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ABSTRACT

Many functions perform redundant calculations. Within a single function invocation, several sub-functions may be in-
voked with exactly the same arguments, or, over the course of time in a system run, a function may be invoked by dif-
ferent users or routines with the same or similar inputs. This observation leads to the obvious conclusion that in some
cases it is beneficial to store the previously calculated values and only perform a calculation in situations that have
not been seen previously. This technique is called memoization, and the “manual” version of this generally involves
building lookup tables. This however, is often a tedious and time-consuming process, and requires significant modifi-
cation and debugging of existing code. This is frequently inappropriate in the dynamic, rapid-prototyping context of
AI software development. An “automatic” memoization facility is one in which existing functions can be program-
matically changed to cache previously-seen results in a hash table. These results will then be returned when the func-
tions are invoked with arguments they have seen previously. This can be done without changing the code, thus
providing a simple, modular, and transparent way to dramatically accelerate certain types of functions.

This paper presents an overview of automatic memoization and discusses the types of applications that benefit from it,
illustrated with experiences on the ARPA Submarine Signature Management System, a large LISP-based decision
aiding system.

ming [6], which was in turn inspired by [1]. It takes a
function as input and returns an “equivalent” function
that performs lookup from a hash table. When called,
this new function compares the argument to ones that it
has recorded previously. If the argument has been seen
before, the corresponding value in the hash table is re-
turned. If it has not been seen previously, the original
function is called with that argument, the return value is
stored in the hash table with the argument as key, and
then that value is returned.

As a typographical convention throughout the pa-
per, LISP code will be in constant-width font. System
functions and variables will be in lower case, and user-
defined ones will have the first character of each word
capitalized.

(defun Memo (Function)
  (let ((Hash-Table
          (make-hash-table :test #'equal)))
    #'(lambda (&rest Args)
        (multiple-value-bind (Value Found?)
            (gethash Args Hash-Table)
          (if Found?
            Value
            (setf
              (gethash Args Hash-Table)
              (apply Function Args)))))
))

For those not familiar with LISP, #’(lambda
...) indicates that a lexical closure (function with as-
sociated binding environment) is being created. This

1. Overview

The following section (2) outlines the concept of
automatic memoization, and gives a simplified imple-
mentation in Common LISP. Section 3 looks at applica-
tion areas that benefit from automatic memoization,
with timing results from several sample problems. Sec-
tion 4 looks at potential pitfalls, and Section 5 gives
conclusions and areas for future work.

Code for the entire facility (in portable Common
LISP) is available for non-commercial purposes via
anonymous FTP or electronic mail. Anonymous FTP is
available from ftp.cs.umbc.edu (130.85.100.53), in
/pub/Memoization. Requests for the sources can also be
mailed to the author at hall@aplcenmp.apl.jhu.edu.

2. What is Automatic Memoization?

The term “memoization” was first coined by
Donald Michie [5] and refers to the process of tabulat-
ing results in order to prevent wasted calculations. Auto-
matic memoization refers to a method by which an
existing function can be changed into one that memoiz-
es.

For example, consider the simplified version of
Memo below, adapted from Paradigms of AI Program-
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function is returned from Memo. A hash table, created
via make-hash-table, is generated each time

Memo is called, then accessed each time the resultant
function is invoked. The first gethash form tests to
see if there is an entry in the table corresponding to the
argument list Args. That entry, if any, is stored in
Value, while Found? is assigned a boolean value in-
dicating whether the lookup was successful. The form
(apply Function Args) simply invokes the
original function on the argument list, and (setf
(gethash ...)) stores the resultant value in the
hash table, returning it as a side effect.

Memo takes a function as input and returns a
memoized version. Memoize takes a function name
as input, memoizes the associated function, then assigns
that new function to the associated function name. This
supports the memoization of recursive functions, and
existing code that referred to the function name will
now automatically get the memoized version.

(defun Memoize (Function-Name)
  (setf
    (symbol-function Function-Name)
    (Memo (symbol-function
            Function-Name))))

Memoize would be used as follows:

(defun Expensive (<Args>) <Long-Body>)
(time (Expensive <Values>)) → [30 seconds]
(Memoize ‘Expensive)
(time (Expensive <Values>)) → [≤30 seconds]
(time (Expensive <Values>)) → [0.0001 seconds]

The real version of the facility has many more util-
ities for bookkeeping, memoizing and unmemoizing
functions temporarily or permanently, evaluating the

Figure 1: Creating a Memoized Function

F1 Memo F2

F1 is input to Memo. F2 is output.

Figure 2: Using a Memoized Function
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benefits of memoization, and saving the hash table to
disk for use in a later session. But the core implementa-
tion is very similar to the simple version presented here.

3. Applications

There are four basic applications for automatic
memoization: Repetitions Within a Function Call, Rep-
etitions Over Time, Off-Line Runs, and Performance
Profiling.

3.1 Repetitions Within a Function Call
This case is when a single routine calls some sub-

routine (or itself recursively) more than is needed, re-
sulting in extra calculations. By means of illustration,
consider the following definition of Divided-Dif-
ference, which may be used to determine coef-
ficients of interpolated polynomials. The algorithm is a
standard one in numerical methods, taken directly from
Numerical Mathematics and Computing [2]. The appli-
cation is not particularly important; the point is that the
recursive calls form a graph, not a tree, and calculations
are repeated. Determining a calling order to avoid these
repeated calculations may not appear obvious, and thus
it is a ripe candidate for Memoization.

(defun Divided-Difference (Function Points)
  "Determines kth coefficient, where
  ‘Points’ contains k entries"
  (if
    (null (rest Points))
    (apply Function Points)
    (/ (- (Divided-Difference
            Function (rest Points))
          (Divided-Difference
            Function (butlast Points)))
       (- (first (last Points))
          (first Points))) ))

(defun Test-Function (N)
  (* pi (cos N)))

Figure 3 compares the performance of the
memoized and unmemoized versions of Divided-
Difference using Test-Function and the
first N natural numbers as arguments. Since one func-
tion call with N points results in 2 calls with N-1 points,
the unmemoized version has O(2N) time complexity.
After memoization, the first invocation takes O(N2)
time, since no subsequence of Points is calculated
more than once, and there are  =

 subsequences. Subsequent invoca-
tions take near-constant time.

 This type of repetition is common and is normally
addressed by either determining a better calling se-
quence or building a special purpose data structure to
store intermediate results. For instance, in Volume 2
(Seminumerical Algorithms) of The Art of Computer
Programming [4], Knuth presents a straightforward
method for building up the divided differences in the
proper order to get the same performance as the first in-
vocation of the memoized version. Similarly, Peter Nor-
vig shows that the performance of chart parsing or

1 2 3 … N+ + + +
N 1+( ) N( ) 2⁄
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Earley’s algorithm can be obtained for parsing context-
free languages by memoizing a simple recursive back-
tracking parser [7].

Given this, memoization can be viewed as a gener-
al and straightforward technique for automatic dynamic
programming. Rather than tackling the difficult task of
determining the proper order in which to build up sub-
pieces, a simple solution can be memoized to get the
same performance[3]. The question, then, becomes
which approach is better: memoizing a less efficient al-
gorithm or changing to an implementation that either
uses a different algorithm or maintains special-purpose
data structures?

Clearly, automatic memoization is not meant to be
a substitute for finding the proper algorithm for the task.
However, in cases where the major benefit of the better
algorithm is a savings in repeated calculations, memoiz-
ing the obvious algorithm has several advantages over
an explicit dynamic programming approach. First of all,
a different algorithm would not “remember” its results
after the top-level function exits, so it would have per-
formance analogous to the third column of Figure 3
rather than the fourth. This is discussed more in the fol-
lowing section (3.2). Secondly, memoization tends to
keep the code shorter and clearer, and requires little ad-
ditional debugging if the straightforward method has al-
ready been well tested. On large programs, there is
often a reluctance to change routines that have already
been tested and verified, especially if that will require
changes in multiple places in the code. Furthermore,
since it is simple to switch back and forth between the
memoized and unmemoized versions, it is easy to com-
pare the performances of the two versions. Finally, and
most importantly, there is the practical issue of pro-
grammer time and effort. If finding a better algorithm is
difficult, programmers will tend not to bother unless
there is a very large payoff. So a lot of effort gets placed
on a few routines, but others that could benefit from
memoization are overlooked altogether. This last point
should be stressed, and in fact this was a common oc-
currence on the Signature Management System (SMS).
Places where wasted calculations were suspected or
even known to occur were often disregarded, since the
effort to quantify the repeats and determine a method to

Figure 3: Average Time in Seconds to
Calculate Divided-Difference on N points

N Unmemoized Memoized
(First Run)

Memoized
(Subsequent

Runs)
15 11 0.18 0.0006
16 22 0.21 0.0006
17 43 0.22 0.0006
18 87 0.28 0.0007
19 173 0.4 0.0007

100    Centuries 25.0 0.002

avoid repetition was frequently deemed not worth the
effort, given the rapidly changing nature of AI software.
However, providing an easy method for memoization
made it simple to find the routines that really benefited,
and additive speedups from several small routines re-
sulted in greatly increased overall performance.

3.2 Repetitions Over Time
In Section 3.1, there was a central routine which in-

voked the lower-level functions repeatedly. Changes to
the algorithm at this level, or a data structure local to
that central routine could gain many of the same effi-
ciency benefits as automatic memoization, albeit with
decreased flexibility and increased effort. However in a
team programming environment different sections of
the system, written by different programmers, may ac-
cess the same function. Alternatively, in an interactive
system the user may invoke calculations at different
times that make use of some of the same pieces. In these
cases, there is no central routine which could manage
the calling sequence, and the only alternative to auto-
matic memoization is to have the routine in question
manage its own global data structure to remember pre-
vious results. Memoization provides an efficient and
convenient alternative..

For instance, Figure 4 shows a display used as an
aid to planning submarine operations in the SMS sys-
tem. It shows the predicted probability of detection of
the submarine for various choices of heading and speed,
drawn on a polar plot with the angle (theta) indicating
heading (0 corresponding to due north), and the radius
(r) corresponding to speed. Each (r,theta) pair (arc) in
the display is coded with a color indicating the cumula-
tive probability of detection for the sub if it were to op-
erate at the course and speed.

This display is used as a high-level tool in plan-
ning, and thus presents highly summarized information.
It presents a single number for probability of detection,

Figure 4: SMS Detectability Planning Screen
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a composite of all the potential detection methods (sig-
natures). The user frequently is interested in the contri-
bution of individual signature components to this
composite. Since the probability of detection of each
component is memoized before it is combined into the
composite, any component corresponding to a point on
the display can be retrieved almost instantly. Taking ad-
vantage of this, the display of Figure 5 can be set up.

Whenever the user moves the mouse over the com-
posite detectability display (Figure 4), the correspond-
ing speed and course for the point under the mouse is
calculated. Then, the individual components are calcu-
lated, with their relative values shown in the bar charts.
Due to the effects of memoization, the component val-
ues can be calculated and graphed as quickly as the user
can move the mouse.

Accomplishing this was extremely simple, with no
special purpose routines or data structures needed. The
original code looked something like the following,
where PD means “Probability of Detection”:

(defun Composite-PD (Course Speed <Args>)
(Weighted-Average
(Signature-1-PD Course Speed <Arg-Subset>)
(Signature-2-PD Course Speed <Arg-Subset>)
(Signature-3-PD Course Speed <Arg-Subset>)
(Signature-4-PD Course Speed <Arg-Subset>)
(Signature-5-PD Course Speed <Arg-Subset>)

(defun Signature-1-PD ...)
(defun Signature-2-PD ...)
(defun Signature-3-PD ...)
(defun Signature-4-PD ...)
(defun Signature-5-PD ...)

Now, to make the real-time component display, the
routines need to look up the (x,y) position of mouse,
convert to (course,speed), then call the individual com-
ponent functions directly. Since each component has
been calculated at each course and speed, all of these
calculations will result in simple table lookups after the
following simple change:

(Def-Memo-Fun Signature-1-PD ...)
(Def-Memo-Fun Signature-2-PD ...)
(Def-Memo-Fun Signature-3-PD ...)
(Def-Memo-Fun Signature-4-PD ...)
(Def-Memo-Fun Signature-5-PD ...)

Figure 5: Individual Signature Components

3.3 Off-Line Runs
In the Divided-Difference example and the discus-

sion of Section 3.1 it was seen how the use of memoiza-
tion could be viewed as an automatic dynamic
programming facility, remembering the results of sub-
problems when building up a larger solution. This can
result in the reduction of exponential time algorithms to
polynomial or linear time on the first invocation, but
without time-consuming rewrites or dynamic program-
ming algorithm design. In Section 3.2, it was seen how
memoization could save on repeated invocations of ex-
pensive calculations, giving a constant factor (but po-
tentially large) speedup. This still leaves the case where
even the very first invocation is too expensive. This is
normally addressed by building a special purpose data
file, and filling the values with an off-line execution of
the expensive routine. Then, the function in question is
modified to access that file. The automatic memoization
facility provides a method to do the same thing while
still maintaining the transparency and ease of use of
memoization, and without forcing the programmer to
know which ranges of values are stored in the data file,
and which must be freshly calculated. The idea is that
the function is memoized and then run off-line in the
normal manner on the cases of interest. The contents of
the hash table are then saved to disk in a file with a
name associated with the LISP function name. Then,
this file is automatically used to seed the hash table for
the function when it is reloaded in a later session. For
instance, to use a simplified example from the SMS sys-
tem, suppose that Magnetic-Parameter was a
very time consuming calculation that only depended on
the latitude and longitude:

(defun Magnetic-Parameter (Lat Long) <Body>)

Now, you could run the following at night or over
the weekend:

(defun Fill-Magnetic-Table
(Lat-Min Lat-Max Lat-Step
 Long-Min Long-Max Long-Step)

  (Memoize ’Magnetic-Parameter)
  (loop for Lat from Lat-Min to Lat-Max
                by Lat-Step do
    (loop for Long from Long-Min to Long-Max
                   by Long-Step do
      (Magnetic-Parameter Lat Long)))
  (Save-Memo-Table ’Magnetic-Parameter))

Once this completes, then the previous definition of
Magnetic-Parameter would be changed as be-
low:

(Def-Memo-Fun Magnetic-Parameter (Lat Long)
  (:Hash-Table-Source :Disk)
  <Body>)

This is where the ease of use of memoization par-
ticularly pays off. If this were a permanent situation, it
might be feasible to build conventional lookup tables.
But for temporary conditions (e.g. running multiple
simulations in the same environment), the effort to
build the tables would likely not be worth the effort.
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3.4 Performance Profiling
Rather than using memoization for its own sake, it

can also be used as a tool in conventional optimization.
Most LISP implementations provide a profiling facility
whereby the user can see the time that a top-level func-
tion spends in various lower-level routines. This is im-
portant since knowing where a routine spends its time
tells you where to spend your optimization efforts.
However, these profilers generally take quite a bit of
overhead. This is certainly worth the effort for impor-
tant cases, and is an extremely valuable tool. In smaller
cases, however, memoization provides a quick but
rough method for determining where to spend the effort
of optimization. Simplicity is the key: tools that take a
long time to be used will be used only occasionally;
tools that are simple for programmers to use will be
used more often.

Rather than running the full metering system, users
would interactively memoize certain functions using
the Memoized-Time macro. This temporarily
memoizes certain functions, and then executes a body
of code without memoization, with memoization and an
empty cache, and with memoization and a full cache. If
the timing for the second memoized case only improved
by, for instance 5%, then, for that test case, no amount
of optimization in the routines in question would pro-
vide more than a 5% speedup at the higher level.

For example, consider the following case:

(defun F1 (A B C D)
(F2 (F3 A B)

(F4 B C D)
(F5 A)))

(Memoized-Time (F2 F3) (F1 <Values>))
First Time: 30.0 seconds
Second Time: 29.5 seconds
Third Time: 29.3 seconds

This shows that neither F2 nor F3 contribute signif-
icantly to the overall time of F1. Again, it is the interac-
tive nature and transparency of the facility that makes it
useful here; if memoization required changes to the
source code it would never be used for this application.

3.5 Two Case Studies
3.5.1 Magnetics

Figure 6 gives timing statistics for a magnetics
module used in the Signature Management System,
timed after various uses of memoization were put into
effect. Ignoring the benefits when the user asks for the
exact same displays at different times (which is in fact
quite common), the following is a summary of the time
benefits of memoization on the first time invocation of
the top-level display, as shown in Figure 4. Times are in
seconds, and are conservative approximations. Similar
results were obtained with other modules.

3.5.2 Detectability Planning Display
Given the diverse uses of memoization by various

programmers on the SMS program, an attempt was

made to estimate the overall contribution of memoiza-
tion to the system. To do this, the default display (as
shown in Figure 4) was run both in the default mode
and then with all memoization turned off:

(time (Make-PD-Planning Display))
Elapsed Time: 4.06 seconds
Ephemeral Bytes Consed: 615,784

(time (Make-PD-Planning Display))
Elapsed Time: 2562.74 seconds (42 min 42 sec)
Ephemeral Bytes Consed: 2,969,392,724

This showed a 631x improvement in speed, and a
4,822x improvement in the amount of temporary mem-
ory (garbage) allocated. Now, benchmarks are notori-
ously misleading, and in many places the code would
have been written dramatically differently if memoiza-
tion had not been available. Nevertheless, the results are
illuminating.

4.  Pitfalls

One of the chief benefits of memoization is its
transparency. Since requirements and code tends to
change rapidly in AI programs, the user needs to be able
to easily switch back and forth between memoized and
unmemoized versions, and without making changes in
the routines that make use of the function that is to be
memoized. However, an overly transparent view can
also lead to difficulty, as described in the following sec-
tions.

4.1 Non-Functions
Memoization only works for true functions, not

procedures. That is, if a function’s result is not com-
pletely and deterministically specified by its input pa-
rameters, using memoization will give incorrect results,
since it uses the parameter list to retrieve previous val-
ues.

Before memoizing a given routine, the programmer
needs to verify that there is no internal dependency on
side effects. This is not always simple; despite attempts
to encourage a functional programming style, program-
mers will occasionally discover that some routine their
function depended upon had some deeply buried depen-

Figure 6: TIming of Magnetics Module

Use of Memoization Time
(Seconds)

Relative
Speedup

(Cumulative)

Original 48 1.0

Conventional
Optimization 36 1.33

Repetitions
Over Time 24 2.0

Dynamic Programming 2 24.0

Saved Lookup Tables 0.001 48,000.
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