notice of Appeal

220 160 Filing a brief in support 01 an appeal
221 140 Request for oral hearing

Petition to institute a public use
proceeding

240 55 Petition to revive — unavoidable
241 Petition to revive — unintentional

242 640 Utility issue fee (or reissue)
243 230 Design issue lee
244 310 Plant issue fee
122 130 Petitions to the Commissioner

123 50 Processing fee under 37 CFR 1.17 (q)
Submission of Information Disclosure

206 165 Design filing fee
207 255 Plant filing fee
208 370 Reissue filing fee
214 80 Provisional filling lee

138 1,510

 SUBTOTAL (1) s 740

2. EXTRA CLAIM FEES
Extra Fee from Fee
Claims below Paid

otal Claims -20" = IE X E =
Independent ..Claims '3 = X =

flflfl‘ 126 180 Stmt
gggeanent Recording each patent assignment581 40 per property (times number of

Lar e Entlt Small Entlt properties)

Fee Fee Fee Fee 246 370 Filing a submission after final rejection—_L__
Code is) Code is) F“ Desc" “°” (37 CFR 5 1.129(a))
103 18 203 9 Claims in excess of 20 249 370 For each additional invention to be

102 04 202 42 Independent claims in excess of 3 examined (37 CFR § 1.129(b))

104 280 204 140 Multiple dependent claim, it not paid 279 370 Request for Continued Examination (RCE)" Reissue independent claims over

109 B4 209 42 original patent 169 900 Rtfaqugstfor expedited examination.. . . , o e esign app ication
110 18 210 9 Reissue claims in excess of 20 andover original patent

"or number previously paid, if greater; For Reissues, see above

 Other lee (specify)

'Reduced by Basic Filing Fee Paid SUBTOTAL (3) ($) 0

SUBMITTED BY

Name (Print/Type) Ross A. Dannenberg Registration No. Attomey/Agent) Telephone (202) 508-9153

Signature IE2 - September 30. 2002A

WARNING: Information on thls form may become public. Credit card Information should not be
included on this form. Provide credit card Information and authorization on PTO-2038.

Burden Hour Statement: This lomi is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the
amount of time you are required to complete this form should be sent to the Chief Information Officer, US. Patent and Trademark Office. Washington, DC 20231.
DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

Petitioner Apple - EX. 1002, p. 135

Petitioner Apple - Ex. 1002, p. 136

ISL SIS TEES “53: $31 “SS-SQ? “S‘- m 1121! “ES ES SEEMS?

9 9

1/35

. 100 '

ORIGINATING

TERMINAL

107

40

IP PACKET

IP IP

ROUTER ROUTER 28

29 25 . INTERNET 32 IP
IP IP IP ROUTER

ROUTER ROUTER ROUTER .

26

48 _

27 '

IP

ROUTER ROUTER

I h ' . 110
ENCRYPTION KEY . DESTINATION

' , ~ TERMINAL

IP '

ROUTER

FIG. '1

Petitioner Apple - EX. ‘1002, p. 136

Petitioner Apple - Ex. 1002, p. 137

131233211 51-2153 “511 “411"?” LE- m 11".}! ‘5-11 33$ 11]! M iii?!

. \ .I ' '

2/35

TERMINAL

107

l 1 .
131

145 TARP PACKET

100

40

122

Orr- IP
LINK KEY TARP ROUTER

ROUTER h

123 h LINK KEY 124

TARP

ROUTER 128

LINK KEY

TARP

ROUTER .

129 . .

132 _ IP
IP ' ROUTER

ROUTER ROUTER

126 »

_ 127
TARP

RISER om
148 LINK KEY

.

W LINK KEY 110
SESSION KEY TARP PACKET
 TARP

TERMINAL

'FIG. 2

Petitioner Apple - EX. 1002, p. 137

Petitioner Apple - Ex. 1002, p. 138

JTTTIW‘“ WWW-'31“?!-“BIT-3VThflZPHlTW

I

3/35

207a onb onc 207d - ~ -

"V—_

[Ii—mIE_:9-—_ ’ ° °
6 T8 DATA STREAM fl) '

INTERLEAVED

, PAYLOAD DATA
@

INTERLEAVE WINDOW 3&0

SESSION-KEY-ENCRYPTED

PAYLOAD DATAfl

TARP PACKET WITH

ENCRYPTED PAYLOADS fl

LINK-KEY—ENCRYPTED

TARP PACKETS _3_5_g

IP PACKETS WI ENCRYPTED

' TARP PACKETS As

PAYLOAD @

TARP TARP

ROUTER1 ROUTERZ

TARP

ROUTER 7 TARP
’ ROUTER3

TARP

ROUTER4

TARP.

ROUTER5

TARP

ROUTER6

 TARP

DESTINATION

FIG. 3A

Pefifionerflqnfle-BEX.1002,p.138

Petitioner Apple - Ex. 1002, p. 139

TERI K3111}:
“mu...:
"...;ui" m If] 1:33"

L31
":2: WWWE

H]:
31.. 113!

4/35

38:3;.34285332285:93meQEEZEQOE mmas?QEEZWa;mafiaes

$325;85%;0;:32%5%BREE

 Eggzgiigfiz

/”Maggi85:59;Boss5%05.5%

MINmmo<o._><n_92.305550.5omEEozw...

§mozm8mm23E

0'8265mSE.11,“e...28£8£82%
Petitioner Apple - EX. 1002, p. 139

Petitioner Apple - Ex. 1002, p. 140

“2%! “3%???“ NF m £31 @133? KER $1.73! 1733”

a
nu..1

”IL 2m 17:? -'
.m

5/35

ammgégsoeomfizzsg
mowmmoommn:ms:23azawmoommn23mzazoo9m>:<zmm:<mzo

w.GE
3$3a
vammzmowzézfi

 xmozfiz

Azomm

9:82;213m.3.1888”:.._.o1:;oz_mwmoomn_mmfimzazoo9m>c<zmm5<EEO

Petitioner Apple - EX. 1002, p. 140

Petitioner Apple - Ex. 1002, p. 141

IIL 1131 iii? “2?: "1%? “III-$311 I'-II~ .m YEII "ELI! 313-131 11315?

6/35

BACKGROUND LOOP-DECOY 'A
GENERATION SO

AUTHENTICATE TARP PACKET $2

OUTER LAYER DECRYPTION OF I
TARP PACKET USING LINK KEY S3

CHECK FOR DECOY AND

INCREMENT PERISHABLE DECOY S4

COUNTER AS APPROPRIATE

S6

DUMP DECOY

TRANSMIT DECOY? S5

YES

 DECREMENT

'ITL 'ITL > 0? ‘

87

SQ

DETERMINE DESTINATION TARP

ADDRESS AND STORE LINK KEY

AND IP ADDRESS

YES

GENERATE NEXTAHOP TARP

ADDRESS AND STORE LINK KEY SB
AND IP ADDRESS

GENERATE NEXT-HOP TARP ‘

ADDRESS AND STORE LINK KEY SIO
AND IP ADDRESS

GENERATE IP HEADER '

AND TRANSMIT s11

Petitioner Apple - EX. 1002, p. 141

FIG. 5

Petitioner Apple - Ex. 1002, p. 142

TIL ID! i533 {iii} “‘53! MI-"EQI LII— m ‘ICII ‘IEII H iIEII'IIIEII E33

7/35

320

BACKGROUND LOOP-DECOY

GENERATION

GROUP RECEIVED IP PACKETS

INTO INTERLEAVE WINDOW

DETERMINE DESTINATION TARP

ADDRESS, INITIALIZE TTL, STORE
IN TARP HEADER

 $21

$22

RECORD WINDOW SEQ. NOS. AND

INTERLEAVE SEQ. NOS IN TARP
HEADERS $23

 CHOOSE FIRST HOP TARP

ROUTER, LOOK UP IP ADDRESS

AND STORE IN CLEAR IP HEADER,
OUTER LAYER ENCRYPT

INSTALL CLEAR IP HEADER

AND TRANSMIT

FIG. 6

 324

325

Petitioner Apple? EX. 1002, p. 142

Petitioner Apple - Ex. 1002, p. 143

8/35

S40

BACKGROUND LOOP-DECOY
GENERATION

S42

AUTHENTICATE TARP PACKET

RECEIVED '

3

DECRYPT OUTER LAYER

ENCRYPTION WITH LINK KEY

.INCREMENT PERISHABLE

COUNTER IF DECOY

li’l
S45

THROW AWAY DECOY OR KEEP

IN RESPONSE TO ALGORITHM

S46

CACHE TARP PACKETS UNTIL
WINDOW IS ASSEMBLED

S47

DEINTERLEAVE PACKETS

FORMING WINDOW

S48

DECRYPT BLOCK

FIG. 7

EL MI E? 3—3: “3? “'II-‘IEII ILII‘ m IIZII £331 23:"; II] III! FEE

S49

DIVIDE BLOCK INTO PACKETS

USING WINDOW SEQUENCE DATA,
ADD CLEAR IP HEADERS

GENERATED FROM TARP

HEADERS

S50

HAND COMPLETED IP PACKETS

TO IP LAYER PROCESS

Petitioner Apple - EX. 1002, p. 143

Petitioner Apple - Ex. 1002, p. 144

3‘? fl ICE? £73'31 1131 i235? 3533 Q! W431 “-51" .11! 1.1711 3311

9/35

a$58$3

w.o_n_mNxo<zo_._<:._z_298mmmmsomwEzo_._.<:._z_zo_wwm_w$58535x05xo<¥o<z>mw«$5onxo<z>mmQEVGEz>mw

‘
Q._<z__2mm._.Emzo

Petitioner Apple - EX. 1002, p. 144

Petitioner Apple - Ex. 1002, p. 145

awmflmfiflh"5|!

.

‘93! 14%-fit. 11:31:15: ;.

10/35

 2%.35_EgNEEEggs._SENEEquEE_84.8.3.2$8.25_$82.5awas:52?$82.5_38.2.5§§§§_@383553%;:_Eggs,@335_34.835$525255fl$52$3.

 2.33%_EgNEEEggs..é§§§EgNEE_QENEE$8.25“§§§§wigwasmamamSEENE_sggé.§§EE_meggé3.3%;.EgNEE3.3335.ggNEEQwas252%a:zma

Petitioner Apple - EX. 1002, p. 145

Petitioner Apple - Ex. 1002, p. 146

31.11"}!EJ133513"Ell“«1l--“E§‘J“~1l~ m 11:31! @1331 11231113110?

11/35

1012 1013
‘—‘—
C)‘—

FIG.10
1001

Petitioner Apple - EX. 1002, p. 146

Petitioner Apple - Ex. 1002, p. 147

1
EB H l

y
I

“IL {1131 El 3'53? “9%” WWW W- m HERVE—ill '33

1 2/35

a“o<o._><n_a.”3m:2385Va”wmmmonz&“5.3E”mmmmonzn__momDOm$55:Eva/En:mmHamming2,:5%mm”mmmmoggz.ommEOE:mzéuEzmmzm>f8:

 2:08:m8:<8:mg:<3:

3.OE

$292;

NE

08:.a9%Emam8:2$559:EDE_<8:2Egg:$58$05:555E52;

2:

R”am:2:8523._:mama:$3$5.a(s:2.wmmgc:$58mmo<m1E2:2gummgggimoo:ammwmmgéfimm<5:3:$2M:mzétmzmmfi
 #8:

Petitioner Apple - EX. 1002, p. 147

Petitioner Apple - Ex. 1002, p. 148

if”?!......
332mm,"131131 E? EEQHHFW “-9- m if}! ‘EEB.

13/35

XVNNF

XmNNF
zoz<ozmm<mum:

NFNF

weam02VOFNF

Nom_

8DmEVFNFm_N_

<340E
FFNFNONFmomv

OFNF
momFF

QONFwomFmeomweamEEzo:<o:mm<mum:

VON? ONF

Petitioner Apple - EX. 1002, p. 148

Petitioner Apple - Ex. 1002, p. 149

l
‘1.n It]! I"?!

a-
mi g1?!:31. 1131 35“.! 35:33: {7:11 “1% “:3! M}—

14/35

oz>mz_BE<>mmz<ooz>mz_82%mm25oz>m2_Bigmm25$2.25Sm:mo._.<z=>__mom_o

mm?

oz>mz_85>mm25oz>mz_82%mmz<ooz>mz_82%mm2.6mmmmmmonzn:

0E

oz>wz_BE<>mmz<o2%:05m8Bx:282$.55.3128mommooz._¢_<m8mszmmummmmogmm<>>om<z

wzamozmm<>>om<z.m2%”mm308228;.N308228;._._.2m_2_8ms_mmomoo:

Petitioner Apple - EX. 1002, p. 149

Petitioner Apple - Ex. 1002, p. 150

3 ' {I31 JED E‘.’
an.

1?‘J MI“ .u. H "79.3!“$3 “EEB‘LH-
[1

:1. H E“

15/35

55$$501;
52

mm;

ESE$520

:2

2GE
 .w._<ezmoz>m$2528

82

.5553N8F

o<o._><n_omEEQZm>532:2952WEEm3;025

205203m:$2325mmmmogmeo&mmmmonzmomzomn:

<._.zm_._o

83

8282

Petitioner Apple - EX. 1002, p. 150

Petitioner Apple - Ex. 1002, p. 151

m.,x
1'31 i131:3]

...,.

41F¥§11M-- m 131%:13; .n.m ,m I
an a“JL 1133]

M

16/35

S.0._n_A|I||I|||Y$528525mmozmwo._.Hzmaammmo“.oz>mz_.55.A-------------------..----VmmuzomIoEwEmaamm9mmozmwmo“.oz>mz_5%n2w.._.zm__m_omm ,1. . .m2mammzmwmmEzwzép$582
v3%5%3%>>mamn:

n2692;
N5Em_22¢&

mmEzwz<~=3%Y5%v9%7man.&FEES
III

I’ll!
II

II

22:-£2:-
Petitioner Apple - EX. 1002, p. 151

Petitioner Apple - Ex. 1002, p. 152

'H
.113! {III} F;

""1:.J
.....J!

E “El Lil-59531 “"33- '11; 1’13} “9]! '
Jim;

:-uu-H mm:
.131. 113! 5

17/35

3%m2;m_mmEEmz<Ez.5&9HZEEMIQ>32$25:m_<n_a:Hz_on_v_om=._oxo<oz>m._.__>_mz<~_._..>52mExmzme
”3&0n13%:wz_s_ooz__._.=>>mm>_mm<

$E2mz<fi2.Desm_<n_n:Hz_on_v_om_._o

535%?v2025$1:$5822_cE0..fiEfiwfifiwis;>>oozs>WEE:.>>mmzonamm$5me52”5%magma:Eémfieoz<=5%12¢"”mew:wz_zooz_TE;gEaéBIQmmEzmz<EEgg022%)?55228102%
:224:2:5.559%;:Emzémmv:zwzéhmzammzo:<N_zom_._oz>wzm_._>>©

cmm|oz>m©
Petitioner Apple - EX. 1002, p. 152

Petitioner Apple - Ex. 1002, p. 153

(ETHERNETLAN-DNOAADDRESSBLOCK$
20

20

18/35

4095

0

4095

0

4095

0

4095

.31.: m E29 H 13!! LINE}?! ’W- m SE3! "333 :33? 31.2!) H 1E”

co
‘_

9
u.

Petitioner Apple - EX. 1002, p. 153

Petitioner Apple - Ex. 1002, p. 154

.31.. E31 11?! '5? ”£43 M4132“ "1% 1.. 113} 91.111112311112111?

19/35

000

_
WI/I/I/I/I/I/I/I/I/I/A

' INACTIVE

ACTIVE

 WINDOW_SIZE WWII/[IA
7/I/I/I/I/I/I/I/I/I/I/IA
/////////////////////M
//////////////////m
/////////////////////J

W'NDOW—S'ZE V/I/I/I/I/I/m
V/I/I/I/I/I/I/I/I/I/I/IA
7/l/I/I/I/I/I/I/I/I/I/IA
7//////////////////////A

FIG. 17

Petitioner Apple - EX. 1002, p. 154

Petitioner Apple - Ex. 1002, p. 155

.jL 1131 {E3 ’5 W HUB! ‘W- a. [BI ‘33! '32} [3! fl E33

20/35

000

INACTIVE

% ACTIVE
WINDOW_S|ZE USED

7//////////////////////A

WI/I/I/I/I/I/I/I/A
mm
mm
'I/l/l/I/I/I/l/l/I/I/Ifl

WINDOW_SIZE I

FIG. 18

Petitioner Apple - EX. 1002, p. 155

Petitioner Apple - Ex. 1002, p. 156

I'll. ‘11:?! El? E3} “211 ill-“:3! {UH-- 1m :11] “Q! “35% £3! mi i‘i—Z’.’

21/35

7/l////I///////////////A

 OoO

V/l/l/l/l/I/l/I/I/l/l/IA
'I/I/I/I/I/I/I/I/I/I/I/IA
V/I/I/I/l/I/I/I/I/I/I/A

INACTIVE

ACTIVE

WINDOW_S|ZE USED 7//////////////////////A

V/I/I/I/I/I/I/I/I/I/l/IA
V/I/I/I/I/I/I/I/I/I/Ifl
Vl/I/I/I/I/I/I/I/I/I/fl
'///////////////////////A

000

WINDOW_SIZE

WI/I/I/I/I/I/I/I/I/I/A

FIG. 19

Petitioner Apple - EX. 1002, p. 156

Petitioner Apple - Ex. 1002, p. 157

 m,
m

ON0E,:2

mqwea

u

 WON}
mm

2

Fg“ESQ—zoo

$.58meow

22/35

.SWE5128.
SON

8888

Petitioner Apple - EX. 1002, p. 157

Petitioner Apple - Ex. 1002, p. 158

.‘JL El! H H itEll W‘Efll “~11" m H '“Eéfl :35: 117.1] m H

23/35

AD TABLE

|P1 |P2

' AETABLE

2102

AFTABLE .

- 2103
BDTABLE

- 2104
BETABLE

v 2105
LINK DOWN - I

BFTABLE ‘

- 2106
TABLE2100/ CD
- 2107

CETABLE

- 2108
CFTABLE *

- 2109
FIG. 21

Petitioner Apple - EX. 1002, p. 158

Petitioner Apple - Ex. 1002, p. 159

 MEASURE

QUALITY OF

TRANSMISSION

PATH X

MORE

THAN ONE

TRANSMITTER

TURNED

ON?

PATH X

QUALITY <

THRESHOLD?

PATH X -

WEIGHT LESS

THAN STEADY

STATE

VALUE?

INCREASE WEIGHT

FOR PATH X

TOWARD STEADY

STATE VALUE

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

24/35

LIL 1m IIEII E3133 ‘IIITII IE3! H”AIM-“El!

2209

SET WEIGHT

TO MIN. VALUE

DECREASE

WEIGHT FOR
‘ PATH X

FIG. 22A

Petitioner Apple - EX. 1002, p. 159

Petitioner Apple - Ex. 1002, p. 160

iIL IIZII TE?! 5333311 “Tr-“31 “111- m TTLII “931 335113131 1:?

25/35

(EVENT) TRANSMITTER
FOR PATH x

TURNS OFF

2210

AT LEAST

2211 DROP ALL PACKETS
ONE TRANSMITTER UNTILATRANSMITTER

TURNED ON? TURNS ON

2212 SET WEIGHT

TO ZERO

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

2213

2214

FIG. 22B 1

Petitioner Apple - EX. 1002, p. 160 I

Petitioner Apple - Ex. 1002, p. 161

a...“
1un-

5.211.. 11.51fl'52'1": “931 “514122311111 m 11:.11‘5135311231 11211,

26/35

mm.OE

.29.52222523Hzmzhmzfie‘Hzmzmmsmfis:65;E220xz:

3mm

8mm\
EOEmmm

._om.was.m>_momm

88

mm>momm

 8mm

SATEE

mmEzmz<E
955E05

Q:5

gm53;:sz/88

FxTEE

Pefifionerflqnfle-REX.1002,p.161

Petitioner Apple - Ex. 1002, p. 162

‘l
1-...g “31' NH?) “49» .m H “:33 333111;!

:9
i3.3L IE1!

27/35

mmszoo

E.o_n_

E5128

Petitioner Apple - EX. 1002, p. 162

Petitioner Apple - Ex. 1002, p. 163

If. {[3] 11:31 SE?
au...

3%": ”-49 9w: HF m '11:]? ‘2?!:11. Eli

28/35

8%

HEmm;50%;

E:moanmm.GEmmmmmoi
cummoimmmmmzo

8mmzo

Ema/0mmmm;
Petitioner Apple - EX. 1002, p. 163

Petitioner Apple - Ex. 1002, p. 164

JWH- 'u1 IE}! 3.531 2.33 3H1 it}! £933E;= u 13m Eff 3.1.7} £331 “JJ—",.
w

.

29/35

:3.33

mm.0:

mEmmoms.mmsommz:

 HE593.mmzomm
E925%:so“Ewizo

«SN

Ewe/0mmmm;

Petitioner Apple - EX. 1002, p. 164

Petitioner Apple - Ex. 1002, p. 165

:3II.,13EILE§3 “in ‘EII ‘L'II-‘EII “TI-- .n. IIZII'I‘IBI 751131113539

30/35

 RECEIVE DNS

REQUEST FOR

TARGET SITE

2701

ACCESS TO2702 PASS THRU
SECURE SITE REQUEST TO

REQUESTED? DNS SERVER

USER

AUTHORIZED TO

CONNECT?

RETURN

"HOST UNKNOWN"

ERROR

2704

ESTABLISH

VPN WITH

TARGET SITE

2706

FIG. 27

Petitioner Apple - EX. 1002, p. 165

Petitioner Apple - Ex. 1002, p. 166

A)
E”) RED

‘
i"33! “4% “9.39 4W m “1131'" :1}:

.31 '
i"'3L 1!?!

31/35

mm.QE

mummhzmzooHmoI

gmxoi

mowm

r*mmp3mzooHmoI

mmpaommeow

NowN

momw

Pefifionerflqnfle-REX.1002,p.166

Petitioner Apple - Ex. 1002, p. 167

1..“F31.1 ' "31 EB!

......|

5': 1915531 1141-1?“ “1 .m VIEWS:1 11311

32/35

52
:mm

>>m:9:

,8%5mm

SN

‘I2:x._.n:>>m33

8mm

mmppmzoomm¥o<x
8mm8mm

N...flmmszooSo:

.82328%

$58$8

3%EmmszooSo:
Petitioner Apple - EX. 1002, p. ‘167

Petitioner Apple - Ex. 1002, p. 168

:3!
ii." I 313i {1

h
h

AI
:11 11%" m {13' “:5” :I1114:“1E5 "23%n3:13L fl] "

33/35

29.3%2:5$69:

81-02%Eémzmw

3%on.OE
WES5mmEzmz<E

828mm>53920%
E

2-56Eémzmeommloz>mmagma

88
WESxxmm>_momm

Petitioner Apple - EX. 1002, p. 168

Petitioner Apple - Ex. 1002, p. 169

.2113 31211 W 1'52 “3211 “-11%! “—11 m 113333111 2'31" 11:31 31:31:23

34/35

0")
O‘—
0") 3104 3105

CUENT#2 HACKER

FIG.31

EWRXigfigiE2123 320832093210

3102

Pefifionerflqnfle-REX.1002,p.169

Petitioner Apple - Ex. 1002, p. 170

‘.;‘II.. IIEII I’E‘II 3551i ‘IrIIn‘PEII ILII- IIIIII £5” 31:": TILE? H E

35/35

CLIENT ‘ SERVER

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N
START TIMER, SHUT

' TRANSMITTER OFF

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R
KILL TIMER, TURN
TRANSMITTER ON

PASS DATA UP STACK

CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N
START TIMER, SHUT
TRANSMITTER OFF

WHEN TIMER EXPIRES

TRANSMIT SYNC_REQ
USING TRANSMITTERS

CKPT_O, START TIMER

CKPT O=CKPT N

SYNC—REG GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
IF CKPT_O IN SYNC ACK CONTAINING CKPT_O
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R

KILL TIMER, TURN

TRANSMITTER ON

FIG. 32

Petitioner Apple - EX. 1002, p. 170

Petitioner Apple - Ex. 1002, p. 171

.311. 11".}! {£213 £55} “3.31 11.“. “Ell “ll-- n. SEN “E311 E? 1121] £11 in???

000479.00082 . .

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL

FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

CROSS-REFERENCE TO RELATED APPLICATIONS

[01] This application is a divisional application of 09/504,783 (filed February 15, 2000),

which claims priority from and is a continuation-in-part of previously filed U.S. application

serial number 09/429,643 (filed October 29, 1999). The subject matter of that application, which

is bodily incorporated herein, derives from provisional U.S. application numbers 60/106,261

(filed October 30, 1998) and 60/ 137,704 (filed June 7, 1999).

BACKGROUND OF THE INVENTION

[02] A tremendous variety of methods have been proposed and implemented to provide

security and anonymity for communications over the Internet. The variety stems, in part, from

the different needs of different Internet users. A basic heuristic framework to aid in discussing

these different security techniques is illustrated in FIG. 1. Two terminals, an originating terminal

100 and a destination terminal 110 are in communication over the Internet. It is desired for the

communications to be secure, that is, immune to eavesdropping. For example, terminal 100 may

transmit secret information to terminal 110 over the Internet 107. Also, it may be desired to

prevent an eavesdropper from discovering that terminal 100 is in communication with terminal

110. For example, if terminal 100 is a user and terminal 110 hosts a web site, terminal 100’s user

may not want anyone in the intervening networks to know what web sites he is "visiting."

Anonymity would thus be an issue, for example, for companies that want to keep their market

research interests private and thus would prefer to prevent outsiders from knowing which web-

sites or other Internet resources they are “visiting.” These two security issues may be called data

security and anonymity, respectively.

[03] Data security is usually tackled using some form of data encryption. An encryption key

48 is known at both the originating and terminating terminals 100 and 110. The keys may be

private and public at the originating and destination terminals 100 and 110, respectively or they

may be symmetrical keys (the same key is used by both parties to encrypt and decrypt). Many

encryption methods are known and usable in this context.

Petitioner Apple - Ex. 1002, p. 171

Petitioner Apple - Ex. 1002, p. 172

mmaflwwwWEHWEmmm

000479.00082 . .

[04] To hide traffic from a local administrator or ISP, a user can employ a local proxy server

in communicating over an encrypted channel with an outside proxy such that the local

administrator or ISP only sees the encrypted traffic. Proxy servers prevent destination servers

from determining the identities of the originating clients. This system employs an intermediate

server interposed between client and destination server. The destination server sees only the

Internet Protocol (IP) address of the proxy server and not the originating client. The target server

only sees the address of the outside proxy. This scheme relies on a trusted outside proxy server.

Also, proxy schemes are vulnerable to traffic analysis methods of determining identities of

transmitters and receivers. Another important limitation ofproxy servers is that the server knows

the identities of both calling and called parties. In many instances, an originating terminal, such

as terminal A, would prefer to keep its identity concealed from the proxy, for example, if the

proxy server is provided by an Internet service provider (ISP).

[05] To defeat traffic analysis, a scheme called Chaum’s mixes employs a proxy server that

transmits and receives fixed length messages, including dummy messages. Multiple originating

terminals are connected through a mix (a server) to multiple target servers. It is difficult to tell

which of the originating terminals are communicating to which of the connected target servers,

and the dummy messages confuse eavesdroppers’ efforts to detect communicating pairs by

analyzing traffic. A drawback is that there is a risk that the mix server could be compromised.

One way to deal with this risk is to spread the trust among multiple mixes. If one mix is

compromised, the identities of the originating and target terminals may remain concealed. This

strategy requires a number of alternative mixes so that the intermediate servers interposed

between the originating and target terminals are not determinable except by compromising more

than one mix. The strategy wraps the message with multiple layers of encrypted addresses. The

first mix in a sequence can decrypt only the outer layer of the message to reveal the next

destination mix in sequence. The second mix can decrypt the message to reveal the next mix and

so on. The target server receives the message and, optionally, a multi-layer encrypted payload

containing return information to send data back in the same fashion. The only way to defeat such

a mix scheme is to collude among mixes. If the packets are all fixed-length and intermixed with

dummy packets, there is no way to do any kind of traffic analysis.

Petitioner Apple - Ex. 1002, p. 172

Petitioner Apple - Ex. 1002, p. 173

LIL {El {123‘ H4931‘ll-lil-“Ell'fléflu .1, Hill "£31533lele llfll ix"

000479.00082 . .

[06] Still another anonymity technique, called ‘crowds,’ protects the identity of the originating

terminal from the intermediate proxies by providing that originating terminals belong to groups

of proxies called crowds. The crowd proxies are interposed between originating and target

terminals. Each proxy through which the message is sent is randomly chosen by an upstream

proxy. Each intermediate proxy can send the message either to another randomly chosen proxy

in the “crowd” or to the destination. Thus, even crowd members cannot determine if a preceding

proxy is the originator of the message or if it was simply passed from another proxy.

[07] ZKS (Zero-Knowledge Systems) Anonymous IP Protocol allows users to select up to any

of five different pseudonyms, while desktop sofiware encrypts outgoing traffic and wraps it in

User Datagram Protocol (UDP) packets. The first server in a 2+-hop system gets the UDP

packets, strips off one layer of encryption to add another, then sends the traffic to the next server,

which strips off yet another layer of encryption and adds a new one. The user is permitted to

control the number of hops. At the final server, traffic is decrypted with an untraceable IP

address. The technique is called onion-routing. This method can be defeated using traffic

analysis. For a simple example, bursts of packets from a user during low-duty periods can reveal

the identities of sender and receiver.

[08] Firewalls attempt to protect LANs from unauthorized access and hostile exploitation or

damage to computers connected to the LAN. Firewalls provide a server through which all access

to the LAN must pass. Firewalls are centralized systems that require administrative overhead to

maintain. They can be compromised by virtual-machine applications (“applets”). They instill a

false sense of security that leads to security breaches for example by users sending sensitive

information to servers outside the firewall or encouraging use of modems to sidestep the firewall

security. Firewalls are not useful for distributed systems such as business travelers, extranets,

small teams, etc.

SUMMARY OF THE INVENTION

[09] A secure mechanism for communicating over the internet, including a protocol referred

to as the Tunneled Agile Routing Protocol (TARP), uses a unique two-layer encryption format

and special TARP routers. TARP routers are similar in function to regular IP routers. Each

TARP router has one or more IP addresses and uses normal IP protocol to send IP packet

Petitioner Apple - Ex. 1002, p. 173

Petitioner Apple - Ex. 1002, p. 174

.“lL lllll H 35} “:31 WW “~ll~ .1" ll] ‘FEll En 'llill llIll H533

000479.00082 . .

messages (“packets” or “datagrams”). The IP packets exchanged between TARP terminals via

TARP routers are actually encrypted packets whose true destination address is concealed except

to TARP routers and servers. The normal or “clear” or “outside” [P header attached to TARP IP

packets contains only the address of a next hop router or destination server. That is, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s IP

header always points to a next-hop in a series of TARP router hops, or to the final destination.

This means there is no overt indication fi'om an intercepted TARP packet of the true destination

of the TARP packet since the destination could always be next-hop TARP router as well as the

final destination.

[10] Each TARP packet’s true destination is concealed behind a layer of encryption generated

using a link key. The link key is the encryption key used for encrypted communication between

the hops intervening between an originating TARP terminal and a destination TARP terminal.

Each TARP router can remove the outer layer of encryption to reveal the destination router for

each TARP packet. -To identify the link key needed to decrypt the outer layer of encryption of a

TARP packet, a receiving TARP or routing terminal may identify the transmitting terminal by

the sender/receiver IP numbers in the cleartext IP header.

[11] Once the outer layer of encryption is removed, the TARP router determines the final

destination. Each TARP packet 140 undergoes a minimum number of hops to help foil traffic

analysis. The hops may be chosen at random or by a fixed value. As a result, each TARP packet

may make random trips among a number of geographically disparate routers before reaching its

destination. Each trip is highly likely to be different for each packet composing a given message

because each trip is independently randomly determined. This feature is called agile routing. The

fact that different packets take different routes provides distinct advantages by making it difficult

for an interloper to obtain all the packets forming an entire multi-packet message. The associated

advantages have to do with the inner layer of encryption discussed below. Agile routing is

combined with another feature that furthers this purpose; a feature that ensures that any message

is broken into multiple packets.

[12] The IP address of a TARP router can be changed, a feature called 1P agility. Each TARP

router, independently or under direction fi'om another TARP terminal or router, can change its IP

Petitioner Apple - Ex. 1002, p. 174

Petitioner Apple - Ex. 1002, p. 175

.‘lL 11:1]E3’153u 3‘93! “1141991 W m {Ell'gl 35121le Ill]! if?"

000479.00032 . .

address. A separate, unchangeable identifier or address is also defined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs.

[13] The message payload is hidden behind an inner layer of encryption in the TARP packet

that can only be unlocked using a session key. The session key is not available to any of the

intervening TARP routers. The session key is used to decrypt the payloads of the TARP packets

permitting the data stream to be reconstructed.

[14] Communication may be made private using link and session keys, which in turn may be

shared and used according to any desired method. For example, public/private keys or symmetric

keys may be used.

[15] To transmit a data stream, a TARP originating terminal constructs a series of TARP

packets from a series of IP packets generated by a network (1P) layer process. (Note that the

terms “network layer,” “data link layer,” “application layer,” etc. used in this specification

correspond to the Open Systems Interconnection (OSI) network terminology.) The payloads of

these packets are assembled into a block and chain-block encrypted using the session key. This

assumes, of course, that all the IP packets are destined for the same TARP terminal. The block is

then interleaved and the interleaved encrypted block is broken into a series of payloads, one for

each TARP packet to be generated. Special TARP headers IPT are then added to each payload

using the IP headers from the data stream packets. The TARP headers can be identical to normal

IP headers or customized in some way. They should contain a formula or data for deinterleaving

the data at the destination TARP terminal, a time-to-live (TTL) parameter to indicate the number

of hops still to be executed, a data type identifier which indicates whether the payload contains,

for example, TCP or UDP data, the sender’s TARP address, the destination TARP address, and

an indicator as to whether the packet contains real or decoy data or a formula for filtering out

decoy data if decoy data is spread in some way through the TARP payload data.

Petitioner Apple - EX. 1002, p. 175

Petitioner Apple - Ex. 1002, p. 176

Ill. lll'il ii? E13 “Ell udill-Tl! “ll" in Hill “Ell 23'}: llI'll 117.31 1353!!

000479.00082 . .

[16] Note that although chain-block encryption is discussed here with reference to the session

key, any encryption method may be used. Preferably, as in chain block encryption, a method

should be used that makes unauthorized decryption difficult without an entire result of the

encryption process. Thus, by separating the encrypted block among multiple packets and making

it difficult for an interloper to obtain access to all of such packets, the contents of the

communications are provided an extra layer of security.

[17] Decoy or dummy data can be added to a stream to help foil traffic analysis by reducing

the peak-to-average network load. It may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet cannot be tied to

communication bursts at another point to reveal the communicating endpoints.

[18] Dummy data also helps to break the data into a larger number of inconspicuously-sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to portion, or entirety, of a message, and

that portion or entirety then interleaved into a number of separate packets. Considering the agile

IP routing of the packets, and the attendant difficulty of reconstructing an entire sequence of

packets to form a single block-encrypted message element, decoy packets can significantly

increase the difficulty of reconstructing an entire data stream.

[19] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Because the encryption system described above is insertable between the data link and network

layers, the processes involved in supporting the encrypted communication may be completely

transparent to processes at the IP (network) layer and above. The TARP processes may also be

completely transparent to the data link layer processes as well. Thus, no operations at or above

the Network layer, or at or below the data link layer, are affected by the insertion of the TARP

stack. This provides additional security to all processes at or above the network layer, since the

Petitioner Apple - EX. 1002, p. 176

Petitioner Apple - Ex. 1002, p. 177

2|]. [ill iii?” “'53 ‘lel “nil"‘iéll fill-- i... ll]! “El .33; {3| Hill iii-'23?

000479.00082 . .

difficulty of unauthorized penetration of the network layer (by, for example, a hacker) is

increased substantially. Even newly developed servers running at the session layer leave all

processesbelow the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[20] IP address changes made by TARP terminals and routers can be done at regular intervals,

at random intervals, or upon detection of “attacks.” The variation of IP addresses hinders traffic

analysis that might reveal which computers are communicating, and also provides a degree of

immunity from attack. The level of immunity from attack is roughly proportional to the rate at

which the IP address of the host is changing.

[21] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicating that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. In addition, it may create a subprocess that maintains the original IP

address and continues interacting with the attacker in some manner.

[22] Decoy packets may be generated by each TARP terminal on some basis determined by an

algorithm. For example, the algorithm may be a random one which calls for the generation of a

packet on a random basis when the terminal is idle. Alternatively, the algorithm may be

responsive to time of day or detection of low traffic to generate more decoy packets during low

traffic times. Note that packets are preferably generated in groups, rather than one by one, the

groups being sized to simulate real messages. In addition, so that decoy packets may be inserted

in normal TARP message streams, the background loop may have a latch that makes it more

likely to insert decoy packets when a message stream is being received. Alternatively, if a large

number of decoy packets is received along with regular TARP packets, the algorithm may

increase the rate of dropping of decoy packets rather than forwarding them. The result of

dropping and generating decoy packets in this way is to make the apparent incoming message

size different from the apparent outgoing message size to help foil traffic analysis.

Petitioner Apple - Ex. 1002, p. 177

Petitioner Apple - Ex. 1002, p. 178

:lL llill ii“ iii "Fill “ll-‘53! “ll— in .111]! llSill Iii}? 31'.le “Ill ii}!

000479.00082 . .

[23] In various other embodiments of the invention, a scalable version of the system may be

constructed in which a plurality of IP addresses are preassigned to each pair of communicating

nodes in the network. Each pair of nodes agrees upon an algorithm for “hopping” between IP

addresses (both sending and receiving), such that an eavesdropper sees apparently continuously

random IP address pairs (source and destination) for packets transmitted between the pair.

Overlapping or “reusable” IP addresses may be allocated to different users on the same subnet,

since each node merely verifies that a particular packet includes a valid source/destination pair

from the agreed-upon algorithm. Source/destination pairs are preferably not reused between any

two nodes during any given end-to-end session, though limited IP block sizes or lengthy sessions

might require it.

[24] Further improvements described in this continuation-in-part application include: (1) a

load balancer that distributes packets across different transmission paths according to

transmission path quality; (2) a DNS proxy server that transparently creates a virtual private

network in response to a domain name inquiry; (3) a large-to-small link bandwidth management

feature that prevents denial-of-service attacks at system chokepoints; (4) a traffic limiter that

regulates incoming packets by limiting the rate at which a transmitter can be synchronized with a

receiver; and (5) a signaling synchronizer that allows a large number of nodes to communicate

with a central node by partitioning the communication function between two separate entities

BRIEF DESCRIPTION OF THE DRAWINGS

[25] FIG. 1 is an illustration of secure communications over the Internet according to a prior

art embodiment.

[26] FIG. 2 is an illustration of secure communications over the Internet according to a an

embodiment of the invention.

[27] FIG. 3a is an illustration of a process of forming a tunneled IP packet according to an

embodiment of the invention.

[28] FIG. 3b is an illustration of a process of forming a tunneled IP packet according to

another embodiment of the invention.

Petitioner Apple - EX. 1002, p. 178

Petitioner Apple - Ex. 1002, p. 179

Ill. liIll E? El “El “@391 “All“ m III]! 1rEll 237$.lEIll H in?

000479.00082 . .

[29] FIG. 4 is an illustration of an OSI layer location of processes that may be used to

implement the invention.

[30] FIG. 5 is a flow chart illustrating a process for routing a tunneled packet according to an

embodiment of the invention.

[31] FIG. 6 is a flow chart illustrating a process for forming a tunneled packet according to an

embodiment of the invention.

[32] FIG. 7 is a flow chart illustrating a process for receiving a tunneled packet according to

an embodiment of the invention.

[33] FIG. 8 shows how a secure session is established and synchronized between a client and a

TARP router.

[34] FIG. 9 shows an IP address hopping scheme between a client computer and TARP router

using transmit and receive tables in each computer.

[35] FIG. 10 shows physical link redundancy among three Internet Service Providers (ISPs)

and a client computer.

[36] FIG. 11 shows how multiple IP packets can be embedded into a single “frame” such as an

Ethernet frame, and further shows the use of a discriminator field to camouflage true packet

recipients.

[37] FIG. 12A shows a system that employs hopped hardware addresses, hopped IP addresses,

and hopped discriminator fields.

[38] FIG. 123 shows several different approaches for hopping hardware addresses, IP

addresses, and discriminator fields in combination.

Petitioner Apple - EX. 1002, p. 179

Petitioner Apple - Ex. 1002, p. 180

.“JL 1231 E32 ’53}; ‘EjslllLll='“§ll “il- l. 1131 “5111:1735 313! Hill in"

000479.00082 . .

[39] FIG. 13 shows a technique for automatically re-establishing synchronization between

sender and receiver through the use of a partially public sync value.

[40] FIG. 14 shows a “checkpoint” scheme for regaining synchronization between a sender

and recipient.

[41] FIG. 15 shows further details of the checkpoint scheme of FIG. 14.

[42] FIG. 16 shows how two addresses can be decomposed into a plurality of segments for

comparison with presence vectors.

[43] FIG. 17 shows a storage array for a receiver’s active addresses.

[44] FIG. 18 shows the receiver’s storage array after receiving a sync request.

[45] FIG. 19 shows the receiver’s storage array afier new addresses have been generated.

[46] FIG. 20 shows a system employing distributed transmission paths.

[47] FIG. 21 shows a plurality of link transmission tables that can be used to route packets in

the system of FIG. 20.

[48] FIG. 22A shows a flowchart for adjusting weight value distributions associated with a

plurality of transmission links.

[49] FIG. 22B shows a flowchart for setting a weight value to zero if a transmitter turns off.

[50] FIG. 23 shows a system employing distributed transmission paths with adjusted weight

value distributions for each path.

[51] FIG. 24 shows an example using the system of FIG. 23.

[52] FIG. 25 shows a conventional domain-name look-up service.

10

Petitioner Apple - EX. 1002, p. 180

Petitioner Apple - Ex. 1002, p. 181

EHHHWWWWNHWEUHE

000479.00082 . .

[53] FIG. 26 shows a system employing a DNS proxy server with transparent VPN creation.

[54] FIG. 27 shows steps that can be carried out to implement transparent VPN creation based

on a DNS look-up function.

[55] FIG. 28 shows a system including a link guard function that prevents packet overloading

on a low-bandwidth link LOW BW.

[56] FIG. 29 shows one embodiment of a system employing the principles of FIG. 28.

[57] FIG. 30 shows a system that regulates packet transmission rates by throttling the rate at

which synchronizations are performed.

[58] FIG. 31 shows a signaling server 3101 and a transport server 3102 used to establish a

VPN with a client computer.

[59] FIG. 32 shows message flows relating to synchronization protocols of FIG. 31.

DETAILED DESCRIPTION OF THE INVENTION

[60] Referring to FIG. 2, a secure mechanism for communicating over the intemet employs a

number of special routers or servers, called TARP routers 122-127 that are similar to regular IP

routers 128-132 in that each has one or more IP addresses and uses normal IP protocol to send

normal-looking IP packet messages, called TARP packets 140. TARP packets 140 are identical

to normal IP packet messages that are routed by regular IP routers 128-132 because each TARP

packet 140 contains a destination address as in a normal IP packet. However, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s 140 IP

header always points to a next-hop in a series of TARP router hops, or the final destination,

TARP terminal 110. Because the header of the TARP packet contains only the next-hop

destination, there is no overt indication from an intercepted TARP packet of the true destination

of the TARP packet 140 since the destination could always be the next-hop TARP router as well

as the final destination, TARP terminal 110.

11

Petitioner Apple - EX. 1002, p. 181

Petitioner Apple - Ex. 1002, p. 182

3211. 1131 E33 .5333 gill-1%! “-1? .m 1311 “2:31 53".“. :1:le 1131 El

000479.00082 . .

[61] Each TARP packet’s true destination is concealed behind an outer layer of encryption

generated using a link key 146. The link key 146 is the encryption key used for encrypted

communication between the end points (TARP terminals or TARP routers) of a single link in the

chain of hops connecting the originating TARP terminal 100 and the destination TARP terminal

110. Each TARP router 122-127, using the link key 146 it uses to communicate with the

previous hop in a chain, can use the link key to reveal the true destination of a TARP packet. To

identify the link key needed to decrypt the outer layer of encryption of a TARP packet, a

receiving TARP or routing terminal may identify the transmitting terminal (which may indicate

the link key used) by the sender field of the clear IP header. Alternatively, this identity may be

hidden behind another layer of encryption in available bits in the clear IP header. Each TARP

router, upon receiving a TARP message, determines if the message is a TARP message by using

authentication data in the TARP packet. This could be recorded in available bytes in the TARP

packet’s IP header. Alternatively, TARP packets could be authenticated by attempting to decrypt

using the link key 146 and determining if the results are as expected. The former may have

computational advantages because it does not involve a decryption process.

[62] Once the outer layer of decryption is completed by a TARP router 122-127, the TARP

router determines the final destination. The system is preferably designed to cause each TARP

packet 140 to undergo a minimum number of hops to help foil traffic analysis. The time to live

counter in the IP header of the TARP message may be used to indicate a number of TARP router

hops yet to be completed. Each TARP router then would decrement the counter and determine

from that whether it should forward the TARP packet 140 to another TARP router 122-127 or to

the destination TARP terminal 110. If the time to live counter is zero or below zero afier

decrementing, for an example of usage, the TARP router receiving the TARP packet 140 may

forward the TARP packet 140 to the destination TARP terminal 110. If the time to live counter is

above zero afier decrementing, for an example of usage, the TARP router receiving the TARP

packet 140 may forward the TARP packet 140 to a TARP router 122-127 that the current TARP

terminal chooses at random. As a result, each TARP packet 140 is routed through some

minimum number of hops ofTARP routers 122-127 which are chosen at random.

12

Petitioner Apple - Ex. 1002, p. 182

Petitioner Apple - Ex. 1002, p. 183

.L'lL ill-ll .E' {ii} “7-213 "PM?“ "~11" an 1137;]! “332413 233}; lift]! [Ell in?!

000479.00082 . . O

[63] Thus, each TARP packet, irrespective cf the traditional factors determining traffic in the

Internet, makes random trips among a number of geographically disparate routers before

reaching its destination and each trip is highly likely to be different for each packet composing a

given message because each trip is independently randomly determined as described above. This

feature is called agile routing. For reasons that Will become clear shortly, the fact that different

packets take different routes provides distinct advantages by making it difficult for an interloper

to obtain all the packets forming an entire multi-packet message. Agile routing is combined with

another feature that furthers this purpose, a feature that ensures that any message is broken into

multiple packets.

[64] A TARP router receives a TARP packet when an IP address used by the TARP router

coincides with the IP address in the TARP packet’s IP header IPC. The IP address of a TARP

router, however, may not remain constant. To avoid and manage attacks, each TARP router,

independently or under direction from another TARP terminal or router, may change its IP

address. A separate, unchangeable identifier or address is also'defined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs. In reality, whenever a TARP router looks up the address of a

destination in the encrypted header, it must convert a TARP address to a real IP address using its

LUT.

[65] While every TARP router receiving a TARP packet has the ability to determine the

packet’s final destination, the message payload is embedded behind an inner layer of encryption

in the TARP packet that can only be unlocked using a session key. The session key is not

available to any of the TARP routers 122-127 intervening between the originating 100 and

destination 110 TARP terminals. The session key is used to decrypt the payloads of the TARP

packets 140 permitting an entire message to be reconstructed.

[66] In one embodiment, communication may be made private using link and session keys,

which in turn may be shared and used according any desired method. For example, a public key

or symmetric keys may be communicated between link or session endpoints using a public key

13

Petitioner Apple - EX. 1002, p. 183

Petitioner Apple - Ex. 1002, p. 184

311112113553 '53.} “."ll “411“???“ ”-H“ m 11:31 “13.“ L331"; 1113MB! i5?

000479.00082 . .

method. Any of a variety of other mechanisms for securing data to ensure that only authorized

computers can have access to the private information in the TARP packets 140 may be used as

desired.

[67] Referring to FIG. 3a, to construct a series of TARP packets, a data stream 300 of IP

packets 207a, 207b, 2070, etc., such series of packets being formed by a network (IP) layer

process, is broken into a series of small sized segments. In the present example, equal-sized

segments 1-9 are defined and used to construct a set of interleaved data packets A, B, and C.

Here it is assumed that the number of interleaved packets A, B, and C formed is three and that

the number of IP packets 207a-207C used to form the three interleaved packets A, B, and C is

exactly three. Of course, the number of IP packets spread over a group of interleaved packets

may be any convenient number as may be the number of interleaved packets over which the

incoming data stream is spread. The latter, the number of interleaved packets over which the data

stream is spread, is called the interleave window.

[68] To create a packet, the transmitting software interleaves the normal IP packets 207a et.

seq. to form a new set of interleaved payload data 320. This payload data 320 is then encrypted

using a session key to form a set of session-key-encrypted payload data 330, each of which, A,

B, and C, will form the payload of a TARP packet. Using the IP header data, from the original

packets 207a-207e, new TARP headers [PT are formed. The TARP headers [PT can be identical

to normal IP headers or customized in some way. In a preferred embodiment, the TARP headers

IPT are IP headers with added data providing the following information required for routing and

reconstruction of messages, some of which data is ordinarily, or capable of being, contained in

normal [P headers:

1. A window sequence number — an identifier that indicates where the packet

belongs in the original message sequence.

2. An interleave sequence number — an identifier that indicates the interleaving

sequence used to form the packet so that the packet can be deinterleaved along

with other packets in the interleave window.

3. A time-to-live (TTL) datum — indicates the number of TARP-router-hops to

be executed before the packet reaches its destination. Note that the TTL parameter

14

Petitioner Apple - Ex. 1002, p. 184

Petitioner Apple - Ex. 1002, p. 185

.‘ZlL ll]! u“ E}? “Eifl MW!" 'Lil- w ill}! “Ell 2.333} llifill .lljll [El

000479.00082 . .

may provide a datum to be used in a probabilistic formula for determining

whether to route the packet to the destination or to another hop.

4. Data type identifier — indicates whether the payload contains, for example,

TCP or UDP data.

5. Sender’s address — indicates the sender’s address in the TARP network.

6. Destination address — indicates the destination terminal’s address in the TARP

network.

7. Decoy/Real — an indicator of whether the packet contains real message data or

dummy decoy data or a combination.

[69] Obviously, the packets going into a single interleave window must include only packets

with a common destination. Thus, it is assumed in the depicted example that the IP headers of IP

packets 207a-207c all contain the same destination address or at least will be received by the

same terminal so that they can be deinterleaved. Note that dummy or decoy data or packets can

be added to form a larger interleave window than would otherwise be required by the size of a

given message. Decoy or dummy data can be added to a stream to help foil traffic analysis by

leveling the load on the network. Thus, it may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet cannot be tied to

communication bursts at another point to reveal the communicating endpoints.

[70] Dummy data also helps to break the data into a larger number of inconspicuously-sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to a portion, or the entirety, of a message,

and that portion or entirety then interleaved into a number of separate packets.

[71] Referring to FIG. 3b, in an alternative mode of TARP packet construction, a series of IP

packets are accumulated to make up a predefined interleave window. The payloads of the

packets are used to construct a single block 520 for chain block encryption using the session key.

15

Petitioner Apple - EX. 1002, p. 185

Petitioner Apple - Ex. 1002, p. 186

llEllflEi‘l-Bl “ll-117131 W m ll'fll 11413115117123! iii-3?

000479.00082 . .

The payloads used to form the block are presumed to be destined for the same terminal. The

block size may coincide with the interleave window as depicted in the example embodiment of

FIG. 3b. After encryption, the encrypted block is broken into separate payloads and segments

which are interleaved as in the embodiment of Fig 3a. The resulting interleaved packets A, B,

and C, are then packaged as TARP packets with TARP headers as in the Example of FIG. 3a.

The remaining process is as shown in, and discussed with reference to, FIG. 3a.

[72] Once the TARP packets 340 are formed, each entire TARP packet 340, including the

TARP header IPT, is encrypted using the link key for communication with the first-hop-TARP

router. The first hop TARP router is randomly chosen. A final unencrypted lP header IPc is

added to each encrypted TARP packet 340 to form a normal [P packet 360 that can be

transmitted to a TARP router. Note that the process of constructing the TARP packet 360 does

not have to be done in stages as described. The above description is just a useful heuristic for

describing the final product, namely, the TARP packet.

[73] Note that, TARP header IPT could be a completely custom header configuration with no

similarity to a normal IP header except that it contain the information identified above. This is so

since this header is interpreted by only TARP routers.

[74] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Referring to FIG. 4, a TARP transceiver 405 can be an originating terminal 100, a destination

terminal 110, or a TARP router 122-127. In each TARP Transceiver 405, a transmitting process

is generated to receive normal packets from the Network (IP) layer and generate TARP packets

for communication over the network. A receiving process is generated to receive normal IP

packets containing TARP packets and generate from these normal IP packets which are “passed

up” to the Network (IP) layer. Note that where the TARP Transceiver 405 is a router, the

received TARP packets 140 are not processed into a stream of IP packets 415 because they need

only be authenticated as proper TARP packets and then passed to another TARP router or a

TARP destination terminal 110. The intervening process, a “TARP Layer” 420, could be

combined with either the data link layer 430 or the Network layer 410. In either case, it would

intervene between the data link layer 430 so that the process would receive regular IP packets

l6

Petitioner Apple - Ex. 1002, p. 186

Petitioner Apple - Ex. 1002, p. 187

.313le in??? “531 “El “ll-“iii! I'll» m {13! “EllilllZlI-llfll iE'!

000479.00082 . .

containing embedded TARP packets and “hand up” a series of reassembled IP packets to the

Network layer 410. As an example of combining the TARP layer 420 with the data link layer

430, a program may augment the normal processes running a communications card, for example,

an Ethernet card. Alternatively, the TARP layer processes may form part of a dynamically

loadable module that is loaded and executed to support communications between the network

and data link layers.

[75] Because the encryption system described above can be inserted between the data link and

network layers, the processes involved in supporting the encrypted communication may be

completely transparent to processes at the IP (network) layer and above. The TARP processes

may also be completely transparent to the data link layer processes as well. Thus, no operations

at or above the network layer, or at or below the data link layer, are affected by the insertion of

the TARP stack. This provides additional security to all processes at or above the network layer,

since the difficulty of unauthorized penetration of the network layer (by, for example, a hacker)

is increased substantially. Even newly developed servers running at the session layer leave all

processes below the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[76] Note that IP address changes made by TARP terminals and routers can be done at regular

intervals, at random intervals, or upon detection of “attacks.” The variation of IP addresses

hinders traffic analysis that might reveal which computers are communicating, and also provides

a degree of immunity from attack. The level of immunity from attack is roughly proportional to

the rate at which the IP address of the host is changing.

[77] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicates that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. To accomplish this, the TARP process will construct a TARP-formatted

message, in the style of Internet Control Message Protocol (ICMP) datagrams as an example;

this message will contain the machine’s TARP address, its previous IP address, and its new IP

address. The TARP layer will transmit this packet to at least one known TARP router; then upon

17

Petitioner Apple - Ex. 1002, p. 187

Petitioner Apple - Ex. 1002, p. 188

.2311. 11:11 ix?! lEii'“§313“4.1~‘"}§11 “4% m 11:11 "[931 3}" 517.11 11:11 '93.?

000479.00082 . .

receipt and validation of the message, the TARP router will update its LUT with the new IP

address for the stated TARP address. The TARP router will then format a similar message, and

broadcast it to the other TARP routers so that they may update their LUTs. Since the total

number of TARP routers on any given subnet is expected to be relatively small, this process of

updating the LUTs should be relatively fast. It may not, however, work as well when there is a

relatively large number of TARP routers and/or a relatively large number of clients; this has

motivated a refinement of this architecture to provide scalability; this refinement has led to a

second embodiment, which is discussed below.

[78] Upon detection of an attack, the TARP process may also create a subprocess that

maintains the original IP address and continues interacting with the attacker. The latter may

provide an opportunity to trace the attacker or study the attacker’s methods (called “fishbowling”

drawing upon the analogy of a small fish in a fish bowl that “thinks” it is in the ocean but is

actually under captive observation). A history of the communication between the attacker and the

abandoned (fishbowled) IP address can be recorded or transmitted for human analysis or further

synthesized for purposes of responding in some way.

[79] As mentioned above, decoy or dummy data or packets can be added to outgoing data

streams by TARP terminals or routers. In addition to making it convenient to spread data over a

larger number of separate packets, such decoy packets can also help to level the load on inactive

portions of the Internet to help foil traffic analysis efforts.

[80] Decoy packets may be generated by each TARP terminal 100, 110 or each router 122-

127 on some basis determined by an algorithm. For example, the algorithm may be a random one

which calls for the generation of a packet on a random basis when the terminal is idle.

Alternatively, the algorithm may be responsive to time of day or detection of low traffic to

generate more decoy packets during low traffic times. Note that packets are preferably generated

in groups, rather than one by one, the groups being sized to simulate real messages. In addition,

so that decoy packets may be inserted in normal TARP message streams, the background loop

may have a latch that makes it more likely to insert decoy packets when a message stream is

being received. That is, when a series of messages are received, the decoy packet generation rate

may be increased. Alternatively, if a large number of decoy packets is received along with

18

Petitioner Apple - EX. 1002, p. 188

Petitioner Apple - Ex. 1002, p. 189

Ill. Hill] iii El} 1131' ‘11vlJ~“Z-.".Jl "I'll" m 11231113111 .7333 [ll-1132i! iii?

000479.00082 . .

regular TARP packets, the algorithm may increase the rate of dropping of decoy packets rather

than forwarding them. The result of dropping and generating decoy packets in this way is to

make the apparent incoming message size different from the apparent outgoing message size to

help foil traffic analysis. The rate of reception of packets, decoy or otherwise, may be indicated

to the decoy packet dropping and generating processes through perishable decoy and regular

packet counters. (A perishable counter is one that resets or decrements its value in response to

time so that it contains a high value when it is incremented in rapid succession and a small value

when incremented either slowly or a small number of times in rapid succession.) Note that

destination TARP terminal 110 may generate decoy packets equal in number and size to those

TARP packets received to make it appear it is merely routing packets and is therefore not the

destination terminal.

[81] Referring to FIG. 5, the following particular steps may be employed in the above-

described method for routing TARP packets.

0 SO. A background loop operation is performed which applies an algorithm which determines

the generation of decoy IP packets. The loop is interrupted when an encrypted TARP packet

is received.

0 S2. The TARP packet may be probed in some way to authenticate the packet before

attempting to decrypt it using the link key. That is, the router may determine that the packet

is an authentic TARP packet by performing a selected operation on some data included with

the clear IP header attached to the encrypted TARP packet contained in the payload. This

makes it possible to avoid performing decryption on packets that are not authentic TARP

packets.

- S3. The TARP packet is decrypted to expose the destination TARP address and an indication

of whether the packet is a decoy packet or part of a real message.

0 S4. If the packet is a decoy packet, the perishable decoy counter is incremented.

0 SS. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the router may choose to throw it away. If the received

packet is a decoy packet and it is determined that it should be thrown away (S6), control

returns to step SO.

19

Petitioner Apple - EX. 1002, p. 189

Petitioner Apple - Ex. 1002, p. 190

3!. [El E3 H‘Efl MM?! '"sll~ .m ll] “3135'; llIll ill! in?

000479.00082 . .

0 S7. The TTL parameter of the TARP header is decremented and it is determined if the TTL

parameter is greater than zero.

0 SS. If the TTL parameter is greater than zero, a TARP address is randomly chosen from a list

of TARP addresses maintained by the router and the link key and IP address corresponding

to that TARP address memorized for use in creating a new IP packet containing the TARP

packet.

0 S9. If the TTL parameter is zero or less, the link key and IP address corresponding to the

TARP address of the destination are memorized for use in creating the new IP packet

containing the TARP packet.

0 $10. The TARP packet is encrypted using the memorized link key.

0 $11. An IP header is added to the packet that contains the stored IP address, the encrypted

TARP packet wrapped with an IP header, and the completed packet transmitted to the next

hop or destination.

[82] Referring to FIG. 6, the following particular steps may be employed in the above-

described method for generating TARP packets.

o SZO. A background loop operation applies an algorithm that determines the generation of

decoy IP packets. The loop" is interrupted when a data stream containing IP packets is

received for transmission.

0 $21. The received IP packets are grouped into a set consisting ofmessages with a constant IP

destination address. The set is further broken down to coincide with a maximum size of an

interleave window The set is encrypted, and interleaved into a set of payloads destined to

become TARP packets.

0 $22. The TARP address corresponding to the IP address is determined from a lookup table

and stored to generate the TARP header. An initial TTL count is generated and stored in the

header. The TTL count may be random with minimum and maximum values or it may be

fixed or determined by some other parameter.

0 $23. The window sequence numbers and interleave sequence numbers are recorded in the

TARP headers of each packet.

0 824. One TARP router address is randomly chosen for each TARP packet and the IP address

corresponding to it stored for use in the clear IP header. The link key corresponding to this

20

Petitioner Apple - Ex. 1002, p. 190

Petitioner Apple - Ex. 1002, p. 191

311.11313352 ”in": ‘Ell “111"?"qu m ll]! “:31! E 11.11 113111.?

000479.00082 . .

router is identified and used to encrypt TARP packets containing interleaved and encrypted

data and TARP headers.

0 S25. A clear IP header with the first hop router’s real IP address is generated and added to

each of the encrypted TARP packets and the resulting packets.

[83] Referring to FIG. 7, the following particular steps may be employed in the above-

described method for receiving TARP packets.

0 S40. A background loop operation is performed which applies an algorithm which

determines the generation of decoy IP packets. The loop is interrupted when an encrypted

TARP packet is received.

0 S42. The TARP packet may be probed to authenticate the packet before attempting to

decrypt it using the link key.

0 S43. The TARP packet is decrypted with the appropriate link key to expose the destination

TARP address and an indication of whether the packet is a decoy packet or part of a real

message.

0 S44. If the packet is a decoy packet, the perishable decoy counter is incremented.

0 S45. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the receiver may choose to throw it away.

0 S46. The TARP packets are cached until all packets forming an interleave window are

received.

0 S47. Once all packets of an interleave window are received, the packets are deinterleaved.

- S48. The packets block of combined packets defining the interleave window is then

decrypted using the session key.

0 S49. The decrypted block is then divided using the window sequence data and the IPT

headers are converted into normal IPc headers. The window sequence numbers are integrated

in the IPc headers.

0 S50. The packets are then handed up to the IP layer processes.

1. SCALABILITY ENHANCEMENTS

[84] The IP agility feature described above relies on the ability to transmit IP address changes

to all TARP routers. The embodiments including this feature will be referred to as “boutique”

embodiments due to potential limitations in scaling these features up for a large network, such as

21

Petitioner Apple - EX. 1002, p. 191

Petitioner Apple - Ex. 1002, p. 192

ill. 11:11 El l-LT: "193! MPH] “it" u. ill] E51! 3111]} III 1%?)

00047900082 . .

the Internet. (The “boutique” embodiments would, however, be robust for use in smaller

networks, such as small virtual private networks, for example). One problem with the boutique

embodiments is that if IP address changes are to occur frequently, the message traffic required to

update all routers sufficiently quickly creates a serious burden on the Internet when the TARP

router and/or client population gets large. The bandwidth burden added to the networks, for

example in ICMP packets, that would be used to update all the TARP routers could overwhelm

the Internet for a large scale implementation that approached the scale of the Internet. In other

words, the boutique system’s scalability is limited.

[85] A system can be constructed which trades some of the features of the above embodiments

to provide the benefits of IP agility without the additional messaging burden. This is

accomplished by IP address-hopping according to shared algorithms that govern IP addresses

used between links participating in communications sessions between nodes such as TARP

nodes. (Note that the IP hopping technique is also applicable to the boutique embodiment.) The

IP agility feature discussed with respect to the boutique system can be modified so that it

becomes decentralized under this scalable regime and governed by the above-described shared

algorithm. Other features of the boutique system may be combined with this new type of IP-

agility.

[86] The new embodiment has the advantage of providing IP agility governed by a local

algorithm and set of IP addresses exchanged by each communicating pair of nodes. This local

governance is session-independent in that it may govern communications between a pair of

nodes, irrespective of the session or end points being transferred between the directly

communicating pair of nodes.

[87] In the scalable embodiments, blocks of IP addresses are allocated to each node in the

network. (This scalability will increase in the future, when Internet Protocol addresses are

increased to 128-bit fields, vastly increasing the number of distinctly addressable nodes). Each

node can thus use any of the IP addresses assigned to that node to communicate with other nodes

in the network. Indeed, each pair of communicating nodes can use a plurality of source IP

addresses and destination IP addresses for communicating with each other.

22

Petitioner Apple - Ex. 1002, p. 192

Petitioner Apple - Ex. 1002, p. 193

.1 .5231 P l5} ‘1???) “in “5331 “-5-- u. .lEll "LEN "E51133 fill! in?!

000479.00082 . .

[88] Each communicating pair of nodes in a chain participating in any session stores two

blocks of IP addresses, called netblocks, and an algorithm and randomization seed for selecting,

from each netblock, the next pair of source/destination IP addresses that will be used to transmit

the next message. In other words, the algorithm governs the sequential selection of IP-address

pairs, one sender and one receiver IP address, from each netblock. The combination of algorithm,

seed, and netblock (IP address block) will be called a “hopblock.” A router issues separate

transmit and receive hopblocks to its clients. The send address and the receive address of the IP

header of each outgoing packet sent by the client are filled with the send and receive IP

addresses generated by the algorithm. The algorithm is “clocked” (indexed) by a counter so that

each time a pair is used, the algorithm turns out a new transmit pair for the next packet to be sent.

[89] The router’s receive hopblock is identical to the client’s transmit hopblock. The router

uses the receive hopblock to predict what the send and receive IP address pair for the next

expected packet from that client will be. Since packets can be received out of order, it is not

possible for the router to predict with certainty what IP address pair will be on the next

sequential packet. To account for this problem, the router generates a range of predictions

encompassing the number of possible transmitted packet send/receive addresses, of which the

next packet received could leap ahead. Thus, if there is a vanishingly small probability that a

given packet will arrive at the router ahead of 5 packets transmitted by the client before the given

packet, then the router can generate a series of 6 send/receive IP address pairs (or “hop window”)

to compare with the next received packet. When a packet is received, it is marked in the hop

window as such, so that a second packet with the same IP address pair will be discarded. If an

out-of-sequence packet does not arrive within a predetermined timeout period, it can be

requested for retransmission or simply discarded from the receive table, depending upon the

protocol in use for that communications session, or possibly by convention.

[90] When the router receives the client’s packet, it compares the send and receive IP

addresses of the packet with the next N predicted send and receive IP address pairs and rejects

the packet if it is not a member of this set. Received packets that do not have the predicted

source/destination IP addresses falling with the window are rejected, thus thwarting possible

hackers. (With the number of possible combinations, even a fairly large window would be hard

23

Petitioner Apple - Ex. 1002, p. 193

Petitioner Apple - Ex. 1002, p. 194

.le. JED ii? “:31 Villa-11W “-11- 1" 11.711113! :5??? lfli 11211 if.“

000479.00082 . .

to fall into at random.) If it is a member of this set, the router accepts the packet and processes it

further. This link-based IP-hopping strategy, referred to as “IHOP,” is a network element that

stands on its own and is not necessarily accompanied by elements of the boutique system

described above. If the routing agility feature described in connection with the boutique

embodiment is combined with this link-based IP-hopping strategy, the router’s next step would

be to decrypt the TARP header to determine the destination TARP router for the packet and

determine what should be the next hop for the packet. The TARP router would then forward the

packet to a random TARP router or the destination TARP router with which the source TARP

router has a link-based IP hopping communication established.

[91] Figure 8 shows how a client computer 801 and a TARP router 811 can establish a secure

session. When client 801 seeks to establish an IHOP session with TARP router 811, the client

801 sends “secure synchronization” request (“SSYN”) packet 821 to the TARP router 811. This

SYN packet 821 contains the client’s 801 authentication token, and may be sent to the router 811

in an encrypted format. The source and destination IP numbers on the packet 821 are the client’s

801 current fixed I? address, and a “known” fixed IP address for the router 811. (For security

purposes, it may be desirable to reject any packets from outside of the local network that are

destined for the router’s known fixed IP address.) Upon receipt and validation of the client’s 801

SSYN packet 821, the router 811 responds by sending an encrypted “secure synchronization

acknowledgment” (“SSYN ACK”) 822 to the client 801. This SSYN ACK 822 will contain the

transmit and receive hopblocks that the client 801 will use when communicating with the TARP

router 811. The client 801 will acknowledge the TARP router’s 811 response packet 822 by

generating an encrypted SSYN ACK ACK packet 823 which will be sent from the client’s 801

fixed IP address and to the TARP router’s 811 known fixed IP address. The client 801 will

simultaneously generate a SSYN ACK ACK packet; this SSYN ACK packet, referred to as the

Secure Session Initiation (SSI) packet 824, will be sent with the first {sender, receiver} IP pair in

the client’s transmit table 921 (FIG. 9), as specified in the transmit hopblock provided by the

TARP router 811 in the SSYN ACK packet 822. The TARP router 811 will respond to the SSI

packet 824 with an SSI ACK packet 825, which will be sent with the first {sender, receiver} IP

pair in the TARP router’s transmit table 923. Once these packets have been successfully

exchanged, the secure communications session is established, and all further secure

24

Petitioner Apple - Ex. 1002, p. 194

Petitioner Apple - Ex. 1002, p. 195

fill. lEll iii-E '5: “Ell “ll-“Ell “ll" 1.. 113193! 3 113111111 i155?!

000479.00082 . .

communications between the client 801 and the TARP router 811 will be conducted via this

secure session, as long as synchronization is maintained. If synchronization is lost, then the client

801 and TARP router 802 may re-establish the secure session by the procedure outlined in

Figure 8 and described above.

[92] While the secure session is active, both the client 901 and TARP router 911 (FIG. 9) will

maintain their respective transmit tables 921, 923 and receive tables 922, 924, as provided by the

TARP router during session synchronization 822. It is important that the sequence of [P pairs in

the client’s transmit table 921 be identical to those in the TARP router’s receive table 924;

similarly, the sequence of [P pairs in the client’s receive table 922 must be identical to those in

the router’s transmit table 923. This is required for the session synchronization to be maintained.

The client 901 need maintain only one transmit table 921 and one receive table 922 during the

course of the secure session. Each sequential packet sent by the client 901 will employ the next

{send, receive} IP address pair in the transmit table, regardless of TCP or UDP session. The

TARP router 911 will expect each packet arriving from the client 901 to bear the next IP address

pair shown in its receive table.

[93] Since packets can arrive out of order, however, the router 911 can maintain a “look

ahead” buffer in its receive table, and will mark previously—received IP pairs as invalid for future

packets; any future packet containing an [P pair that is in the look-ahead buffer but is marked as

previously received will be discarded. Communications from the TARP router 911 to the client

901 are maintained in an identical manner; in particular, the router 911 will select the next IP

address pair from its transmit table 923 when constructing a packet to send to the client 901, and

the client 901 will maintain a look-ahead buffer of expected [P pairs on packets that it is

receiving. Each TARP router will maintain separate pairs of transmit and receive tables for each

client that is currently engaged in a secure session with or through that TARP router.

[94] While clients receive their hopblocks from the first server linking them to the Internet,

routers exchange hopblocks. When a router establishes a link-based IP-hopping communication

regime with another router, each router of the pair exchanges its transmit hopblock. The transmit

hopblock of each router becomes the receive hopblock of the other router. The communication

25

Petitioner Apple - Ex. 1002, p. 195

Petitioner Apple - Ex. 1002, p. 196

ill. III]! E! E} ‘Efl WEI! "ill“ in IIZII ”El '3 113! {I'll E.“

000479.00082 .

between routers is governed as described by the example of a client sending a packet to the first

router.

[95] While the above strategy works fine in the IP milieu, many local networks that are

connected to the Internet are Ethernet systems. In Ethernet, the IP addresses of the destination

devices must be translated into hardware addresses, and vice versa, using known processes

(“address resolution protocol,” and “reverse address resolution protocol”). However, if the link-

based IP-hopping strategy is employed, the correlation process would become explosive and

burdensome. An alternative to the link-based IP hopping strategy may be employed within an

Ethernet network. The solution is to provide that the node linking the Internet to the Ethernet

(call it the border node) use the link-based IP-hopping communication regime to communicate

with nodes outside the Ethernet LAN. Within the Ethernet LAN, each TARP node would have a

single IP address which would be addressed in the conventional way. Instead of comparing the

{sender, receiver} IP address pairs to authenticate a packet, the intra-LAN TARP node would

use one of the IP header extension fields to do so. Thus, the border node uses an algorithm

shared by the intra-LAN TARP node to generate a symbol that is stored in the free field in the IP

header, and the intra-LAN TARP node generates a range 'of symbols based on its prediction of

the next expected packet to be received from that particular source IP address. The packet is

rejected if it does not fall into the set of predicted symbols (for example, numerical values) or is

accepted if it does. Communications from the intra-LAN TARP node to the border node are

accomplished in the same manner, though the algorithm will necessarily be different for security

reasons. Thus, each of the communicating nodes will generate transmit and receive tables in a

similar manner to that of Figure 9; the intra-LAN TARP nodes transmit table will be identical to

the border node’s receive table, and the intra-LAN TARP node’s receive table will be identical to

the border node’s transmit table.

[96] The algorithm used for IP address-hopping can be any desired algorithm. For example,

the algorithm can be a given pseudo-random number generator that generates numbers of the

range covering the allowed IP addresses with a given seed. Alternatively, the session participants

can assume a certain type of algorithm and specify simply a parameter for applying the

26

Petitioner Apple - EX. 1002, p. 196

Petitioner Apple - Ex. 1002, p. 197

21111111115933; Willi-E511 “-1" 1., 1:11 "3.11 33?: 11211112311253?

000479.00082 . .

algorithm. For example the assumed algorithm could be a particular pseudo-random number

generator and the session participants could simply exchange seed values.

[97] Note that there is no permanent physical distinction between the originating and

destination terminal nodes. Either device at either end point can initiate a synchronization of the

pair. Note also that the authentication/synchronization-request (and acknowledgment) and

hopblock-exchange may all be served by a single message so that separate message exchanges

may not be required.

[98] As another extension to the stated architecture, multiple physical paths can be used by a

client, in order to provide link redundancy and further thwart attempts at denial of service and

traffic monitoring. As shown in Figure 10, for example, client 1001 can establish three

simultaneous sessions with each of three TARP routers provided by different ISPs 1011, 1012,

1013. As an example, the client 1001 can use three different telephone lines 1021, 1022, 1023 to

connect to the ISPs, or two telephone lines and a cable modem, etc. In this scheme, transmitted

packets will be sent in a random fashion among the different physical paths. This architecture

provides a high degree of communications redundancy, with improved immunity from denial-of-

service attacks and traffic monitoring.

2. FURTHER EXTENSIONS

[99] The following describes various extensions to the techniques, systems, and methods

described above. As described above, the security of communications occurring between

computers in a computer network (such as the Internet, an Ethernet, or others) can be enhanced

by using seemingly random source and destination Internet Protocol (IP) addresses for data

packets transmitted over the network. This feature prevents eavesdroppers from determining

which computers in the network are communicating with each other while permitting the two

communicating computers to easily recognize whether a given received data packet is legitimate

or not. In one embodiment of the above-described systems, an IP header extension field is used

to authenticate incoming packets on an Ethernet.

[100] Various extensions to the previously described techniques described herein include: (1)

use of hopped hardware or “MAC” addresses in broadcast type network; (2) a self-

27

Petitioner Apple - Ex. 1002, p. 197

Petitioner Apple - Ex. 1002, p. 198

.21.. 11:11 it}?! 15-3 “331 1'41" “Elli W m 11211113173511.1111]!115:"

000479.00082 . .

synchronization technique that permits a computer to automatically regain synchronization with

a sender; (3) synchronization algorithms that allow transmitting and receiving computers to

quickly re-establish synchronization in the event of lost packets or other events; and (4) a fast-

packet rejection mechanism for rejecting invalid packets. Any or all of these extensions can be

combined with the features described above in any ofvarious ways.

A. Hardware Address Hopping

[101] Internet protocol-based communications techniques on a LAN—or across any dedicated

physical medium—typically embed the IP packets within lower-level packets, ofien referred to
7

as “frames.’ As shown in FIG. 11, for example, a first Ethernet flame 1150 comprises a frame

header 1101 and two embedded IP packets 1P1 and IP2, while a second Ethernet frame 1160

comprises a different frame header 1104 and a single IP packet 1P3. Each frame header

generally includes a source hardware address 1101A and a destination hardware address 1101B;

other well-known fields in flame headers are omitted from FIG. 11 for clarity. Two hardware

nodes communicating over a physical communication channel insert appropriate source and

destination hardware addresses to indicate which nodes on the channel or network should receive

the frame.

[102] , It may be possible for a nefarious listener to acquire information about the contents of a

frame and/or its communicants by examining flames on a local network rather than (or in

addition to) the IP packets themselves. This is especially true in broadcast media, such as

Ethernet, where it is necessary to insert into the flame header the hardware address of the

machine that generated the flame and the hardware address of the machine to which frame is

being sent. A11 nodes on the network can potentially “see” all packets transmitted across the

network. This can be a problem for secure communications, especially in cases where the

communicants 'do not want for any third party to be able to identify who is engaging in the

information exchange. One way to address this problem is to push the address-hopping scheme

down to the hardware layer. In accordance with various embodiments of the invention, hardware

addresses are “hopped” in a manner similar to that used to change IP addresses, such that a

listener cannot determine which hardware node generated a particular message nor which node is

the intended recipient.

28

Petitioner Apple - Ex. 1002, p. 198

Petitioner Apple - Ex. 1002, p. 199

3L l]! r” i553 HIM-Ell “vll- :m 1:11 “2:31 351 1123111331 E”

000479.00082 . .

[103] FIG. 12A shows a system in which Media Access Control (“MAC”) hardware addresses

are “hopped” in order to increase security over a network such as an Ethernet. While the

description refers to the exemplary case of an Ethernet environment, the inventive principles are

equally applicable to other types of communications media. In the Ethernet case, the MAC

address of the sender and receiver are inserted into the Ethernet frame and can be observed by

anyone on the LAN who is within the broadcast range for that frame. For secure

communications, it becomes desirable to generate frames with MAC addresses that are not

attributable to any specific sender or receiver.

[104] As shown in FIG. 12A, two computer nodes 1201 and 1202 communicate over a

communication channel such as an Ethernet. Each node executes one or more application

programs 1203 and 1218 that communicate by transmitting packets through communication

software 1204 and 1217, respectively. Examples of application programs include video

conferencing, e-mail, word processing programs, telephony, and the like. Communication

software 1204 and 1217 can comprise, for example, an 081 layered architecture or “stac ” that

standardizes various services provided at different levels of functionality.

[105] The lowest levels of communication software 1204 and 1217 communicate with

hardware components 1206 and 1214 respectively, each of which can include one or more

registers 1207 and 1215 that allow the hardware to be reconfigured or controlled in accordance

with various communication protocols. The hardware components (an Ethernet network

interface card, for example) communicate with each other over the communication medium.

Each hardware component is typically pre-assigned a fixed hardware address or MAC number

that identifies the hardware component to other nodes on the network. One or more interface

drivers control the operation of each card and can, for example, be configured to accept or reject

packets from certain hardware addresses. As will be described in more detail below, various

embodiments of the inventive principles provide for “hopping” different addresses using one or

more algorithms and one or more moving windows that track a range of valid addresses to

validate received packets. Packets transmitted according to one or more of the inventive

principles will be generally referred to as “secure” packets or “secure communications” to

29

Petitioner Apple - Ex. 1002, p. 199

Petitioner Apple - Ex. 1002, p. 200

31.13113! 93.? ‘31 "Lil-91!! "-ll- 1.. A 1E]! ‘931 ".r‘” Eli]! ll'jl r"

000479.00082 . .

differentiate them from ordinary data packets that are transmitted in the clear using ordinary,

machine-correlated addresses.

[106] One straightforward method of generating non-attributable MAC addresses is an

extension of the IP hopping scheme. In this scenario, two machines on the same LAN that desire

to communicate in a secure fashion exchange random-number generators and seeds, and create

sequences of quasi-random MAC addresses for synchronized hopping. The implementation and

synchronization issues are then similar to that of IP hopping.

[107] This approach, however, runs the risk of using MAC addresses that are currently active

on the LAN—which, in turn, could interrupt communications for those machines. Since an

Ethernet MAC address is at present 48 bits in length, the chance of randomly misusing an active

MAC address is actually quite small. However, if that figure is multiplied by a large number of

nodes (as would be found on an extensive LAN), by a large number of flames (as might be the

case with packet voice or streaming video), and by a large number of concurrent Virtual Private

Networks (VPNs), then the chance that a non-secure machine’s MAC address could be used in

an address-hopped fiame can become non-trivial. In short, any scheme that runs even a small

risk of interrupting communications for other machines on the LAN is bound to receive

resistance fiom prospective system administrators. Nevertheless, it is technically feasible, and

can be implemented without risk on a LAN on which there is a small number of machines, or if

all of the machines on the LAN are engaging in MAC-hopped communications.

[108] Synchronized MAC address hopping may incur some overhead in the course of session

establishment, especially if there are multiple sessions or multiple nodes involved in the

communications. A simpler method of randomizing MAC addresses is to allow each node to

receive and process every incident frame on the network. Typically, each network interface

driver will check the destination MAC address in the header of every incident frame to see if it

matches that machine’s MAC address; if there is no match, then the frame is discarded. In one

embodiment, however, these checks can be disabled, and every incident packet is passed to the

TARP stack for processing. This will be referred to as “promiscuous” mode, since every incident

flame is processed. Promiscuous mode allows the sender to use completely random,

unsynchronized MAC addresses, since the destination machine is guaranteed to process the

30

Petitioner Apple - Ex. 1002, p. 200

Petitioner Apple - Ex. 1002, p. 201

1'3]:leE‘fiiléllll-llJEEfiMF E {El “Ell "’EHHEHH

000479.00082 .

frame. The decision as to whether the packet was truly intended for that machine is handled by

the TARP stack, which checks the source and destination IP addresses for a match in its IP

synchronization tables. If no match is found, the packet is discarded; if there is a match, the

packet is unwrapped, the inner header is evaluated, and if the inner header indicates that the

packet is destined for that machine then the packet is forwarded to the IP stack—otherwise it is

discarded.

[109] One disadvantage of purely-random MAC address hopping is its impact on processing

overhead; that is, since every incident frame must be processed, the machine’s CPU is engaged

considerably more often than if the network interface driver is discriminating and rejecting

packets unilaterally. A compromise approach is to select either a single fixed MAC address or a

small number of MAC addresses (e.g., one for each virtual private network on an Ethernet) to

use for MAC-hopped communications, regardless of the actual recipient for which the message

is intended. In this mode, the network interface driver can check each incident frame against one

(or a few) pre-established MAC addresses, thereby freeing the CPU from the task of physical-

layer packet discrimination. This scheme does not betray any useful information to an interloper

on the LAN; in particular, every secure packet can already be identified by a unique packet type

in the outer header. However, since all machines engaged in secure communications would

either be using the same MAC address, or be selecting from a small pool of predetermined MAC

addresses, the association between a specific machine and a specific MAC address is effectively

broken.

[110] In this scheme, the CPU will be engaged more often than it would be in non-secure

communications (or in synchronized MAC address hopping), since the network interface driver

cannot always unilaterally discriminate between secure packets that are destined for that

machine, and secure packets from other VPNs. However, the non-secure traffic is easily

eliminated at the network interface, thereby reducing the amount of processing required of the

CPU. There are boundary conditions where these statements would not hold, of course—cg, if

all of the traffic on the LAN is secure traffic, then the CPU would be engaged to the same degree

as it is in the purely-random address hopping case; alternatively, if each VPN on the LAN uses a

different MAC address, then the network interface can perfectly discriminate secure frames

31

Petitioner Apple - EX. 1002, p. 201

Petitioner Apple - Ex. 1002, p. 202

ill. llfll iii! 353} gm}. "rill “ii in lifll m.zll .Zifiiglflll liIEll iiifl

000479.00082 . .

destined for the local machine from those constituting other VPNs. These are engineering

tradeoffs that might be best handled by providing administrative options for the users when

installing the software and/or establishing VPNs.

[111] Even in this scenario, however, there still remains a slight risk of selecting MAC

addresses that are being used by one or more nodes on the LAN. One solution to this problem is

to formally assign one address or a range of addresses for use in MAC-hopped communications.

This is typically done via an assigned numbers registration authority; e.g., in the case of

Ethernet, MAC address ranges are assigned to vendors by the Institute of Electrical and

Electronics Engineers (IEEE). A formally-assigned range of addresses would ensure that secure

frames do not conflict with any properly-configured and properly-functioning machines on the

LAN.

[112] Reference will now be made to FIGS. 12A and 128 in order to describe the many

combinations and features that follow the inventive principles. As explained above, two

computer nodes 1201 and 1202 are assumed to be communicating over a network or

communication medium such as an Ethernet. A communication protocol in each node (1204 and

1217, respectively) contains a modified element 1205 and 1216 that performs certain functions

that deviate from the standard communication protocols. In particular, computer node 1201

implements a first “hop” algorithm 1208X that selects seemingly random source and destination

IP addresses (and, in one embodiment, seemingly random IP header discriminator fields) in order

to transmit each packet to the other computer node. For example, node 120] maintains a

transmit table 1208 containing triplets of source (S), destination (D), and discriminator fields

(DS) that are inserted into outgoing IP packet headers. The table is generated through the use of

an appropriate algorithm (e.g., a random number generator that is seeded with an appropriate

seed) that is known to the recipient node 1202. As each new IP packet is formed, the next

sequential entry out of the sender’s transmit table 1208 is used to populate the IP source, IP

destination, and [P header extension field (e.g., discriminator field). It'will be appreciated that

the transmit table need not be created in advance but could instead be created on-the-fly by

executing the algorithm when each packet is formed.

32

Petitioner Apple - Ex. 1002, p. 202

Petitioner Apple - Ex. 1002, p. 203

Iii till '53? iii-Ti "1:931 “ll-"Ell “if :m 'lfill Lllm‘n lflll llfil Tr‘fl

000479.00082 . .

[113] At the receiving node 1202, the same IP hop algorithm 1222X is maintained and used to

generate a receive table 1222 that lists valid triplets of source IP address, destination IP address,

and discriminator field. This is shown by virtue of the first five entries of transmit table 1208

matching the second five entries of receive table 1222. (The tables may be slightly offset at any

particular time due to lost packets, misordered packets, or transmission delays). Additionally,

node 1202 maintains a receive window W3 that represents a list of valid IP source, IP

destination, and discriminator fields that will be accepted when received as part of an incoming

IP packet. As packets are received, window W3 slides down the list of valid entries, such that

the possible valid entries change over time. Two packets that arrive out of order but are

nevertheless matched to entries within window W3 will be accepted; those falling outside of

window W3 will be rejected as invalid. The length of window W3 can be adjusted as necessary

to reflect network delays or other factors.

[114] Node 1202 maintains a similar transmit table 1221 for creating IP packets and frames

destined for node 1201 using a potentially different hopping algorithm 1221X, and node 1201

maintains a matching receive table 1209 using the same algorithm 1209X. As node 1202

transmits packets to node 1201 using seemingly random IP source, IP destination, and/or

discriminator fields, node 1201 matches the incoming packet values to those falling within

window W1 maintained in its receive table. In effect, transmit table 1208 of node 1201 is

synchronized (i.e., entries are selected in the same order) to receive table 1222 of receiving node

1202. Similarly, transmit table 1221 of node 1202 is synchronized to receive table 1209 of node

1201. It will be appreciated that although a common algorithm is shown for the source,

destination and discriminator fields in FIG. 12A (using, e.g., a different seed for each of the three

fields), an entirely different algorithm could in fact be used to establish values for each of these

fields. It will also be appreciated that one or two of the fields can be “hopped” rather than all

three as illustrated.

[115] In accordance with another aspect of the invention, hardware or “MAC” addresses are

hopped instead of or in addition to IP addresses and/or the discriminator field in order to improve

security in a local area or broadcast-type network. To that end, node 1201 further maintains a

transmit table 1210 using a transmit algorithm 1210X to generate source and destination

33

Petitioner Apple - EX. 1002, p. 203

Petitioner Apple - Ex. 1002, p. 204

:11. 1131 E3". ”"551 11311 MPH! “~11- “ 1131112141 Fir-1132111173117."

000479.00082 . .

hardware addresses that are inserted into frame headers (e.g., fields 1101A and 1101B in FIG.

11) that are synchronized to a corresponding receive table 1224 at node 1202. Similarly, node

1202 maintains a different transmit table 1223 containing source and destination hardware

addresses that is synchronized with a corresponding receive table 1211 at node 1201. In this

manner, outgoing hardware frames appear to be originating from and going to completely

random nodes on the network, even though each recipient can determine whether a given packet

is intended for it or not. It will be appreciated that the hardware hopping feature can be

implemented at a different level in the communications protocol than the 1P hopping feature

(e.g., in a card driver or in a hardware card itself to improve performance).

[116] FIG. 12B shows three different embodiments or modes that can be employed using the

aforementioned principles. In a first mode referred to as “promiscuous” mode, a common

hardware address (e.g., a fixed address for source and another for destination) or else a

completely random hardware address is used by all nodes on the network, such that a particular

packet cannot be attributed to any one node. Each node must initially accept all packets

containing the common (or random) hardware address and inspect the IP addresses or

discriminator field to determine whether the packet is intended for that node. In this regard,

either the IP addresses or the discriminator field or both can be varied in accordance with an

algorithm as described above. As explained previously, this may increase each node’s overhead

since additional processing is involved to determine whether a given packet has valid source and

destination hardware addresses.

[117] In a second mode referred to as “promiscuous per VPN” mode, a small set of fixed

hardware addresses are used, with a fixed source/destination hardware address used for all nodes

communicating over a virtual private network. For example, if there are six nodes on an

Ethernet, and the network is to be split up into two private virtual networks such that nodes on

one VPN can communicate with only the other two nodes on its own VPN, then two sets of

hardware addresses could be used: one set for the first VPN and a second set for the second

VPN. This would reduce the amount of overhead involved in checking for valid frames since

only packets arriving from the designated VPN would need to be checked. IP addresses and one

or more discriminator fields could still be hopped as before for secure communication within the

34

Petitioner Apple - Ex. 1002, p. 204

Petitioner Apple - Ex. 1002, p. 205

.‘ll- Elf-ll iii" ‘EEB 3333 “willili “nil- ,m 21:31 “11224! 25$ 11:31:11le 3223’

000479.00082 . .

VPN. Of course, this solution compromises the anonymity of the VPNs (i.e., an outsider can

easily tell what traffic belongs in which VPN, though he carmot correlate it to a specific

machine/person). It also requires the use of a discriminator field to mitigate the vulnerability to

certain types of DoS attacks. (For example, without the discriminator field, an attacker on the

LAN could stream frames containing the MAC addresses being used by the VPN; rejecting those

frames could lead to excessive processing overhead. The discriminator field would provide a

low-overhead means of rejecting the false packets.)

[118] In a third mode referred to as “hardware hopping” mode, hardware addresses are varied

as illustrated in FIG. 12A, such that hardware source and destination addresses are changed

constantly in order to provide non-attributable addressing. Variations on these embodiments are

of course possible, and the invention is not intended to be limited in any respect by these

illustrative examples.

B. Extending the Address Space

[119] Address hopping provides security and privacy. However, the level of protection is

limited by the number of addresses in the blocks being hopped. A hopblock denotes a field or

fields modulated on a packet-wise basis for the purpose of providing a VPN. For instance, if two

nodes communicate with IP address hopping using hopblocks of 4 addresses (2 bits) each, there

would be 16 possible address-pair combinations. A window of size 16 would result in most

address pairs being accepted as valid most of the time. This limitation can be overcome by using

a discriminator field in addition to or instead of the hopped address fields. The discriminator

field would be hopped in exactly the same fashion as the address fields and it would be used to

determine whether a packet should be processed by a receiver.

[120] Suppose that two clients, each using four-bit hopblocks, would like the same level of

protection afforded to clients communicating via IP hopping between two A blocks (24 address

bits eligible for hopping). A discriminator field of 20 bits, used in conjunction with the 4 address

bits eligible for hopping in the IP address field, provides this level of protection. A 24-bit

discriminator field would provide a similar level of protection if the address fields were not

hopped or ignored. Using a discriminator field offers the following advantages: (1) an arbitrarily

35

Petitioner Apple - Ex. 1002, p. 205

Petitioner Apple - Ex. 1002, p. 206

3L ill]! in? .5 “Eli! “all-153] IL‘ll- rn ill}! “Ell Efiilflll if}! E33

000479.00082 . .

high level of protection can be provided, and (2) address hopping is unnecessary to provide

protection. This may be important in environments where address hopping would cause routing

problems.

C. Smchronization Techniques

[121] It is generally assumed that once a sending node and receiving node have exchanged

algorithms and seeds (or similar information sufficient to generate quasi-random source and

destination tables), subsequent communication between the two nodes will proceed smoothly.

Realistically, however, two nodes may lose synchronization due to network delays or outages, or

other problems. Consequently, it is desirable to provide means for re—establishing

synchronization between nodes in a network that have lost synchronization.

[122] One possible technique is to require that each node provide an acknowledgment upon

successful receipt of each packet and, if no acknowledgment is received within a certain period

of time, to re-send the unacknowledged packet. This approach, however, drives up overhead

costs and may be prohibitive in high-throughput environments such as streaming video or audio,

for example.

[123] A different approach is to employ an automatic synchronizing technique that will be
1

referred to herein as “self-synchronization.’ In this approach, synchronization information is

embedded into each packet, thereby enabling the receiver to re-synchronize itself upon receipt of

a single packet if it determines that is has lost synchronization with the sender. (If

communications are already in progress, and the receiver determines that it is still in sync with

the sender, then there is no need to re-synchronize.) A receiver could detect that it was out of

synchronization by, for example, employing a “dead-man” timer that expires after a certain

period of time, wherein the timer is reset with each valid packet. A time stamp could be hashed

into the public sync field (see below) to preclude packet-retry attacks.

[124] In one embodiment, a “sync field” is added to the header of each packet sent out by the

sender. This sync field could appear in the clear or as part of an encrypted portion of the packet.

Assuming that a sender and receiver have selected a random-number generator (RNG) and seed

value, this combination of RNG and seed can be used to generate a random-number sequence

36

Petitioner Apple - Ex. 1002, p. 206

Petitioner Apple - Ex. 1002, p. 207

:31. if}! i??? 1’15} “LBJ! "ll" “Ell Mir .m ll}! “El “53? 111:1] in! SE3!

000479.00082 . .l

(RNS). The RNS is then used to generate a sequence of source/destination 11’ pairs (and, if

desired, discriminator fields and hardware source and destination addresses), as described above.

It is not necessary, however, to generate the entire sequence (or the first N-l values) in order to

generate the Nth random number in the sequence; if the sequence index N is known, the random

value corresponding to that index can be directly generated (see below). Different RNGs (and

seeds) with different fundamental periods could be used to generate the source and destination IP

sequences, but the basic concepts would still apply. For the sake of simplicity, the following

discussion will assume that IP source and destination address pairs (only) are hopped using a

single RNG sequencing mechanism.

[125] In accordance with a “self-synchronization” feature, a sync field in each packet header

provides an index (i.e., a sequence number) into the RNS that is being used to generate IP pairs.

Plugging this index into the RNG that is being used to generate the RNS yields a specific random

number value, which in turn yields a specific IP pair. That is, an IP pair can be generated directly

from knowledge of the RNG, seed, and index number; it is not necessary, in this scheme, to

generate the entire sequence of random numbers that precede the sequence value associated with

the index number provided.

[126] Since the communicants have presumably previously exchanged RNGs and seeds, the

only new information that must be provided in order to generate an IP pair is the sequence

number. If this number is provided by the sender in the packet header, then the receiver need

only plug this number into the RNG in order to generate an IP pair - and thus verify that the IP

pair appearing in the header of the packet is valid. In this scheme, if the sender and receiver lose

synchronization, the receiver can immediately re-synchronize upon receipt of a single packet by

simply comparing the IP pair in the packet header to the IP pair generated from the index

number. Thus, synchronized communications can be resumed upon receipt of a single packet,

making this scheme ideal for multicast communications. Taken to the extreme, it could obviate

the need for synchronization tables entirely; that is, the sender and receiver could simply rely on

the index number in the sync field to validate the IP pair on each packet, and thereby eliminate

the tables entirely.

37

Petitioner Apple - Ex. 1002, p. 207

Petitioner Apple - Ex. 1002, p. 208

.121, 11:31 E3! {“31} Q! “4143353! “All” A... 1133 ‘EH :35}? ill 1E?! 313’?

000479.00082 . .

[127] The aforementioned scheme may have some inherent security issues associated with it —

namely, the placement of the sync field. If the field is placed in the outer header, then an

interloper could observe the values of the field and their relationship to the [P stream. This could

potentially compromise the algorithm that is being used to generate the IP-address sequence,

which would compromise the security of the communications. If, however, the value is placed in

the inner header, then the sender must decrypt the inner header before it can extract the sync

value and validate the IP pair; this opens up the receiver to certain types of denial-of-service

(DoS) attacks, such as packet replay. That is, if the receiver must decrypt a packet before it can

validate the IP pair, then it could potentially be forced to expend a significant amount of

processing on decryption if an attacker simply retransmits previously valid packets. Other attack

methodologies are possible in this scenario.

[128] A possible compromise between algorithm security and processing speed is to split up the

sync value between an inner (encrypted) and outer (unencrypted) header. That is, if the sync

value is sufficiently long, it could potentially be split into a rapidly-changing part that can be

viewed in the clear, and a fixed (or very slowly changing) part that must be protected. The part

that can be viewed in the clear will be called the “public sync” portion and the part that must be

protected will be called the “private sync” portion.

[129] Both the public sync and private sync portions are needed to generate the complete sync

value. The private portion, however, can be selected such that it is fixed or will change only

occasionally. Thus, the private sync value can be stored by the recipient, thereby obviating the

need to decrypt the header in order to retrieve it. If the sender and receiver have previously

agreed upon the frequency with which the private part of the sync will change, then the receiver

can selectively decrypt a single header in order to extract the new private sync if the

communications gap that has led to lost synchronization has exceeded the lifetime of the

previous private sync. This should not represent a burdensome amount of decryption, and thus

should not open up the receiver to denial-of-service attack simply based on the need to

occasionally decrypt a single header.

[130] One implementation of this is to use a hashing function with a one-to-one mapping to

generate the private and public sync portions from the sync value. This implementation is shown

38

Petitioner Apple - Ex. 1002, p. 208

Petitioner Apple - Ex. 1002, p. 209

.31, 11:31 El E1: “Ell 31-11» "931 “all" 1m 11531111211353 11711-1131 EB?

000479.00082 . .

in FIG. 13, where (for example) a first ISP 1302 is the sender and a second ISP 1303 is the

receiver. (Other alternatives are possible from FIG. 13.) A transmitted packet comprises a public

or “outer” header 1305 that is not encrypted, and a private or “inner” header 1306 that is

encrypted using for example a link key. Outer header 1305 includes a public sync portion while

inner header 1306 contains the private sync portion. A receiving node decrypts the inner header

using a decryption function 1307 in order to extract the private sync portion. This step is

necessary only if the lifetime of the currently buffered private sync has expired. (If the

currently-buffered private sync is still valid, then it is simply extracted from memory and

“added” (which could be an inverse hash) to the public sync, as shown in step 1308.) The public

and decrypted private sync portions are combined in function 1308 in order to generate the

combined sync 1309. The combined sync (1309) is then fed into the RNG (1310) and compared

to the IP address pair (1311) to validate or reject the packet.

[131] An important consideration in this architecture is the concept of “future” and “past”

where the public sync values are concerned. Though the sync values, themselves, should be

random to prevent spoofing attacks, it may be important that the receiver be able to quickly

identify a sync value that has already been sent — even if the packet containing that sync value

was never actually received by the receiver. One solution is to hash a time stamp or sequence

number into the public sync portion, which could be quickly extracted, checked, and discarded,

thereby validating the public sync portion itself.

[132] In one embodiment, packets can be checked by comparing the source/destination IP pair

generated by the sync field with the pair appearing in the packet header. If (1) they match, (2) the

time stamp is valid, and (3) the dead-man timer has expired, then re-synchronization occurs;

otherwise, the packet is rejected. If enough processing power is available, the dead-man timer

and synchronization tables can be avoided altogether, and the receiver would simply

resynchronize (e.g., validate) on every packet.

[133] The foregoing scheme may require large-integer (e.g., 160-bit) math, which may affect its

implementation. Without such large-integer registers, processing throughput would be affected,

thus potentially affecting security from a denial-of-service standpoint. Nevertheless, as large-

39

Petitioner Apple - EX. 1002, p. 209

Petitioner Apple - Ex. 1002, p. 210

...;'il Hill at"?! EB "”54! nil-“Sill “41- .u. if.“ “xiii ‘3". 113! it}! E?

000479.00082 . .

integer math processing features become more prevalent, the costs of implementing such a

feature will be reduced.

D. Other S chronization Schemes

[134] As explained above, if W or more consecutive packets are lost between a transmitter and

receiver in a VPN (where W is the window size), the receiver’s window will not have been

updated and the transmitter will be transmitting packets not in the receiver’s window. The sender

and receiver will not recover synchronization until perhaps the random pairs in the window are

repeated by chance. Therefore, there is a need to keep a transmitter and receiver in

synchronization whenever possible and to re-establish synchronization whenever it is lost.

[135] A “checkpoin ” scheme can be used to regain synchronization between a sender and a

receiver that have fallen out of synchronization. In this scheme, a checkpoint message

comprising a random IP address pair is used for communicating synchronization information. In

one embodiment, two messages are used to communicate synchronization information between a

sender and a recipient:

1. SYNC_REQ is a message used by the sender to indicate that it wants to synchronize;

and

2. SYNC_ACK is a message used by the receiver to inform the transmitter that it has

been synchronized.

[136] According to one variation of this approach, both the transmitter and receiver maintain

three checkpoints (see FIG. 14):

1. In the transmitter, ckpt_o (“checkpoint old”) is the 1? pair that was used to re-send the

last SYNC_REQ packet to the receiver. In the receiver, ckpt_o (“checkpoint old”) is

the 1? pair that receives repeated SYNC_REQ packets from the transmitter.

2. In the transmitter, ckpt_n (“checkpoint new”) is the IP pair that will be used to send

the next SYNC_REQ packet to the receiver. In the receiver, ckpt_n (“checkpoint

new”) is the IP pair that receives a new SYNC_REQ packet from the transmitter and

which causes the receiver’s window to be re-aligned, ckpt_o set to ckpt_n, a new

ckpt_n to be generated and a new ckpt_r to be generated.

40

Petitioner Apple - EX. 1002, p. 210

Petitioner Apple - Ex. 1002, p. 211

31.31211 E533 3-33} “"531 11451-1 “$11 fl-ill- ... 11le 1L3] 3331: EH) 1131 El?

000479.00082 . .

3. In the transmitter, ckpt_r is the IP pair that will be used to send the next SYNC_ACK

packet to the receiver. In the receiver, ckpt_r is the IP pair that receives a new

SYNC_ACK packet from the transmitter and which causes a new ckpt_n to be

generated. Since SYNC_ACK is transmitted from the receiver ISP to the sender ISP,

the transmitter ckpt_r refers to the ckpt_r of the receiver and the receiver ckpt_r refers

to the ckpt_r of the transmitter (see FIG. 14).

[137] When a transmitter initiates synchronization, the IP pair it will use to transmit the next

data packet is set to a predetermined value and when a receiver first receives a SYNC_REQ, the

receiver window is updated to be centered on the transmitter’s next IP pair. This is the primary

mechanism for checkpoint synchronization.

[138] Synchronization can be initiated by a packet counter (e.g., after every N packets

transmitted, initiate a synchronization) or by a timer (every S seconds, initiate a synchronization)

or a combination of both. See FIG. 15. From the transmitter’s perspective, this technique

operates as follows: (1) Each transmitter periodically transmits a “sync request” message to the

receiver to make sure that it is in sync. (2) If the receiver is still in sync, it sends back a “sync

ac ” message. (If this works, no further action is necessary). (3) If no “sync ac ” has been

received within a period of time, the transmitter retransmits the sync request again. If the

transmitter reaches the next checkpoint without receiving a “sync ac ” response, then

synchronization is broken, and the transmitter should stop transmitting. The transmitter will

continue to send sync_reqs until it receives a sync_ack , at which point transmission is

reestablished.

[139] From the receiver’s perspective, the scheme operates as follows: (1) when it receives a

“sync request” request from the transmitter, it advances its window to the next checkpoint

position (even skipping pairs if necessary), and sends a “sync ac ” message to the transmitter. If

sync was never lost, then the “jump ahead” really just advances to the next available pair of

addresses in the table (i.e., normal advancement).

41

Petitioner Apple - Ex. 1002, p. 211

Petitioner Apple - Ex. 1002, p. 212

Will 1131 HES ‘LEM-‘ll-“Ell “all-- m 113334123] 3:11:31 HE!

000479.00082 . .

[140] If an interloper intercepts the “sync request” messages and tries to interfere with

communication by sending new ones, it will be ignored if the synchronization has been

established or it it will actually help to re-establish synchronization.

[141] A window is realigned whenever a re-synchronization occurs. This realignment entails

updating the receiver’s window to straddle the address pairs used by the packet transmitted

immediately after the transmission of the SYNC_REQ packet. Normally, the transmitter and

receiver are in synchronization with one another. However, when network events occur, the

receiver’s window may have to be advanced by many steps during resynchronization. In this

case, it is desirable to move the window ahead without having to step through the intervening

random numbers sequentially. (This feature is also desirable for the auto-sync approach

discussed above).

E. Random Number Generator with a Jump-Ahead capabilig

[142] An attractive method for generating randomly hopped addresses is to use identical

random number generators in the transmitter and receiver and advance them as packets are

transmitted and received. There are many random number generation algorithms that could be

used. Each one has strengths and weaknesses for address hopping applications.

[143] Linear congruential random number generators (LCRs) are fast, simple and well

characterized random number generators that can be made to jump ahead n steps efficiently. An

LCR generates random numbers X1, X2, X3 Xk starting with seed X0 using a recurrence

Xi=(a XH + b) mod c (1)

where a, b and c define a particular LCR. Another expression for X,

xi=((ai(xo+b)-b)/(a-1» mod c (2)

enables the jump-ahead capability. The factor ai can grow very large even for modest i if lefi

unfettered. Therefore some special properties of the modulo operation can be used to control the

size and processing time required to compute (2). (2) can be rewritten as:

Xi=(ai (X0(a-1)+b)-b)/(a-1) mod c (3)

[144] It can be shown that:

42

Petitioner Apple - EX. 1002, p. 212

Petitioner Apple - Ex. 1002, p. 213

.JlL 1T3! {r333 35: “Eli Ml- “53! W m 1‘13]! ""59 2-1“: ill]! [Ell E33

000479.00082 . .

(ai(Xo(a-1)+b)-b)/(a-1) mod c =((ai mod((a-1)c)(Xo(a-1)+b) -b) /(a-1)) mod c, (4)

(Xo(a-1)+b) can be stored as (Xo(a-l)+b) mod c, b as b mod c and compute ai mod((a—1)c) (this

requires O(log(i)) steps).

[145] A practical implementation of this algorithm would jump a fixed distance, n,

between synchronizations; this is tantamount to synchronizing every n packets. The window

would commence 11 IP pairs from the start of the previous window. Using K“, the random

number at the jth checkpoint, as X0 and n as i, a node can store an mod((a-1)c) once per LCR and

set

Xj+1w=Xng+1)=((a" mod((a-l)c) (ij (a-l)+b)-b)/(a-l))mod c, (5)

to generate the random number for the j+1th synchronization. Using this construction, a node

could jump ahead an arbitrary (but fixed) distance between synchronizations in a constant

amount of time (independent of n).

[146] Pseudo-random number generators, in general, and LCRs, in particular, will eventually

repeat their cycles. This repetition may present vulnerability in the IP hopping scheme. An

adversary would simply have to wait for a repeat to predict future sequences. One way of coping

with this vulnerability is to create a random number generator with a known long cycle. A

random sequence can be replaced by a new random number generator before it repeats. LCRs

can be constructed with known long cycles. This is not currently true of many random number

generators.

[147] Random number generators can be cryptographically insecure. An adversary can derive

the RNG parameters by examining the output or part of the output. This is true of LCGs. This

vulnerability can be mitigated by incorporating an encryptor, designed to scramble the output as

part of the random number generator. The random number generator prevents an adversary from

mounting an attack—e.g., a known plaintext attack—against the encryptor.

F. Random Number Generator Example

[148] Consider a RNG where a=3 l ,b=4 and c=15. For this case equation (1) becomes:

x.=(31 xi.] + 4) mod 15. (6)

43

Petitioner Apple - Ex. 1002, p. 213

Petitioner Apple - Ex. 1002, p. 214

.‘JL 512115;? 5511“] 341131 “all 'm 11le “EB :11 .11le M! H

000479.00082 .

[149] If one sets Xo=1, equation (6) will produce the sequence 1, 5, 9, 13, 2, 6, 10, 14,

3, 7, 11, 0, 4, 8, 12. This sequence will repeat indefinitely. For a jump ahead of 3 numbers in this

sequence a“= 313=29791, c*(a—1)=15*30=450 and an mod((a-1)c) =

313mod(1S*30)=29791mod(450)=91. Equation (5) becomes:

((91 (Xi30+4)—4)/30)mod 15 (7)

[150] Table 1 shows the jump ahead calculations from (7) . The calculations start at 5 and jump

ahead 3.

TYUBLE]

()g3o+4) 91()g30+4y4

154 14010 467

64 5820

424 38580

1 334

44

30390

n 2 22200

G. Fast Packet Filter

[151] Address hopping VPNs must rapidly determine whether a packet has a valid header and

thus requires further processing, or has an invalid header (a hostile packet) and should be

immediately rejected. Such rapid determinations will be referred to as “fast packet filtering.”

This capability protects the VPN from attacks by an adversary who streams hostile packets at the

receiver at a high rate of speed in the hope of saturating the receiver’s processor (a so-called

“denial of service” attack). Fast packet filtering is an important feature for implementing VPNs

on shared media such as Ethernet.

[152] Assuming that all participants in a VPN share an unassigned “A” block of addresses, one

possibility is to use an experimental “A” block that will never be assigned to any machine that is

not address hopping on the shared medium. “A” blocks have a 24 bits of address that can be

hopped as opposed to the 8 bits in “C” blocks. In this case a hopblock will be the “A” block.

The use ofthe experimental “A” block is a likely option on an Ethernet because:

44

Petitioner Apple - EX. 1002, p. 214

Petitioner Apple - Ex. 1002, p. 215

.311. 1121171152975 “3:31 wars], “—11 1.. {2111531 3112111121 in"

000479.00082 .

1. The addresses have no validity outside of the Ethernet and will not be routed out to a valid

outside destination by a gateway.

2. There are 224 (~16 million) addresses that can be hopped within each “A” block. This yields

>280 trillion possible address pairs making it very unlikely that an adversary would guess a

valid address. It also provides acceptably low probability of collision between separate VPNs

(all VPNs on a shared medium independently generate random address pairs from the same

“A” block).

3. The packets will not be received by someone on the Ethernet who is not on a VPN (unless

the machine is in promiscuous mode) minimizing impact on non-VPN computers.

[153] The Ethernet example will be used to describe one implementation of fast packet

filtering. The ideal algorithm would quickly examine a packet header, determine whether the

packet is hostile, and reject any hostile packets or determine which active IP pair the packet

header matches. The problem is a classical associative memory problem. A variety of techniques

have been developed to solve this problem (hashing, B—trees etc). Each of these approaches has

its strengths and weaknesses. For instance, hash tables can be made to operate quite fast in a

statistical sense, but can occasionally degenerate into a much slower algorithm. This slowness

can persist for a period of time. Since there is a need to discard hostile packets quickly at all

times, hashing would be unacceptable.

H. Presence Vector Algorithm

[154] A presence vector is a bit vector of length 2n that can be indexed by n-bit numbers (each

ranging from 0 to 2“—1). One can indicate the presence of k n-bit numbers (not necessarily

unique), by setting the bits in the presence vector indexed by each number to 1. Otherwise, the

bits in the presence vector are 0. An n-bit number, x, is one of the k numbers if and only if the xth

bit of the presence vector is 1. A fast packet filter can be implemented by indexing the presence

vector and looking for a 1, which will be referred to as the “test.”

[155] For example, suppose one wanted to represent the number 135 using a presence vector.

The 135th bit of the vector would be set. Consequently, one could very quickly determine

whether an address of 135 was valid by checking only one bit: the 135th bit. The presence

vectors could be created in advance corresponding to the table entries for the IP addresses. In

45

Petitioner Apple - Ex. 1002, p. 215

Petitioner Apple - Ex. 1002, p. 216

Lil. ll}! r" 955} “Ell "Lil-IE” “ll 1:: iii-ll "E31 331 lllzl lliil iEl‘

000479.00082 . .

effect, the incoming addresses can be used as indices into a long vector, making comparisons

very fast. As each RNG generates a new address, the presence vector is updated to reflect the

information. As the window moves, the presence vector is updated to zero out addresses that are

no longer valid.

[156] There is a trade-off between efficiency of the test and the amount of memory required for

storing the presence vector(s). For instance, if one were to use the 48 bits of hopping addresses

as an index, the presence vector would have to be 35 terabytes. Clearly, this is too large for

practical purposes. Instead, the 48 bits can be divided into several smaller fields. For instance,

one could subdivide the 48 bits into four 12-bit fields (see FIG. 16). This reduces the storage

requirement to 2048 bytes at the expense of occasionally having to process a hostile packet. In

effect, instead of one long presence vector, the decomposed address portions must match all four

shorter presence vectors before further processing is allowed. (If the first part of the address

portion doesn’t match the first presence vector, there is no need to check the remaining three

presence vectors).

[157] A presence vector will have a 1 in the y1h bit if and only if one or more addresses with a

corresponding field of y are active. An address is active only if each presence vector indexed by

the appropriate sub-field of the address is 1.

[158] Consider a window of 32 active addresses and 3 checkpoints. A hostile packet will be

rejected by the indexing of one presence vector more than 99% of the time. A hostile packet will

be rejected by the indexing of all 4 presence vectors more than 99.9999995% of the time. On

average, hostile packets will be rejected in less than 1.02 presence vector index operations.

[159] The small percentage of hostile packets that pass the fast packet filter will be rejected

when matching pairs are not found in the active window or are active checkpoints. Hostile

packets that serendipitously match a header will be rejected when the VPN sofiware attempts to

decrypt the header. However, these cases will be extremely rare. There are many other ways this

method can be configured to arbitrate the space/speed tradeofi‘s.

1. Further Smchronization Enhancements

46

Petitioner Apple - Ex. 1002, p. 216

Petitioner Apple - Ex. 1002, p. 217

Lil. [Ell iii?! {"3} 113043.113] "-ll-‘- .1. 11:11 “331 .i 11:]! ll]! ii-El

000479.00082 . .

[160] A slightly modified form of the synchronization techniques described above can be

employed. The basic principles of the previously described checkpoint synchronization scheme

remain unchanged. The actions resulting from the reception of the checkpoints are, however,

slightly different. In this variation, the receiver will maintain between 000 (“Out of Order”) and

2XWINDOW_SIZE+OoO active addresses (1 $000 SWINDOW_SIZE and WINDOW_SIZE

21). 000 and WINDOW_SIZE are engineerable parameters, where 000 is the minimum

number of addresses needed to accommodate lost packets due to events in the network or out of

order arrivals and WINDOW_SIZE is the number of packets transmitted before a SYNC_REQ is

issued. FIG. 17 depicts a storage array for a receiver’s active addresses.

[161] The receiver starts with the first 2XWINDOW_SIZE addresses loaded and active (ready

to receive data). As packets are received, the corresponding entries are marked as “used” and are

no longer eligible to receive packets. The transmitter maintains a packet counter, initially set to

0, containing the number of data packets transmitted since the last initial transmission of a

SYNC_REQ for which SYNC_ACK has been received. When the transmitter packet counter

equals WINDOW_SIZE, the transmitter generates a SYNC_REQ and does its initial

transmission. When the receiver receives a SYNC_REQ corresponding to its current CKPT_N, it

generates the next WINDOW_SIZE addresses and starts loading them in order starting at the

first location after the last active address wrapping around to the beginning of the array after the

end of the array has been reached. The receiver’s array might look like FIG. 18 when a

SYNC_REQ has been received. In this case a couple of packets have been either lost or will be

received out of order when the SYNC_REQ is received.

[162] FIG. 19 shows the receiver’s array after the new addresses have been generated. If the

transmitter does not receive a SYNC_ACK, it will re-issue the SYNC_REQ at regular intervals.

When the transmitter receives a SYNC_ACK, the packet counter is decremented by

WINDOW_SIZE. If the packet counter reaches 2XWINDOW_SIZE — 000 then the transmitter

ceases sending data packets until the appropriate SYNC_ACK is finally received. The

transmitter then resumes sending data packets. Future behavior is essentially a repetition of this

initial cycle. The advantages of this approach are:

1. There is no need for an efficient jump ahead in the random number generator,

47

Petitioner Apple - EX. 1002, p. 217

Petitioner Apple - Ex. 1002, p. 218

.ZlL 112]] IF"”.1531 MAG)! my. .111 11:31 “Kill 13.3} 3131 illill ESE?000479.00082 .

2. No packet is ever transmitted that does not have a corresponding entry in the receiver side

3. No timer based re-synchronization is necessary. This is a consequence of 2.

4. The receiver will always have the ability to accept data messages transmitted within 000

messages of the most recently transmitted message.

J. Distributed Transmission Path Variant

[163] Another embodiment incorporating various inventive principles is shown in FIG. 20. In

this embodiment, a message transmission system includes a first computer 2001 in

communication with a second computer 2002 through a network 2011 of intermediary

computers. In one variant of this embodiment, the network includes two edge routers 2003 and

2004 each of which is linked to a plurality of Internet Service Providers (ISPs) 2005 through

2010. Each ISP is coupled to a plurality of other ISPs in an arrangement as shown in FIG. 20,

which is a representative configuration only and is not intended to be limiting. Each connection

between ISPs is labeled in FIG. 20 to indicate a specific physical transmission path (e.g., AD is a

physical path that links ISP A (element 2005) to ISP D (element 2008)). Packets arriving at each

edge router are selectively transmitted to one of the ISPs to which the router is attached on the

basis of a randomly or quasi-randomly selected basis.

[164] As shown in FIG. 21, computer 2001 or edge router 2003 incorporates a plurality of link

transmission tables 2100 that identify, for each potential transmission path through the network,

valid sets of IP addresses that can be used to transmit the packet. For example, AD table 2101

contains a plurality of IP source/destination pairs that are randomly or quasi-randomly generated.

When a packet is to be transmitted from first computer 2001 to second computer 2002, one of the

link tables is randomly (or quasi-randomly) selected, and the next valid source/destination

address pair from that table is used to transmit the packet through the network. If path AD is

randomly selected, for example, the next source/destination IP address pair (which is pre-

determined to transmit between ISP A (element 2005) and ISP B (element 2008)) is used to

transmit the packet. If one of the transmission paths becomes degraded or inoperative, that link

table can be set to a “down” condition as shown in table 2105, thus preventing addresses from

being selected from that table. Other transmission paths would be unaffected by this broken link.

48

Petitioner Apple - Ex. 1002, p. 218

Petitioner Apple - Ex. 1002, p. 219

.jL 13211—233153 ”£511 "41-13111- .“ 11:1 “'3! 31: 117.11 121153?

000479.00082 .

3. CONTINUATION-IN-PART IMPROVEMENTS

[165] The following describes various improvements and features that can be applied to the

embodiments described above. The improvements include: (1) a load balancer that distributes

packets across different transmission paths according to transmission path quality; (2) a DNS

proxy server that transparently creates a virtual private network in response to a domain name

inquiry; (3) a large-to-small link bandwidth management feature that prevents denial-of-service

attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by limiting the

rate at which a transmitter can be synchronized with a receiver; and (5) a signaling synchronizer

that allows a large number of nodes to communicate with a central node by partitioning the

communication function between two separate entities. Each is discussed separately below.

A. Load Balancer

[166] Various embodiments described above include a system in which a transmitting node and

a receiving node are coupled through a plurality of transmission paths, and wherein successive

packets are distributed quasi-randomly over the plurality of paths. See, for example, FIGS. 20

and 21 and accompanying description. The improvement extends this basic concept to

encompass distributing packets across different paths in such a manner that the loads on the

paths are generally balanced according to transmission link quality.

[167] In one embodiment, a system includes a transmitting node and a receiving node that are

linked via a plurality of transmission paths having potentially varying transmission quality.

Successive packets are transmitted over the paths based on a weight value distribution function

for each path. The rate that packets will be transmitted over a given path can be different for

each path. The relative “health” of each transmission path is monitored in order to identify paths

that have become degraded. In one embodiment, the health of each path is monitored in the

transmitter by comparing the number of packets transmitted to the number of packet

acknowledgements received. Each transmission path may comprise a physically separate path

(e.g., via dial-up phone line, computer network, router, bridge, or the like), or may comprise

logically separate paths contained within a broadband communication medium (e.g., separate

channels in an FDM, TDM, CDMA, or other type of modulated or unmodulated transmission

link).

49

Petitioner Apple - Ex. 1002, p. 219

Petitioner Apple - Ex. 1002, p. 220

Ill. :11le iii? {El-i“ill ”it “SI-31 Ml- “. SEE]! “21.335 lfll 11:11 El!000479.00082 .

[168] When the transmission quality of a path falls below a predetermined threshold and there

are other paths that can transmit packets, the transmitter changes the weight value used for that

path, making it less likely that a given packet will be transmitted over that path. The weight will

preferably be set no lower than a minimum value that keeps nominal traffic on the path. The

weights of the other available paths are altered to compensate for the change in the affected path.

When the quality of a path degrades to where the transmitter is turned off by the synchronization

function (i.e., no packets are arriving at the destination), the weight is set to zero. If all

transmitters are turned off, no packets are sent.

[169] Conventional TCP/IP protocols include a “throttling” feature that reduces the

transmission rate of packets when it is determined that delays or errors are occurring in

transmission. In this respect, timers are sometimes used to determine whether packets have been

received. These conventional techniques for limiting transmission of packets, however, do not

involve multiple transmission paths between two nodes wherein transmission across a particular

path relative to the others is changed based on link quality.

[170] According to certain embodiments, in order to damp oscillations that might otherwise

occur if weight distributions are changed drastically (e.g., according to a step function), a linear

or an exponential decay formula can be applied to gradually decrease the weight value over time

that a degrading path will be used. Similarly, if the health of a degraded path improves, the

weight value for that path is gradually increased.

[171] Transmission link health can be evaluated by comparing the number of packets that are

acknowledged within the transmission window (see embodiments discussed above) to the

number of packets transmitted within that window and by the state of the transmitter (i.e., on or

off). In other words, rather than accumulating general transmission statistics over time for a

path, one specific implementation uses the “windowing” concepts described above to evaluate

transmission path health.

[172] The same scheme can be used to shifi virtual circuit paths from an “unhealthy” path to a

“healthy” one, and to select a path for a new virtual circuit.

50

Petitioner Apple - EX. 1002, p. 220

Petitioner Apple - Ex. 1002, p. 221

.2“. ll] W641 “-411" “55?" “all" n. llill 1LEll 2."; llell ID! 8533000479.00082 .

[173] FIG. 22A shows a flowchart for adjusting weight values associated with a plurality of

transmission links. It is assumed that software executing in one or more computer nodes

executes the steps shown in FIG. 22A. It is also assumed that the software can be stored on a

computer-readable medium such as a magnetic or optical disk for execution by a computer.

[174] Beginning in step 2201, the transmission quality of a given transmission path is

measured. As described above, this measurement can be based on a comparison between the

number of packets transmitted over a particular link to the number of packet acknowledgements

received over the link (e.g., per unit time, or in absolute terms). Alternatively, the quality can be

evaluated by comparing the number of packets that are acknowledged within the transmission

window to the number of packets that were transmitted within that window. In yet another

variation, the number of missed synchronization messages can be used to indicate link quality.

Many other variations are of course possible.

[175] In step 2202, a check is made to determine whether more than one transmitter (e.g.,

transmission path) is turned on. If not, the process is terminated and resumes at step 2201.

[176] In step 2203, the link quality is compared to a given threshold (e.g., 50%, or any arbitrary

number). If the quality falls below the threshold, then in step 2207 a check is made to determine

whether the weight is above a minimum level (e.g., 1%). If not, then in step 2209 the weight is

set to the minimum level and processing resumes at step 2201. If the weight is above the

minimum level, then in step 2208 the weight is gradually decreased for the path, then in step

2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they are

increased).

[177] If in step 2203 the quality of the path was greater than or equal to the threshold, then in

step 2204 a check is made to determine whether the weight is less than a steady-state value for

that path. If so, then in step 2205 the weight is increased toward the steady-state value, and in

step 2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they

are decreased). If in step 2204 the weight is not less than the steady-state value, then processing

resumes at step 2201 without adjusting the weights.

51

Petitioner Apple - Ex. 1002, p. 221

Petitioner Apple - Ex. 1002, p. 222

Ill. llleE-r’li 35:? “El fl~ll~'*l§~ll “Ill: m lllll ”Ellffi‘lliillllfllfi

000479.00082 . .

[178] The weights can be adjusted incrementally according to various fimctions, preferably by

changing the value gradually. In one embodiment, a linearly decreasing fimction is used to

adjust the weights; according to another embodiment, an exponential decay fimction is used.

Gradually changing the weights helps to damp oscillators that might otherwise occur if the

probabilities were abruptly.

[179] Although not explicitly shown in FIG. 22A the process can be performed only

periodically (e.g., according to a time schedule), or it can be continuously run, such as in a

background mode of operation. In one embodiment, the combined weights of all potential paths

should add up to unity (e.g., when the weighting for one path is decreased, the corresponding

weights that the other paths will be selected will increase).

[180] Adjustments to weight values for other paths can be prorated. For example, a decrease of

10% in weight value for one path could result in an evenly distributed increase in the weights for

the remaining paths. Alternatively, weightings could be adjusted according to a weighted

formula as desired (e.g., favoring healthy paths over less healthy paths). In yet another variation,

the difference in weight value can be amortized over the remaining links in a manner that is

proportional to their traffic weighting.

[181] FIG. 22B shows steps that can be executed to shut down transmission links where a

transmitter turns off. In step 2210, a transmitter shut-down event occurs. In step 2211, a test is

made to determine whether at least one transmitter is still turned on. If not, then in step 2215 all

packets are dropped until a transmitter turns on. If in step 2211 at least one transmitter is turned

on, then in step 2212 the weight for the path is set to zero, and the weights for the remaining

paths are adjusted accordingly.

[182] FIG. 23 shows a computer node 2301 employing various principles of the above-

described embodiments. It is assumed that two computer nodes of the type shown in FIG. 23

communicate over a plurality of separate physical transmission paths. As shown in FIG. 23, four

transmission paths X1 through X4 are defined for communicating between the two nodes. Each

node includes a packet transmitter 2302 that operates in accordance with a transmit table 2308 as

described above. (The packet transmitter could also operate without using the IP-hopping

52

Petitioner Apple - Ex. 1002, p. 222

Petitioner Apple - Ex. 1002, p. 223

ill. lljli iii“: IFS}? “531'“-¥ll'-‘Ell i1-'ll« 'm llZI‘l “Ell Eh} Hill I] if?!

000479.00082 . .

features described above, but the following description assumes that some form of hopping is

employed in conjunction with the path selection mechanism). The computer node also includes

a packet receiver 2303 that operates in accordance with a receive table 2309, including a moving

window W that moves as valid packets are received. Invalid packets having source and

destination addresses that do not fall within window W are rejected.

[183] As each packet is readied for transmission, source and destination IP addresses (or other

discriminator values) are selected from transmit table 2308 according to any of the various

algorithms described above, and packets containing these source/destination address pairs, which

correspond to the node to which the four transmission paths are linked, are generated to a

transmission path switch 2307. Switch 2307, which can comprise a software function, selects

from one of the available transmission paths according to a weight distribution table 2306. For

example, if the weight for path X1 is 0.2, then every fifth packet will be transmitted on path X1.

A similar regime holds true for the other paths as shown. Initially, each link’s weight value can

be set such that it is proportional to its bandwidth, which will be referred to as its “steady-state”

value.

[184] Packet receiver 2303 generates an output to a link quality measurement function 2304

that operates as described above to determine the quality of each transmission path. (The input

to packet receiver 2303 for receiving incoming packets is omitted for clarity). Link quality

measurement function 2304 compares the link quality to a threshold for each transmission link

and, if necessary, generates an output to weight adjustment function 2305. If a weight

adjustment is required, then the weights in table 2306 are adjusted accordingly, preferably

according to a gradual (e.g., linearly or exponentially declining) function. In one embodiment,

the weight values for all available paths are initially set to the same value, and only when paths

degrade in quality are the weights changed to reflect differences.

[185] Link quality measurement function 2304 can be made to operate as part of a synchronizer

function as described above. That is, if resynchronization occurs and the receiver detects that

synchronization has been lost (e.g., resulting in the synchronization window W being advanced

out of sequence), that fact can be used to drive link quality measurement function 2304.

According to one embodiment, load balancing is performed using information garnered during

53

Petitioner Apple - EX. 1002, p. 223

Petitioner Apple - Ex. 1002, p. 224

.“ll llill ES?! ill-3} ‘Ell ‘l-MEH “all- m lllll “ill :5 .lflll 3le H

000479.00082 . .

the normal synchronization, augmented slightly to communicate link health from the receiver to

the transmitter. The receiver maintains a count, MESS_R(W), of the messages received in

synchronization window W. When it receives a synchronization request (SYNC_REQ)

corresponding to the end of window W, the receiver includes counter MESS_R in the resulting

synchronization acknowledgement (SYNC_ACK) sent back to the transmitter. This allows the

transmitter to compare messages sent to messages received in order to asses the health of the

link.

[186] If synchronization is completely lost, weight adjustment function 2305 decreases the

weight value on the affected path to zero. When synchronization is regained, the weight value

for the affected path is gradually increased to its original value. Alternatively, link quality can be

measured by evaluating the length of time required for the receiver to acknowledge a

synchronization request. In one embodiment, separate transmit and receive tables are used for

each transmission path.

[187] When the transmitter receives a SYNC_ACK, the MESS_R is compared with the number

of messages transmitted in a window (MESS_T). When the transmitter receives a SYNC_ACK,

the traffic probabilities will be examined and adjusted if necessary. MESS_R is compared with

the number of messages transmitted in a window (MESS_T). There are two possibilities:

I. If MESS_R is less than a threshold value, THRESH, then the link will be deemed to

be unhealthy. If the transmitter was turned off, the transmitter is turned on and the weight P for

that link will be set to a minimum value MIN. This will keep a trickle of traffic on the link for

monitoring purposes until it recovers. If the transmitter was turned on, the weight P for that link

will be set to:

P’=orx MIN +(1- or)xP (1)

Equation 1 will exponentially damp the traffic weight value to MIN during sustained periods of

degraded service.

2. If MESS_R for a link is greater than or equal to THRESH, the link will be deemed

healthy. If the weight P for that link is greater than or equal to the steady state value S for that

link, then P is lefi unaltered. If the weight P for that link is less than THRESH then P will be set

to:

54

Petitioner Apple - EX. 1002, p. 224

Petitioner Apple - Ex. 1002, p. 225

1231.. Hill E43153 “.331 ‘lLéllnuléll W m m 11-31 I.;:"1$1E$ ll]! 3E}!

000479.00082 . .

P’=l3>< S +(1- B)><P (2)

where B is a parameter such that 0<=B<=1 that determines the damping rate of P.

[188] Equation 2 will increase the traffic weight to S during sustained periods of acceptable

service in a damped exponential fashion.

[189] A detailed example will now be provided with reference to FIG. 24. As shown in FIG.

24, a first computer 2401 communicates with a second computer 2402 through two routers 2403

and 2404. Each router is coupled to the other router through three transmission links. As

described above, these may be physically diverse links or logical links (including virtual private

networks). I

[190] Suppose that a first link L1 can sustain a transmission bandwidth of 100 Mb/s and has a

window size of 32; link L2 can sustain 75 Mb/s and has a window size of 24; and link L3 can

sustain 25 Mb/s and has a window size of 8. The combined links can thus sustain 200Mb/s. The

steady state traffic weights are 0.5 for link L1; 0.375 for link L2, and 0.125 for link L3.

MIN=1Mb/s, THRESH =0.8 MESS_T for each link, 0t=.75 and [i=5 These traffic weights will

remain stable until a link stops for synchronization or reports a number of packets received less

than its THRESH. Consider the following sequence of events:

1. Link L1 receives a SYNC_ACK containing a MESS_R of 24, indicating that only 75%

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link 1 would be below THRESH (0.8). Consequently, link L1 ’s traffic

weight value would be reduced to 0.12825, while link L2’s traffic weight value would

be increased to 0.65812 and link L3’s traffic weight value would be increased to

0.217938.

2. Link L2 and L3 remained healthy and link L1 stopped to synchronize. Then link L1’s

traffic weight value would be set to 0, link L2’s traffic weight value would be set to

0.75, and link L33’s traffic weight value would be set to 0.25. _

3. Link L1 finally received a SYNC_ACK containing a MESS_R of 0 indicating that none

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link L1 would be below THRESH. Link L1’s traffic weight value would be

55

Petitioner Apple - EX. 1002, p. 225

Petitioner Apple - Ex. 1002, p. 226

mmaflgwwwmflnmmmm

000479 .00082 . .

increased to .005, link L2’s traffic weight value would be decreased to 0.74625, and

link L3 ’3 traffic weight value would be decreased to 0.24875.

4. Link L1 received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MESS_T (32) messages transmitted in the last window were successfiilly received.

Link L1 would be above THRESH. Link L1’s traffic weight value would be increased

to 0.2525, while link L2’s traffic weight value would be decreased to 0.560625 and link

L3’s traffic weight value would be decreased to .186875.

5. Link L1 received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MESS_T (32) messages transmitted in the last window were successfiilly received.

Link L1 would be above THRESH. Link L1’s traffic weight value would be increased

to 0.37625; link L2’s traffic weight value would be decreased to 0.4678125, and link

L3’s traffic weight value would be decreased to 0.1559375.

6. Link L1 remains healthy and the traffic probabilities approach their steady state traffic

probabilities.

B. Use of a DNS Proxy to Transparently Create Virtual Private Networks

[191] A second improvement concerns the automatic creation of a virtual private network

(VPN) in response to a domain-name server look-up function.

[192] Conventional Domain Name Servers (DNSs) provide a look-up function that returns the

IP address of a requested computer or host. For example, when a computer user types in the web

name “Yahoo.com,” the user’s web browser transmits a request to a DNS, which converts the

name into a four-part IP address that is returned to the user’s browser and then used by the

browser to contact the destination web site.

[193] This conventional scheme is shown in FIG. 25. A user’s computer 2501 includes a client

application 2504 (for example, a web browser) and an IP protocol stack 2505. When the user

enters the name of a destination host, a request DNS REQ is made (through IP protocol stack

2505) to a DNS 2502 to look up the IP address associated with the name. The DNS returns the

IP address DNS RESP to client application 2504, which is then able to use the IP address to

communicate with the host 2503 through separate transactions such as PAGE REQ and PAGE

RESP.

56

Petitioner Apple - EX. 1002, p. 226

Petitioner Apple - Ex. 1002, p. 227

41.11]! in}! 1‘33?! “Ell “all-“€51 “all" t... ‘llIlJ “‘23? 333111133! it]? 5533

00047900082 .

[194] In the conventional architecture shown in FIG. 25, nefarious listeners on the Internet

could intercept the DNS REQ and DNS RESP packets and thus learn what IP addresses the user

was contacting. For example, if a user wanted to set up a secure communication path with a web

site having the name “Targetcom,” when the user’s browser contacted a DNS to find the IP

address for that web site, the true IP address of that web site would be revealed over the Internet

as part of the DNS inquiry. This would hamper anonymous communications on the Internet.

[195] One conventional scheme that provides secure virtual private networks over the Internet

provides the DNS server with the public keys of the machines that the DNS server has the

addresses for. This allows hosts to retrieve automatically the public keys of a host that the host

is to communicate with so that the host can set up a VPN without having the user enter the public

key of the destination host. One implementation of this stande is presently being developed as

part of the FreeS/WAN project(RFC 2535).

[196] The conventional scheme suffers from certain drawbacks. For example, any user can

perform a DNS request. Moreover, DNS requests resolve to the same value for all users.a

[197] According to certain aspects of the invention, a specialized DNS server traps DNS

requests and, if the request is from a special type of user (e.g., one for which secure

communication services are defined), the server does not return the true IP address of the target

node, but instead automatically sets up a virtual private network between the target node and the

user. The VPN is preferably implemented using the IP address “hopping” features of the basic

invention described above, such that the true identity of the two nodes cannot be determined

even ifpackets during the communication are intercepted. For DNS requests that are determined

to not require secure services (e.g., an unregistered user), the DNS server transparently “passes

through” the request to provide a normal look-up function and return the IP address of the target

web server, provided that the requesting host has permissions to resolve unsecured sites.

Different users who make an identical DNS request could be provided with different results.

[198] FIG. 26 shows a system employing various principles summarized above. A user’s

computer 2601 includes a conventional client (e.g., a web browser) 2605 and an IP protocol

stack 2606 that preferably operates in accordance with an IP hopping function 2607 as outlined

57

Petitioner Apple - EX. 1002, p. 227

Petitioner Apple - Ex. 1002, p. 228

. .111. Ill}: {$1.1 “4]" “Eli W m 11:11 “231 ."ri'si. 317.11 1231 E3?
000479.00082

above. A modified DNS server 2602 includes a conventional DNS server function 2609 and a

DNS proxy 2610. A gatekeeper server 2603 is interposed between the modified DNS server and

a secure target site 2704. An “unsecure” target site 2611 is also accessible via conventional IP

protocols.

[199] According to one embodiment, DNS proxy 2610 intercepts all DNS lookup functions

from client 2605 and determines whether access to a secure site has been requested. If access to

a secure site has been requested (as determined, for example, by a domain name extension, or by

reference to an internal table of such sites), DNS proxy 2610 determines whether the user has

sufficient security privileges to access the site. If so, DNS proxy 2610 transmits a message to

gatekeeper 2603 requesting that a virtual private network be created between user computer 2601

and secure target site 2604. In one embodiment, gatekeeper 2603 creates “hopblocks” to be used

by computer 2601 and secure target site 2604 for secure communication. Then, gatekeeper 2603

communicates these to user computer 2601. Thereafier, DNS proxy 2610 returns to user

computer 2601 the resolved address passed to it by the gatekeeper (this address could be

different from the actual target computer) 2604, preferably using a secure administrative VPN.

The address that is returned need not be the actual address of the destination computer.

[200] Had the user requested lookup of a non-secure web site such as site 2611, DNS proxy

would merely pass through to conventional DNS server 2609 the look-up request, which would

be handled in a conventional manner, returning the IP address of non-secure web site 2611. If

the user had requested lookup of a secure web site but lacked credentials to create such a

connection, DNS proxy 2610 would return a “host unknown” error to the user. In this manner,

different users requesting access to the same DNS name could be provided with different look-up

results.

[201] Gatekeeper 2603 can be implemented on a separate computer (as shown in FIG. 26) or as

a function within modified DNS server 2602. In general, it is anticipated that gatekeeper 2703

facilitates the allocation and exchange of information needed to communicate securely, such as

using “hopped” IP addresses. Secure hosts such as site 2604 are assumed to be equipped with a

secure communication function such as an IP hopping function 2608.

58

Petitioner Apple - Ex. 1002, p. 228

Petitioner Apple - Ex. 1002, p. 229

Ill. illll E? ‘53?» gill—1533M.- in 111131 “Ell "33?: 11:31 [[11 E553

000479.00082 . .

[202] It will be appreciated that the functions of DNS proxy 2610 and DNS server 2609 can be

combined into a single server for convenience. Moreover, although element 2602 is shown as

combining the functions of two servers, the two servers can be made to operate independently.

[203] FIG. 27 shows steps that can be executed by DNS proxy server 2610 to handle requests

for DNS look-up for secure hosts. In step 2701, a DNS look-up request is received for a target

host. In step 2702, a check is made to determine whether access to a secure host was requested.

If not, then in step 2703 the DNS request is passed to conventional DNS server 2609, which

looks up the IP address of the target site and returns it to the user’s application for further

processing.

[204] In step 2702, if access to a secure host was requested, then in step 2704 a further check is

made to determine whether the user is authorized to connect to the secure host. Such a check can

be made with reference to an internally stored list of authorized IP addresses, or can be made by

communicating with gatekeeper 2603 (e.g., over an “administrative” VPN that is secure). It will

be appreciated that different levels of security can also be provided for different categories of

hosts. For example, some sites may be designated as having a certain security level, and the

security level of the user requesting access must match that security level. The user’s security

level can also be determined by transmitting a request message back to the user’s computer

requiring that it prove that it has sufficient privileges.

[205] If the user is not authorized to access the secure site, then a “host unknown” message is

returned (step 2705). If the user has sufficient security privileges, then in step 2706 a secure

VPN is established between the user’s computer and the secure target site. As described above,

this is preferably done by allocating a hopping regime that will be carried out between the user’s

computer and the secure target site, and is preferably performed transparently to the user (i.e., the

user need not be involved in creating the secure link). As described in various embodiments of

this application, any of various fields can be “hopped” (e.g., IP source/destination addresses; a

field in the header; etc.) in order to communicate securely.

[206] Some or all of the security functions can be embedded in gatekeeper 2603, such that it

handles all requests to connect to secure sites. In this embodiment, DNS proxy 2610

59

Petitioner Apple - Ex. 1002, p. 229

Petitioner Apple - Ex. 1002, p. 230

.‘lL {Kiliirl' ‘15; *EllMF‘lEll Ml- ‘iDl "9211311231 [[211in

000479.00082 . .

communicates with gatekeeper 2603 to determine (preferably over a secure administrative VPN)

whether the user has access to a particular web site. Various scenarios for implementing these

features are described by way of example below:

Scenario #1: Client has permission to access target computer, and gatekeeper has a rule

to make a VPN for the client. In this scenario, the client’s DNS request would be received by the

DNS proxy server 2610, which would forward the request to gatekeeper 2603. The gatekeeper

would establish a VPN between the client and the requested target. The gatekeeper would

provide the address of the destination to the DNS proxy, which would then return the resolved

name as a result. The resolved address can be transmitted back to the client in a secure

administrative VPN.

Scenario #2: Client does not have permission to access target computer. In this scenario,

the client’s DNS request would be received by the DNS proxy server 2610, which would forward

the request to gatekeeper 2603. The gatekeeper would reject the request, informing DNS proxy

server 2610 that it was unable to find the target computer. The DNS proxy 2610 would then

return a “host unknown” error message to the client.

Scenario #3: Client has permission to connect using a normal non-VPN link, and the

gatekeeper does not have a rule to set up a VPN for the client to the target site. In this scenario,

the client’s DNS request is received by DNS proxy server 2610, which would check its rules and

determine that no VPN is needed. Gatekeeper 2603 would then inform the DNS proxy server to

forward the request to conventional DNS server 2609, which would resolve the request and

return the result to the DNS proxy server and then back to the client.

Scenario #4: Client does not have permission to establish a normal/non-VPN link, and

the gatekeeper does not have a rule to make a VPN for the client to the target site. In this

scenario, the DNS proxy server would receive the client’s DNS request and forward it to

gatekeeper 2603. Gatekeeper 2603 would determine that no special VPN was needed, but that

the client is not authorized to communicate with non-VPN members. The gatekeeper would

reject the request, causing DNS proxy server 2610 to return an error message to the client.

C. Large Link to Small Link Bandwidth Management

[207] One feature of the basic architecture is the ability to prevent so-called “denial of service”

attacks that can occur if a computer hacker floods a known Internet node with packets, thus

60

Petitioner Apple - Ex. 1002, p. 230

Petitioner Apple - Ex. 1002, p. 231

Jill. fill! 1E“. E31531 “ll—“El?! mil“ 4... 11231131 3341211 £41633:

000479.00082 . .

preventing the node from communicating with other nodes. Because IP addresses or other fields

are “hopped” and packets arriving with invalid addresses are quickly discarded, Internet nodes

are protected against flooding targeted at a single IP address.

[208] In a system in which a computer is coupled through a link having a limited bandwidth

(e.g., an edge router) to a node that can support a much higher-bandwidth link (e.g., an Internet

Service Provider), a potential weakness could be exploited by a determined hacker. Referring to

FIG. 28, suppose that a first host computer 2801 is communicating with a second host computer

2804 using the IP address hopping principles described above. The first host computer is

coupled through an edge router 2802 to an Internet Service Provider (ISP) 2803 through a low

bandwidth link (LOW BW), and is in turn coupled to second host computer 2804 through parts

of the Internet through a high bandwidth link (HIGH BW). In this architecture, the ISP is able to

support a high bandwidth to the internet, but a much lower bandwidth to the edge router 2802.

[209] Suppose that a computer hacker is able to transmit a large quantity of dummy packets

addressed to first host computer 2801 across high bandwidth link HIGH BW. Normally, host

computer 2801 would be able to quickly reject the packets since they would not fall within the

acceptance window permitted by the IP address hopping scheme. However, because the packets

must travel across low bandwidth link LOW BW, the packets overwhelm the lower bandwidth

link before they are received by host computer 2801. Consequently, the link to host computer

2801 is effectively flooded before the packets can be discarded.

[210] According to one inventive improvement, a “link guard” function 2805 is inserted into

the high-bandwidth node (e.g., ISP 2803) that quickly discards packets destined for a low-

bandwidth target node if they are not valid packets. Each packet destined for a low-bandwidth

node is cryptographically authenticated to determine whether it belongs to a VPN. If it is not a

valid VPN packet, the packet is discarded at the high-bandwidth node. If the packet is

authenticated as belonging to a VPN, the packet is passed with high preference. If the packet is a

valid non-VPN packet, it is passed with a lower quality of service (e.g., lower priority).

[211] In one embodiment, the ISP distinguishes between VPN and non-VPN packets using the

protocol of the packet. In the case of IPSEC [rfc 2401], the packets have [P protocols 420 and

61

Petitioner Apple - EX. 1002, p. 231

Petitioner Apple - Ex. 1002, p. 232

.111. 11:11 113"”! 11111134111411- .. 11.211 “3.11 33; 11311131 E513000479.00082 .

421. In the case of the TARP VPN, the packets will have an IP protocol that is not yet defined.

The ISP’s link guard, 2805, maintains a table of valid VPNs which it uses to validate whether

VPN packets are cryptographically valid.

[212] According to one embodiment, packets that do not fall within any hop windows used by

nodes on the low-bandwidth link are rejected, or are sent with a lower quality of service. One

approach for doing this is to provide a copy of the IP hopping tables used by the low-bandwidth

nodes to the high-bandwidth node, such that both the high-bandwidth and low-bandwidth nodes

track hopped packets (e.g., the high-bandwidth node moves its hopping window as valid packets

are received). In such a scenario, the high-bandwidth node discards packets that do not fall

within the hopping window before they are transmitted over the low-bandwidth link. Thus, for

example, ISP 2903 maintains a copy 2910 of the receive table used by host computer 2901.

Incoming packets that do not fall within this receive table are discarded. According to a different

embodiment, link guard 2805 validates each VPN packet using a keyed hashed message

authentication code (HMAC) [rfc 2104]. According to another embodiment, separate VPNs

(using, for example, hopblocks) can be established for communicating between the low-

bandwidth node and the high-bandwidth node (i.e., packets arriving at the high-bandwidth node

are converted into different packets before being transmitted to the low-bandwidth node).

[213] As shown in FIG. 29, for example, suppose that a first host computer 2900 is

communicating with a second host computer 2902 over the Internet, and the path includes a high

bandwidth link HIGH BW to an ISP 2901 and a low bandwidth link LOW BW through an edge

router 2904. In accordance with the basic architecture described above, first host computer 2900

and second host computer 2902 would exchange hopblocks (or a hopblock algorithm) and would

be able to create matching transmit and receive tables 2905, 2906, 2912 and 2913. Then in

accordance with the basic architecture, the two computers would transmit packets having

seemingly random [P source and destination addresses, and each would move a corresponding

hopping window in its receive table as valid packets were received.

[214] Suppose that a nefarious computer hacker 2903 was able to deduce that packets having a

certain range of IP addresses (e.g., addresses 100 to 200 for the sake of simplicity) are being

transmitted to ISP 2901, and that these packets are being forwarded over a low-bandwidth link.

62

Petitioner Apple - Ex. 1002, p. 232

Petitioner Apple - Ex. 1002, p. 233

.1le. ll]! LIE? ‘Eiii ‘9! "4113311141“ ,m 11:31 "ll—Ell fill? “Ill llfll Iii?

000479.00082 . .

Hacker computer 2903 could thus “flood” packets having addresses falling into the range 100 to

200, expecting that they would be forwarded along low bandwidth link LOW BW, thus causing

the low bandwidth link to become overwhelmed. The fast packet reject mechanism in first host

computer 3000 would be of little use in rejecting these packets, since the low bandwidth link was

effectively jammed before the packets could be rejected. In accordance with one aspect of the

improvement, however, VPN link guard 2911 would prevent the attack from impacting the

performance of VPN traffic because the packets would either be rejected as invalid VPN packets

or given a lower quality of service than VPN traffic over the lower bandwidth link. A denial-o f-

service flood attack could, however, still disrupt non-VPN traffic.

[215] According to one embodiment of the improvement, ISP 2901 maintains a separate VPN

with first host computer 2900, and thus translates packets arriving at the ISP into packets having

a different IP header before they are transmitted to host computer 2900. The cryptographic keys

used to authenticate VPN packets at the link guard 2911 and the cryptographic keys used to

encrypt and decrypt the VPN packets at host 2902 and host 2901 can be different, so that link

guard 2911 does not have access to the private host data; it only has the capability to authenticate

those packets.

[216] According to yet a third embodiment, the low-bandwidth node can transmit a special

message to the high-bandwidth node instructing it to shut down all transmissions on a particular

IP address, such that only hopped packets will pass through to the low-bandwidth node. This

embodiment would prevent a hacker from flooding packets using a single IP address. According

to yet a fourth embodiment, the high-bandwidth node can be configured to discard packets

transmitted to the low-bandwidth node if the transmission rate exceeds a certain predetermined

threshold for any given IP address; this would allow hopped packets to go through. In this

respect, link guard 2911 can be used to detect that the rate of packets on a given IP address are

exceeding a threshold rate; further packets addressed to that same IP address would be dropped

or transmitted at a lower priority (e.g., delayed).

D. Traffic Limiter

[217] In a system in which multiple nodes are communicating using “hopping” technology, a

treasonous insider could internally flood the system with packets. In order to prevent this

63

Petitioner Apple - Ex. 1002, p. 233

Petitioner Apple - Ex. 1002, p. 234

. .‘IlL fl 333674 “if ‘13] “it m fl “EYE; IE3! ‘lljil E!‘J

000479.00082

possibility, one inventive improvement involves setting up “contracts” between nodes in the

system, such that a receiver can impose a bandwidth limitation on each packet sender. One

technique for doing this is to delay acceptance of a checkpoint synchronization request from a

sender until a certain time period (e.g., one minute) has elapsed. Each receiver can effectively

control the rate at which its hopping window moves by delaying “SYNC ACK” responses to

“SYNC_REQ” messages.

[218] A simple modification to the checkpoint synchronizer will serve to protect a receiver

from accidental or deliberate overload from an internally treasonous client. This modification is

based on the observation that a receiver will not update its tables until a SYNC_REQ is received

on hopped address CKPT_N. It is a simple matter of deferring the generation of a new CKPT_N

until an appropriate interval after previous checkpoints.

[219] Suppose a receiver wished to restrict reception from a transmitter to 100 packets a

second, and that checkpoint synchronization messages were triggered every 50 packets. A

compliant transmitter would not issue new SYNC_REQ messages more ofien than every 0.5

seconds. The receiver could delay a non-compliant transmitter from synchronizing by delaying

the issuance of CKPT_N for 0.5 second after the last SYNC_REQ was accepted.

[220] In general, if M receivers need to restrict N transmitters issuing new SYNC_REQ

messages after every W messages to sending R messages a second in aggregate, each receiver

could defer issuing a new CKPT_N until MxNxW/R seconds have elapsed since the last

SYNC_REQ has been received and accepted. If the transmitter exceeds this rate between a pair

of checkpoints, it will issue the new checkpoint before the receiver is ready to receive it, and the

SYNC_REQ will be discarded by the receiver. After this, the transmitter will re-issue the

SYNC_REQ every T1 seconds until it receives a SYNC_ACK. The receiver will eventually

update CKPT_N and the SYNC_REQ will be acknowledged. If the transmission rate greatly

exceeds the allowed rate, the transmitter will stop until it is compliant. If the transmitter exceeds

the allowed rate by a little, it will eventually stop after several rounds of delayed synchronization

until it is in compliance. Hacking the transmitter’s code to not shut off only permits the

transmitter to lose the acceptance window. In this case it can recover the window and proceed

only after it is compliant again.

64

Petitioner Apple - Ex. 1002, p. 234

Petitioner Apple - Ex. 1002, p. 235

.Lll. ll]! 1‘ £73": “3‘ ‘mil‘léll "ll m [ill “$111333 {[31 HE‘S

000479.00082 . .

[221] Two practical issues should be considered when implementing the above scheme:

1. The receiver rate should be slightly higher than the permitted rate in order to allow for

statistical fluctuations in traffic arrival times and non-uniform load balancing.

2. Since a transmitter will rightfully continue to transmit for a period after a SYNC_REQ

is transmitted, the algorithm above can artificially reduce the transmitter’s bandwidth. If events

prevent a compliant transmitter from synchronizing for a period (e.g. the network dropping a

SYNC_REQ or a SYNC_ACK) a SYNC_REQ will be accepted later than expected. Afier this,

the transmitter will transmit fewer than expected messages before encountering the next

checkpoint. The new checkpoint will not have been activated and the transmitter will have to

retransmit the SYNC_REQ. This will appear to the receiver as if the transmitter is not

compliant. Therefore, the next checkpoint will be accepted late from the transmitter’s

perspective. This has the effect of reducing the transmitter’s allowed packet rate until the

transmitter transmits at a packet rate below the agreed upon rate for a period of time.

[222] To guard against this, the receiver should keep track of the times that the last C

SYNC_REQS were received and accepted and use the minimum of MxNxW/R seconds after the

last SYNC_REQ has been received and accepted, 2xMxNxW/R seconds afier next to the last

SYNC_REQ has been received and accepted, CxMxNxW/R seconds after (C-l)th to the last

SYNC_REQ has been received, as the time to activate CKPT_N. This prevents the receiver

from inappropriately limiting the transmitter’s packet rate if at least one out of the last C

SYNC_REQs was processed on the first attempt.

[223] FIG. 30 shows a system employing the above-described principles. In FIG. 30, two

computers 3000 and 3001 are assumed to be communicating over a network N in accordance

with the “hopping” principles described above (e.g., hopped IP addresses, discriminator values,

etc.). For the sake of simplicity, computer 3000 will be referred to as the receiving computer and

computer 3001 will be referred to as the transmitting computer, although full duplex operation is

of course contemplated. Moreover, although only a single transmitter is shown, multiple

transmitters can transmit to receiver 3000.

[224] As described above, receiving computer 3000 maintains a receive table 3002 including a

window W that defines valid IP address pairs that will be accepted when appearing in incoming

65

Petitioner Apple - EX. 1002, p. 235

Petitioner Apple - Ex. 1002, p. 236

.11.. 1131;?“ El "1.411111%“ Min .1 113111231531 11:51 1E1] iii”:

000479.00082 . .

data packets. Transmitting computer 3001 maintains a transmit table 3003 from which the next

IP address pairs will be selected when transmitting a packet to receiving computer 3000. (For

the sake of illustration, window W is also illustrated with reference to transmit table 3003). As

transmitting computer moves through its table, it will eventually generate a SYNC_REQ

message as illustrated in function 3010. This is a request to receiver 3000 to synchronize the

receive table 3002, from which transmitter 3001 expects a response in the form of a CKPT_N

(included as part of a SYNC_ACK message). If transmitting computer 3001 transmits more

messages than its allotment, it will prematurely generate the SYNC_REQ message. (If it has

been altered to remove the SYNC_REQ message generation altogether, it will fall out of

synchronization since receiver 3000 will quickly reject packets that fall outside of window W,

and the extra packets generated by transmitter 3001 will be discarded).

[225] In accordance with the improvements described above, receiving computer 3000

performs certain steps when a SYNC_REQ message is received, as illustrated in FIG. 30. In step

3004, receiving computer 3000 receives the SYNC_REQ message. In step 3005, a check is

made to determine whether the request is a duplicate. If so, it is discarded in step 3006. In step

3007, a check is made to determine whether the SYNC_REQ received from transmitter 3001 was

received at a rate that exceeds the allowable rate R (i.e., the period between the time of the last

SYNC_REQ message). The value R can be a constant, or it can be made to fluctuate as desired.

If the rate exceeds R, then in step 3008 the next activation of the next CKPT_N hopping table

entry is delayed by W/R seconds after the last SYNC_REQ has been accepted.

[226] Otherwise, if the rate has not been exceeded, then in step 3109 the next CKPT_N value is

calculated and inserted into the receiver’s hopping table prior to the next SYNC_REQ from the

transmitter 3101. Transmitter 3101 then processes the SYNC_REQ in the normal manner.

E. Sigaling Smchronizer

[227] In a system in which a large number of users communicate with a central node using

secure hopping technology, a large amount of memory must be set aside for hopping tables and

their supporting data structures. For example, if one million subscribers to a web site

occasionally communicate with the web site, the site must maintain one million hopping tables,

thus using up valuable computer resources, even though only a small percentage of the users may

66

Petitioner Apple - EX. 1002, p. 236

Petitioner Apple - Ex. 1002, p. 237

.211. ME? E31": $.71] “ill" 31321 “-31- .1“ till! @131} ['11 1131112?

000479.00082 . .

actually be using the system at any one time. A desirable solution would be a system that

permits a certain maximum number of simultaneous links to be maintained, but which would

“recognize” millions of registered users at any one time. In other words, out of a population of a

million registered users, a few thousand at a time could simultaneously communicate with a

central server, without requiring that the server maintain one million hopping tables of

appreciable size.

[228] One solution is to partition the central node into two nodes: a signaling server that

performs session initiation for user log-on and log-off (and requires only minimally sized tables),

and a transport server that contains larger hopping tables for the users. The signaling server

listens for the millions of known users and performs a fast-packet reject of other (bogus) packets.

When a packet is received from a known user, the signaling server activates a virtual private link

(VPL) between the user and the transport server, where hopping tables are allocated and

maintained. When the user logs onto the signaling server, the user’s computer is provided with

hop tables for communicating with the transport server, thus activating the VPL. The VPLs can

be torn down when they become inactive for a time period, or they can be torn down upon user

log-out. Communication with the signaling server to allow user log-on and log-off can be

accomplished using a specialized version of the checkpoint scheme described above.

[229] FIG. 31 shows a system employing certain of the above-described principles. In FIG. 31,

a signaling server 3101 and a transport server 3102 communicate over a link. Signaling server

3101 contains a large number of small tables 3106 and 3107 that contain enough information to

authenticate a communication request with one or more clients 3103 and 3104. As described in

more detail below, these small tables may advantageously be constructed as a special case of the

synchronizing checkpoint tables described previously. Transport server 3102, which is

preferably a separate computer in communication with signaling server 3101, contains a smaller

number of larger hopping tables 3108, 3109, and 3110 that can be allocated to create a VPN with

one of the client computers.

[230] According to one embodiment, a client that has previously registered with the system

(e.g., via a system administration function, a user registration procedure, or some other method)

transmits a request for information from a computer (e.g., a web site). In one variation, the

67

Petitioner Apple - EX. 1002, p. 237

Petitioner Apple - Ex. 1002, p. 238

. $.11. 11:11 .Ef‘ll “nil-"3E1! “ll" [11 11:31 “7211 33; 131113! E:

request is made using a “hopped” packet, such that signaling server 3101 will quickly reject

000479.00082

invalid packets from unauthorized computers such as hacker computer 3105. An

“administrative” VPN can be established between all of the clients and the signaling server in

order to ensure that a hacker cannot flood signaling server 3101 with bogus packets. Details of

this scheme are provided below.

[231] Signaling server 3101 receives the request 3111 and uses it to determine that client 3103

is a validly registered user. Next, signaling server 3101 isSues a request to transport server 3102

to allocate a hopping table (or hopping algorithm or other regime) for the purpose of creating a

VPN with client 3103. The allocated hopping parameters are returned to signaling server 3101

(path 3113), which then supplies the hopping parameters to client 3103 via path 3114, preferably

in encrypted form.

[232] Thereafter, client 3103 communicates with transport server 3102 using the normal

hopping techniques described above. It will be appreciated that although signaling server 3101

and transport server 3102 are illustrated as being two separate computers, they could of course be

combined into a single computer and their functions performed on the single computer.

Alternatively, it is possible to partition the functions shown in FIG. 31 differently from as shown

without departing from the inventive principles.

[233] One advantage of the above-described architecture is that signaling server 3101 need only

maintain a small amount of information on a large number of potential users, yet it retains the

capability of quickly rejecting packets from unauthorized users such as hacker computer 3105.

Larger data tables needed to perform the hopping and synchronization functions are instead

maintained in a transport server 3102, and a smaller number of these tables are needed since they

are only allocated for “active” links. After a VPN has become inactive for a certain time period

(e.g., one hour), the VPN can be automatically torn down by transport server 3102 or signaling

server 3101.

[234] A more detailed description will now be provided regarding how a special case of the

checkpoint synchronization feature can be used to implement the signaling scheme described

above.

68

Petitioner Apple - EX. 1002, p. 238

Petitioner Apple - Ex. 1002, p. 239

.le.ill'.ll El Hillél “all-’E-Qli'lll' m III-ll @1352 5.315.211 in?!)

000479.00082 . .

[235] The signaling synchronizer may be required to support many (millions) of standing, low

bandwidth connections. It therefore should minimize per-VPL memory usage while providing

the security offered by hopping technology. In order to reduce memory usage in the signaling

server, the data hopping tables can be completely eliminated and data can be carried as part of

the SYNC_REQ message. The table used by the server side (receiver) and client side

(transmitter) is shown schematically as element 3106 in FIG. 31.

[236] The meaning and behaviors of CKPT_N, CKPT_O and CKPT_R remain the same from

the previous description, except that CKPT_N can receive a combined data and SYNC_REQ

message or a SYNC_REQ message without the data.

[237] The protocol is a straightforward extension of the earlier synchronizer. Assume that a

client transmitter is on and the tables are synchronized. The initial tables can be generated “out

of band.” For example, a client can log into a web server to establish an account over the

Internet. The client will receive keys etc encrypted over the Internet. Meanwhile, the server will

set up the signaling VPN on the signaling server.

[238] Assuming that a client application wishes to send a packet to the server on the client’s

standing signaling VPL:

1. The client sends the message marked as a data message on the inner header using the

transmitter’s CKPT_N address. It turns the transmitter off and starts a timer T1 noting

CKPT_O. Messages can be one of three types: DATA, SYNC_REQ and SYNC_ACK.

In the normal algorithm, some potential problems can be prevented by identifying each

message type as part of the encrypted inner header field. In this algorithm, it is important

to distinguish a data packet and a SYNC_REQ in the signaling synchronizer since the

data and the SYNC_REQ come in on the same address.

2. When the server receives a data message on its CKPT_N, it verifies the message and

passes it up the stack. The message can be verified by checking message type and and

other information (i.e user credentials) contained in the inner header It replaces its

CKPT_O with CKPT_N and generates the next CKPT_N. It updates its transmitter side

69

Petitioner Apple - Ex. 1002, p. 239

Petitioner Apple - Ex. 1002, p. 240

311.113! ENS-3331 “41» ‘Eli Ml- n1 fl] $113 lEIil'ilIfi nfl

000479.00082 . .

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

3. When the client side receiver receives a SYNC_ACK on its CKPT_R with a payload

matching its transmitter side CKPT_O and the transmitter is off, the transmitter is turned

on and the receiver side CKPT_R is updated. If the SYNC_ACK’s payload does not

match the transmitter side CKPT_O or the transmitter is on, the SYNC_ACK is simply

discarded.

4. T1 expires: If the transmitter is off and the client’s transmitter side CKPT_O matches the

CKPT_O associated with the timer, it starts timer Tl noting CKPT_O again, and a

SYNC_REQ is sent using the transmitter’s CKPT_O address. Otherwise, no action is

taken.

5. When the server receives a SYNC__REQ on its CKPT_N, it replaces its CKPT_O with

CKPT_N and generates the next CKPT_N. It updates its transmitter side CKPT_R to

correspond to the client’s receiver side CKPT_R and transmits a SYNC_ACK containing

CKPT_O in its payload.

6. When the server receives a SYNC_REQ on its CKPT_O, it updates its transmitter side

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

[239] FIG. 32 shows message flows to highlight the protocol. Reading from top to bottom, the

client sends data to the server using its transmitter side CKPT_N. The client side transmitter is

turned ofl‘ and a retry timer is turned off. The transmitter will not transmit messages as long as

the transmitter is turned off. The client side transmitter then loads CKPT_N into CKPT_O and

updates CKPT_N. This message is successfillly received and a passed up the stack. It also

synchronizes the receiver i.e, the server loads CKPT_N into CKPT_O and generates a new

CKPT_N, it generates a new CKPT_R in the server side transmitter and transmits a SYNC_ACK

containing the server side receiver’s CKPT_O the server. The SYNC_ACK is successfillly

received at the client. The client side receiver’s CKPT_R is updated, the transmitter is turned on

and the retry timer is killed. The client side transmitter is ready to transmit a new data message.

[240] Next, the client sends data to the server using its transmitter side CKPT_N. The client

side transmitter is turned off and a retry timer is turned off. The transmitter will not transmit

70

Petitioner Apple - Ex. 1002, p. 240

Petitioner Apple - Ex. 1002, p. 241

:31. 331E! .

“Eli ill-*ll-"l‘Ell-‘Llln m llle 1E?“ 2233‘ H 11:13 1733

00047900082 .

messages as long as the transmitter is turned off. The client side transmitter then loads CKPT_N

into CKPT_O and updates CKPT_N. This message is lost. The client side timer expires and as a

result a SYNC_REQ is transmitted on the client side transmitter’s CKPT_O (this will keep

happening until the SYNC_ACK has been received at the client). The SYNC_REQ is

successfully received at the server. It synchronizes the receiver i.e, the server loads CKPT_N

into CKPT_O and generates a new CKPT_N, it generates an new CKPT_R in the server side

transmitter and transmits a SYNC_ACK containing the server side receiver’s CKPT_O the

server. The SYNC_ACK is successfully received at the client. The client side receiver’s

CKPT_R is updated, the transmitter is turned off and the retry timer is killed. The client side

transmitter is ready to transmit a new data message.

[241] There are numerous other scenarios that follow this flow. For example, the SYNC_ACK

could be lost. The transmitter would continue to re-send the SYNC_REQ until the receiver

synchronizes and responds.

[242] The above-described procedures allow a client to be authenticated at signaling server

3201 while maintaining the ability of signaling server 3201 to quickly reject invalid packets,

such as might be generated by hacker computer 3205. In various embodiments, the signaling

synchronizer is really a derivative of the synchronizer. It provides the same protection as the

hopping protocol, and it does so for a large number of low bandwidth connections.

71

Petitioner Apple - EX. 1002, p. 241

Petitioner Apple - Ex. 1002, p. 242

511-3121! Hui-iii “illi'ill-uillmil- m [Ell ‘lélliiiilliilil‘lflsifif

000479.00082 . .

CLAIMS

We Claim:

1. A method for establishing an encrypted channel between a client and a target

computer, comprising the steps of:

(i) intercepting a DNS request sent by the client; and

(ii) based on the DNS request, establishing the encrypted channel between the client

and the target.

2. The method of claim 1, wherein step (ii) comprises steps of:

a) determining whether the client is authorized to access the target;

b) when the client is authorized to access the target, initiating the encrypted channel;

and

c) when the client is not authorized to access the target, sending an error message to

the client.

3. The method of claim 2, wherein step b) comprises sending encrypted channel

parameters to the client.

4. The method of claim 1, wherein step (ii) occurs in a communication protocol

independently of an application program.

5. The method of claim 1, wherein step (i) comprises a DNS proxy server

intercepting the DNS request sent by the client.

6. The method of claim 1, wherein step (ii) comprises establishing the encrypted

channel responsive to intercepting a DNS request for a domain name comprising a

predetermined domain name extension.

7. A method for establishing an encrypted channel between a client and a secure

host, comprising the step of automatically creating the encrypted channel upon intercepting a

DNS request for a domain name comprising a predetermined domain name extension.

72

Petitioner Apple - Ex. 1002, p. 242

Petitioner Apple - Ex. 1002, p. 243

(ill. £23! 31333! i3. “'r'éil ill-W231 "Li!" 1.. lfllfilfii it]! 11:]! E3?

000479.00082 . .

8. The method of claim 7, wherein the creating step is performed in a

communication protocol independently of an application program.

9. A method for establishing an encrypted channel between a client and a secure

host, comprising the step of automatically creating the encrypted channel in response to detecting

a request for access to a predetermined IP address.

10. The method of claim 9, wherein the creating step is performed in a

communication protocol independently of an application program.

11. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, performs the steps of:

(i) determining whether the intercepted DNS request corresponds to a secure server;

(ii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS function that returns an IP address of a

nonsecure computer; and

(iii) when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted channel between the client and the secure server.

12. The data processing device of claim 11, wherein step (iii) comprises the steps of:

(a) determining whether the client is authorized to access the secure server; and

(b) when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted channel between the secure server and the

client.

13. The data processing device of claim 12, wherein step (iii) further comprises the

step of:

(c) when the client is not authorized to access the secure server, returning a host

unknown error message to the client.

73

Petitioner Apple - EX. 1002, p. 243

Petitioner Apple - Ex. 1002, p. 244

5.1L 11:31 iii-3! ‘5." “Ell “ll-"Ell ll-ll-- in 11.31%] E}: 1131 313311143000479.00082 .

14. The data processing device of claim 13, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

15. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, when the intercepted DNS request corresponds to a secure server, determines whether

the client is authorized to access the secure server and, if so, automatically initiates an encrypted

channel between the client and the secure server.

16. A computer readable medium storing a domain name server (DNS) proxy module

comprised of computer readable instructions that, when executed, cause a data processing device

to perform the steps of:

(i) intercepting a DNS request sent by a client;

(ii) determining whether the intercepted DNS request corresponds to a secure server;

(iii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS function that returns an IP address of a

nonsecure computer; and

(iv) when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted channel between the client and the secure server.

17. The computer readable medium of claim 16, wherein step (iii) comprises the steps

of:

(a) determining whether the client is authOrized to access the secure server; and

(b) when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted channel between the secure server and the

client.

18. The computer readable medium of claim 17, wherein step (iii) firrther comprises

the step of:

74

Petitioner Apple - Ex. 1002, p. 244

Petitioner Apple - Ex. 1002, p. 245

$11,131 iii?! FIE?! “ill- ‘Lféli 3% m 31:31 W 31131 $11 FE!000479.00082 .

(c) when the client is not authorized to access the secure server, returning a host

unknown error message to the client.

19. The computer readable medium of claim 18, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

20. A computer readable medium comprising computer readable instructions that,

when executed, cause a domain name server (DNS) proxy module to intercept DNS requests sent

by a client and, for each intercepted DNS request, when the intercepted DNS request corresponds

to a secure server, determines whether the client is authorized to access the secure server and, if

so, automatically initiates an encrypted channel between the client and the secure server.

75

Petitioner Apple - EX. 1002, p. 245

Petitioner Apple - Ex. 1002, p. 246

:lLH-EESQ'Efl'ihll-“Eli ”:49 .1. ll]! “:33 I‘ll lEll Ell-El?

000479.00082 .

ABSTRACT

A plurality of computer nodes communicate using seemingly random Internet Protocol

source and destination addresses. Data packets matching criteria defined by a moving window

of valid addresses are accepted for timber processing, while those that do not meet the criteria

are quickly rejected. Improvements to the basic design include (1) a load balancer that

distributes packets across different transmission paths according to transmission path quality; (2)

a DNS proxy server that transparently creates a virtual private network in response to a domain

name inquiry; (3) a large-to-small link bandwidth management feature that prevents denial-of-

service attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by

limiting the rate at which a transmitter can be synchronized with a receiver; and (5) a signaling

synchronizer that allows a large number of nodes to communicate with a central node by

partitioning the communication function between two separate entities.

76

Petitioner Apple - EX. 1002, p. 246

Petitioner Apple - Ex. 1002, p. 247

:fifllfllE“. {577; “ill 1Lill-“Ell Ml— u. Ell“?! 7.531 ll'fiil IKE 11:3 ~

JOINT DECLARATION AND POWER OF ATTORNEY"

FOR PATENTAPPLICATION - '

Altomcy Docket No. 00479.85672

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

D was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with .Title 37,
Code of Federal Regulations, §1.56.

Prior Foreign Applicationls)

We hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-Id) or 365(b) of any foreign
application(s) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least

one country other than the United States of America, listed below and have also identified below any foreign applicationIs)

for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior United States Application(s)

r 3 U.S.C. 119(e) of an United States rovisional an olicationIs) listed below:

D Additional provisional application numbers
are listed on a supplemental priority data
sheet FrO/SB/OZB attached hereto.

I 60/106,261 10/30/98

60/137,704 6/7/99

Page 1 of 4

Petitioner Apple - EX. 1002, p. 247

Petitioner Apple - Ex. 1002, p. 248

inflfiwwgwwmemmma
Attorney Docket No. 00479.85672

We hereby claim the benefit under Title 35, United States Code, £120 of any United States applicationls) listed below
and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States
application in the manner provided by the first paragraph of Title 35, United States Code, §112, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the
filing date of the prior application and the national or PCT international filing date of this application:

 99929999 992999

Power of Attorney

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to
prosecute this application and transact all business in the US. Patent and Trademark Office connected herewith as well

as before any office or agency of a foreign country or any international organization in connection with any foreign
counterpart application claiming priority to this application, including the power to appoint agents and local representatives
in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers being
listed after their names:

Robert Altherr, Reg. No. 31,810,,Donald W. Banner, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,33_5;,,Wi|liam
W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.
Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg; No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.
Medlock, Reg. No. 29,673; William J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19,724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,162; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061 . '

————————_—_—_—_——+

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.

Washington, DC. 20001-4597

9:» . Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on
information and belief are believed to be true; and further that these statements were made with the knowledge that willful
false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such
willful false statements may jeopardize the validity of the applicafion or any patent issuing thereon.

Signature Date
Full Name of

Joint Inventor M UNGER Edmund Colby
Family Name First Given Name Second Given Name

Residence 1101 0 aca Cou Crownsville Ma land 21032

Citizenship—L3“_____—____h__
Post Office

Address 1101 Opaca Courtl Crownsvillel Magland 21032 . __

Page 2 of 4

Petitioner Apple - EX. 1002, p. 248

Petitioner Apple - Ex. 1002, p. 249

:iLlL'Iil 3172? "Eli “Trill “it 91 “-4|-' in 1D}! “93! 3'3? [”11 3E]! E3!

‘ ‘ .
Aflomey Docket No. 00479.85672

Date Signature " .

Full Name of

Joint Inventor SCHMIDT Dou las Charles

Family Name First Given Name Second Given Name

Residence 230 Oak Cougl Severna Park, Magland 21146

Citizenship U.S.
Post Office

Address 230 Oak Court Severna Park Ma land 21146

Signature [M)5 ’ E ’31: .5 Date a! I E Z gé
Full Name of .

Joint Inventor SHORT Roben Dunhaml lll
Family Name First Given Name Second Given Name

Residence 38710 Goose Creek LaneI LeesburgI Virginia 20175

Citizenship U.S.
Post Office

Address 38710 Goose Creek Lanel LeesburgI Virginia 20175

Signature 9%3 gang Date 2 / 141 2 O!I 2
Full Name of

Joint’lnventor LARSON Victor
Family Name First Given Name Second Given Name

Residence 12026 Lisa Marie Court Fairfax Vir inia 22033

Citizenship U.S.m
Post Offic _

Address 12026 Lisa Marie Court. Fairfax. Virginia 22033

Pagcil of 4

Petitioner Apple - EX. 1002, p. 249

Petitioner Apple - Ex. 1002, p. 250

.31. 11211 E33331 “4MB! “ii- 111 ll]! “:31 333 iii-ii If]? r”
Attorney Docket No. 0047935672

Signature Date 2; ltd £500 _

Full Name of

Joint Inventor WILLIAM N Mi hael

~ Family Name First Given Name Second Given Name

Residence 26203 Ocala Circle South Ri in Vir inia 20152

Citizenship US.
Post Office

Address 2 203 ala Circle South Ridin Vir inia 201 2

LAW omcss

BANNER 6. WncOFF, LTD.
IOOI G STREET, N.W.

WASHINGTON, D.C. ZOOOI-4597
(202) 508-9 l 00

Page 4 of 4

Petitioner Apple - EX. 1002, p. 250

Petitioner Apple - Ex. 1002, p. 251

- Ill [31 H ES} u'2?” HWY-.3! Ml" 5.» ‘lfll “El 327' III! M {I333

JOINT DECLARATION AND POWER OF ATTORNEY

FOR PATENT APPLICATION

Attorney Docket No. 00479.85672

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to Our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a

patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICAflONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

U was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37,

Code of Federal Regulations, §1.56.

Prior Foreign Application(s)

We hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or 365(b) of any foreign
applicationls) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least
one country other than the United States of America, listed below and have also identified below any foreign applicationls)
for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior United States Application(s)

We hereb claim the benefit under 35 U.S.C. 119(e) of an United States Irovisional aI Ilication(sl listed below:

E] Additional provisional application numbers
are listed on a supplemental priority data
sheet PTO/SB/OZB attached hereto.

60/ 1 06,26 1 1 0/30/98

60/137,704 6/7/99

Page 1 of 4

Petitioner Apple - EX. 1002, p. 251

Petitioner Apple - Ex. 1002, p. 252

.21L.li.'3iir"§3‘"§§i“§ii Milli-Til 114;. m £3152?“ 33: ill! iEli ii?

We hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below

and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States

application in the manner provided by the first paragraph of Title 35, United States Code, §112, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the

filing date of the prior application and the national or PCT international filing date of this application:

Anomey Docket No, 00479.85672 '

 99929949 192999

Power of Attorney

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to

prosecute this application and transact all business in the US Patent and Trademark Office connected herewith as well

as before any office or agency of a foreign country or any international organization in connection with any foreign

counterpart application claiming priority to this application, including the power to appoint agents and local representatives

in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers being
listed after their names:

Robert Altherr, Reg. No. 31,810, Donald W. Banner, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,335; \Mlliam

W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.

Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg. No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.

Medlock, Reg. No. 29,673; William J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,

Reg. No. 19,724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,162; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061.

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.

Washington, D.C. 20001 -4597
Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on
information and belief are believed to be true; and further that these statements were made with the knowledge that willful

false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such

willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature Date
Full Name of

Joint Inventor MUNGER Edmund Colby

Family Name First Given Name Second Given Name

Residence 11010 aca Court Crownsville Ma land 21032

Citizenship US.
Post Office

Address 1101 Opaca Court, Crownsville, Magland 21032

Page 2 of 4

Petitioner Apple - EX. 1002, p. 252

Petitioner Apple - Ex. 1002, p. 253

Ill. ‘11le E?) E32414! “ii" “23! “ii 1.. AU] 335.33 '3 [Eli ‘lEll El

‘Anmney Docket No. 0047935572

oae_%/_/m_‘_

Signature

Full Name of

Joint Inventor SCHMIDT Dou las Charles
Family Name First Given Name Second Given Name

Residence 230 Oak Cou Severna Park Ma land 21146

Citizenship U.S.
Post Office

Address 230 Oak Court Severna Park Ma land 21146

Signature Date

Full Name of

Joint Inventor SHORT Robert DunhamI lll
Family Name First Given Name Second Given Name

Residence 38710 Goose Creek LaneI Leesburgl Virginia 20175

Citizenship U.S.
Post Office

Address 38710 Goose Creek LaneI LeesburgI Virginia 20175

Signature Date

Full Narne of
Joint Inventor LARSON Victor '

Family Name First Given Name Second Given Name

Residence 12026 Lisa Marie Cougl Fairfax, Virginia 22033

Citizenship U.S.
Post Office

Address 1202§ Lisa Marie Cougl Fairfaxl Virginia 22033

Page 3 of 4

Petitioner Apple - EX. 1002, p. 253

Petitioner Apple - Ex. 1002, p. 254

:iL E31553? €3.73} "~31! “iii-“LEM Ml— m lll'll “Ell 33? 31le 113i E?!

Attorney Docket No: 00479.85672

Signature_.____________.____________ Date

Full Name of

Joint Inventor WILLIAMSON - Michael

. Family Name First Given Name Second Given Name

Residence 26203 Ocala Circle South Ridin Vir inia 20152

Citizenship U.S.
Post Office

Address 26203 Ocala Circle South Ridin Vir inia 201 2

LAW OFFICES

BANNER 6. Wn'corr, LTD.
IOOI G STREET. N.W.

WASHINGTON, D.C. ZOOOI-4597
(202) 508-9 | 00

Page 4 of 4

Petitioner Apple - EX. 1002, p. 254

Petitioner Apple - Ex. 1002, p. 255

4—13—4000 oluura'n . '\\—u- w~-~._v._.._..._.. .m

02/15/00 14:21 FAX I

- JOINT DECLARATION AND POWER OF ATTORNEY
son PATENT APPLICATION

.uw.y:~~_—

LIIL 11:11 113339-11 “311 “ii-q! “-11 m ‘Ifli! fififiiifllfl 5323

mDuh! No» 0067913612

Ourroaldoncos. mammmmammmmmmwmm

wu boliovo we are the original, first and joint inmtors of the subject matter which is cloimod and for which a
pawn is caught on the invention entitled:

IMPROVEMENTS TO AN AGlLE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURE!) SYSTEM AVAILABILITY

tho specification of which
I is attached hereto.

0 was find on as Application Sotiul Numbw and was amendod on (if apprronbie).

Wohonbysmathfimhwmkwedwmflnmofmemmspecificafim holding
the claims, as amended by any amendment roforrod to above.

we acknowlodgo rho duty to disclose information which is mourn! to immobility in accordance with Title 37.
Code o1 Fodoml Regulations. £1.56.

Prior Foreign AppliCotloMs)

We hereby claim foroign priority benefits under True 35, United Sims Code, 51 1 9(aHd) or 385th) of any foreign
appucafionts) for patent or invomor's cen‘fiom. or 365(9) of any PCTWstagnation which dammed at last
one country other than (in W Status of America. listed bdow and MW at” idnfltiflod blow any foreign application!”
for patent or inventors con-11m hating a fling drno lama-mt of the app! '

 tW‘WJSSF”ww”rmxswtm ,,a. ‘ ‘ - . Wk}? ."‘3 gl‘”'?"”'1““§37~".1"
33.,n“y? ‘4»)..roIr. («:1 3.5:.“

\4

L 0 Additional provisional application numbers

' 1;.are Iiswd on a mploniumi priority data
Willa! . " \ ~ A .

\ y I ‘

60137.70!

hath!"

Petitioner Apple - EX. 1002, p. 255

Petitioner Apple - Ex. 1002, p. 256

2" I b-‘ZUU J 1 (JUVIVI I— nui‘l on J. p_‘.: I |_r\|_1.rvu. v n

Anew- .

lug/Uigub—o

.211. 11:11 13111; 1331 111-1111111311 .. 11211311311131 11:11 131' ‘
mandamus. 0047935572

We homby claimthe Wonder moss, ma States Code. 5120 01‘ any W States would lined below
and. insofar as the wblect manor of each of the clam of this ooplicafion is not disclosed in the prior United States
application in the manner provided byflnfustpumphol Title 35. United States Code. 5112. We acknowledge the duty
to diodose material information as defined in Title 37. Code of Federal Regulations. 51 -55 Which occurred between the
filing date of tho prior”anand the national or PCT Munitions! filing date of this application:

woman. this application and transact all business in tho U.S. Pam and Trademark Office connected herewith as well
as before any office or agency of a foreign country or any international Mention In connection with any foreign
comm application claiming priority to this apploafion. Woo the power to appoint acorns on! load representatives
in connection with such foreign evaluations. the following my: oi Barrier & Witwfl. tlwir mo'stmion mmbors being
iistodaful’tinlrnurrw:

Rom Althea, Reg. No. 31.810, Donald W. m. M‘ No. 17,037: Edward F. MeKie, Jr.v M No. 17.335; William
W. Becki“. Flog. No. 18.262; Dole H. Hoscholt. Reg. No. 19.090; Joaoph M. Paloma, Rog. No. 28,175; Jump: A.
Niogowski. Reg. No. 28.331; W M- Shanon. M. No. 29.864; Thomas L. Peterson, Reg. No. 30.989; Nina L.
Medbck. Roe. No. 29.673; mm J. Fish“. Bea. No. 32.133; Thomas H. Jackson. Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19,124; Susan A. Wolf“. Reg. No. 83.568; Danie! E. Fisher, Reg. No. 84.162; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wriom. Reg. No. 38.081 .

All corrosporidonco end tow commioofions mid be warm to:

Banner & WW. Lid.
Eleventh Floor

“IN G smut. N.W.

Wodimton.D.C. 20001-4597
Tel. No. (201) 508-9100

Wahaebydociorodmalmmmmadohoninolourownmwlodseoremondthatdlmmmemsmodeon
irdornufionardboliofarobofiqvodwbowo;WWwMMmeMWRhu-kmwiwsomflwflm
Msommnumdflwfikooonudompuridnflebyfineuimofisomumwbomm 1805.0. 1001 andtharoh
willful tam mmmviooparflzoflunfldflyoiflnappfiuflonormy potent Winona-eon.

 Signature pm /.5' /‘F€ 200 0
Full Name of ,

J05"! mmwf___M§§5___.___£gmm___—_£9im————-——
Family Name First Given Name Socorro Given Name

Roadsnco 1191 QM m3. £93qu1!; 54mm 21m

DMD 12.; __ .. ____________________——————-—-—-—-—-——_
Post Office

Petitioner Apple - EX. 1002, p. 256

Petitioner Apple - Ex. 1002, p. 257

L—ID—‘LUU J-I—v—u 1': n 1“.” . ‘- .

02/15/00 {mg m - . , 15131-5525 tam-tramp m.zr:.u.5,mgsfiuir;uaiaz

mmmm0040935672

Signature Date
Fun Name of
Joint lnvontor_____ DT . s 4Family Nam- fim Gwen Name Second Given Name

Sev M 1 1
widens 23

“WWW
Post Offioo
AddmuW

Full Name of ‘
JointW'WFits! GMn Nam Second Given Name

Family Name

mg¢.mW

Petitioner Apple - EX. 1002, p. 257

Petitioner Apple - Ex. 1002, p. 258

2" I ’3’wa .5 2 DUFF/I r' KUIVI OH I. p_~:> a arm. 1. Nu. VH I no I o I 90‘“.

 ‘ 3!. IE}! xii-31 ”EH-EM M— m L @333“ if]! ET

_ 02/45/00 14:23 FAX r.___
mmmmmm

um mew

BMNER 8. Viacom LTD-
IOOI G W. NM!-

WASHINGTON. o.c. zoom-4597
(20:) soc-9| oo

Petitioner Apple - EX. 1002', p. 258

Petitioner Apple - Ex. 1002, p. 259

O 0

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE? '
United States Patent urld Trudnmurli offing.Addrcu: COMMISSIONER FOR PATENTSR0. Box [450

Alt-mum Vuginin 21313-1450www.m-plulguv

llll||||||||||||||l|||||l|||l|||||ll||||||l|||lll|||Illll CONFIRMATION N0. 5257
Bib Data Sheet

FILING OR 371(c)

35““ NUMBER DATE GROUP ART UNIT
10/259,494 09/30/2002 2143

RULE

ATTORNEY

DOCKET NO.

000479.00082

‘ PPLICANTS

Edmund Colby Munger, Crownsville, MD;

Robert Dunham Short |||, Leesburg, VA;
Victor Larson, Fairfax, VA;

Michael VIfilliamson, South Riding, VA;

* CONTINUING DATA iiiiii*itiiitiiitiiitiiii

This application is a DIV of 09/504,783 02/15/2000 PAT 6,502,135 YIO '
which is a CIP of 09/429,643 10/29/1999
which claims benefit of 60/106,261 10/30/1998
and claims benefit of 60/137,704 06/07/1999

* FOREIGN APPLICATIONS *iiifliiiiiiiiiiiiiii

IF REQUIRED, FOREIGN FILING LICENSE GRANTED
" 10/31/2002

STATE OR SHEETS INDEPENDEN
CLAIMS

6

CI All Fees

CI 1.16 Fees (Filing)

FILING FEE FEES: Authority has been given in Paper D 1.17 Fees (Processing Ext. of
RECEIVED No. to charge/credit DEPOSIT ACCOUNT time)

for followmgi CI 1.18 Fees (issue)

Petitioner Apple - EX. 1002, p. 259

Petitioner Apple - Ex. 1002, p. 260

PATENT APPLICATION SERIAL NO.

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

10/02/2002 GGEBREBI 00000072 190733 10259494

01 FC:101 740.00 CH
02 FC:102 252.00 CH

PTO-1556

(5/87)

'U.S. Government Printing Office: 2002 — 489-267/69033 Petitioner Apple _ EX. 1002’ p . 260

Petitioner Apple - Ex. 1002, p. 261

p. 261

9

L
315-?

B

.. PetitioneC .lFm'cEJX' 1002

[3211‘

Petitioner Apple - Ex. 1002, p. 262

94"I“!!!

i

s...‘.'PTO4"HI

US5"Hill!
2m 09/30/92

 PATENT APPLICAT

Hllfllllflllll "1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

«3/
Group Art Unit: 2153

In re Application of

Edmond Colby Munger et al.

Serial No.: TBA

DIV of 09/504,783 Examiner: TBA

Filed: September 30, 2002 Atty. Docket No.: 000479.00082

For: IMPROVEMENTS TO AN AGILE

NETWORK PROTOCOL FOR SECURE

COMMUNICATIONS WITH ASSURED

SYSTEM AVAILABILITY

VVVVVVVVVVVVV
Honorable Assistant Commissioner for Patents

Washington, DC. 20231

Sir:

Pursuant to 37 CPR. 1.56, the attention of the Patent and Trademark Office is hereby

directed to the reference(s) listed on the attached PTO—1449. A copy of each cited prior art

reference was provided or cited in the prior application serial number 09/504,783 in

accordance with 37 CPR. 1.98(d). It is respectfully requested that the information be

expressly considered during the prosecution of this application, and that the reference(s) be

made of record therein and appear among the "References Cited" on any patent to issue

therefrom.

Petitioner Apple - EX. 1002, p. 262

Petitioner Apple - Ex. 1002, p. 263

Applicant does not waive any right to take appropriate action to establish patentability

over the listed documents should they be applied as a reference against the claims of the present

application.

The accompanying Information Disclosure Statement is being filed within three months

of the US. filing date OR before the mailing date of a first Office Action on the merits. No

certification or fee is required.

Respectfully submitted,

BANNER & WITCOFF, LTD.

By: Qw— Di?—
Ross A. Dannenberg

Registration No. 49,024

1001 G Street, NW.

Eleventh Floor

Washington, DC. 20001-4597

(202) 508—9100

Dated: September 30, 2002

Petitioner Apple - EX. 1002, p. 263

Petitioner Apple - Ex. 1002, p. 264

§_

I>

Application Data Sheet

Application Information

Application number::

Filing Date::

Application Type::

Subject Matter::

Suggested classification:

Suggested Group Art Unit::

CD-ROM or CD-R?::

Number of CD disksz:

Number of copies of CDs::

Sequence submission?::

Computer Readable Form (CRF)?::

Number of copies of CRF::

Title::

Attorney Docket Number:

Request for Early Publication?::

Request for Non-Publication?::

Suggested Drawing Figure:

Total Drawing Sheetsz:

Small Entity?::

Latin name::

Variety denomination namezz

Petition included?::

Petition Type::

Licensed US Govt. Agency:

Contract or Grant Numbers:

Regular

Utility

None

ill. iL'Ill ii“ {33: “Eli ILII-iiiliii MI" in ‘IIZil El ‘13:}? Hill III}! E?!

.‘

IMPROVEMENTS TO AN AGILE NETWORK

PROTOCOL FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

000479.00082

NO

NO

35

NO

NO

1 Initial 09/30/02

Petitioner Apple - EX. 1002, p. 264

Petitioner Apple - Ex. 1002, p. 265

Secrecy Order in Parent App|.?::

Applicant Information

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name:

Middle Name:

Family Name:

Name Suffix:

City of Residence:

State or Province of Residence:

Country of Residence:

Street of mailing address:

City of mailing address:

State or Province of mailing address:

Country of mailing address:

Postal or Zip Code of mailing address:

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name:

Middle Name:

Family Name:

Name Suffix:

City of Residence:

State or Province of Residence:

Country of Residence:

Street of mailing address:

Jill/illi‘HH ‘Lii “4131331 “ii" m lilil “El 35? iEii'liLii F1?

NO

Inventor

USA

Full Capacity

Edward

Colby

Munger

Crownsville

MD

USA

1101 Opaca Court

Crownsville

MD

USA

21032

Inventor

USA

Full Capacity

Douglas

Charles

Schmidt

Severna Park

MD

USA

230 Oak Court

2 Initial 09/30/02

Petitioner Apple - EX. 1002, p. 265

Petitioner Apple - Ex. 1002, p. 266

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Applicant Authority Type::

Primary Citizenship Country::

Status::

Given Name::

Middle Name::

Family Name::

_ Name Suffixz:

City of Residence::

State or Province of Residence::

Country of Residence::

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Applicant Authority Types:

Primary Citizenship Country::

Status:

Given Name::

Middle Name::

Family Name::

Name Suffixzz

City of Residence::

State or Province of Residence::

lenlLilIi‘fi’lEfi [EEll‘lieli-lfélllliéiiv in [Lil ‘EiiEiiilLllliIil 5333

Serverna Park

MD

USA

21146

lnventor

USA

Full Capacity

Robert

Dunham

Shon

|l|

Leesburg

VA

USA

38710 Goose Creek Lane

Leesburg

VA

USA

20175

Inventor

USA

Full Capacity

Victor

Larson

Fairfax

VA

3 Initial 09/30/02

Petitioner Apple - EX. 1002, p. 266

Petitioner Apple - Ex. 1002, p. 267

Country of Residence:

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name:

Middle Name:

Family Name:

Name Suffix:

City of Residence:

State or Province of Residence:

Country of Residence:

. Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Correspondence Information

Correspondence Customer Number:

Representative Information

Representative Customer Number:

USA

ill '32le it??? E3} "Ell “all “3'31 “-3: m llle 3ill :33 3|]le ill}! iii?

12026 Lisa Marie Court

Fairfax

VA

USA

22033

Inventor

USA

Full Capacity

Michael

Williamson

South Riding

VA

USA

26203 Ocala Circle

South Riding

VA

USA

20152

22907

22907

4 Initial 09/30/02

Petitioner Apple - EX. 1002, p. 267

Petitioner Apple - Ex. 1002, p. 268

.1. 1D] '3}? 1‘5: 11":Pll ilk/1111511 “-llu .n. 21112113531 '23.??? Kill 1113! E???

O 0

Domestic Priority Information

Application: Continuity Type: Parent Application: Parent Filing Date:

This Application Division of 09/504,783 02/15/00

A Iication number: Filin- Date: Priorit Claimed:

Assignee Information

Assignee name: Science Applications International Corporation

Street of mailing address: 10260 Campus Point Drive

City of mailing address: San Diego

State or Province of mailing address: CA

Country of mailing address: USA

Postal or Zip Code of mailing address: 92121

5 Initial 09/30/02

Petitioner Apple - EX. 1002, p. 268

Petitioner Apple - Ex. 1002, p. 269

9 ——:;;;;:;:;::;:: llllllllllllllllllllllllIllllllllIlllllllllllllllllllllllllllllllll
Office européen des brevets (11) EP 0 838 930 A2 ' k

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: (51) mas: H04L 29/06
29.04.1999 Bulletin1998/18

(21) Application number: 971 18556.6

(22) Date of filing: 24.10.1997

(84) Designated Contracting States:
AT BE CH DE DK ES Fl FR GB GR IE IT LI LU MC

(72) Inventors:
- Alden, Kenneth F.

NL PT SE Boylston, Massachusetts 01 505 (US)
‘ Designated Extension States: ~ Lichtenberg, Mitchell P.
AL LT LV RO SI Sunnyvale, CA 94087 (US)

- Wobber, Edward P.

(30) Priority: 25-10-1996 US 738155 Menlo Park, California 94025 (US)

(71) Applicant:
DIGITAL EQUIPMENT CORPORATION

Maynard, Massachusetts 01754 (US)

(74) Representative: Betten 81 Resch
Reichenbachstrasse 19

80469 Mfinchen (DE)

(54) Pseudo network adapter for frame «rapture, encapsulation and encryption

(57) A new pseudo network adapter provides an
interface for capturing packets from a local communica— 25‘

tions protocol stack for transmission on the virtual pri-
vate network, and includes a Dynamic Host
Configuration Protocol (DHCP) server emulator. and an
Address Resolution Protocol (ARP) server emulator.
The new system indicates to the local communications

protocol stack that nodes on a remote private network
are reachable through a gateway that is in turn reacha-

ble through the pseudo network adapter. A transmit
path in the system processes data packets from the
local communications protocol stack for transmission

through the pseudo network adapter. An encryption

ewmwmfion
engine encapsulates the encrypted data packets into
tunnel data frames. The network adapter further
includes an intertace into a transport layer of the local
communications protocol stack for capturing received
data packets from the remote server node. and a

receive path for processing received data packets cap-
tured from the transport layer of the local communica-

tions protocol stack. The receive path includes a

decapsulation engine, and a decryption engine, and
passes the decrypted. decapsulated data packets back

to the local communications protocol stack for delivery
to a user.

OTHER

OPERATING SYSTEM
FUNCTIONS

270
ARP SERVER EMULATOR

DHCP SERVER EMULATI '
272

DECAPSULATION 288

DECRYF'TDON
2N

 PHVSICAL NETWORK ADAPTERSDRIVER

FIG. 15

EP0838930A2

Primed by Xerox (UK) Business Services2.16.1!34

ansoocu): <EP_0838950A2_I_> Petitioner Apple - EX. 1002, p 269

Petitioner Apple - Ex. 1002, p. 270

1 EP0838930A2 2

Description

FIELD OF THE INVENTION

The invention relates generally to establishing
secure virtual private networks. The invention relates
specifically to a pseudo network adapter for capturing,
encapsulating and encrypting messages or frames.

BACKGROUND

In data communications it is often required that
secure communications be provided between users of
network stations (also referred to as "network nodes") at
different physical locations. Secure communications
must potentially extend over public networks as well as

through secure private networks. Secure private net-
works are protected by "firewalls", which separate the
private network from a public network. Firewalls ordinar-
ily provide some combination of packet filtering, circuit
gateway. and application gateway technology, insulating
the private network from unwanted communications
with the public network.

One approach to providing secure communications
is to form a virtual private network In a virtual private
network. secure communications are provided by

encapsulating and encrypting messages. Encapsulated
messaging in general is referred to as "tunneling". Tun-
nels using encryption may provide protected communi-
cations between users separated by a public network,
or among a subset of users of a private network.

Encryption may for example be performed using an
encryption algorithm using one or more encryption
"keys". When an encryption key is used, the value of the

key determines how the data is encrypted and
decrypted. When a public-key encryption system is

used, a key pair is associated with each communicating
entity. The key pair consists of an encryption key and a
decryption key. The two keys are formed such that it is

unleasible to generate one key from the other. Each

entity makes its encryption key public, while keeping its
decryption key secret. When sending a message to
node A. for example, the transmitting entity uses the
public key of node A to encrypt the message, and then
the message can only be decrypted by node A using
node A's private key.

In a symmetric key encryption system a single key
is used as the basis for both encryption and decryption.

An encryption key in a symmetric key encryption system
is sometimes referred to as a "shared“ key. For exam-
ple, a pair of communicating nodes A and 8 could com-
municate securely as follows: a first shared key is used
to encrypt data sent from node A to node 8, while a sec-

ond shared key is to be used to encrypt data sent from

node B to node A. In such a system. the two shared
keys must be known by both node A and node B. More

examples of encryption algorithms and keyed encryp-
tion are disclosed in many textbooks, for example

BNSDOCID: <EP._OB>38930A2_I_>

10

15

20

25

30

35

45

50

55

"Applied Cryptography - Protocols, Algorithms, and
Source Code in C“, by Bruce Schneier, published by
John Wiley and Sons, New York, New York, copyright
1994.

Information regarding what encryption key or keys

are to be used, and how they are to be used to encrypt
data for a given secure communications session is
referred to as "key exchange material". Key exchange
material may for example determine what keys are used
and a time duration for which each key is valid. Key
exchange material for a pair of communicating stations
must be known by both stations before encrypted data
can be exchanged in a secure communications session. ‘ -
How key exchange material is made known to the com-
municating stations for a given secure communications
session is referred to as "session key establishment".

A tunnel may be implemented using a virtual or
"pseudo" network adapter that appears to the communi-
cations protocol stack as a physical device and which
provides a virtual private network A pseudo network

adapter must have the capability to receive packets
from the communications protocol stack, and to pass
received packets back through the protocol stack either
to a user or to be transmitted.

A tunnel endpoint is the point at which any encryp—

tion/decryption and encapsulation/decapsulation pro-
vided by a tunnel is performed. In existing systems. the

tunnel end points are pre-determined network layer

addresses. The source network layer address in a
received message is used to determine the "creden-
tials" of an entity requesting establishment of a tunnel
connection. For example. a tunnel server uses the

source network layer address to determine whether a
requested tunnel connection is authorized. The source
network layer address is also used to determine which
cryptographic key or keys to use to decrypt received
messages.

Existing tunneling technology is typically performed
by encapsulating encrypted network layer packets (also
referred to as "frames") at the network layer. Such sys-
tems provide "network layer within network layer"

encapsulation of encrypted messages. Tunnels in exist-
ing systems are typically between firewall nodes which
have statically allocated IP addresses. In such existing
systems. the statically allocated IP address of the fire-
wall is the address of a tunnel end point within the fire-

wall. Existing systems fail to provide a tunnel which can
perform authorization based for an entity Which must
dynamically allocate its network layer address. This is
especially problematic for a user wishing to establish a
tunnel in a mobile computing environment, and who
requests a dynamically allocated IP address from an
Internet Service Provider (ISP).

Because existing virtual private networks are based
on network layer within network layer encapsulation,

they are generally only capable of providing connection-
Iess datagram type services Because datagram type

services do not guarantee delivery of packets. existing

Petitioner Apple - EX. 1002, p. 270

Petitioner Apple - Ex. 1002, p. 271

3 EP0838930A2 4

tunnels can only easily employ encryption methods over

the data contained within each transmitted packet.
Encryption based on the contents of multiple packets is

desirable, such as cipher block chaining or stream
ciphering over multiple packets. For example, encrypted
data would advantageously be formed based not only

on the contents ol the presem packet data being
encrypted, but also based on some attribute of the con-

nection or session history between the communicating
stations. Examples of encryption algorithms and keyed
encryption are disclosed in many textbooks, for exam-

ple "Applied Cryptography - Protocols, Algorithms, and

Source Code in C", by Bruce Schneier, published by
John Vifiley and Sons, New York, New York, copyright
1994.

Thus there is required a new pseudo network
adapter providing a virtual private network having a
dynamically determined end point to support a user in a
mobile computing environment. The new pseudo net-

work adapter should appear to the communications pro-
tocol stack of the node as an interface to an actual

physical device. The new pseudo network adapter
should support guaranteed, in-order delivery of frames
over a tunnel to conveniently support cipher block
chaining mode or stream cipher encryption over multi-
ple packets.

SUMMARY QE [HE INVENTIQN

A new pseudo network adapter is disclosed provid-
ing a virtual private network The new system includes
an interface for capturing packets from a local commu-
nications protocol stack for transmission on the virtual

private network The interface appears to the local com-

munications stack as a network adapter device driver
for a network adapter.

The invention, in its broad form, includes a pseudo
network adapter as recited in claim 1, pr0viding a virtual
network and a method therefor as recited in claim 9.

The system as described hereinafter further

includes a Dynamic Host Configuration Protocol
(DHCP) server emulator, and an Address Resolution

Protocol (ARP) server emulator. The new system indi-
cates to the local communications protocol stack that
nodes on a remote private network are reachable

through a gateway that is in turn reachable through the
pseudo network adapter. The new pseudo network

adapter includes a transmit path for processing data
packets from the local communicatiors protocol stack

for transmission through the pseudo network adapter.
The transmit path includes an encryption engine for
encrypting the data packets and an encapsulation
engine for encapsulating the encrypted data packets

into tunnel data frames. The pseudo network adapter
passes the tunnel data frames back to the local commu-

nications protocol stack for transmission to a physical
network adapter on a remote server node.

Preferably, as described hereinafter, the pseudo

BNSDOCID: <EP_0838£BOA2_I_>

10

15

20

25

30

35

40

45

50

55

network adapter includes a digest value in a digesttield
in each of the tunnel data frames. A keyed hash function

is a hash function which takes data and a shared cryp-
tographic key as inputs, and outputs a digital signature
referred to as a digest. The value of the digest field is
equal to an output of a keyed hash function applied to
data consisting of the data packet encapsulated within
the tunnel data frame concatenated with a coumer

value equal to a total number of tunnel data frames pre-
viously transmitted to the remote server node. In

another aspect of the system, the pseudo network
adapter processes an Ethernet header in each one of

the captured data packets, including removing the
Ethernet header.

The new pseudo network adapter further includes
an interface into a transport layer of the local communi-

cations protocol stack for capturing received data pack-
ets from the remote server node, and a receive path for
processing received data packets captured from the
transport layer of the local communications protocol
stack. The receive path includes a decapsulation
engine, and a decryption engine, and passes the
decrypted, decapsulated data packets back to the local

communications protocol stack for delivery to a user.
Thus there is disclosed a new pseudo network

adapter providing a virtual private network having
dynamically determined end points to support users in a
mobile computing environment. The new pseudo net-

work adapter provides a system for capturing a fully
formed frame prior to transmission. The new pseudo
network adapter appears to the communications proto-
col stack of the station as an interface to an actual phys-
ical device. The new pseudo network adapter further
includes encryption capabilities to conveniently provide
secure communications between tunnel end points

using stream mode encryption or cipher block chaining
over multiple packets.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding of the invention may
be had from the following description of a preferred
embodiment, given by way of example and to be under-
stood in conjunction with the accompanying drawing in
which: '

0 Fig. 1 is a block diagram showing the Open Sys—
tems lnterconnection (OSl) reference model;

9 Fig. 2 is a block diagram showing the TCP/lP inter-
net protocol suite:

0 Fig. 3 is a block diagram showing an examplary
embodiment of a tunnel connection across a public
network between two tunnel servers;

0 Fig. 4 is a flow chart sh0wing an examplary errbod-

iment of steps performed to establish a tunnel con~

Petitioner Apple - EX. 1002, p. 271

Petitioner Apple - Ex. 1002, p. 272

5 EPO838 930A2 5

necfion;

Fig. 5 is a flow chart showing an examplary embod-

iment of steps performed to perform session key
management for a tunnel connection;

Fig. 6 is a block diagram showing an examplary
embodiment of a relay frame;

Fig. 7 is a block diagram showing an examplary
embodiment of a connection request frame;

Fig. 8 is a block diagram showing an examplary
embodiment of a connection response frame;

Fig. 9 is a block diagram showing an examplary
embodiment of a data frame;

Fig. 10 is a block diagram showing an examplary
embodiment of a close connection frame:

Fig. 11 is a state diagram showing an examplary
embodiment of a state machine forming a tunnel
connection in a network node initiating a tunnel
connection;

Fig. 12 is a state diagram showing an examplary
embodiment of a state machine forming a tunnel
connection in a server computer;

Fig. 13 is a state diagram showing an examplary
embodiment of a state machine forming a tunnel
connection in a relay node;

Fig. 14 is a block diagram showing an examplary
embodiment of a tunnel connection between a di-

ent computer (tunnel client) and a server computer
(tunnel server);

Fig. 15 is a block diagram showing an examplary
embodiment of a pseudo network adapter;

Fig. 16 is a block diagram showing an examplary
embodiment of a pseudo network adapter;

Fig. 17 is a flow chart showing steps performed by
an examplary embodiment of a pseudo network
adapter during packet transmission;

Fig. 18 is a flow chart showing steps performed by
an examplary embodiment of a pseudo network
adapter during packet receipt;

Fig. 19 is a data flow diagram showing data flow in

an examplary embodiment of a pseudo network
adapter during packet transmission;

Fig. 20 is a data flow diagram showing data flow in

BNSDOCID: <EP___0636%0A2_|_>

10

15

20

25

30

35

4o

50

55

an examplary embodiment of a pseudo network
adapter during packet receipt;

0 Fig. 21 is a diagram showing the movement of

encrypted and unencrypted data in an examplary
embodiment of a system including a pseudo net-
work adapter;

0 Fig. 22 is a diagram showing the movement of

encrypted and unencrypted data in an examplary
embodiment of a system including a pseudo net-
work adapter; and

0 Fig. 23 is a flow chart showing steps initialization of
an examplary embodiment of a system including a

pseudo network adapter.

DETAILED DESCRIPTION OF THE PREFERRED

W

Now with reference to Fig. 1 there is described for

purposes of explanation, communications based on the
Open Systems Interconnection (OSI) reference model.
In Fig. 1 there is shown communications 12 between a

first protocol stack 10 and a second protocol stack 14.
The first protocol stack 10 and second protocol stack 14
are implementations of the seven protocol layers (Appli-

cation layer. Presentation layer. Session layer, Transport
layer, Network layer. Data link layer, and Physical layer)
of the OSI reference model. A protocol stack implemen-

tation is typically in some combination of software and
hardware. Descriptions of the specific services provided
by each protocol layer in the OSI reference model are

found in many text books, for example "Computer Net-
works", Second Edition, by Andrew S. Tannenbaum.

published by Prentice-Hall, Englewood Cliffs, New Jer-
sey, copyright 1988.

As shown in Fig. 1, data 11 to be transmitted from a
sending process 13 to a receiving process 15 is passed
down through the protocol stack 10 of the sending proc-
ess to the physical layer 9 for transmission on the data
path 7 to the receiving process 15. As the data 11 is
passed down through the protocol stack 10, each proto-

. col layer prepends a header (and possibly also appends
a trailer) portion to convey information used by that pro-
tocol layer. For example, the data link layer 16 of the
sending process wraps the information received from
the network layer 17 in a data link header 18 and a data

link layer trailer 20 before the message is passed to the
physical layer 9 for transmission on the actual transmis-
sion path 7.

Fig. 2 shows the TCP/lP protocol stack. Some pro-
tocol layers in the TCP/IP protocol stack correspond
with layers in the OSI protocol stack shown in Fig. 1.
The detailed services and header formats of each layer

in the TCP/IP protocol stack are described in many
texts, for example "lnternetworking with TCP/lP. Vol. 1:

Principles, Protocols, and Architecture", Second Edi-

Petitioner Apple - EX. 1002, p. 272

Petitioner Apple - Ex. 1002, p. 273

7 EP0838 930A2 8

tion, by Douglas E. Comer, published by Prentice—Hall,
Englewood Cliffs, New Jersey, copyright 1991. The
Transport Control Protocol (TC P) 22 corresponds to the
Transport layer in the OSI reference model. The TCP

protocol 22 provides a connection-oriented, end to end

transport service with guaranteed, in-sequence packet
delivery. In this way the TCP protocol 22 provides a reli-
able, transport layer connection.

The IP protocol 26 corresponds to the Network

layer of the OSI reference model. The IP protocol 26
provides no guarantee of packet delivery to the upper
layers. The hardware link level and access protocols 32
correspond to the Data link and Physical layers of the
OSI reference model.

The Address Resolution Protocol (ARP) 28 is used
to map IP layer addresses (referred to as "IP

addresses") to addresses used by the hardware link

level and access protocols 32 (referred to as "physical
addresses" or 'MAC addresses”). The ARP protocol
layer in each network station typically contains a table of

mappings between IP addresses and physical
addresses (referred to as the 'ARP cache"). When a

mapping between an IP address and the corresponding
physical address is not known, the ARP protocol 28

issues a broadcast padret (an 'ARP request" packet) on
the local network. The ARP request indicates an IP

address for which a physical address is being
requested. The ARP protocols 28 in each station con-

nected to the local network examine the ARP request,

and if a station recognizes the lP address indicated by
the ARP request, it issues a response (an "ARP
response" or "ARP reply" packet) to the requesting sta-
tion indicating the responders physical address. The

requesting ARP protocol reports the received physical
address to the local IP layer which then uses it to send

datagrams directly to the responding station. As an
alternative to having each station respond only for its
own IP address, an ARP server may be used to respond
for a set of IP addresses it stores internally, thus poten-
tially eliminating the requirement of a broadcast

request. In that case, the ARP request can be sent
directly to the ARP server for physical addresses corre-
sponding to any IP address mappings stored within the
ARP server.

At system start up, each station on a network must
determine an IP address for each of its network inter-

faces before it can communicate using TCP/IP. For
example, a station may need to contact a server to
dynamically obtain an IP address for one or more of its

network interfaces. The station may use what is referred

to as the Dynamic Host Configuration Protocol (DHCP)
to issue a request for an IP address to a DHCP server.

For example, a DHCP module broadcasts a DHCP

request packet at system start up requesting allocation
of an IP address for an indicated network interface.

Upon receiving the DHCP request packet, the DHCP
server allocates an IP address to the requesting station
for use with the indicated network interface. The

BNSDOCID; <EP_0838%0A2_I_>

10

15

20

25

30

35

40

45

50

55

requesting station then stores the IP address in the
response from the server as the IP address to associate

(with that network interface when communicating using
TCP/IP.

Fig. 3 shows an example configuration of network

nodes for which the presently disclosed system is appli-
cable. In the example of Fig. 3, the tunnel server A is an

initiator of the tunnel connection. As shown in Fig. 3, the
term "tunnel relay" node is used to refer to a station

which fonivards data packets between transport layer
connections (for example TCP connections).

For example, in the present system a tunnel relay
may be dynamically corrligured to fomard packets
between transport layer connection 1 and transport
layer connection 2. The tunnel relay replaces the

header information of packets received over transport
layer connection 1 with header information indicating
transport layer connection 2. The tunnel relay can then
forward the packet to a firewall, which may be conven-
iently programmed to pass packets received over trans-
port layer connection 2 into a private network on the

other side of the firewall. In the present system, the tun-
nel relay dynamically forms transport layer connections

when a tunnel connection is established. Accordingly
the tunnel relay is capable of performing dynamic load
balancing or providing redundant service for fault toler—
ance over one or more tunnel servers at the time the
tunnel connection is established.

Fig. 3 shows a Tunnel Server A 46 in a private net-
work N1 48, physically connected with a first Firewall

50. The first Firewall 50 separates the private network
N1 48 from a public network 52, for example the Inter-
net. The first Firewall 50 is for example physically cen-
nected with a Tunnel Relay B 54, which in turn is

virtually connected through the public network 52 with a

Tunnel Relay C. The connection between Tunnel Relay
B and Tunnel Relay C may for example span multiple
intervening forwarding nodes such as routers or gate-
ways thr0ugh the public network 52.

The Tunnel Relay C is physically connected with a
second Firewall 58, which separates the public network
52 from a private network N2 60. The second Firewall
58 is physically connected with a Tunnel Server D 62 on

the private network N2 60. During operation of the ele-
ments shown in Fig. 3, the Tunnel Server D 62 provides
routing of IP packets between the tunnel connection

with Tunnel Sewer A 46 and other stations on the pri-
vate network N2 60. In this way the Tunnel Server D 62
acts as a router between the tunnel connection and the

private network N2 60.

During operation of the elements shown in Fig. 3.
the present system establishes a tunnel connection

between the private network N1 48 and the private net-
work N2 60. The embodiment of Fig. 3 thus eliminates
the need for a dedicated physical cable or line to provide
secure communications between the private network 48
and the private network 60. The tunnel connection
between Tunnel Server A 46 and Tunnel Server D 62 is

Petitioner Apple - EX. 1002, p. 273

Petitioner Apple - Ex. 1002, p. 274

9 EP0838930A2 - 10

composed of reliable, pair-wise transport layer connec-
tions between Tunnel Server A 46 (node "A"), Tunnel
Relay B 54 (node "8"), Tunnel Relay C 56 (node "0").
and Tunnel Server D 62 (node "D"). For example. such
pair-wise connections may be individual transport layer
connections between each node A and node B. node B
and node C, and node C and node D. In an alternative
embodiment, as will be described below, a tunnel con-

nection may alternatively be formed between a stand-
alone PC in a public network and a tunnel server within
a private network.

Fig. 4 and Fig. 5 show an example embodiment of

steps performed during establishment of the tunnel-con—
nection between Tunnel Server A 46 (node 'A") and
Tunnel Server D 62 (node "D") as shown in Fig. 3. Prior

to the steps shown in Fig. 4, node A selects a tunnel
path to reach node D. The tunnel path includes the tun-

nel end points and any intervening tunnel relays. The
tunnel path is for example predetermined by a system
administrator for node A. Each tunnel relay along the
tunnel path is capable of finding a next node in the tun-
nel path, for example based on a provided next node
name (or "next node arc"), using a predetermined nam-
ing convention and service, for example the Domain

Name System (DNS) of the TCP/IP protocol suite.
During the steps shown in Fig. 4, each of the nodes

A, B and C perform the following steps:

- resolve the node name of the next node in the tun-

nel path, for example as found in a tunnel relay
frame;

- establish a reliable transport layer (TCP) connec-
tion to the next node in the tunnel path;

- forward the tunnel relay frame down the newly
formed reliable transport layer connection to the
next node in the tumel path.

As shown for example in Fig. 4, at step 70 node A
establishes a reliable transport layer connection with
node B. At step 72 node A identifies the next down-

stream node to node B by sending node B a tunnel relay
frame over the reliable transport layer connection
between node A and node B. The tunnel relay frame
contains a string buffer describing all the nodes along
the tunnel path (see below description of an example
tunnel relay frame format). At step 74, responsive to the
tunnel relay frame from node A. node B searches the
string buffer in the relay frame to determine if the string
buffer includes node B's node name. if node B finds its

node name in the string buffer, it looks at the next node
name in the string buffer to find the node name of the

next node in the tunnel path.
Node B establishes a reliable transport layer con-

nection with the next node in the tunnel path, for exam-
ple node C. Node B further forms an association

between the reliable transport layer connection between

3NSDOCID: <EP_0838%0A2_L>

1D

15

20

25

30

35

50

55

Node A and Node B, over which the relay frame was
received, and the newly formed reliable transport layer
connection between Node 8 and Node C, and as a

result fonrvards subsequent packets received over the
reliable transport layer connection with Node A onto the
reliable transport layer connection with Node C. and

vice versa. At step 76 node B fonNards the tunnel relay
frame on the newly formed reliable transport layer con-
nection to node 0.

At step 78, responsive to the relay frame forwarded
from node B, node C determines that the next node in

the tunnel path is the last node in the tunnel path, and

accordingly is a tunnel server. Node C may actively
determine whether alternative tunnel servers are availa-

ble to form the tunnel connection. Node C may select
one of the alternative available tunnel servers to form

the tunnel connection in order to provide load balancing
or fault tolerance. As a result node C may form a trans-

port layer connections with one of several available tun-
nel servers, for example a tunnel server that is relatively
underutilized at the time the tunnel connection is estab-

lished. In the example embodiment, node C establishes
a reliable transport layer connection with the next node

along the tunnel path, in this case node D.
Node C further forms an association between the

reliable transport layer connection between Node B and
Node C, over which the relay frame was received, and

the newly formed reliable transport layer connection
between Node C and Node D, and as a result fomards

subsequent packets received over the reliable transport

layer connection with Node B to the reliable transport
layer connection with Node D, and vice versa. At step 80
node C fonivards the relay frame to node D on the newly
formed reliable transport layer connection.

Fig. 5 shows an example of tunnel end point
authentication and sharing of key exchange material
provided by the present system. The present system
supports passing authentication data and key exchange
material through the reliable transport layer connections
previously established on the tunnel path. The following
are provided by use of a key exchange/authentication
REQUEST frame and a key exchange/authentication
RESPONSE frame:

a) mutual authentication of both endpoints of the
tunnel connection;

b) establishment of shared session encryption keys

and key lifetimes for encrypting/authenticating sub-
sequent data sent through the tunnel connection;

d) agreement on a shared set of cryptographic
transforms to be applied to subsequent data; and

e) exchange of any other connection-specific data
between the tunnel endpoints, for example strength
and type of cipher to be used, any compression of
the data to be used, etc. This data can also be used

Petitioner Apple - EX. 1002, p. 274

Petitioner Apple - Ex. 1002, p. 275

11 EP0838930A2 12

by clients of this protocol to qualify the nature of the
authenticated connection.

At step 90 a key exchange/authentication request
frame is fowvarded over the reliable transport layer con-
nections formed along the tunnel path from node A to

node D. At step 92, a key exchange/authentication
response frame is fonivarded from node D back to node

A through the reliable transport layer connections. The

attributes exchanged using the steps shown in Fig. 5
may be used for the lifetime of the tunnel connection. In

an alternative embodimentthe steps shown in Fig. 5 are
repeated as needed for the tunnel end points to

exchange sufficient key exchange material to agree

upon a set of session parameters for use during the tun-
nel connection such as cryptographic keys, key dura-
tions, and choice of encryption/decryption algorithms.

Further in the disclosed system, the names used for

authentication and access control with regard to node A
and node D need not be the network layer address or
physical address of the nodes. For example. in an alter-

native embodiment where the initiating node sending
the tunnel relay frame is a stand—alone PC located

within a public network, the user's name may be used
for authentication and/or access control purposes. This

provides a significant improvement over existing sys-
terns which base authorization on predetermined IP
addresses.

Fig. 6 shows the format of an example embodiment
of a tunnel relay frame. The tunnel frame formats shown

in Figs. 6, 7. 8 and 9 are encapsulated within the data
portion of a transport layer (TCP) frame when transmit-
ted. Alternatively, another equivalent, connection-ori-

ented transport layer protocol having guaranteed, in-
sequence frame delivery may be used. The example
TCP frame format. including TCP header fields. is con-
ventional and not shown.

The field 100 contains a length of the frame. The

field 102 contains a type of the frame, for example a
type of RELAY. The field 104 contains a tunnel protocol
version number. The field 106 contains an index into a

string buffer field 112 at which a name of the originating
node is located, for example a DNS host name of the

node initially issuing the relay frame (node A in Fig. 3).
The fields following the origin index field 106 contain
indexes into the string buffer 112 at which names of

nodes along the tunnel path are located. For example
each index may be the offset of a DNS host name within

the string buffer 112. In this way the field 108 contains

the index of the name of the first node in the tunnel path,
for example node B (Fig. 3). The field 110 contains the

index of the name of the second node in the tunnel path,
etc. The field 112 contains a string of node names of
nodes in the tunnel path.

During operation of the present system. the initiat-

ing node, for example node A as shown in Fig. 3, trans-
mits a tunnel relay frame such as the tunnel relay frame

shown in Fig. 6. Node A sencls the tunnel relay frame to

ensoocm: <EP~0838§30A2_I_>

10

15

20

25

30

35

4o

45

50

55

the first station along the tunnel path, for example node
B (Fig. 3), over a previously established reliable trans-

port layer connection. Node B searches the string buffer
in the tunnel relay frame to find its node name, for exam-
ple its DNS host name. Node 8 finds its node name in
the string buffer indexed by path index 0, and then uses
the contents of path index 1 110 to determine the loca-

tion within the string buffer 112 of the node name of the
next node along the tunnel path. Node B use: this node

name to establish a reliable transport layer connection
with the next node along the tunnel path. Node B then

forwards the relay frame to the next node. This process
continues until the end node of the tunnel route. for

example tunnel server D 62 (Fig. 3) is reached.

Fig. 7 shows the format of an example embodiment

of a key exchange/key authentication request frame.
The field 120 contains a length of the frame. The field

122 contains a type of the frame, for example a type of
REQUEST indicating a key exchange/key authentica-

tion request frame. The field 124 contains a tunneLpro—
tocol version nun’ber. Thefield 126 contains an offset of

the name of the entity initiating the tunnel connection,

for example the name of a user on the node originally

issuing the request frame. This name and key exchange
material in the request frame are used by the receiving
tunnel end point to authenticate the key
archange/authentication REQUEST The name of the

entity initiating the tunnel connection is also use to
authorize any subsequent tunnel connection, based on

predetermined security policies of the system. The field
128 contains an offset into the frame of the node name

of the destination node, for example the end node of the
tunnel shown as node D 62 in Fig. 3.

The field 130 contains an offset into the frame at

which key exchange data as is stored, for example
within the string buffer field 138. The key exchange data
for example includes key exchange material used to

determinea shared set of encryption parameters for the
life of the tunnel connectionsuch as cryptographic keys
and any validity times associated with those keys. The

key exchange data, as well as the field 132, further

include information regarding any shared set of crypto-
graphic transforms to be used and any other connec-

tion-specific parameters, such as strength and type of
cipher to be used, type of compression of the data to be
used, etc. The field 134 contains flags, for exarrple indi-
cating further information about the frame. The field 136

contains client data used in the tunnel end points to con-
figure the local routing tables so that packets for nodes
reachable through the virtual private network are sent

through the pseudo network adapters. in an example
embodiment, the string buffer 138 is encrypted using a
public encryption key of the receiving tunnel end point.

During operation of the present system, one of the

end nodes of the tunnel sends a key exchange/authen-
tication REQUEST frame as shown in Fig. 7 to the other

end node of the tunnel in order to perform key exchange
and authentication as described in step 90 of Fig. 5.

Petitioner Apple - EX. 1002, p. 275

Petitioner Apple - Ex. 1002, p. 276

13 EP0838 930A2 14

Fig. 8 shows the format of an example embodiment

of a key exchange/key authentication response frame.
referred to as a connection RESPONSE frame. The

field 150 contains a length of the frame. The field 152
contains a type of the frame, for example a type of con-
nection RESPONSE indicating a key exchange/key
authentication request frame. The field 154 contains a

tunnel protocol version number.
The field 156 contains an offset into the frame at

which key exchange data as is stored. for example
within the string buffer field 163. The key exchange data

for example includes key exchange material to be used
for encryption/decryption over the life of the tunnel con-
nection and any validity times associated with that key
exchange material. The key exchange data. as well as
the field 158. further includes information regarding any

shared set of cryptographic transforms to be applied to
subsequent data and any other connection-specific
parameters. such as strength and type of cipher to be
used. any compression of the data to be used, etc. The
field 160 contains flags. for example indicating other
information about the frame. The client data field 162

contains data used by the pseudo network adapters in
the tunnel end points to configure the local routing
tables so that packets for nodes in the virtual private
network are sent through the pseudo network adapters.

The string buffer includes key exchange material. The
string buffer is for example encrypted using a public
encryption key of the receiving tunnel end point, in the
this case the initiator of the tunnel connection.

During operation of the present system, one of the
end nodes of the tunnel sends a key exchange/authen-

tication RESPONSE frame as shown in Fig. 7 to the
other end node of the tunnel in order to perform key
exchange and authentication as described in step 92 of
Fig. 5.

Fig. 9 shows the format of an example embodiment
of an tunnel data frame used to communicate through a
tunnel connection. Fig. 9 shows how an IP datagram
may be encapsulated within a tunnel frame by the
present system for secure communications through a
virtual private network. The field 170 contains a length
of the frame. The field 1 72 contains a type of the frame,

for example a type of DATA indicating a tunnel data
frame. The field 174 contains a tunnel protocol version
number.

The fields 176. 178 and 182 contain information

regarding the encapsulated datagram. The field 180
contains flags indicating information regarding the
frame. The field 184 contains a value indicating the
length of the optional padding 189 at the end of the

frame. The frame format allows for optional padding in
the event that the amount of data in the frame needs to

be padded to an even block boundary for the purpose of

being encrypted using a block cipher. The field 186 con-
tains a value indicating the length of the digest field 187.

The data frame format includes a digital signature

generated by the transmitting tunnel end point referred

BNSDOCID <EP___0638%0A2_I_>

10

15

20

25

30

50

to as a "digest". The value of the digest ensures data
integrity. for example by detecting invalid frames and
replays of previously transmitted valid frames The
digest is the output of a conventional keyed crypto-
graphic hash function applied to both the encapsulated
datagram 190 and a monotonically increasing
sequence number. The resulting hash output is passed
as the value of the digest field 187. The sequence
number is not included in the data frame. In the example
embodiment. the sequence number is a counter main-
tained by the transmitter (for example node A in Fig. 3)
of all data frames sent to the receiving node (for exam-

ple node D in Fig. 3) since establishment of the tunnel
connection. -

In order to determine if the data frame is invalid or a

duplicate, the receiving node decrypts the encapsulated
datagram 190, and applies the keyed cryptographic
hash function (agreed to by the tunnel end nodes during
the steps shown in Fig. 5) to both the decrypted encap-
sulated datagram and the value of a counter indicating
the number of data frames received from the transmitter

since establishment of the tunnel connection. For exam-

ple the keyed hash function is applied to the datagram
concatenated to the counter value. If the resulting hash

output matches the value of the digest field 187. then
the encap5ulated datagram 190 was received coneme
and is not a duplicate. If the hash output does not match
the value of the digest field 187. then the integrity check
fails. and the tunnel connection is closed. The field 188

contains an encrypted network layer datagram. for
example an encrypted IP datagram.

The encapsulated datagram may be encrypted
using various encryption techniques. An example
embodiment of the present system advantageously

encrypts the datagram 190 using either a stream cipher
or cipher block chaining encryption over all data trans-

mitted during the life of the tunnel connection. This is
enabled by the reliable nature of the transport layer con-
nections within the tunnel connection. The specific type

of encryption and any connection specific symmetric
encryption keys used is determined using the steps
shown in Fig. 5. The fields in the tunnel data frame other
than the encapsulated datagram 188 are referred to as
the tunnel data frame header fields.

Fig. 10 is a block diagram showing an example
embodiment of a "close connection" frame. The field

190 contains the length of the frame. The field 191 con-
tains a frame type. for example having a value equal to
CLOSE. Field 192 contains a value equal to the current

protocol version number of the tunnel protocol. The field
193 contains a status code indicating the reason the
tunnel connection is being closed.

During operation of the present system, when end
point of a tunnel connection determines that the tunnel
connection should be closed. a close connection frame

as shown in Fig. 10 is transmitted to the other end point
of the tunnel connection. When a close connection

close frame is received. the receiver closes the tunnel

Petitioner Apple - EX. 1002, p. 276

Petitioner Apple - Ex. 1002, p. 277

15 EP0838 930A2 16

connection and no further data will be transmitted or

received through the tunnel connection.

Fig. 11 is a state diagram showing an example
embodiment of forming a tunnel connection in a node

initiating a tunnel connection. In Fig. 11, Fig. 12, and
Fig. 13, states are indicated by ovals and actions or

events are indicated by rectangles. For example the tun-
nel server node A as shown in Fig. 3 may act as a tunnel
connection initiator when establishing a tunnel connec-

tion with the tunnel server node D. Similarly the client
system 247 in Fig. 14 may act as a tunnel connection
initiator when establishing a tunnel connection with the

tunnel server. The tunnel initiator begins in an idle state

194. Responsive to an input from a user indicating that
a tunnel connection should be established. the tunnel
initiator transitions from the idle state 194 to a TCP

Open state 195. In the TCP Open state 195. the tunnel

initiator establishes a reliable transport layer connection
with a first node along the tunnel path. For example. the
tunnel initiator opens a socket interface associated with

a TCP connection to the first node along the tunnel
path. In Fig. 3 node A opens a socket interface associ-
ated with a TCP connection with node B.

Following establishment of the reliable transport
layer connection in the TCP Open state 195. the tunnel
initiator enters a Send Relay state 197. In the Send

Relay state 197. the tunnel initiator transmits a relay
frame at 198 over the reliable transport layer connec-
tion. Following transmission of the relay frame, the tun-

nel initiator enters the connect state 199. If during
transmission of the relay frame there is a transmission
error. the tunnel initiator enters the Network Error state

215 followed by the Dying state 208. In the Dying state
208. the tunnel initiator disconnects the reliable trans-

port layer connection formed in the TCP Open state
195. for example by disconnecting a TCP connection
with Node B. Following the disconnection at 209. the
tunnel initiator enters the Dead state 210. The tunnel ini-

tiator subsequently transitions back to the Idle state 194

at a point in time predetermined by system security con—
figuration parameters.

In the Connect state 199. the tunnel initiator sends
a key exchange/authentication REQUEST frame at 200

to the tunnel server. Following transmission of the key
exchange/authentication REQUEST frame 200. the tun—

nel initiator enters the Response Wait state 201. The

tunnel initiator remains in the Response Wait state 201
until it receives a key exchange/authentication
RESPONSE frame 202 from the tunnel server. After the

key exchange/authentication RESPONSE frame is
received at 202. the tunnel initiator enters the Author—

ized state 203, in which it may send or receive tunnel
data frames. Upon receipt of a CLOSE connection
frame at 216 in the Authorized state 203. the tunnel ini-

tiator transitions to the Dying state 208.
Upon expiration of a session encryption key at 211.

the tunnel initiator enters the Reconnect state 212, and
sends a CLOSE connection frame at 213 and discon-

BNSDOCID: <EP_0838K§0A2_|_>

10

15

20

25

30

35

40

50

55

nects the TCP connection with the first node along the
tunnel path at 214. Subsequently the tunnel initiator
enters the TCP Open state 195.

If during the authorized state 203. a local user
issues an End Session command at 204, or there is a

detection of an authentication or cryptography error in a
received data frame at 205, the tunnel initiator enters

the Close state 206. During the Close state 206 the tun-
nel initiator sends a CLOSE connection frame at 207 to
the tunnel server. The tunnel initiator then enters the

Dying state at 208.

Figure 12 is a state diagram showingthe states
within an example embodiment of a tunnel server, for

example node D in Fig. 3 or tunnel server 253 in Fig. 14.
The tunnel server begins in an Accept Wait state 217. In
the Accept Wait state 217. the tunnel server receives a

request for a reliable transport layer connection, for
example a TCP connection reguest 218 from the last
node in the tunnel path prior to the tunnel server, for
example Node C in Fig. 3. In response to a TCP con-

nection request 218 the tunnel server accepts the
request and establishes a socket interface associated

with the reSulting TCP connection with Node C.
Upon establishment of the TCP connection with the

last node in the tunnel path prior to the tunnel server.
the tunnel server enters the Receive Relay state 219-. In
the Receive Relay state 219. the tunnel server waits to
receive a relay frame at 220. at which time the tunnel
server enters the Connect Wait state 221. If there‘is

some sort of network error 234 during receipt of the
relay frame at 219. the tunnel server enters the Dying
state 230. During the Dying state 230 the tunnel server
disconnects at 231 the transport layer connection with
the last node in the tunnel path prior to the tunnel
server. After disconnecting the connection. the tunnel
server enters the Dead state 232.

In the Connect Wait state 221. the tunnel server

waits for receipt of a key exchange/authentication
REQUEST frame at 222. Following receipt of the key
exchange/authentication REQUEST frame at 222, the
tunnel server determines whether the requested tunnel
connection is authorized at step 223. The determination
of whether the tunnel connection is authorized is based

on a name of the tunnel initiator. and the key exchange
material within the key exchange/authentication
REQUEST frame.

If the requested tunnel connection is authorized the

tunnel server sends a key exchange/authentication
RESPONSE frame at 224 back to the tunnel initiator. If

the requested tunnel connection is not authorized. the
tunnel server enters the Close state 228. in which it
sends a close connection frame at 229 to the tunnel cli-

ent. Following transmission of the CLOSE connection
frame at 229. the tunnel server enters the Dying state
230.

If the requested tunnel connection is determined to

be authorized at step 223. the tunnel server enters the
Authorized state 225. In the Authorized state. the tunnel

Petitioner Apple - EX. 1002, p. 277

Petitioner Apple - Ex. 1002, p. 278

17 ‘ EP0838 930A2 18

server transmits and receives tunnel data frames

between itself and the tunnel initiator. If during the
Authorized state 225, the tunnel sewer receives a
CLOSE connection frame at 233, the tunnel server tran-

sitions to the Dying state 230. lf during the authorized
state 225, the tunnel server receives an end session
command from a user at 226, then the tunnel server
transitions to the Close state 228, and transmits a close
connection frame at 229 to the tunnel initiator. If the tun-

nel server in the Authorized state 225 detects an integ-

rity failure in a received packet, the tunnel server
transitions to the Close state 228. in the close state 228
the tunnel server sends a CLOSE connection frame at

229 and Subsequently enters the Dying state 230.

Fig. 13 is a state diagram showing an example
embodiment of a state machine within a tunnel relay

node. The tunnel relay node begins in an Accept Wait
state 235. When a request is received to form a reliable

transport layer connection at 236, a reliable transport
layer connection is accepted with the requesting node.
For example, a TCP connection is accepted between

the relay node and the preceding node in the tunnel
path.

The relay node then transitions to the Receive
Relay state 237. During the Receive Relay state 237,
the relay node receives a relay frame at 238. Following
receipt of the relay frame at 238. the relay node deter-
mines what forwarding address sh0uld be used to for-
ward frames received from the TCP connection

established responsive to the TCP connect event 236. If
the next node in the tunnel path is a tunnel sewer. the
forwarding address may be selected at 239 so as to
choose an underutilized tunnel server from a group of

available tunnel servers or to choose an operational
server where others are not operational.

Following determination of the forwarding address
or addresses in step 239, the relay node enters the For-
ward Connect~state 240. In the Forward Connect state

240, the relay node establishes a reliable transport layer
connection with the node or nodes indicated by the for-

warding address or addresses determined in step 239.
Following establishment of the new connection at

event 241, the tunnel relay enters the Forward state
242. During the Forward state 242. the relay node for-
wards all frames between the connection established at

236 and those connections established at 241. Upon

detection of a network error or receipt of a frame indicat-

ing a closure of the tunnel connection at 243. the tunnel
relay enters the Dying state 244. Following the Dying
state 244. the relay node disconnects any connections
established at event 241. The relay node then enters
the Dead state 246.

Fig. 14 shows an example embodiment of a virtual
private network 249 formed by a pseudo network
adapter 248 and a tunnel connection between a tunnel
client 247 and a tunnel server 253 across a public net-
work 251. The tunnel server 253 and tunnel client 247

are for eiample network stations including a CPU or

BNSDOCID: <EP_0638930A2_L>

10

15

25

30

35

40

45

50

55

10

microprocessor, memory, and various UO devices. The
tunnel server 253 is shown physically connected to a

private LAN 256 including a Network Node 1 257 and a
Network Node 2 258, through a physical network

adapter 254. The tunnel server 253 is further shown
physically connected with a firewall 252 which sepa-
rates the private LAN 256 from the public network 251.
The firewall 252 is physically connected with the public
network 251. The tunnel server 253 is further shown

including a pseudo network adapter 255. The client sys-
tem 247 is shown including a physical network adapter

250 physically connected to the public network 251.

During operation of the elements shown in Fig. 14,
nodes within the virtual private network 249 appear to
the tunnel client 247 as it they were physically con-

nected to the client system through the pseudo network
adapter 248. Data transmissions between the tunnel cli-
ent and any nodes that appear to be within the virtual

private network are passed through the pseudo network
adapter 248. Data transmissions between the tunnel cli-
ent 247 and the tunnel server 253 are physically accom—

plished using a tunnel connection between the tunnel
client 247 and the tunnel server 253. ’

Fig. 15 shows elements in an example embodiment
of a pseudo network adapter such as the pseudo net-
work adapter 248 in Fig. 14. In an example embodiment
the elements shown in Fig. 15 are implemented as soft-

ware executing on the tunnel client 247 as shown in Fig.
14. ln Fig. 15 there is shown a pseudo network adapter
259 including a virtual adapter driver interface 263. an

encapsulation engine 264, an encryption engine 265, a
decapsulation engine 268, and a decryption engine
266. Further shown in the pseudo network adapter 259
are an ARP server emulator 270 and a Dynamic Host

Configuration Protocol (DHCP) server emulator.
The pseudo network adapter 259 is shown inter-

faced to a TC P/IP protocol stack 260, through the virtual

adapter driverinterface 260. The TCPIIP protocol stack
260 is shown interfaced to other services in an operat-

ing system 261, as well as a physical network adapter's
driver 262. The physical network adapter's driver 262 is

for example a device driver which controls the operation
of a physical network adapter such as physical network
adapter 250 as shown in Fig. 14.

During operation of the elements shown in Fig. 15,
the pseudo network adapter 259 registers with the net-
work layer in the TCPIIP stack 260 that it is able to reach
the IP addresses of nodes within the virtual private net-

work 249 as shown in Fig. 14. For example, the pseudo

network adapter on the client system registers that it
can reach the pseudo network adapter on the server.

Subsequently, a message from the tunnel client
addressed to a node reachable through the virtual pri—

vate network will be passed by the TCPIIP stack to the
pseudo network adapter 259. The pseudo network
adapter 259 then encrypts the message, and encapsu-
lates the message into a tunnel data frame. The pseudo

network adapter 259 then passes the tunnel data frame

Petitioner Apple - EX. 1002, p. 278

Petitioner Apple - Ex. 1002, p. 279

19 EP0838 930A2 20

back to the TCP/IP protocol stack 260 to be sent

through to the physical network adapter in the tunnel
server. The tunnel server passes the received data
frame to the pseudo network adapter in the server,

which de~encapsulates and decrypts the message.

Fig. 16 shows a more detailed example embodi-

ment of a pseudo network adapter 280. The pseudo
network adapter 280 includes a virtual network adapter
driver interface 288. The transmit path 290 includes an

encryption engine 292, and an encapsulation engine
294. The encapsulation engine 294 is interfaced with a

TCP/IP transmit interface 312 within a TCP/IP protocol
stack, for example a socket interface associated with

the first relay node in the tunnel path, or with the remote

tunnel end point if the tunnel path includes no relays.
in the example embodiment of Fig. 16, the pseudo

network adapter 280 appears to the TCP/IP protocol

stack 282 as an Ethernet adapter. Accordingly, ethernet

packets 286 for a destination addresses understood by
the TCP/IP protocol stack to be reachable through the
virtual private network are passed from the TCP/IP pro-
tocol stack 282 to the virtual network adapter interface

288 and through the transmit path 290. Similarly, ether-
net packets 284 received through the pseudo network
adapter 280 are passed from the receive path 296 to the
virtual network adapter interface 288 and on to the
TCP/IP protocol stack 282.

Further shown in the pseudo network adapter 280
of Fig. 16 is-a receive path 296 having a decryption
engine 298 interfaced to the virtual network adapter
interface 288 and a decapsulation engine 300. The
decapsulation engine 300 in turn is interfaced to a

TCP/IP receive function 314 in the TCP/IP protocol
stack 282, for example a socket interface associated

with the first relay in the tunnel path, or with the remote

tunnel end point if the tunnel path includes no relays.
The pseudo network adapter 280 further includes an
ARP server emulator 304 and a DHCP server emulator

306. ARP and DHCP request packets 302 are passed
to the ARP server emulator 304 and DHCP server emu-

lator 306 respectively. When a received packet is
passed from the receive path 296 to the TCP/IP stack
282, a receive event must be indicated to the TCP/IP

stack 282, for example through an interface such the

Network Device interface Specification (NDIS), defined
by Microsoft” Corporation.

Also in Fig. 16 is shown is an operating system 310
coupled with the TCP/IP protocol stack 282. The

TCP/IP protocol stack 282 is generally considered to be
a component part of the operating system. The operat-

ing system 310 in Fig. 16 is accordingly the remaining
operating system functions and procedures outside the

TCP/IP protocol stack 282. A physical network adapter
308 is further shown operated by the TCP/IP protocol
stack 282.

During operation of the elements shown in Fig. 16,
a user passes data for transmission to the TCP/lP pro-
tocol stack 282. and indicates the lP address of the

BNSDmlD: < EP_0838930A2_|_>

10

15

20

25

30

35

40

45

50

55

11

node to which the message is to be transmitted, for

example through a socket interface to the TCP layer.
The TCP/IP protocol stack 282 then determines

whether the destination node is reachable through the
virtual private network. if the message is for a node that
is reachable through the virtual private network, the
TCP/lP protocol stack 282 an ethernet packet 286 cor-
responding to the message to the pseudo network
adapter 280. The pseudo network adapter 280 then
passes the ethernet packet 286 through the transmit

path, in which the ethernet packet is encrypted and
encapsulated into a tunnel data frame. The tunnel data

frame is passed back into the TC P/IP protocol stack 282
through the TCP/IP transmit function 312 to be transmit-

ted to the tunnel server through the tunnel connection.
In an example embodiment. a digest value is calculated

for the tunnel data frame before encryption within the
transmit path within the pseudo network adapter.

Further during operation of the elements shown in
Fig. 16, when the TCP/IP protocol stack 282 receives a
packet from the remote endpoint of the TCP/IP tunnel

connection, for example the tunnel server, the packet is
passed to the pseudo network adapter 230 responsive

to a TCP receive event. The pseudo network adapter

_ 280 then decapsulates the packet by removing the tun-
nel header. The pseudo network adapter further
decrypts the decapsulated data'and passes it back to

the TCP/IP protocol stack 282. The data passed from
the pseudo network adapter 280 appears to the TCP/IP

protocol stack 282 as an ethernet packet received from
an actual physical device, and is the data it contains is

passed on to the appropriate user by the TCP/lP proto-
col stack 282 based on information in the ethernet

packet header provided by the pseudo network adapter.

Fig. 17 is a flow chart showing steps performed by
an example embodiment of a pseudo network adapter
during packet transmission, such as in the transmit path
290 of Fig. 14. The TCP/IP protocol stack determines
that the destination node of a packet to be transmitted is

reachable through the virtual LAN based on the destina—
tion IP address of the packet and a network layer routing
table. At step 320 the packet is passed to the pseudo

network adapter from the TCP/lP protocol stack. As a
result, a send routine in the pseudo adapter is triggered
for example in the virtual network adapter interface 288
of Fig. 16.

At step 322 the pseudo network adapter send rou-

tine processes the Ethernet header of the packet pro-
vided by the TCP/IP stack, and removes it. At step 324,
the send routine determines whether the packet is an
ARP request packet. If the packet is an ARP request
packet for an IP address of a node on the virtual LAN,

such as the pseudo network adapter of the tunnel
server, then step 324 is followed by step 326. Other-
wise, step 324 is followed by step 330.

At step 326, the ARP server emulator in the pseudo

network adapter generates an AFlP reply packet. For
atample, if the AFtP request were for a physical address

Petitioner Apple - EX. 1002, p. 279

Petitioner Apple - Ex. 1002, p. 280

21 EP0838930A2

corresponding to the IP address of the pseudo network
adapter on the tunnel server, the ARP reply would indi-
cate a predetermined, reserved physical address to be
associated with that IP address. At step 328 the pseudo
network adapter passes the ARP response to the virtual

network adapter interface. The virtual network adapter
interface then indicates a received packet to the TCP/IP

protocol stack, for example using an NDIS interface.
The TCP/IP protocol stack then processes the ARP
response as if it had been received over an actual phys-
ical network

At step 330 the send routine determines whether

the packet is a DHCP request packet requesting an IP
address for the pseudo network adapter. if so, then step
330 is followed by step 332. Otherwise, step 330 is fol-
lowed by step 334.

At step 334, the DHCP server emulator in the
pseudo network adapter generates a DHCP response.
The format of DHCP is generally described in the DHCP
RFC. At step 328 the pseudo network adapter passes
the DHCP response to the virtual network adapter inter-
face, for example indicating an lP address received from
the tunnel server in the client data field of the key

exchange/authentication RESPONSE frame. The vir-

tual network adapter interface then indicates a received
packet to the TCP/IP protocol stack. The TCP/IP proto-
col stack then processes the DHCP response as if it had
been received over an actual physical network.

At step 334 the pseudo network adapter encrypts
the message using an encryption engine such that only
the receiver is capable of decrypting and reading the
message. At step 336 the pseudo network adapter
encapsulates the encrypted message into a tunnel data
frame. At step 338 the pseudo network adapter trans-
mits the tunnel data frame through the tunnel connec-
tion using the TCP/lP protocol stack.

Fig. 18 is a flow chart showing steps performed by
an example embodiment of a pseudo network adapter
during packet receipt. such as in the receive path 296 of
Fig. 14.

At step 350, the pseudo network adapter is notified
that a packet has been received over the tunnel connec-
tion. At step 352 the pseudo network adapter decapsu-
lates the received message by removing the header
fields of the tunnel data frame. At step 354 the pseudo
network adapter decrypts the decapsulated datagram
from the tunnel data frame. At step 356, in an example
embodiment, the pseudo network adapter forms an
Ethernet packet from the decapsulated message. At

step 358 the pseudo network adapter indicates that an
Ethernet packet has been received to the TCP/lP proto-

col stack through the virtual network adapter interface.

This causes the TCP/lP protocol stack to behave as if it
had received an Ethernet packet from an actual Ether-
net adapter.

Fig. 19 shows the data flow within the transmit path
in an atample embodiment of a pseudo network

adapter. At step 1 370, an application submits data to be

BNSDOCID: <EP__0838930A2J‘>

10

15

2D

25

30

35

40

50

12

22

transmitted to the TCP protocol layer 372 within the

TCP/IP protocol stack. The application uses a conven-
tional socket interface to the TCP protocol layer 372 to

pass the data, and indicates the destination IP address
the data is to be transmitted to. The TCP protocol layer
372 then passes the data to the IP protocol layer 374
within the TCP/lP protocol stack At step 2 376, the

TCP/IP protocol stack refers to the routing table 378 to
determine which network interface should be used to
reach the destination lP address

Because in the example the destination lP address
is of a node reachable through the virtual private net—
work, the IP layer 374 determines from the routing table
378 that the destination IP address is reachable through

pseudo network adapter. Accordingly at step 3 380 the
TCP/IP protocol stack passes a packet containing the
data to the pseudo network adapter 382.

At step 4 384, the pseudo network adapter 382
encrypts the data packets and encapsulates them into
tunnel data frames.

The pseudo network adapter 382 then passes the
tunnel data frames packets back to the TCP protocol
layer 372 within the TCP/IP protocol stack through a
conventional socket interface to the tunnel connection

with thefirst node in the tunnel path.

The TCP protocol layer 372 then forms a TCP layer
packet for each tunnel data frame. having the tunnel
data frame as its data. The TCP frames are passed to

the lP layer 374. At step 5 386 the routing table 378 is

again searched, and this time the destination lP
address is the lP address associated with the physical

network adapter on the tunnel sewer, and accordingly is
determined to be reachable over the physical network

adapter 390. Accordingly at step 6 388 the device driver
390 for the physical network adapter is called to pass

the packets to the physical network adapter. At step 7
392 the physical network adapter transmits the data
onto the physical network 394.

Fig. 20 is a data flow diagram showing data flow in
an example embodiment of packet receipt involving a
pseudo network adapter. At step 1 410 data arrives over
the physical network 412 and is received by the physical
network adapter and passed to the physical network
driver 414. The physical network driver 414 passes the
data at step 2 418 through the IP layer 420 and TCP
layer 422 to the pseudo network adapter 426 at step 3
424, for example through a conventional socket inter-
face. At step 4 428 the pseudo network adapter 426
decrypts and decapsulates the received data and

passes it back to the IP layer of the TCP/IP protocol
stack. for example through the TDI (Transport Layer

Dependent Interface API) of the TCP/IP stack The data
is then passed through the TC P/IP protocol stack and to
the user associated with the destination IP address in

the decapsulated datagrams at step 5 430.

Fig. 21 shows dataflow in an example embodiment

of packet transmission involving a pseudo network
adapter. Fig. 21 shows an example embodiment for use

Petitioner Apple - EX. 1002, p. 280

Petitioner Apple - Ex. 1002, p. 281

23

on a Microso T“ Windows 95m PC platform. In Fig. 21 a
user application 450 passes unencrypted data to an
interface into the TCP layer of the TCP/IP protocol. for
example the WinSock API 452. The user indicates a
destination IP address associated with a node reacha-

ble through a virtual private network accessible through
the pseudo network adapter.

The TCP layer 454 passes the data to the IP layer
456, which in turn passes the data to the Network

Device Interface Specification Media Access Control

(NDIS MAC) interface 458. The pseudo network

adapter 459 has previously registered with the routing
layer (IP) that it is able to reach a gateway address
associated with the destination IP address for the user

data. Accordingly the IP layer uses the NDIS MAC layer
interface to invoke the virtual device driver interface 460

to the pseudo network adapter 459. The pseudo net-
work adapter 459 includes a virtual device driver inter-

face 460, an ARP server emulator 462. and a DHCP
server emulator 464.

In the example embodiment of Fig. 19, the pseudo
network adapter 459 passes the data to a tunnel appli-
cation program 466. The tunnel application program
466 encrypts the IP packet received from the IP layer
and encapsulates it into a tunnel data frame. The tunnel

application then passes the tunnel data frame including
the encrypted data to the VIfinSock interface 452. indi-
cating a destination IP address of the remote tunnel end

point. The tunnel data frame is then passed through the
TCP layer 454, IP layer 456. NDIS MAC layer interface
458. and physical layer 468, and transmitted on the net-

work 470. Since the resulting packets do not contain a

destination IP address which the pseudo network
adapter has registered to convey. these packets will not
be diverted to the pseudo network adapter.

Fig. 22 is a data flow diagram showing data flow in
an example embodiment of packet transmission involv-
ing a pseudo network adapter. The embodiment shown

in Fig. 22 is for use on a UNIX platform. In Fig. 20 a user
application 472 passes unencrypted data to a socket
interface to the TCP/IP protocol stack in the UNIX
socket layer 474, indicating a destination IP address of
a node reachable through the virtual private network.

The UNIX socket layer 474 passes the data through
the TCP layer 476 and the IP layer 478. The pseudo
network adapter 480 has previously registered with the

routing layer (IP) that it is able to reach a gateway asso-
ciated with the destination IP address for the user data.

Accordingly the IP layer 478 invokes the virtual device

driver interface 482 to the pseudo network adapter 480.
The IP layer 478 passes the data to the pseudo network
adapter 480. The pseudo network adapter 480 includes
a virtual device driver interface 482, and a DHCP server
emulator 484. ,

In the example embodiment of Fig. 22, the pseudo
network adapter 480 passes IP datagrams to be trans-
mitted to a UNIX Daemon 486 associated with the tun-

nel connection. The UNIX Daemon 486 encrypts the IP

BNSDOCI D: (E P__0838%0A2_l_>

EP0838930A2

10

15

20

25

30

35

40

50

55

13

24

packet(s) received from the IP layer 478 and encapsu-
lates them into tunnel data frames. The UNIX Daemon
486 then passes the tunnel data frames to the UNIX

socket layer 474, through a socket associated with the
tunnel connection. The tunnel data frames are then

processed by the TCP layer 476. lP layer 478. data link
layer 488, and physical layer 490 to be transmitted on

the network 492. Since the resulting packets are not
addressed to an IP address which the pseudo network
adapter 480 has registered to convey, the packets will

not be diverted to the pseudo network adapter 480.

Fig. 23 is a flow chart showing steps to initialize a
example embodiment of a virtual private network The

steps shown in Fig. 23 are performed for example in the
tunnel client 247 as shown in Fig. 14. At step 500 a tun-
nel application program executing in the tunnel client

sends a tunnel relay frame to the tunnel server. At step
502 the tunnel application program sends a tunnel key
exchange/authentication REQUEST frame to the tunnel

server. The tunnel application in the tunnel server
ignores the contents of the client data field in the tunnel

key exchange/authentication REQUEST frame. The
tunnel application in the tunnel server fills in the client

data field in the tunnel key exchange/authentication

RESPONSE frame with Dynamic Host Configuration
Protocol (DHCP) information. for example including the
following information in standard DHCP format: "

1) IP Address for tunnel client Pseudo Network

Adapter
2) IP Address for tunnel server Pseudo Network
Adapter

3) Routes to nodes on the private network physi-
cally connected to the tunnel server which are to be
reachable over the tunnel connection.

At step 504 the tunnel application receives a tunnel
key exchange/authentication RESPONSE frame from
the tunnel server. The client data field 508 in the tunnel

connection response is made available to the pseudo
network adapter in the tunnel client. The tunnel applica-
tion in the tunnel client tells the TCP/IP stack that the

pseudo network adapter in the tunnel client is active.

The pseudo network adapter in the tunnel client is

active and ready to be initialized at step 510.
The tunnel client system is configured such that it

must obtain an IP address for the tunnel client pseudo
network adapter dynamically. Therefore the TCP/IP
stack in the tunnel client broadcasts a DHCP request

packet through the pseudo network adapter. Accord-
ingly, at step 512 the pseudo network adapter in the cli-
ent receives a conventional DHCP request packet from
the TCP/IP stack requesting a dynamically allocated IP
address to associate with the pseudo network adapter.
The pseudo network adapter passes the DHCP request
packet to the DHCP server emulator within the pseudo

network adapter, which forms a DHCP response based
on the client data 508 received from the tunnel applicao

Petitioner Apple - EX. 1002, p. 281

Petitioner Apple - Ex. 1002, p. 282

25

tion. The DHCP response includes the IP address for
the client pseudo adapter provided by the tunnel server
in the client data. At step 514 the pseudo network

adapter passes the DHCP response to the TCP/IP
stack.

At step 520. the tunnel application modifies the
routing tables within the tunnel client TCP/lP stack to
indidate that the routes to the nodes attached to the pri-
vate network to which the tunnel server is attached all

are reachable only through the pseudo network adapter
in the tunnel server. The IP address of the pseudo net-

work adapter in the tunnel server provided in the client
data is in this way specified as a gateway to the nodes
on the private network to which the tunnel server is

attached. In this way those remote nodes are viewed by
the TCPllP stack as being reachable via the virtual pri-
vate network through the client pseudo network
adapter.

At step 516 the pseudo network adapter in the tun—
nel client receives an ARP request for a physical
address associated with the IP address of the pseudo

network adapter in the tunnel server. The pseudo net-
work adapter passes the ARP request to the ARP
server emulator, which forms an ARP reply indicating a
reserved physical address to be associated with the IP

address of the pseudo network adapter in the tunnel
server. At step 518 the pseudo network adapter passes
the ARP response to the TCP/IP stack in the tunnel cli-
ent. In response to the ARP response. the TCP/IP stack

determines that packets addressed to any node on the
virtual private network must be initially transmitted
through the pseudo network adapter.

In an example embodiment the present system

reserves two physical addresses to be associated with
the pseudo network adapter in the client and the pseudo
network adapter in the server respectively. These
reserved physical addresses are used in responses to
ARP requests passed through the pseudo network
adapter for physical addresses corresponding to the IP
addresses for the pseudo network adapter in the client
and the pseudo network adapter in the server respec-

tively. The reserved physical addresses should have a
high likelihood of not being used in any actual network

interface. ‘
While the invention has been described with refer-

ence to specific example embodiments, the description
is not meant to be construed in a limiting sense. Various
modifications of the disclosed embodiments, as well as

other embodiments of the invention, will be apparent to
persons skilled in the art upon reference to this descrip-
tion. Specifically, while various embodiments have been
described using the TCP/IP protocol stack, the invention

may advantageome be applied where other communi-
cations protocols are used. Also. while various flow

charts have shown steps performed in an example

order, various implementations may use altered orders
of step in order to apply the invention. And further, while
certain specific software and/or hardware platforms

BNSDOCID: <EP__0838%0A2_I_>

EP0838930A2-

10

15

20

25

30

35

4o

45

50

55

14

26

have been used in the description, the invention may be

applied on other platforms with similar advantage. It is

therefore contemplated that the appended claims will
cover any such modifications or embodiments which fall
within the scope of the invention.

\

Claims

1. A pseudo network adapter providing a virtual pri-
vate network. comprising:

an interface for capturing packets from a local

communications "protocol stack for transmis-
sion on said virtual private network. said inter-

face appearing to said local communications
protocol stack as a network adapter device
driver for a network adapter connected to said
virtual private network;
a first server emulator. providing a first reply

packet responsive to a first request packet cap—
tured by said interface for capturing packets
from said local communications protocol stack
for transmission on said virtual private network.

said first request packet requesting a network
layer address for said pseudo network adapter,
said first reply indicating a network layer
address for said pseudo network adapter; and
a second server emulator. providing a second
reply packet responsive to an second request

packet captured by said interface for capturing
packets from said local communications proto-
col stack for transmission on said virtual private

network. said second request packet request-

ing a physical address corresponding to a net—
work layer address of a second pseudo
network adapter, said second pseudo network

adapter located on a remote server node, said
second reply indicating a predetermined.
reserved physical address.

2. The pseudo network adapter of claim 1. further

comprising a means for indicating to said local com-
munications protocol stack that said predeter-
mined. reserved physical address is reachable
through said pseudo network adapter. wherein said

means for indicating modifies a data structure in
said local communications protocol stack indicating
which nodes or networks are reachable through

each network interface of the local system.

3. The pseudo network adapter of claim 1, further

comprising a means for indicating to said local com-
munications protocol stack that one or more nodes

on a remote private network connected to said
remote server node are reachable through a gate-

way node equal to said second pseudo network
adapter on said remote server node.

Petitioner Apple - EX. 1002, p. 282

Petitioner Apple - Ex. 1002, p. 283

4.

27

The pseudo network adapter of claim 1, further
comprising:

a transmit path for processing data packets
captured by said interface for capturing packets
from said local communications protocol stack
for transmission on said virtual private network;

an encryption engine, within said transmit path,
for encrypting said data packets:
an encapsulation engine. within said transmit

path. for encapsulating said encrypted data
packets into tunnel data frames; and

a means for passing said tunnel data frames

back to said local communications protocol
_ stack for transmission to a physical network

adapter on said remote server node.

The pseudo network adapter of claim 4, wherein
said transmit path further indudes means for stor-

ing a digest value in a digest field in each of said

tunnel data frames. said digest value equal to an
output of a keyed hash function applied to said data
packet encapsulated within said tunnel data frame

concatenated with a counter value equal to a total
number of tunnel data frames previously transmit-
ted to said remote server node.

The pseudo network adapter of claim 4. wherein
said transmit path further includes means for
processing an Ethernet header in each one of said

captured data packets. said processing of said
Ethernet header including removing said Ethernet
header.

The pseudo network adapter of claim 1, further
comprising:

an interface into a transport layer of said local

communications protocol stack for capturing
received data packets from said remote server
node.

The pseudo network adapter of claim 7, further
comprising:

a receive path for processing received data
packets captured by said interface into said
transport layer of said local communications

protocol stack for capturing received data pack-
ets from said remote server node;

an decapsulation engine, within said receive

path. for decapsulating said received data
packets by removing a tunnel frame header;

an decryption engine, within said receive path.
for decrypting said received data packets: and
a means for passing said received data pack-

ets back to said local communications protocol
stack for delivery to a user.

BNSDOCI D: <EP_0838930A2_I_>

5

10

15

20

25

30

35

40

45

50

55

15

EP0838930A2

9.

28

A method for providing a pseudo network adapter
for a virtual private network. comprising the steps
of:

capturing packets from a local communications

protocol stack for transmission on said virtual

private network, said capturing through an
interface appearing to said local communica-

tions stack as a network adapter device driver
for a network adapter connected to said virtual
private network;

issuing a first reply packet responsive to a first
request packet captured by said interface for
capturing packets from said local communica-
tions protocol stack for transmission on said vir-

tual private network, said first request packet
requesting a network layer address for said

pseudo network adapter, said first reply indicat-

ing a network layer address for said pseudo
network adapter: and

issuing a second reply packet responsive to a
second request packet captured by said inter-
face for capturing packets from said local com-
munications protocol stack for transmission on
said virtual private network. said second

request packet requesting a physical address
corresponding to a network layer address of a
second pseudo network adapter, said second
pseudo network adapter located on a remote

server node, said ARP Reply indicating a pre-
determined, reserved physical address

10. The method of claim 9, further comprising indicat-

11.

ing to said local communications protocol stack that
said predetermined, reserved physical address is

reachable through said pseudo network adapter,
wherein said step of indicating to said local commu-
nications protocol stack modities a data structure in

said local communications protocol stack indicating
which nodes or networks are reachable through
each network imerface of the local system.

The method of claim 9. further comprising indicat-
ing to said local communications protocol stack that
one or more nodes on a remote private network
connected to said remote server node are reacha—

ble through a gateway node equal to said second
pseudo network adapter on said 'remote server

node, wherein said step of indicating to said local
communications protocol stack that one or more
nodes on said remote private network connected to

said remote server node are reachable through a
gateway node equal to said second pseudo net-
work adapter on said remote server node modifies
a network layer routing table in said local communi—
cations protocol stack

12. The method of claim 9, further comprising:

Petitioner Apple - EX. 1002, p. 283

Petitioner Apple - Ex. 1002, p. 284

(u

13.

14.

15.

29 EP 0 838 930 A2 30

processing data packets captured by said inter-
face for capturing packets from said local com-
munications protocol stack for transmission on
said virtual private network in a transmit data

' Path;

encrypting said data packets in an encryption
engine, within said transmit path;
encapsulating said encrypted data packets into
tunnel data frames by an encapsulation

engine. within said transmit path; and
passing said tunnel data frames back to said
local communications protocol stack for trans-

mission to a physical network adapter on said
remote server node, wherein said transmit path

further includes storing a digest value in a

digest field in each of said tunnel data frames.
said digest value equal to an output of a keyed
hash function applied to said data packet
encapsulated within said tunnel data frame
concatenated with a counter value equal to a

total number of tunnel data frames previously
transmitted to said remote server node.

The method of claim 12, wherein said transmit path
further includes processing an Ethernet header in

each \one of said captured data packets. said
processing of said Ethernet header including
removing said Ethernet header.

The method of claim 9, further comprising captur-

ing received data packets from said remote server

node through an interface into a transport layer of
said local communications protocol stack. further
comprising:

processing received data packets captured by
said interface into said transport layer of said
local communications protocol stack for captur-

ing received data packets from said remote
sewer node in a receive path;

decapsulating said received data packets by
removing a tunnel frame header in an decapsu-
lation engine. within said receive path;

decrypting said received data packets in a
decryption engine within said receive path; and
passing said received data frames packets
back to said local communications protocol
stack tor delivery to a user.

The method of claim 9. wherein said network layer

address for said pseudo network adapter and said

predetermined, reserved physical address is corn-
municated to said pseudo network adapter from
said remote server node as dient data in a connec-

tion response frame. ‘

SNSDOCID: (EP___0338%0A2_I_>

10

15

20

25

30

35

50

55

15

Petitioner Apple - EX. 1002, p. 284

Petitioner Apple - Ex. 1002, p. 285

EP083893OA2

3

_‘.OE

nIE3“.zo_wm__2mz<m.r(.20._<D.ro<$2..$2..V2052.”.229$a
$2..mm><.

mm?)¥z_._<H<Qmm><._meEmz

 _

w.
685$

<20.5$02.52
.—_

 $2..685$$2..E895:5.3EE9625:E9525:--------------------fl..................$2..I585$$2..—20.8%«:5.3zo.wmmm20.3mm$23$2..zebfizmwwma20.25%me

mm?)ZO_.r<o_._n_n_<

mm?)ZO_.r<o_._n_n_<

wwmoomn.Oz_>_momm

wmmoomi0252mm

or

or

17

Petitioner Apple - EX. 1002, p. 285
OBBBK‘WA? l >BNSDOCID: <EP____

Petitioner Apple - Ex. 1002, p. 286

EP0838930A2

mw>mmmngzakmm"mmxmozcwz\wk<>_mn_
om

om

.._._<>>mm_u_

wv
<mm>mmw._m_223._.

omChum><._mm._.._<>>m_m_u_.._w223.r.6222.

 _

_III__.Zx03w?"xmozcwz.\mm9.WEEE
N.9”.

mm<>>om<x

20HImmaa052m269mE55a
w§<m00ma20_._.<o_._n_n_<mmmm:

18

Petitioner Apple - EX. 1002, p. 286
_>BNSDOCID: <EP___OB38%O

Petitioner Apple - Ex. 1002, p. 287

EP0838930A2

ACTION NODE COMMUNICATION

7O ESTABLISH CONNECTION (TCP) A —> B

IDENTIFY DOWNSTREAM ROUTE

(RELAY FRAME)

74 ESTABLISH CONNECTION (TCP) B —> c

72

76 IDENTIFY DOWNSTREAM ROUTE B _> c
(RELAY FRAME)

78 ESTABLISH CONNECTION (TCP) C —> D

80 IDENTIFY DOWNSTREAM ROUTE ‘ C L . D
(RELAY FRAME) _*

FIG. 4

19

BNSDOC'DZ‘EP—WAZJR Petitioner Apple - EX. 1002, p.287

Petitioner Apple - Ex. 1002, p. 288
SNSDOCID: < E P__0838930A2_L>

EP083893OA2

ACTION NODE COMMUNICATION

90 KEY EXCHANGE/

AUTHENTICATION REQUEST: A _' B —’ C —’ D

 92 KEY EXCHANGE]

AUTHENTICATION RESPONSE D _’ C _’ B _’ A

(REPEAT AS NEEDED)

FIG. 5

100

102

FRAME LENGTH

TYPE = RELAY

PROTOCOL VERSION NUMBER

' ORIGIN INDEX

PATH INDEX 0

PATH INDEX 1

104

106

108

110

STRING BUFFER
112

FIG. 6

20

Petitioner Apple - EX. 1002, p. 288

Petitioner Apple - Ex. 1002, p. 289

EP0838930A2

m

138 ‘

STRING BUFFER

FIG. 7

_

STRING BUFFER

FIG. 8

150

152

154

 156

158

160

 162

 163

21

BNSDOCID: <Ep_0833930A2_I_> . Petitioner Apple - EX. 1002, p289

Petitioner Apple - Ex. 1002, p. 290

EP0838930A2

TYPE = DATA 172

PROTOCOL VERSION NUMBER 174

184 DIGEST_LEN 186

ENCAPSULATED

DATAGRAM 188

(OPTIONALLY

ENCRYPTED)

OPTIONAL PADDVING 189

FIG. 9

FIG. 10

22

msoocuoxephossesamzp Petitioner Apple - EX. 1002, p. 290

Petitioner Apple - Ex. 1002, p. 291

EP0838930A2

194

TCP CONNECT

214

SEND RELAY

TCP DISCONNECT

 NETWORKERROR’
RCV RESPONSE

AUTHORIZED

RCV CLOSE (SEND + RCV DATA) KEY EXPIRED

END SESSIONI BAD CRYPTO 205
® 206 ~

SEND CLOSE 207

209 m 208
FIG 11 @

211

210

23

BNSDOCID:<EP__0838900A2_I_> Petitioner Apple - Ex, 1002, p 291

Petitioner Apple - Ex. 1002, p. 292

EP0838930A2

@
217

RCV TCP CONNECT 218

RCV RELAY '

221

@
222

RCV REQUEST

223

AUTHORIZE NO

CONNECTION

NETWORKERROR

SEND RESPONSE

AUTHORIZED

(SEND + RCV DATA)

RCV CLOSE

END SESSION BAD CRYPTO

SEND CLOSE 229

231 232

FIG 12 ®

24

ausoocuo; <EP_05389:30A2.I_> Petitioner Apple - EX. 1002, p. 292

Petitioner Apple - Ex. 1002, p. 293
BNSDOCID: <EP_0838930A2_|_>

EP0838930A2

w
235

RCV TCP CONNECT

RECVRRQ

RCV RELAY

DETERMINE

FORWARDING

ADDRESS

240

FORWARDCONNECT

TCP CONNECT

FORWARD

(SEND + RCV ALL

FRAMES)

236

 239

241

242

NETWORKERROR

OR

REMOTE CLOSE

243

245

25

246

Petitioner Apple - EX. 1002, p. 293

Petitioner Apple - Ex. 1002, p. 294

EP0838930A2

3.9“.

Ammaomwv2<._m._.<>_mn_

asa\n|\

 o_.._m3n_

Oozmwa4<O_m>In_

SNmvwv........$E<o<Eran:25.....
u4<ahm_u

xmozcmzmIxmozfiz4.25m:x5252...e.
mm>mmwJmZZDF

Kuhn—<91meEmz._<U_w>Iu

mmhu<o<xm0>>._.wz

.8N003mmaEwhmfiw._.zw_._0

Nvm

26

Petitioner Apple - EX. 1002, p. 294
_0838%OA2 l >BNSDOCID: <EP

Petitioner Apple - Ex. 1002, p. 295

EPO 838 930 A2

261

 OTHER

OPERATING SYSTEM

FUNCTIONS

 TC P/l P STAC K

263

VIRTUAL ADAPTER

DRIVER

ENCAPSULATION

ENCRYPT‘ION

270

ARP SERVER EMULATOR

DHCP SERVER EMULATOR

272

DECAPSULATION 268

DECRYPTION

266

262

PHYSICAL NETWORK ADAPTER'S
DRIVER

FIG. 15

27

“50°C” ‘EP—°838°°°‘2—'—’ Petitioner Apple - EX. 1002, p. 295

Petitioner Apple - Ex. 1002, p. 296

EPO 838 930 A2

OPERATING SYSTEM
310

282

 TCP/IP TCP/IP

TCP/IP STACK TRANSMIT RECEIVE
FUNCTION FUNCTION

286\TRANSMI1TED 284\ RECEIVED 312 314 280
ETHERNET PACKETS ETHERNET PACKETS

288 — PSEUDO NETWORK

VIRTUAL NETWORK ADAPTER ADAPTE§OZ
(EMULATES AN ETHERNET DEVICE)

ARP AND DHCP

290 PACKETS
l._—3...TRANSMIT________RECEIVE______

: PATH EE— PATH {“296 304I II I

I 292 l I: 298 II I I '

I ENCRYPTION Ii DECRYPTION I ARP SERVER
I u . EMULATOR

i 294 H 300 I DHCP SERVER
I II I EMULATOR
: ENCAPSULATION I: DECAPSULATION I
L__-____ ________|L________________.|

PHYSICAL

NETWORK ADAPTER

(SENDS AND RECEIVES 308
PACKETS ON

PHYSICAL NETWORK FIG-1 6

s~soocuu<ep_osaaseoA2.I.> Petitioner Apple - EX. 1002, p. 296

Petitioner Apple - Ex. 1002, p. 297

THIS EVENT OCCURS WHEN THE

TCP/IP STACK SENDS A PACKET TO

THE TUNNEL'S VIRTUAL LAN

320

\

PSEUDO ADAPTER

SEND ROUTINE

PROCESS ETHERNET 322

HEADER

324

ARP PACKET ?

NO

330

DHCP PACKET ?

NO
334

ENCRYPT

336

ENCAPSULATE

SEND DATA VIA

TCP/IP STACK

YES—>

YES

338

BNSDOCID: <59___oeaeseo;x2.l_)

326

GENERATE ARP

RESPONSE

332

GENERATE DHCP

RESPONSE

EP0838930A2

THE PSEUDO ADAPTER CAUSES

THE TCP/IP STACK TO RECEIVE A

RESPONSE TO THE ARP OR

DHCP MESSAGE IT TRANSMITTED,
CAUSING THE STACK TO BEHAVE AS

IF A PHYSICAL ETHERNET EXISTED.

' ~ ‘ INDICATE "RECEIVED"

" RESPONSE VIA

PSEUDO ADAPTER

THE PSEUDO ADAPTER CALLS

THE TCP/IP STACK TO TRANSMIT

THE ENCRYPTED MESSAGE AS

NORMAL DATA OVER A TCP/IP

CONNECTION.

FIG. 17

29

Petitioner Apple - EX. 1002, p. 297 ' '

Petitioner Apple - Ex. 1002, p. 298

EP0838930A2

THIS EVENT OCCURS WHEN DATA

ARRIVES FROM THE REMOTE END

OF THE TUNNEL'S TCP/IP

350 CONNECTION

TCP/IP RECEIVE EVENT

DECAPSULATE

354
DECRYPT

356 WHEN THE PSEUDO ADAPTER
INDICATES RECEIVED DATA, IT
CAUSES THE TCP/IP STACK TO

,' BEHAVE AS IF IT RECEIVED THE
" DATA FROM A REAL ETHERNET

ADAPTER.

CONSTRUCT ETHERNET

PACKET

358

INDICATE RECEIVED

DATA THROUGH VIRTUAL NETWORK

ADAPTER INTERFACE

FIG. 18

30

BNSDOCID: <EP_0338%0A2_|_>
Petitioner Apple - EX. 1002, p. 298

Petitioner Apple - Ex. 1002, p. 299

EPO 838 930 A2

400

fSOCKETS

402

3%

PSEUDO PHYSICAL
ADAPTER NETWORK

DRIVER 390

394

PHYSICAL NETWORK

FIG. 19

31

mm"): ‘EP—mwm‘u’ Petitioner Apple - EX. 1002, p. 299

Petitioner Apple - Ex. 1002, p. 300

EP0838930A2

TUNNEL

APPLICATION

429

422

420

416

PHYSICAL

NETWORK

DRIVER

(PSEUDO

ADAPTER)

32

Busoocuoz<ep_osaasaoA2_L> Petitioner Apple - EX. 1002, p. 300

Petitioner Apple - Ex. 1002, p. 301

EP0838930A2

4505

USER

APPLICATION ----------- PLAINTEXT

| WINSOCK

; 472 ‘

USER

DAEMON APPLICATION « ““‘"'.’ PLA'NTEXT

- - — — - 'ENCRYPTED

UNIX SOCKET 474 3I LAYER 5 '

476

482

478

488

490

WRTUAL

DATALINK i------- DEVICE DHCP

1 PHYSICAL DR'VER ,

NETWORK" 492 480

48.4

FIG. 22

BNSDOCID:<EP__0333930A2_I_> Petitioner Apple - EX. 1002, p 301

Petitioner Apple - Ex. 1002, p. 302

EPO 838 930 A2

TUNNEL APPLICATION

SEND RELAY

SEND REQUEST

RECEIVE RESPONSE

PASS CLIENT ADAPTER

TO PSEUDO ADAPTER

J MODIFY ROUTING
TABLE SO THAT ALL

NODES ON THE

VIRTUAL PRIVATE LAN

ARE REACHED

THROUGH THE

TUNNEL SERVER

PSEUDO ADAPTER

IP ADDRESS

PSEUDO NETWORK ADAPTER

500

502

504
506

510

INDICATE ACTIVE

STATUS TO STACK

RECEIVE DHCP

REQUEST FROM STACK

SEND DHCP RESPONSE

TO STACK

RECEIVE ARP REQUEST

FOR MAC ADDRESS

FOR TUNNEL SERVER

PSEUDO ADAPTER

IP ADDRESS

SEND ARP RESPONSE

BACK TO STACK

512

517

516

518

SNSDOCID: <EP____0838%0A2_|_>
Petitioner Apple - EX. 1002, p. 302

Petitioner Apple - Ex. 1002, p. 303

/0/p 2/9, 3 xi

MUK Patent Application MGB (11)2 317 792 MA
(43) Date ofA Publication 01.04.1999

(51) lNT CL“
HML 9/00

(21) Application No 97198161

(22) Date of Filing 17.09.1997
(52) UK CL (Edition P)

H4? PPEB
U1S $2124 $2209

(30) Priority Data
(31) 08715343 (32) 18.09.1995 (33) US

08715668 18.09.1996
(56) Documents Cited

W0 97/26735 A1 W0 97/267“ A1 WO 97/26731 A1
(71) Applicanfls) WO 97/23972 A1 WO 97/13340 A1 ’

Secure Computing Corporation
(58) Field of Search

UK CL (Edition P) H4? PDCSA PDCSC PPEB
INT CL° HML 9/00 9/32 29/06 29/03
Online: WPl. INSPEC

(Incorporated in USA - Delaware)

2675 Long Lake Road. Roseville,
Minnesota 55113—2536, United States of America

(72) lnventor(s)
Spence Minear
Edward B Stockwell

Troy De Jonah

(74) Agent and/or Address for Service
Beresford 8: Co

2-5 Warwick Court. High Holborn. LONDON.
WC"! SDJ. United Kingdom

(54) Virtual Private Network for encrypted firewall

(57) A system (10) for regulating the flow of messages through a firewall (18) having a network protocol
stack, wherein the network protocol stack includes an Internet Protocol (IP) layer where if the message is not
encrypted, it passes the unencrypted message up the network protocol stack to an application level proxy (50),
and if the message is encrypted, it decrypts the message and passes the decrypted message up the network
protocol stack to the application level proxy. The step of decrypting the message includes the step of executing
a process at the IP layer to decrypt the message.

10

12 / 20

WORKSTATION WORKSTATION

VZ6LLLSZ85)
At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

BNSDOCID:<GB_2317792A_I_> Petitioner Apple - EX. 1002, p. 303

Petitioner Apple - Ex. 1002, p. 304

I/5

 ..0..._

mP

.4.226%;afissummmF.¢_.o_zo_._.<._.mxmo;szfimxmo; om\
o_‘

N—

Petitioner Apple - EX. 1002, p. 304HtIBRAAIR An Map-unn- n

Petitioner Apple - Ex. 1002, p. 305

xmozcmz

4<zmmkxm

Pefifionerfiqnfle-REX.1002,p.305

>moo022103

2/5

m.oE

o¢

BNSDOCID: <GB_2317792A_I_>

Petitioner Apple - Ex. 1002, p. 306

3/5

 m.9...
v2:also

3N8tum—.umzzaomEEozw

Kémf

and“_

mz90.2.«2
Petitioner Apple - EX. 1002, p. 306

Petitioner Apple - Ex. 1002, p. 307

"A /§

v.0:$2.05

mmz_ozmSo055621em.5563m

mo<mmm._.z_szzm0.55.0‘.vm
E

xvv

_rmumsm...53n__xmmom

x?

65m“.52

.Exoommo<m

(D
l\

xo¢

undo
Bomm

Dodzmmx020mo<ammum:
mum:mo<m

mp

Petitioner Apple - EX. 1002, p. 307
BNSDOCID: <GB_%17792A_I_>

Petitioner Apple - Ex. 1002, p. 308

5/5

32 WORKSTATION

FIG.5

FIREWALL

 12 WORKSTATION

WWW“ 7mm. .\ Petitioner Apple - Ex. 1002, p. 308

Petitioner Apple - Ex. 1002, p. 309

231 7792

VIRTUAL PRIVATE NETWORK ON APPLICATION GATEWAY

5 WW

Wu

The present invention pertains generally to network communications, and

in particular to a system and method for secmcly transferring information

between firewalls over an unprotecmd network.

10 W

Firewalls have become an increasingly important part ofnetwork design.

Firewalls provide protection ofvaluable resomces on a private network while

allowing communication and access with systems located on an unprotected

network such as the Internet. In addition, they operate to block attacks on a

15 private network arriving from the tmprotccted network by providing a single

connection with limited services. A well designed firewall limits the security

problems of an Internet connection to a single firewall computer system. This

allows an organization to focus their network security efi‘orts on the definition of

the security policy enforced by the firewall. An example ofa firewall is given in

20 “SYSTEM AND METHOD FOR PROVIDING SECURE INTERNETWORK

SERVICES” by Boebert et a1. (PCT Published Applicau'on No. W0 96/131 13,

published on May 2, 1996), the description ofwhich is hereby incorporated by

reference. Another description of a firewall is provided by Dan Thomsen in

“Type Enforcement: the new secmity model", Proceedings: Wfimedia: Fu!!-

25 Service Impact on Business. Education, and the Home, SPlE Vol. 2617, p. 143.
August 1996. Yet another such system is described in “SYSTEM AND

METHOD FOR ACHIEVING NETWORK SEPARATION" by Gooderum et a].

(PCT Published Application No. WO 97/29413, published on August 14, 1997),

the description of which is hereby incorporated by reference. All the above

30 systems are examples of application level gateways. Application level gateways

use proxies or other such mechanisms operating at the application layer to

process trafiic through the firewall. As such, they can review not only the

BNSDOCID:<GB_.2317792A__I_> Petitioner Apple - EX. 1002, p. 309

Petitioner Apple - Ex. 1002, p. 310

IO

15

20

25

30

DNCWIH- AD 09177MA l x

2

message traffic but also message content. In addition, they pmVide

authentication and identification services, access control and auditing.

Data to be transferred on unprotected networks like the Internet is

susceptible to electronic eavesdropping and accidental (or deliberate) corruption.

Although a firewall can protect data within a private network from attacks

launched from the unprotected network, even that data is vulnerable to both

eavesdropping and corruption when transferred fiorn the private network to an

external machine. To address this danger, the Internet Bigineering Task Force

(IETF) developed a standard for protecting data transferred between firewalls

over an unprotected network. The Internet Protocol Security (IPSEC) standard

calls for encrypting data before it leaves the first firewall, and then decrypting

thedatawhenitisreceivedbythesecondfirewall. 'I‘hedecrypteddataisthen

delivered to its destination, usually a user workstation connected to the second

firewall. For this reason IPSEC encryption is sometimes calledfirewall-to-

firewall cue-option (PFE) and the connection between a workstation connected

to the first firewall and a client or server connected to the second firewall is

termed a virtualprivate network, or VPN.

The two main components of IPSEC security are data encryption and

sender authentication. Data encryption increases the cost and time required for

the eavesdropping party to read the transmitted data Sender authentication

ensures that the destination system can verify whether or not the encrypted data

was actually sent from the workstation that it was supposed to be sent fi'orn. The

IPSEC standard defines an encapsulated payload (ESP) as the mechanism used

to transfer encrypted data. The standard defines an unhentieetion header (AH)

as the mechanism for establishing the sending workstation’s identity.

Through the propu use of encryption. the problems of eavesdropping and

corruption can be avoided; in effect, a protected connection is established from

the internal network conneemd to one firewall through to aninternal network

cemented to the second firewall. In addition, IPSEC can be used to provide a

protected connection to an external computing system such as a portable

personal computer.

Petitioner Apple - EX. 1002, p. 310

Petitioner Apple - Ex. 1002, p. 311BNSDOCID: <GB__2317792A_I_>

3

IPSEC encryption and decryption work within the IP layer ofthe network

protocol stack. This means that all communication between two 11’ addresses

will be protected because all interfirewall communication must go through the IP '

layer. Such an approach is preferable over encryption and decryption at higher

5 levels in the network protocol stack since when encryption is performed at layers

higher than the IP layer more work is required to ensure that all supported

communication is properly protected. In addition, since IPSEC encryption is

handled below the Transpon layer, IPSEC can encrypt data sent by any

application. IPSEC therefore becomes a transparent add-on to such protocols as
10 TCP and UDP.

Since, however, IPSEC decryption occurs at the IP layer, it can be

dificult to port IPSEC to an application level gateway while still maintaining
control at the proxy over authentication. message content, access control and

auditing. Although the IPSEC specification in RFC 1825 suggests the use ofa

15 mandatory access control mechanism in a multivlcvel secure (MLS) network to

compare a sectm'ty level associated with the message with the security level of

the receiving process, such an approach provides only limited utility in an

application level gateway environment In fact, implementations on applicatiori

level gateways to date have simply relied on the fact that the message was

20 IPSBC-encrypted as assurance that the message is legitimate and have simply
decoded and forwarded the message to its destination. This creates. however, a

potential Chink in the firewall by assuming that the encrypted commtmication
has access to all services.

What is needed is a method ofhandling IPSEC messages within an

25 application level gateway which overcomes the above deficiencies. The method

should allow control over access by an IPSEC connection to individual services
within the internal network.

Wm ‘

The present invention is a system and method for regulating the flow of .
30 messages through a firewall having a network protocol stack, wherein the

network protocol stack includes an Internet Protocol (1?) layer, the method

Petitioner Apple - EX. 1002, p. 311

Petitioner Apple - Ex. 1002, p. 312

10

15

l . 20

25

l

'I 30

RNSW‘JD‘ AR 9317799A l >

4

comprising the steps ofdetermining. at the 1? layer, ifa message is nerypted, if

the message is not encrypted. passing the unencrypted message up the network

protocol stack to an application level proxy, and ifthe message is encrypted, .

decrypting the message and passing the decrypted message up the network

protocol stack to the application level proxy, wherein the step ofdecrypting the

message includes the step ofexecuting a procedure at the IP layer to decrypt the

message.

According to another aspect ofthe present invention, a system and

method is described for authenticating the sender of a message within a

computer system having a network protocol stack, wherein the network protocol

stack includes an Internet Protocol (IP) layer, the method comprising the steps of

determining, at the 1? layer, ifthe message is encrypted, ifthe message is

encrypted, decrypting the message, wherein the step ofdecrypting the message
includes the step of executing a procedure at the 1? layer to decrypt the message,

pmsing the decrypted message up the network protocol stack to an application

‘ level proxy, determining an authentication protocol appropriate for the message,

and executing the authentication protocol to authenticate the sender ofthe

message.

In the following detailed description ofexample embodiments of the

invention, reference is made to the accompanying drawings which form a part

hereof, and which is shown by way ofillustration only. specific embodiments in

which the invention may be practiced It is to be understood that other

embodiments may be utilized and structural changes may be made without

departing fiom the scope ofthe present invention.

In the drawings, where like numerals refer to like components throughout
the several views:

Figure l is a functional block diagram ofan application level gateway-

implernented firewall-to-firewall encryption scheme according to the preSent

invention;

Petitioner Apple - EX. 1002, p. 312

Petitioner Apple - Ex. 1002, p. 313

10

15

20

25

30

BNSDOCID: <GB_fl17792A__I_>

5

Figure 2 is a block diagram showing access control checking of both

encrypted and unencrypted messages in network protocol stack according to the
present invention;

Figure 3 is a block diagram ofa representative application level gateway-
implemented firewall-to—firewall encryption scheme;

Figure 4 is a block diagram ofone embodiment ofa network-separated
protocol stack implementing IPSEC according to the pres-t invention; and

Figure 5 is a functional block diagram ofa firewall-to-worlcstation

encryption scheme according to the present invention.

In the following detailed description ofthe preferred embodiment,

references made to the accompanying drawings which form a part hereof, and in

which is shown by way ofillustration specific preferred embodiments in which

the invention may be practiced These embodiments are described in sufficient

detail to enable those skilled in the art to practice the invention. and it is to he

understood that other embodiments may be utilized and that structtu'al, logical,

physical, architectural. and electrical changes may be made without departing
from the spirit and scope of the present invention. The following detailed

description is, therefore, not to be taken in a limiting sense, and the scope of the

present invention is defined only by the appended claims and their equivalents.

A system 10 which can be used for firewall-to-firewall encryptiou (Fl-‘15)
is shown in Figure 1. In Figure 1, system 10 includes a workstation 12

communicating through afirewall 14 to an tmprotectcd network 16 such as the

Internet System 10 also includes a workstation 20 communicating through a
firewall 18 to unpromcted network 16. In one embodiment, firewall 18 is an
application level gateway.

communication must pass through the 1? layer. IPSEC takes the standard

Petitioner Apple - EX. 1002, p. 313

Petitioner Apple - Ex. 1002, p. 314

6

Internet packet and converts it into a carrier packet. The carrier packet is

designed to do two things: to conceal the contents ofthe original packet

(encryption) and to provide a mechanism by which the receiving firewall can

verify the source ofthe packet (authentication). In one embodiment of the

5 present invention. each IPSEC carrier packet includes both an authentication

header used to authenticate the sending machine and an encapsulated payload

containing encrypted data. The authentication header and the encapsulated

payload features of IPSEC ban. however, be used independently- As required in

RFC 1825, DES-CBC is provided for use in encrypting the encapsulated payload

10 while the authentication header uses keyed MDS.

To use IPSEC, you must create a seao'in arsociation (SA) for each

destination IP address. In one embodiment. each SA contains the following

information:

- Security Parameters Index (SP1) - The index used to find a SA on

15 receipt ofan IPSEC damgram.

- DestinationIPaddress-TheaddressmedtofindtheSAand

trigger use ofIPSEC processing on output.

— The peer SP1 - The SPI value to put on a IPSBC datagram on

output.

20 - The peer IP address - The destination IP address to be put into the

_ packet header ifIPSEC Tunnel mode is used.

- The Encryption Security Payload (ESP) algorithm to be used.

. The ESP key to used for decryption of input datagrarns.

- The ESP key to used for encryption ofoutput datagams.

25 - The authentication (AH) algorithm to be used.

- TheAerytobeusedforvalidationofinputpackets.

- The AH key to be used for generation ofthe authentication data

for output datagrams.

30 The combination of a given Security Parameter Index and Destination IP

address uniquely identifies a particular “Security Association." In one

Petitioner Apple - EX. 1002, p. 314BNSDOClDz<GB 2317792A I >

Petitioner Apple - Ex. 1002, p. 315

7

embodiment, the sending firewall uses the sending userid and Destination

Address to select an appropriate Security Association (and hence SPI value).

The receiving firewall uses the combination of SP! value and Source address to

obtain the appropriate Security Association.

5 A security association is normally one-way. An authenticated

communications session between two firewalls Will normally have two Security

Parameter Indexes in use (one in each direction). The combination of a

particular Security Parameter Index and a particular Destination Address

uniquely identifies the Security Association

10 7 More information on the specifics ofan IPSEC FFE implementation can

be obtained from the standards developed by the IPSEC work group and

documented in Security Architecturefor IP (RFC 1825) and in RFC’s 1826-

l 829.

When a datagram is received from unprotected network 16 or is to be

15 transmitted to a destination across unprotected network 16, the firewall must be

able to determine the algorithms, keys, etc. that must be used to process the

datagram correctly. In one embodiment, this information is obtained via a

security association lookup. In one such embodiment, the lookup routine is

passed several arguments: the source IP address ifthe datagrarn is being received

20 from network 16 or the destination IP address ifthe dang-am is to be transmitted

across network 16, the SP1. and a flag that is used to indicate whether the lookup

is being done to receive or transmit a datagram.

When an IPSEC datagram is received by firewall 18 fiom unprotected

network 16. the SP1 and source IP address are determined by looking in the

25 datagram. In one embodiment a Security Association Database (SADB) stored

within firewall 18 is searched for the entry with a matching SPI. In one such

embodiment, seetn-ity associations can be set up based on network address as

well as a more granular host address. This allows the network administrator to

create a security association between two firewalls with only a couple of lines in

30 a configuration file on each machine. For such embodiments, the entry in the ‘

Security Association Database that has both the matching SP1 and the longest

Petitioner Apple - EX. 1002, p. 315
BNSDOCID: <GB_2317792A_I_>

Petitioner Apple - Ex. 1002, p. 316

10’

15

20

25

3O

nunwrn. .nn Mama I

address match is selected as the SA entry. In another such embodiment, each SA

has a prefix length value associated with the address. An address match on a SA?

entry means that the addresses match for the number ofbits specified by the

prefix length value.

1herearetwoexceptionstothis searehprocess. First. whenan SAentry

is setmarkedasbeingdynamicitimpliesthattheuserofthisSAnmynothavea

fixed I? address. In this case the match is fully determined by the SP1 value.

Thus it is necessary that the SP1 values for such SA entries be unique in the

SADB. The second exception is for SA entries marked as tunnel mode entries.

In this case it is normally the case that the sending entity will hide its source

address so that all that is visible on the public wire is the destination address. In

thiscase,likeinthe casewheretheSAentriesarefordynamicIPaddresses,the

search is done exclusively on the basis ofthe SP1.

When transmitting a datagram across unprotected network 16 the SADB

is searched using only the destination address as an input. In this case the entry

which has the longest address match is selected andretumed to the calling

routine.

In one embodiment, if firewall 18 receives datagrams which are

identified as either an 1P_PROTO_1PSEC*BSP or IP_PRO‘1'0_IPSBC_AH

protocol datagram. there must be a corresponding SA in the SADB or else

firewall 18 will drop the packet and an audit message Will be generated. Such an

occurrence might indicate a possible attack or it might simply be a symptom of

an erroneous key entry in the Security Association Database.

In a system such as system 10, application level gateway firewall 18 acts

as a bufi‘er‘between unprotected network 16 and workstations such as

workstation 20. Messages coming from unprotected network 16 are reviewed

and a determination is made as to whether execution of an authentication and

identification-protocol is warranted. In contrast to previoussystems, system 10

also performs this same determination on IPSEC-encrypted messages. If

desired, the same authentication and identification can be made on messages to

be transferred fi'om workstation 20 to unprotected network 16. Figure 2

Petitioner Apple - EX. .1002, p. 316

Petitioner Apple - Ex. 1002, p. 317

9

illustrates one way of authenticating both encrypted and unencrypted messages

in asystern such as system 10.

In the system ofFigure 2 a network protocol stack 40 includes a physical

layer 42, an Internet protocol (1?) layer 44, 3 Transport layer 46 and an

5 application layer 48. Such a protocol stack exists. for instance on application

level gateway firewall 18 ofFigure 1. An application executing in application

layer 48 can communicate to an application executing on another system by

preparing a message and transmitting it through one ofthe existing transport

' services executing on transport layer 46. Transport layer 46 in mm uses a

10 process executing in IP layer 44 to continue the transfer. Physical layer 42

provides the sofiware needed to transfer data through the communication

hardware (e.g., a network interface card or a modern). As noted above, IPSBC

executes within IP layer 44. Encryption and authentication is transparent to the

host as long as the network administrator has the Security Association Database

15 _ correctly configured and a key management mechanism is in place on the
firewall.

In application level gateway firewall 18, a proxy 50 operating within

application layer 48 processes messages transferred between internal and

external networks. All network-to—network traflic must pass through one of the

20 proxies within application layer 48 before being the transfer across networks is

allowed. A message arriving fiom external network 16 is examined at IP layer

44 and an SADB is queried to determine if the source address and SP1 are

associated with an SA. In the embodiment shown in Figure 2, an SADB Master

copy 52 is maintained in persistent memory at application layer 48 while a copy

25 54 ofSADB is maintained in volatile memory within the kernel. Ifthe message

is supposed to be encrypted, the message is decrypted based on the algorithm

and key associated with the particular SA and the message is transferred up
through transport layer 46 to proxy 50. Proxy 50 examines the source and

destination addresses and the type ofservice desired and decides whether

30 authentication ofthe sender is warranted. If so, proxy 50 initiates an

authentication protocol. The protocol may be as simple as requesting a user

Petitioner Apple - EX. 1002, p. 317
BNSDOCID: <GB__%17792A_I_>

Petitioner Apple - Ex. 1002, p. 318

10

15

20

25

10

name and password or it may include a challenge/response authentication

process. Proxy 50 also looks to see Whether the message coming in was

encrypted or not and may factor that into whether a particular type of

authentication is needed. In Telnet, for instance, user name/password

authentication may be sufiicient for an FFE link while the security policy may

dictate that a more stringent challenge/response protocol is needed for

miencryptedlinks. Inthatcase,proxy 50Mllbea‘l‘elnetproxyanditwill base

its authentication protocol on whether the link was encrypted or not.

Since IPSEC executes within 1? layer 44 there is no need for host

firewalls to update their applications. Users that already have IPSBC available

on their own host machine will. however, have to request that the firewall

administrator set up SA’s in the SADB for their trafic.

In the embodiment shown in Figure 2, a worldng copy 54 of the Security

Association Database consisting of all cmrently active SA’s is kept resident in

memory for ready access by IP layer processing as datagrams are received and

transmitted. In addition, a working master copy 52 of the SADB is maintained

in a file in nonvolatile memory. During system startup and initialiution

processing the content ofall of the required SA's in master SADB 52 is added to

the working copy 54 stored in kernel memory.

In one embodiment, firewall l8 maintains difi'erent levels ofsecmity on

internal and external network interfaces. It is desirable for a firewall to have

difl‘erent levels of security on both the internal and external interfaces. In one

embodiment. firewall 18 supports three difi’erent levels, numbered 0 through 2.

These levels provide a simple policy mechanism that controls permission for

both iii-bound and out-bound packets.

- Level 0 - do not allow any in-bound or out-bound traffic unless there is a

security association between the source and destination.

Petitioner Apple - EX. 1002, p. 318

Petitioner Apple - Ex. 1002, p. 319

10

15

20

25

30

BNSDOCID: <GB___2317792A_I_>

ll

- Level 1 - Allow both in-bound and out-bound non-IPSEC traffic but

force the use of IPSEC ifa SA exists for the address. (To support this firewall

18 must look for a SA for each invbound datagram.)

- Level 2 - allow NULL security associations to exist. NULL associations

are just like normal security associations, except no encryption or authentication

transform is performed on in-bound or out-bound packets that correspond to this

NULL association. Mth Level 2 enabled, the machine will still receive

unprotected traffic. but it will not transmit unless Level 1 is enabled.

The default protection level established when the Security Association

Database (SADB) is initialized at boot time is l for in-bound trafic and 2 for

out-bound traflic.

An Access Control List,‘ or ACL, is a list of rules that regulate the flow of

Internet connections through a firewall. These rules control how a firewall‘s

servers and proxies will react to connection attempts. When a server or proxy

receives an incoming connection, it performs an ACL check on that connection.

AnACLcheekcompares asetofparametersassociatedwiththe

connection against a list ofAC1. rules. The rules determine whether the

connection is allowed or denied A rule can also have one or more side efl'ects.

A side efi'ect causes the proxy to change its behavior in some fashion. For

example, a common side effect is to redirect the destination IP address to an

alternate machine. In addition to IP connection attempts, ACL checks can also

made on the console logins and on logins made from serial ports. Finally, ACL

checks can also be made on behalfofI? access devices, such as a Cisco box,

through the use of the industry standard TACACS+ protocol.

In one embodiment, the ACL is managed by an acid daemon running in

the kernel of firewalls 10 and 30. The acid daemon receives two types of

requests, one to query the ACL and one to administer it. In one such

embodiment. the ACL is stored in a relational database such as the Oracle

database for fast access. By using such a database, query execution is '

asynchronous and many queries can be executing concurrently. In addition,

these types ofdatabases are designed to manipulate long lists ofrules quickly

Petitioner Apple - EX. 1002, p. 319

Petitioner Apple - Ex. 1002, p. 320

10

15

20

25

30

BNSDOCID: <GB 2317792A l >

12

and emciently. These qualities ensure that a given query cannot hang up the

process that issued the query for any appreciable time (> 1-2 seconds).

In one such embodiment, the database can hold up to 100,000 users and

up to 10,000 hosts but can be scaled up to the capacity of the underlying

database engine. The results of an ACL check is cached. allowing repeated

checks to be turned around very quickly.

Applications on firewalls 10 and 30 can query acld to determine ifa

given connection attempt should be allowed to succeed. In one embodiment, the

types ofapplications (i.e. “agents”) that can make ACL queries can be divided

into four classes:

1) Proxies. These allow connections to pass through firewall 10 or 3.0 in

order to provide access to a remote service. They include tnauthp

(aufllenticated telnet proxy). pfip (FTP proxy). hflpp (HITP proxy). and

tcpgsp (TCP generic service proxy).

2) Servers. These provide a service on the firewall itself. They include fipd

and httpd.

3) Login agents. Login agent is a program on the firewall that can create a

Unix shell. It is not considered a server because it cannot receive 11’

connections. One example is lusrtbinllogin when used to create a dialup

session or a console session on firewall 10 or 30. Another example is the

command :role.

4) Network Access Servers (NAS). NAS is a remote 1P access deVice,

typically a dialup box manufactured by such companies as Cisco or

Bridge. The NAS usually prevides dialup telnet service and may also

provide SLIP or PPP service.

Proxies, servers, log'n agents, and NASes make queries to acld to

determine if a given connection attempt should he allowed to succeed. All ofthe

agents except NAS make their queries directly. NAS, because it is remote, must

communicate via an auxiliary daemon that typically uses an industry standard

protocol such as RADIUS or TACACS+. The auxiliary daemon (e.g., tact-add)

in turn forwards the query to local acld.

Petitioner Apple - EX. 1002, p. 320

Petitioner Apple - Ex. 1002, p. 321

10

15

20

25

30

BNSDOCID: <68_Z‘317792A_|_>

13

As a side efiect ofthe query, acld tells the agent ifauthentication is

needed. If no authentication is needed, the connection proceeds immediately.

Otherwise acld provides (a another side effect) a list ofallowed authentication

methods that the user can choose from. The agent can present a menu of choices

or simply pick the first authentication method by default. Typical authentication

methods include plain password. SNK DSS, SDI SecurID, LOCKout DES. and

LOCKout FORTEZZA. In one embofiment, the list of allowed authentication

methods varies depending on the host name. user name, time ofday, or any

combination thereof.

In the case of a Level 0 policy, it would be safe to assume that all

incoming trafic is encrypted or authenticated. In the case of Levels 1 through 2,

a determination must be made whether or not a secmity association exists for a

given peer. Otherwise an application may believe that in-botmd traffic has been

authenticated when it really has not. (That is why it is necessary to look for an

SA on input of each non-IPSEC datayam.)

In one embodiment. a flag which accompanies the message as it is sent

from IP layer 44 to proxy 50 indicates whether the incoming message was or was

not encrypted. In another embodiment, proxy SO accesses Security Association

Database 54 (the table in the kernel can be queried via an SADB routing socket

(PF-SADB» to determine whether or not a security association exists for a given

peer- The SADB socket is much like a routing socket found in the stock BSD

4.4 kernel (protocol family PF—ROUTE) except that PF—SADB sockets are used

to maintain the Security Association Database (SADB) instead of the routing

table. Because the private keys used for encryption, decryption, and keyed

authentication are stored in this table, access must be strictly prohibited and

allowed to only administrators and key management daemons. Care must be

taken when allowing user—level daemons access to Idev/mem or /dev/kmem

as well, since the keys are stored in kernel memory and could be exposed with

some creative hacking.

In one embodiment, a command-line tool called sadb is used to support

the generation and maintenance of in-kernel version 54 ofSADB. The primary

Petitioner Apple - EX. 1002, p. 321

Petitioner Apple - Ex. 1002, p. 322

l4

interface betwe- this tool and the SADB is the PF-SADB socket. The kernel

provides socket processing to receive client requests to add, update, or change

entries in in-kernel SADB 54. As noted above, the default protection level

established when the Security Association Database (SADB) is initialized at boot

5 time is l for in-bound traffic and 2 for out-bound trafic. This may be changed

by the use ofthe sadb command.

The existing sadb command was derived from the NIST implementation

of IPSEC. As noted above, this tool is much like route in that it uses a special

socket to pass data structures in and out ofthe kernel. There are three commands

, 10 recognized by the sadb command: get, set, delete. The following simple shell

script supports adding and removing a single SA entry to SADB 54. It shows

one embodiment ofa parameter order for adding 8 SA to the SADB.

1 /bin/ah

15 if [$#-ne1]

then

echo "usage: $0 <on>|<off>" >&2
exit 1

fi

20 ONOFF-Sl

addsa ()

{
IPADDRESS=$2

25 PEERADDRBSS-0.0.0.0 a

PREFIXLEN-O # Num of bits, 0 => full 32

bit. match

LOCALADDRESS-0.0.0.0

REALADDRESS=0.0.0.0

30 PORTso

PROTOCOLao

UID-O

DESALGal # I a DES-CBC

IVLBN-4 # bytes

35 DESKEY=ObObObObObObObOb

DESXEYLENSS # bytes

AHALGel # 1 = MDS

AHKEY=30313233343536373031323334353637

AHKEYLENuls # bytes

40 LOCAL_SPI=$1

Busoocm: <GB__Z$17792A_I_> Petitioner Apple - EX. 1002, p. 322

Petitioner Apple - Ex. 1002, p. 323

15

PEER_SPI=$1

TUNNBL_MODE=O
AHEESULTLEN=4

COMBINED_HODE=1 # On output. 1 = ESP, then
5 AK; 0 - AH, then ESP

DYNAMIC_FLAG=O

if ["SONOFF“ a I‘on"

then

10 ./sadb add dst $IPADDRESS SPREFIXLEN $LOCAL_SPI
SUID SPBERADDRESS $PEER_SPI $TUNNEL_MODE SLOCALADDRESS

SREALADDRESS $PROTOCOL $PORT $DESALG $IVLBN SDESKEYLEN

$DESKBY $DESXEYLEN SDESKEY $AHALG SAHKEYLEN SAHKEY

$AHKEYLEN $AHKEY $AHRESULTLEN $COMBINED;MODE
15 $DYNAMIC_FLAG

else -

./sadb delete dst SIPADDRESS $LOCAL-SPI
fi

}
2O '

Get down to work:

addsa 500 172.17.128.115 # number6.sctc.com

The current status of in-kemel SADB 54 can be obtained With the sadb

25 command. The get option allows dumping the entire SADB or a single entry. In

one embodiment, the complete dump approach uses /dev/kmem to find the

information. The information may be presented as follows:

sadb get dat
3O

Local-SP1 Address—Family Destination-Addr

Preflx_1ength UID

Peer-Address Peer— SP1 Transport-Type
Local-Address Real-Address

35 Protocol Port

ESP_Alg_ID ESP_IVEC_Length

ESP_Enc_Key_length ESP_Enc_ESP_Key
E$P_Dec_Key_length ESP_Dec_ESP_Key

AH_Alg_ID AH_Data_Length

40 AH_Gen_Key_Length AH_Gen_Key
AH_Check_Key_Length AH_Check_Key

Combined_Mode Dynamic__F1ag—

BNSDOCID:<GB__2317792A_I_> Petitioner Apple - EX. 1002, p. 323

Petitioner Apple - Ex. 1002, p. 324

10

15

20

25

3O

35

4O

RNSDOCID: (GB 2317792A l >

___-_----—_----——---¢---------————————-—-_—__—-—__-_--

500 INET: number6.sctc.com 0 0

0.0.0.0 500 Transport(0) 0

0.0.0.0 0.0.0.0

None ane

DES/CBC-RFC1829(1) 4

6 ObObObObObObObOb

8 ObObobObobObObOb

MDS-RFC1828(1) 4

16 30313233343536373031323334353637

16 30313233343536373031323334353637

ESP+AH(1) 0

501 INET: spokes.sctc.com 0 0

0.0.0.0 501 Transport(0) 0
0.0.0.0.0.0.0.0

None None

DES/CBC—RFC1829(1) 4

8 0b0b0b0b0b0b0b0b

8 0b0b0b0b0b0b0b0b

NIDS-RFCISZSO) 4
16 30313233343536373031323334353637

l 6 30313233343536373031323334353637

ESP+AH(1) 0

End of list.

When a new entry is added to iii-kernel SADB 54, the add process first

chadstoseedunnocxhfingenuyvfinrnamhthevahuspmmfidedinthenew

entry. If no match is found then the entry is added to the end ofthe existing

SADBlkt

To illustrate the use and administration ofan FFE, we'll go through an

example using FFE 70 in Figure 3. Firewalls l4 and 18 are both applican'on

lewdgawfimyrheumflshmpknmnmdaamnfinguadmlnuxmthwendmm

Workstations Hz and H3 both want to communicate With Hl. For the

administrator offirewalls l4 and 18. this is easy to accomplish. The

administrator sets up a line something like this (we'll onlyshow the IP address -

part and SP1 parts ofthe SA, since they're the trickiest values to configure. Also,

asnuncflun\wean:u§ngnunmlnmdcy

Hypothetical SW1 Config Pile

Petitioner Apple - EX. 1002, p. 324

Petitioner Apple - Ex. 1002, p. 325

10

15

20

25

3O

35

BNSDOCID: <68_2317792A_l_>

17

it

Fields are laid out in the following manner:

srcaddrorneta locaISPI= peeraddr- peerSPIn

realsrcaddra localaddr= keys

The following entry sets up a tunnel between hosts
behind SW1

and hosts behind SW2.

src=172.16.o.0 localSPI-666 peer=192.168.100.5

peerSPI-777 \

realsrcaddr=192.168.1oo.5 localaddrs=o.0.o.o

key=Oxdeadbeeffadebabe

Hypothetical SW2 Config File

Fields are laid out in the following manner:

srcaddrornet- localSPI= peeraddr- peerSPI=

realsrcaddra localaddra key-a

“Shit-fl:
The following entry sets up a tunnel between hosts
behind SW1 and

hosts behind SW2.

src=172.17.0.0 localSPI=777 peer=192.168.20.1

peerSPI—SGG \

realsrcaddr=192.168.20.1 localaddr=o.0.o.o \

key=0xdeadbeeffadebabe

With this setup. all trafic is encrypted using one key, no matter who is

talking to whom. For example, unfit from HZ to H] as Well as We from H3

to H] Will be encrypted with one key. Although this setup is small and simple, it

may not be enough. I

Whathappens ifI-{2cannottrustI-I3? Inthisces’e,the administrator can

set up security associations at the host level. In this case, We have to rely on the

SP1 field ofthe SA, since the receiving firewall cannot tell from the datagram

header which host behind the sending firewall sent the packet. Since the SP1 is

stored in IPSEC datagrams, we can do a lockup to obtain its value. Below are

the sample configuration files for both firewalls again, but this time. each host

combination communicates with a difl‘crent key. Moreover, H2 excludes H3

fiom communications with H], and H3 excludes H2 in the same way.

Petitioner Apple - EX. 1002, p. 325

Petitioner Apple - Ex. 1002, p. 326

10

15

20

25

30

35

40

45

18

Hypothetical SW1 Config File
#

Fields are laid out in the following manner:
srcaddrornet: localSPI= peeraddr- peerSPI=

realsrcaddra localaddr: keys

The following entry sets up a secure link between H2
and H1

src=172.16.0.2 localSPI=666 peer=192.168.100.5

peerSPI=777 \ '
realsrcaddr=192.168.ioo.5

localaddrs=178.17.128.71 \

key=OanOaOaOaOaOaOaOa

The following entry sets up a secure link between H3
and Hi

src-l72.16.0.1 localSPI=SSS peer-192.168.100.5

peerSPI=888 \ '
realercaddr=192.168.100.S

localaddrs-178.17.128.71 \

key=0x0b0b0b0b0b0b0bob

Hypothetical SW2 Config File
#

Fields are laid out in the following manner:
srcaddrorneta locaISPIa peeraddr: peerSPI:
realsrcaddr= localaddr- key=

The following entry sets up a secure link between H2
and El

src=172.17.128.71 locaISPI=777 peer-192.168.20.1

peerSPI=666 \
realsrcaddr-192.168.20.1 localaddrs=i72.16.o.2 \

key=0x0a0a0aOaOaOaOaOa

The following entry sets up a secure link Between H3
and H1 ,

src=172.17.128.71 localSPI=888 peer=192.168.20.1

peerSPI-SSS \
realsrcaddr=192.168.20.1 localaddre—172.16.0.l \

key=0x0b0b0b0b0b0b0b0b

Figure 4 is a block diagram showing in more detail one embodiment of

an IPSEC-enabled application level gateway firewall l 8. Application level

gateway firewall 18 provides access control checking ofboth encrypted and

Pefifionerflqnfle-REX.1002,p.326

Petitioner Apple - Ex. 1002, p. 327

l9

uncnetypted messages in a more secure environment due to its network-

separated architecture. Network separation divides a system into a set of

independent regions or burbs, with a domain and a protocol stack assigned to

each burb. Each protocol stack 40:: has its own independent set of data

5 structures, including routing information and protocol information. A given

socket will be bound to a single protocol stack at creation time and no data can

pass between protocol stacks 40 without going through proxy space. A proxy 50

therefore acts as the go-betweea for transfers between domains. Because of this,

a malicious attacker who gains control of one ofthe regions is prevented from

10 being able to compromise processes executing in other regions. Network

separation and its application to an application level gateway is described in

“SYSTEM AND METHOD FOR ACHIEVING NETWORK SEPARATION“,

US. Application No. 08/599,232. filed February 9, 1996 by Gooderum et al.

In the system shown in Figure 4, the in-bound and out-bound datagram

15 processing of a security association continues to follow the conventions defined

by the network separation model. Thus all datagrams received on or sent to a

given burb remain in that burb once decrypted. In one such embodiment SADB

socket 78 has been defined to have the type ‘sadb’. Each proxy so that requires

access to SADB socket 78 to execute its query as to whether the received

20 message was encrypted must have create permission to the sadb type,

The following is list ofspecific requirements that a system such as is

shown in Figure 4 must provide. Many ofthe requirements were discussed in

the information provided earlier in this document.

1. Firewall applications may query the IPSEC subsystem to determine if

25 traffiewithagivenaddressisguaranteedtobeencrypted.

2. Receipt of an imencrypted datagram from an address that has a SA results

in the datagram being dropped and an audit message being generated.

3. On receipt of encrypted protocol datagrams the SADB searches will be

done using the SP1 as the primary key. The source address will a

30 secondary key. The SA returned by the search will be the SA which

matches the SP1 exactly and has the longest match with the address._——_——._.-...___..._.c.__.._,..___..—~__...
ensoocu): <Ga_2317792LI_> Petitioner Apple - EX. 1002, p. 327

Petitioner Apple - Ex. 1002, p. 328

——.-._..—-q—c—-

4.

5.

5

6.

7.

10

8.

9.

15

10.

20

11.

12.

25

13.

20

A searchofthe SADB foraSPIthatfindsanentrythatismarkcdas SA

for a dynamic IP will not consider the address in the search process. .

Asearchofthc SADB foraSPIthatfindsancntrythatismarked asaSA

for a tunnel mode connection will to consider the address if it is (0.0.0.0)

i.c l'NADDR.

On receipt ofa non-IPSBC datagram the SADB will be searched for an

entry that matches the src address. If a SA is found the datagram will be

dropped and an audit message suit.

SADB searches on output will be done using the DST address as key. If

more than one SA entry in the SADB has that address the first one with

the mmdmumaddressmatchwillbercturned.

The SADB mustbcstructuredsothatsearchesarefastregardlcssifthe

search is done by SP1 or by address.

The SADB must provide support for connections to a site with a fixed

SPI but changing IP address. SA entries for such connections will be

referred to as Dynamic Address Sites. or just Dynamic entries.

When a dynamic entry is found by a SPI search, the current datagram’s

SRC address, which is required to ensure that the return datagrams are

properly encrypted, will be recorded in the SA only after the AH

checking has passed successfully. (This is because ifthe address is

recorded before AH passes then an attacker can cause return packets of

an outgoing connection to be transmitted in the clear.) ‘

A failure ofan AH check on a dynamic entry results in an audit message.

In an embodiment where the firewall requires that all connections use

both AH and ESP, on receipt the order should be AH first ESP second.

The processing structure on both input and output should try to minimize

the number of SADB required lookups. '

Returning to Figure 4, in one embodiment firewall 18 includes a crypto

30 engine interface 80 used to encrypt an IPSEC payload. Crypto engine interface

80 may be connected to a sofiware encryption engine 82 or to a hardware

Petitioner Apple - EX. 1002, p. 328

Petitioner Apple - Ex. 1002, p. 329BNSDOCID: <GB_2317792LI_>

10

15

20

25

30

21

encryption engine 84. Engines 82 and 84 perform the actual encryption function

using, for example, DES-CBC. in addition, sofiware encryption engine 82 may
include the keyed MDS algorithm used for AH.

In one embodiment, crypto engine interface 80 is a utility which provides

a consistent interface between the software and hardware encryption engines. As

shown in Figure 4, in one such embodiment interface 80 only supports the use of

the use ofhardware cryptographic engine 84 for IPSEC ESP processing. The

significant design issue that interface 80 must deal with is that use ofa hardware

encryption engine requires that the processing be down in disjoint steps

operating in different interrupt contexts as engine 84 completes the various

processing steps.

The required information is stored in a request structure that is bound to

the IP datagram being processed. The request is of type crypto_request_t.

' This smicture is quite large and definitely does not contain a minimum state set.

In addition to the definition ofthe request data struetme, this sofiware

implementing interface 80 provides two functions which isolate the decision of

.which cryptographic engine to use. The crypt_des_encrypt function is for

use by the IP output processing to encrypt a datagram. The

crypt_des_decrypt filtration is for use by the IP input processing to

decrypt a datagram. Ifhardware encryption engine 84 is present and other

hardware usage criteria are met the request is enqueued on a hardware processing

queue and a return code indicating that the cryptographic processing is in

progress is returned. Ifsofiware engine 82 is used, the return code indicates that

the cryptographic processing is complete. In the former case, thecontinuation of

the IP processing is delayed until afier hardware encryption is done. Otherwise

it is completed as immediately in the same processing stream.

There are two sofiware cryptographic engines 82 provided in the IPSEC

software. One provides the MDS algorithm used by the IPSEC AH processing,

and the other provides the DES algorithm used by the IPSEC ESP processing.

This software can be obtained fiom the US Government IPSEC implementation.

Petitioner Apple - EX. 1002, p. 329

Petitioner Apple - Ex. 1002, p. 330

10

15

20

25

22

In one embodiment hardware cryptographic engine 84 is provided by a

Cylink SafeNode processing board. The interface to this hardware card is
provided by the Cylinlt device driver. A significant aspect ofthe Cylink card
thatplays amajorpart inthc design ofthe IPSEC Cylinlt driver is thatthe card
functions much like a low level subroutine interface and requires software

support to initiate each prOcessing step. Thus to encrypt or decrypt an individual

itself and wait while the hardware completes and then be rescheduled by the

hardware interrupt handler, in one embodiment a finite state machine is used to

tie sequences of hardware processing elements together. In one such
embodiment the interrupt handler looks at the current state, executes a defined

afier state function, transitions to the state and then executes that state‘s start

function.

One function, cy1__enqueue_request, is used to initiate either an

encrypt or a decrypt action. This function is designed to be called by

cryptographic engine interface 80. All of the information required to initiate the
processing as well as the function to be performed after the encryption operation
is completed is provided in the request structure. This function will enqueue the

Internet. System 30 also includes a workstation 32 communicating directly with
firewall 14 through unprotected network 16. Firewall 14 is an application level

gateway incorporating IPSEC handling as described above. (It should be noted
that IPSEC security cannot be used to authenticate the personal identity ofthe

sender for a firewall to firewall transfer. When IPSEC is used, however, on a

30 single user machine such as a portable personal computer, IPSEC usage should

DMQWIW AER mama l \ Petitioner Apple - EX. 1002, p. 330

Petitioner Apple - Ex. 1002, p. 331

23

be protected with a personal identification number (PIN). In these cases IPSEC
can be used to help with user identification to the firewall.)

According to the IPSEC RPC’s, you can use either tunnel or transport

mode with this embodiment based on your security needs. In certain situationS,

5 the communications must be sent in tunnel mode to hide wregistered addresses.

Although specific embodiments have been illustrated and described

herein, it will be appreciated by those of ordinary skill in the art that any

arrangement which is calculated to achieve the same purpose may be substituted
for the specific embodiment shown. This application is intended to cover any

10 adaptations or variations ofthe present invention. Therefore, it is intended that
this invention be limited only by the claims and the equivalents thereof.

BNSDOCID: <GB_2317792A_I_>
Petitioner Apple - EX. 1002, p. 331

Petitioner Apple - Ex. 1002, p. 332

-—-—..

RNQNV‘JH- Inn 991771291: p e

24

What is claimed is:

l. A method of regulating the flow ofmessages through a firewall having a
nemork protocol stack. wherein the network protocol stack includes an Internet

5 Protocol (IP) layer, the method comprising the steps of:
determining. at the IP layer, if a message is encrypted;
if the message is not encrypted. passing the unencrypted message up the

network protocol stack to an application level proxy; and
if the message is encrypted, decrypting the message and passing the

10 decrypted message up the network protocol stack to the application level proxy,
wherein the step ofdecrypting the message includes the step of executing a

procedure at the 1? layer to decrypt the message.

2. A method of authenticating the sender of a message within a computer
15 system having a network protocol stack, wherein the hawk protocol stack

includes an Internet Protocol (IP) layer, the method comprising the steps of:
determining, at the IP layer, it the message is encrypted;
if the message is encrypted, decrypting the message, wherein the step of

decrypting the message includes the step of executing a process at the 1P layer to
20 decrypt the message;

passing the decrypted message up the network protocol stack to an

application level proxy;

determining an authentication protocol appropriate for the message; and
executing the authentication protocol to authenticate the sender of the

25 message.

3. The method according to claim 2 wherein the step ofdetermining an
authentication protocol appmpriatc for the message includes the steps of:

determining a source IP address associated with the message; and

30 determining the authentication protocol associated with the source IP
address.

Petitioner Apple - Eit. 1002, p. 332

Petitioner Apple - Ex. 1002, p. 333

25

4. The method according to claim 2 wherein the message includes security

parameters index and wherein the step ofdetermining an authentication protocol
appropriate for the message includes the steps of:

determining the authentication protocol associated with a dynamic IP

5 address, wherein the step of determining the authentication protocol includes the
step of looking up a security association based on the security parameters index:

determining a current address associated with the dynamic source IP

address; and

binding the current address to the security parameters index.

10

5. A firewall, comprising:

a first communications interface;

a second communications interface;

a network protocol stack connected to the first and the second

15 communications interfaces, wherein the network protocol stack includes an

Internet Protocol (1?) layer and a transport layer;

a decryption procedure, operating at the IP layer, wherein the decryption

procedure decrypts encrypted messages received at one of said first and second
communications interfaces and outputs decrypted messages; and

and executes an authentication protocol based on the content of the decrypted

message.

25 6. A firewall, comprising:

a first communications interface;

a second communications interface;

a first network protocol stack connected to the first communications

interface, wherein the first network protocol stack includes an Internet Protocol

30 (IF) layer and a transport layer; I

BNSDQCID: <GB__2317792A_|_> Petitioner Apple - EX. 1002, p. 333

Petitioner Apple - Ex. 1002, p. 334"NEW!" 4:: ”177mb I \

26

a second network protocol stack connected to the second

cormmmications interface, wherein the second network protocol stack includes
an Internet Protocol (IP) layer and a transport layer;

a decryption procedure, Operating at the IP layer ofthe first network

5 protocol stack, the decryption procedure receiving encrypted messages received
by said first communications interface and outputting decrypted messages; and

a proxy, connected to the transport layers of said first and second network
protocol stacks, the proxy receiving decrypted messages fiom the decryption
procedure and executing an amhentication protocol based on the content of the

10 decrypted message.

7. The firewall according to claim 6 wherein the firewall further includes:
a third communications interface; and Y

a third network protocol stack connected to the third communications
15 interface and to the proxy, wherein the third network protocol stack includes an

Internet Protocol (IP) layer and a transport layer and wherein the second and

third network protocol stacks are restricted to first and second burbs,

respectively.

_ 20 8. A method of establishing a virtual private network between a first and a
second network, wherein each network includes an application level gateway

firewall which uses a proxy operating at the application layer to process trafic

through the firewall, wherein each firewall includes a network protocol stack and
wherein. each network protocol stack includes an Internet Protocol (IP) layer, the

25 method comprising the steps of:

transferring a connection request fi'om the first network to the second

network;

determining, at the IP layer of the network protocol stack ofthe second

network's firewall, if the connection request is encrypted;

Petitioner Apple - EX. 1002, p. 334

Petitioner Apple - Ex. 1002, p. 335

9 27

ifthe connection request is encrypted, decrypting the request, wherein the

step of decrypting the request includes the step of executing a procedure at the IP
layer of the second network’s firewall to decrypt the message;

passing the connection request up the network protocol stack to an

5 application level proxy;

determining an authentication protocol appropriate for the connection

request;

executing the authentication protocol to authenticate the connection

request; and

10 if the connection request is authentic, esrahlishing an active connection

between the first and second networks.

i 9. The method according to claim 8 wherein the step of eXecufing the

I authentication protocol includes the step ofexecuting program code within the .
lS firewall ofthe second network to mimic a challenge/response protocol executing

on a server internal to the second network.

10. The method according to claim 8 wherein the step of executing the

authentication protocol includes the step of executing program code to execute

20 the authentication protocol in line to the session.

11. ThemethodaccordingtoelaimSwhereinthestepofdeterminingan

authentication protocol includes the step of determining ifthe connection request

- arrived encrypted and selecting the authentication protocol based on Whether the

j 25 connection request was encrypmd or not encrypted.

BNSDOCID: <GB_2317792A_I_> Petitioner Apple - EX. 1002, p. 335

Petitioner Apple - Ex. 1002, p. 336

PaEfi
Ofiice

2.25

GB 9719816.2

1-11

Examiner:

Date of search:

B.J.SPEAR

21 January 1998

Application No:
Claims searched:

Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, W0 & US patent specifications, in:

UK Cl (Ed.P): H4? (PPEB,PDCSA,PDCSC)

Int Cl (Ed.6): H04L 9/00, 9/32, 29/06, 29/08

Other: Online:WPI, INSPEC

Documents considered to be relevant:

Category Identity of document and relevant passage Relevantto claims

XP WO97/26734Al

(Raptor Systems) Whole document, cg Figs 1,3 and

pages 6-12

W097/26731A1 (Raptor Systems) Whole document, cg Figs 1,3 and

pages 7-12

WO97/26735A1 (Raptor Systems) Whole document, eg Figs 1,3

and pages 4-10

W097/23972A1 (V-ONE Corp) Whole document, cg Figs 1,2 and
claim 1.

W097/ 13340A1 (Digital Secured Networks) Whole document, cg

pages 7-13

Document indicating lack of novelty or inventive step
Document indicating lack of inventive step if combined
with one or more other documents of same category.

A
P

Document indicating technological background and/or state of the an.
Document published on or after the declared priority date but before
the filing date of this invention.
Patent document published on or alter, but with priority date earlier
than, the filing date of this application.

E

Member of the same patent family

An Executive Agency of the Department ofTfideetffid)ll’lllglllsflpple _ EX. 1002’ p 33 6

Petitioner Apple - Ex. 1002, p. 337

/

PATENT APPLICATION

IN THE UNITE]? STATES PATENT AND TRADEMARK OFFICE 1 3
. . " ’Z O-

In re Application of

Group Art Unit: 2152 (I I 237613
Edmond Colby MUNGER et al.

Examiner: Unassigned

Serial No.: 10/259,494

Atty.tht. No. 000479.00082

Filed: September 30, 2002 RECEIVED

For: Improvement To An Agile JUN 2 6 2003
Network Protocol For Secure

Communications With Assured TechnOIOQV Center 2100
S stem Availabili

REQUEST TO CORRECT INVENTORSHIP

Commissioner of Patents

PO. Box 1450

Alexandria, VA 22313

- Pursuant to 37 C.F.R. § 1.48 (b), Applicants hereby request correction of inventorship ofthe

above-captioned application as follows:

Delete inventor Douglas Charles Schmidt.

REMARKS

The present application is a divisional application of09/504,783 (the ‘783 application), now US.

Pat 6,502,135, issued December 31, 2002 (the ‘ 135 patent). During prosecution of the ‘783

application, the Office issued a restriction requirement. At least some claims directed to inventor

Schmidt’s invention were elected in the ‘783 application that issued as the ‘135 patent, however, his

invention is not claimed in the cancelled claims of the ‘783 application that are being pursued in the

present application.

Petitioner Apple - EX. 1002, p. 337

Petitioner Apple - Ex. 1002, p. 338

7f '

4. .' ' . 4

Application No. 10/082,164

The Office is hereby authorized to charge any required fee for this Request To Correct

Inventorship to the undersigrgdk'lfiposit Account No. 19-0733. If the Examiner has any questions,

the examiner is requested to contact the undersigned at (202) 824-3153.

Respectfully submitted,

BANNER & WITCOFF, LTD.

Dated: 32mg 23,1053 [L1, 9%
Ross A. Dannenberg

Reg. No. 49,024

1001 G Street, NW.

Washington, DC. 20001-4597

(202) 824-3000

Petitioner Apple - EX. 1002, p. 338

Petitioner Apple - Ex. 1002, p. 339

. “‘. ‘ Q33? «W3 3.
‘ PTO/SB/21 (08-00)
’ Please type a plus sign (+) inside this box -—> Approved for use through 10/31/2002. 0MB 0651-0031

.-_ a“ . US. Patent and Trademark Office: US. DEPARTMENT OF COMMERCE

P . Under the Paperwork Reduction Act of 1995. no persons are required to respond to a collection of information unless it displays a valid OMB control number.‘2.

Application Number

First Named Inventor

Examiner Name TBA

Total Number of Pages in This Submission - Attorney Docket Number ' 000479.00082

 D After Allowance Communication to
Group

E Assignment Papers
(for an Application)

E Fee Transmittal Form

 [:l Fee Attached D Drawing(s)

 [:1 Amendment/ Response D Licensing-related Papers

 D Petition

D Petition to Convert to a
Provisional Application

[:l After Final

[:l Affidavits/declaration(s) D Status Letter

D Power of Attorney. Revocation Other Enclosu e 3
Change of Correspondence Address E r ()(please identify below): “

[:1 Extension of Time Request

D Terminal Disclaimer

 [:1 Express Abandonment Request
D Request for Refund

 [:1 Information Disclosure Statement B CD, Number of CD(s)

[:1 Certified Copy of Priority
Document(s)

JUN 2 6 2003
[:1 Response to Missing Parts/

Incomplete Application

[:I Response to Missing Technology Center 2100

Parts under 37 CFR
1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT
Firm

or Ross A. Dannenberg. Reg. No. 49,024
Individual name , -

I >

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope

addressed to: Assistant Commissioner for Patents, Washington, DC. 20231 on this date: l::|
Typed or printed name

Signature

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any
comments on the amount of time you are required to complete this form should be send to the Chief lnforrnation Officer, US. Patent and Trademark
Office. Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for
Patents, Washington. DC 20231.

Petitioner Apple - EX. 1002, p. 339

Petitioner Apple - Ex. 1002, p. 340

Search Text I_—
l encrypt$ same channel USPAT; 2004/02/22

US-PGPUB

2 (encrypt$ same channel) and secure same USPAT; 2004/02/22
communication US—PGPUB

3 ((encrypt$ same channel) and secure same USPAT; 2004/02/22
communication) and DNS US-PGPUB

4 (((encrypt$ same channel) and secure same USPAT; 2004/02/22
communication) and DNS) and authoriz$ same US-PGPUB
access$

5 ((((encrypt$ same channel) and secure same USPAT; 2004/02/22
communication) and DNS) and authoriz$ same US—PGPUB
access$) and proxy same server

6 (((((encrypt$ same channel) and secure USPAT; 2004/02/22
same communication) and DNS) and authoriz$ US-PGPUB
same access$) and proxy same server) and
client and target

7 ((((((encrypt$ same channel) and secure USPAT; 2004/02/22
same communication) and DNS) and authoriz$ US—PGPUB
same access$) and proxy same server) and
client and target) and DNS same request

Search History 2722704 1:35:35 PM Page 1
C:\APPS\EAST\Workspaces\Default EAST Workspace (Flat Panel).wsp

Petitioner Apple - EX. 1002, p. 340

Petitioner Apple - Ex. 1002, p. 341

("6618761"). USPAT; 2004/06/18
US- PGPUB

encrypt$ same channel USPAT; 2004/06/18
US-PGPUB

(encrypts same channel) and DNS USPAT; 2004/06/18
US-PGPUB

((encrypt$ same channel) and DNS) and USPAT; 2004/06/18
client and server US—PGPUB

(((encrypt$ same channel) and DNS) and USPAT; 2004/06/18
client and server) and authoriz$ same US—PGPUB
access$

(((((encrypt$ same channel) and DNS) and USPAT; 2004/06/18
client and server) and authoriz$ same US—PGPUB
access$) and DNS same request) and
establish$ same encrypt$ same channel
((((encrypt$ same channel) and DNS) and USPAT; 2004/06/18
client and server) and authoriz$ same US-PGPUB
access$) and DNS same request

Search History 6/18/04 12:05:09 PM Page 1

C:\APPS\EAST\Workspaces\Defau1t EAST Workspace (Flat Panel).wsp

Petitioner Apple - EX. 1002, p. 341

Petitioner Apple - Ex. 1002, p. 342

\

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark OHIce
Acidic“: COMMISSIONER FOR PATENTS

PO. Box l450
Alexandria. Virginia 223l3-1450www.mplo.gov

10/259,494 09/30/2002 Edmund Colby Munger 000479.00032 5257

BANNER & WITCOFF LIM, KRISNA
1001 G STREET N W
smnoo

WASHINGTON, DC 20001 2153 y
DATE MAILED: 06/24/2004

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Petitioner Apple - EX. 1002, p. 342

Petitioner Apple - Ex. 1002, p. 343

Application No. 1' Applicant(s)

10/259,494 MUNGER ET AL.

Office Action Summary Examine, Art Unit

2153 -
-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE Q MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event. however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above. the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed. may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)l:] Responsive to communication(s) filed on

2a)l:] This action is FINAL. 2b)XI This action is non-final.

3)E] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quay/e, 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

ME Claim(s) 1-_20is/are pending in the application.

4a) Of the above Claim(s)_ is/are withdrawn from consideration.

5)E] Claim(s)_ is/are allowed.

6)XI Claim(s) 1-_20is/are rejected.

7)E] Claim(s) __ is/are objected to.

8)l:] Claim(s)_ are subject to restriction and/or election requirement.

Application Papers

9)l:] The specification is objected to by the Examiner.

10)l:] The drawing(s) filed on_ is/are: a)lj accepted or b)E] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11)E] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)E] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)l:] AII b)lj Some * c)l:] None of:

1C] Certified copies of the priority documents have been received.

21:] Certified copies of the priority documents have been received in Application No. __

3!: Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) E Notice of References Cited (PTO-892) 4) I: Interview Summary (PTO-413)
2) E] Notice of Draftsperson's Patent Drawing Review (PTO-948) Paper No(s)/Mail Date._.
3) El Information Disclosure s te ent(s) (PTO-1449 or PTO/SB/OB) 5) I: Notice of Informal PatentAppIication (PTO-152)

Paper No(s)/Mail Date 0 O 6) I: Other: .

US. Patent and Trademark Office

PTOL-326 (Rev. 1-04) Office Action Summary Part of Paper No./Mai| Date 4

Petitioner Apple - EX. 1002, p. 343

Petitioner Apple - Ex. 1002, p. 344

f)

1

. \1‘ V ‘MK .
‘9 Application/Control Number: 10/259,494 Page 2

Art Unit: 2153

1. Claims 1-20 are presented for examination.

2. The title of the invention is neither descriptive nor precise. A new title is required

which should include, using twenty words or fewer, claimed features that differentiate

the invention from the Prior Art. The title should reflect the gist of or the improvement

of the present invention.

3. The disclosure is objected to because of the following informalities:

(a) On page 1, the text of the first paragraph should be updated with the current

status of the cited applications such as US. Patent Application Serial No., a filing date,

US. Patent No., and the issued date. Appropriate correction is required.

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set

forth in section 102 of this title, if the differences between the subject matter sought to be patented and

the prior art are such that the subject matter as a whole would have been obvious at the time the

invention was made to a person having ordinary skill in the art to which said subject matter pertains.

Patentability shall not be negatived by the manner in which the invention was made.

5. Claims 1-20 are rejected under 35 U.S.C. § 103(a) as being unpatentable over

Strentzsch et al. [US Patent No. 6,256,671].

6. Strentzsch et al. disclose (e.g., see Figs. 1-7) the invention substantially as

claimed. Taking claim 1, 3 and 6 as an exemplary claims, the reference discloses a

method for establishing an encrypted channel between a client and a target computer (if

a source is allowed to access a host corresponding to the host name, then providing the

address to the source, col. 14, lines 18-21), comprising the steps of: I) intercepting a

DNS request sent by the client (e.g., see 505 of Fig. 5, col. 5, line 55, to col. 8, line 60);

ii) based on the DNS request, establishing the encrypted channel between the client

and the target (e.g., see 510 to 530 of Fig. 5, col. 5, line 55, to col. 8, line 60).

Petitioner Apple - EX. 1002, p. 344

Petitioner Apple - Ex. 1002, p. 345

‘N‘ .
”Application/Control Number: 10/259,494 Page 3

Art Unit: 2153

7. While Strentzsch discloses: a) a more secure wa to control access b the user

to host (target) systems on the network; b) typical access control programs indicate to

the user that, due to the access management setting, the user is prevented from

accessing the desired host system; and c) a network access control for returning

address to the source after checking to make sure that the user is allowed to access the

M. checking whether or not the IP address corresponding to the received host name

can be located and checking whether or not the user allowed to access IP address

(e.g., see col. 1, line 28, to col. 2, line 11), Strentzsch does not explicitly mention the

term “establishing the encmpted channel between the client and the target." It would

have been obvious to one of ordinary skill in the art at the time the invention was made

to recognize that in order to control access by the user to the host in a secure way the

communication channel between the client (user) and the target (host) must be

encrypted. Moreover, such encryption feature is a well-known feature in the art (e.g.,

see any computer dictionary for the definition).

8. As to claim 2, Strentzsch et al. disclose the steps of: a) determining whether the

client is authorized to access the target (e.g., see 510 to 530 of Fig. 5, col. 5, line 55, to

col. 8, line 60); b) when the client is authorized to access the target, initiating the

encrypted channel (see paragraph 7 above for the teaching of encryption feature); and

c) when the client is not authorized to access the target, sending an error message to

the client (e.g., see 510 to 530 of Fig. 5, col. 5, line 55, to col. 8, line 60).

9. As to claim 5, Strentzsch et al. disclose the step of a DNS proxy server (160)

intercepting the DNS request sent by the client (e.g., see 510 to 530 of Fig. 5, col. 5,

line 55, to col. 8, line 60).

10. Claims 7-20 are similar in scope as of claims 1-6, and therefore claims 7-20 are

rejected for the same reasons set forth above for claims 1-6.

Petitioner Apple - EX. 1002, p. 345

Petitioner Apple - Ex. 1002, p. 346

“'JApplication/Control Number: 10/259,494 Page 4
Art Unit: 2153

11. The prior art made of record and not relied upon is considered pertinent to

applicant's disclosure.

The references are cited in the Form PTO-892 for the applicant's review.

A shortened statutory period for response to this action is set to expire 3 (three)

months and 0 (zero) days from the mail date of this letter. Failure to respond within the

period for response will result in ABANDONMENT of the application (see 35 U.S.C 133,

M.P.E.P 710.02, 710.02(b)).

Any inquiry concerning this communication or earlier communications from the
examiner should be directed to Examiner Krisna Lim whose telephone number is (703)

305-9672. The examiner can normally be reached on Monday-Friday from 7:30 to 5.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Mr. Glenton Burgess, can be reached at (703) 305-4772. The fax phone

number for the organization where this application or proceeding is assigned is (703)

872-9306

Any inquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone number is 703-305-
9700

Communications via Internet e-mail regarding this application, other than those

under 35 U.S.C. 132 or which otherwise require a signature, may be used by the

applicant and should be addressed to [glen.burgess@uspto.gov].

All Internet e-mail communication will be made of record in the application file.

PTO employees do not engage in Internet communications where there exists a

possibility that sensitive information could be identified or exchanged unless the record

includes a properly signed express waiver of the confidentiality requirement of 35

U.S.C. 122. This is more clearly set forth in the Interim Internet Usage Policy published

in the Office Gazette of the Patent and Trademark on February 25, 1997 at 1195 0G
89.

kl

June 22, 2004
Petitioner Apple - EX. 1002, p. 346

Petitioner Apple - Ex. 1002, p. 347

Application/Control No. A 3 Applicant(s)/Patent Under
J , Reexamination

10/259,494 MUNGER ET AL. Examiner Art Unit

_ Krisna Lim 2153 Pa9e1or1
u.s.‘ PATENT DOCUMENTS

Document Number Date , .

Country Code-Number-Kind Code MM-YYYY CIaSSIfication

A us-e,256,671 07-2001 Strentzsch et al. 709/227

fl US—6,332,158 ' 12-2001 Risley et al. 709/219
USS—5,164,986 11-1992 Bright, Michael w, 380/273

us-s 079,020 06-2000 Liu, Quentin 0. 713/201

E————

_
I

FOREIGN PATENT DOCUMENTS

Document Number Date . .

Country Code-Number-Kind Code MM-YYYY ClaSSIficatIon

'A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
US. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 4

Petitioner Apple - EX. 1002, p. 347

Petitioner Apple - Ex. 1002, p. 348

PTO- I 449 (Modified)

US. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE APPLICANT

Edmond Colby Munger et al.

INFORMATION DISCLOSURE STATEMENT
BY APPLICANT FILING DATE GROUP ART UNIT

September 30, 2002 2153

U.S. PATENT DOCUMENTS

EXAMINER DOCUMENT ~ SUB FILING
INITIAL NUMBER DATE NAME CLASS CLASS DATE

EXAMINER DOCUMENT SUB
INITIAL NUMBER DATE COUNTRY CLASS CLAss

/ o 838 930 4/29/98 EPO

OTHER DOCUMENTS Includinv Author, Title, Date, Pertinent Pa es, Etc.

'z Search Report (dated 8/23/02), International Application No. PCT/USOl/l3260
-. Donald E. Eastlakc, 3' , “Domain Name System Security Extensions”, INTERNET DRAFT, April I998, page: 1-51
-D. B. Chapman et aI., “Building Internet Firewalls", November I995, pages 278-375

-P. Srisuresh et aI., “DNS extensions to Network address Translators (DNS_ALG)", INTERNET DRAFT, July 1998, pages1-27

-James E. Bellaire, ”New Statement of Rules - Naming Internet Domains”, Internet Newsgroup, July 30, 1995, I page

-- D. Clark, “US Calls for Private Domain-Name System", Computer, IEEE Computer Society, August I, I998, pages 22-25
August Bequai,”Ba1ancing Legal Concerns Over Crime and Security in Cyberspace", Computer & Security, Vol. 17, No. 4,
I998, pages 293-298

”I Rich Winkel, “CAQ: Networking With Spooks: The NET & The Control Of Information", Internet Newsgroup, June 21,I997, 4 pages

mm m

EXAMINER: Initial citation ifreference was considered. Draw line through citation if not in conformnce to MPEP 609 and not considered.
Include copy ofthis form with next communication to applicant.

Petitioner Apple - EX. 1002, p. 348

Petitioner Apple - Ex. 1002, p. 349

Sheet 3 of_3

ATTY. DOCKET NO. SERIAL NUMBER

000479.00082 DIV of 09/504,783

APPLICANT

Edmond'Colby Munger et aI.

 PTO-I449 (Modified)

US. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

INFORMATION DISCLOSURE STATEMENT
BY APPLICANT

FILING DATE

September 30, 2002

GROUP ART UNIT
2153

SUB FILING
CLASS DATE

U.S. PATENT DOCUMENTS

EXAMINER DOCUMENT
INITIAL NUMBER DATE NAME ASS

FOREIGN PATENT DOCUMENTS

EXAMINER DOCUMENT SUB
INITIAL NUMBER DATE COUNTRY CLASS CLASS

I,O 838 930 4/29/98 EPO .

I- _u|---

OTHER DOCUMENTS lncludin Author, Title, Date, Pertinent Pa - es, Etc.

’1 Search Repon (dated 6/18/02), International Application No. PCT/USOl/I3260
-Search Report (dated 6/28/02), International Application No. PCT/USOl/13261
-Donald E. Eastlake, “Domain Name System Security Extensions“, DNS Security Working Group, April I998, 51 pages
-- D. B. Chapman et aI., “Building Internet Firewalls", November I995, pages 278-297 and pagm 35I-375
-- P. Srisuresh et aI., “DNS extensions to Network Address Translators“, July 1998, 27 pages
-- Laurie Wells, “Security Icon", October I9, 1998, I page
-— w. Stallings, “Cryptography And Network Security”, 2n Edition,'Chapter 13, IP Security, June 8, 1998, pages 399—440
IV‘ W. Stallings, “New Cryptography and Network Security Book", June 8, I998, 3 pages

I!!!Ihll

TRANS LATION
YES/N0

EXAMINER: Initial citation ifreference was considered. Draw line through citation if not in conformance to MPEP 609 and not considered.
Include copy ofthis form with next communication to applicant.

Petitioner Apple - EX. 1002, p. 349

Petitioner Apple - Ex. 1002, p. 350

Sheet A of_3

PTO-I449 (Modified) A'ITY. DOCKET NO. SERIAL NUMBER
000479.00082 DIV of 09/504,783

US. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE APPLICANT

Edmond Colby Munger et al.

INFORMATION DISCLOSURE STATEMENT
BY APPLICANT FILING DATE GROUP ART UNIT

September 30, 2002 2153

U.S. PATENT DOCUMENTS

EXAMINER DOCUMENT SUB FILING
INITIAL NUMBER DATE NAME CLASS CLASS DATE

FOREIGN PATENT DOCUMENTS

---_-INITIAL NUM B ER DATE COUNTRY CLAS S CLASS

nan—mm.-
“—“u-I
_-—-{---
_-—"l---

OTHER DOCUMENTS lncludin_ Author, Title, Date, Pertinent Pa_es, Etc.
Search Report (dated 8/20/02), International Application No. PCT/USOl/04340

/O’ Shree Murthy et al., “Congestion-Oriented Shortest Multipath Routing“, Proceedings of IEEE INFOCOM, 1996, pages/ |028- | 036
7 Jim Jones et al., “Distributed Denial of Service Attacks: Defenses", Global Integrity Corporation, 2000, pages l-l4

TRANSLATION
YES/N0

' FASBENDER, KESDOGAN, and KUBITZ: “Variable and Scalable Security: Protection of Location Information in
Mobile IP", IEEE tublication, I996, a cs 963-967

EXAMINER: Initial citation if reference was considered. Draw line through citation if not in conformance to MPEP 609 and not considered.
Include copy ofthis form with next communication to applicant.

Petitioner Apple - EX. 1002, p. 350

Petitioner Apple - Ex. 1002, p. 351

Appln. No.: 10/259,494

Amendment dated September 13, 2004
1y to Office Action of June 24, 2004

o\ P E '10{1

 PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Group Art Unit: 2153

Edmund Colby MUNGER et al.
Examiner: Krisna Lim

Serial No.: 10/259,494

Atty. Dkt. No. 000479.00082 Filed: September 30, 2002

For: Establishment of a Secure RECEIVED
Communication Link Based on

a Domain Name Service SEP 1 6 2004

DNS) Re uest (As Amended) Technology Center 2100

AMENDMENT

US. Patent and Trademark Office

220 20‘h Street 3.

Customer Window

Crystal Plaza Two, Lobby, Room 1B03

Arlington, VA 22202

Sir:

In response to the Office Action mailed June 24, 2004, please amend the instant

application as follows:

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the Listing of Claims, which begins on page 3 of

this paper.

Remarks/Arguments begin on page 9 of this paper.

It is believed that no fee is required for this submission. If any fees are required or if an

overpayment is made, the Commissioner is authorized to debit or credit our Deposit Account/No.

19-0733, accordingly.

09/14/2004AADIJF01 00000101 190733 10259494

01 FC:1202 252.00 DA

Page 1 of 15

Petitioner Apple - EX. 1002, p. 351

Petitioner Apple - Ex. 1002, p. 352

Petitioner Apple - Ex. 1002, p. 353

Petitioner Apple - Ex. 1002, p. 354

Petitioner Apple - Ex. 1002, p. 355

Petitioner Apple - Ex. 1002, p. 356

Petitioner Apple - Ex. 1002, p. 357

Petitioner Apple - Ex. 1002, p. 358

Petitioner Apple - Ex. 1002, p. 359

Petitioner Apple - Ex. 1002, p. 360

Petitioner Apple - Ex. 1002, p. 361

Petitioner Apple - Ex. 1002, p. 362

Petitioner Apple - Ex. 1002, p. 363

Petitioner Apple - Ex. 1002, p. 364

Petitioner Apple - Ex. 1002, p. 365

Petitioner Apple - Ex. 1002, p. 366

Petitioner Apple - Ex. 1002, p. 367

Petitioner Apple - Ex. 1002, p. 368

Petitioner Apple - Ex. 1002, p. 369

Petitioner Apple - Ex. 1002, p. 370

Petitioner Apple - Ex. 1002, p. 371

Petitioner Apple - Ex. 1002, p. 372

Petitioner Apple - Ex. 1002, p. 373

Petitioner Apple - Ex. 1002, p. 374

Petitioner Apple - Ex. 1002, p. 375

Petitioner Apple - Ex. 1002, p. 376

Petitioner Apple - Ex. 1002, p. 377

Petitioner Apple - Ex. 1002, p. 378

Petitioner Apple - Ex. 1002, p. 379

Petitioner Apple - Ex. 1002, p. 380

Petitioner Apple - Ex. 1002, p. 381

Petitioner Apple - Ex. 1002, p. 382

Petitioner Apple - Ex. 1002, p. 383

Petitioner Apple - Ex. 1002, p. 384

Petitioner Apple - Ex. 1002, p. 385

Petitioner Apple - Ex. 1002, p. 386

Petitioner Apple - Ex. 1002, p. 387

Petitioner Apple - Ex. 1002, p. 388

Petitioner Apple - Ex. 1002, p. 389

Petitioner Apple - Ex. 1002, p. 390

Petitioner Apple - Ex. 1002, p. 391

Petitioner Apple - Ex. 1002, p. 392

Petitioner Apple - Ex. 1002, p. 393

Petitioner Apple - Ex. 1002, p. 394

Petitioner Apple - Ex. 1002, p. 395

Petitioner Apple - Ex. 1002, p. 396

Petitioner Apple - Ex. 1002, p. 397

Petitioner Apple - Ex. 1002, p. 398

Petitioner Apple - Ex. 1002, p. 399

Petitioner Apple - Ex. 1002, p. 400

Petitioner Apple - Ex. 1002, p. 401

Petitioner Apple - Ex. 1002, p. 402

Petitioner Apple - Ex. 1002, p. 403

Petitioner Apple - Ex. 1002, p. 404

Petitioner Apple - Ex. 1002, p. 405

Petitioner Apple - Ex. 1002, p. 406

Petitioner Apple - Ex. 1002, p. 407

Petitioner Apple - Ex. 1002, p. 408

Petitioner Apple - Ex. 1002, p. 409

Petitioner Apple - Ex. 1002, p. 410

Petitioner Apple - Ex. 1002, p. 411

Petitioner Apple - Ex. 1002, p. 412

Petitioner Apple - Ex. 1002, p. 413

Petitioner Apple - Ex. 1002, p. 414

Petitioner Apple - Ex. 1002, p. 415

Petitioner Apple - Ex. 1002, p. 416

Petitioner Apple - Ex. 1002, p. 417

Petitioner Apple - Ex. 1002, p. 418

Petitioner Apple - Ex. 1002, p. 419

Petitioner Apple - Ex. 1002, p. 420

Petitioner Apple - Ex. 1002, p. 421

Petitioner Apple - Ex. 1002, p. 422

Petitioner Apple - Ex. 1002, p. 423

Petitioner Apple - Ex. 1002, p. 424

Petitioner Apple - Ex. 1002, p. 425

Petitioner Apple - Ex. 1002, p. 426

Petitioner Apple - Ex. 1002, p. 427

Petitioner Apple - Ex. 1002, p. 428

Petitioner Apple - Ex. 1002, p. 429

Petitioner Apple - Ex. 1002, p. 430

Petitioner Apple - Ex. 1002, p. 431

Petitioner Apple - Ex. 1002, p. 432

Petitioner Apple - Ex. 1002, p. 433

Petitioner Apple - Ex. 1002, p. 434

Petitioner Apple - Ex. 1002, p. 435

Petitioner Apple - Ex. 1002, p. 436

Petitioner Apple - Ex. 1002, p. 437

Petitioner Apple - Ex. 1002, p. 438

Petitioner Apple - Ex. 1002, p. 439

Petitioner Apple - Ex. 1002, p. 440

Petitioner Apple - Ex. 1002, p. 441

Petitioner Apple - Ex. 1002, p. 442

Petitioner Apple - Ex. 1002, p. 443

Petitioner Apple - Ex. 1002, p. 444

Petitioner Apple - Ex. 1002, p. 445

Petitioner Apple - Ex. 1002, p. 446

Petitioner Apple - Ex. 1002, p. 447

Petitioner Apple - Ex. 1002, p. 448

Petitioner Apple - Ex. 1002, p. 449

Petitioner Apple - Ex. 1002, p. 450

Petitioner Apple - Ex. 1002, p. 451

Petitioner Apple - Ex. 1002, p. 452

Petitioner Apple - Ex. 1002, p. 453

Petitioner Apple - Ex. 1002, p. 454

Petitioner Apple - Ex. 1002, p. 455

Petitioner Apple - Ex. 1002, p. 456

Petitioner Apple - Ex. 1002, p. 457

Petitioner Apple - Ex. 1002, p. 458

Petitioner Apple - Ex. 1002, p. 459

Petitioner Apple - Ex. 1002, p. 460

Petitioner Apple - Ex. 1002, p. 461

Petitioner Apple - Ex. 1002, p. 462

Petitioner Apple - Ex. 1002, p. 463

Petitioner Apple - Ex. 1002, p. 464

Petitioner Apple - Ex. 1002, p. 465

Petitioner Apple - Ex. 1002, p. 466

Petitioner Apple - Ex. 1002, p. 467

Petitioner Apple - Ex. 1002, p. 468

Petitioner Apple - Ex. 1002, p. 469

Petitioner Apple - Ex. 1002, p. 470

Petitioner Apple - Ex. 1002, p. 471

Petitioner Apple - Ex. 1002, p. 472

Petitioner Apple - Ex. 1002, p. 473

Petitioner Apple - Ex. 1002, p. 474

Petitioner Apple - Ex. 1002, p. 475

Petitioner Apple - Ex. 1002, p. 476

Petitioner Apple - Ex. 1002, p. 477

Petitioner Apple - Ex. 1002, p. 478

Petitioner Apple - Ex. 1002, p. 479

Petitioner Apple - Ex. 1002, p. 480

Petitioner Apple - Ex. 1002, p. 481

Petitioner Apple - Ex. 1002, p. 482

Petitioner Apple - Ex. 1002, p. 483

Petitioner Apple - Ex. 1002, p. 484

Petitioner Apple - Ex. 1002, p. 485

Petitioner Apple - Ex. 1002, p. 486

Petitioner Apple - Ex. 1002, p. 487

Petitioner Apple - Ex. 1002, p. 488

Petitioner Apple - Ex. 1002, p. 489

Petitioner Apple - Ex. 1002, p. 490

Petitioner Apple - Ex. 1002, p. 491

Petitioner Apple - Ex. 1002, p. 492

Petitioner Apple - Ex. 1002, p. 493

Petitioner Apple - Ex. 1002, p. 494

Petitioner Apple - Ex. 1002, p. 495

Petitioner Apple - Ex. 1002, p. 496

Petitioner Apple - Ex. 1002, p. 497

Petitioner Apple - Ex. 1002, p. 498

Petitioner Apple - Ex. 1002, p. 499

Petitioner Apple - Ex. 1002, p. 500

Petitioner Apple - Ex. 1002, p. 501

Petitioner Apple - Ex. 1002, p. 502

Petitioner Apple - Ex. 1002, p. 503

Petitioner Apple - Ex. 1002, p. 504

Petitioner Apple - Ex. 1002, p. 505

Petitioner Apple - Ex. 1002, p. 506

Petitioner Apple - Ex. 1002, p. 507

Petitioner Apple - Ex. 1002, p. 508

Petitioner Apple - Ex. 1002, p. 509

Petitioner Apple - Ex. 1002, p. 510

Petitioner Apple - Ex. 1002, p. 511

Petitioner Apple - Ex. 1002, p. 512

Petitioner Apple - Ex. 1002, p. 513

Petitioner Apple - Ex. 1002, p. 514

Petitioner Apple - Ex. 1002, p. 515

Petitioner Apple - Ex. 1002, p. 516

Petitioner Apple - Ex. 1002, p. 517

Petitioner Apple - Ex. 1002, p. 518

Petitioner Apple - Ex. 1002, p. 519

Petitioner Apple - Ex. 1002, p. 520

Petitioner Apple - Ex. 1002, p. 521

Petitioner Apple - Ex. 1002, p. 522

Petitioner Apple - Ex. 1002, p. 523

Petitioner Apple - Ex. 1002, p. 524

Petitioner Apple - Ex. 1002, p. 525

Petitioner Apple - Ex. 1002, p. 526

Petitioner Apple - Ex. 1002, p. 527

Petitioner Apple - Ex. 1002, p. 528

Petitioner Apple - Ex. 1002, p. 529

Petitioner Apple - Ex. 1002, p. 530

Petitioner Apple - Ex. 1002, p. 531

Petitioner Apple - Ex. 1002, p. 532

Petitioner Apple - Ex. 1002, p. 533

Petitioner Apple - Ex. 1002, p. 534

Petitioner Apple - Ex. 1002, p. 535

Petitioner Apple - Ex. 1002, p. 536

Petitioner Apple - Ex. 1002, p. 537

Petitioner Apple - Ex. 1002, p. 538

Petitioner Apple - Ex. 1002, p. 539

Petitioner Apple - Ex. 1002, p. 540

Petitioner Apple - Ex. 1002, p. 541

Petitioner Apple - Ex. 1002, p. 542

Petitioner Apple - Ex. 1002, p. 543

Petitioner Apple - Ex. 1002, p. 544

Petitioner Apple - Ex. 1002, p. 545

Petitioner Apple - Ex. 1002, p. 546

Petitioner Apple - Ex. 1002, p. 547

Petitioner Apple - Ex. 1002, p. 548

Petitioner Apple - Ex. 1002, p. 549

Petitioner Apple - Ex. 1002, p. 550

Petitioner Apple - Ex. 1002, p. 551

Petitioner Apple - Ex. 1002, p. 552

Petitioner Apple - Ex. 1002, p. 553

Petitioner Apple - Ex. 1002, p. 554

Petitioner Apple - Ex. 1002, p. 555

Petitioner Apple - Ex. 1002, p. 556

Petitioner Apple - Ex. 1002, p. 557

Petitioner Apple - Ex. 1002, p. 558

Petitioner Apple - Ex. 1002, p. 559

Petitioner Apple - Ex. 1002, p. 560

Petitioner Apple - Ex. 1002, p. 561

Petitioner Apple - Ex. 1002, p. 562

Petitioner Apple - Ex. 1002, p. 563

Petitioner Apple - Ex. 1002, p. 564

Petitioner Apple - Ex. 1002, p. 565

Petitioner Apple - Ex. 1002, p. 566

Petitioner Apple - Ex. 1002, p. 567

Petitioner Apple - Ex. 1002, p. 568

Petitioner Apple - Ex. 1002, p. 569

Petitioner Apple - Ex. 1002, p. 570

Petitioner Apple - Ex. 1002, p. 571

Petitioner Apple - Ex. 1002, p. 572

Petitioner Apple - Ex. 1002, p. 573

Petitioner Apple - Ex. 1002, p. 574

Petitioner Apple - Ex. 1002, p. 575

Petitioner Apple - Ex. 1002, p. 576

Petitioner Apple - Ex. 1002, p. 577

Petitioner Apple - Ex. 1002, p. 578

Petitioner Apple - Ex. 1002, p. 579

Petitioner Apple - Ex. 1002, p. 580

Petitioner Apple - Ex. 1002, p. 581

Petitioner Apple - Ex. 1002, p. 582

Petitioner Apple - Ex. 1002, p. 583

Petitioner Apple - Ex. 1002, p. 584

Petitioner Apple - Ex. 1002, p. 585

Petitioner Apple - Ex. 1002, p. 586

Petitioner Apple - Ex. 1002, p. 587

Petitioner Apple - Ex. 1002, p. 588

Petitioner Apple - Ex. 1002, p. 589

Petitioner Apple - Ex. 1002, p. 590

Petitioner Apple - Ex. 1002, p. 591

Petitioner Apple - Ex. 1002, p. 592

Petitioner Apple - Ex. 1002, p. 593

Petitioner Apple - Ex. 1002, p. 594

Petitioner Apple - Ex. 1002, p. 595

Petitioner Apple - Ex. 1002, p. 596

Petitioner Apple - Ex. 1002, p. 597

Petitioner Apple - Ex. 1002, p. 598

Petitioner Apple - Ex. 1002, p. 599

Petitioner Apple - Ex. 1002, p. 600

Petitioner Apple - Ex. 1002, p. 601

Petitioner Apple - Ex. 1002, p. 602

Petitioner Apple - Ex. 1002, p. 603

Petitioner Apple - Ex. 1002, p. 604

Petitioner Apple - Ex. 1002, p. 605

Petitioner Apple - Ex. 1002, p. 606

Petitioner Apple - Ex. 1002, p. 607

Petitioner Apple - Ex. 1002, p. 608

Petitioner Apple - Ex. 1002, p. 609

Petitioner Apple - Ex. 1002, p. 610

Petitioner Apple - Ex. 1002, p. 611

Petitioner Apple - Ex. 1002, p. 612

Petitioner Apple - Ex. 1002, p. 613

Petitioner Apple - Ex. 1002, p. 614

Petitioner Apple - Ex. 1002, p. 615

Petitioner Apple - Ex. 1002, p. 616

Petitioner Apple - Ex. 1002, p. 617

Petitioner Apple - Ex. 1002, p. 618

Petitioner Apple - Ex. 1002, p. 619

Petitioner Apple - Ex. 1002, p. 620

Petitioner Apple - Ex. 1002, p. 621

Petitioner Apple - Ex. 1002, p. 622

Petitioner Apple - Ex. 1002, p. 623

Petitioner Apple - Ex. 1002, p. 624

Petitioner Apple - Ex. 1002, p. 625

Petitioner Apple - Ex. 1002, p. 626

Petitioner Apple - Ex. 1002, p. 627

Petitioner Apple - Ex. 1002, p. 628

Petitioner Apple - Ex. 1002, p. 629

Petitioner Apple - Ex. 1002, p. 630

Petitioner Apple - Ex. 1002, p. 631

Petitioner Apple - Ex. 1002, p. 632

Petitioner Apple - Ex. 1002, p. 633

Petitioner Apple - Ex. 1002, p. 634

Petitioner Apple - Ex. 1002, p. 635

Petitioner Apple - Ex. 1002, p. 636

Petitioner Apple - Ex. 1002, p. 637

Petitioner Apple - Ex. 1002, p. 638

Petitioner Apple - Ex. 1002, p. 639

Petitioner Apple - Ex. 1002, p. 640

Petitioner Apple - Ex. 1002, p. 641

Petitioner Apple - Ex. 1002, p. 642

Petitioner Apple - Ex. 1002, p. 643

Petitioner Apple - Ex. 1002, p. 644

Petitioner Apple - Ex. 1002, p. 645

Petitioner Apple - Ex. 1002, p. 646

Petitioner Apple - Ex. 1002, p. 647

Petitioner Apple - Ex. 1002, p. 648

Petitioner Apple - Ex. 1002, p. 649

Petitioner Apple - Ex. 1002, p. 650

Petitioner Apple - Ex. 1002, p. 651

Petitioner Apple - Ex. 1002, p. 652

Petitioner Apple - Ex. 1002, p. 653

Petitioner Apple - Ex. 1002, p. 654

Petitioner Apple - Ex. 1002, p. 655

Petitioner Apple - Ex. 1002, p. 656

Petitioner Apple - Ex. 1002, p. 657

Petitioner Apple - Ex. 1002, p. 658

Petitioner Apple - Ex. 1002, p. 659

Petitioner Apple - Ex. 1002, p. 660

Petitioner Apple - Ex. 1002, p. 661

Petitioner Apple - Ex. 1002, p. 662

Petitioner Apple - Ex. 1002, p. 663

Petitioner Apple - Ex. 1002, p. 664

Petitioner Apple - Ex. 1002, p. 665

Petitioner Apple - Ex. 1002, p. 666

Petitioner Apple - Ex. 1002, p. 667

Petitioner Apple - Ex. 1002, p. 668

Petitioner Apple - Ex. 1002, p. 669

Petitioner Apple - Ex. 1002, p. 670

Petitioner Apple - Ex. 1002, p. 671

Petitioner Apple - Ex. 1002, p. 672

Petitioner Apple - Ex. 1002, p. 673

Petitioner Apple - Ex. 1002, p. 674

Petitioner Apple - Ex. 1002, p. 675

Petitioner Apple - Ex. 1002, p. 676

Petitioner Apple - Ex. 1002, p. 677

Petitioner Apple - Ex. 1002, p. 678

Petitioner Apple - Ex. 1002, p. 679

Petitioner Apple - Ex. 1002, p. 680

Petitioner Apple - Ex. 1002, p. 681

Petitioner Apple - Ex. 1002, p. 682

Petitioner Apple - Ex. 1002, p. 683

Petitioner Apple - Ex. 1002, p. 684

Petitioner Apple - Ex. 1002, p. 685

Petitioner Apple - Ex. 1002, p. 686

Petitioner Apple - Ex. 1002, p. 687

Petitioner Apple - Ex. 1002, p. 688

Petitioner Apple - Ex. 1002, p. 689

Petitioner Apple - Ex. 1002, p. 690

Petitioner Apple - Ex. 1002, p. 691

Petitioner Apple - Ex. 1002, p. 692

Petitioner Apple - Ex. 1002, p. 693

Petitioner Apple - Ex. 1002, p. 694

Petitioner Apple - Ex. 1002, p. 695

Petitioner Apple - Ex. 1002, p. 696

Petitioner Apple - Ex. 1002, p. 697

Petitioner Apple - Ex. 1002, p. 698

Petitioner Apple - Ex. 1002, p. 699

Petitioner Apple - Ex. 1002, p. 700

Petitioner Apple - Ex. 1002, p. 701

Petitioner Apple - Ex. 1002, p. 702

Petitioner Apple - Ex. 1002, p. 703

Petitioner Apple - Ex. 1002, p. 704

Petitioner Apple - Ex. 1002, p. 705

Petitioner Apple - Ex. 1002, p. 706

Petitioner Apple - Ex. 1002, p. 707

Petitioner Apple - Ex. 1002, p. 708

Petitioner Apple - Ex. 1002, p. 709

Petitioner Apple - Ex. 1002, p. 710

Petitioner Apple - Ex. 1002, p. 711

Petitioner Apple - Ex. 1002, p. 712

Petitioner Apple - Ex. 1002, p. 713

Petitioner Apple - Ex. 1002, p. 714

Petitioner Apple - Ex. 1002, p. 715

Petitioner Apple - Ex. 1002, p. 716

Petitioner Apple - Ex. 1002, p. 717

Petitioner Apple - Ex. 1002, p. 718

Petitioner Apple - Ex. 1002, p. 719

Petitioner Apple - Ex. 1002, p. 720

Petitioner Apple - Ex. 1002, p. 721

Petitioner Apple - Ex. 1002, p. 722

Petitioner Apple - Ex. 1002, p. 723

Petitioner Apple - Ex. 1002, p. 724

Petitioner Apple - Ex. 1002, p. 725

Petitioner Apple - Ex. 1002, p. 726

Petitioner Apple - Ex. 1002, p. 727

Petitioner Apple - Ex. 1002, p. 728

Petitioner Apple - Ex. 1002, p. 729

Petitioner Apple - Ex. 1002, p. 730

Petitioner Apple - Ex. 1002, p. 731

Petitioner Apple - Ex. 1002, p. 732

Petitioner Apple - Ex. 1002, p. 733

Petitioner Apple - Ex. 1002, p. 734

Petitioner Apple - Ex. 1002, p. 735

Petitioner Apple - Ex. 1002, p. 736

Petitioner Apple - Ex. 1002, p. 737

Petitioner Apple - Ex. 1002, p. 738

Petitioner Apple - Ex. 1002, p. 739

Petitioner Apple - Ex. 1002, p. 740

Petitioner Apple - Ex. 1002, p. 741

Petitioner Apple - Ex. 1002, p. 742

Petitioner Apple - Ex. 1002, p. 743

Petitioner Apple - Ex. 1002, p. 744

Petitioner Apple - Ex. 1002, p. 745

Petitioner Apple - Ex. 1002, p. 746

Petitioner Apple - Ex. 1002, p. 747

Petitioner Apple - Ex. 1002, p. 748

Petitioner Apple - Ex. 1002, p. 749

Petitioner Apple - Ex. 1002, p. 750

Petitioner Apple - Ex. 1002, p. 751

Petitioner Apple - Ex. 1002, p. 752

Petitioner Apple - Ex. 1002, p. 753

Petitioner Apple - Ex. 1002, p. 754

Petitioner Apple - Ex. 1002, p. 755

Petitioner Apple - Ex. 1002, p. 756

Petitioner Apple - Ex. 1002, p. 757

Petitioner Apple - Ex. 1002, p. 758

Petitioner Apple - Ex. 1002, p. 759

Petitioner Apple - Ex. 1002, p. 760

Petitioner Apple - Ex. 1002, p. 761

Petitioner Apple - Ex. 1002, p. 762

Petitioner Apple - Ex. 1002, p. 763

Petitioner Apple - Ex. 1002, p. 764

Petitioner Apple - Ex. 1002, p. 765

Petitioner Apple - Ex. 1002, p. 766

Petitioner Apple - Ex. 1002, p. 767

Petitioner Apple - Ex. 1002, p. 768

Petitioner Apple - Ex. 1002, p. 769

Petitioner Apple - Ex. 1002, p. 770

Petitioner Apple - Ex. 1002, p. 771

Petitioner Apple - Ex. 1002, p. 772

Petitioner Apple - Ex. 1002, p. 773

Petitioner Apple - Ex. 1002, p. 774

Petitioner Apple - Ex. 1002, p. 775

Petitioner Apple - Ex. 1002, p. 776

Petitioner Apple - Ex. 1002, p. 777

Petitioner Apple - Ex. 1002, p. 778

Petitioner Apple - Ex. 1002, p. 779

Petitioner Apple - Ex. 1002, p. 780

Petitioner Apple - Ex. 1002, p. 781

Petitioner Apple - Ex. 1002, p. 782

Petitioner Apple - Ex. 1002, p. 783

Petitioner Apple - Ex. 1002, p. 784

Petitioner Apple - Ex. 1002, p. 785

Petitioner Apple - Ex. 1002, p. 786

Petitioner Apple - Ex. 1002, p. 787

Petitioner Apple - Ex. 1002, p. 788

Petitioner Apple - Ex. 1002, p. 789

Petitioner Apple - Ex. 1002, p. 790

Petitioner Apple - Ex. 1002, p. 791

Petitioner Apple - Ex. 1002, p. 792

Petitioner Apple - Ex. 1002, p. 793

Petitioner Apple - Ex. 1002, p. 794

Petitioner Apple - Ex. 1002, p. 795

Petitioner Apple - Ex. 1002, p. 796

Petitioner Apple - Ex. 1002, p. 797

Petitioner Apple - Ex. 1002, p. 798

Petitioner Apple - Ex. 1002, p. 799

Petitioner Apple - Ex. 1002, p. 800

Petitioner Apple - Ex. 1002, p. 801

Petitioner Apple - Ex. 1002, p. 802

Petitioner Apple - Ex. 1002, p. 803

Petitioner Apple - Ex. 1002, p. 804

Petitioner Apple - Ex. 1002, p. 805

Petitioner Apple - Ex. 1002, p. 806

Petitioner Apple - Ex. 1002, p. 807

Petitioner Apple - Ex. 1002, p. 808

Petitioner Apple - Ex. 1002, p. 809

Petitioner Apple - Ex. 1002, p. 810

Petitioner Apple - Ex. 1002, p. 811

Petitioner Apple - Ex. 1002, p. 812

Petitioner Apple - Ex. 1002, p. 813

Petitioner Apple - Ex. 1002, p. 814

Petitioner Apple - Ex. 1002, p. 815

Petitioner Apple - Ex. 1002, p. 816

Petitioner Apple - Ex. 1002, p. 817

Petitioner Apple - Ex. 1002, p. 818

Petitioner Apple - Ex. 1002, p. 819

Petitioner Apple - Ex. 1002, p. 820

Petitioner Apple - Ex. 1002, p. 821

Petitioner Apple - Ex. 1002, p. 822

Petitioner Apple - Ex. 1002, p. 823

Petitioner Apple - Ex. 1002, p. 824

Petitioner Apple - Ex. 1002, p. 825

Petitioner Apple - Ex. 1002, p. 826

Petitioner Apple - Ex. 1002, p. 827

Petitioner Apple - Ex. 1002, p. 828

Petitioner Apple - Ex. 1002, p. 829

Petitioner Apple - Ex. 1002, p. 830

Petitioner Apple - Ex. 1002, p. 831

Petitioner Apple - Ex. 1002, p. 832

Petitioner Apple - Ex. 1002, p. 833

Petitioner Apple - Ex. 1002, p. 834

Petitioner Apple - Ex. 1002, p. 835

Petitioner Apple - Ex. 1002, p. 836

Petitioner Apple - Ex. 1002, p. 837

Petitioner Apple - Ex. 1002, p. 838

Petitioner Apple - Ex. 1002, p. 839

Petitioner Apple - Ex. 1002, p. 840

Petitioner Apple - Ex. 1002, p. 841

Petitioner Apple - Ex. 1002, p. 842

Petitioner Apple - Ex. 1002, p. 843

Petitioner Apple - Ex. 1002, p. 844

Petitioner Apple - Ex. 1002, p. 845

Petitioner Apple - Ex. 1002, p. 846

Petitioner Apple - Ex. 1002, p. 847

Petitioner Apple - Ex. 1002, p. 848

Petitioner Apple - Ex. 1002, p. 849

Petitioner Apple - Ex. 1002, p. 850

Petitioner Apple - Ex. 1002, p. 851

Petitioner Apple - Ex. 1002, p. 852

Petitioner Apple - Ex. 1002, p. 853

Petitioner Apple - Ex. 1002, p. 854

Petitioner Apple - Ex. 1002, p. 855

Petitioner Apple - Ex. 1002, p. 856

Petitioner Apple - Ex. 1002, p. 857

Petitioner Apple - Ex. 1002, p. 858

Petitioner Apple - Ex. 1002, p. 859

Petitioner Apple - Ex. 1002, p. 860

Petitioner Apple - Ex. 1002, p. 861

Petitioner Apple - Ex. 1002, p. 862

Petitioner Apple - Ex. 1002, p. 863

Petitioner Apple - Ex. 1002, p. 864

Petitioner Apple - Ex. 1002, p. 865

Petitioner Apple - Ex. 1002, p. 866

Petitioner Apple - Ex. 1002, p. 867

Petitioner Apple - Ex. 1002, p. 868

Petitioner Apple - Ex. 1002, p. 869

Petitioner Apple - Ex. 1002, p. 870

Petitioner Apple - Ex. 1002, p. 871

Petitioner Apple - Ex. 1002, p. 872

Petitioner Apple - Ex. 1002, p. 873

Petitioner Apple - Ex. 1002, p. 874

Petitioner Apple - Ex. 1002, p. 875

Petitioner Apple - Ex. 1002, p. 876

Petitioner Apple - Ex. 1002, p. 877

Petitioner Apple - Ex. 1002, p. 878

Petitioner Apple - Ex. 1002, p. 879

Petitioner Apple - Ex. 1002, p. 880

Petitioner Apple - Ex. 1002, p. 881

Petitioner Apple - Ex. 1002, p. 882

Petitioner Apple - Ex. 1002, p. 883

Petitioner Apple - Ex. 1002, p. 884

Petitioner Apple - Ex. 1002, p. 885

Petitioner Apple - Ex. 1002, p. 886

Petitioner Apple - Ex. 1002, p. 887

Petitioner Apple - Ex. 1002, p. 888

Petitioner Apple - Ex. 1002, p. 889

Petitioner Apple - Ex. 1002, p. 890

Petitioner Apple - Ex. 1002, p. 891

Petitioner Apple - Ex. 1002, p. 892

Petitioner Apple - Ex. 1002, p. 893

Petitioner Apple - Ex. 1002, p. 894

Petitioner Apple - Ex. 1002, p. 895

Petitioner Apple - Ex. 1002, p. 896

Petitioner Apple - Ex. 1002, p. 897

Petitioner Apple - Ex. 1002, p. 898

Petitioner Apple - Ex. 1002, p. 899

Petitioner Apple - Ex. 1002, p. 900

Petitioner Apple - Ex. 1002, p. 901

Petitioner Apple - Ex. 1002, p. 902

Petitioner Apple - Ex. 1002, p. 903

Petitioner Apple - Ex. 1002, p. 904

Petitioner Apple - Ex. 1002, p. 905

Petitioner Apple - Ex. 1002, p. 906

