
1

HP 1001

(12) United States Patent
Klein

I|||||||||||l||||I|||||fl||||||||||||||||||l||||l|||||||l||||||l||||||||
US006Ti'138]B1

(1(I) Patent No.: US 6,771,381 B1
(45) Date of Patent: Aug. 3, 2004

(54) lJlS'l'RII.llJ'l'|<ll) C()Ml"I.i'l'|<IR
ARCHITECTURE AND PROCESS FOR
VIRTUAI. COPYING

(T6) lnvenlorz I.:Ill!'('I'lCl3 C. Klein. 1010 Wayne Ave.,
Silver Spring, MD (US) 20910

[' } Ntitice: Subject in any disclaimer. the lerrn nfthi.H'.
palenl is exlended or adjusted under 35
U.S.(f. |54(h) hy (I days.

(21) Appl. No.: l}9f43-8.300
(22) Filed: Nov. 12, 1999

Related US. Application Data
[GU] Provisional application No. I‘){J;"lU8,'FOB, Iiled on Nov. I3,

1908.

(51) Int. Cl? *■ 0■ GIJGK l5i'lJ0
(52) US. Cl. á■ 353fl.l5; 358.-’l.l
(58) Field of Search . 3,-3:i,'1.l. I.fi. 1.I3.

3:'>Sf1_|:':, l_l(:, 402, 403, 40?, 42$; ?|[l:'8,
I4. 15. 33. 62. 63. 64. 65. 7'3. T3

(56) Relt-rencl.-5 Cited
U.S. l’.n’\'l‘l.iN'l' [)0{.'UM|.iN']'S

5.560.405 A " 9;"l9‘?7 Yeh 710.5303

' cited by examiner

Priiriury Exu.-:ir'ner—ArI|1ur G. Evans
(74) Arrorrrey, Agem. or .'*'r'rm—lr:|Ei ll. Dunner. li5q.;
Wilmer, (fuller, Pickering Hale and Dorr 1.1 _P

(57) ABSTRACT

The purpose of Ihe \-"muzil Copier invention ("\"I‘.'_"') is to
enzibic a Iypical PC user to add electronic paper processing
to their exisiing business process. \«"C is an extension of Ihe
concept we Lmdersland as copying. In its simples: form il
cxlends lhe nulian of copying from a process 1hE|.I involves
paper going Ihmugh a convunlinnal uopiur devicI:. to a
process thal involves paper being scanned from a device al
one localiun and copied In a device at anolher localiun. [I'1iI5
r11nrI.: mphislicalcd fnrrn, \-"(T can copy paper frnrn a device
.11 one localion direclly inlo a business applicaliorl residing
on a network or on Ihc lnlernct, or visa vcrszi. The VC
invcntiun is _~.-.nl‘|ware ihal manages paper 50 that ii can he
electronically and seamlessly copied in and out 0]‘ devices
and |.'3l|Sil'Il:S-5 aipplicalions (such as Micrntasufi ()IT1<:::.
MII:msul'l Exchange. Imus NLJICH) wiih an uplinnal single-
slep Go operation. The \-''C‘ software can reside on a PC,
LAN.-‘WAN server. digilal device (such as a digital copier),
air am :1 web server II: he u(::.1:.~a;c(I over the Inlurnel.

15 Claims, 44 Drawing Sheets

W5Ufl
[0()RBi\NBXi'OD€.I'POWER BUI].DERiDEL.PHI}

WINDOWS MANAGER {MIT}

HP lOOl

2

U.S. Patent Aug. 3. 2004 Sheet 1 «:44 US 6,771,381 B1

HIGH—LEVEL DEVELOPER (VB, JAVA, DELPHI, ETC.) 4

CORE TECHNOLOGY (ENGINES) 5

FIG. 1

3

U.S. Patent Aug. 3, 2004 Sheet 2 «£44 US 6,771,381 B1

COMPONENT INTERFACE

COMPONENT FACTORY
'C'—LEVEL API

FIG. 2

COMPONENT INTERFACE

OBJECT MANAGER

4

U.S. Patent Aug. 3. 2004 Sheet 3 «:44 US 6,771,381 B1

LAYER 3 - ENGINE FUNCTIONS

LAYER 2 - ENGINE CONFIGURATION

LAYER 1 - ENGINE MANAGEMENT

ORGINAL 'C'— LEVEL API

FIG. 4

LAYER 3 - ENGINE FUNCTIONS

FIG - 6 LAYER 2 - ENGINE CONFIGURATION

LAYER 1 - ENGINE MANAGEMENT

5

US. Patent Aug. 3, 2004 Sheet 4 of44 US 6,'}"?l,381 B1

 IEngineManagement Arguments Description

Interface

ActivateEngine BOOL Activate {activates or deactivates an engine. This
interface element will cause an engine to
load itself to or unload itself from memory.

IsEngineActivated Determine whether the engine has been
successfully loaded into memory.

FIG. 7

Setsetting DWORD Setting Sets the setting Setting to a yalue of Value.
VARIANT Value the Setting argument IS a unique number

that represents a specific setting type. The
Value argument is a union argument type
that can accept any style argument.
includin an arm of elements.

GetSetting ' gets the settin Setting and places the value
- in Value. the etting argument is a unique

number that represents a specific setting
type. The Value argument is a union

argument type that can accept anylr styleargument, including an array of e ements.

FIG. 10

IEngineManagement Arguments Description
Interface

Function Initiate _the function as represented b
the Setting argument, usi a vanab e number

of arguments In using the alue array.

FIG. 12

6

U.S. Patent Aug. 3, 2004 Sheet 5 of 44 US 6,??1,381 B1

ENGINE MANAGEMENT - LAYER I

LOAD I UNLOAD ENGINE (FILE 1)

DYNAMIC LINKING ENGINE FUNCTION CALLS

{FILE 2)

INITIALIZE ENGINE SETTINGS

(mus 3)

FIG. 8

128

7

U.S. Patent Aug. 3, 2004 Sheet 6 of 44 US 6,771,381 B1

ENGINE FUNCTION A ENGINE DLL A ENGINE SETTING A

ENGINE FUNCTION B ENGINE DLL B ENGINE SETTING B

ENGINE FUNCTION C ENGINE DLL C ENGINE SETTING C
FIG. 9

8

U.S. Patent Aug. 3. 2004 Sheet 7 «:44 US 6,771,381 B1

24._Z___

W

156 PROMPT SETTING

FIG. 11

9

U.S. Patent Aug. 3. 2004 Sheet 3 «:44 US 6,771,381 B1

ENGINE FUCTION - LAYER 3

PERFORM FUNCTION

153

160

GET FUNCTION RESULTS

CLEAR FUNCTION RESULTS '52

EVENT FEEDBACK
164

FIG. 13

10

U.S. Patent Aug. 3. 2004 Sheet 9 «:44 US 6,771,381 B1

50 52

40 53‘ ‘-~ KEYBOARD MOUSE «M DISPLAY 4,43
\ CPU INTERFACE J2

55 54 IN[21‘lE1IR]§f:EE
\

64 60 62

DISK -ROM -AM COMMUNICATIONS
CONTROLLER PORT

74

CD ROM gPfi1§% INFRARED INFRARED
63 RECEIVER TRANSMITTER

/’ FLOPPY (OPTIONAL) (OFFIONAL)
66 DRIVE --\

70 73 76

FIG. 15

10

11

U.S. Patent Aug. 3, 2004 Sheet 10 of 44 US 6,771,381 B1

T4

RADIO
RECEIVER TRANSMITTER

{OPTIONAL} (OPTIONAL)

70 32 30

11

12

U.S. Patent Aug. 3, 2004 Sheet 11 of 44 US 6,771,381 B1

84

FIG. 17

12

13

U.S. Patent Aug. 3, 2004 Sheet 12 M44 US 6,771,381 B1

VISUAL LNTERFACE

(CORBANBXFOCXIPOWER BUILDER! DELPHI)

WINDOWS MANAGER (MFCI

122 -wmnows : : -wmnows

LEVEL3 REPRESENTATION; REPRESENTATION

120 -wmnows : -wmnows -wmnows
LEVEL 2 ERROR MANAGER _ ERROR MANAGER ’ ERROR MANAGER

-BRIDGE -BRIDGE -BRIDGE

113 -SUPPLEMENTARY : -SUPPLEMENTARY - -SUPPLEMENTARY
LEVEL 1 DIALOGS DIALOGS

1 16 ' CONSISTENT : ' CONSISTENT 0 CONSISTENT
LEVEL3 ORJECIINTERFACE, OBJECT INTERFACE 0B}EL'I'lNI“ERFACE

I BRIDGE ' BRIDGE

C“ LEVEL2 L [N

112 -PROTECTION ' -PROTECHON : -PROTECTION
LEVEL1 -ERROR MANAGER -ERROR MANAGER ‘ -ERROR MANAGER

-ADMlNl5‘l‘RATl0N , -ADMINISTRATION I -ADMINISTRATTON

T1‘-CNN0‘~0GY SCAN IMAGE CLEANUP .
CATEGORLES .

UNDERLYING KoFAx_x1oN1cs, ' sEQu01A,T1s, XEROX, cAERE_
ENGINES sEA1=0Rr, TWAIN CLEAR LMAGE, CALERA, NESTOR,

RIXELTRANSLATIONS SEAPORT .RRIME REc0GNm0N,
LIGATLJRE, MITEK

FIG. 18

13

14

U.S. Patent Aug. 3, 2004 Sheet 13 M44 US 6,711,381 B1

OBJECT MANAGER

166

ENGINE OBJECT COMPONENT 16,135.20
FIG. 19

14

15

U.S. Patent Aug. 3. 2004 Sheet 14 0144 US 6,771,381 B1

174
SERVERILAN

170 176
MACPHNEICLJENT SERVERILAN

132

01315131

MANAGER MACHINE’
LAYER CLIENT

186 134 1311

MACHINE I CLIENT CORE TECHNOLOGY

- OBJECT MANAGER E§gflI§0%}ig§-[CT
' ENGINE OBJECT

- CORE TECHNOLOGY

FIG. 20

15

16

U.S. Patent Aug. 3. 2004 Shea-t150f44 US 6,771,381 B1

OBJECT MANAGER

LANIINTRANET, INTERNET. WEB [68

ENGINE OBJECT COMPONENT 16,1820

FIG. 21

16

17

U.S. Patent Aug. 3. 2004 Shea-t160f44 US 6,771,381 B1

ma

THIN CLIENT WEB SERVER

1'12 132a 1?8

BROWSER!
THIN CLIENT

MACHINE I CLIENT OBIECT CORE TECHNOLOGY
MANAGER ENGINE OBJECT

- OBJECT MANAGER

' ENGINE OBJECT LAYER COMPONENT
- CORE TECHNOLOGY

FIG. 22

17

1818

I3I8€‘ILL‘9SfltwoLImansvooz‘Efinv1uamd-S-[1
18

I3I8€‘ILL‘9SfltwoLImansvooz‘Efinv1uamd-S-[1

19

ElE|ElEl|:iDE|C!E]DDE|CfL||_l|_JDL!t_iE!C| JLJ|:|D|J[|gU

<1 7 Ti
Juawd'S'£]

E1 1:: D E] 5 £1 :1 :1 ||||| [EE p■O■
5"

E

C:

- GU’)

L‘

4' %

FIG. 23B 202' ;

19

20

210"

200"

E1‘
 Y■ U:

R. Open Document pm‘ E
' ' Image 203' E’.

\, Close Document g
\ §
\“ Zoom In
-\ E
-\" Zoom Out 1°5*‘

' ' I‘-I

Q. Print Document §
-_ Print Image g
-\ Annotation E
‘\ Tool Bar 5
-\ Advanced 2’
-' Function 3

n Toc-1Bar
n Change View
-\ Text c:

EX“ Image 212" V’Ox

— =,11__J| :3
‘L:

214' FIG_ 23C 204" M" E
51V-1

20

21

U.S. Patent Aug. 3. 2004 Sheet 20 M44 US 6,771,381 B1

VIEWER PROCESS 183

OBJECT MANAGER

166

ENGINE OBJECT COMPONENT 16,1820
FIG. 24

21

22

U.S. Patent Aug. 3, 2004 Sheet 21 M44 US 6,771,381 B1

H4 190
SERVERILAN

VIEWER

PROCESS

170 176
MACHINE I CLIENT SERVERJLAN

132 173

OBJECT
MANAGER

LAYER MACHINE!CLIENT

186 134 180

MACHINE I CLIENT CORE TECHNOLOGY

- OBJECT MANAGER E§g1,§§0%1§Jmm
' ENGINE OBJECT

- CORE TECHNOLOGY

194 I92

VIEWER VIEWER

PROCESS PROCESS

FIG. 25

22

23

U.S. Patent Aug. 3, 2004 Sheet 22 M44 US 6,771,381 B1

 VIEWER PROCESS 133

OBJECT MANAGER

LANIINTRANET, INTERNET, WEB 153

ENGINE OBIECT COMPONENT 16,13,320

FIG. 26

23

24

U.S. Patent Aug. 3. 2004 Sheet 23 M44 US 6,771,381 B1

1742:

176a 1903

BROWSER! '79“ WEB SERVER WEWERTHIN CLIENT PROCESS

196a 172 182a 173

VIEWER M?fi,]EgER BROWSER}
PROCESS LAYER THIN CLIENT

136 134 I80

MACHINE I CLIENT OBJECT CORE TECHNOLOGY!

'0B3EC]‘MANAGER Mg:¢§RER Eggggoagggr
' ENGINE OBJECT

- CORE TECHNOLOGY
VIEWER VIEWER

PROCESS PROCESS

FIG. 27

24

25

U.S. Patent Aug. 3. 2004 Sheet 24 M44 US 6,771,381 B1

_ E._MA|L. LOAL FILES

MULTI-FUNCTHDNAL

PER1PHERAL(li.e. FAX)

PFHNTEH DIGITAL COPiEFI

FIG. 28

25

26

U.S. Patent Aug. 3, 2004 Sheet 25 01°44 US 6,771,381 Bl

THE ('{'IMF.'\ \'Y IJM I11:-I}

Em

I°=

I=>
Virtual copy Ready

Status

Elmlm

FIG. 29

26

27

U.S. Patent Aug. 3, 2004 Sheet 25 of 44 US 6,771,381 B1

Power VC

Emmi Open File E]

Io: Virtual Copier E

 I:>
FIG. 30

27

28

U.S. Patent Aug. 3, 2004 Sheet 27 0l'44 US 6,7'.’1,38l Bl

CLIENT

<1 pnW■ <=>

gr 1: <3

PROCESS PROCESS PROCESS

FIG. 31

28

29

U.S. Patent Aug. 3, 2004 Sheet 23 of 44 US 6,Ti'l,38l B1

Virtual Copier 3rd party App
End User Application

FIG. 32

29

30

US. Patent Aug.3,20u4 Sheet 29 «M4 US 6,771,381 B1

3"‘ Party Application

Virtual Copier Server

Module

FIG. 33

30

31

U.S. Patent Aug. 3, 2004 Sheet 30 of 44 Us 6,771,381 B1

Start Copy

Initiate Input

Module

Update Client

Initiate Process .Update Cllent

Initiate Output .

FIG. 34

32

U.S. Patent Aug. 3, 2004 Sheet 31 of 44 US 6,?71,3s1 B1

FIG. 35

32

33

U.S. Patent Aug. 3, 2004 Sheet 32 of 44 US 6,771,381 B1

lnputModu|es CopierModule

0utpmMDdules
Processhdodules

Configure

Collections of

Copierlvfodule objects, of
types InpuIModu1e,

Load

OuIpulModule, and
Pr0cessModulI:

respectively

Unload
IsLoaded ()

Savesetting~;As
Default ()

Resetsettings ()

lflbject I ‘Collection ‘Property ‘ ‘Method ‘ Event

FIG. 36

I

33

34

U.S. Patent Aug. 3, 2004 Sheet 33 of 44 Us 6,771,381 B1

0utputModuJe

ProcessM0duIes

PmI:e55Mo-dule

I Object J ‘Collection

34

35

U.S. Patent Aug. 3, 2004 Sheet 34 of 44 US 6,771,381 B1

. File B , File D

Disk files of W“ A I Page F"° C 1 Page
actual 3 Pages 3 Pages‘.

images:

\/Document
i mom a]

layout

File File File File File File File File FileA A A B C C C D

Page Page Page Page Page Page Page Page
I 2 3 I 1 2 3 1

\/Document Page Page Page | Page Page Page Page Page
Page 1 2 3 4 5 6 7 3

FIG. 38

35

36

U.S. Patent Aug. 3, 2004 Sheet 35 of 44 US 6,771,381 B1

{Collection Properly I ’\Method r Even! I

FIG. 39

36

37

U.S. Patent Aug. 3, 21:04 sum 36 0:44 US 6,771,381 B1

|_.._:___.__.l

SuhModuIeID

ErrorCade

ErmrText

Severity

Lobjectj I Collection Property ’ }Method r Event ‘

FIG. 40

37

38

U.S. Patent Aug. 3. 2004 Sheet 37 M44 US 6,771,381 B1

rCo[iection Property | 'Meth0d \ [Event r

FIG. 41

38

39

U.S. Patent Aug. 3. 2004 Sheet 38 M44 US 6,771,381 B1

Sewer Module Events Generated by Server

vscPro - ramslarl

vscMoc|LIleLo:1dStarI

vseModu |eL0adEnd

vseModu}cGoStart

{vscM0duIeCancclcd)

(vsePr0gramCancc|ed)

vseModuleGoEnd

End virtual copy operation (Go)

Unload IOP Modules ! vscModuleUnI0adSlart
e vseModu|eUn|oadEnd

vsePro rarnEr1d

39

40

U.S. Patent Aug. 3, 2004 Sheet 39 of 44 US 6,771,381 Bl

Client Module Server Module

Initiate Server

Present available I .

Program Object
Select modules

to use I
Start a virtual copy I G00 Method

Process Server Status & Error

feedback Events

FIG. 43

40

41

U.S. Patent Aug. 3, 21:04 Sheet 40 of 44 US 6,771,381 B1

IOP Module

Application Manager Ciass

Event Manager Class

Panel Manager Document Layout Manager
Server Module Class Navigation Class Class

Methods

'
¥ Propeny | Method I I Event \

The Client Module has a fixed set of features that it needs to perform:

FIG. 44

41

42

US. Patent Aug. 3, 2004 Sheet 41 of 44 US 6,'}"?l,381 B1

Configure()

GD (VI)ucument Feedback)

ResetSettings(}

SaveSetIingsAsl)efault ()

FIG. 45

42

43

US. Patent Aug. 3, 2004 Sheet 42 of 44 US 6,'}"?l,381 B1

Conection Properly

FIG. 46

43

44

US. Patent Aug. 3, 2004 Sheet 43 of 44 US 6,'}"?l,381 B1

SubMuduleID

StatusType

Statushlumber

StalusText

| Object |:oIIecfion ’Pr0perty l [Method ' Event I

FIG. 47

44

45

U.S. Patent Aug. 3, 2004 Sheet 44 M44 US 6,771,381 B1

Server Module Iop Modme

Sewer Module Intedace Io JOP interface mass

Go [VDocument Feedback) Feedback

Configme {)

F{esetSetlings(]
Executive Class

Go {VDocument]u

Configuration Class

SaveSetlingsAsDeiau|t {){llll
Configure (1

FIesetSetlings(1

Savesetiings...

|Obje.-ct‘ | Collection N l Property I Method \

FIG. 48

45

46

US 6,771,381 B1
1

I)IS'l‘RlBU'l‘ED COM PUTER
r\RCHIT[-ICTURE AND PROCESS FOR

\u’IR'l‘l_lr\L COPYING

RELr'fl'l.iD Al’Pi..l(TA'l'I ONS 5

'lhis application claims priority to US. Provisional Appli-
cation 6{l.-‘|tl8,T98. filed Nov. I3. 1998, incorporated herein
by reference.

This application is related to, a continuation—in—part app|i~
cation of, and claims priority to, the following non-
provisional applications: Ser. No. Dtlv'9S0,838, filed Oct. 15,
199?, now U.S. Pat. No. t'J,lS5,59(|;

Ser. No.08r91l,I'.l83, filed Aug. 14, I991 now abandoned;
Ser. No. U8.-’95{i.9ll. Iiled Oct. I5, 199?. now abandoned: 15
Ser. No. DB.-’9St}.83'l'. filed Oct. 15, 199'.-", now abandoned;
Ser. No. tJBi’95(l‘,T38. filed Oct. 15, 199?, now abandoned;
Ser. No. U8i’95{J.?4l. filed Oct. I5, 1997. now abandoned:

all of which are hereby incorporated try reference.
This application is related to. and claims priority to. the

following provisional applications by way the claim of
priority of the above listed non—provisional applications:

Oct. 18. 1996, Ser. No. t50,’(|28,l29;
Oct. 18. I996, Ser. No. fit'J,’(I23.523;
Oct. 18. 1996, Set. No. fiUi’(|28,l281
Oct. 18. 1995, Ser. No. 60,"(l28.t597;
Uct. IS, I991’), Scr. No. 6[l,"lJ2S,639;
Oct. 18, I996. Ser. No. 603198.685; all of which are

hereby incorporated by reference.

ll)

3|'l

|"l1iLD 0|‘ THE lNVl:'NTlt)N

The present invention is generally related to a computer
architecture and process for stand-alone andinr distributed
cnvirortment. and more particularly to a computer architec-
ture and process using a substantially uniform management
in a stand—alone and.-‘or distributed computing environment
including, for example. client server andfor intranet andfor
internet operating environments.

BACKGROUND OF TIIE RELATED ART

A "C" or "C++"- Level Al'l (hereinafter "C" Level),
which is the native language and interface for a vast reposi-
tory of core technologies from small software vendors and
research laboratories, are unique to each designer. The
designer of a text retrieval "C"—AP[will generally imple-
ment an interface that is completely dilferent than a second
inVet'ltot‘ creating a "C“-level Api fur OCR.

Every "C"-level r’\l’| is unique. both in its choice of AP!
syntax as well as its method for implementing the syntax.
Some r\l‘l's consist of one or two functions that take
parameters ofiering options for different features offered by
the technology. Other AP[s consist of hundreds of fitnctions 5,
with few arguments, where each Function is associated with
a particular feature of the core technology. Other APls
provide a mixture ofsome features being combined with one
function with many at'gumcnL-t. while other features are
separated into individual l‘l.It‘JCllOfJ calls.

Without any constraints. each designer oi‘ a core technol-
ogy chooses to implement his or her technology with an
interfatx that is suitable to the subject or simply was the
most expedient choice of the moment. Since there are no
constraints, a "IC"-level API has a totally unpredictable
interface that can often be the hindrance to using the core
technology.

45

51.!

60

65

2
Additionally. every r’\i’l manages errors differently further

complicating the problems described above. Some r\l‘lsreturn a consistent error code for each function. Error
management in this case is very organized and manageable.
Other Al’ls return error codes as one of the parameters
passed to the function. There are i-’-Wis that mix the choice of
error management and have some functions return an error
code while other functions pass the error code as a parameter
of a function. Errors can also be managed by a callback
function, eliminating the need for passing any error code as
part of the function. ln some instances of a poorly imple-
menlcd AP1 the errors are not passed back at all.

Every engine, such as a text retrieval ur an OCR (Optical
Character Recognition) engine, has a Unique interface. This
interface is generally a "C"—level AP! [Application Program
Interface). Further, an AP] can at any time be synchronous.
asynchronous, manage one or more callbacks, require input,
pass hack output. carry a variety of different styles of
functions, return values or not return values, and implement
the unpredictable. This unpredictability in 111315 further
compounds the problem of developing a sane way of inter-
facing between components and i-'\[’[s.

"lb date, because of the cornplexitics of “(.T"-level r’\l‘ls
and components interfacing thereto, the only way to create
a component out of an existing “C"—level AP] is to have an
experienced programmer in the held to do the work. Humans
can intelligently anaiyzc an API, and create :1 component
based on intelligent decisions and experiences. In most
cases, the learning curve for understanding and integrating
a new engine can be one man-month to several man-years
and generally requires highly experienced "EC" program-
mers. Requiring a human to perform the necessary work is
costly, and subject to real-life human constraints.

Since there is no structure or format for implementing
"C"-level :\Pls, the ability to automatically transform a
unique Al’l into a standard component would seem
impossible, since that would take a nearly—human level of
intelligence.

in addition, in spite of the continued automation of
business processes. companies are increasing their paper use
by 35-30% and spending up to 15% of their total budget on
managing paper. Companies are often running dual
pro-ces-res—a computerized process along with the corre-
sponding paper tiling sysle111——and paying an extraordinary
price for it. Just a few examples will illustrate the problem:
1} accounting clerks are maintaining paper invoices with
information that is also being re-keyed into accounting
systems. 2) administrative assistants are filing incoming
correspondence in cabinets for customers whose records are
also being electronically maintained by contact management
systems, 3) help desk operators are storing complaints sent
in on paper while also tracking those complaints in a
computerized system. Additional industry trends include the
following:

For every SIOOM in increased revenues, a company will
use 8.8 million additional pages of paper

The Document Management market is expected to grow
at 30% per year

The digital device market is growing at 30% per year
Estimates show the web—based document imaging market

growing at 50% per year
The digital device manufacturers. especially the copier

companies, are heavily promoting the ability to connect
their devices to networks. but have not been able to
deliver an eliective 9:-ftware solution to date.

l3usines¢.t:s continue to automate more processes, but
managing the associated paper is often ignored, resulting in
inefficiency and higher costs.

46

47

US 6,771,381 B1
3

I have dctcnninud that a component factory, if it is to ht:
truly auton1atctJ or manually ettpcdilcd. must be able to take
any "(T”-levcl AP! and transfonn it into a component.

I have also detcnnined an efficient and workable design
for an architecture to define the migration path for any
"C“'—|evc| AP] into a component.

I have also determined that it is desirable to develop
software tools for automatically generating reusable soft-
ware components from core software technologies, thus
making these software technologies available to a much
larger user laase.

I have further determined that it is desirable to design a
distributed computer al‘Ci1iIct.'|l.It‘0 and prtttncss for manually
andlur automatically generating reusable software compo-
nents. ’ll1e computer architecture may be implemented using
a client server andfor intranet antlfor intcrnet operating
environments.

I have further dctennined that it is desirable to design a
computer architecture and process for image viewing in a
stand—alone and.-“or distributed environment. The computer
architecture and process optionally uses a substantially
uniform management layer in a stand—alone andior distrib-
uted computing environment including, for example, client
server andfor intranet andior internet operating environ~mcnts.

I have further determined that it is desirable to enable a

typical Pt.‘ user to add clcclronir: papcr processing to their
existing business prot:es.<;.

I have further determined that it is desirable to enable
software that manages paper so that it can l:-t: electronically
and seamlessly copied in and out of devices and husincss
applications (such as Microsoft Office, Microsoft Exchange,
Lotus Notes} with an optional single-step Go operation.

SUMMARY OF THE INVENTION

One would expect the translating a “C"—levcl API from its
native state into a component would require human—|evcl
intelligence. This is mainly because "C"'—|eve| APIS have
virtually no constraints as to how they can be implemented.
This means that there are an infinity variations of APIS,
which can only be managed by human—level intelligence.
While this point is true, [have determined that the appro-
priate solution starts at the other side of the cquation, which
is the component itself.

My solution starts out with a definition of a component
that can sustain the featuretfunctiun requirementv. of any
AP[. In other words, the interface of a generic component
can be defined such that the features. and functions. er
virtually any AP] can he re-implemented within its hounds.
'|’l1c two known end-points are. for example. the "L"-Ievcl
AP! that generally starter with each component (although
other programming languages may also he used and are
within the scope of the present invention), and the compo-
nent interface that rcprcscnts any set of features.-‘functions on
the other side. The component factory migratm the original
"C"~|evc| Al’! from its original state into the generic inter-
face defined by the topmost layer. The first feature that can
be demonstrated is that there is a topmost layer that can
define a component interface that can represent the features.’
functions of most core technologieit.

The component factory migrates the "C"-level AP] to the
topmost level. Doing this in one large step would be
impossible since the “C"—level AP] has a near-infinite vari-
ety of styles. However, the architecture advantageously has
enough well-defined and wcll-structured layers for imple-
mentlng the topmost component interface, for creating the
component factory.

ll)

l5

3|‘!

45

51.!

60

65

4
The computer architecture is designed for managing a

diverse set of independent corc technologies ("engines")
using a single consistent framework. The architecture bal-
ances two seemingly opposing requlrements: the need to
provide a single consistent interface to many different
engines with the ability to access the unique features of each
engine.

The benefit of the architecture is that it enables a company
to rapidly "wrap" a sophisticated technology so that other
high-level developers can easily learn and implement the
core technology. The computer architecture is therefore a
middicwarc or enabling technology.

Another benefit of the architecture is that it provides a
high-level spccifitralittrt for a consistent interface to any core
technology. Once a high-level developer learns the interface
described herein for one engine, that knowledge is easily
transferable to other engines that are implemented using the
architecture. For example, once a high-level developer
learns to use the computer architecture for OCR (Optical
Character Recognition), using the computer architecture for
other engines, such as barcode recognition or forms
processing, is trivial.

The architecture described herein is, at once, a framework
for rapidly wrapping sophisticated technologies into high-
level components, as well as a framework for high-level
developers to communicate with a diverse set of engines.
The ereatlng of a component factory is based an the fact that
the architecture defines a clear path for "wrapping" any
(T-level Al’! into a component using simple structures and
many rotc steps. This process is currently being done in an
inefficient manner by a programmer in the field.

In addition, the method described herein for creating a
component factory creates a wcll-defined multi-tiered archi-
tecture for a component and automates, substantially
automates. or manually cxpcditcs hereinafter automate the
process of migrating a "(."’-.I'\l’l from iL-i native state through
the various tiers of the architecture resulting in a standard-
ized component. Advantagcously. the method described
herein does not base the component factory on making
human—|evel intelligent decisions on how to translate a
"C"—APl into a component. Rather, by creating a well-
defined architecture described below that is multi~tiered, the
method is a series of incremental steps that need to be taken
to migrate the “C"-AP] from one tier within the architecture
to the next. [n this way each incremental step is not a major
one, but in sequence the cntire series of steps will result in
it component.

Since each step of migration is not a major one, the
chances for automating these steps is significantly higher
and the likelihood of h-tzlng able to Create the component
factory becomes feasible. This approach is in fact what
makes the method cost-cllectivc. sinct: the alternative
approach. i.e., computer-generated human-level decision
making, has many years before becoming sophisticated
enough to replace humans in any realistic decision-making
prnocss.

'l'l1c main features of the architcctun: are twofold:
1) Defining system architecture that describes in detail

how to implement a component from a "C""—level API;
2) Creating a component factory by automating the migra-

tion ol" at “C"-level API from one tier within the
architecture to the next.

The latter feature is the key to actually making the compo-
nent factory feasible. Wlth a fixed architecture that can be
used to implement a “C”-levcl API as a component (using a
programmer), that same architecture can be used as the basis
for the component factory model.

47

48

US 6,771,381 B1
5

In order to make the component factory. each step of the
arcl'Iilt:(:lt.trt: needs to he designed In facililate automation or
manually expedited, In other words. 1 have determined that
automatingiexpediting the process of taking the original
"C"-level AP! and migrating it to a Level I layer. and then
a Level 1 to a Level 2. and then a Level 2 to a Level 3 layer,
and so on. the component has been implemented automati-
cally or more efliciently. The component factory is therefore
a sum of the ability to automate migrating the "C"-level API
from one layer to the next within a well-defined architecture
for implementing components.

There are numerous core technologies, such as text-
retrieval and ICR (Intelligent Cltaractcr Recognition). that
have already been implemented, and are only available as
"C"-level r’\|’ls. Many. ifrtot most. core tcchnologic=. arc lirst
released exclusively as "(."'-lcvcl M’ls. While there are
integrators and corporations who have the team of technolo-
gists who can integrate these "C”—leve| APls in—house, most
companies are looking for component versions that can be
implemented at a much higher level.

Therefore, many of the core technologies that are only
available in a "C"’—1eve1AP! are not being used due to their
inaccessible interface. The benefit of the component factory
is that it can rapidly make available core technologies
implemented as "C" .«’\Pls that would otherwise he undt:ruti- ..
lined or dormant in research labs by converting them to
high-level components. that can he used by millions of
power-PC users.

With the advent of the World Wide Web (WEB) this
opportunity has increased exponentially. The WEB is now
home to a vast number of WEB authors with minimal lbnnal
training who can implement l['f'ML pages and build web
sites. One of the fundamental technologies for extending the
capability of the WEB from simple page viewing to inter-
active and sophisticated applicatiom is components.

Aoornpo nent extenck the capability of I [TML by enabling
a WEB author to add core technology as a pre-packaged
technology. Since components are fundamental to the
growth and usability of the WEB. having a component
factory that can translate “C”-level toolkits. into components
that are then usable within WEB sites opens a vast and new
worldwide market to these technologies.

The purpose of the Virtual Copier ("VC") aspect of the
present invention is to enable a typical PC user to add
electronic paper processing to their existing business pro-
cess. VC is an extension of the concept we understand as
copying. in its simplest fonn it extends the notion of copying
from a process that involves paper going through a conven-
tional copier device, to a process that involves paper being
scanned from a device at one location and copied to a device
at another location. In its more sophisticated form, VC can
copy paper from a device at one location directly into a
business application residing on a network or on the Internet,
or visa versa. The VC invention is software that manages
paper so that it can be electronically and iusamlcssly copied
in and out of devices and business applications (such as
1\-'licrosolt()ffice. Microsoft Exchange. Lotus Notcs)with an
optional single—step Go operation. The VC software can
reside on a PC. l..AN.-‘WAN sewer. digital device (such as a
digital copier), or on a web sewer to be accessed over thelntcrnet.

Wrtual Copier is designed to solve the corporate paper
problem by enabling existing web—ba.sed and c|ient—server
applications to manage paper as part of their solution.
Virtual Copier links the familiar and universal world of
paper and digital devices to web~hased and c|ient—server
applications. The result is that the automated business pro-

ll)

l5

3|'l

45

51.!

60

65

6
t.‘{:tL'-ics become the primary storage of paper in electronic
form. Information that is typically managed and processed
in paper fonn is "copicrl" into the system and managed by
the business processes with which users are accustomed.
which is made possible by using Virtual Copier. Simple
extensions of Wrtual Copier support seamless electronic
outsourcing of paper processing and archival services overthe web.

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper pruceiising to
existing lrtiranet and client-server business processes with-
out any fuss. Whether it is an oilice clerk that needs to easily
copy a report from a desktop scanner to the company’s
Intranet-networkcrl copicr. or an accounting software inte-
grator that wants to Cmlkid paper proces-ting. Virtual Copier
offers a simple solution. lb the offict: clerk Virtual Copier is
a document imaging application packaged in the familiar
setting of an ollice copier. To the integrator, the underlying
open architecture of Virtual Copier oflers a simple integra-
tion path [or embedding paper processing into its client-
server or web—based software solution.

Although managing paper manually is one of the great
problems facing corporations. there has been little innova~
tion in enabling those workers to eliminate the need to
continuously work with paper manually. Much of the prob-
lem stems from the complexity of traditional document
management systems. which require days of training and
months to become familiar with the system in order to he
proficient. Vinual Copier was designed to he .-is simple as a
copier to operate, and yet still provide the complete capa-
bility of integrating paper with existing business applica-
tions. By simplifying the interface and underlying software
infrastructure, VC can manage paper in electronic form as
easily as is currently done in physical form.

VC extends the notion ofa copie r, which simply replicates
the image of an original document onto another piece of
paper using a single GO or START button. to do a similar
operation in software so that the image gets seamlessly
replicated into other devices or applications or the Internet.

An example of this is the actual irnplernentatiort of Virtual
Copier as a consumer product. 'l‘he interface of the consumer
product called Virtual Copier has a Go button much like a
physical copier. This 00 button can copy paper, whether
physical or electronic. iirom one device and or application to
another device and.-'or application.

What makes Virtual Copier as simple as its physical
counterpart in at least one embodiment is the fact that it
replicates the identical motions that a user who is making a
copy using a physical photocopier goes through. When a
user photocopies a document, hcrshe selects where they
want to copy from (Le. the sheet feeder). where the user
wants to copy to (i.c_ .5 copies collated and stapled) and then
presses a GO button to actually carry out the photocopy
process. With Virtual Copier the process feels familiar
because the sequence is the same with just the Power VC
portion of the main Virtual Copier window.

The power of\«'1.rtual Copier is the fact that the From can
be a physical device (c.g. digital copicr. fax or scanner) or
an application (e.g. Lotus Notes, Microsoft Exchange, the
Internet. or an electronic tiling system). The T0 can also be
a physical device (eg. a fax. digital copier. or printer) or an
application (c.g. Lotus Notes. Microsoft Exchange. the
Internet. or an electronic tiling system). Even though paper
is being copied electronically from devices to applications,
from applications to devices, from devices to devices, or
from applications to applications, the user simply has one

48

49

US 6,771,381 B1
1'

scqucncc Io exccute: sclccl I-‘mm. sclccl To. and thcn press
(50. Virtual Copier will accomplish all translations bclwccn
device and applications automatically and seamlessly.

Another reason that paper is still a major corporate issue
is that traditional docurncnt managcmcrtl syslcms rcquirc
that a company invest in a whole new system just to store
electronic images. Although this is the only way that docu-
ment management systems have been designed and
dclivcrcd. it is in fact highly inctlicicnl. Most companies
already manage information about physical documents in
some form of software applications.

For example, accounting systems have long been used tomaintain information about invoices and bills that arrive into
a company from outside sources as physical pieces of paper.
When an invoice arrives, iLs information is keyed into the
accounting sultware, wherc balances an: maintained and
aocou nls payable information is coordinated. Yet the original
invoice is stored manually, and every time that a request is
made for a copy of the signed lltvolce, snmctinc manually
rctricvcs thc invoicc from a physical Iiling cahincl. Account-
ing systems, like most business applications, typically have
no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and diflicult to
maintain, and even more clilficult to coordinate.

\-"'irll.Ial Copier solves this pt'ol3lI:n1 in at lcasl one I:mbodl- ..
ment by copying paper directly into the existing accounting
system. Simply adding a To item in thc Vinual (fopicr
window enables a user to copy paper directly into the
appropriate accounting rccord of the existing accounting
sysIcrn.'l‘l1i_s requires no retraining (I.tst‘.I1-'- who are trained on
thc accounting systcm will still usc the accounting system in
the same way}, requires no document management system
[the electronic copy of the document is actually bcing
maintained by the accounting system itself], there is no
coordination bctwccn two systems {Virtual Copier embeds
the invoice with the appropriate accounting record], and it is
simple (one Go button).

What is true with regard to the example above of an
accounting system is Inn: of most other business applica-
tions. The power of Virtual Copier is that it can turn an
information system into a docurncnt management system by
adding support for electronic paper directly into the existing
business application. Whether it is a clicnl. scrvcr-based. or
wcb—bascd system.

Virtual (Iopier cnablcs corporations to pcrfomt sophisti-
cated documenl imaging with their existing Wbb-based and
clicnt-server applications through a user interfacc that is as
familiar as the olfioc copier. Virtual Copier can be used
out—of—thc—box as a standalone application to copy, scan, fax,
or print images using existing digital devices within corpo-
rate environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into
Web-based and client server applications, such as ERP or
accounting systems, to eliminate paper from existing busi-
ness 1'l1'<JL‘CS‘-'n1:.*-t- and legacy applications. Virtual Copier can
also be used to support seamless access to document image
processing and archival over the web since. in at least one
embodiment, the VC interface is implemented as a software
application.

\''C is architccted as an application that delivers end—user
functionality while remaining open to third-parties exten-
sions. For example, VC‘ can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only difference is that VC does not distinguish between
electronic and physical paper.

To accommodate third~party extensions, \-"C is divided
into live essential modules. Each module is a counterpart to

ll)

3|‘!

45

51.!

60

65

an aspect that is found on a convcntional copier. Based on
the modular design ol VC. each aspect of VC can be
independently cxtcnclcd, offering much grcatcr llcxibility
than conventional copiers.

The five core modules of VC arc:

[nput Module—The input Module manages paper or
electronic paper entering VC. This module manages
imaging devices to input pap-or through scanners,
Ml-‘PS. or the new hrecd of digital copiers. 'll1e lnpul
Module also manages reading electronic paper from
third-party or proprietary applications. 'l'hc counterpart
to V-"C's lnpul Module on a conventional copier is the
scanner sub.-tystcm.

Output Modulc—Thc Output Module manages paper or
clcctronic paper exiting VC. Like the lnpul Module.
this module manages imaging devices to output paper
to standard Windows printers, specialty image printers,
MFPs, or the new breed of digital oopiers. The Output
Module also manages writing electronic paper to third-
parly or proprietary applications. The counterpart to
VC’s. Output Module on a conventional copier is [he
printer or fax subsystem.

l-'roccs5 it-'lodulc—'f'hc Process Module applies procussing
to the electronic paper as it is being copied. Examples
of a process are OCR and [C'R. The Process Module can
also apply non—imaging functionality as well, such asworkflow or other relevant lie~ins to the electronic
paper as it is being copied. One of the advantages of \-''C
over conventional copiers is that multiple processes can
be applied to a single virtual copy. The counterpart to
\«"(_"s Process Module on a conventional copier is the
contrnllcr.

Client Module—v'l‘l1e (fiicnt Module presents the clea-
tronic paper as it is being copied. and any relevant
information related to the input or output functions. For
example, if the Output Module is directed to a printer.
then the Client Module might present the finishing
capabilities: if the Output Module is directed to
Goldmine, then the Client Module might present the
target contact record to which the document is being
copied. The counterpart to V"C‘s Client Module on a
convenlictrlal copier is the panel.

Server Module-—Unlikc conventional copiers, VC's
Scrvcr Module is a unique subsystem that can commu-
nicate with the other modules as well as third—pany
applications. The Server Modulc is what makes VC 2:
far more powerful concept than simply an application
that can control a scanner and a printer to mimic a
copier. The Server Module can be used to combine
third-party applications with the new breed of digital
imaging devices to create unique: and custom virtual
copier solutions A virtual copier can he created with
VC by combining a scanner with a printer; or by
combining a scanner with an application; or by comb-
ing an application with an image printer. ln each case
VC is dynamically crcating a custom virtual copicr.
with a complete understanding of how paper liows
from the source to its destination. Thcrt: is no counter-
part to VC's Server Module on a conventional copicr.

One of the primary design goals of V[‘ is to make it
simple to integrate \-''C with third—party applications. There
are two options to integrating VC into a third—pany appli-
cation: running \-"C as an external service, or embedding VC
as an underlying service.

VC is in one embodiment and optionally a standalone
application that enables a user to scan [copy] paper from a

49

50

US 6,771,381 B1
9

device to a third-party application. and to print (copy) the
reference of an image document from a third-party applica-
tion to a printing devinx. VC does not require the thirt:l—party
application to be aware that VC is operating. Rather, VC
recognizes that the third-party application is running. and it
intelligently copies paper to and from that application.

In this scenario the user is interacting with \«"C’s Client
Module in order to execute a copy operation to and from the
third-pany application. Then: does not have to be any
changes made to the third-party application, not even to its
interface, in order for VC to operate. The user of VC only
knows that to copy to and from the third-party application,
a custom [nput and Output Module must be selected. and the
Go button is pressed.

In order to support copying to and from a third-party
application, \r'(? must he able to support cxtetlsiurt.-5 that
understand each third—party application. This is accom-
plished through the lnput and Output Modules. The Client,
Server. and even l’ruces-i Modules remain independent
across third-party applications. However, in order to support
outputting to a third—party application, an Output Module is
developed that is unique to that third—party application.
l.ilrewLsc, an Input Module is developed that is unique to a
third-party application in order to support reading images.
from that application.

it is the optional [nput and Output Modules that render
\a’(.‘ extenrlable. For each third-party application there is a
unique pair of Input and Output Modules that understand the
third—party application, and how to copy images to and from
that application. Each lnput and Output Module registers
itself to the Windows registry so that the Server Module
knows how to find them. ln this way Virtual Copier can grow
indefinitely, to support any number of third-party applica-tions.

The signilicant point is that the Input and Output Modules
have their own interface, and can be developed indepen-
dently from any other module. As long as the Input and
Output Module confonn to the AP] speciticd in this docu-
ment it will plug-and—play with VC. VC will be able to mix
and match the custom [nput and Output Module with its
standard and other custom lI'tp1.It and Uutptll Modtllcs.

Athind-party application can also use the services of VC‘
without its user interface. That is, a third-party application
can embed \«"f.“s functionality and provide its own interface
to its functionality. For example. rather than have VC as a
separate application. a special button can be placed on a
third-party application that launches VC in the background.

\'’C is designed so that the Server Module can run
independently from the Client Module. All the core
functionality, including communicating with the lnput,
Output, and Process Modules, are performed directly by the
Server Module. The Client Module is generally simply an
interface to the Server Module. 'l‘herel'ore, all the services of
the Server Module can be made available in the background
to a third-party application without the need for an interface.
The third-party application can in fact become the user's
interface to VC,

in order to support VC operating in the hackground a
third-party application merely has to communicate with the
Sewer Module directly, as described later in this document.
‘lhe Server Module. as all modules in V(.‘. support COM-
based interfaces for simple and direct support from all major
Windows development environments.

Accordingly, it is a feature and advantage of the present
invention to implement a component factory. that is auto-
mated or manually expedited.

It is another feature and advantage of the present inven-
tion to be able to take any "C”-level AP] and transform it
into a component.

ll)

l5

3|‘!

45

51.!

60

65

10
[I is another feature and advantage of the present inven-

tion to deline an eifu.-ient and workable design for an
architecture to provide the migration path for any C-level
AP] into a component.

[I is another feature and advantage of the present inven-
tion to develop software tools for automatically generating
reusable software components from core software technolo-
gtes.

[t is another feature and advantage of the present inven-
tion to develop software tools to make software components
available to a I‘r1I.tt.‘l't larger |.|h'rt.‘:t‘ hase.

It is another feature and advantage of the present inven-
tion in providing a distributed mrnpliter architecture and
process for manually and.-‘or automatically generating reus-
able software cornponents.

It is another feature and advantage of the present inven-
tion in providing a distributed cotnputer architecture and
process for manually and.-“or automatically generating reus-
able software components where the computer architecture
is implemented using a client server andior intranet andr"or
internet operating environments.

[I is another feature and advantage of the present inven-
tion in providing a computer architecture and process for
image viewing in a stand—alone and.-‘or distributed environ-
ment.

[1 is another feature and advantage of the present inven-
tion in providing a crtmputer architecture and process that
uses a substantially uniform management layer in a stand-
alone and.-‘or distrihuted computing environment including.
for example, client server artctinr intranet andior internet
operating environments.

[I is another feature and advantage of the present inven-
tion to enable a typical PC user to add electronic paper
processing to their existing business process.

[I is another feature and advantage of the present inven-
tion to enable software that manages paper so that it can be
electronically and seamlessly copied in and out of devices
and business applications (such as Microsoft Oliice,
Microsoft Exchange, Lotus Notes.) with an optional single-
step Go operation.

The present invcrttion is based. in part, on my discovery
that it is possible to make the component factory. and that
each step of the architecture is designed to facilitate auto-
mation or manually design of components. The present
invention is also based. in part. on my discovery that by
automatingtexpediting the process of taking the original
"C"-level AP] and migrating it to a Level 1 layer, and then
a Level 1 to a Level 2, and then a Level 2 to a Level 3 layer,
and so on, the component has been implemented automati-
cally and.-'or more manually eificiently. The component
factory is therefore a sum of the ability to automate migrat-
ing the “C"-level API from one layer to the next within a
well-defined architecture for implementing components.

The present invention is also based, in part, on my
discovery that the ol-tjcct manager and engine object com-
ponent layers may be advantageously he designed to operate
independently. thereby making possible a distributed com-
puting environment, as dcscribed below in detail. 1 have
further discovered that an ellicient method ofirnplemcnting
the engine object component layer is by using pre—populated
tables,-‘llles. l have further discovered that the engine man-
agement layer may be advantageously divided into a three
layer structure of loadfunload engine. dynamic linking
engine function calls, and initialize engine setting.

In accordance with one embodiment of the invention, a
computer implemented process migrates a program specific
Application Programmer Interface (API) from an original

50

51

US 6,771,381 B1
11

state into a genetic inte1'l'act: by building an object for each
engine. The object provides substantially uniform access to
the engine and engine settings associated with the engine.
The computer implemented process includes the step of
providing an engne management function interfacing with
the program specific API. The engine management function
furnishes a protective wrapper for each function call asso-
ciated with the engine, trapping errors, and provides error
management and administration to prevent conditions asso-
ciated with improper engine functioning. The process
optionally includes the step of providing an engine configu-
ration function transforming API calls received from the
program specific API into standardirted calls The engine
configuration function provides additional functionality,
including safely loading and unloading the engine. The
process optionally includes the step of providing an engine
function managing the standardized calls for each engine.
thereby providing substantially uniform access to the engine
and the engine settings mciated with the engine.

in accordance with another embodiment of the invention,
a computer implemented method migrates at least one
program specific Application Programmer Interface (API)
from an original state into a generic interface by building an
object for each engine. The object provides substantially
uniform aecxzt-s to the engine and engine settings asst:tt:i:rled -
with the engine. The computer implemented method
includes the steps of defining a substantially consistent
interface for individual object components that represent
diverse technologies. and migrating a plurality of engines to
the consistent interface. The computer implemented method
also includes the step of substantially automatically andlor
substantially uniformly, managing the individual object
components using a predefined object manager and theconsistent interface.

in accordance with another embodiment of the invention,
a computer architecture migrates at least one program spe-
cific Application Programmer Interface (API) from an origi-
nal state into a generic interface by building an object for
each engine. The object provides substantially uniform
access to the engine and engine settings associated with the
engine. The computer architecture includes an engine man-
agement layer interfacing with the program specific API and
providing engine management and administration. an engine
configuration layer transforming API calls received from the
program specific r’\]‘l into standardized calls, and an engine
layer managing the standardized calls for each engine.

in accordance with another embodiment of the invention,
an engine management layer configures a computer archi-
tecture to perform one or more computer implemented or
computer assisted operations. The computer operations
include one or more of loading and unloading engine
dynamic link libraries into and out of memory for each
engine, mapping at least one engine function to at least one
corresponding engine object, providing general error detec-
tion and error correction for each engine, determining and
matching arguments and returning values for mapping the at
least one engine function to the at least one corresponding
engine object. and.-“or managing error feedback from the at
least one program speeilic API.

in accordance with another embodiment of the invention,
a distributed computer system migrates a program specific
Application Programmer interface (API] from an original
state into a genetic interface by building an object for each
engine. The object provides substantially uniform access to
the engine and engine settings associated with the engine.
The distributed computer system includes a server config-
ured to include at least one engine having an engine interface

ll)

l5

3ft

45

51.!

60

65

12
providing one or more features to be executed. and at least
one engine component configured lo execute the one or
more features of the engine by mapping at substantially
consistent interface to the engine interface of the engine. The
distributed computer system also includes at least one client
configured to be connectable to the server and optionally
configured to be connectable to another server.

The client includes an object manager layer communi-
cable with and managing the at least one engine component
stored on the server via the substantially consistent interface.

In accordance with anolheremhodiment of the invention,
a distributed computer implemented process migrates a
program speeifle Applicatitin Programmer Interface (r’\l’l)
from an original state into a generic interface by building an
object for each engine. The object provides substantially
uniform access to the engine and engine settings associated
with the engine. The computer implemented process
includes the step of providing, on a server, at least one
engine having an engine interface, and providing one or
more features to be executed. The computer implemented
process also includes the step of providing, on at least one
of the server and another server connectable to the server, at
least one engine component configured to execute the one or
more features of the engine by mapping a substantially
consistent interface lo the engine interface of ll1l: engine. The
computer implemented process also includes the step of
providing. on a Client eonfigtlred to he connectable to the
server and optionally configured to he connectable to the
another server. an object manager layer communicable with
and managing the at least one engine component via the
substantially consistent interface.

in accordance with another embodiment ofthe invention,
an image viewer process views at least one document image
irtcluding an electronic document image, and performs
viewing operations to the electronic document image. The
process includes the step of selecting, by the user, one of a
plurality of image viewing perspectives. Each ofthe plural-
ity of image viewing perspectives provide the user the
capability of viewing the r.lnt:t.tn1t:1‘tl image in accordance
with a different predefined user perspective. The process
also inelutles the steps of selecting. by the user. using the
image viewer process the document image to be viewed, and
retrieving. by the image viewer procetas. the document
image. The process also includes the step ofdisplaying, by
the image viewer process. the selected document image in
accordance with an image viewing perspective selected bythe user.

in accordance with another embodiment ofthe invention,
a computer readable tangible medium is provided that stores
the process thereon. for execution by the computer.

Acomputcr data management system includes at least one
of an electronic image, graphics and document management
system capable of transmitting at least one of an electronic
image. electronic graphics and electronic document to a
plurality of external destinations including one or rrtore of
external devices and applications. The computer data man-
agement system is re.-aponsively connectable at least one of
locally and via the lntcrnet, and includes at least one
memory storing a plurality of interface protocols for inter-
facing and communicating, and at least one processor
responsively connectable to the at least one memory. The
processor implements the plurality of interface protocols as
a software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

in one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. in

51

52

US 6,771,381 B1
13

one embodiment. the computer data management system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
lnternet. ln one embodiment. the computer data manage-
ment system includes the capability to integrate the elec-
tronic images into a destination application without the need
to modify the destination application.

In one embodiment. the computer data management sys-
tem includes an interface that enables copying images
between physical devices, applications, and the [nternet
using a single "GO” operation. In one embodiment, the
computer data management system includes the capability
of adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, the software application includes at
least one input module ntanaging data comprising at least
one of paper and electronic paper input to the computer data
management system. and managing at least urte imaging
device to input the data through at least one of a scanner and
a digital copier, and managing the electronic paper front at
least one third—par1y sottware applications; at least one
output module managing the data output from the computer
data management system, managing at least one imaging
device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier, and .,
managing the output of the data to the third-party software
application; at least one process rnodulc applying at least
one data processing to the data comprising the at least one
of the paper and the electronic paper as it is being copied,
applying additional functionality including at least one of
workllow and processing functionality to the data compris-
ing the at least one of paper and electronic paper as it is
being copied, and applying multiple processes to a single
virtual copy; at least one client module presenting the data
comprising the at least one of paper and electronic paper as
it is being copied, and information related to at least one of
the input and output l'1.tnctions; and at least one server
module communicable with said at least one input, output,
client, and process modules and external applications. and
capable of dynamically combining the external applications
with at least one of digital capturing devices and digital
imaging devices.

In one embodiment. one or more of the external devices
and applications integrates the computer data management
system into an external application via one of running the
computer data management system, as an external service
and embedding the computer data management system as anembedded service.

In one embodiment, the server module includes enable
virtual copy operation means for initiating. canceling, and
resetting said computer data management system; maintain
list of available module means for maintaining a registry
containing a list of said input, output, and process modules
that can be used in said computer data management system,
said list being read on startup, and maintaining another copy
of said list in :1 modules object accessible by said input,
output. client. process and server modules; maintain cur-
rently active modules means for maintaining said input,
output. and process modules currently being used [or a
current computer data management system copy operation
in a program object. and saving the currently active modules
in a process template tile; and maintain complete document
information means for maintaining infonnation regarding a
current file being copied, and saving the information in a
document template ftle.

In one embodiment, the server module includes at least
one server module application programmer interface [API)_

ll)

l5

3|'l

45

51.!

60

65

14
IN ont: tnebodimenl. the server module application program-
mer interface [.«’\I’t) comprises the COM-bastul interfaces: at
least one modules ohject maintaining a ll.tSl list of available
input, output, and process modules; at least one program
object maintaining a second list of currently selected input.
output, and process modules; at least one document object
maintaining information regarding a current document being
copied; at least one system management method object used
to initiate, cancel, and reset said computer data management
system; and at least one system management event object
Used to provide feedback to the {Tiient Module.

In one embodiment, a computer data management system
includes. at least one of an electronic image. graphics and
document management system capable of transmitting at
least one of an electronic image. electronic graphics and
electronic document lo a plurality of external destinations
including one or more of extemal devices and applications
responsively connectablc at least one of locally and via the
Internet. The computer data management system comprises:
a first capability to integrate an image using software so that
the image gets seamlessly replicated into at least one of other
devices and applications, and via the lntcrnet; a second
capability to integrate electronic images into existing appli-
cations without the need to modify the destination applica~
tiun; an interface comprising a software application that
enables copying images between physical devices,
applications. and the Internet using a single "t.i(]"opcratim'1;
and a third capability of adding at least one of electronic
document and paper processing with a single programming
step.

A computer data management system capable of manag-
ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to .1 plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data management system includes at
least one memory storing at least one of a common and
universal interface protocol for interfacing and communi~
eating; and at lcast one processor ncsponsively connectahle
to said at least one memory. and implementing the at least
one common and universal interface protocol as a software
application for interfacing and communicating with the
plurality of external destinations including the one or more
of the external devices and applications.

In one embodiment. a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image. graphics and document management sys-
tem capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
J Common and universal interface protocol for interfacing
and communicating in at least one memory; and implement-
ing the at least one of common and universal interface
protocol as a software application via at least one processor
for interfacing and communicating with the plurality of
external destinations including the at least one extemal
device and application.

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of extemal destinations
including one or more of external devices and applications

52

53

US 6,771,381 B1
15

responsivcly connectable at least one of locally and via the
Internet. The computer data management system includes a
single function copy operation linking devices. applications
and the lntemet including at least one a go operation, a
single function paper copy between devices and software
applications, and a single function paper copy between
software applications and devices; a one step programming
method to add paper support to electronic business processes
including at least one of a one step method of supporting
paper within electronic husiness process application option-
ally including legacy systems with no or minimal repre-
gramming of the electronic business process application, a
method of recreating a module oriented copier in software:
and a copier interface implemented as software application
including at least one of a virtual copier interface method of
presenting to a user an operation of at least one of copying
files and electronic images, at least one of to and from. at
least one of digital imaging devices and software
applications. in a substantially single step. and presenting
users with direct access to at least one of tutorial and options
from a main application window.

In one embodiment, a server module includes enable
virtual copy operation means for initiating, canceling, and
resetting said computer data management system; maintain
list of available module means for maintaining a registry -
containing a list of said input, output, and process modules
that can be used in said computer data management system.
said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input.
output, client, process and server modules; maintain cur-
rently active modules means for maintaining said input,
output. and process modules currently being used for a
cunent computer data management system copy operation
in a program object, and saving the currently active modules
in a process template file; and maintain complete document
information means for maintaining infonnation regarding a
current file being copied, and saving the infom1ation in a
document template file.

in one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management system r.:ap.'tl'rlt: of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectahlc at least one of locally and via the
Internet. The method comprises the steps of integrating an
image using software so that the image geLs seamlessly
replicated into at least one ofother devices and applications,
and via the lntemet; integrating electronic images into
existing applications without the need to modify the desti-
nation application; interfacing via a software application
enabling copying images between physical devices,
applications, and the lntcrnet using a single "(it)" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

in one embodiment, a server method includes initiating,
canceling. and resetting said computer data management
system; maintaining a registry containing a list of said input,
output. and process modules that can be used in said
computer data management system, said list being read on
startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client,
process and server modules; maintaining said input. output,
and process modules currently being used for a current
computer data management system copy operation in a
program object, and saving the currently active modules in
a process template file; and maintaining information regard-

ll)

l5

3ft

45

51.!

60

65

16
ing a cun'cnt Elle being copied. and saving the information in
a document template file.

A computer data administration system includes at least
one of an electronic image, graphics and document admin-
istration system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality of extemal destinations including one or
more of external devices and applications. The computer
data administration system is rcsponsively connectable at
least one of locally and via the lnternet, and includes at least
one memory storing a plurality of interface protocols for
interfacing and communicating. and at least one processor
responsively connectable to the at least one memory. The
processor implements the plurality of interface protocols as
a software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the extemai devices and applications.

in one embodiment, the extemal devices and applications
include. for example, a printer. a facsimile. and a scanner. in
one embodiment. the computer data admini-atration system
includes the capability to integrate an image using software
so that the image gels seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
lnteroet. In one embodiment, the computer data administra-
tion system includes the capability to integrate the electronic
images lnlo a destination application without the need to
modify the destination application.

in one embodiment. the computer data administration
system includes an interface that enables copying images
between physical devices. applications. and the lnlemet
using a single "G0“ operation. In one embodiment, the
computer data administration system includes the capability
of adding at least one of electronic document and paper
processing with a single programming step.

in one embodiment, the software application includes at
least one input module managing data comprising at least
one of paper and electronic paper input to the computer data
administration system. and managing at least one imaging
device to input the data through at least one of a scanner and
a digital copier, and managing the elet_‘tt‘UniC paper from at
least one third-party software applications; at least one
output module managing the data nulptll from the computer
data administration system. managing at least one imaging
device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier. and
managing the output of the data to the third-party software
application; at least one process module applying at least
one data processing to the data comprising the at least one
of the paper and the electronic paper as it is being copied,
applying additional functionality including at least one of
workflow and processing functionality to the data compris-
ing the at least one of paper and electronic paper as it is
being copied, and applying multiple processes to a single
virtual copy; at least one client module p|‘I:.~'.t:nlir|g the data
comprising the at least one of paper and electronic paper as
it is being copied. and infonmtlion related to at least one of
the input and output functions; and at least one server
module communicable with said at least one input. output.
client, and process modules and extemal applications, and
capable of dynamically combining the external applications
with at least one of digital capturing devices and digital
imaging devices.

in one embodiment, one or more of the etrtemal devices
and applications integrates the computer data administration
system into an external application via one of running the
computer data administration system. as an external service
and embedding the computer data administration system as
an embedded service.

53

54

US 6,771,381 B1
17

In one embodiment. the server module includes enable
virtual copy opt:raliot1 means for initiating canceling, and
resetting said computer data arlministration system; main-
tain ist ofavailable module means for maintaining a registry
containing a list of said input, output, and process modules
that can be used in said computer data administration
system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by
said input, output, client, process and server modules,’ main-
tain currently active modules means for maintaining said
input, output. and process: modulus currently being used for
a current computer data administration system copy opera-
tion in a program object. and saving the currently active
modules in a process template file; and maintain complete
document information means for maintaining information
regarding a current llle being copied, and saving the infor-
mation in a document template tile.

In one embodiment, the server module includes at least
one server module application programmer interface [Al’l).
lN one mebodiment, the server module application program-
mer interface [AP[) comprises the COM-based interfaces: at
least one modules object maintaining a Iirst list of available
input, output, and process modules; at least one program
object maintaining a second list of currently selected input,
output. and pI‘t.K:es.-t mttdttles; at least um: document object ..
maintaining information regarding a current document being
copied; at least one system administration method object
used to initiate, cancel, and reset said computer data admin-
istration system; and at least one system administration
event object 1.t.~ted to provide feedback to the Client Module.

In one embodiment, a computer data adrninistration sys-
tem includcs at least one of an electronic image, graphics
and document administration system capable oftransmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectabte at least one of locally and via the
lnternet. The computer data administration system com-
prises: .1 first capability to integrate an image using software
so that the image geLs seamlessly replicated into at least one
of other devices and applications. and via the Internet; a
second capability to integrate electronic images into existing
applications without the need to modify the destination
application; an interface comprising a software application
that enables copying images between physical devices,
applications, and the lntemet using a single “(_i0" operation;
and El. third capability of adding at least one of electronic
document and paper processing with a single programming
step.

A computer data administration system capable of man-
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data administration system includes
at least one memory storing at least one of a common and
universal interface protocol for interfacing and communi-
cating; and at least one processor responsively connectable
to said at least one memory, and implementing the at least
one common and universal interface protocol as a software
application for interfacing and communicating with the
plurality of external destinations including the one or more
of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instmctions for implementing a process
driven by a computer implemented on at least one of an
electronic image, graphics and document administration

ll)

l5

3|‘!

45

51.!

60

65

18
system capable of managing and transmitting at least one of
an electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement-
ing the at least one of common and universal interface
protocol as a software application via at least one processor
for interfacing and communicating with the plurality of
external destinations including the at least one external
device and application.

In one embodiment, a computer data administration sys-
tem includes at least one of an electronic image. graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively cotlnectable at least one of locally and via the
lnternet. The computer data administration system includes
a single function copy operation linking devices, applica-
tions and the [nternet including at least one a go operation,
a single function paper copy between devices and software
applications. and a single function paper copy between
software applications and devices; a one step programming
method lo add paper support to electronic business pro-cusses
including at least one of a one step method of supporting
paper within electronic business process appli ‘ ion option-
ally including legacy systems with no or minimal repro-
gramming of the electronic business process application. a
method of recreating a module oriented copier in software;
and at copier interface implemented as software application
including at least one of a virtual copier interface method of
presenting to a user an operation of at least one of copying
tiles and electronic images, at least one of to and from, at
least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access‘ to at least one or tutorial and options
from a main application window.

in one emliodimenl. a server module includes enable
virtual copy operation means for initiating, canceling, and
resetting said computer data administration system: main-
tain list of available module means for maintaining a registry
containing a list of said input. output, and process modules
that can be used in said computer data administration
system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by
said input, output. client, process and server modules; main-
tain currently active modules means for maintaining said
input, output, and process modules currently being used for
:1 current computer data administration system copy opera-
tion in a program object, and saving the currently active
modules in a process template file; and maintain complete
document iniorrnatinn means for maintaining information
regarding a current Iile being copied, and saving the infor-
mation in a document template file.

In one embodiment. a computer data administration
method includes at least one of an electronic image. graphics
and document administration system capable of transmitting
at least one of an electronic image. electronic graphics and
electronic document to a plurality of external destinations
including one or more of extemal devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises the steps of integrating an
image using software so that the image gets seamlessly
replicated into at least one of other devices and applications,

54

55

US 6,771,381 B1
19

and via the Internet; integrating electronic images into
existing applications without the need to modify the desti-
nation application; interfacing via a software application
enabling copying images between physical devices,
applications. and the lnlcmel using a single "G0" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes initiating,
canceling, and reselling said computer data administration
system; maintaining a registry containing a list of said input,
output. and process modules that can be used in said
computer data administration system, said list being read on
startup. and maintaining another copy of said list in a
modules object acccsnhle by said input, output, client.
process and server modules; maintaining said input. output,
and process modulo currently heing used for a current
computer data admi ration system copy operation in a
program object. and saving the currently active modules in
a process template file; and maintaini g information regard-
ing a current file being copied. and saving the information in
a document ternpiate tile.

Acomputer information management system includes at
least one of an electronic image, graphics and document
management system capable of transmitting at least one of

an electronic image. electronic graphics and electronic docLI- .,
ment to a plurality of external destinations including one or
more of external devices and applications The computer
information management system is rcsponsively connect-
ahlc at least one of locally and via the Internet. and includes
at least one storage storing a plurality of interface protocols
for interfacing and communicating. and at least one proces-
sor responsively conoectahle to the at least one storage. The
processor implements the plurality of interface protocols as
a software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. [rt
one cmt:-odirnent, tl'Ie er'.‘II‘ttpulet‘ information management
system includes the capability to integrate an image using
software so that the image gets seamlessly replicated and
transmitted to at least one of other devices and applications.
and via the Internet. In one embodiment. the computer
information management system includes the capability to
integrate the electronic images into a destination application
without the need to modify the destination application.

In one embodiment, the computer infomtation manage-
ment system includes an interface that enables copying
images between physical devices. applications, and the
lnternet using a single "G0" operation. [n one embodiment,
the computer information management system includes the
capability of adding at least one of electronic document and
paper processing with a single programming step.

in one embodiment, the software application includes at
least out: input module managing inforrnatiorr comprising at
least one of paper and electronic paper input to the computer
information management system. and managing at least one
imaging device to input the information through at least one
of a scanner and a digital copier. and managing the elec-
tronic paper from at least one lhird—party software applica-
tions: at least one output module managing the information
output from the computer information management system,
managing at least one imaging device to output the infor-
mation to at least one of a standard Windows printer, an
image printer, and a digital copier, and managing the output
of the information to the third—party software application; at
least one process module applying at least one information

ll)

l5

3|‘!

45

51.!

60

65

20
processing to the information comprising the at least one of
the paper and the electronic paper as it is being copied.
applying additional functionality including at least one of
workflow and processing functionality to the infomtation
comprising the at least one ofpaper and electronic paper as
it is being copied. and applying multiple processes to a
single virtual copy: at least one client module presenting the
information comprising the at least one of paper and elec-
tronic paper as it is being copied. and information related to
at least one of the input and output functions; and at least one
server module communicable with Said ttl least one input,
output, client, and process modules and external
applications. and capable of dynamically combining the
external applications with at least orte of digital capturing
devices and digital imaging devices.

in one embodiment, one or more of the external devices
and applications integrates the computer information man-
agement system into an extemal application via one of
running the contpuler infonnation management system, as
an external service and embedding the computer information
management system as an embedded service.

In one embodiment, the server module includes enable
virtual copy operation means for initiating, canceling, and
resetting said computer infomtation management system;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said computer information
management system. said list being read on startup, and
maintaining another copy of said list in a modules object
acce.-tsible by said input, output, client, process and server
modules; maintain currently active modules means for main-
taining said input. output. and process modules currently
being used for a current computer information management
system copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main-
taining information regarding a current file being copied,
and saving the information in a document template tile.

In one rnebodiment. the server module includes at least
one server module application programmer interface (API).
IN one t‘nel1odimr:ni.tl1e server module application program-
mer interface (.-’\P[)con1prises the {_‘0M-based interfaces: at
least one modules object maintaining a first list of available
input. output, and process modules; at least one program
object maintaining a second list ofcurrently selected input.
output, and process modules; at least one document object
maintaining information regarding a current document being
copied; at least one system management method object used
to initiate. cancel, and reset said computer information
management system; and at least one system management
event object used to provide feedback to the Client Module.

In one embodiment, a computer infomtation management
system includes at least one of an electronic image. graphics
and document management system capable of transmitting
at least one of an electronic image. electronic graphics and
electronic document to a plurality of extemat destinations
including one or more of external devices and applications
responsively connectahle at least one of locally and via the
Internet. The computer information management system
comprises: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the
lnternet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the lnternct using a single ”G()"

55

56

US 6,771,381 B1
2]

operation: and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

A computer information management system capable of
managing and transmitting at least one of an electronic
image, electronic graphics and electronic document to a
plurality of extemal destinations including one or more of
external devices and applications at least one of locally and
via the Internet. The computer infonnation management
system includes at least cne storage storing at least one of a
cornmon and universal interface prulrscctl for interfacing and
eornmunicating; and at least one processor responsively
connectable to said at least one storage. and implementing
the at least one common and universal interface protocol as
a software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implenrented on at least one of an
electronic image. graphics and document management sys-
tem capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including at least
one of an external device and application at least one of -
locally and via the lnternet. The instnictions control the
computer to perlorm the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one storage; and implement-
ing the at least one of common and universal interface
protocol as a software application via at least one processor
for interfacing and communicating with the plurality of
external destinations including the at least one external
device and application.

In one embodiment. a computer infomtation management
system includes at least one of an electronic image, graphics
and document management system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document tu a plurality of external destinations
including one or more of external devices and applications
responsively L‘f.l1‘tl'lCt.'|altlC at least one of locally and via the
Internet. The computer information management system
includes a single function copy operation linking devices,
applications and the Internet including at least one a go
operation, a single function paper copy between devices and
software applications, and a single function paper copy
between software applications and devices: a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supponing paper within electronic business pro-
cess application optionally including legacy systems with no
or minimal reprogramming of the electronic business pro—
Clisai application. a method of recreating a module oriented
copier in software; and a copier interface implemented as
.software application including at least one of a virtual copier
interface method of presenting to a user an operation of at
least one of copying tiles and electronic images. at least one
of to and from, at least one of digital imaging devices and
software applications. in a substantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

In one embodiment, a server module includes enable
virtual oopy operation means for initiating, canceling, and
resetting said computer information management system;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said computer in|'orrnation

ll)

l5

3|‘!

45

51.!

60

65

22
management system. said list being read on slartup. and
maintaining another copy of said list in a module. ohjeet
accessible by said input, output. client, process and server
modules; maintain currently active modules means for main-
taining said input, output. and process modules currently
being used for a current computer information management
system copy operation in a program object, and saving the
currently active modules in a process template file: and
maintain complete document information means for main-
taining information regarding a current file being copied,
and saving llte information in a document template file.

in one embodiment, a computer information management
method includes at least one of an electronic image. graphics
and document management system capable of transmitting
at least one of an electronic image. electronic graphics and
electronic document to a plurality of external dest' ations
including one or more of extemal devices and applic ions
responsively connectable at least one of locally and via the
Internet. The method comprises the steps of integrating an
image using software so that the image gets seamlessly
replicated into at least one of other devices and applications,
and via the lntemet; integrating electronic images into
existing applications without the need to modify the desti-
nation application; interfacing via a software application
enabling copying images between physical devices,
applications, and the lnternet using a single “GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

lI'l one embodiment. a server method includes initiating.
canceling. and reselling said computer il'Ifr:rt1'I.1lioI1 I'nat1itge-
ment system; maintaining a registry containing a list of said
input, output. and process modules that can be used in said
computer infonnation management system. said list being
read on startup, and maintaining another copy of said list in
a modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,
and process modules currently being used for a current
computer information management system copy operation
in a program object, and saving the eurrently active modules
in a process template file; and maintaining information
regarding a current Iile heing copied, and saving the infor-
mation in a document template file.

A computer data management system includes at le asl one
of an electronic image, graphics and document management
system capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a
plurality of extemal destinations including one or more of
external devices and applications. The computer data man-
agement system is responsively connectable at least one of
locally and via the lntemet, and includes at least one
memory storing a plurality of interface protocols for inter-
facing and communicating, and at least one processor
responsively connectable to the at least one memory. The
processor implements at least one interface protocol as a
software application for interfacing and cornrnunicating
with the plurality of external destinations including the one
or more of the external devices and applications,

in one embodiment, the external devices and applications
include, for example. a printer. a facsimile. and a scanner. in
one embodiment, the computer data management system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications. and via the
Internet. In one embodiment, the computer data manage-
ment system includes the capability to integrate the elec-
tronic images into a destination application without the need
to modify the destination application.

56

57

US 6,771,381 B1
23

In one embodiment. the computer data management sys-
tem includes an optional interface that enables copying
images between physical devices, applications. and the
Internet using a single "G0" operation. In one embodiment,
the computer data management system includes the optional
capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input
to the computer data management system. and managing at
least one imaging device to input the data through at least
one of a 3-iC311I'IU1' and a digital copier. and managing the
electronic paper from at least one third-party software
applications; at least one output module managing the data
uLIlpI.I.l from the computer data management system, man-
aging at least one imaging device to output the data to at
least one of a standard Windows printer, an image printer,
and a digital copier, and managing the output of the data to
the third—party software application; at least one process
module applying at least one data processing to the data
comprising the at least one of the paper and the electronic
paper as it is being copied, applying additional functionality
including at least one of workflow and processing function~
ality to the data comp-ri"ng the at least one of paper and -
electronic paper as it is being copied. and applying multiple
pmocsses to a single virtual copy; at least one client module
presenting the data comprising the at least one of paper and
electronic paper as it is being copied. and infomtation
related to at least one or the input and output functions; and
at least one server module communicable with said at least
one input, output, client, and process modules and external
applications. and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment. one or more of the external devices
and applications integrates the computer data management
system into an external application via at least one of
running the oornputer data management system. as an exter-
nal service and embedding the computer data management
system as an emlteddcd servt'Cc.

in one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
system; maintain list of available module means for main-
taining a registry containing a list of said input. output, and
process modules that can be used in said computer data
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main-
taining said input, output, and process modules currently
being used for a current computer data management system
copy operation in a program object, and saving the currently
active rnodules in at pr()cI.'.ss template file; and maintain
complete document information means for maintaining
information regarding a current file being copied. and saving
the infomiation in a document template Ille.

In one embodiment. the server module includes at least
one server module application programmer interface [Al'l).
In one embodiment. the server module application program-
mer interface (API) comprises one or more of the following
COM—based interfaces: at least one modules object main-
taining a lirst list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input. output, and process modules;
at least one document object maintaining information

ll)

l5

3|‘!

45

51.!

60

65

24
regarding a current document being copied; at least one
system management method object used lo initiate, cancel.
and reset said computer data management system: and at
least one system management event object used to provide
feedback to the Client Module.

In one embodiment. a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectahle at least one of locally and via the
Internet. ‘l‘ht: computer data management system Curltprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devi"s and applications. and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single "60"
operation; and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

Acornputer data management system capable of manag-
ing and transmitting at least one of an electronic image,
electronic graphics and electronic document In a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. the computer data management system includes at
least one memory storing at least one of a common and
universal interface protocol for interfacing and communi-
cating: and at least one data processor resportsively connect-
able to said at least one memory, and implementing the at
least one common and universal interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image. graphics and document management sys-
tem capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality ofexternal destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and oommunicating in at least one memory; and implement-
ing the at least one of common and universal interface
protocol interfacing and communicating with the plurality of
external destinations.

In one embodiment, a computer data management system
includes at least one of an electronic image. graphics and
document management system capable of transmitting at
least one oli an electronic image. electronic graphics and
electronic document to a plurality of external destinations
including one or more of cxtemal devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management system includes
one or more of: a single function copy operation linking
devices, applications and the Internet including at least one
a go operation, a single Function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic

57

58

US 6,771,381 B1
25

business processes including at least one of a one step
method of supporting paper within electronic business pro-
cess application optionally including legacy systems with no
or minimal reprogramming of the electronic business pro-
ce.‘ss application. a method of recreating a module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual copier
interface method of presenting to a user an operation of at
least one of copying files and electronic images, at least one
of to and from, at least one of digital imaging devices and
software applications. in a suhstantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

In one embodiment, it server module includes one or more
of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
system; maintain list of available module means for main-
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management system, said list being read on startup. and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main-
taining said input, output, and process modules currently
being used for a current computer data management system -
copy operation in a program object, and saving the currently
active modules in a process template file; and maintain
complete document infonnation means for maintaining
information regarding a current file being copied. and saving
the information in a document template file.

ln one embodiment. a computer data management method
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively oonuectalale at least one of locally and via the
lntemet. The method comprises one or more ofthe steps of
integrating an image using software so that the image gels
seamlessly replicated into at least one of other devices and
applications. and via the Internet; integrating electronic-
images into existing applications without the need to modify
the destination application; interfacing via a software appli-
cation enabling copying images between physical devices,
applications. and the lntemet using a single "(ii)" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said computer data
management system; maintaining a registry containing a list
of said input. output, and process modules that can he used
in said computer data management system, said list being
read on startup, and maintaining another copy of said list in
a modules object accessible by said input, output, client,
Process and server modules; maintaining said input. output.
and process modules currently being used for a eurrent
computer data management system copy operation in a
program object, and saving the currently active modules in
a process template Iile; and maintaining infonnation regard-
ing a current file being copied, and saving the information in
a document template tile.

A computer data administration system includes at least
one of an electronic image, graphics and document admin-
i.stration system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including one or
more or external devices and applications. The computer

ll)

l5

3f!

35

45

51.!

60

65

26
data administration system is responsively conncclahle at
least one of locally and via the Internet. and includes at least
one memory storing a plurality of interface protocols for
interfacing and communicating. and at least one processor
responsively connectable to the at least one memory. 'l‘he
processor implements at least one interface protocol as a
software application for interfacing and contmunicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data administration system
includes the capability to integrate an image using software
so that the image gem seamlessly replicated and transmitted
to at least one of other devices and applications. and via the
Internet. in one embodiment, the computer data administra-
tion system includes the capability to integrate the electronic
images into a destination application without the need to
modify the destination application.

In one embodiment, the computer data administration
system includes an optional interface that enables copying
images between physical devices, applications, and the
[nternet using a single "GO" operation. [n one embodiment,
the computer data administration system includes the
optional capability of adding at least one of electronic
document and paper processing with a single programming
step.

In one embodiment. the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input
to the computer data administration system. and managing at
least one imaging device to input the data through at least
one of a scanner and a digital copier. and managing the
electronic paper from at least one third—party software
applications; at least one output module managing the data
output from the computer data administration system, man-
aging at least one imaging device to output the data to at
least one of a standard Windows printer, an image printer,
and a digital copier, and managing ll1t: output of the data to
the third-party software application; at least one process
module applying at least one data pt‘oct.-sslng tn the data
comprising the at least one of the paper and the electronic
paper as it is being copied. applying additional functionality
including at least one of workflow and processing ll.lI'lCllOI'J.-
ality to the data comprising the at least one of paper and
electronic paper as it is being copied, and applying multiple
processes to a single virtual copy; at least one client module
presenting the data comprising the at least one of paper and
electronic paper as it is being copied, and information
related to at least one of the input and output functions; and
at least one server module communicable with said at least
one input, output. client, and procesm modules and external
applications. and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment. one or more of the external devices
and applicetlions intcgratesthe computer data administration
system into an external application via at least one of
running the computer data administration system. as an
external service and embedding the computer data admin-
istration system as an embedded service.

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data administration
system; maintain list of available module means for main-
taining a registry containing a list of said input, output, and
process modules that can he used in said computer data

58

59

US 6,771,381 B1
27

administration system. said list being read on startup. and
maintaining another copy of said list in a modules object
accessible by said input. output. client, process and server
modules; maintain currently active modules means for main-
taining said input. output, and process modules cuncntly
being used for a current computer data administration sys-
tem copy operation in a program object, and saving the
currently active. modules in a process template file; and
maintain complete document information means for main-
taining information regarding a current file being copied,
and saving the information in a do-cttment template file.

In one embodiment, the server module includes at least
one server module application programmer interface [:'\l’l).
In one embodiment, the server module application program-
mer interfacc (.-'\l‘l) comprises one or more of the following
(?()M-based interfaces: at least one modules object main-
taining 21 first list of available input. output. and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;
at least one document object maintaining information
regarding a current document being copied; at least one
system administration method object used to initiate, cancel,
and reset said computer data administration system; and at
least one system administration event object used to provide
feedback to the Client Module.

In one embodiment, a computer data administration sys-
tem includes at least one of an clectronic image. graphics
and document administration system capable oftransrnitting
at least one of an clectronic image. electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively conncctable at least one of locally and via the
Internet. The computer data administration system com-
prises one or more of: a first capability to integrate an image
using software so that the image gets seamlessly replicated
into at least one of other devices and applications, and via
the Internet; a second capability to integrate electronic
images into existing applications without the need to modify
lltt: dcstirtalion application; an interface comprising a soft-
ware application that enables copying images between
physical devices. applications. and the Internet using a
single "G0" operation; and a third capability of adding at
least one of electronic document and paper processing with
a single programming step.

A computer data administration system capable of man-
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The contputer data administration system includes
at least one memory storing at least one of a common and
universal interface protocol for interfacing and communi—
cating; and at least one data processor respunsively connect-
able to said at least one memory, and implementing the at
least one common and universal interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by at computer implemented on at least one of an
electronic image, graphics and document administration
system capable of managing and transmitting at least one of
an electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the

ll)

l5

3|'l

45

51.!

60

65

28
computer to perlontt the process oi": storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement-
ing thc at least one of common and universal interface
protocol interfacing and communicating with the plurality ofexternal destinations.

In one embodiment. a computer data administration sys-
tem includes at least one of an electronic image, graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic docI.lt11t’.nl lo a plurality of external destinations
including one or more of external devices and applications
responsively conneelable at least one of locally and via the
Internet. The computer data administration system includes
one or more of: a single function copy operation linking
devices. applications and the Internet including at least one
a go operation. a single function papcrcopy between devices
and software applications, and a single function paper copy
between software applications and devices; at one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supporting paper within electronic business pro~
cess application optionally including legacy systems with no
or minimal reprogramming of the electronic business pro-
cess applitratiurl. a method of recreating 3 module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual copier
interface method of presenting to a user an operation of at
least one of copying files and electronic images. at lcast one
of to and from, at least one of digital imaging devices and
software applications, in a substantially single step. and
presenting users with direct access to at least one of tutorial
and options from a main application window.

to one embodiment, a server module includes one or more
of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data administration
system; maintain list of available module means for main-
taining a registry containing a list of said input, output, and
process modules that can he used in said computer data
admint. ration system, said list being read on startup, and
maintaining another copy of said list in a modules object
acce.-tsible by said input, output, client, process and server
modules; maintain currently active modules means for main-
taining said input, output. and process modules currently
being used for a current computer data administration sys-
tem copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main-
taining information regarding a current Ill-2 being copied,
and saving the infomtation in a document template file.

In one embodiment, a computer data administration
method includes at least one of an electronic image, graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsivcly connectable at least one of locally and via thc
lntcrnct. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications. and via the lntemet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli-
cation enabling copying images ‘netween physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

59

60

US 6,771,381 B1
29

In one embodiment. a server method includes one or more
ul: initiating, canceling, and resetting said computer data
administration system; maintaining a registry containing a
list of said input, output, and process modules that can be
used in said computer data administration system. said list
being read on startup, and maintaining another copy of said
List in a modules object accessible by said input, output,
client, process and server modules; maintaining said input,
output, and process modules currently being used for a
current computer data administration system copy operation
in a program object, and saving the currently active modules
in a process template file; and maintaining in|'ormation
regarding a current llle being copied, and saving the infor-
mation in a doc1.tment template file.

A workstation data management system includes at least
one of an electronic image, graphics and docl.Imet1l man-
agement system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality of extemal destinations including one or
more of external devices and applications. The workstation
data management system is responsively connectable at least
one of locally and via the lnternet, and includes at least one
memory storing a plurality of interface protocols for inter-
facing and communicating, and at least one processor
responsively cunncctable lo Ihr: at least unc memory. 'l‘l'I|: ..
processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one t:t11lN'Jtllt'|'lcI1l,tl1t: external devices and appliuatiotit-6
include. for example. a printer. a facsimile, and a scanner. In
one embodiment, the workstation data management system
includes the capability to integrate an image using sotlware
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
lnternet. In one embodiment, the workstation data manage-
ment system includes the capability to integrate the elec-
tronic images into a destination application without the need
to modify the destination application.

In one embodiment, the workstation data management
system includes an optional interface that enables copying
images between physical devices, applications, and the
Internet using a single "€30" operation. In one embodiment,
the workstation data management system includes the
optional capability of adding at least one of electronic
document and paper processing with a single programming
step.

In one embodiment, the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input
to the workstation data management system, and managing
at least one imaging device to input the data through at least
one of a scanner and a digital copier. and managing the
electronic paper from at least one third-party software
applications; at least one output module managing the data
output from the workstation data management system, man-
aging at least one imaging device to output the data to at
least one of a standard Windows printer. an image printer,
and a digital copier. and managing the output of the data to
the third—party software application; at least one process
module applying at least one data processing to the data
comprising the at least one of the paper and the electronic
paper as it is being copied, applying additional functionality
including at least one of workflow and processing function-
ality to the data comprising the at least one of paper and
electronic paper as it is being copied, and applying multiple
processes to a single virtual copy; at least one client module

ll)

l5

3|‘!

45

51.!

60

65

30
presenting the data comprising the at least one of paper and
electronic paper as it is being copied. and infortnation
related to at least one of the input and output functions; and
at least one server module communicable with said at least
one input, output, client, and process modules and exlemal
applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the workstation data manage-
ment system into an external application via at least one of
running the workstation data management system, as an
external service and embedding the workstation data man-
agement system as an embedded service.

In one embodiment. the server module includes one or
more or: enable virtual copy oper.-ttion means for initiating.
canceling, and resetting said workstation data management
system; maintain list of available module means for main-
taining zt registry containing a list of said input, output. and
process modules that can be used in said workstation data
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for l'|'Iflll'l.~
raining said input, output, and process modules currently
being used for a current workstation data management
system copy operation in a program object. and saving the
currently active modules in a process template tile; and
maintain cornplete document information means for main-
taining information regarding a current tile being copied.
and saving the infonnation in a document template file.

In one embodiment, the sewer module includes at least
one server module application programmer interface (API).
[n one embodiment, the sewer module application program-
mer interface [Al’I) comprises one or more of the following
COM—based interfaces: at least one modules object main-
taining a first list of available input, output, and process
modules; at least one program object maintaining a second
list of L‘1.It‘1‘et1lly selector] input, output, and prot:c.ss‘. modules;
at least one document object maintaining information
regarding a current document being copied; at least one
system management method object used to initiate, cancel,
and reset said workstation data management system; and at
least one system management event object used to provide
feedback to the Client Module.

In one embodiment, a workstation data management
system includes at least one of an electronic image, graphics
and document management system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. ‘the workstation data management system com-
prises one or more of: a first capability to integrate an image
using software so that the image gets :scarl'Ilt:ssly replicated
into at least one of other devices and applications, and via
the Internet. a second capability to integrate electronic
images into existing applications without the need to modify
the destination application: an interface comprising a soft-
ware application that enables copying images between
physical devices. applications. and the lnternet using a
single "G0” operation; and a third capability of adding at
least one ofelectronic document and paper processing with
a single programming step.

A workstation data management system capable of man-
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of

60

61

US 6,771,381 B1
31

external destinations including one or more of external
devices and applications at least one of locally and via the
lnternet. The workstation data management system includes
at least one memory storing at least one of a common and
universal interface protocol for interfacing and communi-
cating; and at least one data processor responsivcly connect-
able to said at least one memory. and implementing the at
least one common and universal interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
ur more of the external devices and applications.

in one embodiment, a workstation readable. tangible
medium stores instructions for implementing a proct:s~:.
driven by a workstation implemented on at least one of an
electronic image. graphics and document management sys-
tem capable of managing and transmitting at least one of an
electronic image. electronic graphics. and electronic docu-
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the lntcrnct. The instructions control the
workstation to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement-
ing the at least one of common and universal interface
pmtrrcnt interfacing and communicating with |l'tt: plurality of -external destinations.

In one embodiment. a workstation data management
system includes at least one of an electronic image, graphics
and document management system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsivcly connectable at least one of locally and via the
lnternct. The workstation data management system includes
one or more of: a single function copy operation linking
devices, applications and the Internet including at least one
a go operation, a single function paper copy between devices
and software applications, and a single function paper oopy
between soflwan: applications and devices; a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supponing paper within electronic business pro-
cess application optionally including legacy systems with no
or minimal reprogramming of the electronic business pro-
cess application. a method of recreating a module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual oopier
interface method of presenting to a user an operation of at
least one of copying tiles and electronic images, at least one
of to and from, at least one of digital imaging devices and
software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

in one embodiment, a server module includes one or more
of: enable virtual copy operation means for initiating,
canceling, and resetting said workstation data management
system. maintain list of available module means for main-
taining a registry containing a list of said input, output, and
process modules that can be used in said workstation data
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main-
taining said input, output, and process modules currently
being used for a current workstation data management
system copy operation in a program object, and saving the
currently active modules in a process template file; and

ll)

l5

3|‘!

45

51.!

60

65

32
maintain complete document infonrtation means for main-
taining information regarding a current file being copied.
and saving the infomtation in a document template lilc.

In one embodiment. a workstation data management
method includes at least one of an electronic imztge. graphics
and document management system capable of transmitting
at least one of an electronic image. electronic graphics and
electronic document to a plurality of external destinations
including one or more of extcmal devices and applications
responsively connectable at least one of locally and via the
Internet. The t11t:ll'l(td comprises one or I1‘tort: of |l1t: steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination applicalitm; I terfacing via a software appli-
cation enabling copying images between physical devices.
applications, and the lntemct using a single "80" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment. a server method includes one or more
of: initiating, canceling, and resetting said workstation data
management system; maintaining a registry containing a list
of said input. output, and process modules that can be used
in said workstation data management system. said list Ix,-ing
read on startup, and maintaining another copy of said list in
a modules uhjcct accessible by said input. output. client.
pro-mss and server modules; maintaining said input, output,
and process modules currently being used for a current
workstation data management system copy operation in a
program object. and saving the currently active modules in
a process template tile; and maintaining infonnation regard-
ing a current tilt: being copied, and saving the infonrtation in
a document template file.

Acomputer data management apparatus includes at least
one of an electronic image, graphics and document man-
agement apparatus capable of transmitting at least one uf an
electronic image, electronic graphics and electronic docu-
ment In a plurality of external destinations including one or
more of external devices and applications. The computer
data management apparatus is respunsively connectable at
least one of locally and via t t. lnternct, and includes at least
one memory storing a plurality of interface protocols for
interfacing and communicating. and at least one processor
Iesponsivcly conncctable to the at least one memory. The
processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the extemal devices and applications
include, for example, a printer, a facsimile, and a scanner. in
one embodiment, the computer data management apparatus
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of oll'tt:l' devices and applications. and via the
Internet. In one embodiment. the computer data manage-
ment apparatus includcs the capability to integrate the
electronic images into a destination application without the
need to modify the destination application.

In one embodiment. the computer data management appa-
ratus includcs an optional interface that enables copying
images between physical devices, applications, and the
[ntcrnct using a single "GO" operation. [n one embodiment.
the computer data management apparatus includes the
optional capability of adding at least one of electronic
document and paper pro-easing with a single programming
step.

61

62

US 6,771,381 B1
33

In one embodiment. the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input
to the computer data management apparatus, and managing
at least one imaging device to input the data through at least
one of a scanner and a digital copier, and managing the
electronic paper from at least one third—pany software
applications; at least one output module managing the data
output front the computer data management apparatus. man-
aging at least one imaging device to output the data to at
least one of a standard Windows printer, an image printer,
and a digital copier, and managing the output of the data to
the third-party software application: at least one pl‘t::t:r:sat.
module applying at least one data processing to the data
comprising the at least one of the paper and the electronic
paper as it is being copied. applying additional functionality
including at least one of worltilow and processing function-
ality to the data comprising the at least one of paper and
electronic paper as it is being copied, and applying multiple
processes to a single virtual copy: at least one client module
presenting the data comprising the at least one of paper and
electronic paper as it is being copied, and information
related to at least one of the input and output functions; andat least one server module communicable with said at least

one input, output, client. and proee.-as modules and external -
applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment. one or more of the external devices.
and applications integrates the computer data management
apparatus into an external application via at least one of
running the computer data management apparatus, as an
external service and embedding the computer data manage-
ment apparatus as art embedded service.

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating.
canceling, and resetting said computer data management
apparatus; maintain list of available module means for
maintaining a registry containing a list of said input. output,
and process modules that can be used in said computer data
management apparatus. said list being read on starlup. and
muinta'nirtg another copy of said list in a modules object
accessible by said input. output. client. process and server
modules; maintain currently active modules means for main-
taining said input. output, and process modules cunently
being used for a current computer data management appa-
ratus copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main-
taining information regarding a current file being copied,
and saving the information in a document template file.

In one embodiment. the server module includes at least
one server module application programmer interface [:\Pl)_
In one embodiment, the server module application program-
rncr intcrl‘acc {J\l"l) comprises one or more of the following
COM-based interfaces: at least one modules object main-
taining a Iirst list of available input. output. and pmeerat
modules; at least one program object maintaining a second
list of currently selected input. output. and process modules:
at least one document object maintaining information
regarding a current document being copied; at least one
apparatus management method object used to initiate,
cancel, and reset said computer data management apparatus;
and at least one apparatus management event object used to
provide feedback to the Client Module.

In one embodiment, a computer data management appa-
ratus includes at least one of an electronic image, graphics

ll)

l5

3ft

45

51.!

60

65

34
and document management apparatus capable of l1‘ttl'tSI't'|:ll-
ting at least one of an electronic image, electronic graphics
and electronic document to a plurality of external destina-
tions including one or more of external devices and appli-
eations responsively connectztble at least one of locally and
via the Internet. The computer data management apparatus
comprises one or ntore of: a first capability to integrate an
image using software so that the image gets seamlessly
replicated into at least one of other devices and applications,
and via the Internet; a second capability to integrate elec-
tronic: images into existing applications Without the need to
modify the destination application; an interface comprising
a software application that enables copying images between
physical devices, applications, and the fntemet using a
single "G0" operation; and a third capability of adding at
least one of electronic document and paper procc.-'o‘.ing with
a single programming step.

A computer data management apparatus capable of man-
aging and transmitting at least one of an electronic image.
electronic graphics and electronic docurttent to a plurality of
external destinations including one or more of extemal
devices and applications at least one of locally and via the
Internet. The computer data management apparatus includes
at least one memory storing at least one of a common and
universal interface protocol For interfacing and communi-
cating; and at least one data processor responsively connect-
ahle to said at least one memory. and implementing the at
least one common and universal interface protocol as a
software application for interfacing and cornrnunicating
with the plurality of external destinations including the one
or more of the external devices and applications.

in one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image, graphics and document management appa-
ratus capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality ofexternal destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
cornputer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement-
ing the at least one of common and universal interface
protocol interfacing and communicating with the plurality of
external destinations.

In one embodiment, a computer data management appa-
ratus includes at least one of an electronic image. graphics
and document management apparatus capable of transmit-
ting at least one of an electronic image, electronic graphics
and electronic document to a plurality of external destina-
tions including one or more of external devices and appli-
cations responsivcly conneetable at least one of locally and
via the Internet. The computer data management apparatus
includes one or more of: a single function copy operation
linking devices. applications and the internet including at
least one it go operation. a single function paper copy
between devices and software applications. and a single
function paper copy between software applications and
devices; a one step programming method to add paper
support to electronic business processes including at least
one of a one step method of supporting paper within
electronic business process application optionally including
legacy apparatus with no or minimal reprogramming of the
electronic business process application, a method of recre-
ating a module oriented copier in software; and a copier
interface implemented as software application including at

62

63

US 6,771,381 B1
35

least one of a vinual copier interface method of presenting
to a user an operation of at least one of copylttg files and
electronic images. at least one of to and from, at least one of
digital imaging devices and software applications, in a
substantially single step, and presenting users with direct
access to at least one of tutorial and options from a main
application window.

In one embodiment, a server module includes one or more
of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
apparatus; maintain list of available module means for
maintaining a registry containing a list of said input, output,
and process modules that can be used in said computer data
management apparatus, said list being read on startup, and
maint ng another copy of said list in a modules object
accc tble by said input, output, client, process and server
modules; maintain currently active modules means for main-
taining said input, output, and process modules currently
being used for a current computer data management appa-
ratus copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document infom1ation means for main-
taining information regarding a current file being copied,
and saving the information in a document template file.

In one embodiment, a computer data management method .,
includes at least one of an electronic image, graphics and
document management apparatus capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices. and applications
responsively connectable at least one of locally and via the
lnternet. The method comprises one or more ofthe steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the lnternet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli-
cation enabling copying images between physical devices,
applications. and the lnternel using a single "(iii)" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

in Int! embodiment, it server method includes one or more
of: iliating, canceling. and resetting said computer data
management apparatus; maintaining a registry containing a
list of said input, output, and process modules that can be
used in said computer data management apparatus, said list
being read on startup. and maintaining another copy of said
list in a modules object accessible by said input, output,
client. process and server modules; maintaining said input,
output, and process modules currently being used for a
current computer data management apparatus copy opera-
tion in a program object, and saving the currently active
modulus in a process template tile; and maintaining infor-
mation regarding a current file being copied, and saving the
in|'orn1ation in a document template tile.

Acomputer data management device includes at least one
ol an electronic image, graphics and document management
device capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a
plurality of external destinations including one or more of
external devices and applications. The computer data man-
agement device is responsively connectable at least one of
locally and via the lnternet, and includes at least one
memory storing a plurality of interface procedures for
communicating and communicating and at least one pro-
cessor responsively connectable to the at least one memory.
The processor implements at least one interface procedure as

ll)

l5

3|‘!

45

51.!

60

65

36
a software application for communicating and communicat-
irlg with the plurality of extemal destinations including the
one or more of the extemal devices and applications.

In one embodiment, the cinema] devices and applications
include. for example, a printer. a facsimile. and a scanner. [n
one embodiment. the computer data management device
includes the capability to integrate an image using software
so that the image geLs seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data manage-
ment device includes the capability to integrate the elec-
tronic images into a destination application without the need
to modify the destination application.

In one embodiment, the computer data management
device includes an optional interface that enables copying
images between phys' ‘all devices, applications, and the
Internet using a single "(i(J" action. In one embodiment, the
computer data management devim includes the optional
capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input
to the computer data management device, and managing at
least one imaging device to input the data through at least
one of a scanner and a digital copier, and managing the
electronic paper from at least one third-party software
applications; at least one output module managing the data
output from the computer data management device. manag-
ing at least one imaging device to output the data to at least
one of a standard Windows printer. an image printer. and a
digital copier, and managing the output of the data to the
third-party software application: at least one process module
applying at least one data processing to the data comprising
the at least one of the paper and the electronic paper as it is
being copied, applying additional functionality including at
least one of worltflow and processing functionality to the
data comprising the at least one of paper and electronic
paper as it is being copied, and applying multiple p1‘I.tocss.cs
to a single vinual copy; at least one client module presenting
the data comp ng the at least one of paper and electronic
paper as it is being copied. and infonnation related to at lt:a.sl
one of the input and output functions: and at least one server
module communicable with said at least one input, output,
client, and process modules and extemal applications, and
capable of dynamically combining the external applications
with at least one of digital capturing devices and digital
imaging devices.

In one embodiment, one or more of the extemal devices
and applications integrates the computer data management
device into an external application via at least one of ninning
the computer data management device, as an external ser-
vice and embedding the computer data management deviceas an embedded service.

In one embodiment. the server module includes one or
more of: enable virtual copy action means for initiating,
canceling. and resetting said computer data management
device; maintain list of available module means for main-
taining a registry containing a list of said input. output. and
process modules that can be used in said computer data
management device. said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input. output. client, process and server
modules; maintain currently active modules means for main-
taining said input, output, and process modules currently
being used for a current computer data management device
copy action in a program object, and saving the currently

63

64

US 6,771,381 B1
37

active rnodlales in a princess template file; and maintain
complete document infonttation means for maintaining
information regarding a current file being copied, and saving
the information in a document template tile.

in one embodiment. the server module includes at least
one server module application programmer interface [Al’l).
ln one embodiment, the server module application program-
mer interfaee (i'\Pl) comprises one or more of the following
COM-based interfaces: at least one modules is object main-
taining El Iirst list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;
at least one document object maintaining information
regarding a current document being copied‘ at least one
device management method object used to initiate, cancel,
and reset said computer data management device; and at
least one device management event object used to providefeedback to the Client Module.

in one embodiment, a computer data management device
includes at least one of an electronic image. graphics and
document management device capable of transmitting at
least one of an electronic intage, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The cornpuler data management device comprises -
one or more of: a first capability to integrate an image using
:r.ol't\.varI: so that the image gets seamlessly replicated into at
least one of other devices and applications. and via the
Internet; a second capability to integrate electronic images.
into c ing applications without [he need to modify the
destination application‘. an interface comprising a software
application that enables copying images between physical
devices, applications. and the Internet using a single “(_i0"
action; and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

A computer data management device capable of manag-
ing and transmitting at least one of an electronic image,
elct:‘tt‘unit: graphics and electronic document to a plttralily of
external destinations including one or more of external
devices and applications at least one of locally and via the
lnternet. The computer data management device includes at
least one memory storing at least one of a common and
universal interface procedure for communicating and com-
municating; and at least one data processor responsively
connectable to said at least one memory, and implementing
the at least one common and universal interface procedure as
a software application for communicating and communicat-
ing with the plurality ofexternal destinations including the
one or more of the external devices and applications.

in one embodiment, a computer readable tangible
medium stores instmctions for implementing a process
driven by it computer implemented on at least one of an
electronic image, graphics and document management
device capable of managing and transmitting at least one of
an electronic image, electronic graphics‘ and electronic docu-
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the lnternet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface procedure [or communi-
cating and communicating in at least one memory; and
implementing the at least one of common and universal
interface procedure communicating and communicating
with the plurality of external destinations.

in one embodiment, a computer data management device
includes at least one of an electronic image, graphics and

ll)

l5

3|‘!

45

51.!

60

65

38
docurnent management device capable of transmitting at
least one of an electronic image. electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsivcly connectable at least one of locally and via the
Internet. The computer data management device includes
one or more of: a single function copy action linking
devices, applications and the Internet including at least one
a go action, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic
business pt‘cIt.‘\:sst:s including at least one of a one step
method of supporting paper within electronic business pro-
cess application optionally including legacy devices with no
or minimal reprogramming of the electronic husinexat pro-
cess application. a method of recreating a module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual copier
interface method of presenting to a user an action ofat least
one of copying files and electronic images, at least one of to
and from, at least one of digital imaging devices and
software applications; in a substantially single step, and
presenting users with direct access to at least one of tutorial
and opli0t‘t.s from a main application window.

In one embodiment. a server module includes one or more
of: enable virtual copy action means for initiating. canceling.
and resetting said computer data management device; main-
tain list of available module means for maintaining a registry
containing a list of said input, output, and prnce:-at modules
that can he used in said computer data management device.
said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input,
output. client, process and server modules; maintain cur-
rently active modules means for maintaining said input,
output, and process modules currently being used for a
current computer data management device copy action in a
program object, and saving the currently active modules in
a process lcmplalt: file; and maintain complete document
information means for maintaining information regarding a
current file being copied. and saving the information in a
document template lllc.

In one ernbodimcnt. a computer data management method
includes at least one of an electronic image, graphics and
document management device capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of extemal destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; cornrnunicating via a software
application enabling eopying images between physical
devices. applications. and the Internet using a single "(it)"
action; and adding at least one ofelectronic document and
paper processing with a single programming step.

In one embodiment, a server method includes one or more
of: initiating. canceling, and resetting said computer data
management device; maintaining a registry containing a list
of said input. output. and process modules that can be used
in said computer data management device, said list being
read on startup, and maintaining another copy of said list in
a modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,

64

65

US 6,771,381 B1
39

and process modules currently being used for a current
computer data management device copy action in 21 program
object, and saving the currently active modules in a process
template file; and maintaining information regarding a cur-
rent file being copied. and saving the information in a
document template file.

A computer data management method includes at least
one of an electronic image, graphics and document man-
agement method capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu—
ment to a plurality of external destinations including one or
more of external devices and applications. 'l‘he computer
data management method is conneelahlc at least one of
locally and via the Internet, and accesses at least one
memory storing a plurality of interface protocols for inter-
facing and communicating. and at least one processor
responsively connectable to the at least one memory. The
processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality ofexternal destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data management method
includes the capability to integrate an image using software -
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data manage-
ment method includes the capability to integrate the elec-
tronic images into a destination application without the need
to modify the destination application.

In one embodiment, the computer data management
method includes an optional interface that enables copying
images between physical devices, applications, and the
Internet using a single "00" operation. In one embodiment,
the computer data management method includes the optional
capability of adding at least one of electronic document and
paper processing with a single programming step.

in one ernborlirnent, the software application includes one
or more of: managing data comprising at least one of paper
and electronic paper input to the computer data management
method, and managing at least one imaging device to input
the data through at least one of a scanner and a digital copier.
and managing the electronic paper from at least one third-
party software applications; managing the data output from
the computer data management method, managing at least
one imaging device to output the data to at least one of a
standard Windows printer, an image printer, and a digital
copier, and managing the output ofthe data to the third-party
software application; applying at least one data processing to
the data comprising the at least one of the paper and the
electronic paper as it is being copied, applying additional
functionality including at least one of workflow and pro-
cessing functionality to the data comprising the at least one
of paper and electronic paper as it is being copied. and
applying multiple processes to a single virtual copy, pre-
senting the data comprising the at least one of paper and
electronic paper as it is being copied, and information
related to at least one of the input and output functions; and
communicable with said at least one input. output, client,
and process modules and extemal applications. and capable
of dynamically combining the external applications with at
least one of digital capturing devices and digital imagingdevices.

In one embodiment, one or more of the external devices
and applications integrates the computer data management
method into an extemal application via at least one of

ll)

I5

3|‘!

45

51.!

60

65

40
running the computer data management method. as an
external service and embedding the txtmputcr data manage-
ment method as an embedded service.

In one embodiment, the sewer module includes one or
more of: enable virtual copy operation means for initiating.
canceling, and resetting said computer data management
method: maintain list of available module means for main-
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management method, said list being read on startup, and
maintaining another copy or said llsl in a modules object
accessible by said input, output, client, process and server
rnodulcs; maintain currently active modules means for main-
taining said input, output, and process modules currently
heing used tor a current computer data management method
copy operation in a program oljjccl, and saving the currently
active modules in a process template file: and maintain
complete document infonnation means for maintaining
intormation regarding a current tile being copied, and saving
the information in a document template file.

In one embodiment. the server module includes at least
one server module application programmer interface (AP[).
In one embodiment, the server module application program-
mer interface (API) comprises one or more ofthe following
COM-lxased intt:rl'aces‘ at least one modules object main-
taining a first list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;
at least one document object maintaining information
regarding a current clocumenl being copied; at least one
method management method object used to initiate. cancel.
and reset said computer data management method; and at
least one method management event object used to provide
feedback to the Client Module.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management method capable of transmitting at
least one of an electronic image, electronic graphics and
eleclrunic document lo a plurality of external destinations
including one or more of external devices and applications
responsively conncetahle at least one of locally and via the
Internet. The computer data management method comprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single “G0"
operation; and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

Acomputer data management method capable of manag-
ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of exlemal
devices and applications at least one of locally and via the
Internet. The computer data management method includes at
least one memory storing at least one of a common and
universal interface protocol for interfacing and communi-
cating; and at least one data processor responsively connect-
able to said at least one memory, and implementing the at
least one common and universal interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

65

66

US 6,771,381 B1
41

in one embodiment. a computer readable tangible
medium slorcs instructions for implementing a process;
driven by a computer implemented on at least one of an
electronic image, graphics and document management
method capable of managing and transmitting at least one of
an electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the lnternet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement-
ing the at least one of common and universal interface
protocol interfacing and communicating with the plurality of
extemal destinations.

In one embodiment, a computer data management method
includes at least one of an electronic image. graphics and
document management method capable of transmitting at
least one of an electronic image. electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively eonnectable at least one of locally and via the
lnternct. The computer data management method irtcludes
one or more of: at single function copy operation linking
devices, applications and [he Internet including at least one ..
a go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supporting paper within electronic business pro-
cess application optionally including legacy methods with
no or minimal reprogramming of the electronic business
process application, a method of recreating a module ori-
ented copier in software; and a copier interface implemented
as software application including at least one of a virtual
copier interface method of presenting to a user an operation
of at least one of copying files and electronic images, at least
one of In and from, at least one of digital imaging devices
and software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

In one embodiment. a server module includes one or more
of: enablc virtual copy operation means for initiating,
canceling, and resetting said computer data management
method; maintain list of available module means for main-
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management method, said list being read on slartup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main-
taining said input, output, and process modules currently
being used for a current computer data management method
copy operultun in a program object, and saving the currently
active modules in a process template file; and maintain
complete document inlomtation means for maintaining
information regarding a current file being copied. and saving
the inlbnnation in at document template tile.

in one embodiment. a computer data management method
includes at least one of an electronic image, graphics and
document management method capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of

ll)

l5

3|‘!

45

51.!

60

65

42
integrating an image using software so that the image gels
seamlessly replicated into at least one of other de\«'iccs and
applications, and via the

lntemcl; integrating electronic images into existing appli-
cations without the need to modify the destination applica-
tion; interfacing via a software application enabling copying
images between physical devices, applications, and thc
[nternet using a single "GO" operation; and adding at least
one of electronic document and paper processing with a
single programming step.

in one embodiment. a s.t:I'\t'et‘ method includes one or more
of: initiating, canceling, and resetting said computer data
management method; maintaining a registry containing :1 list
of said input, output, and process modules that can be used
in said computer data management method, said lisl being
read on startup, and maintaining another copy of said list in
a modules object acces-sihic by said input. output. client.
process and server modules; maintaining said input, output,
and process modules currently being used for a current
computer data management method copy operation in a
program object, and saving the currently active modules in
a process template tile; and maintaining infomtatlon regard
ing a current file being copied. and saving the information in
a document template file.

In accordance with another embodiment of the invention.
a computer readable tangible medium is provided that stores
an object thcrenn. for execution by the computer.

There has thus been outlined, rather broadly, the more
important features of the invention in order that the detailed
(lL&iCI‘lPllt!II1 thereof that follows may he better understood.
and in order that the present contribution to the art may be
better appreciated. There are, of course, additional features
of the invention that will be described hereinafter and which
will form the subject matter of the claims appended hereto.
[n this respect, before explaining at least one embodiment of
the invention in detail. it is to be understood that the
invention is not limited in its application to the details of
construction and to the arrangements of the components set
forth in lhc following description or illustrated in the draw-
ings. The invention is capable of other embodiments and of
being practiced and carried out in various ways a"\l.~'un, it is
to he understood that the phraseology and terminology
employed herein are for the purpose of description and
should not be regarded as limiting.

As such, those skilled in the art will appreciate that the
conception, upon which this disclosure is based, may readily
be utilized as a basis for the designing of other structures.
methods and systems for carrying out the several purposes
of the present invention. [I is important, therefore, that the
claims be regarded as including such equivalent construc-
tions insofar as they do not depart from the spirit and scope
of the present invention.

Further. the purpose of the foregoing abstract is to enable
the US. Patent and Trademark Oflice and the public
generally, and espccially the §t:l(:rIlltiI.‘-i». engineers and prac-
titioners in the art who are not familiar with patent or legal
terms or phraseology. to determine quickly from a cursory
inspection the nature and essence of the technical disclosure
of the application. The abstract is neither intended to define
the invention of the application, which is measured by the
claims. nor is it intended to be limiting as to the scope of the
invention in any way.

These together with other objects of the invention, along
with the various features of novelty which characterize the
invention, are pointed out with particularity in the claims
annexed to and forming a part of this disclosure. For a better
understanding of the invention. its operating advantages and

66

67

US 6,771,381 B1
43

the specific objects attained by its uses. reference should be
made In the accompanying drawings and descriptive matter
in which there is illustrated preferred embodiments of theinvention.

These together with other objects and advantages which
will be subsequently apparent, reside in the details of
construction and operation as more fully herein described
and claimed, with reference being had to the accompanying
drawings forming a part hereofwhercin like numerals refer
to like elements throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of the placement andfor use of the
computer architecture and.-‘or method of the present inven-
lion;

FIG. 2 is an illustration of the component factory migrat-
ing the original "C"—IevelAPl from its original state into the
generic interface dellned by the topmost layer;

FI{i.3 is an overview of the computer .'tI‘Cl'|ilt:Cl1.IrI: in the
present invention:

FIG. 4 is an illustration of the design of an Object in
accordance with the computer architecture of the present
invention;

FIG. 5 is an illuslratiorl er the architecture comprised of ,
two major pans;

FIG. 6 is an illustration of the architecture of an engine
component including, for example, three layers designed to
migrate the original Al-‘l of the engine to a consistent (TOM
interface:

FIG. 7 is a table illustrating the engine management
specification with definitions;

FIG. 8 is an illustration of the engine management layer
being divided into ll1I'L7l: functiunstspecifieations;

FIG. 9 is an illustration of exemplary tables used to drive
the three functions of the engine management layer illus-
trated in FIG. 3;

FIG. 10 is an exemplary table illustrating the engine
configuration specification with definitions:

FIG. 11 is another exemplary table illustrating the engine
configuration specification;

FIG. 12 is an exemplary table illustrating the engine
functionality specification with definitions:

FIG. 13 is another exemplary table illustrating the engine
functionality spccilicalion;

FIG. 14 is an illustration of a main central processing unit
for implementing the computer processing in accordance
with a computer implemented embodiment of the present
invention:

FIG. 15 illustrates a block diagram of the internal hard-
ware of the computer of FIG. 14:

FIG. 16 is a block diagram of the internal hardware of the
computer of FIG. 15 in accordance with a second emhodi~
ment;

FIG. 17 is an illustration of an exemplary memory
medium which can be used with disk drives illustrated in
FIGS. 14-16;

FIG. 18 is an illustration of another cml:oo-tliment of the

component factory migrating the original "C"-level API
from its original state into the generic interface defined by
the topmost la)-'01‘.

FIG. 19 is an illustration of a distributed environment or
architecture for manually and.-‘or automatically generating
and.-‘or using reusable software components for client server
at1dJor intranet operating environments;

5

ll)

I5

3|'l

45

51.!

60

65

44
FIG. 20 is a detailed illustration of the distributed envi-

ronment or architecture for manually anrltor automatically
generating auditor using reusable software components for
client server and.-“or intranet operating environments:

FIG. 21 is an illustration of a distributed environment or
architecture for manually andtor automatically generating
andfor using reusable software components for network
environments, such as the lnternet;

FIG. 22 is a detailed illustration of the distributed cnvi-
ronment or architecture for manually andfor automatically
generating antlfor using reusable software com pone nut in the
Internet environment;

FIGS. 23A—23C' are illustrations of the image viewer user
interface and-"or functionality associated therewith in accor-
dance with the present invention;

FIG. 24 is an illustration of a stand-alone anzlfor distrib-
uted environment or architecture for image viewer in client
server andfor intranet operating environments:

FIG. 25 is a detailed illustration of a stand—alonc andlor
distributed environment or architecture for image viewer in
client server and.-“or intranet operating environments;

FIG. 26 is an illustration of a slant]-alone andfor distrib-
uted environment or architecture for image viewer in net-
work environments, such as the lntcrnet;

FIG. 2".-' is a detailed illustration of a stand—alone andlor
distributed environment or architecture for image viewer in
the Internet environment;

FIGS. 28 and 29 are illustrations of the interface of the
Virtual Copier (VC) embodiment of the present Invention
with at (io button much like a physical copier;

FIG. 30 is an illustration of the sequence used with Virtual
(fopicr with just the Power \I''(.‘ portion of ll1l.'. main Virtual
Copier window;

FIG. 31 is an illustration of the five core modules of VC;
FIG. 32 is an illustration of VC recognizing that the

third-party application is running; and intelligently copying
paper to and from ll't.'tt application;

FlG.33 is an illustration ofa button that can be placed on
a third-party application that launches VC in the back-
ground;

FIG. 34 is an illustration of the VC logic flow;
FIG. 35 is an illustration of \-"(T updating its Client Module

as well as the results of each Module acting on the docu-
ment;

FIG. 36 is an illustration of the structure of the Modules
Object;

FIG. 3'? is an illustration of the structure of the Program
Object;

FIG. 33 is an illustration of lltt: internal Vl}€It:‘Itt‘r1t:nl
mapping to physical files;

FIG. 39 is an illustration of the \-“Document Object;
FIGS. 40 and 41 are illustrations of two events that the

Server Module sup}:-orLs: Error and Status, the Error event
being generated anytime any of the Modules produce an
error condition, and the Status event heing generated when
information needs to be transferred between the [OP or
Server Modules and the Client Module;

FIG. 42 is an illustration of a general workflow of the
events that are generated that manage the Bow of modules
and user interaction Will} the S(:t‘Vt:t‘ l\"IodIJlt:;

FIG, 43 is an illustration of the general logic flow of the
Client Module;

FIG. 44 is an illustration of the basic Client architecture;

67

68

US 6,771,381 B1
45

FIG. 45 is an illustration of the APE for the Input. Process,
and Output Mfldules that are made simple so ll1attl1t't‘d-party
vendors can create their own custom versions of these
modules with relative ease;

FIGS. 46-4’.-' are illustrations of the Feedback object used
to communicate between the IOP and the Server Module;
and

FIG. 48 is an illustration of the basic l0P architecture.

NOTr'-\'l'l ONS AND NOM[iNCLA'I'l.lR1’.

The detailed descriptions which follow may be presented
in terms of program procedures executed on a computer or
network of computers. These procedural descriptions and
representations are the means used by those skilled in the art
to most eifectivcly convey the substance of their work toot.hers skilled in the art.

A procctiI.tt‘t'. is hcre, and generally, conceived [0 be a
self-oonsistent sequence of steps leading to a desired result.
Tltese steps are those requiring physical manipulations of
physi I quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. ll proves convenient at times,

principally for reasons of common usage, to refer to these ..
signals as bits, values, elements, symbols, characters. terms,
numbers, or the like. It should be noted, however. that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities.

Further. the manipulations performed are often referred to
in terms. such as adding or comparing. which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator is
necessary. or desirable in most cases. in any of the opera-
tions described herein which form part of the present inven-
tion; the operations are machine operations. Ofcourse, one
or more of the above operations may alternatively be done
tnanualiy. Useful machines for performing the operation of
the present invention include general ptu-pose digital com-
puters or similar devices.

The present invention also relates to apparatus for per-
forming these operations. This apparatus may be specially
constructed for the required purpose or it may comprise a
general purpose computer as selectively activated or recon-
figured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a
particular computer or other apparatus. Various general
purpose machines may be used with programs written in
accordance with the teachings herein, or it may prove more
convenient to construct more speciali7ed apparatus to per-
form the required method steps. The required structure for a
variety of these machines will appear from the description
given.

BEST MODE FOR CARRYING OUT THE
lNV"ENT[0N

Reference now will he made in detail to the presently
preferred embodiments of the invention. Such embodiments
are provided by way of explanation of the invention. which
is not intended to be limited thereto.

In fact, those of ordinary skill in the art may appreciate
upon reading the present specification and viewing the
present drawings that various modifications and variations
can be made. For example, features illustrated or described
as part of one embodiment can be used on other embodi-

ll)

l5

3|‘!

45

51.!

60

65

46
ments to yield a still further emb-odiment. Additionally.
certain features may be interchanged with similar devices or
features not mentioned yet which perform the same orsimilar functions. It is therefore intended that such modifi-
cations and variations are included within the totality of the
present invention.

The purpose of the Virtual Copier ("VC"] aspect of the
present invention is to enable a typical PC user to add
electronic paper processing to their existing business pro-
cess. Vt.‘ is an extension of lhe concept we understand as
copying. [n itssimplest form it extendsthe notion ofcopying
from a process that involves paper going through a conven-
tional copier device, to a process that involves paper being
scanned from a device at one location and copied to a device
at another location. in its more sophisticated form, VC can
copy paper from a device at one location directly irtto a
business application residing on a network or on the Internet,
or visa versa. The \«-‘(T invention is software that manages
paper so that it can be electronically and seamlessly copied
in and out of devices and business applications (such as
Microsoft Ufiice, Microsoft Exchange. Lotus Notes) with an
optional single-step (in operation. The \«''(T software can
reside on a PC, LAN.-"W.-’9tN server, digital device (such as a
digital copier], or on a web server to be accessed over the
Internet.

Vinual (Topier is designed to solve the corporate paper
problem by enabling existing web-based and client-server
applications to manage paper as part of their solution.
Virtual Copier links the familiar and universal world of
paper and digital devices to web-based and client-server
applications. The result is that the automated business pro-
OCSSCS become the primary storage of paper in electronic
form. lnformation that is typically nianaged and processed
in paper form is “copied" into the system and managed by
the business processes with which users are accustomed.
which is made possible by using V-"irtual (Topier. Simple
extensions of Virtual Copier support seamless electronic
outsourcing of paper processing and archival services over
the web.

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing lntranet and client-server business processes with-
out any fuss. Whether it is an oflice clerk that needs to easily
copy a report from a desktop scanner to the company’s
Intranet-networked copier. or an accounting sriftware inte-
gralor that wants lr.It:t1'tl)t‘:d paper processing, Virtual Copier
offers a simple solution. vl‘(l the ollice clerk Virtual Copier is
a document imaging application packaged in the familiar
setting of an oflice copier. To the integrator. the underlying
open architecture of Virtual Copier oflers a simple integra-
tion path for embedding paper processing into its client-server or web-based software solution.

Although managing paper manually is one of the great
problems facing corporations, there has been little innova-
tion in enabling those workers to elimi.nate the need to
continuously work with paper manually. Much of the prob-
lem stems from the complexity of traditional document
management systems. which require days of training and
months to become familiar with the system in order to be
proficient. Virtual Copier was designed to he as simple as a
copier to operate, and yet still provide the complete capa-
bility of integrating paper with existing business applica-
tions. By simplifying the interface and underlying software
infrastructure. \-"(I can manage paper in electronic form as
easily as is currently done in physical form.

VC extends the notion ofa copier, which simply replicates
the image of an original document onto another piece of

68

69

US 6,771,381 B1
47

paper using a single (it) or S'l'r'\R']‘ button. to do a similar
operation in software so that the image gels seamlessly
replicated into other devices or applications or the lntemet.

An example of this is the actual implementation of Virtual
Copier as a consumer product. The interface ofthe consumer
product called Virtual Copier has a Go button much like a
physical copier. This (10 button can copy paper, whether
physical or electronic, from one device and or application to
another device andjor application.

What makes Virtual Copier as simple as its physical
counterpart in at least one embodiment is the fact that it
replicates the identical motions that a user who is making a
copy using a physical photocopier goes through. When a
user photocopies a document, heishe selects where they
want to copy from {ie the sheet feeder). where the user
wants to copy to (i.e. 6 copies collated and stapled} and then
presses a GO button to actually carry out the photocopy
process. With Virtual Copier the procem feels familiar
because the sequence is the same with just the Power VC
portion of the main Virtual Copier window.

The power of Virtual Copier is the fact that the lirom can
be a physical device (e.g. digital copier, fax or scanner) or
an application [e.g. Lotus Notes, Microsoft Exchange, the
lnternet, or an electronic filing system}. The To can also be
a physical device (e.g. a fax, digital copier, or printer) or an "
application (e.g. Lotus Notes, Microsoft Exchange, the
Internet, or an electronic tiling system). Even though paper
is being copied electronically from devices to applications,
from applications to devices. from devices to devices, or
from applications to applications, the user simply has one
sequence to execute: select From. selcct ‘lb. and then press
G0. Virtual Copier will accornplislt all translations between
device and applications automatically and seamlessly.

Another reason that paper is still a major corporate issue
is that traditional document management systems require
that a company invest in a whole new system just to store
electronic images. Although this is the only way that docu-
ment management systems have been designed and
delivered, it is in fact highly ineflicicnt. Most companies
already manage information about physical documents in
some form of software applications.

For example, accounting systems have long been used to
maintain information about invoices and bills that arrive into

a company from ouLside sources as physical pieces of paper.
When an invoice arrives, iLs information is keyed into the
accounting software, where balances are maintained and
accounts payable infonnation is coordinated. Yet the original
invoice is stored manually. and every time that a request is
made for a copy of the signed invoice, someone manually
retrieves the invoice from a physical I ing cabinet. i"\ccount-
ing systems, like most business applications, typically have
no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and dilfcult to
maintain, and even more diflicult to coordinate.

Virtual Copier solves this problem in at least one embodi-
ment by copying paper directly into the existing accounting
system. Simply adding a To item in the Virtual Copier
window enables a user to copy paper directly into the
appropriate accounting record of the existing accounting
system. This requires no retraining (users who are trained on
the accounting system will still use the accounting system in
the same way}, requires no document management system
(the electronic copy of the document is actually being
maintained by the accounting system itself], there is no
coordination between two systems (Virtual Copier embeds

ll)

l5

3|'l

45

51.!

60

65

48
the invoice with the appropriate aecounling record). and it is
simple (one Go button).

What is true with regard to the example above of an
accounting system is true of most other business applica-
tions. The power of Virtual Copier is that it can turn an
information system into a document management system by
adding support for electronic paper directly into the existing
l)I.ts.iItt:s.t‘. application. whether it is a client, server-based, or
web-based system.

Wnual Copier enables corporations to perform sophisti-
cated document imaging with their existing \uVeb—based and
client-server applications through a user interface that is as
familiar as the oflice copier. Virtual Copier can be used
out-of-the-box as a standalone application to copy, scan, fax,
or print images using existing digital devices within corpo-
rate environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into
Wi.:b-based and client server applications. such as l-fill’ or
accounting systems. to eliminate paper from exi. ng busi-
ness processes and legacy applications. Virtual Copier can
also be used to support seamless access to document image
processing and archival over the web since, in at least one
embodiment, the VC interface is implemented as a software
application.

VC is architecled as an application that delivers end-user
functionality while remaining open to third—parties exten-
sions. For example, Vt‘ can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only dilference is that VC does not distinguish between
electronic and physical paper.

To accommodate third~party extensions. VC is divided
into live essential modules. Each module is a counterpart to
an aspect that is found on a conventional copier. Based on
the modular design of VC, each aspect of VC can be
independently extended, offering much greater flexibility
than conventional copiers.

The five core modules of VC illustrated in are:

lnput Mo-duIe—'[‘he lnput Module manages paper or
electronic paper entering VC. This module manages
imaging devices to input paper through scanners,
Mlil’s. or the new breed of digital copiers. The lnput
Module also manages reading electronic paper from
third-party or proprietary applications. The counterpart
to VC's lnput Module on a oonventional copier is the
scanner subsystem.

Output Module—'l'he Output Module manages paper or
electronic paper exiting VC. Like the Input Module,
this module manages imaging devices to output paper
to standard Windows printers, specialty image printers,
Ml7l’s, or the new breed of digital copiers. The Output
Module also manages writing electronic paper to third-
parly or proprietary applications. The counterpart to
VC’s Output Module on a conventional copier is the
printer or fax subsystem.

Process Modu|e—'lhe Process Module applies processing
to the electronic paper as it is being copied. Examples
of a process are OCR and [CR. The Process Module can
also apply non-imaging functionality as weli, such as
worlrilow or other relevant tie-ins to the electronic
paper as it is being copied. One of the advantages of VC
over conventional copiers is that multiple pt‘tJccsses can
be applied to a single virtual copy. The counterpart to
VC's Process Module on a conventional copier is the
controller.

Client Modu|e—The Client Module presents the elec~
tronic paper as it is being copied, and any relevant

69

70

US 6,771,381 B1
49

information related to the input or output functions. For
example, if the Output Module is directed to a printer,
then the Client Module might present the finishing
capabilities; if the Output Module is directed to
Goldmine. then the Client Module might present the
target contact record to which the document is being
copied. The counterpart to V(_"s Client Module on a
conventional copier is the panel.

Server Module—Unlil-te conventional copiers, \«"C's
Server Module is a unique subsystem that can commu-
nicate with the other modules as well as third—party
applications. The Server Module is what makes VC a
far more pmverful concept than simply an application
that can control a scanner and a printer to mimic a
copier. The Server Module can be used to combine
third-party applications with the new breed of digital
imaging devices to create unique and custom virtual
copier solutions. A virtual copier can be created with
VC by combining a scanner with a printer; or by
combining a scanner with an application; or by comb-
ing an application with an image printer. in each case
VC is dynamically creating a custom virtual copier,
with a complete understanding of how paper flows
from the source to its destination. There is no counter-
part to \t'C's Server Module on a conventional copier.

One of the primary design goals of VC is to make it -
simple to integrate VC with third-party applications. There
are two options to integrating VC into a third-party appli-
cation: running VC as an external service, or embedding VF
as an underlying service.

\-''C is in one embodiment and optionally a standalone
application that enables a user to scan (copy) paper from a
device to a third—party application, and to print (copy) the
reference of an image document from a Ihird-party applica-
tion to a printing device. VC does not require Ihethirt1—party
application to be aware that VC is operating. Rather, VC
recognizes that the Ihird—party application is running, and it
intelligently copies paper to and from that application.

in this scenario the user is interacting with \«"C’s Client
lltloltltlltt in order to execute a copy operation to and from the
third-party application. There does not have to be any
changes made lo the Ihird-party application. not even to ils
interface, in order for VC to operate. The user of VC only
knows that to copy to and from Ihe third-parly application,
a custom [uput and Output Module must be selected, and the
Go button is pressed.

in order to support copying to and from a third—party
application, VC must be able to support extensions that
understand each third—party application. This is accom-
plished through the lnpul and Output Modules. The Client,
Server, and even Process Modules remain independent
across third-party applications. However, in order to support
outputting to a third-party application, an Output Module is
Llcvcloped that is unique to that third-party application.
Likewise, an Input Module is developed that is unique to a
third-party application in order to support reading images
from that application.

it is Ihe optional input and Output Module-5 that render
VC cxtendable. For each third—party application there is a
unique pair of Input and Output Modules that understand the
third—par1y application, and how to copy images to and from
that application. Each input and Output Module registers
itself to the Windows registry so that the Server Module
knows how to find them. in this way Virtual Copier can grow
indefinitely, to support any number of Ihird—party applica-
tions.

The significant point is that the input and Output Modules
have their own interface, and can he developed indepen-

5

ll)

l5

3ft

45

51.!

60

65

50
dcntly from any other module. As long as the input and
Output Module conform to the AP] specified in this docu-
ment it will plug—and—play with VC. VC will be able to mix
and match the custom Input and Output Module with its
standard and other custom lnput and Output Modules.

A third-party application can also use the services of VC
without its user interface. That is, a third-party application
can embed \«"(."s functionality and provide its own interface
to its functionality. For example, rather than have VC as a
separate application, a special button can be placed on a
third-party application that launches \''C in the background.

\-''(T is designed so that the Server Module can run
independently from the Client Module. All the core
functionality. including communicating with the input.
Output, and Process Modules, are performed directly by the
Server Module. The (fiient Module is generally simply an
interface to the Server Module. Therefore, all the services of
the Server Module can be made available in the background
to a third-party application without the need for an interface.
The third-parly application can in fact hccornc the uscr‘sinterface to VC.

In order to support VC operating in the background a
third—party application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in \«''C, support COM-
Iaasod interfaces for simple and direct support from all major
Windows development environments.

The purpose of the computer architecture and process
described herein is to create a component factory that can
automatically generate reusable software components from
sophisticated core soflwartz tecllrlologicrs. Many, if not most,
core software technologies. such as OCR (Optical Character
Recognition] or barcode recognition, are designed and
implemented using a “C"-language API {Application Pro-
gram interface). The technology is often complex, requiring
months of Irial—and—error to correctly develop application
systems using the technology. While there are millions of
Intranet developers and power-PC users who are capable of
assembling componenhbased systems, I have determined
that there are relatively few ”(_‘"progran1mers [estimated at
less than l[)0,D(.I(I) who can learn and implement application
software with these complex _(_"-level a-’\l’l’s. It is therefore
desirable to develop software tools for automatically gen-
erating reusahlc S-oflwarc cornponcnts from core software
technologies thus making these software technologies avail-
able to a much larger user base.

Since 1 have determined that there is no structure or
format for implementing "C"-level .t'\]’l's, the ability to
automatically transform a unique AP] into a standard com-
ponent would scem impossible since that would take a
nearly—human level of intelligence. To date, the only way, 1
am aware, to create a component out of an existing AP] is
to have an existing programmer in the field do the work for
each API. Humans can intelligently’ itnalym: an AP] and
create a component based on intelligent decisions tempered

. by experience. 'l'l1c challenge of creating a component
factory is the challenge of partially or substantially recreat-
ing the component design and formulating clfcctive imple-
mentation decisions.

One would cxpecl Ihe translating a "C”-level API from its
native state into a component would require human—|-zvel
intelligence. 'lhis is mainly because "C“-level AP[s have
virtually no constraints as to how they can be implemented.
This means that there are an inlinity variations of APIS,
which can only be managed by human—leve| intelligence.
While this point is tmc, I have determined that the appro-
priate solution starts at the other side ofthe equation, which
is the component itself.

70

71

US 6,771,381 B1
51

My solution starts out with a definition of a cornponent
that can sustain the featureifunction requirerncnls of any
AP[. In other words, the interface of a generic componentcan be defined such that the features and functions of
virtually any AP] can be re-implemented within its bounds.
The two known end-points are the “(_"'-level AP! that started
with, and the component interface that represents any set of
features.-“functions on the other side.

I have also determined that one solution for creating a
computer architecture and process for implementing a com-
ponent factory is to create a well-defined multi-tiered sys-
tems architecture for a component and to automate, substan-
tially automate, or manually expedite from its native state
through the various tiers of the systems architecture result-
ing in a standardized or substantially standardized compo-
nent. Advantagcously, this solution is not based on making
human—leve| intelligent decisions on how to translate a

C’-level API into a cornponenl. Rather, by starting with a
well-delined systems architecture that is multi-tiered, a
series of incremental steps that migrates a (T-Ievel Al’! from
one tier within the systems architecture to the next may be
performed. and which are facilitated using the architecture
and.-‘or process described herein.

Advantagcously. each incrcmental step is not a major one.
but in sequence the entire series of steps will result in a
usable component. Since each step of migration is not a __
major one, the chances of automating these steps is signifi-
cantly higher and the likelihood of being able to create the
component factory becomes more feasible.

The fundamental building blocks of the t:r.1m}'J'LIIet‘ archi-
tecture and process are twofold:

])To define a systems architecture that describes in detail
how to implement a component from a C—level AP]

2) To create a component factory by automating. substan-
tially automating, or manually expediting the migration
ofa C—|eve| API from one tier within the architecture to
the next.

The building blocks are the keys or important to actually
making the component factory feasible.

Significantly. the computer architecture and prut-cssus
described herein have application to the [ntranet and docu-
ment market n1arketp|acc, Corp-orations are embracing inter-
net computing technologies to create enterprise-level Intra-
nets and Extranels. Using standard browser technologies,
corporations and government entities are rapidly adopting
the intcrnet computing model and are developing enterprise
applications by assembling standard Microsoft specified
Active X components. These are not "C" programmers;
rather they are typical power PC users. Further availability
of reusable components would only fuel this development.

The general outline for creating a component factory is
described bciow in detail. lt is important to note that
automatically, substantially automatically, or manually
building a component is neither obvious nor guaranteed. ails
will be described below in detail. automating or substan-
tially automating the building of :1 con1portI:.nt consists of
automating individual steps that comprise the component
architecture. However. in today's application environment,
any amount of automation will dramatically increase the
efficicncies of building a component The computer archi-
tecture is designed for managing a diverse set of indepen-
dent eon: technologies ("engines") using a single consistent
framework. The architecture balances two seemingly oppos-
ing requirements: thc need to provide a single consistent
interface to many different engines with the ability to access
the unique features of each engine.

The benefit of the architecture is that it enables a company
to rapidly ”wrap" a sophisticated technology so that other

ll)

l5

3|‘!

45

51.!

60

65

52
high-level developers can easily learn and implement the
core tt:r:l'I1'l()logy. 'l‘l'It: computer architecture is lhercfon: :1
middlewarc or enabling technology, as illustrated in FIG. 1.

As illustrated in FIG. 1. computer architecture 2,
described below in detail, is :r middle layer between high
level developer programs 4 (such as C—|evel AP[s, or other
programs having similar characteristics} and are technology}
component engines 6 (such as OCR, bar code recognition,
and other components having similar characteristics).

Another benefit of the architecture is that it provides a
high-level specification for a consistent interface to any core
technology. Once a high-level developer learns the interface
described herein for one engine, that knowledge is easily
transferable to other engines that are implemented using the
architecture. For example. once a high-level developer
teams to use the cornpulcr architecture for OCR (Optical
Character Recognition). using the computer architecture for
other engines, such as barcode recognition or forms
processing, is trivial.

In summary, the architecture and process described herein
is at once a framework for rapidly wrapping sophisticated
technologies into high—level components, as well as a frame-
work for high—level developers to communicate with a
diverse set of engines. The creating of a component factory
is l'.'lfl.'it!l'.l on the fact that [he architecture defines a clear path
for "wrapping" any C-level AP] into a component using
simple structures and many rote steps. This process is
currently being done in an ineffieient manner by a program-
rner in the field.

The method described herein for creating a component
factory creates a well-defined multi-ti ‘red architecture for a
component and automates, substantially automates, or
manually expedites {hereinafter "automates") the process of
migrating a "C"—AP[from its native state through the
various tiers of the architecture resulting in it standardized
component.

Advantageously, the method described herein does not
base the component factory on making human-level intelli-
gent decisions on how lo translate a "C“-level APT into a
component. Rather, by creating a well-defined architecture
dtzsrcribed below that is n1Ul1i-liL'1‘t‘-Ll. the method iti 3 series
of incremental steps that need to be taken to migrate the
"(?"-level M’! from one tier within the architecture to the
next. [n this way each incremental step is not a major one,
but in sequence the entire series of steps will result in a
component.

Since each step of migration is not a major one, the
chances for automating these steps is significantly higher
and the likelihood of being able to create the component
factory becomes feasible. This approach is in fact what
makes the method cost-elfective, since the alternative
approach. i.e., computer—generated human—level decision
making. is currently unavailable and would require much
effon, if at all possible, to replace humans in any realistic
decision-making process.

With a fixed architecture that can be used to implement a
"C"-level AP! as a cornponcnt (using at programrncr]. that
same architecture can be used as the basis for the component
factory model. In order to make the component factory. each
step of the architecture needs to be designed to facilitate
automation or manually expedited. ln other words. I have
determined that automatinglexpediting the process of taking
the original "lC"-level Al’[and migrating it to a Level 1
layer, and then a Level 1 to a Level 2, and then a Level 2 to
a Level 3 layer, and so on, the component has been imple-
mented automatically, or more elficiently manually. The
component factory is therefore a sum of the ability to

71

72

US 6,771,381 B1
53

aulomalc migrating the "f.T“-lcvcl M’! from out: layer to the
ncxt within a wcll-dcflncd architecture for lmplcmcnling
componcnts.

As illustrated in FIG. 2, the component factory 10
migrates the original "C"-lcvclAi’i [2 from its original state
into the generic interface 8 defined by the topmost layer. The
first feature that can be demonstrated is that there is a
topmost layer 3 that can define a component interface that
can rcprcscnt the Icaturcsiiiinctions of most core technolo-
gies. The component factory III migrates the "C"’—ievci AP!
12 it: the topmost lcvcl 8. Doing this in urlc large stcp would
be impossible since the "C”-level AP] has a ncar-inlinitc
variety of stylus. Howcvcr, tht: archituclurc advanlagcousty
has enough well-dcfincd and wcll-stntcturcd layers for
implumcnling the topmost cornponunt interface. for creating
the (:t:n1p0ncnl factory.

Asimplilicd overview of thc urchitocturc is illuslratcd in
FIG. 3. In FIG. 3, the component interface 8 sits on top of
an Object Manager 14 that communicates with individual
objects e.g., 16, 13, 20. These objects 16, I8, 20 represent
specific core technologies that are rcprcscnted as "C"—|cvc|
APis. The design of Objecll, Objectz, . . . ObjeclN is
illustrated in FIG. 4.

Acomponent factory can be created by automating the
prrmt-.-m of migrating Iht: original "C”-lcvcl API 12 from its -
original state to the Layer l—Enginc Management tier 26,
and then from lhc state to l.aycr2 Engine configuration licr
24. and so on up the Engine Functions layer 22. 'l‘l1::s:: layers
will he further described below.

Tltc computer architecture is implemented, for example,
as a standard COM componcnt, as an Activcx control; the
specifications designed by Microsoft, published in the tech-
nical litcraturc, and incorporated hcrcin by rcfercncc.
Aclivex control {C‘OM) suppon is currently available within
any Microsoft 32-bit Windows operating environment.
Activex controls are supported by all OLE—based
applications, including all of Microsoft’s cnd-user products
(e.g.. Microsoft Office, Word, Access, Powerpoint, Access),
the main irtlcrncl t1rowsurs(Micrusot't’s intcrnut Explorer
and Netscape's Navigate-r—the latter with an add-in product
and by 409? directly). most other rlamc-brand cnd-uscr
Windows products {c.g., lotus Notes), and all major devel-
opmcnt environments (c.g.. Microsoft Visual Basic and
Visual C++, Delphi, Borland C++. Power Builder). By
implcmcnling the architecture as. for cxamplc, an .t’\ctivcX
control, complex technologies can be programmed by vir-
tually any Windows or intranet user or developer. 01' course,
other component specifications may also be used.

Although the architecture has been implemented as a
COM—based technology with C++ as the language ofchoice,
the architecture can lac implemented in many other lan-
guages (e.g. Java) and distributed architectures (e.g.
C()RFh‘\).

Every engine, such as a text retrieval or an OCR (Optical
Charatctcr Recognition) cnginc. has Et unique :'rtlcrl'an:c. 'l‘l1i.~t
interface is generally a “C"-lcvcl API {Application Program
lnlcrfatx]. in most carves. lltc learning curve for undcrstand-
ing and integrating a new engine can be a one rnan-month to
scvcra] man-ycans and gcncrully requires highly experienced
"C" programmers. The purpose of the architecture is to
dcllnt: a clcar infrastructure within which any core can be
rapidly "wrapped" so that users and developers can have
easy access to these con: technologies.

In addition to defining the infrastructure for engines to be
accessible to typical users, the architecture also defines how
to migrate an engine from its native state to the prescribed
interface. In other words, thc architecture goes beyond

ll)

l5

3|‘!

45

51.!

60

65

54
simply dclining the frumcwork for wrapping engines. it also
dcfincs tltc specific steps for wrapping tltcst: cngincs.

The architcclurt: consists of it hicrarchical scrics of laycrs
that take any "C”—|evc| AP] from its unique state to one that
is standard and consistent. The rcsult is a single, highly-
integrated object component that contains and manages any
type of engine that can be programmed regardless of tho
nature and subject of the core technology. The architecture
therefore not only defines the goal (c.g., the object compo-
nent interface) but also the means of implementing that goal
for any type (if cngjnc.

The architecture is oompriscd of two major pans as
illustrated in FIG, 5: the Object Munagcr I4. and the
individual object compont-.nLs I6, 18, ll]. The Objccl Man-
rtgcr I4 in HG, 5 manages individual ohjccl components I6.
13, 20 illustrated its Uhjccl I. Ubjcct 2, clc. 'l‘l'It: l.)hjcr:l
Manager 14 cornmunicutcs with the individual objccl com-
ponents I6, 18, 20 using a consistent COM intcrfacc.

Each object oomponcnt implements the feature set of an
individual engine by mapping a consistent COM interface to
tho "(‘”—l_.cve| AP! interface of the individual engine that it
supports. In this way the Object Manager can consistently
communicate with each engine, using the engine's object
component. Because the COM interface of each object
component is consistent, the Object Manager can interface
with every undcrlying engine the same way.

'l'l1c fcalurcs of tilt: archilcclurc include:
1) dciinition of consistent COM intcrfaccs for individual

ubjcct components that represent rlivcrsc technologies:
2) a prescribed process for migrating any engine to the

defined consistent COM interface; andfor
3) a prcdcfincd Dhjcct Manager that automatically man-

ages the individual ohjcct components.
Whcn implcrncnlcd, for example. as an Activcx control.

thc archilccturc also yiclds an umbrella uorllrol that can he
used by a high-lcvcl programmer to program and manage
numerous sophisticated lcchnologics in a plug-and-play
cnvironmcnt. ln order to facilitate the discussion of thc
architecture itself it is best to start with the architecture of
the engine object component and then describe the Object
Manager. Since the Object Manager is directly dependent on
the engine object components, an understanding of the latter
will assist in the description of the former.

Engine Object Comp-oncnt—l I5. [3, 20
The purpose of the engine object is to wrap a specific

cnginc using a series of layers that convcrt the cnginc’s
unique interface into a COM interface that is. for example,
specified by the architecture. The architecture not only
defines the consistent COM interface for ‘implementing an
enginc, it also describes how to implement the interface
from the original "C"—Ieve| API. Once the COM interface
of Il'tr: crtginc object component is implemented, thc Objcct
Manager understands and can therefore communicate with
it.

Each engine component consists of, for example, three
layers that are designed to migrate the original AP! of thc
engine to a consistent COM interface. As illustrated in FIG.
fl, thc Object Manager 14 communicates with the tupmutsl
layer 22 of the object component 16, 18, 2.0 which is the
dc-fined intcrfttct: or uhjctrl component.

Each layer is described below in two parts. The first part
is the prescribed OOM interface for communicating with the
engine object component. The second part describes a
specific path for automating building the layer. By providing
an outlinc for automating building each laycr, the overall

72

73

US 6,771,381 B1
55

engine object component can be automatically. substantially
automatically or manually expedited and generated.

La yer l—Engine Management 26

The iirsl layer in the object component architecture is
designed to deal with the tllndamental features of an engine.
This includes the ability to load and unload the standard or
commercially available via, for example, Microsoft
Corporation, engine Dynamic Link Libraries (Dl.Ls) into
memory, as well as the ability to consistently deal with
errors. This is the most fundamental layer because it is the
essential "wrapper" layer of an engine. Once this layer is
complete all interaction with the underlying engine is fil-
lercd through this layer. Additiranal important engine man-
agement functions include dynamically accessing a function
eail of an engine. and initializing engine settings. All of these
engine management functions are optionally and benefi-
cially table driven to promote or l'aci|iIate access to. and
implementation of. engine management functions.

The Layer 1 specification is summarized in FILE. 7 that
describes the [l:lnginel\-lunagement (TOM interface. The pur-
pose of the lEngineManagernent interface is to transparently
load and unload an engine to and from memory. I have
determined that this is often the core feature that is incor- -
rectly implemented and a cause for hard-to-find hugs. Tltis
layer may be generated manually by a developer who isfamiliar with the architecture as outlined herein in an
expedited manner or automatically as described below indetail.

Layer 1 can be precisely defined in generic terms, and is
therefore the simplest layer to likely be automatically. sub-
stantially automatically, or easily manually generated. A
sample or example of actual code that can be used to
implement this layer is described below. As long the process
andior code for implementing Layer 1 can be generically
defined, that is engine and technology independent, then the
process of generating the generic code for each new engine
is expedited either manually or automatically.

The premise for automating any level is to start with as
few pieces of information as possible. For the Engine
Management layer [have assumed that nothing more than
the set of DLL: that implement the engine functionality are
known. Given this information. I have detennined that I will
need to implement:

loading and unloading the engine from memory
Adding error management We can start, in this example,

with a model (.‘++ header llle that defines the Engine
Management la yer and investigate how this code can be
implemented generically.

N; mentioned earlier, if the code to implement this layer
can be clelinerl generically then it can be easily generated. for
example. manually, and.-"or automatically for any engine.

class Sonn:i"Jtgine()lsj:i:r
i

_ I.-Wmpper Functionsprivate:
F.-\RPROC_SemcFunction:
BOOI. Son1cFuI1ction"'.':
.".I'|'Ing.iltc,\‘l:tnag:Irtii:nl

protected:
li()()I. l.'ietPrncAddIes5 (I-IIl*i!:T!}\.\'C‘.I'I, FARPRDCR. I.P(_"l‘51'RJ'.BOOL Gctl"rn<:AdLiIesse ._"='.
BOOL ProeessErncr=".":

ll)

l5

3ft

45

51.!

60

65

56

-continued

public:
BOOL !\cI:'vaIeEngine (BQOL At‘ti\'ateJ:
HUOI. IsI€rIginez\cti\~aIcd'..'.'

}'.

The lt:LngineManageme-ni interface is implemented in the
C++ class as the public methods: ActivateEngine-:- and
[s!1ngineA::tivated-;.

The first step of implementing the Engine Management
layer 20 is to wrap each originnl engine function within a
class-defined ll.II']CIi0i'I that represents the original. For
example, if there is an original function called
SomeFunction---. then the engine object shouid have a cor-
responding SomeFuncIion-. method. The engine object ver-
sion can then add standard engine and error management
code so that any layers above have automatic error detection,
correction, and reporting.

An example of generic code that maps an original func-
tion call to the original function is as follows:

DLKJI. [iclPrI:tt:Address [l‘ilN5i'AN(.'Ii Itlillit. FARPRCXTRPXDC.
LPCTSTR PIOk‘Nil[l'l¢_l
l

l'me- :: fietl'roc!\ddn:.r.s [hlilx Procfinmcj
if(!Froc.'I
I

5ctIMA(imI:'l-'Jn:rr (IJ'.)AI)Iih'('tINIEI-'l.lNC‘1‘l0N'5IiRROR.
Proei\'nIrt:j:

retum l7AL.‘5E2
Ireturn '|'RlIE'.

Given the original function name, the GetPro-cftddress
can map the original function to one that is defined by the
engine object. Using the engine object C++ header file
described above, the SomeFunctionO method is mapped to
the original engine function using the following line ofoode:

(GeIl‘roc.I’\ddress (hLib, Some!-‘unction,
"5omeFuncIion");

"lb map all the function calls within the original engine
l)!.Ls just requires cycling through each function call and
mapping it to the engine object counterpart. Since Windowscontains facilities that enables access to all the functions

within a DLL. a simple loop may be used. The hLib module
is derived front the DLL name, which, as mentioned at the
start, is the one piece of infonnation we are given.

What is more complex is to deline a generic implemen-
tation of the engine object version of the original function.
This may be described in code as follows:

I100}. Sor|1cl~'urtct:'nn iargtlrrtcnlsy
ASSIEIKF [:1 rgumcrttsl
]'Irrnr\-'ltri.ttl3i:!- .samct-'uncIiun [arguments]:
ll.‘llJ rtI|’mocss1ir|or':':

The engine object version of the original function passes
the function call to the original one after completing a series
of assertion tests, and is followed by a series of error
detection tests. [n this way the original engine function is
"wrapped" by the engine object to manage error detection
and conection.

73

74

US 6,771,381 B1
57

The process of loading an engine can likewise he imple-
mented generically.

noon .oadIJ1.1.s-"TI
i BO0L.bReturn-TRUE:

l[I}\'STi’\N(‘Et_ lILib'.
Cstringt it-*loduleNa me:
PU5f1‘l0l\'pos: _
pos-m Module.-atictSI.nIlPositioIt'..":
it‘ [posn!\'I..'-l.l.l
{

Sel[\vIJ\CiitIEErtcIr [NOMODULESDEHNEDJL
rvtum FALSE:

while (pns&&bRclIIl'rt]
i

m.. ModuLcs.('mtNextA.r.suc (pus. I Mn-dulchiame. l htih]:
if [t_ht.ih!-Nl.'l_l.t

continue:
I_hLI'l\-::l.oad|.fhrary(:_Mod.u1eNante}:
if [I ..hl_ih--NULLJ
{

5¢tlhvICiAi1Il':l'irIOt' ((‘ANTl.UAl}NICIJL‘IJE.
t ModuleNat:nc]:
It'll.-eL)I .l .s' ‘J:
bReturn-FALSE:
break:

}
in Modu|¢s.SemI(t ModuleNnrm.I hl.ihtc

lrctumblleturn:

The loadDI.Ls function is a generic implementation of a
function that loops through the names of DLl_.s that are
provided (in the form of the mMot:lules variable). and cycles
through each one loading it into memory using the Windows
LoadLibrary 2 function. Asintilar engine object function can
be implemented to remove these DLl_.s from memory.

The present invention further divides the engine manage-
ment layer into three functions, as illustrated in FIG. 3. The
first function is loading and unloading 124 of lhe cure or
engine technology. The second function for the engine
management layer 26 is dynamically linking procedures or
function calls, or hooking the desired engine functionality
into the procedures of the core technology 126. including,
for example. initializing and setting up engine settings. The
third function is initializing the engine itself [28, which is
essentially engine management. Once these three functions
are performed in level 1. anything in the core technology isaccessible.

Advantageously, the present invention utilizes tables to
drive each of these three functions described above, and as
illustrated in FIG. 9. Each of the talsles of files, for example
tables 130, 136. 140, are filled in with the appropriate data
or information. i have discovered that if ll1{‘: above three
functions are set up or implemented using tables, that the
core technology may he eliectively and elficiently described.
That is, the use of tables is a very effective and simple
method of describing an engine for use in engine
management. engine loadingtunloading and engine proce-
dure linking. For example. it is similar to indicating or
providing the raw data of that engine. the list of the engine
functions, and the list of the engine dynamic link libraries
(DLl_.s) for engine management.

The files or tables contain the logic or executable of the
engine. Accordingly, all that is needed is a list of the engine
functions 132, a list of the file of the engine executable code
or f)l.ls 138, and a list of the engine settings 142. Usingthe
tables with the above information, the enyne may he

ll)

l5

3ft

45

51.!

60

65

58
automatically loaded and unloaded. initialized. andfor
dynamically hooked into the necessary functions.
Accordingly, the pro:.‘t:ac«'» of generating level I for engine
management may advantageously be automated. The spe-
cilic algorithms used for the engine management layer are
described in the Appendix.

In summary, for the Engine Management layer the tol-
lowing pieces may be automated, substantially automated,
andfor manually expedited.

Loading and unloading the engine DI.Ls (provided into
and out of memory

Mapping original functions to engine object counterparts
Adding general error detection and correction
Determining and matching arguments and return values

for mapping the original functions to their engine
object counterparts. in order to add assertion and error
detection and correction, the original function must be
wrapped and called from within the engine object
version of the original function.

Managing error feedback. All A]’ls have their own way of
providing error feedback. Since one of the goals of the
Engine Management layer is to generically manage
error detection, correction, and feedback, it must
handle all errors identically. However. r'\P[s have
numerous and incompatible methods in this case. 1
have determined Ihat most Al-"|s follow one of several
distinct mechanisms for providing error feedlaack.

By creating specific classes of r'\l‘ls. the process of
generating layer 1 engine management may he expedited.
manually anciior automatically.

Layer 2—l:'ngine Configuration 24

The second layer 24 in ll1l: object utmpttnent architecture
is designed to deal with configuring an engine. 'lhis includes
the ability to set any variety of reatufl-'3 that an: generally
associated with the functioning of an engine. The architec-
ture is designed to meet the challenge ofproviding a uniform
interface for dealing with generally any or most engine
settings.

The engine configuration layer 24 includes a series of
prefabricated functions that map out the settings stored in
the tahlt: to Ihc appropriate engine cunliguruliorl Pfirarneters.
Accordingly, all that is needed is to fill in the values for the
table as-aocialed with engine t.‘on1'iguration.’l'l1us. the engine
object may advantageously come pre—packaged with prede-
termined tahles populated with predetermined values.

The Layer 2 specification can be summarized in FIG. ll)
that describes an exemplary ll:‘.ngine[Tnniiguration COM
interface. The purpose of the lEngineConfiguration interface
is to provide the ability to set and gel the settings of any
engine uniformly. While the Engine Management layer can
load and unload engines transparently. this layer (.‘{.lt'Ill.g1|f¢.|;
engines to operate as required by the uSe.r or developer.

FIG. 11 is another exemplary tablc illustrating the engine
configuration specification. Examples include a set setting
function 144, a get setting function 146. a load setting 148.
a save setting 150, an is setting valid function 152, a default
setting 154, and a prompt setting 156.

The get setting 146 and set setting I44 functions retrieve
the value of a particular engine setting, or assign a value to
a particular engine setting. respectively. Each one of the get
setting and set setting Functions includes or comprises a
tahie of the settings. The load setting 148 and save setting
150 Functions do the similar function as the get setting and
set setting functions. but in persistence. Persistence is

74

75

US 6,771,381 B1
59

dclined as writing values to the disk. for example hard disk,
r:uI‘r1pactdi.:-t-k, and the like, and retrieves the values from the
disk. So as where the get setting and set setting functions
assign a value and.-“or retrieves the value from local memory,
the load and set setting functions assign the value and
retrieve the value of the setting from disk.

'lhe load and set setting functions provide persistence
when the computer system is close down, such that when the
computer system will return In the last setting when it is.
subsequently reopened.

'lhe default setting function [54 provides the l'l'l(l.|il favor-
able value for a given setting. Thus. if no setting is selected,
the system will automatically select default settings. The
prompt setting function 156 is what displays to the user all
the various settings.

Advantageously, the present invention generates the ske|~
etal structure of each table automatically. ln addition, since
there is a table of settings. the skeletal structure not only
generates there functions, but also fills ll‘! the settings that
nced to be assigned. 'll1u$. the engine configuration function
provides the fcaturc of having a pre-populated act ufoptions.
which require particular values to be assigned to table
enIt'ies_

Although this architecture advantageously makes it __
simple for a human to migrate the configuration of an engine
appear into two simple and universally applicable interface
points, doing so automatically requires additional steps. The
two steps to autornating Iltls approach are. for example, as
follows:

Determine the configuration methods used by various
AP[s for configuring the core technology;

Detect the variations for configuring an engine and auto-
mating each one separately.

A»; with layer l—1-Lngine Management, there exists. a
finite set of general variatiorns used by developers of core
technologies to configure an engine. Although Layer I is
clearly more generic in nature. advantageously, Layer 2 also
has considerable consistency.

Layer 3—Engine Functionality 22.
The third layer 22 in the object component architecture is

designed to deal with accessing lhr: actual functionality of
the core engine. For example, for an OCR engine this would
be It: OCR an image or a document. For a text retrieval
engine this would he to initiate and retrieve results ofa textsearch.

An exemplary Layer3 specification can be summarized in
FIG. 12 that describes the f£ngineFI.tt1t.'lion CUM it1terfat:I:.
The purpose of the [EngineFunction interface is to provide
the ability to initiate any function supported by an engine.
The simple fEngineFunction interface is capable of manag-
ing an infinite variation of functions.

The third layer may advantageously be further divided
into many sub—|ayers that more discretely define the steps
necessary to execute a function within an AP]. Since the
designer of an API has infinite variety of possible ways of
implementing a function, creating a tiered architecture to
manage this layer is useful.

Art exemplary tiered architecture for the engine function
is illustrated in FIG. I3. As illustrated in FIG. 13, the engine
function or engine processing layer includes four elements.
The engine function layer 22 includes a series of predefined
functions to perform in the perform element I58. For
example, for optical character recognition (OCR), the
present invention uses a set of predefined functions.

ll)

l5

3ft

45

51.!

60

65

60
Altematively. for scanning. the present invention includes a
separate set of predelined functions

Accordingly, there are a series of actions that are per-
formed by the engine function layer on a given engine, such
as an OCR engine, a scanning engine, a printing engine and
the like. The engine function layer is designed not to
generally go directly to a specific engine. Rather, the engine
function layer 22 will generally interface with the engine
management layer 26 arlcltnr the engine configuration layer24 as needed.

For example, in the course of performing an action andfor
function, the engine function layer interfaces with the engine
configuration layer to possibly modify settings. For an OCR
engine, the engine function layer fills out a table of OCR
documents as one action that could take place. OCR imageis another action.

The get function results; 1611 gets the results of the
function stored in a register. ’lhc clear functi n [62 clears all
the registers that contain all the nesttlts, In this case its
memory. Tltc feedback event or function [64 provides
continuous feedback, depending on what action takes place.
For example, if an OCR action is being performed, the
feerlback function pmvides the percentage of completion of
the OCR process.

The automation of this layer is accomplished by the
following functions:

Detennine the execution of methods used by various Al-‘ls
for executing a given function:

Divide this layer into a multi—ticred layer that further
facilitates automation:

Detect the variations of the sub—layers and automate each
one mparately.

Although this layer has many more variations than Layer
2. l have r.lett:rt11iI'tr:d that there is a general set of variations
used by developers ol'Al‘ls to implement core functionality.

Titus, the benefit of the component factory is that it can
transform core software technologies that are currently
available in '‘(?''-level .t’\|’ls to a limited audience into
components that have :1 much greater audience.

There are a variety of "C"-level M‘ls that cover the
following categories of functionality that can be better
served in the market as ActiveX controls or other component
and used in conjunction with the architecture and methods
described herein.

Text Retrieval
Data Extraction
Workflow
Storage Management
Each of these categories has several vendors with procl-

ucts that currently service the market in a limited way
because the tochmlttgics are only available as “C"-level
A!"-‘ls. Without the core competency of creating components
out of these core technologies. they are limiting their roar-
ketability and opportunity for intemational distribution.

With the proposed component factory users and vendors
can rapidly create components from their original core
technology and increase their marketability.
competitiveness, and ultimately their sales.

Funher, there are numerous core technologies. such as
text—retrieva1 and ICR (intelligent Character Recognition),
that have already been implemented, and are only available
as "C"'—level AiPIs. Many, if not most, core technologies are
first released exclusively as "C“'-level AP[s. While there are
integrators and corporations who have the team of technolo-
gists who can integrate these "C"-level APB; in-house, most

75

76

US 6,771,381 B1
61

companies are looking for component versions that can be
implemented at It much higher level. Then:frtre, many of the
core technologies that are only available in a "(."'-level API
are not being used due to their inaccessible interface. The
benclit of the component factory is that it can rapidly make
available core technologies implemented as "IC" APIs that
would otherwise be underutilized or dormant in research
labs by converting them to high-level components that can
be used by millions of power—P(‘ users.

With the advent of the World Wide Web (WEB) this
opportunity has increased exponentially. The WEB is nowhome to a vast number of WEB authors with minimal formal

training who can implement HTMI. pages and build web
sites. One of the fundamental technologies for extending the
capability of the WEB from simple page viewing to inter-
active and sophisticated applications is components. A com-
ponent extends the capability of HTML hy enabling a WEB
author to add core technology as a pre—packagc(| technology.
Since components are fundamental to the growth and usabil-
ity of the WEB, having a component factor tltat can translate
"C”—|eve| toolkits into components that are then usable
within WEB sites opens a vast and new worldwide market
to these technologies.

FIG. 14 is an illustration of a main central processing unit
For implementing the computer processing in accordance -
with H. computer implemented embodiment of the present
invention. The procedures described above may be pre-
sented in terms of program procedures executed on, for
example. a cnntputer or network of computers.

Viewed externally in FIG. 14. a computer system desig-
nated by reference numeral ‘II! has a central processing unit
42 having disk drives 44 and 46. Disk drive indications 44
and 46 are merely symbolic of a number of disk drives
which might be accommodated by the oomputer system.
'l'ypir:al|y these would include a floppy disk drive such as 44,
a hard disk drive (not shown externally) and a CD ROM
indicated by slot 46. The number and type of drives varies,
typically with different computer configurations. Disk drives
44 and 46 are in fact optittnztl. and for space considerations,
ntay easily be omitted from the computer system used in
conjunction with the production pntcessiapparatus described
herein.

The computer also has an optional display 48 upon which
information is displayed. In some situations, a keyboard 5|}
and a mouse 52 may be provided as input devices to
interface with the central processing unit 42. Then again, for
enhanced portability, the keyboard 50 may be either a
limited function keyboard or omitted in its entirety. In
addition, mouse 52 may be a touch pad oontrol device, or a
track ball device, or even omitted in its entirely as well. In
addition, the computer system also optionally includes at
least one infrared transmitter '.-'6 andior infrared receiver 78

for either transmitting andior receiving infrared signals, asdescribed below.
FIG. I5 illustrates a block diagram of the internal hard-

ware of the computer of H0. 14. Abus 56 serves as the main
information highway interconnecting the other components
of the computer. CPU 58 is the central processing unit of the
system. performing calculations and logic operations
required to execute a program. Read only memory (ROM)
60 and random access memory (RAM) 62 constitute the
main memory of the computer. Disk controller 64 interfaces
one or more disk drives to the system bus 56. 'lhese disk
drives may be floppy disk drives such as T1], or CD ROM or
DVD {digital video disks) drive such as 66, or internal or
external hard drives 68. As indicated previously, these
various disk drives and disk controllers are optional devices.

1|)

l5

3|?

45

51.!

60

£35

62
A display interface 72 interfaces display 48 and permits

inforrnatiun from the hus 56 tu be displayed on the display
48. Again as indicated. display 48 is also an optional
accessory. For example. display 43 oould be substituted or
omitted. Communication with external devices, for example.
the components of the apparatus described herein. occurs
utilizing communication port ".-'4. For exa mple, optical Iibers
and.-“or electrical cables andr'or conductors andior optical
communication (e.g., infrared, and the like) andior wireless
communication (e.g.. radio frequency (RF), and the like) can
be used as the transport medium between the external
devices and communication port 7'4.

In addition to the standard components of the computer,
the computer also optionally includes at least one of infrared
transmitter T6 or infrared receiver 78. Infrared transmitter 76
is utilized when the computer system is used in t:tJt‘lj1.Inctitt1‘t
with one or more of the processing components-‘stations that
transmits-“receives data via infrared signal transmission.

FIG. 16 is a block diagram of the internal hardware of the
computer of FIG. 14 in accordance with a second embodi-
ment. In I-‘IG. 16, instead of utilizing an infrared transmitter
or infrared receiver, the computer system uses at least one of
a low power radio transmitter [Ill] andior a low power radio
receiver 82. The low power radio transmitter 81] transmits
the signal for reception by con1p0nenLs of the production
process, and receives signals from the components via the
low power radio receiver 82. The low power radio trans-
mitter and.-‘or receiver tit], 82 are standard devices in indus-
Irv.

FIG. 1‘! is an illustration of an exemplary memory
medium which can be used with disk drives illustrated in
FIGS. 14-16. Typically, memory media such as floppy disks,
or a CD ROM, or a digital video disk will contain. for
example, a multi—byte locale for a single byte language and
the program information for controlling the computer to
enable the contputer to perform the functions described
herein. Alternatively, ROM 6|] andtor RAM 62 illustrated in
FIGS. 15-16 can also be used to store the program infor-
maliort that is Llscd to instruct the central processing unit 58
to perform the operations associated with the production
].'trU0ess.

Although processing system 40 is illustrated having a
single PIIKJCB-.‘fiE|f. a single hard disk drive and a single local
memory, processing system 40 may suitably be equipped
with any multitude or combination of processors or storage
devices. Processing system -It] may, in point of fact, be
replaced by, or combined with, any suitable processing
system operative in accordance with the principles of the
present invention. including sophisticated calcuiators,2tnd
hand—held. laptopinotebook, mini. mainframe and super
computers, as well as processing system network combina-tions of the same.

Conventional pI‘ot:e.~uiiI‘Ig system art:l1ilet_‘1.I.It\: is more fully
discussed in Crmtprtrer Organization and .-trtcititccrrtre, by
William Staliirlgfi. l\"[acl\"lillarn idulalislting C0. (3rd ed.
1993); conventional processing system network design is
more billy discussed in iJartu Network i‘)e.s't'_gtt. by Darren l...
Spohn, Mefjraw-llill. Inc. (1993). and conventional data
communications is more fully rliscussed in Data (.'rttrwtu-
rticrrtiotts Prt'ttct'pies, by R. D. Gitlin, J. 1". Hayes and S. B.
Weinstain. Plenum f’rcss(l‘)‘)2) and in The J’:-win Hrrrtdbooir
of Telecotrtttttrrtt'crrtr'ort.s, by James Ilarry Green, Irwin Pro-
fessional Publishing (2nd ed. 1992]. Each of the foregoing
publications is incorporated herein by reference.
Alternatively, the hardware configuration may be arranged
according to the multiple instruction multiple data {Mlh-ID)
multiprocessor format for additional computing efliciency.

76

77

US 6,771,381 B1
63

‘l'l1e details of this. lorm of computer architecture are dis-
t:l(‘tst:d in greater detail in. for example, U.S. Pat. No.
5,lt’:3.l3|; Boxer. r’\.. Where Buses Cannot (to, IEEE
Spectrum, February 1995. pp. 41-45; and Barroso, L. A. et
al.. RPM: A Rapid Prototyping Engine for Multiprocessor
Systems, [EEE Computer February 1995, pp. 26-34. all of
which are incorporated herein by reference.

In alternate preferred embodiments, the above-identified
processor, and in particular microprocessing circuit 58, may
be replaced by or combined with any other suitable process—
ing circuits. including programmable logic devices, such as
Pr-\]_s [programmable array logic] and PI...-\s (programmable
logic arrays). l).‘Sl’.~; {digitai signal processors). Fl-‘GAs. (field
programmable gate arrays), A.‘i[Cs(app|ication specific inte-
grated circuits), Vlfils (very large scale integrated circuits)
or the like.

FIG. 18 is an illustration of another embodiment of the
component factory migrating the original "C“—level API
from its original state into the generic interface dclined by
the topmost layer. This powerful architecture goal is to
supply easy access to all imaging functions that can be
performed by any engine.

The architecture according to this second embodiment,
groups C~|evel toolkits 10!] into logical categories, such as
scan. print, display, OCR, cleanup and so on. A single engine -
can span multiple categories (e.g., Kofax engine does view!
printfscan). 'l11is enables the architecture to deal with the
multitude of engines available in a logical fashion.

On top of these. a three-level (I4-+ class {or object} I02 is
built for each engine. This object gives uniform access to the
engine and to all its unique settings. The three levels do the
following:

Level 1 oi" the C++ classes 112 is a protective wrapper for
each function call in the underlying engine. [1 traps all errors
and provides error management and administration to pre-
vent aocidental GP!"-s or engine crashes.

Think of it as the “condom tayer." While providing the
most direct access feasible to the underlying engine and all
its capabilities, level l ol'll1t: C-I-+ class 112 also prulccb-'.ll1t:
user from the engine. It manages all engine loading and
unloading, prevents multiple copies of an engine and trails
engines automatically as needed.

The architecture also provides three levels of access: 1.
Use the default engine settings. Benefit: No learning up
front. Program knowing nothing other than "OCR gets text
out of there."2. Prepackage customized engine settings. Set
it once for everyone who uses the program, every time they
use the program. 3. Modify engine settings at run—time. Let
the user choose the settings.

Level 2 of the C++ classes 114 bridges the low—level API
calls so they can be used lay level 3 116 in standardimd calls
for each category. And it supplements the engine by pro—
viding additional functionality, such as safety loading and
unloading engines.Level 3 of the (.‘++ class 116 corI5ist..-r of a slandardianetl set
of calls for all engines in each category. Programmers can
access all the unique functions ofeach engine in a uniform
way.

Another associated C-t-+ class, called a Visual Class 104.
adds a visual interpretation of each engine. This class
manages all user interaction with each underlying engine.
Like their lower—level counterparts, the Visual Class consists
of three layers:

Level l—1l8 adds any dialogs or other popup window
capability that may be lacking in each engine. Examples:
Dialogs to customize the engine settings or, for a recognition
engine, the none definition settings.

5

ll)

l5

3|‘!

45

51.!

60

65

64
Level 2-120 serves two functions: It bridges level I

dialogs with the actual Windows window that represents the
control. It also handles all Windows-related error message
presentation.

Level 3-122 manages anything else from the underlying
engine (such as annotations) that needs to appear on the
window. The Visu al Class includes enginc—speciftc Windows
dialog boxes that let you customize which engine features
you want to use, as well as any other Windows representa-
tion neoessary for a toolkit. (For example, a compression
engine has to display the image—the visual class. not the
engine, does the work.)

The Object Manager layer I06, the first horizontal
umbrella, orclteslrates the underlying objects. It translates
service requests into a form that the engine objects can
understand.

The Windows Manager I08 presents Windows messages
(move window. mouse.«'scrollbarr'toolbox activity) to the
Object Manager. [I is written using Microsoft's Foundation
Class (MF-C), which makes it easy to support 0CXs. (The
OCX is in fact an l\-[l"C class.)

At the top, a visual interface Ill} presents to the user a set
of visual calls and translates those calls into Windows
messages. This layer comprises only 5% of the VBX code,
yet il permits the toolkit to appeal‘ as 3 \-"BX, UCX or otlterstandard visual interface.

Accordingly. the present invention provides two main
layers, the engine object component layer and the object
manager layer. By creating these two main layers. the
prc.-<.ent invention allows third parties Io create their owrl
engine object component layers so that the third party engine
can be readily compatible and useable by the present inven-
tion. ln addition, the present invention is accessible via the
lnternet. That is, the present invention is operable over the
[nternet using. for example, standard [nternet protocols,
such as component object module (COM) communication
protocol and distributed COM (DCOM) protocol.

In addition, the present invention optionaliy oombines
three layers of functions including the visual interface, the
windows manager and the object manager into one layer
called the object manager. (ll course, this combination of
layers is not meant to convey that only these specific layers
must he used. but rather. to be indicative of overall func-
tionality generally required to implement or execute com-
ponent engines. That is. one or more of the above functions
may be incorporated into the object manager layer. The
present invention also advantageously combines the visual
classes and C'++ classes into the engine object component to
further standardize and.-“or provide access to the object
manager for engine object components.

The present invention optionally uses the standard
Activex component control supplied, for example, by
Mic-rcfiofl Corporation. Activex is a protocol for component
communication. The present invention also creates each of
the object manager and the engine component layer as a
separate Activex. That is, the object manager is its own
Activex control. and the engine object is its own .r'\ctivcX
control. Thus, the engine object can now run independently
from the object manager. Accordingly. the engine object can
operate without relying necessarily on the concurrent opera-
tion of the object manager.

The independent relationship between the engine object
and the object manager means also that the engine object
represents a discrete means of technology. For example, an
engine object can be an OCR technology. This provides
several benefits. First, because the object manager layer is
open, the manufacturer of the OCR technology can wrap

77

78

US 6,771,381 B1
65

their own engine in the form of an engine object component,
and the engine will automatically “plug into" or work with,
the object manager. Thus, the engine object is provided high
level access, making it accessible to many more parties,
users. and the like. When the object manager interface is
designed to be open. any third party, such as an engine
manufacturer, can create their own engine object component
that is compatible with the object manager, the manufacturer
can do it.

FIG. 19 is an illustration of a distributed environment or
architecture for manually andtor automatically generating
andror using reusable software components for client server
and.-‘or intranet operating environments. A very signilicant
point that is relevant to why the object manager and the
engine object component are independent in the present
invention relates to providing a distributed environment for
using the present invention. Rather than communicate
within the same technology between the object manager and
the engine object, the ttbjecl manager and the engine object
component communicate with each other in binary mode.
via, for example, standard distributed component object
module (DCOM) communication. As illustrated in FIG. [9,
object manager 14 communicates with engine object com-
ponent 16, 18, 20 via DCOM specification 166. Other types
of component communication may also be utilized that
provide the capability of a distributed component interac- ..lion.

'l'l1ItS» the engine ohjt:ct component and the object rnan-
ager can leverage current protocols to not only communicate
on the same machine. but also on dillerent machines such as
a client server andior intranet aI‘tLl.-‘or lntcrrtet environment.
Tlte object manager can he placed on one machine. and the
engine object component on another machine and have
distributed processing. what is otherwise called thin client
processing, distributed processing, wide area intranet pro-
cessing.

What this allows the present invention to do is to put the
object manager on the thin client, who would accept the
request from the user, for example, to OCR something or to
print something. The actual I‘\‘.qLte.~;t is handled or pro-ceased
by the engine object component which generally resides on
the server. The engine object component contains the horse
power, or the processing power to process the request.

'lhc engine object layer is generally located in the same or
substantially same location as where the core technology or
engine itself is being stored. Alternatively. the engine object
layer and the engine may be optionally located in a distrib-
uted environmcnt on different machines, sewers, and the
like.

FIG. 20 is a detailed illustration of the distributed envi-
ronment or architecture for manually and.-‘or automatically
generating andfor using reusable software components for
client server andror intranet operating environments. In FIG.
20, client [70 includes object manager layer 172.. Client 170
executes the core technology 131}, via accessing engine
object layer 178 mauagcdfsttired on server I76. and com-municated via server 174.

Client 132. located on the same server 176 as core
technology 180 and engine object layer 178, may also be
used to execute the core technology [80 via object manager
layer 184. In this instance, the client 132 with the object
manager layer [84 is located on the same server 176 as the
engine object layer 178. In addition, since the present
invention utilizes a communication protocol between
components, for example, DCOM, that allows a client to
also include both the engine object component layer and the
object manager layer on the same machine 136, as well as
the core technology.

5

ll)

I5

3|?

40

45

51.!

60

£35

66
Further. since the object manager is formatted or con-

structed ofu client technology, the object manager can sit in
a standard browser. This means that anyone that has an
Internet browser, i.c.. anyone that has access to the world
wide web (WEB) can actually access the core engine tech-
nology. Thus, by structuting the architecture of the present
invention as described herein, users automatically become
Internet, intranet andror WEB enabled.

The present invention also transforms the core technology
Irorn essentially client based technology into a client server
and.-‘or a thin client technology. This makes the core tech-
nology high level accessible. thereby transforming any core
technology into client server. or hidden client technology.
The browser is located on the client, and the browser
leverages the object manager. Accordingly, the browser
optionally contains the object manager, and the ul‘3jet:t
manager makes requests over, for example, the Internet,
local network, and the like via a server, to the engine object.
The server would be either a web server or u IAN server.

The present invention also advanlagemmly provides the
ability to have the client and the server. in a distributed
environment as discussed above, or on the same machine
locally. The present invention utilizes the DCOM commu~
nicatiou protocol defining the communication protocol
between the object manager and the engine object compo-
nent. r'\ccort.ling|y, since IJCUM can work on the same
machine as well as in a distributed environment, DCOM
does not necessitate that the engine object or llu: abject
manager component he on two separate machines.

H6. 2] is an illustration of a distributed environment or
architecture for manually and.-‘or automatically generating
and.-“or using reusable software components for network
environments, such as the Internet. As illustrated in FIG. 2],
object manager [4 communicates with engine object com-
ponent 16, 13,20 via DCOM specification and at networking
environment. such as the Internet, intranet, and the like 168.
Other types of component communicati n may also be
utilized that provide the capability of a distributed compo-
nent interaction over a networking environment.

FIG. 2.2 is it detailed illustration of the distributed envi-
ronment or architecture for manually andfor automatically
gene rating andfor using reusable software com pone ms in the
Internet environment. In FIG. 22., client 170 includes object
manager layer 172. Browscnithin client 1"r'0aexccutes the
core technology 130, via accessing engine object layer 178
managerlfstorcd on web sewer I769, and communicated viathe Internet 1749.

Browscrrthin client 182a, located on the same web server
11-'6u'as core technology 180 and engine object layer 178,
may also be used to execute the core technology 180 via
object manager layer 184. In this instance. the browserfthin
client l82.rtwith the object manager layer 184- is located on
the same web server l'l'6aas the engine object layer 173. In
addition. since the present invention utilizes a communica-
tion prolocol between components. for example, DCOM,

‘ that allows a client to also include both the engine object
component layer and the object manager layer on the same
machine 136. as well as the core technology.

FIGS. 23.t\—23(_‘. are illustrations ol" the image viewer user
selectable or conligurahle or progrzzmmable interface andior
functionality associated therewith in accordance with the
present invention. In HG. 23A. user interface 200 for image
viewing includes viewing frame 202, with dual viewing
areas 204. 206. Viewing area 204 includes at the periphery.
previous page activator 208, at the top, document tools 210,
and at the bottom status indicator 214. Viewing area 206
includes at the periphery, next page activator 212, at the top.
document tools 214, and at the bottom status indicator 2ltS.

78

79

US 6,771,381 B1
6?

Advantageriusly. this user interface is selectable andfor
customizable by the user. as illustrated below in connection
with this figure and FIGS. 2.3l3—23C‘. Significantly, the
image viewer provides the ability to a user to retain or
develop a specific perspective on viewing a document. One
of the features of the viewer is therefore the ability to change
the user’s perspective. For example, the user might be
looking at the same document, as a book, as a film, or as a
bounded or traditional book. 'l'hi.s gives the user the ability
to relate to the document in a fashion that they are comfort-
ahle with, depending on the content or depending on the
user. That is, the image viewer is like a usable selectable
perspective on viewing a document in a plurality of ways.FIG. 231! is an illustration of another user selectable
interface for image viewing. ln I"-'lG. 23R, user interface 200'
for image viewing includes viewing frame 202', with single
viewing area 204‘. Viewing area 204' includes at the top left,
previous page activator 208' and at the top right next page
indicator 212.’. Viewing artea 204' also includes at [he left
area document tools 210'. and at the bottom status indicator
214'. \"1ewing area 204' also includes at the top, multiple
viewing page area 213, that appears and preferably moves
like a film, and provides viewing of multiple consecutive or
non-consecutive pages. Advantageously, this user interface
is selectable andfor customizable by the user, as illustrated
below in connection with this figure and FIG. 23A and FIG. -23(.‘.

FIG. 23C is an illustration of another user selectable
interface for image viewing. In FIG. 23C, user interface
200' for image viewing includes viewing frame 202". with
single viewing area <■ Viewing area 204" includes at the
top right. previous page activator 208" and at the bottom left
next page indicator 212". Viewing area 204" also includes at
the left area document tools 210", and at the bottom status
indicator 214". Viewing area thus provides a user interface
to view :1 document that appears like a bound or more
traditional book. Advantageously, this user interface is
selectable andror customizable by the user, as illustrated
below in connection with this figure and FIGS. 23A—23l3.

Fit}. 24 is an illustration of 8 stand-alone andfor di:-t.Lrilt-
uted environment or architecture for image viewer in client
server andror intranet operating environn1ents.'l‘ht: architec-
ture in FIG. 24 provides the capability to perform the viewer
process off-line. That is. the viewer process 133 provides an
added feature on top of the object manager layer III. As
described above. object manager layer E4 is essentially an
interface, and the viewer process 183 is an application that
leverages the object manager layer 14.

Tl1e advantage of the viewer process 188 being built on
the object manager layer 14, which is built on top of the
engine object layer 16, 18, 2.0, is that the viewer process can
offset its processing capabilities anywhere in a distributed
environment. ll can have the processing occur at the local
.-station,on aaerver, and the like, us dest:ril'n:d below in detail.
Significantly, the object manager and the engine object
component are independent to provide a distributed envi-
ronment for using the present invention. Rather than com-
municate within the same technology between the object
manager and the engine object, the object manager and the
engine object component communicate with each other in
binary mode. via, for example, standard distributed compo-
nent objeet module (IJCOM) communication.

As illustrated in FIG. 24, object manager 14 communi-
cates with engine object component 16, 18, 20 via DCOM
specification 166. Other types ofcomponent communication
may also be utilized that provide the capability of a d1}*.1rib-
uted component interaction. Object manager 14 is also
respectively connectahle to viewer process I88.

ll)

l5

3|?

45

51.!

60

£35

68
Titus. the engine object component and the object man-

ager can leverage current protocols to not only communicate
on the same machine. but also on different machines such as
a client sewer and.-“or intranet andfor Internet environment.
The object manager andfor viewer process can be placed on
one machine, and the engine object component on another
machine and have distributed processing, what is otherwise
called thin client processing, distributed processing, wide
area intranet processing.

What this allows the present invention to do is to put the
object manager on the thin r.-item, who would accept the
request from the user, for example, to perform the viewer
pro-uess. 'l'l1e actual request is handled or processed by the
engine object component which generally resides on the
server. The engine object component contains the horse
power, or the prrieevsing power to pruce.-ts the request.

The engine object layer is generally located in the same or
substantially same location as where the core technology or
engine itself is being stored. Altematively, the engine object
layer and the engine may be optionally located in a distrib-
uted environment on diflerenl machines, servers, and the
like.

FIG. 25 is a detailed illustration of a stand—alone andror
distributed environment or architecture for image viewer in
client server andmr intranet operating environments. In FIG.
25, client 170 includes object manager layer 172 with viewer
process 192. Client ITO executes the core technology lfil],
via accessing engine object layer 278 managedrstored on
server 176. and communicated via server IT-I. Viewer pro-
r:es~'- 19“ is also optiottally available In either or both ser\-tern
IT4. I76.

Client 132. located on the same server 176 as core
technology [80 and engine object layer I78. may also be
used to execute the core technology 130 and.-"or viewer
process 192 via object manager layer 184. [n this instance,
the client 132 with the object manager layer 134 is located
on the same server 1'i'fi as the engine ohject layer 178. [n
addition, since the present invention utilizes :1 communica-
tion protocol between components, for example, DCOM.
that allows a client to also include both the engine object
component layer. viewer Pl'(K_'\:!'L‘-it 194 and the object man-
ager layer on the same machine 186. as well as the core
technology.

Funher, since the object manager is formatted or con-
structed of a client technology, the object manager can sit in
a standard browser. This means that anyone that has an
Internet browser, i.e., anyone that has access to the world
wide web (WEB) can actually access the core engine tech-
nology andfor viewer process. Thus, by structuring the
architecture of the present invention as described herein,
users automatically become Internet, intranet andfor WEB
enabled.

The pt‘t‘.st:nl invention also transforms lht: cr.‘It‘t: technology
andfor viewer process from essentially client based technol-
ogy into a client server artdr'or a thin client technology. This
makes the core technology high level and.-‘or viewer process
acccssible, thereby transforming any core technology andfor
viewer process into client server, or hidden client technol-
ogy. The browser is located on the client. and the browser
leverages the object manager. Accordingly, the browser
optionally contains the object manager. and the object
manager makes requests over, for example, the Internet,
local network. and the like via a server, to the engine object.The server would be either a web server or a LAN server.

'l‘he present invention also advantageously provides the
ability to have the client and the server, in a distributed
environment as discussed above, or on the same machine

79

80

US 6,771,381 B1
69

locally. The present invention utilizes the l)(‘()IV| commu-
nicutiott protocol defining the communication protocol
between the object manager and the engine object compo-
nent. Accordingly, since DCOM can work on the same
machine as well as in a distributed environment, DCOM
does not necessitate that the engine object or the object
manager component be on two separate machines.FIG. 26 is an illustration of a stand-alone andfor distrib-

uted environment or architecture for image viewer in net-
work environments, such as the lnternet. As illustrated in
FIG. 2}, object manager 14 cummunicater. with engine
object component [6, 18, 2|] via DCOM specification and a
networking environment, such as the Internet. intranet. and
the like 168. In addition, object manager layer 14 also
advantageously communications with viewer process lflsa.
Utltcl‘ types‘. of component ooIt1I't1I.1nicttliutt may also he
utilized that provide the capability of a distributed compo-
nent interaction over a networking environment.

FIG. 27 is a detailed illustration of a stand-alone andfor
distributed environment or architecture for image viewer in
the lntemet environment. In FIG. 2?, client 1'2-'1] includes
object manager layer 1'12. l3rowser_tthin client 1700 executes
the core technology 180 and.-‘or viewer process 192:1, via
accessing engine object layer 178 managedrstored on web
server 116a. and communicated via the Internet 17-tat. -
Viewer process 190 is also optionally available to web
server 176:.-.

Ptrowserflltin client 132:1, located on the same web server
1760' as core technology 180, viewer process l92a and
engine object la}'l:t‘ 173. may also he used to execute ll1c. curt:
technology [80 via object manager layer [$4. In this
instance, the browscrrthin client 182a with the object man-
ager layer 184 is located on the same web server 1764:: as the
engine object layer 178. In addition, since the present
invention utilizes a communication protocol between
components, for example, DCOM, that allows a client to
also include both the engine ohject component layer and the
object manager layer on the same machine 186, as well as
the core tccltrlology and viewer pruccs.-t.

The purpose of the Virtual Copier (“VC”) aspect of the
present invention is to enable a typical PC user to add
electronic paper processing to their existing business pro-
ccss, VC is an extension of the concept we understand as
copying. [nits simplest form it extends the notion of copying
from a process that involves paper going through a conven-
tional copier device. to a process that involves paper being
scanned from a device at one location and copied to at device
at another location. [nits more sophisticated form, VC can
copy paper from a device at one location directly into a
business application residing on a network or on the lnternet,
or visa versa. 'l‘he Vt.‘ invention is software that manages
paper so that it can be electronically and seamlessly copied
in and out of devices and business applications (such as
Microsoft Oflice, Microsofi. Exchange, Lotus Notes) with an
optional single-step (in operation. The VII? software can
reside on a PC. [..-’\N.-"Wa"\N server, digital device (such as a
digital copier). or on a web server to be accessed over thelnternet.

Virtual Copier is designed to solve the corporate paper
problem by enabling existing web—baserl and clicnt—server
applications to manage paper as part of their solution.
V'irtual Copier links the familiar and universal world of
paper and digital devices to web-based and client-server
applications. The result is that the automated business pro-
cesses become the primary storage of paper in electronic
form. information that is typically managed and processed
in paper ionn is "copied" into the system and managed by

ll)

l5

3|'l

45

51.!

60

65

70
the business processes with which users are accustomed.
which is made possible by using Virtual Copier. Simple
extensions of Virtual Copier support seamless electronic
outsourcing of paper processing and archival services over
the web.

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing lntranet and c|jent—server business processes with-
out any fuss. Whether it is an ofiice clerk that needs to easily
copy a report from a desktop scanner to the company’s
[ntranet-networked copier, or an accounting software inte-
grator Ihat wants to embed paper processing, Virtual (Topier
offers a simple solution. To the office clerk Virtual Copier is
a document imaging application packaged in the familiar
setting of an office copier. To the integrator, the underlying
open architecture of Virtual Copier ollers a simple integra-
tion path for embedding paper processing into its client-
server or wcb-based software solution.

Although managing paper manually is one of the great
problems facing corporations, there has been little innova-
tion in enabling those workers to eliminate the need to
continuously work with paper manually. Much of the prob-
lem stems from the complexity of traditional document
management systems, which require days of training and
months to become familiar with the system in order to be
prolicicnt. Virtual Copier was designed to he as simple as a
copier to operate, and yet still provide the complete capa-
bility of integrating paper with existing business applica-
tiuns. By simplifying the interface and underlying .-iuftware
infrastructure, VC can manage paper in electronic form as
easily as is currently done in physical form.

VC extends the notion ofa copier. which simply replicates
the image of an original document onto another piece of
paper using a single GO or START button, to do a similar
operation in software so that the image gets seamlessly
replicated into other devices or applications or the Internet.

An example of this is the actual implementation ot'Virtuul
Copier as at consumer pro-duc1.A-. shown in FIGS. 28 and 29,
the interface of the consumer product called Virtual Copier
has a Go button much Iiltc a physical copier. This G0 butlort
can copy paper, whether physical or electronic, l'rurn one
device and or application to another device andfor applica-
tion.

What makes Virtual Copier as simple as its physical
counterpart in at least one embodiment is the fact that it
replicates the identical motions that a user who is making a
copy using a physical photocopier goes through. when a
user photocopies at document, hetshe selects where they
want to copy from (i.e. the sheet feeder), where the user
wants to copy to (ie. 6 copies collated and stapled) and then
presses a GO button to actually carry out the photocopy
process. With Virtual Copier the process feels fan1iIiar
because the sequence is the same as illustrated in FIG. 30

. with just the Power VC ptirlirirt or ll'II.' main Virtual (itipicrwindow.

The power tifVit1ual (Topier is the fact that the From can
be a physical device (eg. digital copier. fax or scanner) or
an application (e.g. Lotus Notes. Microsoft Exchange. the
Internet, or an electronic filing system). The T0 can also be
a physical device (eg. a fax, digital copier. or printer) or an
application (e.g. Lotus Notes, Microsoft Exchange, the
Internet. or an electronic tiling system). liven though paper
is being copied electronically from devices to applications,
from applications to devices, from devices to devices, or
from applications to applications, the user simply has one
sequence to execute: select From, select To, and then press

80

81

US 6,771,381 B1
71

GO. Virtual Copier will accomplish all translations between
device and applications automatically and sr.:amless1y.

Another reason that paper is still a major corporate issue
is that traditional document management systems require
that a company invest in a whole new system just to store
electronic images. Although this is the only way that docu-
ment management systems have been designed and
delivered, it is in fact highly inefiicient. Most companies
already manage infonnation about physical documents in
some form of software applications.

For example, accounting systems have long been used tomaintain information about invoices and bills that arrive into

a company from outside sources as physical piece:-. of paper.
When an invoice arrives, its information is keyed into the
accounting software. where balances are maintained and
accounts payable information is coordinated. Yet the original
invoice is stored manually. and every time that a request is
made for a copy of the signed invoice, someone manually
retrieves the invoice from a physical Iiling cabinet. Account-
ing systems, like most business applications, typically have
no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and diflicult to
maintain, and even more dilficult to coordinate.

\.r'irtual Copier solves this problem in at least one embodl- ..
ment by copying paper directly into the existing amounting
system. Simply adding a To item in the Virtual Copier
window enables a user to copy paper directly into the
appropriate accounting record of the existing accounting
sys.Icrn.'l‘l1i_s requires no relrainirtg (u.-.ers who are trained on
the accounting system will still use the accounting system in
the same way}, requires no document management system
[the electronic copy of the document is actually being
maintained by the accounting system itselt], there is no
coordination between two systems {Virtual Copier embeds
the invoice with the appropriate accounting record], and it is
simple (one Go button).

What is true with regard to the example above of an
aL‘r:uttt‘tlit'Ig system is true of most other business applica-
tions. The power of Virtual Copier is that it can turn an
information system into a docurnent management system by
adding support for electronic paper directly into the existing
business application. Whether it is a client. server-based. or
web—based system.

Virtual Copier enables corporations to pcrfonn sophisti-
cated document imaging with their existing Wbb-based and
clicnt-server applications through a user interface that is as
familiar as the olfice copier. Virtual Copier can be used
ouI—of—the—box as a standalone application to copy, scan, fax,
or print images using existing digital devices within corpo-
rate environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into
Web-based and client server applications, such as ERP or
accounting systems, to eliminate paper from existing busi-
ness pr<:c.'e:vn:-. and legacy applicatioms. Virtual Copier can
also be used to support seamless access to document image
processing and archival over the web since. in at least one
embodiment, the VC interface is implemented as a software
application.

VC is architccted as an application that delivers end—user
functionality while remaining open to third-parties exten-
sions. For example, VC‘ can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only difference is that VC does not distinguish between
electronic and physical paper.

To accommodate third~party extensions, VC is divided
into live essential modules. Each module is a counterpart to

ll)

3ft

45

51.!

60

65

72
an aspect that is found on a conventional copier. Based on
the modular design of \.r'C. each aspect of VC can be
independently extended, offering much greater flexibility
than conventional copiers.

The five core modules of VC illustrated in FIG. 31 are:

[nput ModuIe—The input Module manages paper or
electronic paper entering VC. This module manages
imaging devices to input paper through scanners,
MFPS. or the new breed of digital copiers. 'll1e lnput
Module also manages reading electronic paper from
third-party or proprietary applications. The counterpart
to VC's lnpul Module on a conventional copier is the
scanner subsystem.

Output Module—The Output Module manages paper or
electronic paper exiting VC. Like the [nput Module.
this module manages imaging devices to output paper
to standard Windows printers, specialty image printers,
MFPs, or the new breed of digital copiers. The Output
Module also manages writing electronic paper to third-
party or proprietary applications. The counterpart to
VC’s Output Module on a conventional copier is the
printer or fax subsystem.

I-'roccs-5 Modu|c—'['hc Process Module applies processing
to the electronic paper as it is being copied. Examples
of a process are OCR and [CR. The Process Module can
also apply non—imaging functionality as well, such asworkilow or other relevant tie~ins to the electronic
paper as it is being copied. One of the advantages of VC
over conventional copiers is that multiple processes can
be applied to a single virtual copy. The counterpart to
VC‘s Process Module on a conventional copier is the
controller.

Client l’Ulodu|e—v'l‘l1e Client Module presents the elec-
tronic paper as it is being copied. and any relevant
information related to the input or output functions. For
example, if the Output Module is directed to a printer.
then the Client Module might present the finishing
capabilities: if the Output Module is directed to
Goldmine, then the Client Module might present the
target contact record to which the document is being
copied. The counterpart to VC‘s Client Module on a
conventional copier is the panel.

Server Module-—Unlike conventional copiers, VC's
Server Module is a unique subsystem that can commu-
nicate with the other modules as well as third—pany
applications. The Server Module is what makes VC 2:
far more powerful concept than simply an application
that can control a scanner and a printer to mimic a
copier. The Server Module can be used to combine
third-party applications with the new breed of digital
imaging devices to create unique and custom virtual
copier solutions A virtual copier can be created with
VC by combining a scanner with a printer; or by
combining a scanner with an application; or by con1b-
ing an application with an image printer. ln each case
VC is dynamically creating a custom virtual copier.
with a complete understanding of how paper Rows
from the source to its destination. There is no counter-
part to VC's Server Module on a conventional copier.

One of the primary design goals of V[‘ is to make it
simple to integrate VC with third—party applications. There
are two options to integrating VC into a Ihird—party appli-
cation: running VC as an external service, or embedding VC
as an underlying service.

VC is in one embodiment and optionally a standalone
application that enables a user to scan [copy] paper from a

81

82

US 6,771,381 B1
73

device to a third-party application. and to print (copy) the
reference of an image document from a third-party applica-
tion to a printing device. \.-'(‘does not require the third-party
application to be aware that VC is operating. Rather, VC‘
recognizes that the third—party application is running. and it
intelligently copies paper to and from that application as
illustrated in FIG. 32.

In this scenario the user is interacting with VC’s Client
Module in order to execute a copy operation to and from the
third-party application. There does not have to be any
changes made to the Il1il‘t.l-party application, not even to its
interface, in order for \-''C to operate. The user of \-'C only
knows that to copy to and from the third-party application.
a custom [nput and Output Module must be selected, and the
Go button is pressed.

in order to support copying to and from a third-party
application. VC must be able to suppon extensions that
understand each third—party application. This is accom-
plished throng: the Input and Output Modules. The Client,
Server, and even Process Modules remain independent
across third—party applications. However, in order to support
outputting to a third—party application, an Output Module is
developed that is unique to that third—party application.
Lilrewise, an Input Module is developed that is unique to a
third-party application in order to support reading images -
from that application.

it is the optional Input and Uutput Modules that rcnclcr
Vt.‘ extendable. For each third-party application there is a
unique pair of Input and Output Modules that understand the
third-party application. and how to copy images to and from
that application. Each Input and Output Module registers
itself to the Windows registry so that the Server Module
knows how to find them. ln this way Virtual Copier can grow
indefinitely, to support any number of third—party applica-tions.

The significant point is that the [nput and Output Modules
have their own interface, and can be developed indepen-
dently from any other module. As long as the input and
Output Module conft:r‘t11 to the All] specilied in this docu-
ment it will plug-and-play with VC. \''C will be able to mix
and match the custom Input and Output Module with its
standard and other custom lnput and Output Modules.

A third-party application can also use the services of VI.‘
without its user interface. That is, a third—party application
can embed \«"(?‘s functionality and provide its own interface
to its functionality. For example, rather than have VC as a
separate application. a special button can be placed on a
third—party application that launches \''C in the background
as illustrated in FIG. 33.

VC is designed so that the Server Module can run
independently from the Client Module. All the core
functionality, including communicating with the lnput,
Output. and Process Modules, are performed directly by the
Server Module. The Client Module is generally simply an
interfact: to the Server Module. 'l'hcrt:I'ore, all the services of
the Server Mo-rlule can be made available in the bacl-rground
to a third-party application without the need for an interface.
The third-party application can in fact become the user's
interface to V(,'.

in order to suppon VC operating in the background a
third-pany application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in VC. support COM-
based interfaces for simple and direct support from all major
Windows development environments.

At the heart of VC is the Server Module. A virtual copy
operation can only be initiated using the Server Module. 'l‘ht:

ll)

l5

3|‘!

45

51.!

60

65

74
Server Module coordinates the activities of the various
modules while maintaining the information regarding the
current process and document. it also collects and passes
information from one module to another regarding the
document and process. Events and an AP! are used to controlthe modules and their interaction with each other as well as
with the Server Module.
The following are the main functions of the Server Module:

Enable Virtual (Topy C|peration—The Server Module pro-
videa simple methods to initiate, cancel, and reset VC.
The AP] is designed to imitate the simplicity of using
a conventional copier.

Maintain List of Available Modules—The Windows reg~
istry contains the list of available lnput, Output, andProcess Modules that can be used with \-'C. The Server

Modules reads this list on startup, and maintains it in
the Modules object that can be accessed by the other
morlulcs. .uI’\lthough each module can read tl1isin|'oi111a-
tion directly from the registry, it is prclerable to use the
Modules objcct.A|linfor1nalion regarding the available
modules can be found in the Modules object.

Maintain the Currently Active Modules—'['he Server
Module maintains the current lnput, Output. and Pro-
cess Modules that are being used for the current virtual
copy operation. This is maintained in the Program
object. This information can also be saved to disk in a
Process ’|'emplatI.' Iile.

Maintain (Tornplete Doeurncnt [nl'nrmation—'lhe Server
Module maintains all the information regarding the
current Iilc being copied. This is maintained in the
\-''Document object. This information can also be saved
to disk in a Document Ternplale file.

As with other design elements of VC, the VC logic llow
illustrated in FIG. 34 parallels the basic logic flow of a
conventional copier. in a conventional copier, paper is pulled
into the copier, processed, and output. Lilrewise, in VC‘ the
Server Module initiates the lnput Module, Process Module,
and Output Module in that sequence. Unlike a conventional
copier which does not have the ability to update its panel,
Vt? updates its Client Module as well as the results of each
Module acting on the document as illustrated in FIG. 35.

All actions to create, pl‘tl(.‘l:$‘-i-. and write images are the
responsibility of the Input. Process. and Output Modules
respectively. The Server Module is a scheduler of activities.
providing the information and initiating the modules at the
appropriate time in the virtual copy operation. The Server
Module manages the other Modules. [I does not know about
the internal workings of the modules, nor the contents of the
information being copied. The Server Module AP] is sulfi-
ciently rich to maintain all the information necessary for a
basic virtual copy operation.

The Server Module API is divided, for example, into the
following COM—based interfaces:

Modules 0bject—This object maintains the list of avail-
able lnput, Output, and Process Modules

Program 0bject—Thi5 object maintains the currently
selected lnput, Output, and Process Modules

Vl)ocun1enI (Jhjecl—'ll1is object maintains the informa-
tion regarding the current document that is being cup-
ied

\-|"C l\-'lcthods—'l'hesc 1‘netl'Io-(ls are used to initiate, cancel,
and reset VC

VC l."-.vents—These events are used to provide feedback to
the Client Module

The purpose ofthe Modules object is to provide the Client
Module with the full list of available lnput, Output, and

82

83

US 6,771,381 B1
75

Process Modules that is available to lht: user. The Client
Module can obtain the user-readable names for each module.
as well as its icon and other key information. The Modules
object is primarily used to seed list or combo boxes that
provide the end-user with a choice of modules from which
to select.

In a preferred embodiment. the Modules Object has. for
example, the following structure illustrated in FIG. 36,
however, alternative structures artdr'or functionality may
optionally be used for this object andior other objects used
in the present invention:

Name Qenflgtrre
Type Metltod
Format .(Ionfigurct’_ J
Dertcription The Configure method catlscs the module to

prompt the user for configttration information.
Each module crtairrtaimr its own configuration
dialog. and therefore may look difierentthan other modules.

Sample Vtopier.lnpt.ttModu|es(lJ.C‘enfigure(JNam: Dcliaull
'l)}:tc Property; Uhjecl of type lnptuthvlodulc,

Oulputhtodule, or Procertallvlodulc
Format .Dcfault - Read Only
Description The Defitult property identifies the defaultmodule that the Server Module will use at

stamp or if no other module is identified.
Sample .\'5}ri!l]1IllMOdlJI: - VCopier.|rtputModulr:s.Det'aultNam: II]
Type Property‘. BSTR
Format .lI)- Read Only
Description The [D property identifies the l’rogID ofn

module. The ProgID can be used to deriveother information about the module,
including its Icon.

Sample .\«!ocltr|eNnnte - \t'(2opi=r.InputMndtrles{ lJ.1l)Name File
‘Type Property; BSTR
Formal .FiIe-Rend Only
Description The File property iderniftes the full

palhttante of the physical file ofa module.
Sample FiIel\‘arm: - \«'(Topicr.lnpulll-lodulr.-t(lJ.t-1|:
Name lnputhtlodulc, Cltrtputlvlodulc. l’rDoes5Modulc
"DI.-‘p: Object
Format .llIpItJlMoLllllc, .Oul.puL\tIod|rle, .Pruoe.aaModtrle-

Read Only
Description The [npu1.\~lodule. (lutputhdedule and Processhtlodule

are the individual objects maintains by the
lnputll-lodulcs. Oulputtvlodulcs, and Ptoccssllvlodules
collections rtespcctively. liaclr one of these objects
has the following elements:Nnrnc
ID
File
Configure
The Name]'tropcrt)' is BSTR that is the user-readable name Of the Tllotlulc. The ll.) is a BSTR
that represents the Progltl of the module.
The File property is a BSTR that is the
full pathname of the module. The Configure
method prompts the user with :t dialog for
configuring that module.

Sample .\«IyInpuIModuIc - \l'C'opier.|nputModulcs(’2'J
Name lttpulll-lodulea, U'|JI|1ut.\'IDdull:S, Proccsslalodulcn
‘Type Collection of lnptrlhulotltrlc, Outputhlodule, and

Procesahlodule objects respectively
Forntat .|nputModtIles. .OutputModules. .ProcessModu|es-

Read Only
Description The [npu1..\vIodulcs. OutputModules. andProccaslalodulcs collections maintain lhe list

of l'l\-'Ellltl:llC modules for each category. Each
collenion maintain the following inI'ormation:
lnpLIIModUlerlOutpulModuiefl’roLVeaaModuleDefault

1l.l

35

SD

55

76

-continued
The First clement k the individual module in
the collection of modules that are available
to \-'t.’.‘. The Default object is the default module
that \-‘C uses at startup. The Server Module
Inainutins thcrtc collections under the .\'Iodt.tlt:5
ohjccl.

Sample Mg.-tnpurtvtmture - VCopier.l.nputModulce(2JName laLorat‘.led
Type Method. Boolean
Format Jslroadedf 1
Description The lslnndcd method returns True El‘ the module

ir. loaded into memory. and False if it is not.
Sample ModuleName - \«"(“.opicr.InpuLModu|es{1}.lsLoadcdName Load
'l_,'pc Method
Format .Load(J
Description The load method ntartually lends the module into

mcrnory. Duct: n module is loaded in W: it rcrrrains
in Incroory until it is specifically unloaded
using the Unload method. or the program cxiLs.

Sample Modulehlnme - \«"C‘opier.InputModules{1J.LondName Name
T_.~p¢ Property, BSTR
Ferntat .Nrrme-Read Only
Dr:scription The Name property identifies the rrscr-readablenacrtc of a module. This name can he used in a

list box for a user to select the module.
Sample ModuIeNnrII: - \«"Copicr.InputModu|es(1J.Nnn1c
Name Resetsettings
Type Method
Format .ResetSeItings(J
Description The Rtuetsettings method returns the settings of

the module hack to its original state when the
VC first called iL A user can change the selling:
of a module when it is configured. This method is
used to role back changes made |:t.I a user during
the VC session. Tb save the settings helween
sessions, use the SavI:Settings.~‘\sI)efauIt nu.-thod.

Sample ModuleNnmc - \«"Copier.{nputModules[1l.
Rur.-tsctting.-t[l

Name Sa\'cSetting5AslJeFault
‘llypc Method
Formni .SaveSetrirrgsAsDel'nu|t(J
Description The Sauesettings.-\sDelIault method save any

cltangca to the scttingat the user has done
during the session to disk so that they
become the newscI.t'tnsg.

Sample Modulehlame - V(“.opier.InputModuIes[1J.
ResetSettings(lName Unlornd

Type Method
Forntat .UnLoad[J
Description The linlott-d mctltod manually unloads the tllochrlc

from ntentory. Once a module is loaded in W.‘ it
remains in memory until it is specifically
unloaded using Lhe Linloatl method, or the
program exits.

Sample Moduleblnrne .. \«"C‘npier.[nputModules[lJ.Unlond[J

The Program Object maintains the currently selected
input, Output, and Process Modules. It is generally set by the
Client Module based on input Erom a user. However, in
applications that do not have a user interface the program
object can be used to directly set the modules to run VC. The
Program Object has the following structure illustrated inFIG. 37.

All elements of the Program Object are defined in the
Modules Object section. The \''Document Object maintains
information about the current document being copied. The
\«"Document represents a virtual document rather than a
physical one. it is designed to allow the flexible management
of mulli-image flies that together constitute an document.
The internal Vllecument maps to physical files as illustratedin FIG. 38.

The VDocunJcnt Object calculates the total number of
pages of all the files associated with it, and lays out each
page of each document in a single virtual document. As the

83

84

US 6,771,381 B1
7'?

figure illustrates. il 4 files contain at total of 8 pages, then
VD£‘I(."tlI1'lt:I‘1l oon.-side-rs this an 8 page document, If the 6”‘
page is requested, VDoc:umcot will return the second page of
File C in the above figure. This enables VlJoeumenl to
handle single page files that together constitute a document
(as is the case with many of the new digital copiers), or a
single rltttlli-page image tile. or any combination of the two.
The V"Docttment Object is illustrated in FIG. 39 and below.

Name Add
Type .\«5et|tod
Forntat .t\dd(l.‘|S'FR Fiio. Long Page)
Description The Add method its used to ndd a page to the \r"l'ageet

collection. The two arguments File and Page reprseirt
the dial: file and the page number to associate with
the new page in \-"Pages. One page of one ELI: is added
at 8 tirttt: using this method.

Sample VDocuntertt..:\dd(Fi|e!\. 2}Name .r‘\uto1')c|ctc
'l‘}'pe Property, BooleanFormat ..rl\uloDeIele
Description The AuIoDeIete properly lt:Ls I.lre Server Moduleknow whether to delete the files our: the

virtual copy operation he completed. when set to
True the Server Mbdule will delete the physicrtl dinlr.files maintained in Vdocumcnt either lvcforc the next
virtual copy operation, or wIa:n VC ir. shut down.When set to Fnlse Vdocument is cleared of ils contents
between virtual copy operations, but the artttal Files
are not deleted from the disk. In general if the
VDocuntent object points to existing files then.r‘\utn1'.‘t¢|ctc should he set to I-"attic. If the VDOCLl!tt€t'll
object points to temporary files. then .-\utoDclt:tcshould he set to 'l‘nJc so that the disk files are
cleaned up (i.e. deleted} by the Server Module.
By default AutoDe|ete is set to False.

Sample V"Copier.VDoeutrIenl.AtJloDeIeIe - TrueName Clear
Type .\v!.cthod
Formal .Clear(J
Description The Clear method is used to empty the content-.

at the Vdocurnern object. '11.: vtugcs ubjm is
emptied and the reference to fites are deleted
in conforntance with the .v\utoDe|ete property.

Sample VDocum:nt.Clear(]Name File
Type Property, BSFRFormat .File
Description The File property of the \t‘Pngc object points

to the disk file that contains the irmtge
associated with the Wage page.

Sample .\‘l}l'Flll: - VfJoctIntcnt.VPagot(2J.Filc
Name Page
'l'_\pc Property. Long
Format .Page
Description The Page property of the wage object points

to the image olliset into the disk file Llutt
contains the image associated with the
VPagc page

Sample Mylrhtge - VDor:un1ent.\«"Pagott(3).l’ngr:Nam: Remove
'l‘}1:Ic Method
Fortrtat .R.errtoI\'e(J
Description The Remove method is used to remote a page

from the \r"l’age.s collection. The single
argument Index is the oliset page into the
Wages collection.

Sample VDocun1ent.VPagcs(2j.RcntttNc(J
Name Vpage
'l}~pe Objen
Format .\«"prr3e
Description Each \r"Pnge object represents a single

virtual page in the \-"Document object. Each
VPagc object contains the name of the file
that contains in: virtual page in the .Fiic
ptropety, and a Page property which is the
page ofisct in the image tile.

11.!

35

St)

55

SampleNa rne

Forntat
D€&t.'ript ion

Sample

79

-continued

M)'I"age -v \r"Copier.\r"Fnges{2}
VMEJS
Collection of Page ohjot.-La
.Vpttgc.‘t
The V-‘Pages collection coraairrs one \«’Pttgc
object per virtual page. Each page of ench
image rate that is ltacltod try VDo\‘t.tment is
considered it unique page, and its information
is ntninI..1ined by a \r"|’.'tgr: object.
M_\'Page - \J'{"opicr.VFagct(3)

The Server Module supports simple methods that accom-
plish lhc basic copier functionality of go, cancel. and reset.
The Server Modules has the following structure:

Na me
'|‘rP¢Formrrt
Description

SampleNa me
1‘.-‘P¢Forntat
Description

SampleNa mt:

Format
Description

Sample

(_"‘:noel
Method
.C.1nr.te|(J
The Cancel method is used to cancel the currently
running virtual copy operation. The Cancel method
one only be used circle the Go method is called
and prior to its completion.
\-'C.‘o|Iicr.(.‘enct:i(;

The Go method is used to initiate a vltlual
copy operation. It calls the modular in the following
sequence: Progmrnlnptrlhvlodule, |'rog1am.ProoessModLtlcs,
nnd then PrograrrI.OuIpulModule. The virtual copy
operation can be cancelled prior to its corrrpleliottt
by urlting the Cancel method.
VC‘opicr.Go{ }Rcsct
Method
.ReseI[JThe Reset method is used to clear the contents
Dd the Program ol:tjecL After calling the React
rrtelhoti VC is considered to have no rtssh-,rtod
Input and Output modules selected. The modules
that are reset me not unloaded from trtcmoty.
VC‘opi¢r.Resc1(J

The are two events that the Server Module supports: Error
and Status. The Error event is generated anytime any of the
Modules procluoc an error condition. The Status event is
generated when information needs to be transferred betwcertthe IOP or Server Modules and the Client Module.

The following are details for each event, illustrated inFIGS. 40 and 41 and below.

Na nre

Format
Description

SampleNa mt:

Formrrt
Description

SampleName

Fomtllt

84

Error
Ewnt
.Error(. . . }
The Error event is triggered whenever there is
an error by one of the modules. 'I"ltrt: error can be
trapped and displayed or processed by the ClientModulc.

ErnorCodc
A1'§|llt'N:ltI, Lotrg.ErrorCode
The Errorflodt: argument. of the Errorevent identifies the 7tt‘l.l.llll error code. Theft: are no
predefined error codes for all modules. Each
module prodtlncs its own set of error codes.
lError'T‘exl
Argurrtrenl. BSTR.Error’['ext

85

Description

SampleName
131!Format
Description

SampleName
‘BinFormat
Description

SampleName
1315‘Format
Description

SampleName
'I_\i=cFormat
Description

Sample
Name
'lli==Format
Description

SampleName
Type
Format
Description

SampleName
".\‘F'¢Format
Descr1'plt'on

SampleName
WP‘Format
Description

SampleName
T3339Format
Description

US 6,771,381 B1
79

-continued

The ErrorTe>l.t argument of the Errorevent identifies the actual error text. There
me no predefined error texts for all moduler.
Earelt module produnes its own text for its erroroodes.

MO<ILIleID
Algunle nr, BSTR.ModtI|¢|D
The Modulelll argument of the lirrorevcntidentifies the ruouroe of the error condition. The
Modulellil is defined as the va:rsinn—dependent Progll).

Severity
Argument, Long
.Set-crity
The Severity argument ol'tl'le Error event identifies
the level of error condition. The I‘ollowin£- levels
are currently intplentent-ed:l-Severe
2-Wttrning
SubMorhile|D
Argument. BSTR.SultModuleII)
The Sulzmlodulcll.) argument of the Error event
identifies the not-ondary source of the error condition.
The &|bMorlult:I.'D can defined as the tersi-on-depenelent
FroglD. or any other value determined by the Module
that generates the ertttr condition.
L‘-RL
Arguntent, B5111.URL
The URL nrguntent of the Error event
identifies the URL address {welt site. HTMI. File.
or resource file URL]. that contains the I-rI'ML
representation of the error condition. The
information presented can he more dynamic as well
as fommttod than the ErrorTe>£t argulnelu.

lnfol, Info’:
Argument, \vEuianI
.|nI‘ol. .InI‘o3
The Info! and Info: argumelus of the Status
event are placeholders for ttddilionul inforntnlion
that needs to be supplied with specific stntus numbers.
Status
livenet
.§tatus(. . . J
The Status event is trigerrerl by any of the modtdes
when there is information that needs In he relayed to the
user or the Client Module.

StaI|l5N|ll'l|l3€r
Argument, Long.S|.t:lLts-.\lLItrtber
The Slalusfiumher argument oftlae Status
ct-enr identifies the actual status code. The values
between 1 nnrl I000 are private and cannot be
generated lay an ID? Module For private use. Any
other status numbers are open for private to?Module use.

StaIus‘l'e:tt
Argument. BSTR.Status‘l‘exl
The 5lalus'l'en argument of lhe Status eventidentifies the actual status text.

!:itaIu5‘l}'pe
Argument, BSI11
.SIatus'l).-pr:
The Slalua'1‘_trpe argument of the Suttus event
identifies the type of status.

10

35

SD

55

60

80

-continued
1 - Informational
2 v Instruction

Sample

The Server Module broadcasts the Status event to the
Client Module. There are standard status events that the
Server Module generates which the Client Module can rely
on. These are the events that manage the How of modules
and user interaction with the Server Module. The following
is a general worlrflow of the events that are generated isillustrated in FIG. 42.

Sl:ttusNu mber Slnlu5Tt:xt Description
VneModuleCane'eled The ID!‘ Module tzrlreled

the operation by setting
the (Taneel argument in the
l"r:cdhat.'lr.l'IrrDr or
Feedlraeltstatus methods
to True
The IIOP Module has
completed presenting its
configuration clinic;The ID? Module has started
presenting its configuration
dialogTlte [OP Moduli: has ended
eaoecutingThe IOP Module has slatted
executingThe E0? Module has
completed loadingThe ll)? Module has started
loadingThe EDP Module has
completed unloadingThe E0? Module has started
unloadingThe Server Module has
canceled executing [using
the .Cnncel method)

VaeMod LIleCnnfigt|reEn:l

Vse l.vloduloConfigureSLnrt

Vselvloduletiolind

Vselvlodtllofiostart

Vite ModuleLondEnd

Vse Morlulelioafltart

Vac ModuleU nloadlind.

\-‘st: ModuleUnloadStart

Vse Prograntfitnceled

\r'u:ProgInmlind ‘I'll: Server Module lute
ended executing

VseProgrttntSt.nrt The Sen-'er Module has
started executing a
Go operation

The Client Module presents to the user information
regarding the copy process. and initiates the virtual uony
thrrruglt the Server Module. The Client Module can be a GUI
that Imagination Software develops. or a third—party appli-
cation that directly communicates with the Server Module.
The goal of the Client Module is Io capture suflicicnl
information and pass that inforrnalinn along to thr: Server
Module in order to initiate a single virtual copy.

The Client Module follows the following general logic
flow illustrated in FIG. 43. The final stop for the Client
Module is to determine that the Server Module exists. and to
successfully launch the Server Module. This is done using astandard COM interface.

lithe (Tlicnl Module is at GU] then it can present icons and
the names of all the available Input, Output, and ProcessModules for the user to select. The Client Module does not
need to know any information about these modules. All
names and l’rodlcl'5 are available from the Server Module
AP] using the Modules Object.

It‘ the user selects a new lnput or Output module, the
Client Module updates lhr: apprripriatr:
Program.InpulModule, Prograrn.0utputModulc. or Pro-
gram. Prooe$ Modules object available on the Server Morl-ule.

85

86

US 6,771,381 B1
81

At any time the Client Module can initialt: the Go method
of the Server Modulc. This is a synchronous proocss—oncc
the Go method is initiated the only way to stop it is to call
the Cancel method. Only one Go method can be called at a
time. and it must run to completion before another one iscalled.

During the virtual copy, the Server Module will send back
Status and Error events that should be processed and dis-
played (if there is a GUI) by the Client Module. The only
rcquircmcnt for a Client l\r"lO(.ll.|lt: is that it al Icast substan-
tially conforms to the interface described in the Server
Module section. The architecture described in this section,
and its associated sample source code, is designed to facili-
tate development of Client Modules by third parties. It
should be used as a guide for developing a Client Module—
it is not the only way a Client Module can be designed.

The internal architecture described below is generally
independent from the interface requirements for a Client
Modtllc. The (Tlicnt intcrfacc must be implemented regard-
less of whether or not the Client is dcsigrlcd with lht:
architecture described in this section. The basic Client
architecture is illustrated in FIG. 44.

The Input. Process, and Output ("I0i"‘) Modules extend
VC by enabling spccializcd hardware and software to inter-
act with VC. Each 101’ Module understands the input,
output, or processing capabilities of a specific technology, as
well as how to communicate with the Server Module. In this
way an [OP Module can read or write images to and from
any device or software application while still being managed
by the Server Module. To the user of VC, interacting with
any device or software application is the same.

The [OP Modules share a common AP! to facilitate
cornrnunicalion with each other. with the Scrvcr Module. as
well as with third-party programs. 'l‘hu interfatx. is based on
COM. Both the Server Module as well as third-party appli-
cations can cornmunicalc with the Input. Proccsst and (Jut-
put Modules using the specified COM intcrfacc.
Additionally. third-pany vendors can create their own ver-
sions of the Input, Process, and Output Modules as long as
they conform to the specified COM interface.

The following are the main functions of the Input,
Process, and Dutput ("[OP”) Modules:

Respond to Server Module l'.io(‘J Mctltod—'l‘l1c Server
Module calls the other modules using a COM-based
Go() method. All necessary information regarding the
virtual copy operation is passed along using arguments
of the Go() method. The [OP module can then handle
its intemal operation independent of any other module.

Generate Status 8: Error Fccdback—'I'hc IOP module
should let the Server Module know its progress, error
conditions, or any other useful process or userbasedinformation.

Initiate Communication With the Sewer Module—-The
I01’ Module can at any time i tiatc communication
with the Server Module to provide new infonnation.
This enables the I01’ Module to pole the device or
software application that it is linked to, and convey that
information back to the Server Module.

The API for the input. Process, and Output Modules are
deliberately made simple so that third-party vendors cancreate their own custom versions of these modules with
rclalivr: I.'a.srt:. The J\l’l, illuslrnlcd it‘! FIG. 45, consists of lht:
following COM-based interface:

Go(V"DocumenI, Feedback)—This is the single method
that initiates a module to complete its phase of the
vit1ual copy. The Go() method is called by the Server
Module when it is ready to execute the functionality of

ll)

l5

35

45

SD

60

65

82
the module. 'I11c two parameters are the Vl)(lCl.|IT1ClI1l
ohjcizt, which contains ll1I: information about lhr: cur-
rent document being copied. The module can update
the \-"DocurnI:nt with additional images» as is typical of
an Input Module, or simply mad and process the
document, as is typical of an Output Module. The
second parameter is a Feedback object. which contains
the two events that the [OP module can generate hack
to the Server Module.

Na rm:
'|":T'¢Fornrnt
Description

ConfigureMethod
.(.‘onligu!c(J
The Configure method cuusex the module to
prompt the user for configuration infornratiort.
E.-it-h mndule inninlainzt its own conflgumrion dialog.
and tlrercforc may look dilfercnl than othermodules.
M_vlnputModuIc.CnIr|l'|gure(J(":0
Method
.C-o(\-"Docunn:nt, Feedback}
The (to method is called by the Server Module
to initiate the {OP module to execute its part
of the virtual copy operation. The Vdocumem
Object Ls passed along as an argument sothat the [OP module nut add to or mud the ctrrrettl
document that is being processed. Refer to the
Server Module section for a complete description
of the Vbocunrcrrt object.
The sccmtd parameter at‘ the (Eu method is 3
Feedback object. The Feedback abjecteruthlcs the [OP module to send trlalus and
error updtrtcz hack to the Server Module.
These events. are also described in the
Qrvcr Module scclicrn.
I0l'.(in[VDecurrrc1It. Feedback:
RtsctscttlngsMethod
.Rer-etSelIing:=(J
The Rozctscttings method returns the Settings of
the module back to its original stale when it
was First called. A uscr can change the settings
of a module when it is configured. This method
is used to role buck changes made by a user during the
VE‘. session. To save the settings between sozsiorts,
us: the sat-cscnirigrAst)caruJt llltlllud.
MylnputModuIe.ResetSclting.5[}
Sa\‘eSetringsA:s[)efnul'tMethod
.SaveSerringaAsD:fau|r(_l
The Sui.-cSeIlingaAsDelZault method save any changes
to the settings the user has done during this
session to disk so that they become the new settings.
My|nputMoth:Ic.R¢setSc:rings[}

Sample\'a me
TuxFornrrrt
[Inscription

fhmpte
Na MC
T31!i-‘orrrrat
inscription

SampleNa me
T¥'P¢Fornurt
Description

Sample

The Feedback object illustrated in FIGS. 46-47 is used to
communicate between the [DP and the Server Module. The

Feedback nhjcct supports two methods that art: used like
cvenLs. The purpose of this mechanism is to limit the
communication between the [OP and the Server Module to

just those objects presented to the IOP Module by the Server
Module through the Go method. In this way the [OP Module
is handed all the information it needs to execute its part of
a copy operation.

The Feedback ohjcct contains two methods: Error and
Status. The Error l:\-"CI'|l is used to respond hack to the Server
Module all urror conditions. The Status method is used to
oornmunicatc back to the Server Module all information

updates, such as progrtss

86

87

The following art: details for each of ll'IC."vt: methods:

Name
1)-‘peFormat
Description

SampleName
'll‘P=I-‘ornral
Description

SampleName
13'?‘Forntal
Description

SampleName
Type
Forntal
Description

Sample
Name
'l}'peFormat
t)ese-ription

SampleName
'l‘n==Formal
De5crlptt'ott

SampleName
'l}peFormat
Description

SampleName
'l}‘pcFormat
Description

SampleName
'l}'peFormat

US 6,771,381 B1
83

Cancel
Argument. Boolean Reference.C.1nceI
The (‘street argument or the lirror method is usedto establish whether the Sewer Module will
continue with ttu: virtual copy operation once
this [OP is completed. If set to True then theServer Module will not mntinue its cirtuul
copy opetntinn. The Server Module will wnittmlil the IOP Module returns on its own.
The Server Module does not strut down the
IOP Module.

[Error
Method
.Error{ . . . l
The Error event is triggered whenever there is an
error by one of the rnodults. The error can be
trapped and t:li5pIa_\‘nd or processed by the ClientModule.

EnorCocle
Argument, Long.l'IrrorCade
Tlre Errorfodc argument of the Error event
identifies the actual error code. There are
no predefined error codes for all modules.
Each module produces its own set of error codes.
En‘or'f'exl
Argunrcnt. BSTR
.I'Irror'|‘exI
The Error'l'e>Lt argurrtent of the Error eventidentifies the actual error text. There are
no predefined error texts for all modules. Each
module produces its own text for its error codes.

S¢\’lCrlt_y
Argument, Long
.SeverI'ly
The Severity argument of the Error event identifies
the level of error condition. The following levels
are currently Enrplcmenled:1 - Severe
2 - Warning
SubModulell')
Argument, BSTR.SuhModuIeID
Tn: SuhModu|eII') arguntent of the I-Zrror event
identifies the secondary source of Ila: errorcondition. The Suhlttodulclt) can defined as the
\-ension-dependent Proylil, or any other value
clctcrmined by the Module that generates theerror condition,

L‘-RL
r‘\lg,untcnt, ESTR
.LtRI.
The URL argument of the Error event identifies
tlre T.1Ri.at:|drcss [web silt, HTML file. or tesoutvc
lite l_‘Rl.J, that contains the trrrnt. rtcprtscnlnlion
of the error condition. The information presented
can be more dynamic as well as fornrattcd tlrnn tltr:
l‘Irror1‘ext argument.
Statrr5Tcxt
Argumcnt, ISSIR.StntusTern
Tlre Statuflbxl argument of the Statusevent identifies the actual status Icxt.

StaIu5'l}'pe
Argumc nt. |5S1‘R
.Surtus'Iype

ll)

l5

35

45

SD

55

60

65

84

-continued

Description The St:ttus"l}'pe argument of the Status
event identifies the type of status.l - Infonnalioml
3 - Instruction

Sample

The only requirement for an l(JP Module is that it
substantially conforms to the interface described earlier. The
architecture described in this section. and its associated
sample source code, is designed to facilitate development of
[UP Modules by third panics. It should be used as a guirlc
for developing an l0P Modulo—iI is not the only way an
[OP Module can be designed.

The internal architecture dcscrilaocl below is independent
from the interface requirements for an 101". The IOI’ inter-
face must be implemented regardless of whether or not the
[OP is designed with the architecture described in thissection. 'l'l1t: basic 10]’ architecture is illustrated in FIG. 48.

The 101’ Module has a lixcd set of features that it needs
to perform:

interface with the Server Module

Execute its operation when its (io() method is called
Respond In requests by the Server Module to configure its

settings
Although any l0P Module that meets the [OP API

requirements specified earlier will function properly. the
pniptasctl architecture simplifies the development of EDP
Modules and ensures greater flexibility.
The internal interface class has two purposes:

Communicate with the Server Module
Marshall requests to. from, and between the Execute and

Configuration classes
in order to communication with the Server Module the

interface class must support the COM protocol. All moduleswithin VC communicate via COM. This class should be

created with the exact Al’l specified earlier. Addil ionally, the
Interface class should maintain the I-‘ccdbaclt object passed
in by the Server Modulc‘s Go method. Tliis way all cum-
municatitan to the Feedback object will be handled by the
interface class. rather than by the Execute or Configuration
classes.

The primary purpose of the Execute class is to execute the
Go method when it is called by the Server Module. This is
the core functionality of the [OP Module. Each IOP Module
will have its own mechanism for executing its part of a
virtual copy operation.

Any configuration information is assumed to have been
past-;::d to the Exccutc class lay the time it is being called.
Since the Execute class docs not directly communicate with
the Configuration class, any infonnation that needs to he
shamd bctwucn thc two classes must be coordinated by the.
Interface class.

‘l'l1r: Configuration cla.-s.-a maintains all the configuration
data necessary for the I01’ Module to operate. Tlris includes
responding to the Server Module to:

Prompt the user with a Configuration dialog
Save the current configuration information to persistent

storage
Restoring the last saved configuration information from

persistent storage
Since the 101" Module is entirely responsible for these

activities, any programming method that accomplishes these
tasks is legitimate.

The many features and advantages of the invention are
apparent from the detailed specification, and thus, it is

87

88

US 6,771,381 B1
85

intended hy the appended claims to cover all such features
and advantages of the invention which fall within the true
spirit and scope of the invention. Further. since numerous
modifications and variations will readily occur to those
skilled in the art. it is not desired to limit the invention to the
exact construction and operation illustrated and described,
and accordingly, all suitable modifications and equivalents
may he resorted to, falling within the scope of the invention.

For example, while the above discussion has separated the
various functions into separate layers of functionality, the
layers may be combined. physically andior logically, and
various functions may be combined together. While com-
bining various functions into same or common layers may
make implementation details more cumbersome,
nevertheless, the functions described herein may still be
accomplished to advantageously provide some or all of thebenefits of the invention described herein.

Further, as indicated herein, the present invention may be
used In autornate and.-for manually t:Jt]'K:(litt: lltt: migration of
a program specific Application Prngrantmcr lnturfact: from
an original state into a generic interface by building an
object for each engine. The object advantageously provides
substantially uniform access to the engine and engine set-
tings associated with the engine. The present invention amy
be applied across a broad range of programming languages
that utilize similar concepts as described herein.I claim:

1. A computer data management system including at least
one of an electronic image, graphics and document man-
agement system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including one or
more of external devices and applicatinrts respunsively
connectahle at least one of locally and via the lntemet,
comprising

at least one memory storing a plurality of interface
protocols for interfacing and cornnwnicaling;

at least one processor responsively eonnectahle to said at
least one memory, and implementing the plurality of
interface prttlotiuls as a .~aoflwarI: application for inter-
facing and communicating with the plurality ofexternal
destinations including the one or more of the external
devices and applications, wherein said software appli-
cation eomprises at least one of:
at least one input module managing data comprising at

least one of paper and electronic paper input to the
computer data management system, and managing at
least one imaging device to input the data through at
least one of a scanner and a digital copier, and
managing the electronic paper from at least one
third—party software applications; and

at least one module eommunieable with said at least
one input, output, client, and process modules and
external applications. and capahle of dynamically
combining the external applications with at least one
of digital capturing devices and digital imagingdevices.

2. A computer data management system according to
claim 1, wherein the one or more of the cxlemal devices and
applications include a printer. a facsimile. and a scanner.

3. A computer data management system according to
claim 1. wherein the computer data management system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via thelnternet.

4. A computer data management system according to
claim 1, wherein the computer data management system

86
includes the capability to integrate the electronic images into
a destination application without the need lo modify the
destination application.

5. A computer data management system according to
5 claim 1, wherein the computer data management system

includes an interface that enables copying images between
physical devices, applications, and the lnlemel using a
single "GO" operation.

6. A computer data management system according to
claim 1, wherein the computer data management system
includes the capability of adding at least one of electronic
document and paper processing with a single programmingslt: .

‘l. A computer data management system according to
claim I. wherein the software application cornprises:

at least one output module managing the data output from
the computer data management system, managing at
least one imaging device to output the data to at least
one of a standard Windows printer. an image printer,
and a digital copier. and managing the output of the
data to the third-party software application;

at least one process module applying at least one data
processing to the data comprising the at least one of the
paper and the electronic paper as it is being copied,
applying additional functionality including at least one
of workflow and processing functionality to the data
oomprlsing the at least one of paper and electronic
paper as it is being copied, and applying multiple
processes to a single virtual copy; and

at least one client module presenting the data comprising
the at least one of paper and electronic paper as it is
being copied, and information related to at least one of
the input and output functions.

3. A computer data management system according to
claim 1, wherein the one or more of the external devices and
applications integrates In: computer data management sys-
tem into an external application via one of running the
computer data management system. as an external service
and embedding the computer data management system as an
emhccltled service.

9. A computer data management system according to
claim 7. wherein the server module includes:

enable virtual copy operation means for initiating,
canceling, and resetting said computer data manage-
ment system;

mainlain list of available module means for maintaining a
registry containing a list of said input. output. and
process modules that can be used in said computer data
management system. said list being read on startup, and
maintaining another copy of said list in a modules
object accessible by said input. output, client, process
and server modules;

maintain currently active modules means tor maintaining
said input, output, and process modules currently being
used [or a current computer data management system
copy operation in a program object, and saving the
currently active modules in a process template tile; and

maintain complete document intbrmation means for
maintaining information regarding a current lilc being
copied. and saving the information in a document
template file.

ll]. A computer data management system according to
claim 7, wherein the server module includes at least one

as server module application programmer interface (API).
11. A computer data management system according to

elaim ll]. wherein the at least one server module application

88

ll)

l5

3|‘!

45

51.!

60

89

US 6,771,381 B1
87

programmer interface (AH) comprises the following (TOM-
based interface:-t

at least one moduics object maintaining a first list of
available input, output. and process modulcs;

at least one progrant object maintaining a second list of
currently selected input, output. and process modules;

at lcast one document object maintaining inftinnalinn
regarding a current document being copied:

at least one system management method object used to
initiate, cancel. and reset said computer data manage-
ment system;

at least one system management cvcnl object used to
provide feedback to thc Client Module.

12. A computer data management system including at
least urlc of an clI:ctt'ot1lt: image, graphics and doeuntent
management systern capable of transmitting at least one of
an electronic image, electronic graphics and electronic docu-
ment to a plurality of extcmal destinations including one or
more of extcmal devices and applications responsively
connectablc at least one of locally and via the internal,
wherein the system comprises:

(a) single function copy operation linking devices, appli-
cations and the internct including at least one a go
operation. a single function paper copy between v
devices and software applications, and a single function
paper copy between software applications and devices:

(b) a one step programming method to add paper support
to electronic business processes including at least one
of a one step method of supponing paper within
electronic business process application optionally
inciuding legacy systems with no or minimal repro-
gramming of the electronic business process
application, a method of recreating a module oriented
copier in software;

(c) a copier interface implemented as software application
including at least one of a virtual copier interface
method of presenting to a user an operation of at least
one of copying files and electronic images, at least one
of to and from. at least one of digital imaging devices
and software applications, in a substantially single step,
and presenting users with direct access to at least one
of tutorial and options from a main application window.

13. A computer data management system including a
server module comprising:

enable virtual copy operation means for initiating,
canceling, and resetting said computer data manage-
ment system;

maintain list of available module means for maintaining a
registry containing a list of said input, output, and
process modules that can he used in said computer data
management system. said list being read on startup, and
maintaining another copy of said list in a modules
object accmssiblc by said input. output, clicrll. procure.-.
and server modules;

maintain currently active modules means for maintaining
said input, output. and process modules currently being
used for a current computer data management system

5

ll)

l5

3ft

35

45

51.!

88
copy operation in a program object, and saving the
currently active modules in a process template file; and

maintain complete document infomtation means for
maintaining infonnation regarding a current Iilc being
copied, and saving the information in a document
template file.

14. A computer data management system including at
least one of an electronic image, graphics and document
management system capable of transmitting at least one of
an electronic image, electronic graphics and electronic docu-
ment to a plurality ofextemal destinations including one or
more of external devices and applications responsively
connoctable at least one of locally and via the lnternel.
comprising:

at least one memory storing a plurality of interface
protocols for interfacing and communicating;

at least one processor responsively oonneclable to said at
least one memory. and implementing at [cast one inter-
face protocol as at least one software application for
interfacing and communicating with the plurality of
external destinations including the one or more of the
external devices and applications, wherein said at least
one software application comprises at least one of:
at least one input module managing data comprising at

least one of paper and cleelronie paper input to the
computer data management system. and managing at
least one imaging device to input the data through at
least one of a scanner and a digital copicr. and
managing the electronic paper from at least one
third-party software applications; and

at least one module communicable with said at least
one input, output, client, and process modules and
extemal applications, and capable of dynamically
combining the external applications with at least one
of digital capturing devices and digital imagingdevices

15. A computer data management system including at
least one of an electronic image, graphics and document
management system Capahlc or transmitting at least unc of
an electronic image, electronic graphics and electronic docu-
tTlcnl to a plurality of external destinations including one or
more of extcmal devices and applications rcsponsively
conncctahlt: at least one of locally and via the lntemel.
wherein the system comprises:

(a) single function copy operation linking devices, appli-
cations and the internet including at least one of a
function paper copy between devices and software
applications. and a function paper copy between soft-
ware applications and devices; and

(b) a copier interface implemented as software application
including at lcasl one of a copier inlcrfacc method of
presenting to a user an operation of at least one of
copying files and electronic imagine. at least one of to
and from. at least one of digital imaging devices and
software applications, and presenting users with direct
access to at least one of tutorial and options from an
application window.

i ll! ll! It i

89

