WOSA

w Windows
-~ Open Services

WOSA

Windows
Open Services
Architecture

Jerry Cashin
i

Computer Technology Research Corp.
6 North Atlantic Whart, Charleston, South Carolina 29401-2150 U.S.A.
Telephone: (803} 853-6460 - Fax: (803) 853-7210 - Telex: 147195

Page 2 of 165

WOSA: Windows Open Services Architecture

Copyright © Computer Technology Research Corp.

First Edition — 1994

ISBN 1-56607-018-X

All rights reserved. Printed in the United States of America. No part of this work may be reproduced or
used in any form whatsoever — graphic, electronic, or mechanical, including. photocopying, recording,
taping or information storage and retrieval systems — without written permission of the publisher.
Published by Computer Technology Research Corp., Charleston, South Carolina U.S.A.

While every precaution has been taken in the preparation of this report, the publisher assumes no
responsibility or liability for errors or omissions, or for any damages resulting from the use of the
information contained herein.

The product names mentioned herein are trademarks, registered trademarks, or service marks of their

respective companies. They are used in this report in editorial fashion only; their mention does not
imply endorsement or any affiliation between the companies and Computer Technology Research Cormp.

Editor — Brian J. Lindgren

Assistant Editors — Laura H. Howe, Nancy Wagner
Editor Asslistant -~ Roberta Duck

Graphic Artist — Nancy Wagner

Library of Congress Cataloging-in-Publication Data

Cashin, Jerry.
WOSA : Windows Open Services Architecture / Jerry Cashin -- 1st ed.
p. om.
ISBN 1-56607-018-X : $180.00
1. Windows (Computer programs) 2. Computer architecture.
i Tilas,
QA76.76.W56C377 1993
005 .4 3--de20 93-34096
CIP

Page 3 of 165

WOSA

Windows Open
Services Architecture

TABLE OF CONTENTS

Itroduction . . e e e

1.

Executive Summary e
WOSA Background and Overview e
Common Interface e
WOSA Architecture e S
WOSA Benefits e
WOSA as a Strategic Resource oL e
Microsoft Windows
Open Database Connectivity
Messaging AP o o
License Service AP (LSAPI) . ..
Windows Sockets APl e
Windows SNA APl L e
Remote Procedure Call AP .. .
WOSA Extensions For Financial Services
Future DIrections © e e

The Windows Environment
Performance and Reliability
Object Linking and Embeddingo o o
Windows forPens e
Windows Networking
Microsoft's Windows for Workgroups Strategy
Windows for Workgroups Bundled Applications
Networking Compatibility
Windows NT and Networking
Windows NT as an Operating System e -
Windows and WOSA
Future Directions

WOSA Architecture
Current Capabilities
Distributed Systems L o
Multiple Service APls e
Universal Client e

i

Page 4 of 165

S b

J
B B O

£ n
n

Open Database Connectivity e 57

History . .., 7
ODBC Basics 59
SQL Standard e 68
Application Development 73
ConnectingtoaDataSource 73
ODBC Software Installation 75
ODBC Alternatives 76
Messaging APl e 79
History ..o 79
Messaging Subsystem 84
MAPI Architecture 86
MAPI Solutions 89
Alternative Standards 90
Future Directions e g0
License Service APl 93
LSAPI Goals 95
LSAPI Function Calls 97
LSAPI Environments g8
LSAPI Benefits P 100
Operational Overview 102
LSAPI Vendor Support 104
Conclusion 105
Windows Sockets APl 107
Sockets Basics 108
Berkeley Deviations 113
Windows Extensions e 114
Implementation 114
Windows SNA AP e 117
SNAAPIOverview 14y
SNA Server 118
Future Trends 121
Windows Extensions for Financial Services 123
XFES Overview 123
Architectural Issues 127
APLFunctions e 128
Administration Functions and Specific Commands 130
Implementation 130
H

Page 5 of 165

Windows Remote Procedure Call AP 131

RPC OVBIVIEW . . ot o e e e e e e e e e e e 131
Client/Server Model e 132
RPC Development Taskso 136
Interface Definition Language 137
Building RPC Applications 139
Windows Environment Trade-Offs 141
BackgroUund . . oo e 141
Windows 3.x versus OS/2 2.X . . e 143
Additional LImitations o e e 144
FUIUIE . . e e e e e e e e e e e 145
APPENDICES
A. ODBC Function SUMIMABIYo it e et e oo 149
B. MAPI-related Terms, Associated Concepts, and Alternative Models 153
C. Windows for Workgroups oot i 157
D. NT versus the World 161
E. Banking System Vendor Council Contacts 163
iH

Page 6 of 165

LIST OF FIGURES

1.1 WOSA’s Operational Plan
1.2 Windows Open Services Architecture
1.3 Current and Planned Emp ementations
1.4 Order Entry Package in Two Different Customer Settings
1.5 Windows Scalable Architecture
1.6 ODBC Architecture
1.7 License Service API Implementation Within WOSA
1.8 WOSA Extensions for Financial Services
2.1 The Windows File Manager Screen
2.2 The Layout of Windows for Workgroups
23 WOSASingle Set APIs
3.1 Major Elements of WOSA e
32 WOSAProCess
3.3 Distributed Computing Environment Architecture
41 TheODBC Interface
42 ODBC Architecture
4.3 Single-Tier Driver
4.4 Multiple-Tier Driver
4.5 SQL Development Time Line
4.6 Basic Sequence of ODBC Function Calls e
4.7 IDAPl Architecture
5.1 MAPIFacilitator
52 MAPIVendors
5.3 MAPI Architecture
5.4 Integrationof Services
6.1 Software Licensing Model
6.2 StaticLinking
6.3 How an Application Requests a License from a License Server .

7.1 Socket System Call Interface
8.1 SNA Server for Windows NT
8.2 SNA Server Functions
10.1 Relationship of RPC to Applications and Their Networks
10.2 Transport-independent RPC
10.3 RPC Operational Sequence

iv

Page 7 of 165

LIST OF TABLES

Evolution of Networking with Windows and Microsoft LAN Manager 18
Vendors Involved in Developing Windows SNAAPI 27
Examples of Windows 3.1 Speed Increases (in Seconds) 35
Products of OSF's DCE 54
Partial list of ODBC Drivers Currently under Third-Party Development 63
ODBC APl Conformance Levels 66
SQL Conformance Levels 67
Early Supporters of the ODBC Specification 68
Representative SQL Product Offerings 70
A Sampling of ISVs Supporting MAPL ol 83
MAPI Function Calls 87
Sampling of Operating Systems with LSAPI-related Characteristics 99
Vendors Who Support the Job of Defining LSAPI 105
Principal Socket System Calls oo 109
Windows Sockets Extensions o 115
Supported SNA Communications Adapters 121
Classes of Financial Devices 126
Basic FUNCHIONS o e e 129
Sample of MIDL Compiler Options 138
Windows 3.x and OS8/2 2.x Technology Features 144
\

Page 8 of 165

Introduction

M

- Windows Open Services Architecture (WOSA) is a natural evolution in
the quest to help users integrate information from a wide variety of
sources and platforms. PC users are no longer content solely with
standalone capabilities. They must also have access to all major
information resources in an enterprisewide computing environment.
With increasing specialization, however, this task has become more
difficult. WOSA provides one approach to the problem of universal
access. There are alternative solutions, such as those from the Open
Software Foundation (OSF), Unix International (UI), Apple Computer,
and others.

The Distributed Computing Environment (DCE) from OSF, for example,
provides a middleware solution. Atlas from UI, and Open Network
Environment from Apple represent different techniques for integrating
enterprise services. DCE’s interface conventions are not directly tied to
the operating system. Rather, there is another layer of control that
functions, for the most part, independent of the resident operating
system. /

WOSA, of course, works closely with Windows. This is both a plus and
a minus in terms of producing effective results. On the one hand,
efficiency is enhanced by close linkage with the operating system. On
the other hand, questions of application portability outside the Windows
environment are a legitimate concern.

The great attraction of WOSA to Windows software developers is that
standardization of the interface to multiple software services enables
their product to reach a wider audience. If, for example, a front-end
database access product follows WOSA interface conventions, it will be

© Computer Technology Research Corp. 1

Page 9 of 165

Introduction

able to interact with various database offerings, as long as the latter
also follow WOSA dictates.

WOSA employs a Windows Dynamic Link Library (DLL) that permits
software to be linked at runtime. This allows applications to
dynamically connect to services. Applications call protocols known as
Application Programming Interfaces (APIs) to access services that have
been standardized in the Windows environment. The specific nature,
configuration, ete. of the called service is of no concern to the calling
API, at least from the viewpoint of access procedures.

In Microsoft’s world, WOSA represents an important milestone. Even in
competing constituencies, some aspects of WOSA may gain de facto
approval. Two early candidates for the latter are Microsoft’s messaging
and database interfaces. This whole arena is a fast-changing landscape,
however, and ultimate acceptance of WOSA APIs outside the Microsoft
firmament is uncertain. There is no doubt that acceptance within the
Windows community will be almost total.

The focus of this report is to identify and analyze the major components
of WOSA. It also reviews ancillary issues that impact developments in
this area. The report is divided into 11 chapters:

~ Executive Summary

~ Windows Operating System

— WOSA Architecture

~ Open Database Connectivity

— Messaging API

License Service API

~ Windows Sockets API

~ Windows SNA API

— Windows Extensions for Financial Services
~ Windows Remote Procedure Call API
~ Windows Environment Trade-Offs

[
MCJ@W}%MEWW%WMM
|

[

The Executive Summary provides an overall assessment of the major
components and issues associated with WOSA technology. The various

z © Computer Technology Hesearch Corp,

Page 10 of 165

Introduction

hardware and software options are reviewed, along with the associated
support tools.

Scratch the WOSA surface and there will be a Windows platform in the
equation. Whether 3.x or NT, Windows is the “bedrock” of WOSA
technology. Chapter 2 reviews the Windows operating system and its
relationship to the WOSA phenomenon.

Windows’ widespread use guarantees that any architecture based on its
tenets will occupy an important place in mainstream computing. WOSA
has received much attention due to its windows association. Chapter 3
reports on the architecture of WOSA, and compares it to the OSF’s DCE.

Any solution devised to support enterprise computing must deal with
the multitude of databases and formats in the marketplace. Chapter 4
looks at Open Database Connectivity (ODBC), which 1s designed to
facilitate access to various database products from the same application.

Any major architectural innovation must have a messaging component
as part of its technology mix. WOSA is no different in this regard,
offering Messaging API (MAPI) for support of the electronic mail (E-
mail) function. Chapter 5 evaluates MAPI and some competing
messaging systems.

Chapter 6 analyzes the License Service API (LSAPI) feature in WOSA.
Qoftware licensing has become a burdensome management problem to
many processing sites. LSAPI alleviates some of this burden by
providing a standard interface to diverse licensing utilities.

Windows Sockets API offers a gateway to Unix technology from
Windows platforms. It is an important marriage of client to server. The
basics of Sockets, along with extensions appended for the Windows
environment, are explained in Chapter 7.

Another important Windows linkage is to IBM’s ubiquitous Systems
Network Architecture (SNA). Microsoft’'s SNA API operates from an

© Computer Technology Research Corp. 3

Page 11 of 165

Introduction

SNA Server which provides a standard interface to this vast networking
resource. Chapter 8 details the nature of this interface.

The world of banking and related financial services presents unique
problems related to special hardware and software requirements.
Chapter 9 explains Windows Extensions for Financial Services,
including various implementation issues.

Building distributed applications often involves the use of Remote
Procedure Calls. Chapter 10 reviews the specifics of this important
networking capability.

With any relatively new architecture such as WOSA, there will be trade-
offs, product comparisons, and apparent limitations. Chapter 11 looks
at many of these elements in the WOSA environment.

4 @ Computer Technology Research Corp.

Page 12 of 165

Chapter 1

Executive Summary

w

WOSA Background and Overview

The search for Windows Open Services Architecture, or something with
the same general capabilities, began when the first personal computer
was connected to a mainframe. Since then, information systems as)
managers have been working to improve the synergy among diverse
computing resources and associated data storage modules.

Most organizations are striving to achieve a high level of collaboration
from their computing and information resources. As technology has
advanced, however, and specialization has increased, the task has
become morevdifﬁcult.

Many sites have installed PC local area networks (LANs) in order to
attain greater workgroup cooperation. A preponderance of these
configurations provides file and print services. This is a step along the
path to sophisticated groupware participation and interaction, but offers
nothing like the full range of sharing and interoperability sought by IS
managers.

WOSA’s ultimate goal is to allow Windows-based applications to enjoy
seamless access to all available information without having to know
anything about the underlying infrastructure, i.e., the type of network,
computer, or back-end services. Applications using the WOSA interface
will thus be able to access information resources across multiple
computing environments. Total achievement of this goal remains a few
years away, but development in certain areas is already underway.
WOSA will undergo constant change as it adapts to new technology and
user requirements.

© Computer Technology Research Corp. 5
Page 13 of 165

1. Executive Summary

Microsoft announced the WOSA initiative in early 1992. Existing
products focusing on heterogeneous connectivity, distributed computing,
and groupware support were assembled into the initial package. Early
entries to the WOSA inventory included a joint Microsoft/Digital
Communications Associates Communications Server, a Messaging
Application Programming Interface (MAPI), and a module called Open
Database Connectivity (ODBC). Additional services currently being
developed are centered on security and directory services.

WOSA’s operational plan (see Figure 1.1) includes an abstraction layer
that provides interaction with heterogeneous computing devices via a set
of APIs. Windows-based applications, using these APIs, can operate from
a variety of end-user devices. New end-user devices can be added as
they enter the marketplace. Meanwhile, applications remain unchanged
as long as they employ WOSA APIs.

At the service-provider end, additional interfaces link to diverse
functional packages. These include numerous database packages, mail
utilities, etc. As with the aforementioned end-user APIs, service-provider
interfaces (SPIs) can be expanded to encompass new products.
Applications will remain unchanged as long as functional packages
support the interface conventions defined by its SPI.

Common Interface

The Windows operating environment provides users with a uniform
application interface. Once a methodology is learned, it generally applies
to all applications. WOSA, in like manner, presents to distributed
application programmers a standard interface for interacting with
functional packages such as database managers and messaging systems.

Instead of having to learn a different set of APIs for each
implementation of a service, programmers creating WOSA applications
need only learn a single set of APIs for all implementations of a
particular service. In addition, applications remain stable no matter
what changes are made to functional services as long as these services
communicate through the WOSA interface.

8 © Computer Technology Research Corp.

Page 14 of 165

1. Executive Summary

Figure 1.1 WOSA’s Operational Plan

Windows-based
applications

Windows APIs

obBC MAPI

Windows
service-provider interfaces

L

PROFS
— All-In-One
S n
Oracle Server =
Microsoft Mail
@ Computer Technology Research Corp. 7

Page 15 of 165

1. Executive Summary

Microsoft’s goal with WOSA is to control the desktop via Windows.
WOSA helps make the Windows operating system a strategic platform
for users at various levels of the enterprise. Ultimately, with the release
of additional products, Microsoft would like to climb higher into the
corporate processing hierarchy. Products such as Windows NT are seen
as elements that will facilitate that climb.

WOSA Architecture

WOSA provides a single, consistent, system level interface between
Windows-based PCs and various enterprise computing resources (see
Figure 1.2). By exploiting the WOSA interface, a Windows-driven
desktop application need not know anything about computing resources
on the network in order to gain access to enterprise functions such as
mail, databases, licensing, or remote procedure calls (RPCs).

Previously, if an existing functional service such as a database
management system (DBMS) was replaced, front-end applications would
then have to be altered to accommodate the new service. This is because
their API calls to servers were linked in at compile time. Even if the
application developer had the necessary resources to write to the new
server’s API, the existing applications would have to be updated to
recognize the change.

WOSA solves this problem by communicating to servers through APIs.
They can be linked in at runtime via Windows Dynamic Link Libraries
(DLLs). For each functional service, a Driver Manager (MAPLDLL, for
example) makes the connection between the application and appropriate
server driver, i.e., SPI.

WOSA Benetfits

The primary benefit of WOSA when fully developed will be to provide
full access to enterprisewide computing environments for Windows
users. There are several additional WOSA benefits that help users
maximize returns from their corporate systems. Among them are:

8 © Computer Technology Research Corp.

Page 16 of 165

b

1. Executive Summary

Figure 1.2 Windows Open Services Architecture

‘ Application ‘ Application Application

N A A

APls: File, Print, Messaging, Address/Name, Security, etc.

1

Operating System
(Windows/MS-DOS and Windows NT)

Service Provide Interfaces (SPIs)

v

File Mail A‘??éis
i ervi)
Services Services Sorvicas

® Computer Technology Research Corp.

Page 17 of 165

1. Executive Summary

* Easy Upgrade Paths. Because WOSA enables a single
application to work with multiple back-end services, IS
managers can upgrade or change those services without
affecting the end-users or their applications.

* Protection of Software Investment. WOSA protects an
organization’s software investment by enabling existing
applications, without modification, to access new
services on a variety of platforms. End-users can work
with new resources in the same ways, and using the
same applications, as they did with existing implemen-
tations (see Figure 1.3).

Figure 1.3 Current and Planned Implementations

VSAM Q "In Production

Planned for
Future Release

Windows-based
Application

* More Cost-Effective Software Solutions. As WOSA-based
applications become more readily available, IS
managers will be able to increasingly use off-the-shelf
products to create integrated software solutions that are
at least as powerful as more expensive custom
alternatives. Moreover, this modular approach makes it
easy to tailor software solutions to specific business
needs.

* Flexible Integration of Multiple-Vendor Components.
WOSA’s architecture supports multivendor environ-

10 © Computer Technology Research Corp.

Page 18 of 165

T R NG KT

1. Executive Summary

ments and, in any given environment, multiple imple-
mentations of a single type of service. As a result,
WOSA makes it easier to switch from one implementa-
tion to another. This ability is important for organiza-
tions whose long-range plans may require different
products than they use today, and it is absolutely
critical for companies that are unsure of their long-term
requirements.

e Short Development Time for Solutions. Creating soft-
ware solutions for business problems can be a long and
expensive process. Solutions based on distributed
computing resources can be even more expensive and
time-consuming because the complexity of the appli-
cation is compounded by the need for it to provide
access to back-end systems. Since the issues associated
with accessing such distributed resources are common
to a variety of applications, developers of any given
application should not be burdened with the task of
resolving problems that are more efficiently and
appropriately left to the system software. WOSA
relieves developers of this burden by providing a single,
open-ended interface for applications at both ends of the
network connection.

By providing access to various implementations of back-
end services, WOSA eliminates the need for application
developers to develop solutions for each new service
implementation. Programmers can provide access to
new implementations by plugging existing components
together.

o [Extensibility to Include Future Services and
Implementations. WOSA 1s designed to be extensible,
meaning that new types of services can be added to
WOSA as needed. WOSA’s DLL-based implementation
can allow new APIs to be added without disrupting

® Computer Technology Research Corp. 11

Page 19 of 165

1. Executive Summary

WOSA’s influence on system managers, software developers, and others
in the Windows environment can be profound. In addition to its special
impact on each group, WOSA also serves as a unifying element among
their diverse interests. Some of the technology groups interacting with

existing ones. Additional implementations of existing
services can be added by building a service provider
interface library for the new service provider.
Applications can take advantage of new service
implementations without being modified and can take
advantage of entirely new services only when they need
to do so.

WOSA as a Strategic Resource

WOSA include:

* WOSA and IS Managers. The typical mission of an IS

organization is to provide information services to a
spectrum of users whose needs are often quite diverse.
In the absence of a truly flexible platform, IS
departments must often decide whether to build custom
solutions for each type of user or force all users to
compromise individual needs by adopting a single
common “solution” that fails to serve anybody well.

WOSA relieves IS managers of the need to make such
compromises. Each set of users can use the software
that best suits its needs, and IS managers can feel
confident that whatever applications are chosen will
work together seamlessly. WOSA’s open-ended
architecture means that IS managers can deploy
solutions now without fear of interfering with strategies
planned for the future. They know that the mix of front-
end applications and back-end services they are
currently using will work in the future.

WOSA and Systems Integrators. WOSA simplifies the

obstacles that are often associated with integrating

12

© Computer Technology Research Corp,

Page 20 of 165

1. Executive Summary

custom software packages into a heterogeneous
environment. WOSA’s flexibility enables systems
integrators to combine custom front-end applications
with commercially available software packages and
back-end services to build effective solutions.

WOSA reduces the amount of custom software that
must be developed to solve a customer’s application
needs because it allows various pieces of software to be
plugged together to form a comprehensive package.
WOSA-based technologies enable systems integrators to
utilize a single solution in a variety of customer
computing environments. For example, an order entry
system that works with one customer’s Unix-based
Oracle server can be used to support another customer’s
MVS-based database system (see Figure 1.4).

e WOSA and Corporate Developers. WOSA helps
corporate developers define a stable set of interfaces on
which applications can be built, thereby eliminating the
need to modify applications in order to access new
implementations of distributed services. WOSA also
reduces the burden of software support that would be
required if a special version of a given front-end
application were required for each implementation of a
back-end service. WOSA saves development time
because programmers can focus on a single set of APIs
for each type of service rather than a new set of APIs
for each implementation of a service.

* WOSA and Independent Software Vendors. Independent
Software Developers (ISVs) can gain similar benefits
from WOSA as do corporate developers. In addition,
ISVs can use WOSA as a way to market a single
implementation of their application to multiple service
providers. An example is an ISV with a front-end
application that accesses back-end database services. In

© Computer Technology Research Corp. 13

Page 21 of 165

1. Executive Summary

Figure 1.4 Order Entry Package in Two Different Customer Settings

Customer 1

WINDOWS }
Application K\

. Order Entry System | \

Customer 2 ~ DR2
on MVS

the absence of a platform like WOSA, the ISV would
have to provide explicit support for each type of back-
end database engine that the customer base required.
Because adding support for new types of database
servers is costly, the ISV’s potential market might be
limited to those organizations that use the database
engines already supported by the ISV’s product. With
WOSA, the ISV’s market opportunities can be expanded
to include customers who use any database service that
supports the WOSA interface.

* WOSA and Back-End Service Providers. With over 100
million PCs worldwide, vendors of back-end computing
services are faced with the challenge of providing PC
connectivity to their products. These vendors must not
only provide the system software necessary to access
their services from desktop systems, but must motivate

14 © Computer Technology Research Corp.

Page 22 of 165

1. Executive Summary

customers and vendors to either build PC-based front
ends, or develop and market such packages themselves.

With a standard API to access a variety of back-end
services, WOSA reduces the burden on the back-end
service vendor in both of these areas. Because new
implementations of back-end services can be accessed
from a common API, the vendor’s system software
requirement is limited to providing the service provider
interface library for their service. Applications that use
WOSA to integrate services from various back-ends can
be used without modification with new implementations
of the service.

Microsoft Windows

Windows is the center of Microsoft’s system software strategy. Windows
implementations fall into two broad categories. One category has
Windows running with current and future versions of the MS-DOS
operating system. This implementation has been steadily upgraded to
exploit the Intel 80x86 processor series, and includes features needed for
a majority of desktop users. It has retained its role of being a direct
complement to MS-DOS through successive releases.

Another Windows category is manifested in the Windows NT operating
system. The latter offers advanced operating system features needed for
more demanding desktop applications, including high-performance
server routines used in client/server configurations and downsized
applications offloaded from host-based systems.

The first Windows category, i.e. DOS-based, is targeted for the Intel
platform. Its ideal environment is the 80386 processor and up, although
it will operate with reduced performance on the 80286.

Windows NT is geared for more demanding tasks. It can handle large,
resource-intensive jobs in conjunction with powerful hardware support.
A full 32-bit system, NT provides features such as security,
multiprocessor operation, and is portable to Reduced Instruction Set

@ Computer Technology Research Corp. 15

Page 23 of 165

1. Executive Summary

Computer (RISC) and other platforms. The operating system is also
POSIX-compliant. POSIX (Portable Operating System Interface) is an
operating system interface standard that enhances application

portability.

The broad scalability of Windows is depicted in Figure 1.5. Applications
based on Windows can operate on a wide range of computing systems.

The most popular release of Windows so far has been 3.x. With its
advanced Setup program, built-in tutorials, and uniform drop-down
menus, this Windows version achieved widespread acceptance.
Improvements in memory use, disk access, and printing speed gave 3.0x
a large advantage over earlier releases.

New capabilities added to version 3.1 include TrueType scalable fonts
which generate high-quality output on screen and printer. An object
linking and embedding (OLE) protocol supports integration of
information from separate applications. Full multimedia capabilities
have also been built into 3.1. This makes it possible to create and
manipulate digital audio through the Windows interface, and control
multimedia devices such as digital video cards and videodisc players.
The OLE protocol allows users to embed a multimedia entity, such as
an audio or video clip, into an existing Windows application, just as they
would a chart or text file.

Microsoft Windows 3.1 is also the initial platform for extensions that
allow users to exploit computing technology such as pen-based
computers. To leverage the potential of pen computing, Microsoft has
developed Windows for Pen Computing, which supports the use of a
stylus input device in place of a mouse and keyboard. Other features
include high-quality handwriting and shape recognition and a pen
message interpreter that enables existing applications for Windows (and
MS-DOS) to use the pen. More than 20 hardware vendors now ship
Microsoft Windows for Pen Computing with their hardware.

The Windows operating system is optimized for network performance,
with features such as automatic network reconnection and interfaces

16 ® Computer Technology Research Corp,

Page 24 of 165

1. Executive Summary

Figure 1.5 Windows Scalable Architecture

The scalable architecture of the Microsoft
Windows operating systems snable applications
for Windows 1o run on machines ranging from
noteboaok and pen computers to RISC-based
and multiprocessor systems.

Server &
Multiprocessor

Windows (MS-DOS)

0
’munm - ’

Multimedia

Windows NT

Pen

Notebook

tuned for interoperation with many of the leading network operating
systems. Microsoft offers full Windows-based networking with the LAN
Manager family of network computing products. Microsoft LAN Manager
is supported on 0S/2, Unix, VMS, and Windows NT platforms.

Windows NT represents an advance in operating system functionality
for networked PCs and network servers. It possesses built-in peer-to-
peer networking. Windows NT also supports networking control
capabilities, including network monitoring tools, centralized workstation
administration, and performance management tools. The underlying
Windows NT operating system is specifically designed for high-speed
network operations, with a new file system, high-speed drivers, and
enhancements in other performance-sensitive areas. Windows NT also
will support Microsoft’s current server applications, including Microsoft
SQL Server and DCA/Microsoft Communications Server, and server

@ Computer Technology Research Corp. 17

Page 25 of 165

1. Executive Summary

applications from other vendors. Microsoft has articulated plans to
continue to deliver and support LAN Manager, SQL Server and Comm
Server on the OS/2 platform. Microsoft will also provide a migration
path for those customers interested in moving their servers from 0S/2
to Windows NT.

Table 1.1 portrays the evolution of Windows networking from both client
and server perspectives.

Table 1.1 Evolution of Networking with Windows and Microsoft LAN Manager

What the + Windows 3.1 (MS-DOS) | « Windows 3.1 (MS-DOS) | + Next release of Windows
CLIENT « Windows NT (MS-DOS)
runs « Next release of Windows NT
What the * LAN Manager for 0S/2 | - LAN Manager for Windows NT
SERVER * LAN Manager for UNIX | « LAN Manager for 0S/2
runs « LAN Manager for VMS « LAN Manager for UNIX "

(Pathworks) « LAN Manager for VMS (Pathworks)

Open Database Connectivity

ODBC is the database component of WOSA. It is a strategic interface for
accessing data in a heterogeneous environment of relational and non-
relational database management systems (see Figure 1.6). Based on a
call-level interface (CLI) developed by an industry consortium of more
than 40 vendors (the SQL Access Group), ODBC defines a common API
for accessing heterogeneous database information in a uniform fashion.
With ODBC, application developers can allow an application to
concurrently access, view, and modify data from multiple, diverse
databases. Apple Computer has endorsed ODBC as a key enabling
technology for retrieving data from System 7 applications, and will
mtegrate ODBC support into System 7. With growing industry support,
ODBC is emerging as an important industry standard for data access for
both Windows and Macintosh-based applications.

ODBC provides a common data access API. Each application uses the
same function calls to talk to many types of data sources through

18 © Computer Technology Research Corp.

Page 26 of 165

1. Executive Summary

Figure 1.6 ODBC Architecture

]

|

Gl ODBC-enabled Applications

obBC

SQL Server)

Rdb)

Other

Providers

DBMS-specific drivers. A driver manager sits between the applications
and the drivers, just like a print manager sits between applications and
print drivers. In the Windows operating system, the driver manager and
the drivers are implemented as DLLs. Through the ODBC API,

applications can do the following:

e Establish and drop connections with remote databases.
¢ Present a standard logon interface to users.

¢ Find out what tables, views, columns and indexes are
available on the remote database.

¢ Jssue commands and retrieve result tables.

© Computer Technology Research Corp. 19

Page 27 of 165

1. Executive Summary

* Open fully scrollable cursors for record-at-a-time
processing.

* Receive detailed, standard error messages based on an
ANSI SQL Error specification.

The ODBC driver manager loads drivers dynamically as they are
needed. The driver, developed separately from the application, sits
between the application and the network. The driver processes ODBC
function calls and translates them to the commands required by the
target data source.

ODBC has received widespread industry acceptance, with many
endorsements from within the database vendor community, as well as
from application vendors and corporate developers. ODBC’s acceptance
to date is due to several factors. '

* As an implementation of the SQL Access Group’s CLI
specification, ODBC is vendor-neutral and open. This
open systems approach solves a problem common to
everyone in the software industry.

* As a portable API, it can be a common data access
language for both the Microsoft Windows operating
system and the Apple Macintosh operating system, and
possibly other operating systems.

* ODBC allows application developers to decide for
themselves when to optimize their ODBC implemen-
tations for maximum interoperability, or fully exploit
advanced features of a particular DBMS.

Distributed Relational Database Architecture (DRDA) is IBM’s protocol
for connecting databases in the IBM Information Warehouse over
Systems Network Architecture (SNA) networks. ODBC does not compete
with DRDA. Rather, it accesses DRDA-compliant databases through

20 © Computer Technology Research Corp,

Page 28 of 165

1. Executive Summary

ODBC drivers in the same manner that it accesses other database
servers. ODBC drivers for IBM databases are under development by
such companies as Micro Decisionware for DB2 and Rochester Software
for SQL/400.

ODBC is not a product that users buy. It consists of: a Software
Development Kit (SDK) for application vendors wishing to take
advantage of ODBC connectivity; a driver manager available from
Microsoft; and individual server drivers, available from Microsoft or the
server vendor, depending on the driver. ODBC is currently available as
a component of the Microsoft Access DBMS. The ODBC driver manager
will also be a standard feature of the Windows operating system.

Messaging API

MAUPI first appeared as a Windows 3.x subsystem. It is gradually being
ported to other platforms such as Windows NT, 0S5/2, Macintosh, and
MS-DOS. Currently, however, MAPI is optimized for the Windows
platform, i.e. user interface, memory management, file formats, etc. In
this sense, it remains a proprietary messaging vehicle.

MAPI has been designed to assure developers who write front-end
applications or back-end services for their operating environments that
they will interoperate successfully. This is done by publishing the
interfaces between these services in the form of APIs and SPIs (see
Figure 1.1).

All of the functionality required for E-Mail front-ends is delivered in
MAPI by a set of calls to transport, message store, and directory
services. MAPI provides access to multiple transports and message
stores. This access is achieved via DLLs written to the MAPI SPI.

Windows platforms supporting MAPI have initially shipped with the
client mail application entitled Mail Manager. The latter is directly
accessible to the user or becomes available when a mail-enabled
application, such as a spreadsheet or word processor, is activated.

® Computer Techriology Research Corp. 21

Page 29 of 165

1. Exscutive Summary

MAPI supports a wide range of message types and appendages,
including OLE attachments. OLE attachments allow a user to access the
native application of an embedded object for the purpose of viewing and
editing. MAPI does not, however, track Dynamic Data Exchange (DDE)
links among objects once one of the objects has been transmitted.

The MAPI architecture, as with other WOSA services, provides client
APIs at the user end and SPls at the service provider end for various
heterogeneous products. Both APIs and SPIs are written to the Windows
messaging subsystem entitled Mail Spooler. The latter is a DLL that is
an inherent part of the Windows operating system. It also provides a
portion of the functionality, in concert with the API and SPI, that
constitutes the MAPI service model.

There are two MAPI versions: Simple and Extended. Simple MAPI is
suitable for sending and receiving interpersonal messages, including
attachments. Application developers will typically use it to send and
receive messages from within their own applications.

Extended MAPI allows applications to manage the creation and
transmission of more complex forms of messaging and addressing. These
applications span a range from data collection to agent-based retrieval
to other more esoteric forms of message-generating system entities.
Extended MAPI also offers advanced addressing and messaging
management.

MAPI employs object-oriented programming methods. Messages,
attachments, etc. are created in the object mode. They invoke the object
characteristics of polymorphism (two or more objects allow the same
calls) and inheritance among objects that facilitates the development
and maintenance of MAPI-based applications.

Microsoft views Simple MAPI as harmonious with the status of VIM
(Vendor-Independent Messaging) promoted by Lotus and others, at least
in terms of its cross-platform potential. Whether MAPI can escape its
close ties to Windows while retaining full functionality is an issue yet
to be determined.

27 © Computer Technology Research Corp,

Page 30 of 165

1. Executive Summary

License Service API (LSAPI)

The LSAPI is a specification that allows software publishers to build
licensing capabilities into their applications while remaining
independent of any specific licensing system or model. This feature
offers IS managers the flexibility to plug in new licensing services
without having to modify applications on their client PCs.

WOSA enables LSAPI-compliant applications to interact with licensing
services transparently in a multivendor networked environment (see
Figure 1.7). Thus, applications can access licensing systems over a
variety of networks, easing the development process for programmers
and increasing installation options for IS managers. Over 20 software
and system vendors have proclaimed their intention to support the
LSAPI specification, with more being added on a regular basis. The
problem addressed by LSAPI began in earnest with the arrival of the
first PCs into the corporate mainstream. System administrators and
product vendors have been trying to control and manage the use of
software applications in this setting ever since, with varying degrees of
success.

Typically, to help control software usage, vendors ask purchasers to sign
a license agreement and then enforce the agreement through a number
of different procedures. However, as the number of license agreements
grows, the task of ensuring compliance with the variety of terms and
conditions becomes overwhelming. To ease the burden, a number of
software products have emerged that track application usage, and some
of these can electronically enforce the terms of the license agreement.
Some software publishers incorporate their own license tracking
mechanisms directly into their applications without relying on third-
party license software.

The result is a complex proliferation of different license systems, each
with its own non-standard API. The large number of APIs creates higher
development and maintenance costs for software publishers since they
must write new code whenever they want to interface to a different
license system. Likewise, the myriad licensing schemes and applications

© Computer Technology Research Corp. 23
Page 31 of 165

1. Executive Summary

Figure 1.7 License Service AP! Implementation Within WOSA

icense Service AP
Applications

o 7 s License Service API

et
dikn
ppi

Provider Management Layer

Service Provider Interfaces

24 © Computer Technology Research Corp.

Page 32 of 165

1. Executive Summary

support for each scheme confuse information systems departments and
make license management more difficult.

With the License Service API, an application does not need to know
anything about the type of network in use, the types of computers in the
enterprise, or the types of license policies available in order to enjoy
seamless access to a licensing mechanism. As a result, even if the
network, computers or license policies change, the desktop application
does not need to be rewritten. In other words, the License Service API
enables applications to connect to the licensing services they need across
multiple computing environments in a platform-independent manner.

The LSAPI is not a product of Microsoft or any other software vendor.
It is a specification that has been developed by a group of software
publishers and systems vendors for the purpose of standardizing the
interface to licensing services. The License Service APl effort was
founded by Brightwork Development, DEC, Gradient Technologies,
Microsoft and Novell. Many other vendors have subsequently become
involved in the effort.

Windows Sockets API

Developed by the University of California for its Berkeley Software
Distribution (BSD) version of Unix, sockets are a widely-used
programming mechanism that supports data exchange over a network.
A socket is a connection point through which data can be sent and
received. Originally used exclusively by Unix applications for communi-
cations over TCP/IP networks, a variety of sockets implementations have
appeared which function in non-Unix environments to allow information
transfer between Unix applications and their non-Unix respondents.

Window Sockets encompasses both familiar BSD socket routines, along
with extensions specific to a Windows environment. It is intended that
Windows Sockets provide a single API to which application developers
can program and network software producers can conform. Ultimately,
protocol stacks other than TCP/IP will be supported.

® Computer Technology Research Corp. 25
g

Page 33 of 165

1. Exscutive Summary

This APl is targeted for use with all versions of the Windows operating
system from Release 3.0 and up. It provides, therefore, for applications
which function in both 16- and 32-bit operating environments.

There are two types of sockets currently available to users: stream and
datagram sockets. A stream socket supports a two-way, reliable,
sequenced, and unduplicated data flow without record boundaries. A
datagram socket provides for a two-way data flow which is not
guaranteed to be reliable, sequenced, or unduplicated, but which does
preserve record boundaries. The stream variety is essentially connection-
oriented, whereas a datagram socket is connectionless. The latter type
resembles the approach found in many packet-switched networks, of
which Ethernet is a prime example.

By supplying a single interface through which applications for Windows
can communicate with Berkeley sockets-based applications and services
on Unix platforms, the Windows Sockets API relieves programmers from
the burden of supporting multiple sockets APIs within their applications
for Windows. Without a standard sockets interface in the Windows
environment, programmers developing applications for Windows would
be forced to modify their code to supply different vendors’ Windows-
based TCP/IP products.

The addition of Windows Sockets to WOSA broadens the WOSA
framework by enabling seamless communication between the Unix and
Windows environments. Windows Sockets provides a programming
solution to a wide range of Windows to Unix communication
requirements, including Windows-based client to Unix client, Windows-
based client to Unix server, and Windows-based server to Unix client.

Windows Sockets also supports several extensions that allow
applications to take advantage of features in the Windows environment.
For example, a Unix-based application can interface with Windows
through a network and take advantage of such Windows features as
multitasking. Support for multithreaded processes is also included.
Microsoft is also currently implementing the Windows Sockets API in
the Windows NT operating system.

25 © Computer Technology Research Corp,

Page 34 of 165

1. Executive Summary

Windows SNA API

This specification defines a standard interface between applications for
Windows and IBM System Network Architecture (SNA) protocols. An
application written to these standard interfaces will run without
alteration over many vendors’ SNA connectivity products. This applies
to any 3.x version of Windows, as well as Windows NT.

Table 1.2 shows over 20 vendors who collaborated in the development
of Windows SNA API.

Table 1.2 Vendors Involved in Developing Windows SNA API

« Andrew Corporation « International Computers Ltd.
« Attachmate « Microsoft
Computer Logics « Multi Soft
« Data Connection + NCR
» Digital Communications « Network Software Associates
Associates « Novell
« Easel « Olivetti
Eicon Technology - Siemens-Nixdorf
- FutureSoft « Systems Strategies
- IBM « Wall Data
« ICOT

Developed by IBM, SNA is the pre-eminent proprietary network model
for data interchange. The SNA protocol set was designed exclusively for
use in mainframe-based environments in its early years, but now has
assumed a more open, peer-to-peer stance. SNA has essentially served
as the inspiration for all network-layered configurations in use today.

The growth in the personal computer market has created opportunities
for vendors to produce and market PC-to-mainframe connectivity
solutions. These solutions offer users a means to access data on a
mainframe by allowing them, for example, to emulate 3270 terminals on
their PCs. Many of these vendors also have offered their own APIs that
allow developers to build applications on PCs that exchange data with
mainframes. Now, through this cooperative effort, a standard Windows
SNA specification has been defined.

© Computer Technology Research Corp. 27

Page 35 of 165

1. Executive Summary

Microsoft’s rationale for support of the SNA API is to bolster Windows-
to-host connectivity. In addition, this provides the company with yet
more leverage in its bid to extend its influence into the enterprise
environment.

Prior to this standard-setting endeavor, each vendor offering PC con-
nectivity solutions for the SNA market created its own unique interface.
This made it impractical for an application to use different connectivity
products without major change to its own interface connections.

The Windows SNA standard covers all five of the SNA capabilities that
programmers use today. These are High Level Language API (HLLAPI),
Common Programming Interface-Communications (CPI-C), Advanced
Program-to-Program Communications (APPC), Logical Unit (LU) 0, and
Common Service Verbs (CSV).

The HLLAPI interface is used with existing IBM 3270 and 5250-based
applications. Both the APPC and CPI-C APIs are used to write
cooperative applications for the LUB.2 protocol. The LU 0 API is used
to gain access to low-level SNA LU 6.2 data streams that are frequently
encountered, particularly in financial environments. The CSV API
performs character set translations and interfaces with IBM’s NetView
management package.

Despite IBM and Microsoft antipathy in the operating system arena,
they, along with their collaborators, worked harmoniously to develop the
SNA APIL It was a case where each of their mutual interests were
served — Microsoft to penetrate the enterprise and IBM to extend the
SNA environment to a wider user community.

Remote Procedure Call API

Windows” RPC falls into the communication service category of WOSA
offerings. Along with Windows Sockets API and Windows SNA API, it
provides services dealing with remote access.

RPC is closely aligned with the client/server model. This is where the
client typically manages the end-user interface while the server deals

28 © Computar Technology Research Corp.

Page 36 of 165

-

1. Executive Summary

with database management, system services, and special purpose
processing needs.

RPC is also a tool which enables the single PC to extend its reach far
beyond its own domain. By enabling access to all computing resources
on the network, RPC provides users with a powerful tool for completing
tasks and producing solutions.

Microsoft RPC, as with other varieties, makes a remote access procedure
appear to be a conventional local procedure call. In actuality, it is made
to a “stub” that interacts with the runtime library and performs all of
the steps required to execute the call in the designated remote

environment.

The RPC model is an industry standard, although there are variations
in implementation. Microsoft’s version is similar, although not identical,
to that put forth by the OSF in its DCE package. Sun Microsystems’
RPC is yet another popular version.

RPC also renders network interface details transparent to the
application developer. No longer must he or she understand specific
network API functions or low-level communications protocols in order
to build complex distributed applications.

Data translation problems that frequently arise during interaction
among heterogeneous networks is reduced by RPC usage. Applications
can now ignore issues of formatting and character structuring, all of
which is handled during RPC execution.

WOSA Extensions For Financial Services

In 1992, Microsoft formed a consortium of firms interested in financial
services markets in order to standardize the end-user interface. Among
these organizations were computer vendors, software houses, and
system integrators. Labeled the Banking Systems Vendor Council, early
members included Microsoft, Unisys, Olivetti, DEC, and Andersen
Consulting.

© Computer Techriology Research Corp. 29

Page 37 of 165

1. Executive Summary

Their basic goal was to allow any application using Windows to employ
standard interfaces for access to financial data and devices. The
specification is intended to be usable within all versions of the Windows
operating system, from 3.1 and up to Windows for Workgroups. Initial
versions of Windows NT are also acceptable environments. Thus, the
API can be used in both 16- and 32-bit configurations.

Although WOSA Extensions for Financial Services (XFS) provides a
broad architecture (see Figure 1.8) for accessing service providers from
Windows applications, initial tasks have been focused on supporting an
interface to user devices that are peculiar to financial institutions. These
devices are often unique to their function, proprietary in nature, and
difficult to support from a general purpose operating system platform.
Solving these complex linkage problems, therefore, provides immediate
relief to the financial community.

Issues to be dealt with in the near future include:

* financial transaction management and message control
* security
* network and system management

In the longer term, the consortium will address promising new
technologies such as multimedia processing, object-oriented develop-
ment, pen-based computing, and wireless computing.

Future Directions

WOSA is designed to be extensible. New capabilities will be added over
time. Among these will be services dealing with systems management,
distributed file systems, directory services, wider communication
options, security in distributed environments, etc.

WOSA’s DLL-based architecture enables new APIs to be incorporated
without disturbing current capabilities. New varieties of existing
services can be added in a straightforward manner by creating an SPI
library for the emerging product. Applications are unaffected by any of
these additions or modifications.

a0 © Computer Technology Hesearch Corp.

Page 38 of 165

F_..‘._-.

1. Executive Summary

Microsoft plans to continue to extend the Windows operating system in
the future. The system is being enhanced using object-oriented
techniques to yield improved usability, a more intelligent file system, a
more intuitive user interface, and more transparent operation in
connected environments. Users will be able to browse network resources
using a variety of object attributes such as content, and creation and
revision dates. Both Windows and Windows NT implementations will
benefit from these enhancements.

Windows running in enhanced mode with MS-DOS will be extended to
support the Windows 32-bit API. As part of this evolution, Microsoft will
enhance MS-DOS over time, reduce memory requirements, add utilities,
and improve networking support. In this way, the MS-DOS-based
implementation of Windows running in enhanced mode will be further
optimized for laptops and desktops, while Windows NT will be
Microsoft’s solution for high-end machines such as workstations and
servers.

© Computer Technology Research Corp 31

Page 39 of 165

1. Executive Summary

Figure 1.8 WOSA Extensions for Financial Services

I

Application
A
WOSA/XFS AP ©
WOSA/XFS ’ .
(eXtensions for Financial Services) Registration
Manager Database
WOSA/XFS SPI ~_

Service
Provider

R

/ N

Local Device(s) Remote Device(s)
and Service(s) and Service(s)

32 ‘ © Computer Technology Research Corp.

Page 40 of 165

Chapter 2

The Windows Environment

The appeal of Windows lies in its ease of use and universality. Even
novice users can access sophisticated programs and services. The
learning curve is moderated by graphical interfaces. Common tasks such
as file management and printing have been simplified.

Among the graphical tools available are:

e Program Manager. Manipulates and arranges icons in
order to implement applications.

o File Manager. Manages files and their associated direc-
tories to support user access, manipulation, and consoli-
dation of information repositories (see Figure 2.1).

s Print Manager. Allows users to view print queues,
change the status of print jobs, and direct output to
specific printers.

e Control Panel. Sets up comrnunications ports, installs

fonts, and allows customizing of visual images in terms
of colors and designs.

Among the desktop applications made available are:

e Terminal. Asynchronous terminal emulation and com-
munications support program that includes a macro
capability for up to 32 function keys.

e Calendar. Builds a daily appointment schedule and
monthly calendar which initiates alarms as
appointment reminders.

© Computer Technology Research Corp. 33

Page 41 of 165

2. The Windows Environment

Figure 2.1 The Windows File Manager Screen

-~ anag 3 B i<k
[File Disk Tree \.lrw Opluan Info Window Help B - .
ol e/l : . — .
- CACOLLAGEY".* 5 B FaRd i
— v . B H
=N E[= =] (= B3e 5 s o %)
EZ]dII L.._ T — . A Edios
-—.m_L_ =Ih = =30 [50)F] o L.u.J'_a_J G0R Gs :
I'!.t'_'l__;-"_} —LJ JJ =g _L.l | _‘_l F: SERVER1/SY i
SR o e s i
b EADF‘S I 1/% 4
[~ £ CHARISM C 10/08/(:
I'-l':'_;:-r ':J’l- 09/26/9 z
ma] (CIDESIGNEF 120779 E
(I DESIGN CFOUNDR %/13/91 i
) FOUNDRY 1CIGLOSS 03/0.91 =
{-C26L0s5 CInav 011/ :
| }- I:J MAVY :_]H"_ TALDUS o149 iJ !
CIRETALOY Cone BN corse [
= - i
F:11,128KB hee. 107.400KB tota Total 17 file(s) (17.147 byies)

* Calculator. Features both standard and scientific
calculators that perform calculations in decimal, binary,
octal, and other notations.

* Recorder. Captures mouse actions and keyboard strokes
in macro form for subsequent reuse.

* Clock Displays. A clock in digital or analog format
anywhere on the screen.

¢ Cardfile. Presents an index card-oriented filing program
which can store both graphics and text.

* Notepad. A simplified text editor supports notes,
memos, and batch files with date and time stamping.

Perhaps the key advantage of using Windows, over and above its facile
interactions, is the multiple thousands of applications available for use.
Third-party software developers have migrated to the Windows environ-
ment in droves. End-users are the ultimate beneficiaries of this wide-
spread support.

34 © Computer Technology Research Corp.

Page 42 of 165

. 2. The Windows Environmant

Performance and Reliability

Successive releases of Windows have witnessed continued performance
improvements. Windows 3.1, for example, offers the following enhance-
ments over Release 3.0:

e Faster, more responsive user shell components (notably
File Manager and Program Manager).

e Faster disk caching. The Windows SmartDrive disk
caching utility was redesigned for Windows 3.1. It is
installed automatically during setup and boosts per-
formance by caching read and write disk operations.

e TFaster paging in 386 enhanced mode. Windows 3.1
includes 32-bit disk access which allows the operating
system to bypass the MS-DOS operating system for its
virtual memory paging file.

* Increased display driver performance.

e Better printing performance. Overall speed is improved,
and Windows 3.1 gives control back to the application
quickly once the print command is invoked.

Table 2.1 shows a few examples of speed increases that took effect with
the release of Windows 3.1.

Table 2.1 Examples of Windows 3.1 Speed Increases (in Seconds)

Move 64 files 32.0 3.2
Save PageMaker file 9.5 6.1 I
Print Microsoft Excel spreadsheet 30.2 157 I
Page down PowerPoint 18.9 138

In Windows 3.0, if a serious application error occurred, the Windows
environment reported the error as an unrecoverable application error

© Computer Technology Research Corp. 35

Page 43 of 165

2. The Windows Environment

and closed the application — sometimes leaving the user with little
information about what triggered the problem. To protect the system
from the effects of the error, it was recommended that the user exit the
Windows program and reboot the system.

Several changes were implemented in Windows 3.1 to improve Windows’
reliability and to help software developers improve the integrity of their
Windows-based applications. Specific actions taken included:

* protecting Windows itself from application errors
through parameter validation:

* providing more information and procedures to help
users recover from application errors if they occurred;

* providing users with application reboot options, helping
to prevent a system crash or loss of data during the
worst of application errors;

* providing test tools and test support to help inde-
pendent software vendors develop more stable
Windows-based applications.

Windows 3.1-based applications are more reliable because of an internal
feature called “parameter validation.” Without parameter validation, a
Windows-based application might make a request from the Windows
operating system, such as seeking an allocation of resources, that is
incorrect for that application. Windows 3.0 would attempt to execute
such requests, perhaps writing over important system data in memory
or sending data to invalid addresses. In Windows 3.0 such application
errors sometimes caused unpredictable application behavior, data loss,
or a system crash.

Windows 3.1 performs an internal check to validate that specific
parameters are valid for resource allocation, handles, and pointers that
a Windows-based application might request. This check is performed
with minimal impact on overall system performance. Incorrect para-
meters are returned to the application as a failed request, and the
application must reprocess the request,

£
s
(3]

© Computer Technology Ressarch Corp.

Page 44 of 165

2. The Windows Environment

In Windows 3.1, if a user experiences an application error or general-
protection fault, the Windows operating system:

¢ identifies the source of the error.

e provides the user with the option of closing the
application or returning to the application, so work can
be saved before closing (if the error was detected as
being harmless);

¢ attempts to keep the system running after the error.

If a Windows-based application is malfunctioning, the user can press
CTRL+ALT+DEL to close the problem applications without closing
Windows. An error message appears with instructions for closing the
application, returning to the system, or rebooting the system.

If CTRL+ALT+DEL is pressed when no application is hung, Windows
sends a warning that advises the user to quit the application with the
correct Quit or Exit command, or by choosing the Close command from
the Control menu. This helps guard against losing data when the user’s
system is actually functioning correctly.

Windows 3.1 went through one of the largest beta programs ever
conducted, involving more than 15,000 participants. Microsoft gave
developers in the beta programs the SDK and Driver Development Kit
(DDK) to allow them to implement Windows 3.1 APIs for their new
programs. A Hardware Compatibility Program included over 350 testers
to ensure compatibility of Windows with a vast array of hardware and
peripherals on the market today.

Object Linking and Embedding

An important technology for many reasons, OLE creates an environment
in which applications can share information seamlessly. With OLE, all
data can be thought of in terms of objects. A spreadsheet chart, an
illustration, a table, a paragraph of text are all examples of objects. OLE
enables applications to share these objects.

© Computer Technology Research Corp. 37

Page 45 of 165

2. The Windows Environment

Windows 3.1 supports OLE by providing standard libraries, interfaces,
and protocols that applications use to exchange data objects. As
developers implement OLE capabilities within programs, users will
encounter a new generation of applications in the market that are
designed to work together.

Microsoft added OLE capabilities within new versions of the Write,
Paint, and Cardfile accessories that are provided with 3.1. A user can,
for example, create an illustration using the Paint program and embed
the graphic in a Write document. If the illustration must be updated,
the user can re-access the image within the Write document, which
launches Paint automatically to allow editing of the drawing. Because
the original graphics file is embedded in the document, there is no need
to store or update multiple copies of the image, and the file can be
updated on any PC with Paintbrush.

OLE is an enabling technology for multimedia computing. With
Windows 3.1, a user can embed a multimedia object, such as an audio
clip, into an application for the Windows operating system, just as they
would embed a chart or text file. The extensible architecture of the
Windows operating system makes it possible for multimedia computing
torange from low-cost systems to sophisticated multimedia platforms at
the high end of the market.

Windows for Pens

Pens offer unique advantages. They are familiar and natural input
devices. They adapt well to small forms and can be used when either
standing up or sitting down. The pen is also a basic graphical
instrument with which users can print characters or draw free-form
images and symbols. PCs are evolving to smaller, more adaptable forms
that look more like clipboards, notepads, and pocket calendars than
desktop systems. Electronic clipboards will enable new categories of
users (including package delivery people, inventory pickers, packers in
warehouses, and sales representatives) to tap the power of the
computer. By incorporating the pen, laptop computers can support note
taking, better time management, and more convenient computing in
group settings.

38 © Computer Technology Research Corp.

Page 46 of 165

———————————

2. The Windows Environment

Based on Windows 3.1, Microsoft Windows for Pens is an original equip-
ment manufacturer (OEM) product that is packaged and licensed with
a variety of third-party pen computers. With Windows for Pens, users
can integrate the pen with existing applications for the Windows
operating system and development tools. They can point and click as
they would with a mouse, issue commands using gestures (for example,
draw a line through a word and it disappears), and write documents.

Windows Networking

User demand for networked applications has risen dramatically in
recent years. Prior to Release 3.1, however, Windows was deficient in
network interface procedures. Three areas where 3.1 and later versions
improved over earlier Windows’ releases are: network setup assistance,
network management, and the addition of a File Manager system with
persistent drive connections.

A command new to 3.1 is SETUP/A, which places all files from the
original Windows distribution disks onto a network server drive
specified by the implementor. This step consumes about 16 megabytes
(MB) of server disk capacity, but frees up hard drive space on individual
PCs where this data had traditionally been stored.

A SETUP/N command gives each networked PC its own Windows prefer-
ence files. This is achieved by making the Windows network directory
the current directory on a PC, and executing SETUP/N.

In addition, a user’s initialization files, e.g. WIN.INI and SYSTEM.INI,
which describe hardware configurations, can be stored on a network
server. This facilitates future updates to various installation configu-
rations. Rather than updating numerous individual PC files, a network
manager need only update a server file. This eliminates the need to go
to each PC, some of which may be widely dispersed.

Another positive aspect of storing initialization files on a server rather
than on individual PCs is consistency of service. Various types of users
can access network services at different locations and obtain the same
support they receive at their own PC. A network manager can access

® Computer Technology Research Corp. 39

Page 47 of 165

2. The Windows Environment

directories anywhere, for example, while a knowledge worker can
similarly use a spreadsheet.

The Program Manager package within Windows allows network
managers to customize the images viewed by users when they are
selecting applications to run. Since initiating a program typically
involves clicking a mouse pointing at a visual icon, the total number of
icons can reach unmanageable limits in a busy installation. Program
Manager overcomes this problem by allowing specific images to appear
to specific users, i.e. each user group sees only a subset of the total icons
in use, depending on what is needed relative to their work
responsibilities.

In practice, this is accomplished by storing within Windows initializa-
tion files the specific icon group associated with each class of users.
Then, when a particular group logs on to the network, they enter their
class identity. This automatically links them to a specific icon group.

File Manager in 3.1 and up has qualities more suited to network
operations than was available in earlier Windows versions. One of its
more important attributes in a network sense is its persistent drive
connections. This feature makes transparent the complex commands
needed to access network resources.

Following an initial sign-on to a specific network drive, File Manager
remembers the navigation path implemented through potentially
complex directory structures. This network drive connection is
automatically generated in subsequent logons. Thus, applications can be
developed that eliminate the need for users to remember convoluted
access routines for different network drives.

A common concern of network users is performance. Windows can
operate efficiently in a networked setting ifit is configured properly. The
implementor must allocate sufficient disk cache space on a network
drive to accommodate execution of Windows programs. If programs must
be read from regular hard disk at execution time due to inadequate
cache space, then performance suffers.

40 © Computer Technology Research Corp.

Page 48 of 165

2. The Windows Environmaent

Since Windows is heavily geared to a graphics environment, this may
seem to represent another threat to peak performance. In actuality,
however, Windows seeks access to a server only to initiate programs and
save document files. Otherwise, all processing, including graphics, is
centered on the individual PC.

There are omissions in recent Windows versions that may be important
to some users. OLE capabilities that allow combining graphics, text, and
data from different applications do not work in a network setting,
although it is planned for a future release. In addition, peer-to-peer
networking is not possible with Windows 3.1. It is more focused toward
a server/client relationship. For peer-to-peer, Microsoft introduced
Windows for Workgroups.

Microsoft’s Windows for Workgroups Strategy

Windows for Workgroups is intended for small collections of PCs in
small offices or for individual workgroups in larger organizations. In
essence, it is Windows 3.x with peer-to-peer networking, E-mail, and
group scheduling facilities added. These features serve to enhance
communication between users on the network by providing a number of
tools for exchanging messages, arranging group schedules and meetings,
and providing file access across the network. Users of Windows 3.x will
feel quite at home with the Windows for Workgroups user interface.

Windows for Workgroups uses a network protocol layer similar to the
Windows printer and video drivers. Applications interact with the
graphical user interface (GUI), which sends requests to the driver,
which then calls specific network functions. Figure 2.2 shows the layout
of this system.

The product is based on the concept of the workgroup, which may be
defined as a group of professionals contributing different skills to the
same project. These colleagues need access to many of the same project
files, but are often contributing different information or analysis to these
files. They will also have some data unique to their own areas of
expertise, but will need to share this data with others, and to combine
it with others’ contributions into the completed project.

& Computer Technology Research Corp, 41

Page 49 of 165

2. The Windows Environment

Figure 2.2 The Layout of Windows for Workgroups

Applications Applications Applications

User Interface

Network Protocol Drivers

Windows for Workgroups

LAN Manager NetWare

The installation of Windows for Workgroups is very similar to that of
Windows 3.x, except for some configuration options involving the
networking adapter card and network interfaces. In many cases,
Windows for Workgroups can also make intelligent guesses on the
system and network configurations, and will only ask the installer to
confirm the information. The operating system will attempt to connect
to the network upon starting Windows.

Once users are in Windows for Workgroups, they will see little that is
different from standard Windows 3.x. There is, however, a network addi-
tion to the Control Panel which lets users perform activities such as
adding support for specific network adapter cards and adjusting the pro-
portion of system time between local and remote users. There is also the
ability to perform DDE between different workstations on the network.

Windows for Workgroups Bundled Applications

In addition to providing standard peer-to-peer networking services,
Windows for Workgroups also provides several applications and utilities

42 © Computer Technology Research Corp.

Page 50 of 165

1
3

2. The Windows Environment

that take advantage of the networked computing environment. The
primary focus of these applications is to enhance communications among
workgroup members. Other applications and utilities assist in user
control over networking activities.

Probably the most important networking activity is electronic mail. E-
mail is arguably the primary reason why most organizations decide to
network computers in the first place. This makes E-mail the most
important application to have available whenever a new networking
standard appears on the market. Microsoft uses a version of its
Microsoft Mail application as the communication centerpiece of Windows
for Workgroups. Complementing Microsoft Mail is an implementation
of the simple MAPI, which acts as a building block for messaging
applications.

Windows for Workgroups also includes a group scheduling package,
derived from Microsoft’s Schedule Plus standalone product. This
software enables groups on the same network to schedule meetings
together and apply workgroup-wide deadlines, and it allows individuals
to manage their own schedules online.

Other utilities include Chat, which enables two network users to hold
a realtime, online conversation; Net Watcher, which tells a user who is
accessing what files on the local system; and WinMeter, which displays
the percentage of CPU time being allocated to remote users.

Networking Compatibility

One of Microsoft’s goals with Windows for Workgroups was to ensure
that it was compatible with existing network operating systems. There
were two reasons for this. First, an important part of the company’s
networking vision involves integrating the workgroup into larger and
more comprehensive networks. Microsoft would prefer that these larger
networks use LAN Manager or Windows NT, but recognizes that by far
most of the installed base of networks uses a non-Microsoft solution.

Second, many buyers of network operating systems already have
networks installed at their sites, and compatibility is a primary buying

© Computer Technology Research Corp. 43

Page 51 of 165

2. The Windows Environment

criterion. Sophisticated network buyers do not want to depend on a
single vendor for their networking needs, but do need diverse solutions
to work well together.

Appendix C covers Windows for Workgroups in greater detail.

Microsoft, therefore, is relying on its own resources and its clout in the
market in order to provide connectivity with other network operating
systems. The initial release of Windows for Workgroups included Novell
NetWare drivers, and at least one other major vendor (Banyan Systems)
has announced that it will include support for the product.

Windows NT and Networking

Windows NT takes networking several steps further than 3.1, Among its
new features are:

* Versatility — NT can function well on workstations,
desktops, network servers, and in client/server
environments.

* Symmetric multiprocessor support is available when the
host system contains multiple processors. NT will
allocate tasks to the available processors.

* Preemptive multitasking is supported. This allows
many programs to run concurrently, eliminating the
need for Terminate-and-Stay-Resident (TSR) routines.

* Security in the form of passwords, and specific access
permissions are incorporated, although early NT test
versions have reportedly not been foolproof in this area.

* Virtual memory allows running larger programs than
physical memory can normally support. Only the
portion of a program actually being executed needs to
be memory resident.

44 © Computer Technology Research Corp,

Page 52 of 165

2. The Windows Environment

¢ A Simple Network Management Protocol (SNMP)
package allows management of NT platforms from
standard network management applications.

One of the realities that has become apparent to early NT users is its
voracious (by today’s standards) appetite for computing resources.

Microsoft proclaims that 8 MB of random access memory (RAM) and 100
MB of hard disk are sufficient for NT operation. Implementors find this
scenario degrades performance dramatically. Realistically, an average
user needs 16 MB of RAM and 150 to 200 MB of hard disk to support

ongoing operations.

Windows NT as an Operating System

The previous section looked at NT from a networking perspective. The
operating system itself offers several positive features, aside from the
large compute resource needed for daily operations. In the ongoing “32-
bit wars” NT will face its major competition from IBM’s OS/2, Sun
Microsystems’ Solaris, and Unix System V, Release 4. The acquisition
of Unix System Laboratories by Novell will propel Unix to increased
success in the marketplace due to Novell’s greater marketing strength.
Microsoft should continue to dominate on the desktop, but at the server
end all of the aforementioned operating systems will be strong
contenders.

Built with a C language kernel, NT can be ported to diverse hardware
platforms with varying degrees of ease. It will function primarily as a
server on Intel and Reduced Instruction Set Computer (RISC)
processors. NT is also scheduled to support DEC's Al 'ha RISC platform,
and Hewlett-Packard’s RISC machines and Sun’s SPARCstations. O8/2
applications will also run under NT.

Some early NT testers have found problems in porting Windows 3.x
applications to the new environment. Some of the migrated programs
would not run under NT. Others demonstrated poor performance
characteristics versus their execution on 3.x platforms.

© Computer Technology Research Corp. 45

Page 53 of 165

2. Tha Windows Environment

Other early users have lamented the complexity of installing NT,
particularly in a networked setting. Automatic network interface device
detection routines are absent. The implementor, therefore, must deal
with a series of input procedures asking questions about relevant /O
ports, shared memory addresses, and direct memory access channels.
Unlike Windows for Workgroups, NT demands an experienced
implementation team.

Windows and WOSA

Windows presents users with a consistent application interface. Once
users are comfortable with one application interface, others can be
mastered quickly. Similarly, WOSA provides developers of distributed
applications with a single interface for interacting with service providers
such as database managers and E-mail modules. WOSA application pro-
grammers need learn only a single set of APIs for all implementations
of a particular service, e.g. database managers (see Figure 2.3).

In addition, WOSA supports 3.x and NT versions of Windows. Both
implementations of the operating system can access information and
services across heterogeneous computing environments — all from one
consistent Windows graphical user interface. WOSA supports
interoperability through a collection of open interfaces for key system-
wide services developed by Microsoft and other service providers.
Accordingly, as part of WOSA, the networking architecture of Windows
has been modified to make it more extensible. Standard, open interfaces
have been defined for network services such as electronic mail and
database access, and more will be specified by Microsoft and other
developers for file sharing, printer sharing, administration, and
configuration.

Future Directions

The future of Windows, of course, is inexorably linked to the ongoing
development of NT. Early in its existence, NT became the de facto
standard for supporting applications operating on a variety of RISC and
Intel chips.

46 © Computer Technology Research Corp.

Page 54 of 165

2. The Windows Environment

Figure 2.3 WOSA Single Set APIs

Application Application Application

i

APls
Windows
Service
Provider
Management Fila Mail ODBC
SPis
Microsoft File Microsoft Mail SQL Server
Novell File
Banyan File
Service

Providers

47

© Computer Technology Research Corp.

Page 55 of 165

2. The Windows Environment

Windows NT will be one of the more “open” proprietary systems in the
marketplace, although IBM’s OS/2 and DEC’s VMS have also been
moving in this direction. Unix’s reputation for openness is already well
known, albeit a bit overstated. With WOSA, however, and APIs such as
Windows Sockets to connect to TCP/IP, POSIX, and external LANs, NT
is well along in its quest for widespread platform interoperability.

Even though some estimates place NT’s market potential in excess of
two million nodes, this is merely speculation. The factors that will
determine its success are pricing and reliability of early NT versions.
Microsoft’s legendary marketing prowess will only carry NT so far. User
operating experience will determine the rest.

48 © Computer Technology Research Corp.

Page 56 of 165

Chapter 3

WOSA Architecture

M

As a software architecture, WOSA is a relatively straightforward
technology model. Figure 3.1 depicts the major elements of this model
where user applications invoke specified APIs as appropriate to the
functional service being sought, e.g. messaging service. The actual
service provider, in this case MAPIL, is accessed through SPIs developed
for specific messaging functions. If the functional service is at some
point replaced or modified, then SPIs will be altered accordingly. User
applications, however, remain stable and may be unaware of changes
implemented at the functional service end.

On a more detailed level, there are software drivers appended to the
Windows operating system that aid the WOSA process (see Figure 3.2).
Labeled WOSA drivers, they are used by SPIs to access a particular type
of back-end functionality. These Windows system extensions support
operations such as messaging, addressing, and data transport.

Current Capabilities

WOSA is extensible both in the types of functional services it can
provide and in the quantity of any given service it can support. Any list
of current capabilities, therefore, is transitory and subject to change on
a regular basis. WOSA currently supports the following APIs:

e Open Database Connectivity

e Messaging

+ License Service

* Windows Sockets

 Windows SNA

¢ Remote Procedure Call

¢ Extensions for Financial Services

@ Computer Technology Research Corp. 49

Page 57 of 165

3. WOSA Architecture

New functional areas for the future include distributed file and security
systems, systems management, data access, communications, and
directory services.

Figure 3.1 Major Elements of WOSA

Windows Applications

Windows APls

Windows

Windows SPls

Service [F“\
Providers

50 © Computer Technology Research Com.

Page 58 of 165

3. WOSA Architecture

Figure 3.2 WOSA Process

(Application J

[Application)

WOSA Drivers

WOSA Drivers

© Computer Techniology Research Corp.

Page 59 of 165

51

3. WOSA Architecture

Distributed Systems

One of the most prominent vehicles in support of distributed systems is
the Distributed Computing Environment from OSF. The DCE presents
a set of tightly-integrated technologies to enable vendors and users to
provide transparent computing in heterogeneous environments. It also
includes services necessary for the development and maintenance of
distributed applications.

Distributed computing is a complex subject. In order to develop an
efficient distributed configuration, a plan for communication, interaction,
and resource control is required. OSF’s DCE provides a model and
related tools to help the user build distributed applications.

The various elements of DCE as portrayed in Figure 3.3 are:

* RPC and Presentation Services — Interface definition
languages and RPCs enable programmers to transfer
control and data across a network in a transparent
manner. This helps to mask the network’s complexity.

* Naming ~ User-oriented names specifying computers,
files, and people must be easily accessible in a
distributed environment. Referred to as a directory
service, it must be standard in appearance and rules for
all clients.

* Security — Distributed applications and services must
be able to identify users, control access to resources,
and guard the integrity of all applications.

* Threads —~ Represents a method of supporting parallel
execution by managing multiple threads of control with-
in a process operating in a distributed environment.

* Time Service — Synchronizes the clocks of all systems in
a distributed environment so that executing
applications can operate correctly.

52 © Computer Technology Research Corp.

Page 60 of 165

3. WOSA Architecture

Figure 3.3 Distributed Computing Environment Architecture

Applications
PC) Other Distributed
Integration Setvices (Future)
Security Distributed File Services Management
)) Other Fundamental
iy Naming Services (Future)

Rermote Procedure Call
and Presentation Services

Threads

Operating System and Transport Sarvices

¢ Distributed File System — This component extends the
local file system to the network in order to allow users
full access to files on remote configurations.

* Personal Computer Integration — Allows PCs using MS-
DOS to access file and print services outside the DOS
environment.

¢ Management — Partially addressed in the preceding
elements, its sheer complexity in a distributed, hetero-
geneous configuration has led to an entirely new project
entitled OSF Distributed Management Environment.

Table 3.1 lists the specific products that comprise OSF’'s DCE. Also
shown are the products associated with another prominent distributed
model: Sun Microsystems Open Network Computing (ONC+).

© Computer Technology Research Corp. 53

Page 61 of 165

3. WOSA Architecture

Table 3.1 Products of OSF’s DCE

RPC DEC/H-P NCS, NDR Sun RPC, XDR

Naming Digital DECdns Sun NIS
Siemens DIR-x

Security MIT Kerberos MIT Kerberos
Sun Secure RPC

Threads DEC CMA Sun RPC

Time Service Digital DECdts NTP

Distr. File System Transarc AFS Sun NFS

PC Integration Sun PC-NFS Sun PC-NFS

LAN Manager/X

NCS~ Network Computing System) XDR~ External Data Representation
CMA- Concert Multithread Architecture NDR-~ Network Data Representation
AFS~ Andrew File System NTP- Network Time Protocol

DCE defines a standardized service environment that is to be
implemented individually on each operating system platform.
Organizations planning to migrate to this capability will need a
mechanism to support the move from one platform to another. WOSA
complements DCE by integrating various distributed systems in a
transparent manner. The end-user continues to view a consistent
interface, no matter the underlying distributed scheme and platform.

Multiple Service APls

It is important to understand the distinction between a set of APIs
providing multiple services, as manifested by WOSA, and a group of
APIs supporting multiple platforms, but focused on one service offering.
An example of the latter would be VIM, the messaging module for cross-
platform service.

VIM and products like it do indeed solve the problem of cross-platform
development. They fail, however, to deal with the larger issue of
multiple system services. Among these service requirements are memory

54 @ Cemputer Technology Fesearch Corp,

Page 62 of 165

3. WOSA Architecture

management, graphics, multitasking and multithreading, print services,
etc. Offerings such as VIM address only one aspect of system operations.

The goal of WOSA is to deal with the complete range of APIs necessary
to support a full-featured system environment. It will be several years
before WOSA approaches such a lofty goal, but its vision far exceeds the
one-issue solutions presented by packages in the VIM category.

Universal Client

The principles supported by WOSA have been emulated by various
vehicles in the past, including the Streams environment. WOSA,
however, offers a wider variety of services than available from these
earlier efforts. In addition, WOSA’s architecture is focused on a higher
layer in the logic chain. These older vehicles operate at the lower layers,
whereas WOSA functions at a higher service layer.

Due in part to WOSA’s breadth of service offerings, the Windows
operating system has approached the status of universal client in the
overall scheme of network architectures. WOSA also enforces a
consistent programming interface via APIs, not allowing gradations or
levels of access to operating system services. Thus, with Windows’
ubiquity and WOSA’s structured conventions, the status of universal
client, at least in the Windows environment, has been achieved.

© Computer Technology Research Corp. 55

Page 63 of 165

Chapter 4

Open Database Connectivity

The ODBC interface allows applications to access information in DBMS
modules via Structured Query Language (SQL) commands. The latter
is a standard database access methodology accepted worldwide.

With ODBC, the Windows application developer achieves a high degree
of interoperability. No specific DBMS must be targeted in the compiled
program. Rather, each application can interact with any SQL DBMS,
depending on the needs of a particular installation. Each user adds
database driver routines that service the specific DBMS packages
operational within that installation. The application program itself
remains unchanged regardless of the DBMS being used.

History

ODBC provides a standard interface that enables applications and data
repositories to exchange information in a dynamic manner. Since there
are numerous data protocols, communications schemes, and DBMS capa-
bilities now and for the foreseeable future, an interface methodology was
needed that could adapt to changing circumstances at runtime. The
ODBC solution is to invoke DLLs that can respond to a particular Data
Source via a specific communication method on demand during program
execution.

Prior to the arrival of vehicles such as ODBC, applications typically
performed database tasks in conjunction with a specific database, e.g.
IBM’s DB2, Oracle, etc. Such applications most often employed
embedded SQL statements to achieve their mission. This is otherwise
efficient, but forced developers to rewrite their applications if the
database being accessed changed.

© Computer Technology Research Corp. 57

Page 64 of 165

4. Open Database Connaectivity

In a large organization, an application may have to access more than
one database type in order to complete its task (see Figure 4.1). Under
a non-ODBC approach, multiple versions of the accessing application
would be needed to access each database. The ODBC interface
accommodates unique databases via DLLs at runtime.

Figure 4.1 The ODBC interface

Workstation Sybase Server

]

Application SQL Server DBMS

database
files

J

,,, Communications
Medium
. Oracle Relational
Lan File Server DBMS Server
I database files
PC LAN Server Oracle Server
58 © Computer Technology Research Corp.

Page 65 of 165

T ——

4. Open Database Connectivity

ODBC Basics

ODBC is not an actual software product. It is a software interface speci-
fication. Users of ODBC, i.e., DBMS providers and application develop-
ers, follow the modality of the ODBC specification. Applications invoke
the ODBC API as a client, whereas DBMS packages use it as a service
provider.

Several DBMS vendors provide client/servers DLL for Windows, though,
anlike a standard ODBC DLL, their interfaces to the client on a PC are
vendor-specific. The user cannot change the database without changing
the application because the interfaces are non-standard. This differs
from the ODBC approach already described. A standard ODBC interface
defines the following:

» SQL syntax based on the SQL Access Group (SAG) and
X/Open’s SQL specification of 1991;

e a library of ODBC function calls that allow an
application to connect to a DBMS, execute SQL
commands, and retrieve results;

* a set of error codes;
¢ a standard representation for multiple data types;

¢ a standard procedure for connecting to and logging on
to a DBMS.

The ODBC interface offers several flexible features. For one, the same
object code can access different DBMS packages. It also supports the
creation of SQL statements on the fly at runtime. Additionally, ODBC
allows data values to be sent and retrieved in a format convenient to an

application.

Two types of function calls are associated with the ODBC interface. The
first features basic capabilities derived from X/Open and SAG’s CLI
specification. The second function call type includes proprietary
extensions dealing with issues such as asynchronous processing and
scrollable cursors. Using the latter function call type diminishes an
application’s interoperability capabilities.

@® Computer Technology Research Corp. 59

Page 66 of 165

4. Open Database Connectivity

The ODBC architecture consists of four major components. As
illustrated in Figure 4.2, there is a functional application that initiates
the process by calling ODBC services which transmit SQL commands
and subsequently receive requested information.

There are various Drivers which are activated by the Driver Manager
on behalf of an application. Each Driver processes ODBC function calls,
forwards SQL requests to the appropriate Data Source, and returns
results to the initiating application. A Driver performs whatever syntax
modification to the request that may be needed in order to conform to
the target DBMS.

The Data Source depicted in Figure 4.2 consists not only of the DBMS
being accessed, but also its operating system and support environment.
If it 1s on a network remote from the initiating platform, its associated
network platform is also part of this scenario.

From the viewpoint of an application, the distinction between a Driver
and Driver Manager is non-existent. They simply appear as an entity
that processes ODBC function calls.

In more precise terms, an application using the ODBC interface
performs the following tasks:

* requests a connection to a Data Source
* forwards SQL requests to that Data Source

¢ sets up storage areas and data formats for the response
to SQL requests

* requests results
* handles errors as they occur
* reports results back to a user if appropriate

¢ requests commit or rollback operations for transaction
control

¢ terminates the Data Source connection

&0 © Computer Technology Research Corp.

Page 67 of 165

4. Open Database Connaectivity

Figure 4.2 ODBC Architecture

Application

ODBC Interface

Driver Manager

Driver Driver Driver
Data Data Data
Source Source Source

© Computer Technology Research Corp. 61

Page 68 of 165

iL

4. Open Database Connectivity

The Driver Manager, as described earlier, has as its primary mission
the loading of Drivers. It is also a DLL with an import library that does
the following:

L]

uses the ODBC.INI file to map a specific Data Source
to a particular Driver DLL;

* manages multiple ODBC function calls;

¢ provides parameter validation and sequence validation
for ODBC calls;

¢ loads a Driver when an application initiates the
SQLCONNECT or SQLDRIVERCONNECT commands.

Drivers are DLLs that implement ODBC function calls and interact with
a Data Source. The latter could be local or remote, utilizing one of
several operating systems and network configurations, and feature one
of the data storage products listed in Table 4.1.

Drivers also perform the following specific tasks:

[

establish a connection to a Data Source;

* submit requests and retrieve results from those
requests for transmission to an application;

*

perform data format conversions as required;

* report error status information to the application.

There are two types of Drivers. A single-tier Driver processes both
ODBC function calls and SQL statements. It accesses the target
database directly. There is no intervention by servers or similar third-
party agents. Figure 4.3 illustrates the single-tier approach.

62 @ Computer Technology Research Corp.

Page 69 of 165

4. Open Database Connectivity

Table 4.1 Partial list of ODBC Drivers Currently under Third-Party Development

DAL Servers Apple
IBM AS/400 Born Software Development Group
Model 204 CCA
Cincom Cincom
integra-SQL Coromandei

DP4 Datatit
DEC Rdb DEC
Siemens/Nixdorf GFS & Siemens
Allbase Hewlett-Packard Company
SQLBase Gupta Technologies, Inc.
EDA/SQL information Builders, Inc.
Informiix informix Software, Inc.
Ingres Ingres
multiple IQ Software
mdbs IV mdbs, Inc.
IBM DB2 (w/Microsoft) MicroDecisionware, Inc.
R:base Microrim, Inc.
NOMADGateway Must Software
Sharebase NCR/Sharebase
Pick DBMS Paradigm

Porting all Q+E drivers

Pioneer Software

Progress & Progress SQL

Progress Software Corporation

Quadbase/SQL Quadbase
Revelation Revelation Technologies
IBM AS/400 Rochester Software Connection, Inc.

ENTIRE Natural SQL Server Software AG
ENTIRE SQL-DB Software AG
ENTIRE ADABAS SQL Server Software AG
Sybase SQL Server Sybase, Inc.

Tandem NonStop

Tandem Computers, Inc.

Techgnosis Servers

Techgnosis, Inc.

RMS

Vertisoft Research, Inc.

Watcom SQL

Watcom

@& Computer Technotogy Research Corp.

Page 70 of 165

63

4. Open Database Connectivity

Figure 4.3 Single-Tier Driver

Client Server

= Application

* Driver Manager

* Data Storage

* Driver
*includes data access software

In a multiple-tier Driver configuration, SQL requests are forwarded to
a server for further processing. The actual data access function
emanates from a server, not from the Driver itself. The entire system
may reside on a single unit, or may be dispersed across platforms as
depicted in Figure 4.4.

Thus, there is flexibility in the ODBC interface. Interoperability is also
enhanced since an application need not target a specific Data Source at
the time of program development. Users can add Drivers to an
application after it is compiled and has achieved initial operational
readiness.

The ODBC API defines a set of core and higher functions that match
X/Open and SAG CLI specifications. These levels of conformance are
listed in Table 4.2.

64 © Computer Technology Research Corp.

Page 71 of 165

4. Open Database Connectivity

Figure 4.4 Multiple-Tier Driver

Client Server

* Application * Data access software

* Driver Manager * Data storage

* Driver

Similarly, ODBC defines a set of grammar levels that correspond with
X/Open and SAG SQL specifications of 1991. SQL conformance level

information is shown in Table 4.3.
In summary, ODBC has four major functions:

1) It irnplements SQL: statements for data access.
2) It provides concurrent access to multiple databases.
3) It maintains listing of available databases.

4) It encompasses a DLL-based API that each ODBC Data
Source must support.

Close linkage to SAG’s SQL document places ODBC in the mainstream
as far as standards are concerned. This specification is not “reinventing
the wheel.” Rather, it is implementing that “wheel” in a functional role.

@ Computer Technology Research Corp. 65

Page 72 of 165

i
g
i
i

4. Open Database Connectivity

Table 4.2 ODBC AP] Conformance Levels

Allocate and free environment, connection, and statement handles.

Connect to Data Sources. Use muttiple statements on a connection.

Prepare and execute SQL statements. Execute SQL statements immediatel

Assign storage for parameters in an SQL statement and result columns.

y. ‘
Retrieve data from a result set. Retrieve information about a result set. <’

Commit or rofl back transactions.

Retrieve error information.

Core API tunctionality.

Connect to Data Sources with driver-specific dialog boxes.

Set and inquire values of statement and connection options.

Send part or all of a parameter value (useful for long data).

Retrieve part or all of a result column value (useful for long data).

Retrieve catalog information (columns, special columns, statistics, and tables.
Retrieve information about Driver and Data Source capabilities, such as

supported data types, scalar functions, and ODBC functions.
Core and Level 1 API functionality

Browse available connections and list available Data Sources

| Send arrays of parameter values. Retrieve arrays of result column values.

Retrieve the number of parameters and describe individual parameters.

Retrieve the native form of an SQL statement.

Retrieve catalog information (privileges, keys, and procedures).

Call a translation DLL.

66 © Computer Technology Research Corp.

Page 73 of 165

4. Open Database Connectivity

_'Table 4.3 SQL Conformance Levels

Data Detfinition Language (DDL):
! CREATE TABLE and DROP TABLE.

Data Manipulation Language (DML):simple SELECT, INSERT,
UPDATE SEARCHED, and DELETE SEARCHED.

Expressions:simple (such as A>B+C}.

Data types:CHAR.

Minimum SQL grammar.

| DDL:ALTER TABLE, CREATE INDEX, DROP INDEX, CREATE
VIEW, DROP VIEW, GRANT, and REVOKE.

DML:full SELECT, positioned UPDATE, and positioned
DELETE.

Expressions:subquery, set functions such as SUM and MIN.

Data types VARCHAR, DECIMAL, NUMERIC, SMALLINT,
INTEGER, REAL, FLOAT, DOUBLE PRECISION.

Minimum and Core SQL grammar.

DML outer joins.

Expressions:scalar functions such as SUBSTRING and ABS,
date, time, and timestamp literals.

Data types.LONG VARCHAR, BIT, TINYINT, BIGINT, BINARY,
VARBINARY, LONG VARBINARY, DATE, TIME, TIMESTAMP.

Batch SQL statements.

Procedure calls.

Applications can now access different databases as needed for various
tasks — as long as the target database conforms to ODBC conventions.
A user may access Oracle, then Sybase, then Informix databases on
various occasions as required. As long as the database is ODBC-
compliant, the application itself remains unchanged.

Another important ODBC feature is its ability to concurrently interact
with multiple databases. This allows ODBC clients to co-mingle and
collate data from multiple sources, plus update several remote Data

® Computer Technology Research Corp. 67

Page 74 of 165

4. Open Database Connectivity

Sources at the same time. In effect, this allows ODBC to manage the
problems of data dispersal, to control a distributed environment,

Industry support for ODBC has been impressive. Table 4.4 identifies
early backers of the specification. New adherents are being added at a
steady pace, and de facto standard status is close to being achieved.

Table 4.4 Early Supporters of the ODBC Specification

+ Apple Computer, Inc. + Informix Software, Inc. » PageAhead Software Corp.
* Bull HN Information Systems + Ingres + Pioneer Software

» Cincom Systems, inc. + 1Q Software * Progress Software Corp.
+ Computer Corp. of America * Lotus Development Corporation - Raima Corporation

» Coromandel Industries, Inc. « mdbs * Retix

« DEC * Micro Decisionware, Inc. « Rochester Software Corp.
« EASEL Corporation * Microsoft Corporation « Sybase, Inc.

+ Fox Software, Inc. « Microrim, Inc. » Tandem Computers, Inc.
» Fucrum Technolgies, Inc. « NCR/Teradata + Uniface Corporation

* Gupta Technologies, Inc. + Neon Systems, inc. + Unify Corporation

» Hewlett-Packard » Novell, inc. « Watcom

« Information Builders, inc. * Oracle Corp.

SQL Standard

Early database applications were run on large mainframes. User access
was provided by “dumb” terminals, whose actions consisted mainly of
sending batch requests for subsequent retrieval of blocks of data.

The introduction of PCs with enormous processing power and storage
changed all this. Software such as dBASE II and Lotus 1-2-3 enabled
users to define and manipulate their own data, separate from the
mainframe database. User “independence” had arrived.

The emergence of LANs and yet even more powerful PCs and worksta-
tions gave rise to the next phase of database computing. User devices
were now linked together. File servers were introduced to support
sharing of data among widespread platforms, with the user device doing
most of the processing following data retrieval.

Eventually, file servers became bottlenecks as LANs increased their user i
population. File servers also did little in the areas of security, network .

68 © Computer Technology Research Corp.

Page 75 of 165

4. Open Database Connectivity

control, and data integrity. Thus, the next stage of database operations
emerged: client/server computing, relational DBMS (RDBMS), and SQL.

SQL was originally defined by IBM for its SQL/DS and DB2 products.
Other vendors have now adopted IBM’s basic premise, but have
incorporated extensions that inhibit interoperability. The need for
standards became critical.

Both the American National Standards Institute (ANSI) and the
International Standards Organization (ISO) have created working
groups to define SQL standards. The resulting ANSVISO standard
included an earlier ANSI X3.135-1986 document, along with Addendum
1. The latter outlines the syntax and semantics of Referential Integrity
constraints.

In 1989, a new edition of the standard was released. It was called ANSI
Database Language SQL with Integrity Enhancement. This specification
detailed the syntax for Data Definition Language commands and Data
Manipulation Language commands, plus embedded SQL commands
within a host language.

The 1989 standard lists two levels of conformance to its mandates. Level
2 is the full SQL package. Level 1 is a subset of Level 2, and represents
a cross-section of prevailing SQL implementations available then. SQL2
and SQL3 variants have either been released (SQL2), or remain in the
planning stage (SQL3). ANSI and ISO continue to cooperate in
producing these latest versions.

Meanwhile, the SQL Access Group strives to resolve differences among
commercial implementations of the language. Some industry leaders do
not participate in SAG, so its ultimate success is uncertain.

Other players in the SQL standards arena include X/Open. Its
specifications roughly follow ANSI specifications, with particular
attention given to Unix environments. ISO’s Remote Database Access
(RDA) standard also is designed to facilitate access to server databases

from client devices.

® Computer Technology Research Corp. 69

Page 76 of 165

4. Open Database Connectivity

When reviewing products associated with SQL, one must also take into
account the databases to which they are linked. SQL does not exist in
a vacuum. It functions in conjunction with an information repository.
The SQL products in Table 4.5 are not all-inclusive, they are only
representative of offerings available in the marketplace.

Table 4.5 Representative SQL Product Offerings

SQL Server Sybase

SQL Server Microsoft/Sybase
SQL Base Gupta Technologies
informix Online Informix Software
NetWare SQL Novell

Oracle Server, Oracle? Oracle

XDB-Server XDB Systems
Interbase Borland/interbase
intelligent Database Ask (Ingres Division)
Rdb DEC

08/2, APPC Server IBM

SQL consists of three core components, the DDL, DML, and Data
Control Language. The last is basic in its concept. It can grant or revoke
access. There are refinements as to how these commands may be
applied. For example, user groupings may be specified in some
implementations.

DDL can create tables, indexes, and views, the latter a logical
transparency defined for a specific need during data access. Tables
contain real data and indexes aid information retrieval. Indexes can
assist with range searches, so-called wild card searches, ordering, along
with direct retrievals and updates.

70 © Computer Technology Research Corp.

Page 77 of 165

4. Open Database Connsctivity

Most users will invoke SQL in one of two ways. Static SQL is found in
stable application programs that are used repeatedly without change.
Except for parameters, SQL statements contained within these
programs do not vary from one execution to another.

Dynamic SQL is generally transparent to the end-user, i.e., it is found
in system software that must handle a changing environment. For
example, database browsing is managed by interactive query support
software that meets changing user demands. Occasionally, even
application software might need the facilities of dynamic SQL, but
generally system software handles all the situations which compel its
use. Commands such as SQLDA (SQL dynamic area) and DESCRIBE
(fills in SQLDA) deal with dynamic SQL situations.

Several trends are evident for SQL, along with the databases to which
it is linked. Most of the new features are part of SQL2 and SQL3
standards, the latter not yet an official standard, but still in the
development stage. New features include:

e Adding control structures to SQL to permit it to deal
with larger blocks of application logic.

« Adopting object-oriented features into the SQL language
that are now found in object-oriented databases.

o Integrating inference rules into SQL in order to support
features like recursion.

e Adding multimedia data types and their access
mechanisms into SQL. Several vendors have inserted
some form of one or more of these new features into
their products. As SQL3 inches closer to official
acceptance as a standard, yet further commercial
offerings will incorporate SQL extensions, particularly
in the area of object-oriented technology. Figure 4.5
illustrates a projection of SQL developments during this
decade.

® Computer Technology Research Corp. 71

Page 78 of 165

4. Open Database Connaectivity

Figure 4.5 SQL Development Time Line

sy — - Ingres "objects"
— - IBM Distributed Relational Database

Architecture (DRDA) Announcement

Ly — - SQL Access Group interoperability
— demonstration
1992 - Oracle Version 7.0

1 - IBM delivers "objects"

= - SQL2 ratified
1993 - First SQL2 Level 1 products

T - First SQL Access Group product

—_ - SQL3 draft issued
= - DRDA ratified

1995 —| - DBMS market consolidation

- IBM delivers full SQL2

Source: Gartner Group

SQL is a volatile technology. The search for standards manifested in the
work of ANSI, ISO, SAG, X/Open, and others continues unabated. What
began in the 1970s as an attempt to facilitate database access has
evolved in the 1990s as a group of differentiated products.

72 © Computer Technology Research Corp.

Page 79 of 165

4. Open Database Connectivity

While the core functionality of SQL offerings are generally harmonious,
“extracurricular” extensions present a major problem. Most databases
still exist as islands of information, requiring different access procedures
to retrieve and manipulate data. ODBC is yet one more effort to
harmonize data access problems for the user. It appears to have an
excellent chance of accomplishing that goal.

Application Development

An application initiates the following steps when interacting with a
Data Source:

« (Connects to the Data Source by specifying its name and
associated identifiers.

e Processes SQL statements. Includes moving the SQL
text string to a buffer, submitting the statement for
prepared (will use same SQL statement later) or
immediate execution, handling error information
received from the Driver and implementing appropriate
action.

e Completes each transaction by either committing it or
rolling it back, depending on the success of the overall

process.

¢ Terminates the Data Source connection upon
completion of assigned task.

Figure 4.6 depicts a basic sequence of ODBC function calls as they
execute SQL statements, the very core of application processing.

Connecting to a Data Source

A Data Source consists of the data a user wishes to retrieve, its
associated DBMS, the platform on which the DBMS resides, and the
network service used to reach that platform. The Data Source may be
local, in which case there would be no network involved.

©® Computer Technology Research Corp. 73

Page 80 of 165

4. Open Database Connectivity

Figure 4.6 Basic Sequence of ODBC Function Calls

Initialize

Repeatable Execution?

Yes

SQLPrepare

SQLSetParam SQLSetParum

SQLExecDirect
SQLExecute

v

Kind of Statement?

SELECT
statement

UPDATE, DELETE,
or INSERT statemaent

Y

SQLNumResultCols
SQLDescribeCol
SQLBindCol

SQLRowCount

SOL'Felch

Yes No

A 4
SQLFreeStmt

I

if repeat
SQL Transact

if more processing

[Terminate j

74 © Computer Technology Research Corp.

Page 81 of 165

4. Open Database Connectivity

Connection information for each Data Source is stored in a special
ODBC initialization file (ODBC.INI) which is created when the system
is first configured, then updated as required. Administration software
modules manipulate and control this file when needed.

All Drivers in the system support the following connection-oriented
functions:

e SQLCONNECT enables an application to connect to a
Data Source. The application provides identification
data in the call to SQLCONNECT. This consists of the
Data Source name, user 1D, and an optional password.

¢ SQLALLOCENYV allows the Driver to allocate storage
for environment data.

e SQLALLOCONNECT allows the Driver to allocate

storage for connection information.

When an application calls SQLCONNECT, the Driver Manager uses the
Data Source name to determine the location of the Driver DLL. It then
loads the Driver DLL and passes arguments from SQLCONNECT to it.

There may be additional steps involved, dependent on the nature of the
Data Source. An error condition will be transmitted if the connection
attempt is unsuccessful.

ODBC Software Installation

Users install ODBC software by implementing a vendor-supplied Setup
program or one that is specific to the application. Setup calls an
installer DLL in order to obtain information on the Drivers that
accompany the package. The Setup program then installs all Drivers
and associated files. The installer DLL receives information about each
installed Driver at the end of the Setup procedure.

The complete installation system consists of the following components:

© Computer Technology Research Corp. 75

Page 82 of 165

4. Open Database Connectivity

* Setup program and related files provided by the vendor,
or a customized module appropriate for a specific
application.

* An installer DLL that is part of the ODBC software
development kit,

* An installation file which contains information about
the Drivers.

* An installer DLL initialization file that records data
about installed Drivers. This file is created by the
installer during the Setup process.

Once the full configuration is installed, it may be modified as conditions
change through use of an ODBC administration program. The latter
enables addition or deletion of Data Sources via modification to installer
DLL information.

ODBC Alternatives

Although ODBC has received widespread industry support and may
achieve de facto standard status, it focuses on the Windows
environment. Other contenders have appeared which may diminish
ODBC’s influence over time. It is still too early to gauge their impact,
however.

Oracle, for example, has announced an API offering called Glue. It will
provide access to Oracle databases, as well as to data in electronic mail
servers and the increasingly popular personal digital assistant devices.

Another group has produced an approach entitled Integrated Database
API (IDAPI). Backed by Borland International, WordPerfect
Corporation, Novell Incorporated, and IBM, it even supports ODBC. As
with the latter, IDAPT is described as a superset of the SAG
specification.

76 © Computer Technology Research Corp.

Page 83 of 165

4. Open Database Connectivity

The IDAPI architecture (see Figure 4.7) consists of an API, an object
layer, a service layer, an SQL driver, and various database drivers. It
can also provide access to non-relational databases if so required.

Figure 4.7 IDAPI Architecture

Client Client Client
application application application

IDAP! API (includes an SQL APl and a navigational APl)

Object layer

Manages: ® Configuration files
» Status of drivers, databases and data formats
® Connections and sessions

Service layer

» Buffers xBinary Large Objects
s[nternational character sets »Sort function

s[n-memory tables

SQL Driver

Other
Drivers

Paradox dBase

» Translates navigational !
driver

commands into SQL
* Translates between data

types Sybase
_“__j driver
NetWare L—“

Driver

SQL driver
interBase Oracle Open Database Connectivity
driver Driver (ODBC) driver
® Computer Technology Research Corp. 77

Page 84 of 165

4. Open Database Connectivity

The API consists of the SAG CLI for SQL users, as does ODBC. In
addition, there is an IDAPI navigational API for programmers adept
with record-oriented PC-type databases. Multiple API types allow users
to access databases in a mode with which they are most comfortable.

The object layer is the central functional element of IDAPI. It converts
function calls for eventual use by database drivers. It also loads
database drivers as needed. The object layer manages multiple sessions
between clients and database servers, including error control functions.

The service layer handles conditions specific to the client applications
and database servers within the system. It also sets up buffers and
performs related services.

Over 30 companies have committed to supporting IDAPI, some of whom
also support ODBC. IDAPI developers claim their offering is
complementary to ODBC, but emphasizes multivendor platform support
in contrast to ODBC’s Window-centric focus.

78 © Computer Technology Research Corp,

Page 85 of 165

Chapter 5

Messaging API

History

E-mail emerged in the 1960s on various computer timesharing systems
as users sought new methods of communication. These early initiatives
were primitive by today’s standards, typically involving only a couple of
day’s programming effort. All implementations were, of course, unique
to their own user group. Little thought was given to potential
interoperability needs of the future.

In 1969, the Advanced Research Projects Agency Network (ARPANET)
was created by the U.S. government. It was designed to allow research-
ers within industry and academia to transmit computer data to each
other, and to initiate program execution on remote systems. If one could
send computer files, why not shorter messages such as E-mail?

ARPANET’s prime contractor developed in 1970 a software vehicle that
allowed their local mail system to communicate with independent mail
systems at other ARPANET sites. This contractor, Bolt, Beranek, and
Newman Incorporated, thus launched the network E-mail phenomenon.
ARPANET users quickly became dedicated practitioners of messaging
services. Commercial products gradually became available in the
ensuing years.

MAPI is not E-mail; it is a facilitator of E-mail. In the years since
ARPANET, users and other interested parties have searched for a
universal access (or API) to the voluminous mail offerings that have
appeared in the marketplace. If an application works with one product,
it would be beneficial if that same application could send an identical
message to another mail service without altering parameters in the
sending application (see Figure 5.1).

© Computer Technology Research Corp. 79

Page 86 of 165

. Messaging AP!

Figure 5.1 MAPI Facilitator

Application 1 Application 2

Messaging System 1 Messaging System 2

1:Different applications for each messaging system

Application

MAPI

Messaging System 1 Messaging System 2

2: One Application for multiple messaging systems

Source: Microsoft

® Computer Technology Research Corp.

Page 87 of 165

5. Messaging API

This is what MAPI seeks to accomplish, albeit in a Microsoft Windows
context. Others working toward the same goal, as shown in Figure 5.2,
are the X.400 API Association with their Common Mail Calls, Lotus and
others with VIM, Apple with Open Collaborative Environment, etc. See
Appendix B for further details.

Figure 5.2 MAPI Vendors

DT Publishing Spreadsheet Word Processor Applications
VIM Simple Cross Platform
’ MAPI| Messaging API

‘ OS APIls and

(MAP| J OCE Subsystems

Services
VIM: Vendor-independent Messaging
CMC: Common Mail Calls
OCE: Open Collaborative Environment
Source: Microsoft
© Computer Tachnology Research Corp. 81

Page 88 of 165

5. Messaging APJ

Despite all of these efforts, most current applications remain tied to
messaging systems that are not interoperable with their peers. There is
no commonality in the user interface, procedures for access, and
supporting tools are unique to a particular platform or software module.
Users attempting to implement workgroup computing find it difficult to
succeed when even basic messaging systems are incompatible.

Thus, MAPI, VIM, and the others attempt to provide messaging appli-
cations with independence from various system anomalies. In fact, VIM
is so determined to solve this problem that they have declared their
intention to service MAPI environments as well as their own broad
array of procedural accommodations.

The impact of solutions such as MAPI on enterprisewide message
systems is profound. Developers can now add messaging capabilities to
their applications without being concerned about the actual service
provider. Instead of writing versions of their application for each
messaging system, one MAPI-compliant version provides a capability for
universal messaging.

In addition, workgroup computing becomes a more viable exercise.
Everyone can communicate with each other. Data such as charts,
reports, project schedules, and timesheets can be shared among a broad
spectrum of corporate workers. Users of the Windows operating system
all see the same graphical interface. The addition of MAPI to this
scenario removes, at least to the user's view, the idiosyncrasies of
underlying messaging systems.

Microsoft worked with dozens of vendors when formulating design
parameters for MAPL. They all provided input toward the goal of
producing an “open” messaging standard for industry, particularly for
the Windows segment. A partial list of independent software vendors
supporting MAPI appears in Table 5.1. Since MAPI may ultimately
attain standard status, this list is only a fragment of support sure to
emerge in the near future.

82 © Computer Technology Research Corp.

Page 89 of 165

5. Messaging APl

'3 Table 5.1 A Sampling of ISVs Suppotrting MAPI

2 Beyond, Inc.

; Forms Vendors Delrina Corporation
JetForm Corporation

| WordPerfect Corporation
[| Word Processing Vendors At Inc.
FranklinQuest
Polaris Software
Archive Software

Fifth Generation Systems

Personal Information Management Vendors

Tape Backup Utility Software Vendors

Medical Software Vendors PenKnowledge
Alacrity Systems

Document Imaging Vendors - -
Keyfile Corporation

Microcom

Network Utilities Vendors

Xtree Corporation

Calera Recognition Systems

NUKO Information Systems

Claris Corporation
Pilot Software
Software Publishing Corporation

Powercore, Inc.

Raindrop Software

Action Plus Software, Inc.
I Chronos Software
GlobalStream Corporation

Electronic Meeting Vendors -
Ventana Corporation

CAD Vendors ISICAD, inc.
Workflow-enabled Business Solutions Vendors | Dun & Bradstreet
Capella Systems

E-mail Vendors
Lenel Systems

Dynamic Graphics Vendors LABTECH
Wireless/Mobile Communications Vendors Fourth Wave Technology, Inc.

Shapeware

© Computer Technology Research Corp. 83

Page 90 of 165

5. Messaging API

Among the many issues put forth by vendors cooperating in the MAPI
effort were the following:

* Developers want open capabilities at both the client
end, as represented by Windows, and also at the service
end. Whether host or LAN-based, the proposed API
must be able to deal with a variety of messaging
systems. There must also be a uniformity of capabilities
so that an application receives consistent messaging
service.

* The messaging API should be integrated with the
features of the underlying operating system. The
operating system itself must include messaging
functions and interfaces tailored to its unique strengths.
By integrating functionality into the operating system,
every user will have identical capabilities. If it was
allowed to be an optional extra, the same users would
not possess full functionality. In addition, developers
can write advanced software knowing it impacts every
user of the target operating system.

* Corporate-wide messaging requires an ability to
communicate with alternate operating system
platforms. Consequently, an operating system-based
API must also support a cross-platform industry
standard that provides, as a minimum, basic sending
and receiving capabilities. MAPI addressed these needs
by supporting the X.400 API Association industry-
standard cross-platform effort. MAPI is also an integral
component of the Windows operating system.

Messaging Subsystem

MAPI is more than just a set of standard APIs, although that alone is
important enough to warrant attention. In Microsoft’s vision, MAPI is
a messaging subsystem present in the Windows operating system.

84 © Computer Technology Research Corp.

Page 91 of 165

5. Messaging API

It works similar to their print drivers, i.e., different print drivers work
in conjunction with Windows software, rather than directly with each
application. This allows applications to function with a variety of
printers. MAPI’s messaging subsystem employs the same approach —
different messaging applications can communicate with a variety of
messaging services. MAPI is one of the first to integrate its services into
the resident operating system.

When an API is initiated, a command or function call is invoked. It tells
the underlying messaging subsystem what action is required. The mes-
saging subsystem does not replace functionality provided by packages
such as X.400, Novell’'s MHS, etc. Rather, it performs services that
shield the user from the distinctness present in these packages.

In essence, the messaging subsystem performs the following tasks:

¢ provides common user interfaces for sending, receiving
and storing messages;

e manages different message stores and address book
directories;

¢ controls various communication transports needed to
move messages among different messaging systems;

¢ holds messages for later transmission when a message
system is disconnected;

e sends status information to applications when
messaging activities occur.

Thus, software developers can create applications that work consistently
for all users of the operating system. The same basic functionality will
be present on every desktop. No accommodation has to be made for
operating system users who may not have a piece of add-on software.
The messaging subsystem is integral to that same operating system, not
an implementation afterthought.

© Computer Technology Research Corp. 85

Page 92 of 165

5. Messaging API

MAPI Architecture

It is no longer necessary, at least in a Windows environment, to create
separate messaging and workgroup applications for each platform in a
processing environment. As depicted in Figure 5.3, MAPI APIs service
the application, MAPI SPIs accommodate different message system
providers, and Windows messaging subsystem capabilities ensure that
all users have the same tools.

Figure 5.3 MAPI Architecture

-
——||

1\

Messaging-enabled
applications

Windows Messaging Subsystem MAPI

Service-provider interfaces

SPIES———— e

MS Mail All-in-1 PROFS

86 © Computer Technology Research Corp.

Page 93 of 165

5. Messaging API

MAPIs set of function calls, in conjunction with the messaging
subsystem, act as a broker between front-end (client) applications and

back-end networks and messaging packages.

This allows both

application developers and messaging system vendors to be free from
each other’s concerns. They each can concentrate on improving the
efficiency of their own products.

The MAPI front-end (client) APIs are available in two varieties. There
is Simple MAPI for the most commonly used messaging tasks, and
Extended MAPI for more advanced messaging services. Table 5.2 lists
Simple MAPI function calls.

Table 5.2 MAPI Function Calls

MAPI call :

MAPILogon Begins a MAPI session.

MAPILogoft Ends a MAPI session.

MAPIFree Frees the memory allocated by the messaging subsystem.

MAPISendMail Sends a standard mail message. Messages can be sent without any
user interaction or can be prompted via a common user interface
(dialog box).

MAPISendDocuments | Sends a standard mail message. This call always prompts with a

dialog box for the recipient’s name and other sending options. It is
primarily intended for use with a scripting language such as
spreadsheet macro.

MAPIFindNext

Aliows an application to enumerate messages of a given type. This
call is targeted at incoming mait.

' MAPIReadMail

Reads a mail message.

MAPISaveMail

Saves a mail message.

'MAPIDeleteMail

Deletes a mail message.

MAPIAddress Allows the user to create or modify a set of recipient entries using a
common address dialog box.
MAPIDetails Presents a dialog box that provides the details of a given address-

book entry. The amount of information presented is determined by
the address-book provider (on the back end) to which the entry
belongs.

_MAP!ResoiveName

Resolves a friendly name (an alias) to an address-book entry. This
call offers the option of prompting the user to choose between
ambiguous entries if necessary.

® Computer Technology Research Corp.

87

Page 94 of 165

5. Messaging AP{

Simple MAPIs allow applications of various types operating in a
Windows environment to perform messaging services. For example, a
word processor or spreadsheet routine can forward data to targeted
recipients. A scheduling utility can forward project milestones to
workgroup members for their information and comment. Whatever the
application, message initiators need not be concerned about the
underlying messaging system or network entity in a MAPI-compliant

configuration.

Extended MAPI provides more sophisticated service via additional APIs.
These additional APIs are often unique to the installation. Applications
employing Extended MAPI handle large and complex transmissions.
They often require higher level addressing features due to the large
volume of messages being serviced.

A timesheet form, for example, may be distributed periodically to collect
labor records. Once this data has been appended, it would automatically
be transmitted to a corporate payroll system for monitoring, editing, and
payment action.

Extended MAPT’s message store and address book capabilities offer the
following services:

* Message store uses folders to organize messages. Folders
contain messages which can contain attachments.
Folders, messages, and attachments have parameters
associated with them such as time sent and type.
Folders are organized into a hierarchical, tree-
structured format. Users can browse through this folder
structure searching for a particular subject, type,
sender, or whatever criteria is appropriate for the
assembled body of information present. Received
messages can also be modified, then returned to their
folder for subsequent use.

* Address books are a collection of message recipient lists.
Each list is called a container and can exist as a single

88 © Computer Technology Research Carp.

Page 95 of 165

5. Messaging API

entity or in multiple form. If different messaging
systems are used together, each with their own direc-
tories, MAPI presents a single master address book to
a user that combines all of the directories available.
This masks system complexities from that user.

Security features in a MAPI environment vary according to what is
offered by the resident operating system. Windows NT, for example,
provides more sophisticated security options than Windows 3.x. There
are a variety of available procedures relative to user logons: from simple
one-time user identification, to multiple, layered ID checks each time a
user enters a new workgroup application area. The messaging sub-
system encrypts all security data that it stores for a service provider.

MAPI uses object-oriented techniques for its messaging functions,
although they do not necessarily follow any of the nebulous standards
emerging in this arena. The MAPI object model is, however, consistent
with Windows-type object-oriented models, recognizing all messaging
system DLLs as separate objects.

As explained earlier, MAPI is integral to the Windows operating system.
This enables it to offer advanced messaging, but diminishes its role as
a multiplatform player. Microsoft is, however, an active participant in
the X.400 API Association (XAPIA) which is creating a cross-platform
API set. In addition, Simple MAPI will work with MS-DOS and
Macintosh platforms during the interim while XAPIA completes its
universal calls for basic cross-platform messaging functions.

MAPI Solutions

MAPI helps to solve three core problems endemic to any messaging
system: supporting multiple messaging services with the same client,
integration of services at the desktop, and working with specialized
service providers.

Because MAPI removes the mutual reliance between client applications
and the server messaging system, there is complete transport
independence. This enables an organization to convert all users to the

® Computer Technology Research Corp. 89

Page 96 of 165

5. Messaging AP!

same client E-mail application. Users will then have the same API on
every desktop. Uniformity and consistency are achieved for the user
interface.

The benefits of a common user interface extend to service integration at
the desktop. Services such as facsimile, voice support, conventional mail,
and links to third-party information utilities such as CompuServe can
be accessed from the one, universal client application (see Figure 5.4).
Appropriate Drivers would be installed for each type of service offered.

MAPI also more easily supports various service providers such as
database packages, corporate directories, and related entities due to its
modular configuration. Address books, message stores, transport
mechanisms are all supported separately. Thus, an organization can
select whatever back-end packages that are needed, while maintaining
the aforementioned universal client front-end application.

Alternative Standards

Microsoft is a member of XAPIA, the cross-platform messaging API that
is based on the X.400 standard. It has declared its intent to support
XAPIA’s Common Mail Calls (CMCs) which are similar in functionality
to Simple MAPI capabilities.

Microsoft also supports Apple’s Open Collaborative Environment (OCE)
for Macintosh environments. These, along with VIM, are the major
alternative API standards of direct interest to MAPI developers and
practitioners at this time. VIM has declared its intent to support MAPI
calls, so there is a degree of confluence in these multiple efforts.

Future Directions

MAPI is a full-featured messaging system. It provides multiple service
interfaces (transport, address book, message store). Each enables
developers to create installable DLLs for their services. The SPI
mechanisms allow an application to access multiple transports, address
books, and message stores. MAPI also offers an object model and
features full integration into Windows.

90 © Computer Technology Research Corp.

Page 97 of 165

5. Messaging APi

Figure 5.4 Integration of Services

[Windows-based client]
MAPI

H H H ' M

i.e. CompServe,
MCI, AT&T

MAPUT’s kinship with Windows is both a strength and a weakness. It is
a weakness in the sense that it is Windows-centric. Whether it can be
successfully ported to foreign environments and still maintain full
functionality is yet to be determined.

On the other hand, Windows integration means MAPI is universal in
the marketplace. Everyone has identical capabilities on the desktop.
Vendors and users will not have to worry whether all components are
present. They will have a uniform presence.

This uniform presence will aid MAPIin addressing future user concerns,
particularly in areas such as groupware and mail-enabled application
support. With the latter, functions such as word processors and
spreadsheets are becoming mail-enabled, which allows data to be
forwarded directly into the mail network.

@& Computer Technology Research Corp. 91

Page 98 of 165

5. Messaging AP|

APIs such as MAPI, VIM, OCE, and XAPIA are encouraging the
development of yet more mail-enabled and groupware applications. They
then use the mail network as a transport capability between
applications. Within the next two to three years, API usage within
groupware environments will also greatly enhance this growing segment
of the market.

There is an excellent opportunity for MAPI to achieve standard status
due to the strength of Windows. The other efforts all have their
strengths, however, and will continue to serve those environments from
which they emerged.

92 © Computer Technology Research Corp.

Page 99 of 165

Chapter 6

License Service API

The arrival of PCs into corporate environs bestowed great benefits on
users, but also opened up the problem of software licensing. Generally,
to help control software usage, vendors ask purchasers to sign a license
agreement and then enforce the agreement through various
methodologies.

There are three such methodologies that apply to PC software. It can be
licensed: 1) to the individual, 2) to the machine, or 3) for concurrent use.

An individual license means, as the name implies, that the software is
licensed to a specific individual. For example, if a network has 30 PCs,
but only 20 of its users actually run the software in question, then 20
licenses are required, one for each user. Problems relating to movement
of the user, etc. are handled uniquely by different licenses.

When software is licensed to a machine, that software is authorized for
use on a specific device. If a network with 30 PCs has 20 machines with
the software installed, then 20 licenses must be in place in order to
maintain legal propriety. If a user decides to install that software on a
portable device, for example, it must be erased from one of the existing
PCs, or another license must be purchased.

With a concurrent use type license, the determining factor is the number
of copies of a software product that are in use at any given point in
time. For the 30 PC network with 20 users example, if only 15 of the 20
users run the software at the same time, then 15 licenses are required,
not the 20 licenses mandated by the two previous license types.

@ Computer Technology Research Corp. a3

Page 100 of 165

6. License Service AP]

If concurrent usage of the software package exceeds the original number
at some time in the future, additional licenses must be acquired. This
type of license demands more management than other types. An
installation may employ a third-party software routine to monitor
software package concurrent use. Many vendors implement lock-out
mechanisms as a means to control user access. This software utility
allows only a set number of users to access a program at any one time.

The increasing use of portable and home-based PCs has led to
development of another licensing approach. Some allow only one copy to
be memory-resident at one time. Other licenses impose a percentage
division of software usage. For example, 75% on a designated primary
machine and 25% on a secondary machine such as a laptop device.

Licenses are often maintained by a license server that supports one or
more licensing procedures. Each license server is available to several
network stations. Since each software vendor can select its own licensing
terms, license servers must be able to deal with various licensing
models. For example, concurrent, individual, and specific machine
licensing may all be encountered in a random configuration.

There are several organizations involved in software licensing,
monitoring and enforcement. The Software Publishers Association (SPA)
is a large trade association for the PC software market. It has over
1,000 members and vigorously battles software piracy in North America
and Europe.

The Business Software Alliance (BSA) is another influential consortium
of software companies determined to enforce copyright laws on an
international scale. Key members include Microsoft, Novell, Aldus,
WordPerfect, Autodesk and Lotus. Most of these firms are also members
of the SPA. The BSA has been particularly active in the Orient and
third-world countries.

There is a third organization headquartered in England entitled the
Federation Against Software Theft (FAST). Its efforts are primarily
focused in the UK.

84 © Computer Technology Research Corp,

Page 101 of 165

—

6. License Service API

LSAPI Goals

The LSAPI specification is a vehicle which software publishers can use
to incorporate license verification into their products, in a manner
independent of a particular software licensing system. This API allows
vendors to create a single approach to all licensing systems that support
LSAPI conventions.

LSAPI minimizes vendor difficulty in implementing software licensing,
potentially requiring only two function calls to accomplish the task.
When using LSAPI, the application does not need to know anything
about supporting infrastructure issues such as type of computers in use,
or type of network. Instead, the application can connect to all licensing
services needed across multiple computing environments in a platform-
independent manner.

Figure 6.1 depicts a software licensing model in its totality. It also
shows the model as it would operate in a client/server, networked
environment. In a single system situation, both server and client entities
could reside on the same platform. LSAPI deals solely with the interface
between 1 and 2 in the Figure. Components numbered 3, 4, and 5 deal
with the licensing system itself, along with its management, terms, and
conditions.

The specific goals of LSAPI are many, but perhaps the most
fundamental is: Help the honest person remain honest. Other more
precise goals are:

e Provide a relatively simple API which software
developers can use for licensing. It should be
appropriate for a diverse audience of software
publishers, licensing schemes, operating systems, and
network configurations.

o Support application interfaces to multiple license
systems.

® Computer Technology Research Corp. 85

Page 102 of 165

6. License Service API

Figure 6.1 Software Licensing Model

,,,,,,,,,,,,,,,,,,,,,,

Licensed Software

License Service API

2

Common Licensing Library

'
...

Server

3

Software Licensing System

License System Management

5
. Licenses

Source: Microsoft

96 © Computer Technology Research Corp.

Page 103 of 165

6. License Service API

e Provide an API that not only supports, but actually fac-
ilitates, interaction with licensing methodologies such
as concurrent use, individual use, or machine-based.

e Minimize the effort required to implement use of
software licensing within a vendor’s products.

* Allow software developers to isolate their product’s
program code from specific licensing policy. The latter
will be managed by the target licensing system.

* Be scalable to operate on a full range of processing
platforms, from the smallest to the largest, networked
or single system.

¢ Provide security controls against “meter adjustments,”
i.e. prevent tampering with the licensing system.

It should be emphasized that the goals of LSAPI are focused within
boxes 1 and 2 in Figure 6.1. Issues, of which there are many, associated
with the rest of the licensing model are beyond the scope of LSAPIL.

LSAPI Function Calls

The following calls support basic functions of the licensing system. They
include the ability to request the licensing system to grant application
software permission to run, to terminate that permission when no longer
needed, and to modify the status of licensing resources granted to the
requesting software product.

Each LSAPI function call is accompanied by arguments appropriate to
the command being executed. At present, there are six LSAPI calls:

1) LSRequest — Requests the licensing system to grant the
calling software authorization to execute. Among the
arguments are license system identifier, name of the
product requesting license resources, and name of the
publisher.

@ Computer Technology Research Corp. 97

Page 104 of 165

6. License Service AP!

2) LSRelease — Requests that the licensing system release
licensing resources associated with a specific procedure.

3) LSUpdate — Updates synchronization between licensed
software and the licensing system, including previous
usage of the software.

4) LSGetMessage — Returns the message associated with
LSAPI status code, such as error determinations.

5) LSQueryLicense — Obtains information about the license
or service provider, such as what type of license type is
applicable.

6) LSEnumProviders — Identifies the vendor, product, and
licensing system version of the installed license system
providers.

LSAPI Environments

LSAPI was created to function successfully on many operating system
platforms. Windows is obviously a primary target, but others can utilize
this package. Operating environments which support dynamic linking
have a distinct advantage. The LSAPI architecture allows multiple,
concurrent license system service providers when dynamic linking is
supported. In addition, application programs are not bound to a specific
license system.

Operating systems which do not have dynamic linking, such as MS-
DOS, may invoke emulation procedures to achieve support for multiple,
concurrent service providers. If dynamic linking is not supported in any
manner, then the application is statically linked to a vendor-specific
licensing module as illustrated in Figure 6.2.

98 © Computer Technology Research Corp.

Page 105 of 165

6. License Service API

Figure 6.2 Static Linking

LSAPIl-enabled

Application

Statically-Linked Module

with LSAP! Interface

Network or other link

Specific License System

Table 6.1 Sampling of Operating Systems with LSAPI-related Characteristics

Windows Yes Yes | Yes
MS-DOS | Yes Yes | No*
MacmshM Yes No* i No~
O>§/2_ Yes Yes Yes
'r Open VMi Yes Yes Yes
{ Unix Yes No** No*

* Runtime license system independence may be provided by a library which is statically linked to the application.
** Some Unix versions may provide for runtime linking.

© Computer Technology Research Corp. 99

Page 106 of 165

6. License Service AP|

LSAPI Benefits

Perhaps the major disadvantage of having many non-standard licensing
systems is the burden placed on users to learn about each system and
which applications interface with which. If additional licensing systems
are added, more must be understood about the multiplicity of systems.
Requiring people to absorb all this peripheral information is looked upon
as an impediment to productivity. To the user and network
administrator, licensing should proceed automatically and transparently,
with little or no impact on their daily tasks.

The benefits of LSAPI, therefore, are important in terms of overall
productivity. By providing a single, system-level interface for connecting
front-end applications with back-end license services, software
developers and users alike do not have to worry about conversing with
numerous services, each with its own protocols and APIs. Making these
connections becomes the job of license system providers and the
operating system management layer, not of individual applications.

The License Service API provides a framework in which licensing-
enabled applications can seamlessly access license information in a
distributed computing environment and on a stand-alone PC. It
accomplishes this by making a common set of APIs available to all
applications.

Like two diplomats conversing through an interpreter, a front-end
application and back-end service do not need to know how to speak each
other’s language in order to communicate, as long as they communicate
through the License Service API. As a result, LSAPI allows applications
developers, information systems managers, and vendors of back-end
license services to mix and match applications and services to build
enterprise solutions that shield programmers and users from the
underlying complexity of the license system.

Although the primary benefit of LSAPI is its ability to provide software
publishers with seamless connection to license systems, other significant
benefits include:

100 © Computer Technology Research Corp.

Page 107 of 165

6. License Service API

¢ REasier license management for IS managers. Because
LSAPI simplifies the software licensing process, it
enables IS managers and network administrators to
more easily track application usage. Through proper
tracking and control, the terms of the license agreement
can be properly maintained.

¢ Easier upgrade paths for IS managers. Because LSAPI
enables a single application to work with multiple back-
end services, IS managers can upgrade or change their
licensing services without affecting the users or their
applications. Each set of users can use the software
that suits their needs, and IS managers can deploy
solutions without fear of interfering with strategies
planned for the future.

e Expanded market opportunities for software publishers.
Adding support for new types of license systems can be
extremely costly, and a publisher’s potential market
might be limited to those organizations that use the
license systems already supported by the publisher’s
product. With the License Service API, the software
publisher’s market opportunities are expanded to
include customers who use any license service that
supports LSAPI.

e Reduced costs for software publishers. Embedding

license management and metering into an application

’ is an arduous process. LSAPI relieves both corporate

developers and software publishers of this burden by

providing a single interface for all applications. Through

this single point of access to different back-end license

services, LSAPI eliminates the need for applications

developers to rewrite their applications for each new
licensing policy.

e Reduced burden on licensing service providers. With a
standard interface to access back-end license services,

© Computer Techrology Research Corp. 101

Page 108 of 165

6. License Service AP

LSAPI reduces the burden on the back-end service
vendors to provide system software and interfaces to
their products. Because new implementations of back-
end services can be accessed from a common API, the
vendors need only include the service provider interface
library for their products.

* Platform independence. LSAPI is not tied to any
environment. It can be implemented within the
Windows operating system, VMS, Unix, Macintosh, and
OS/2. Support for the API within multiple environments
allows software vendors to port their applications to
different operating systems without rewriting the
licensing portion of their software.

* Network transparency. LSAPI is designed to isolate
applications from the details of network communication
with a license server. It is the responsibility of each
license system service provider to handle the protocol
details. As a result, the underlying network in any
environment becomes incidental to the applications
developer. Networks such as Novell N etWare, Microsoft
LAN Manager, DEC PathWorks, and Banyan VINES
can provide support for LSAPI.

As license service vendors begin implementing support for the License
Service API within their products, applications written to the LSAPI
specification will be able to access an increasing number of licensing
systems. If these license services are upgraded, or if new license service
products appear, the same applications will be able to immediately
access them without modification, as long as the license services comply
with the specification. The software publisher need only issue a license
appropriate for the license system in use.

Operational Overview

Under the LSAPI model, an application must request licensing services
from a license server each time the application is started. Figure 6.3

102 © Computer Technology Research Corp.

Page 109 of 165

6. License Service AP/

illustrates a typical licensing process of a License Service API-enabled
application.

Figure 6.3 How an Application Requests a License
from a License Server

TEmmmm e License s
E 1 [—— Allocated

License Request J——
asssnss—
License Grant
ee—

Application transparently Server finds a valid license
requests permission to run and grants permission
L]
s e o
o Deallocated
License Release LI [m—
o
When the application terminates, The license is made
the licensae is released available to others

To ensure that the system is reasonably tamper-free, the request/grant
process is authenticated through the use of “secrets” that are exchanged
by the client application and the license provider. Chosen by the
software publisher, these secrets are typically encrypted within the
license itself, and only the license provider knows how to decrypt them.

© Computer Technology Research Corp. 103

Page 110 of 165

6. License Service API

The secret authenticates the license, providing protection against
attempts to impersonate a license service.

In Chapter 1, Figure 1.7 shows the implementation of LSAPI within the
Windows environment. This implementation of the API is integrated
into the larger framework of WOSA, which provides even further
independence of the application from the underlying system.

As the figure illustrates, a license-enabled application first calls
functions that are part of LSAPI. Next, LSAPI functions interact with
a provider management layer within the operating system that manages
connections to multiple license service providers, among other tasks. The
appropriate service provider interface then “translates” LSAPI function
calls into the license service provider’s native function calls. Once in
native format, the information is sent to the appropriate license service
for processing.

In the Figure 1.7 environment, LSAPI is independent of the particular
licensing system or licensing policy and allows multiple license providers
to transparently coexist. In other words, licensing software on a server
can implement a wide variety of licensing schemes, yet still remain
independent of LSAPI. The License Service API only provides a
standard means through which applications and license service
providers communicate — it does not specify the licensing mechanism or
policy. Because of this, software publishers are able to choose the
licensing system and policy that best suits their business needs.

LSAPI Vendor Support

The job of defining LSAPI was initiated by Brightwork Development,
DEC, Gradient Technologies, Microsoft, and Novell. Many other vendors
representing diverse market segments have joined the effort and
expressed their support as seen in Table 6.2.

104 © Computer Technology Research Corp.

Page 111 of 165

6. License Service AP!

Table 6.2 Vendors Who Support the Job of Defining LSAPI

Apple Computer Inc. Micrografx Inc.
Banyan Systems Inc. Microsoft Corp.
Brightwork Development NetWare Masters Group
CompuServe Inc. Novell Inc.
DEC Open Software Foundation
Funk Software Oracle Corp.
Gradient Technologies Inc. Software Publishers Association
Hewlett-Packard Symantec Inc.

i Highland Software Tangram Systems Corp.
Lotus Development Corp. WordPerfect Corp.
Microcomputer Managers Association XTree

Conclusion

The primary goal of LSAPI is to make it easy for software publishers to
integrate personal computers with a wide variety of licensing services.
This enables software publishers and systems vendors to focus on
building powerful solutions rather than overcoming incompatibilities
between various products.

Corporate IS groups also benefit from LSAPI. Having a standard means
of accessing multiple licensing services means that software licensing is
simplified across a wide range of platforms and allows IS managers to
easily change or upgrade applications or license services. As a result,
corporate IS personnel can worry less about software licensing and focus
more on managing their computing resources.

© Computer Technology Research Corp. 105

Page 112 of 165

Chapter 7

Windows Sockets API

The specification for Windows Sockets (WinSock) defines a network
programming interface for Windows systems which derives its
inspiration from the University of California’s BSD 4.3 Unix offering. It
contains both traditional Socket routines and extensions designed to
exploit Windows’ message-driven nature.

Early versions of WinSock are targeted for use in TCP/IP environments.
Using the API with alternate protocol suites is slated for future releases.
In TCP/IP environments, it provides a high level of familiarity for
programimers accustomed to using Sockets in conventional Unix-TCP/IP
venues.

This API operates with all versions of the Windows operating system
from 3.0 onwards. In this context, it can function with both 16- and 32-
bit configurations. The aforementioned extensions in WinSock enable
application developers to generate software that conforms specifically to
the Windows programming model. They also aid in creating more robust
applications with their expanded capabilities.

The origin of the WinSock API traces back to 1991. An ad hoc committee
was established at a computer conference to develop a specification for
Sockets in the Windows environment. By early 1992 the initial draft
document was published. Early leaders in the specification development
effort were JSB Corp., NetManage Inc., FTP Software, and Microsoft
itself: Additional contributions came from individuals in companies or
organizations such as Sun Microsystems, Massachusetts Institute of
Technology (MIT), Hewlett-Packard, and 3Com.

© Computer Technology Research Corp. 107

Page 113 of 165

7. Windows Sockets API

Sockets Basics

Sockets, which first appeared in BSD Unix 4.2, are communication end
points to which names can be attached. They serve as APIs between
user applications and network protocols. TCP/IP is the predominant
implementation. Most Unix products now support Sockets and its
emerging competitive API: System V Transport Layer Interface (TLI).
Figure 7.1 depicts the Socket system call entity within the Unix kernel.

Figure 7.1 Socket System Call Interface

APPLICATION
PROGRAM

SOCKET SYSTEM CALLS

NETWORK INTERFACE

UNIX KERNEL

Several system calls allow users to access the transport service. The
major calls are listed in Table 7.1.

108 © Computer Technology Research Corp.

Page 114 of 165

7. Windows Sockets AP{

Table 7.1 Principal Socket System Calls

System Call
Socket Create a Socket of a specific type
Bind Provide a name for an existing Socket
Close Terminate the use of a Socket
Listen Create a queue for incoming connection requests
Accept Access a request or wait for one
Connect invoke a connection with a remote Socket
Send Send data on a specific Socket
Send To Connectionless version of Send
_Recv Receive data on a specific Socket
Recv From Connectionless version of Recv
GetPeerName Obtain address of peer process connected to a Socket
GetSocketName Obtain local address associated with a Socket

A summary of their functions follows:

e Socket. To initiate network /O, a user process must
implement this command. It contains three arguments:
protocol family (e.g., the Internet, Appletalk network,
etc.), communication type (e.g., connection-oriented or
connectionless), and specific protocol (e.g., TCP/IP). Not
all combinations of these arguments are valid. For
example, a protocol family might not support all
communication types.

¢ Close. When a process is finished with a Socket, it
issues this command. A single argument identifies the
Socket to be closed. If a process aborts unexpectedly,
most systems automatically close all open Sockets.

© Computer Techniology Research Corp. 109

Page 115 of 165

7. Windows Sockets AP!

* Listen. Once a Socket has been created, buffers can be
allocated to store multiple incoming connection
requests. This is initiated by the Listen command. It
contains two arguments: socket (identify the Socket that
will receive connections), and queue length (specify the
length of the request queue for the Socket). Listen is
used only by connection-oriented servers for stacking
service requests.

* Bind. Names are attached to the Socket by this
command. Once assigned, a name becomes available to
a remote process, perhaps a server, so that it can
address the Socket. It contains three arguments: socket
(identify the Socket to be bound), local address (specify
the local address) and address length (number of bytes
in the address). Not all argument combinations are
valid. For example, a local address may already be in
use by another program.

* Accept. Once a Socket has been created, the server
takes the first connection request on the queue, if any.
Otherwise, it awaits such a request. The Accept system
call initiates this process. It has three arguments:
1) socket (identifies the Socket on which to wait),
2) address (becomes the address of the client placing
request), and 3) address length (provides the length of
the client address).

* Connect. A Socket is initially not associated with a
remote destination. Connect links an application
program to a specific Socket. This is typically a client
connecting to a specific server. There are three
arguments: 1) socket (identifies the Socket to connect),
2) destination address (specify Socket address), and
3) address length (provides the length of the destination
address).

110 @ Computer Technology Research Cormp.

Page 116 of 165

e

7. Windows Sockets AP!

¢ Send. There are several variations for this system call,
depending on whether there is a connection-oriented or
connectionless Socket. Send works with the former.
Send To is an example of the connectionless variety.
The differences between them are trivial. The purpose
of both is to transmit data via a Socket. Included among
the arguments are: socket (specifically the Socket to
use), message (provides the address of the data to be
sent), length (identifies the length of the data to be
sent), and flags (contains control information relative to
data transmission).

¢ Recv. As with Send, there are several variations.
Processes call Recv to obtain data from a connected
Socket. It has four arguments: socket (specifies Socket
from which data should be received), buffer (identifies
where to place the data in memory), length (provides
the length of the buffer area), and flags (contains
control information in order to manage the trans-
mission). Recv From is an example of a call to a
connectionless Socket.

¢ Get Peer Name. Newly-created processes inherit open
Sockets from the process that created them. In order to
obtain the address of a peer to which a Socket connects,
this system call is issued. It has three arguments:
socket (specify the Socket for which the address is
desired), destination address (points to the location to
receive the Socket address), and address length (points
to the integer that receives the address length).

e Get Sock Name. Returns the local address associated
with a Socket. It has three arguments: 1) socket
(specifies the Socket for which the local address is
desired), 2) local address (points to the location that will
contain the address), and 3) address length (points to
the integer that will contain the address length).

©® Computer Technology Research Corp. 111

Page 117 of 165

7. Windows Sockets AP}

In addition to the conventional activity of binding and using Sockets,
application programs may wish to impose other conditions relative to
Socket usage. Examples of this are buffer space management, send
broadcast messages, retransmit parameters, etc. There are two system
calls available that enable the user to implement processing options:
Getsockopt and Setsockopt.

Getsockopt allows the application to obtain information about the Socket.
It has five arguments:

1) socket, which identifies the Socket for which
information is needed;

2) level, which specifies whether this activity applies to a
Socket or its underlying protocol;

3) option ID, which specifies a single option to which the
request applies;

4) option value, which points to the buffer address into
which the requested value is placed;

5) length, which points to the integer address into which
the option value length is placed.

Setsockopt permits an application program to set a Socket option using
identical values obtained with the previous system call. It has the same
five arguments as Getsockopt, except the length entry will contain the
length of the option passed to the system.

Not all options apply to all Sockets. Variables such as underlying
protocol and Socket status impact the specific choice of options used.

Sockets as implemented in BSD Unix are an integral part of the
operating system kernel (see Figure 7.1). That feature is both its
strength and its weakness. It is positive in that performance is
enhanced by a tight coupling of Socket function and Unix kernel

i1z © Computer Technology Ressarch Corp,

Page 118 of 165

7. Windows Sockets API

processing. There are no intermediate layers or steps incurred when a
Socket system call is invoked.

It is negative in terms of adaptability. Changes to Socket functionality
or underlying protocol stacks requires modifying the core of the
operating system — the kernel. This is the antithesis of openness and
non-modularity, and is the downside of Socket integration into the
kernel. The other API to the transport protocols (TLI) ameliorates this
close-knit protocol association and allows broader protocol interaction.

Berkeley Deviations

As cited earlier, WinSock adheres closely to the BSD Unix
implementation of Sockets. There are some deviations that have
occurred, however, due to the unique requirements of a Windows
environment. They include the following:

* A new data type (Socket) has been defined in order to
anticipate file needs in future Windows releases such as
NT. It will also aid in porting applications from 16-bit
to 32-bit configurations.

* Error codes set by WinSock are handled differently
than in BSD implementations. The latter makes them
available by the global “errno” variable. An API is
utilized in WinSock which makes it more adaptable to
future Windows evolutions.

* All pointers used by WinSock applications are of one
specific type. To facilitate this, new data type
definitions have been provided.

¢ Some BSD function names have been altered due to
duplication with Windows API names.

* WinSock uses a special command to close Sockets since,
unlike BSD connections, Socket descriptors do not
always correspond to their file counterparts.

® Computer Technology Research Corp. 113
g

Page 119 of 165

7. Windows Sockets API

* The maximum number of Sockets supported by any
vendor’s product is implementation specific. A typical
number is 64, but this can be varied at compile time by
changing appropriate parameters.

Windows Extensions

WinSock offers a number of extensions (see Table 7.2) to the basic set
of BSD Socket routines. These extended APIs deal primarily with
message-based, asynchronous access to network operations. Use of these
extensions, when appropriate, is recommended for conformance with the
Windows programming model.

Implementation

At last count, membership in the Windows Sockets development group
exceeded 300 in number. They come from a broad range of
organizations, companies, and agencies.

Many of these organizations have tested commercial implementations
of Version 1.1 of the WinSock specification. Among those testing
successfully are firms such as IBM, FTP Software, 3Com, Microsoft,
NetManage, JSB, Novell, SunSelect, Ungermann-Bass, and The
Wollongong Group.

Future developments will focus on achieving standards recognition for
WinSock, particularly in the Internet community with their “Request
For Comments” documents. Additional commercial implementations can
also be expected as the standard matures.

114 © Computer Technology Research Comp.
Page 120 of 165

7. Windows Sockets APl

Table 7.2 Windows Sockets Extensions

WSAAsyncGetHostByAddr() A Set of functions which provide asynchronous
WSAA's'yncGetHostByName() versions of the standard Berkeley
1 WSAAsyncGetProtoByName() getXbyY functions. For example, the

WSAAsyncGetProtoByNumber() | wSAAsyncGetHostByName function provides an

WSMSY“CG“%WBYNWGO asynchronous message-based implementation of
WSAAsyncGetServByPort() | the standard Berkeley gethostbyname function.
WSAAsyncSelect() : Perform asynchronous version of select
WSACancelAsyncRequest() Cancel an outstanding instance of a
WSAAsyncGetXByY function.
WSACancelBlockingCall() Cancel an outstanding “blocking” API call
WSACIleanup() Sign off from the underlying Windows Sockets DLL
WSAGetLastError() Obtain details of last Windows Sockets API error
WSAIlsBlocking() Determine if the underlying Windows Sockets DLL is

already blocking an existing call for this thread

WSASetBlockingHook() “Hook” the blocking method used by the underlying
Windows Sockets implementation

WSASetLastError() Set the error to be returned by a subsequent
WSA GetLastError

WSAStartup() Initialize the underlying Windows Sockets DLL

WSAUnhookBlockingHook() Restore the original blocking function

@ Computer Technology Research Corp. 115

Page 121 of 165

Chapter 8

Windows SNA API

SNA API Overview

In view of Microsoft’s determination to further penetrate the enterprise
and IBM’s goal of seeking a wider platform base for SNA, the emergence
of this API could have been predicted. IBM, Microsoft, and 18 other
companies listed in Table 1.2 jointly cooperated in developing the
specification.

An application written to these standard interfaces will run unchanged
over many vendors’ connectivity products, operating under both
Windows and Windows NT. Currently, Windows applications accessing
SNA are linked to a particular vendor’s SNA interface software. Change
the connectivity product, and the application will also require alteration.

Included in WOSA, Windows SNA API provides a standard interface
between the client world (typically) of Microsoft and the server universe
of IBM. Both vendors can, of course, function in either client or server
mode in accordance with the nature of the application.

To provide developers with the full SNA functionality that is needed, the
API specification supports all SNA API categories currently used by pro-
grammers. This includes HLLAPI, APPC, CPI-C, LUOQ, and CSV APIs.

The HLLAPI interface is used with existing 3270- and 5250-based
applications. Both the APPC and CPI-C APls are used to write
cooperative applications for the LU 6.2 protocol. The LU0 API is used
to gain access to low-level SNA data streams that are often found in
banking environments. The CSV API performs character set translations
and interfaces with IBM’s NetView package.

@ Computer Technology Research Corp. 117

Page 122 of 165

8. Windows SNA AP!

Microsoft’s implementation of Windows SNA API is on a client/server
platform. Windows, NT, and DOS clients are supported by a Windows
NT-based system performing as an SNA server (see Figure 8.1).

Figure 8.1 SNA Server for Windows NT

IBM AS/400 IBM Mainframe
systems systems

3270 emulation
LU6.2 applications
LUOQ applications
NetView support

5250 emulation
LU 6.2 applications

SNA Server
for Windows NT

Windows for
Workgroups

Windows

{*) Via downstream PU support

SNA Server

The SNA Server for Windows NT offers yet one more option for
achieving enterprisewide connectivity. By employing a client/server
architecture, this approach improves the flexibility of both host
computers and end-user systems. Each client device uses the installed
LAN to connect to an appropriate server via standard LAN protocols.

The server then provides shared links to host computers running SNA
protocols. Servers also perform much of the processing workload, thus

118 © Computer Technology Research Corp.

Page 123 of 165

8. Windows SNA API

relieving desktop PCs from many resource-consuming tasks. SNA Server
offers numerous tools which facilitate system setup and use, regardless
of the platforms and operating systems present in the SNA network.

Some of the key features of SNA Server include:

* it can connect products such as Microsoft Mail and SQL
Server to IBM host mail and database systems

* it supports all WOSA SNA APIs for Windows and
Windows NT operating systems

* it supports 3270 and 5250 emulators for Windows, NT,
DOS, 0S/2, and Macintosh operating systems from
vendors such as Attachmate, FutureSoft, Eicon
Technology, DCA, Wall Data, and IBM

* it supports APPC, CPI-C, CSV, LU0 and HLLAPI APIs
for advanced SNA applications in each client
environment

* it provides SNA session security and fault tolerance

* it supports client PCs across LAN and wide area
network (WAN) bridges, routers, and NT’s Remote
Access Service (see Figure 8.2)

* it performs automatic load balancing in order to
efficiently distribute workload

* it supports a wide variety of LAN protocols (802.2,
IPX/SPX, TCP/IP, NetBEUI)

¢ it uses the C2-level security of NT to safeguard corp-
orate data on the host. C2 is a U.S. government-defined
security category which aids in protecting information
resources

* it supports NT platforms such as those based on Intel,
Alpha, and MIPS processors

© Computer Technology Research Corp. 119

Page 124 of 165

8. Windows SNA AP

Figure 8.2 SNA Server Functions

New York Dallas
Finance Corporate Manufacturing
SOL Server ES/8000 AS/400

Token-Ring

TCP/P LAN

Deskiop Windows NT
running Advanced
Windows Server
TCP/IP LAN
Router
Desktop Desktop
running running
Windows Windows NT
Notebook
running
Windows

The capacity of SNA Server is impressive. It supports, for example, up
to 500 dependent and 500 independent LU sessions per server. Up to 50
simultaneous host connections (physical units) can be handled per
server. It also sustains up to 250 users per server, and can interact with
most of the IBM physical unit and logical unit protocols. Examples of
the latter are LUO, 1, 2, 3 and LU 6.2.

Comprehensive support for NetView management system is provided by
SNA Server. Communication problems are relayed to NetView through

120 © Computer Technology Hesearch Corp.

Page 125 of 165

8. Windows SNA API

automatic data-link alerts. Bidirectional transmissions to and from
NetView are attained via API support. It is also possible to initiate NT
commands at the NetView console.

SNA Server device interface driver support is provided for by the
adapters shown in Table 8.1. Support for additional adapters is supplied
by the adapter manufacturers themselves.

Table 8.1 Supported SNA Communications Adapters

fos _Aday Connection
IBM 3278/9 Emulation Adapter Distributed Function Terminal (DFT)
IBM 3278/9 Advanced Emulation Adapter DFT
IBM MPCA Synchronous Data Link Control
(SDLC)/X.25
IBM SDLC Adapter SDLC/X.25
IBM 3270 Connection Model A DFT
IBM 3270 Connection Model B DFT
iBM MPA/A SDLC/X.25
Any NT supported Token Ring or Ethernet 802.2
Adapter

Windows NT offers an advantageous platform for PC to host
connectivity. SNA Server for Windows NT enables users to implement
multiple SNA connectivity products without changing application logic.

Future Trends

Windows SNA API is an important part of the overall WOSA model.
SNA remains the most widely installed proprietary network in the
world. This standard interface to the SNA environment from Windows
platforms enables Microsoft to make further inroads into enterprise
computing. At the same time, it strengthens SNA itself by opening it to
a wider audience.

© Computer Technology Research Corp. 121

Page 126 of 165

8. Windows SNA AP|

Novell, for example, announced plans to add support for the new APIs
into its NetWare 3270 LAN Workstation for Windows, a client 3270
emulation program. With standard SNA connectivity available from both
the best-selling LAN product and PC operating system platform, IBM’s
feature-rich network architecture will gain new adherents.

The SNA API, along with the RPC and Sockets APIs, gives WOSA the
initial communications support elements it needs to begin achieving its
broad connectivity goals. Sockets works with Unix-based applications.
RPC enables Windows applications to exchange data with OSF’s DCE
environment, as well as build distributed solutions. There will
undoubtedly be additions to this lineup as WOSA continues to evolve.

122 © Computer Technology Research Corp,

Page 127 of 165

Chapter 9

Windows Extensions for
Financial Services

M

XFS Overview

The XFS specification is evolving rapidly despite its relatively short
existence. The Banking Systems Vendor Council (BSVC) was officially
formed in 1992. By the end of that year, active participants included:

e Andersen Consulting
« DEC

¢ EDS Corporation

« ICLPLC

¢ Microsoft

¢ NCR Corp.

e Olivetti

* Siemens Nixdorf AG
¢ Tandem Computers
e Unisys

The BSVC released initial specifications in late 1992 for comment by
banking industry members and technology suppliers. Review actions are
still proceeding. Appendix E identifies some of the primary contacts
involved in specification review.

BSVC’s mission statement encompasses the following objectives:
e Reduce the cost of software development and main-

tenance by improving efficiency and productivity of
development organizations, reducing the cost of devel-

@© Computer Technology Research Corp. 123

Page 128 of 165

9. Windows Extensions for Financial Services

oper training, and allowing the use of a much larger set
of existing applications.

* Improve time-to-market of new applications via simpler
development with resulting faster deployment.

* Allow organizations to build modular, scalable systems
using a wide array of technology options while
leveraging legacy applications.

* Define an architecture workable across a broad range of
platforms.

* Encourage utilization of standard interfaces and
platforms during application development.

* Reduce user training costs.

In order to implement the objectives stated herein, the BSVC created a
corresponding set of strategies. They are as follows:

* Use the Windows operating system in all its variations
as their basic platform for client/server computing.

* Use WOSA interfaces and services as the basis for
integrating Windows applications into the overall
corporate processing strategy.

* Use WOSA components to the maximum extent possible
for financial services computing. In all cases, employ
existing technology standards whenever feasible.

* Enhance WOSA with XFS to meet the special needs of
financial services applications when accessing unique
services and devices.

WOSA XFS routines include specifications for access to peripherals
peculiar to financial transactions such as passbook/journal/receipt
printers, magnetic card readers/writers, and PIN pads. They also
support financial transaction messaging and management, network
system management, and security procedures. All of these access

124 © Computer Technology Research Corp.

Page 129 of 165

9. Windows Extensions for Financial Services

capabilities function from Windows client nodes and will be incorporated
into the larger WOSA model as appropriate.

The BSVC has identified numerous benefits from utilizing Windows,
WOSA, and XFS technologies. They include the following:

e Access financial services and special hardware via the
Windows paradigm, thus reducing long-term training
costs.

 Leverage the vast body of applications and development
tools in the Windows environment.

e Develop applications that will operate on the wide array
of Windows platforms and operating systems, from 3.x
to NT to Windows for Workgroups.

« Deploy modular, scalable financial services systems that
are adaptable to evolutionary changes in the industry.

The core elements of XFS are definitions for a set of APlIs, along with
their corresponding SPIs, plus supporting services, that allow Windows
applications to access financial services software and hardware. These
standard APIs allow applications to access differing service providers
without altering application code, much like all WOSA components.

Due to the unique nature of devices employed in the financial services
industry, initial BSVC focus has been on providing access to them,
rather than overall API development. The devices in question have
complex interfaces. Standardizing those interfaces will provide
immediate productivity gains in financial services computing.

The XFS architecture is shown in Figure 1.8. As shown, applications
communicate with services and devices via the XFS Manager, using the
API set. Most of these APIs can be initiated synchronously or asynch-
ronously. In the former, the Manager causes the application to wait
until the APT’s function is completed. With asynchronous, the applica-
tion regains control immediately, while the function is performed in

parallel.

® Computer Technology Research Corp. 125

Page 130 of 165

8. Windows Extensions for Financial Services ’

The XFS Manager maps specified APIs to the corresponding SPI, which
then routes this request to the appropriate service provider. As
illustrated in Figure 1.8, the Manager refers to a registration database
to direct the API to the proper service provider access point.

It is planned that manufacturers of financial peripheral devices will
develop the actual service providers for their units. A setup routine for
each device or service will also be implemented in order to define
registration database content. The contents of this database will allow
an application to seek status information on all available devices and
services.

The classes of financial devices shown in Table 9.1 are being
implemented for early versions of WOSA XFS. Each vendor is creating
APIs for their respective devices. Future additions to this list include
devices such as smart cards, card embossers, signature scanners, bar
code readers, hologram readers, and other technological innovations,

Table 9.1 Classes of Financial Devices

DEVICE VENDORS

A. Printers
-Receipt and Journal Olivetti, Siemens Nixdorf, NCR
-Passbook and Document ICL, Unisys, DEC

B. Magnetic Stripe Readers/Writers ICL, Siemens Nixdorf
-Swipe
-Dip
-Motorized
-Writeable

C. PIN Pads NCR, ICL
-With and Without Display
-With and Without Encryption

D. Cash Dispersers (Note, Coin, Check) NCR, Digital, Siemens Nixdorf
-ATMs
i _:T_t_el_ie_er Service Centers
| E. Check Readers (MICR and OCR) | Unisys, Olivetti

F. Image Scanners Unisys, Olivetti

126 © Computer Technology Research Corp.

Page 131 of 165

—

9. Windows Extensions for Financial Services

Architectural Issues

Windows and XFS are based on an event-driven, asynchronous model.
As described earlier, the XFS design allows an application using its
interfaces to operate in both a synchronous and asynchronous manner.
Most XF'S API functions can be requested in either a synchronous or
asynchronous mode. Further details on these modes are as follows:

* Synchronous — The function does not return to the
caller until the operation has completed. It is used
when an operation can take an indeterminate amount
of time to complete, yet the caller wishes to handle the
function in a sequential manner. Functions issued in a
synchronous manner are referred to as blocking. If a
blocking operation cannot be completed immediately,
the XF'S Manager executes a Windows message loop on
behalf of the calling application, thereby keeping the
Windows system running. An application can have only
one blocking call outstanding at any one time.

* Asynchronous — An asynchronous function is also used
for operations which may take an indefinite amount of
time to complete. However, the XF'S Manager returns
to the caller immediately, with an indication that the
request has been initiated and is being processed. Upon
completion of the request, a Windows notification
message is posted to the application window specified in
the call, communicating the result of the request.

When an asynchronous request is issued, the XFS
Manager assigns a sequence number, the Request ID,
to the request. When the request finishes, the XFS
Manager posts a specific message for the request to the
application window, specifying the Request ID, and
passing a structure containing data on the processed
request. Performing an operation in an asynchronous
manner, as opposed to a synchronous manner, allows

® Computer Technology Research Corp. 127

Page 132 of 165

9. Windows Extensions for Financial Services

the application to operate in a Windows’ event-driven,
message-based manner.

* Immediate — This mode is used for those API functions
that are not either synchronous or asynchronous.
Typically, immediate APIs are those which do not
communicate with a physical device or a service and,
hence, are guaranteed to complete immediately,
whether successful or not.

For both synchronous and asynchronous functions, a
time-out value can also be specified, indicating the
maximum number of milliseconds the application wants
to wait for completion of the operation. An application
can also implement a request that will wait until
completion, no matter how long the request will take,
by specifying a value for the time-out.

Error handling with XFS depends on the mode of
operation. Synchronous or immediate mode functions
return a value indicating whether the process has
executed successfully or not. The returned error code
can be requested by a special function call.
Asynchronous mode functions behave slightly
differently due to the multiplicity of operations possible
in this mode.

APl Functions

Functions defined by the XFS API are divided into three categories.
They are:

* Basic functions (see Table 9.2) that are applicable to all
financial services classes.

* Administration functions that are used specifically for
the purpose of administering services such as device
initialization, reset, etc.

128 © Computer Technology Hesearch Corp.

Page 133 of 165

-

9. Windows Extensions for Financial Services

* Specific commands which are used to request device or
service-specific functions, and are sent to devices and
services as a parameter of the Execute basic function.

Table 9.2 Basic Functions

FUNCTION DESCRIPTION
1. WFSAcknowledge Notity WOSA/XFS Manager that dynamic data can be freed
2. WFSCancelAsyncRequest | Cancel an asynchronous activity performed on a specified service
provider
3. WFSCancelBlockingCali Cancel any outstanding blocking operation
4. WFSAsyncExecute The asynchronous version of WFSExecute
5. WFSAsyncGetStatus The asynchronous version of WFSGetStatus
6. WFSAsyncLock The asynchronous version of WFSLock
7. WFSAsyncOpen The asynchronous version of WFSOpen
8. WFSCleanUp Terminate the use of the WOSA/XFS Manager
9. WFSClose Terminate a series of service requests
10. WFSDeregqister Disable event monitoring
11. WFSExecute Send service-specific commands to the service provider
12. WFSGetinfo Retrieve information on a service
13. WFSGetLastError Retrieve information on the last error occurred
14. WFSGetStatus Retrieve information on the status of a service provider
15. WFSLock Establish exclusive control over a service provider
16. WFSOpen Open a session between a service provider and an application
17. WFSRegister Enable event monitoring
| 18. WFSStartUp Start the WOSA/XFS Manager
19. WFSUnlock Release exclusive control over a service provider
20. WFSisBlocking Determine if a blocking call is in process
| 21. WFSSetBlockingHook Install an application-specific blocking routine
. WFSUnhookBlockingHook | Restore the default blocking routine

© Computer Technology Research Corp. 129

Page 134 of 165

§. Windows Extensions for Financial Services

The SPIis constructed in a manner similar to the API. Some commands
are handled exclusively by XF'S Manager, and thus are not part of the
SPI. There are also some minor variances in the parameters passed at
the two interface levels.

Administration Functions and Specific Commands

One segment of the XFS API set deals with administration issues. They
are not used by financial applications directly, but perform support
services such as initializing a device, and suspending operations. Typical
functions are WFSInit, WFSReset, WFSSuspend, etc. Work continues on
this aspect of the XF'S architecture.

Specific commands apply to a subset of service provider classes.

Therefore, they are not included in the basic or administration
functions. As with the latter, their precise characteristics are still being
defined.

Implementation

A typical command sequence showing the usage of the proposed APIs is
as follows. This example illustrates a series of functions used to print a
form on a receipt printer device.

* StartUp (connects the application to the XFS Manager,
including version negotiation).

* Open (establishes a session between the application and
the device).

* Register (specifies the messages that the application
should receive from the service provider).

* Lock (obtains exclusive access to the device from the
application).

* Multiple Execute functions, passing a series of specific
commands: Select_Form (defines the data structure to
be used for the printing).

130 © Computer Technology Research Corp.

Page 135 of 165

Chapter 10

Windows Remote
Procedure Call API

RPC Overview

The primary value of RPCs is to simplify the writing of distributed
applications. To the user, an RPC masks the complexity of the network,
making it appear that a local procedure is being called. RPC
functionality is an important capability in a client/server networking
environment.

It is widely accepted that all technology users involved with networks
desire the following: dedicated processor, shared database, and
transparent communications. The preceding may not, in real terms, be
available to the user, but must at least appear to be so. The marriage
of distributed processing and an RPC facility brings this illusion closer
to reality.

A distributed computing configuration gives an assemblage of casually
connected systems the appearance of being a single entity. By invoking
RPC mechanisms in this distributed environment, the user can look
upon the entire aggregate of networked resources as one single system.
Programming distributed solutions thus becomes easier to implement.

The relationship of RPC to applications and the networks supporting
them is shown in Figure 10.1. Applications such as printing, E-mail,
database and network management, and user programs invoke services
provided at the distributed computing environment layer. This includes
RPC facilities.

@ Computer Technology Research Corp. 131

Page 136 of 165

10. Windows Remots Procedure Call APl

Figure 10.1 Relationship of RPC to Applications and Their Networks

Programs Print Mail DBMS Management| IMiscellaneous|

Socket Interface Other Transport
Interfaces
OS Kemel Transport and Network Protocols

LAN and WAN Connection

The applications remain independent of the underlying transport-level
interfaces. Only the DCE itself needs to be aware of the system’s trans-
port specifics. The particular transport protocol invoked could be
TCP/TP, OSI, or another. The user application simply initiates the RPC
mechanism; the rest is transparent to its view.

RPCs, as stated, are particularly appropriate for client/server
configurations. In this setting, clients request services from network
services. For example, a database server can provide requested data to
a variety of users and applications by processing RPCs issued by those
client entities.

Client/Server Model

RPCs provide two major components that aid in developing distributed
applications. There is a language/compiler combination that processes
the user’'s RPC parameters so as to mask complexities associated with
remote access. There is also a runtime facility that implements the
actual calling mechanisms represented by an RPC. The latter offers
transparency relative to wunderlying transport protocols and
architectures as far as application procedures are concerned.

132 © Computer Technology Research Corp.

Page 137 of 165

R e

10. Windows Remote Procedure Calt API

There are many varieties of RPCs in the industry today. Solaris from
Sun supports a transport-independent RPC mechanism which is
compatible with a widely installed ONC RPC. In addition, Solaris can
accommodate a variety of RPC mechanisms, such as that of OSF DCE
or the emerging OSI RPC standard, that can coexist peacefully with
each other. This allows integrated support for multivendor distributed
services, built using these different RPC technologies. It also gives
developers more freedom in designing and implementing RPC-based
applications that can interoperate in heterogeneous distributed
computing environments. (See Figure 10.2).

Figure 10.2 Transport-Independent RPC

Application
rpebind() read(file)

Solaris ! !
APl —> t

!
l
!
|
I
|
|
l
|

—> RPC "Layer”

‘ DCERPC i

{Z7) Solaris Core Distributed Service

The Interface Definition Language (IDL) in OSF’s RPC facility is similar
to the syntax of the C language. It processes RPC parameters and
provides additional constructs appropriate for a network environment
(see Figure 10.3). A compiler then translates IDL data into “stubs.” To
the local procedure, a stub represents the server process it is trying to
call. Similarly, on the server side, the remote procedure believes its stub
is the client it is trying to service. Thus, stubs are themselves servers

to their respective “clients.”

© Computer Technology Research Corp. 133

Page 138 of 165

10. Windows Remote Procedurs Call AP}

Figure 10.3 RPC Operational Sequence

RPC
Parameters
IDL Stub
Compiler
Stub Stub
Local Procedure — Remote Procedure
[| —

CLIENT

A stub does for the programmer what would otherwise have to be done
manually: copying arguments to and from RPC packets, converting data
formats, if required, and invoking the RPC runtime facility.

Microsoft’s implementation of RPC is compatible with OSF’s version.
Client procedures using Microsoft’s RPC Version 1.x and beyond will

134 © Computer Technology Research Corp.

Page 139 of 165

10. Windows Remote Procedure Call AP

interoperate with any DCE RPC server whose runtime libraries utilize
the connection-oriented, virtual model and run over a supported network
protocol (TCP/IP, etc.).

There are differences, however, between OSF’s and Microsoft’s RPC
implementations. Among them are:

¢ Microsoft IDL (MIDL) allows single line comments. OSF
IDL leaves this to the C preprocessor.

» MIDL supports more than one union nested in a struct,
whereas OSF IDL allows only one.

¢ MIDL context handles can be declared as pointers to
any user defined type, whereas OSF IDL context
handles must be of the type “void.”

e MIDL allows an attribute to occur as both a type
attribute and usage attribute if they are consistent.
OSF IDL does not support this duality.

* OSF IDL supports the pipes interprocess mechanism.
MIDL does not support pipes.

¢ MIDL supports constant integer expressions. OSF IDL
does not.

These are but a portion of the differences between OSF and Microsoft’s
RPC approaches. Despite their seemingly wide divergence, however,
there are more features that are in harmony than not. Thus,
interoperability between them is routinely achieved.

Reviewing an RPC operational sequence in more detail, Figure 10.3
shows that stubs are compiled and linked with the application. When an
RPC is initiated, the client application calls a local stub procedure. The
client stub code then:

@ Computer Technology Research Corp. 135

Page 140 of 165

10. Windows Remote Procedure Call AP}

¢ Retrieves the required RPC parameters from the client
application.

e Translates parameters into a standard Network Data
Representation (NDR) format in preparation for
network transmission.

e (alls client runtime library API functions in order to
send RPC parameters to the server.

e Calls server runtime library API functions to accept the
incoming data and calls the server stub procedure.

e Server stub procedure converts the NDR-formatted data
to native server format.

¢ The server stub then calls the server procedure.

e The remote procedure executes, perhaps generating
return data for the client application.

The process is then reversed. Data is formatted for network
transmission, etc. At the completion of this entire procedure, the client
application is mostly unaware of the preceding steps. To the application,
it appears as if this was a call to a local procedure. No knowledge of low-
level network protocols is required. Thus, powerful distributed
applications can be developed more easily.

RPC Development Tasks

Due to the remote nature of an RPC process, there are unique steps that
must be performed. For example, an interface definition must be created
that specifies interface identification, data types, and function
prototypes for the remote procedure. An application configuration file
will also be needed.

The actual interface definition will be compiled, in the Microsoft arena,
using the MIDL compiler. The latter then generates C language stub

136 ©® Computer Technology Research Corp.

Page 141 of 165

10. Windows Remote Procedure Call AP1

and auxiliary files, plus a header file for the client and server. This
header file is appended to client and server applications.

A server program is created that can both signal the client as to its
availability, as well as monitoring subsequent client requests. A server
termination routine must also be included.

Perhaps the most important step associated with the RPC process is
functional linking. Both the client and server entities must be linked
with their respective stubs, auxiliary files, and runtime libraries.

Interface Definition Language

The IDL, specifically Microsoft’s version, shown in Figure 10.3 provides
the features needed to extend the C programming language in order to
support remote procedure calls. MIDL is not just a variant of C. Rather,
it is a formal language that handles control of data transmission over
a network. Due to its similarity with C, however, developers are able to
quickly learn its characteristics. MIDL compiler options are listed in
Table 10.1.

Three prominent features of MIDL are strong data typing, directional
attributes, and data transmission support. It is strongly typed because
it provides keywords that define all base data type sizes, regardless of
the computer on which they are implemented. Specific types as short,
small, long, and float replace weakly-typed variables allowed in C.

Directional attributes indicate whether data is transmitted from client
to server, server to client, or in both directions. Data transmission over
the network is addressed by a transmit function which supports
conversion from one data type to another.

© Computer Technology Research Corp. 137

Page 142 of 165

10. Windows Remocte Procedure Call AP}

Table 10.1 Sample of MIDL Compiler Options

B : /mode ms_ext Microsoft extensions mode
: - MODE /mode app_config Application configuration mode
s /mode implicit_local | Assume non-remote data is [local]
/act filename Specify the attribute configuration file
e : /I directory Specity directory for import and include files
~ INPUT fimport ms_ext Compile only needed portions of imported IDL files
o P /import ms_nt Compile only needed portions of imported 1DL files
/import osf Assume imported IDL files are compiled separately
/no_def_idir Ignore the curent and the INCLUDE directories
/client all Generate client stub and aux files
/client aux Generate client auxiliary file only
/client none Generate no client files
e /client stub Generate client stub file only
~ OUTPUT FILE | /out directory Destination directory for output files
~ GENERATION | /server all Generate server stub and aux files
. /server aux Generate server aux file only
''''''' /server none Generate no server files
/server stub Generate server stub file only
/syntax_check Check syntax only; do not generate output files
""""" /Zs Check syntax only; do not generate output files
/caux filename Specity client auxiliary file name
B g /cstub filename Specify client stub file name
= | /cswich filename Specify switch stub file name
_ OU:’;:;E;'LE | /Fs filename Generate a listing file
e /header filename Specify header file name
e | st filename Generate a listing file
| /saux filename Specify server auxiliary file name
/sstub filename Specify server stub file name
..... -~ | [ec_cmd cmd_line Specity C compiler used for stub, aux files
R s | /cc_opt options Specify options associated with C compiler
g::;:gtig:gg /cpp_cmd cmd_line Specﬁfy name of C preprocessor
G OPT!ONS ; /cpp_opt options Specify additional C preprocessor options
. /D name[=def] Pass #define name, optional value to C preprocessor
e /no_cpp Turn off the C preprocessing option
/U name Remove any previous definition (undefine)
G /char signed C compiler default char is signed
L - | /char unsigned C compiler default char is unsigned
ENVIRONMENT | /char ansi7 Char values limited to 0-127
e - | /env dos MS-DOS client
/env win 16 Microsoft Windows 16-bit (WIN 3.x)
| /env win32 Microsoft Windows 32-bit (NT)

138

® Computer Technology Research Corp.

Page 143 of 165

10, Windows Remote Procedure Call AFI

Building RPC Applications

The specific procedures involved in creating a distributed application
can occupy several volumes. Fortunately, these procedures are very
similar for all operating systems and platforms. An overview of these
steps follows:

L

Develop C language and IDL files.

Generate C language stub files by compiling the IDL
and related files via the MIDL compiler.

Compile C language and stub files via the C compiler.

Link resulting object files with import libraries for the
resident platform.

Verify that the RPC DLL is in the path.

Run the client and server distributed applications.

There is obviously much planning and analysis that must accompany
the preceding steps, particularly when viewing distributed applications
from the perspective of an integrated system. Software tools to aid this
process are slowly becoming available in the marketplace.

@ Computer Technology Fesearch Comp.

—
[on]
©e

Page 144 of 165

Chapter 11

Windows Environment
Trade-Offs

Background

In the world as viewed by Microsoft, Windows is the center of the
universe. Whether 3.x, NT, or later variations— Windows is Microsoft’s
strategic product. WOSA is an architecture that enhances Windows’
viability in the marketplace. Thus, when evaluating WOSA, one must
first analyze its Windows foundations.

The Windows operating system has achieved almost de facto standard
status as the platform of choice for client applications. As such, it seems
to have bred a certain detachment in its developer and sponsor —
Microsoft. There appears to be a “welll go our own way” attitude
prevalent among the Microsoft employees, a view that the world needs
them more than the other way around.

This is always a dangerous attitude for any corporation. No matter what
one’s current success, the seeds of destruction lie ever-present in nearby
soil, waiting for a proper impetus to initiate the germination cycle. This
is not to claim that Microsoft faces imminent dissolution. They have
been quick enough on their feet to this point to adapt to market
realities. Their disdain, however, for mainstream technology standards,
the apparent attitude that they will establish their own standards, may
be a sign of less tranquil times ahead.

A case in point is Microsoft’'s OLE technology. The company has had
great success deploying this document and data sharing procedure on
standalone machines. Not only is it widely implemented in both the

© Computer Technology Research Corp. 141

Page 145 of 165

1. Windows Environment Tradeoffs

Windows and Apple Macintosh environments, but users aligned with
other systems are also clamoring for an OLE-like capability.

In recognition of its popularity, and in anticipation of the growing need
for a similar technology in networked, distributed configurations,
Microsoft is working on extending OLE techniques to a new distributed,
object-based operating system code-named Cairo. This new product could
enable Microsoft to control a vital technology: linking objects across
applications in a distributed architecture. It is scheduled for full
deployment during the middle yvears of this decade.

It is important to note, however, that in traditional Microsoft fashion,
they are ignoring existing object standards. The Object Management
Group (OMG) has been working on a Common Object Request Broker
Architecture (CORBA) standard in recent years. It has achieved
widespread commitment from major industry players that they will
follow its provisions.

Microsoft has not yet committed Cairo to the CORBA standard. They
are thus far implementing proprietary procedures. Future
interoperability with non-Microsoft environments is therefore uncertain.
Special gateways or other techniques may be needed to interoperate
outside Microsoft platforms.

Microsoft’s explanation for avoiding CORBA may be that the latter is
still defining many procedures, such as linking, that are required by the
Cairo operating system. OMG continues to develop these capabilities,
however, and its CORBA 2.x version will provide these object services
in the near future.

In contrast to Microsoft’s proprietary approach, Unix International (UD
1s developing its own Application Linking technology for Unix platforms
that will follow industry standards. They are basing their products on
OMB’s CORBA which provides them with a foundation for future
interoperability. Ul represents a large consortium of vendors associated
with the Unix marketplace.

4 4y o 5 -
142 © Computer Technology Research Corp.

Page 146 of 165

11. Windows Environment Tradeofis

Another important vendor grouping is also developing a distributed,
OLE-like technology. Apple, IBM, and Novell are working on a system
called Exemplar. As with UL this triumvirate has pledged to follow the
CORBA standard. Both of these standards-compliant efforts will provide
users with a clear migration path to implement OMG’s object linking
service once it is fully released.

The bottom line is that Microsoft’s competitors are determined that
Cairo will not set the tone for distributed object computing technology,
which is critical for supporting advanced applications. IBM, Ul, et al
intend to follow mainstream standards while adding their own value.
Microsoft plans to ignore such standards, unless those standards
overwhelm the marketplace. Time will determine if Microsoft is quick
enough to make whatever shift may become necessary.

Windows 3.x versus 0S/2 2.

Qtandards compliance, or lack thereof, is not the only soft spot in
Microsoft’s business plan. Windows 3.x itself, although an extremely
popular product among users, has weaknesses in some areas. In
comparison with IBM’s 0S/2 2.x, for example, Windows suffers by
comparison. At first glance, both operating systems appear somewhat
similar. They each offer a GUI, provide concurrent execution of multiple
applications, and enable applications to exploit larger memory resources.

0S/2 2.x goes beyond Windows 3.x in several areas, however. It gives an
enhanced user interface that is based on the concept of objects. Known
as the Workplace Shell, this feature represents an important step
forward in GUI desktop functionality. Also in the object mode category,
so-called Extended Attributes provide file system support for object-
oriented features.

Table 11.1 illustrates additional differentiating characteristics between
Windows and OS/2 2.x. Although features shown in Table 11.1 represent
only a sampling of differences, it can be seen that 08/2 2.x is more
suitable for a development environment than is Windows. At the same
time, 0S/2 2.x can do everything that Windows can, and can therefore
fulfill all the roles typically associated with Windows platforms.

Page 147 of 165

11. Windows Environment Tradeoffs

Table 11.1 Windows 3.x and 0S/2 2.x Technology Features

Physical Memory Limit 16 MB+ 16 MB+

Virtual Memory Limit 4 times physical 512 MB (disk space)
Muttitasking (DOS) Time slice Preemptive time slice)
Muftitasking (Windows or Cooperative Preemptive time slice

Presentation Manager)

Priority Static Dynamic

System Services Serial Paraliel

Protection Between Unprotected Protective

Applications

File System File Allocation Table (FAT) Enhanced FAT and
Performance

Service Support Error Logging
S NSRS TR St AAS VRN 05 . R

Error Logging Trace Utilities

Additional Limitations

Additional limitations in the Windows environment include the
following:

* Unprotected Resources — Lack of native Windows data
protection tools can hamper operations. Users must exit
to DOS when attempting to deal with common hard
disk problems, such as lost data clusters or damaged
File Allocation Tables and directories. These problems
can lead to system failure if not rectified.

* Inefficient Use of Resources - Hard disk fragmentation
by DOS diminishes system performance. This occurs
from DOS’ random system of storing data. Eventually,
data clusters must be rearranged inte a more logical
order to improve performance, which can suffer up to a
30% decline over time.

144 © Computer Technology Research Corp.

Page 148 of 165

11. Windows Environment Tradeotis

e Program Manager Lacks Flexibility - Windows
arbitrarily separates applications and files, making it
difficult for users to manage projects and organize their
workspace. Although Windows allows users to run
multiple applications, it does not provide a convenient
method to associate and quickly find the applications
and files required for a specific project.

e Tile Management Lacks Features — Ordinary tasks
such as copying, moving, and deleting demand
numerous keyboard entries and mouse clicks. File
compression and decompression also need simpler user
interfaces.

Future

Despite the negatives outlined in preceding paragraphs, there will be no
curtains for these Windows. WOSA, and the operating systems upon
which it is based, will prosper well into the next millennium. There is
simply too much momentum attached to the Windows phenomenon for
it to recede within the next ten years. WOSA provides the enhancements
needed to ensure future success.

As described earlier, the only cloud on Microsoft’s horizon is 1its
proclivity to ignore mainstream technology standards. They have forged
their own standards up to now. Whether a volatile technological
marketplace will continue to abide by this approach remains to be seen.

In addition, powerful and talented competitors continue to define their
own directions. The Unix consortiums, IBM and its multiple alliances,
DEC and its technology partners, the world of Sun Microsystems, etc.,
will challenge each move of Microsoft, and initiatives such as WOSA,
every step of the way. As the saying goes: “We are in for interesting
times.”

©® Computer Technology Research Corp. 145

Page 149 of 165

Appendices

mo o

ODBC Function Summary« .ottt e 149

MAPI-related Terms, Associated Concepts, and

Alternative Models 153

Windows for Workgroups L 157
. NTversusthe World 161

Banking System Vendor Council Contacts 163

Page 150 of 165

Appendix A

ODBC Function Summary

Task

Function Name

Connecting to a Data
Source

SQLAIlloCENV

—

Obtains an environment
handle. One environment
handie is used for one or
more connections.

SQLAllocConnect

Core

Obtains a connection handle.

SQLConnect

Core

Connects to a specific driver
by data source name, user
ID, and password.

SQl.DriverConnect

Level 1

Connects to a specific driver
by connection string or
requests that the Driver
Manager and driver display
connection dialogs for the
user.

SQLBrowseConnect

Level 2

Returns successive levels of
connection attributes and
valid attribute values. When a
value has been specified for
each connection attribute,
connects to the data source.

Obtaining Information
about a Driver and
Data Source

sqQLDataSources

Level 2

Returns the list of available
data sources.

SQLGetinfo

Level 1

Returns information about a
specific driver and data
source.

SQLGetFunctions

Level 1

Returns supported driver
functions.

SQLGetTypelnfo

Level 1

Returns information about
supported data types.

Setting and Retrieving
Driver Options

SQLSetConnectOption

Level 1

Sets a connection option.

SQLGetConnectOption

Level 1

Returns the value of a
connection option.

® Computer Technology Research Corp.

Page 151 of 165

149

Appendix A. ODBC Function Summary

SQLSetStmtOption Level 1 Sets a statement option.

Setting and Retrieving
Driver Options SQLGetStmtOption Level 1 Returns the value of a
(Continuea) statement option.
SQLAllocStmt Core Allocates a statement handle.
SQLPrepare Core Prepares an SQL statement
for later execution.
SQLSetParam Core Assigns storage for a
parameter in an SQL
statement.
Preparing SQL SQLParamOptions Level 2 Specities the use of multiple
Requests values for parameters.
SQLGetCursorName Core Returns the cursor name
associated with a statement
handle.
SQLSetCursorName Core Specifies a cursor name.
SQLSetScroliOptions Level 2 Sets options that control
cursor behavior.
SQLExecute Core Executes a prepared
staterment.
SQLExecDirect Core Executes a statement.
SQLNativeSql Level 2 Returns the text of an SQL
statement as translated by
the driver.
SQLDescribeParam Level 2 Returns the description for a
specific parameter in a
Submitting Requests S
SQLNumParams Level 2 Returns the number of

parameters in a statement.

SQLParamData Level 1 Used in conjunction with
SQLPutData to supply
parameter data at execution
time. (Useful for long data
values.)

SQLPutData Level 1 Send part or all of a data
value for a parameter. (Usefui
for long data values.)

Retrieving Results and | SQLRowCount Core Returns the number of rows
Information about affected by an insen, update,
Results or delete request.

150 © Computer Technolegy Research Corp.

Page 152 of 165

Appendix A. ODBC Function Summary

Retrieving Results and
Information about
Results (Continued)

SQOLNumResultCols

Conformance

Core

Returns the number of
columns in the result set.

sQLDescribeCol

Core

Describes a column in the
result set.

SQL ColAttributes

Core

Describes attributes of a
column in the result set.

SQLBindCol

Core

Assigns storage for a result
column and specifies the data

type.

SQLFetch

Core

Returns a result row.

SQLExtendedFetch

Level 2

Returns multiple result rows.

SQLGetData

Level 1

Returns part or all of one
column of one row of a result
set. (Useful for long data
values.)

SQlLSetPos

Level 2

Positions a cursor within a
fetched block
of data.

SQLMoreResults

Level 2

Determines whether there are
more result sets available
and, if so, initializes
processing for the next result
set.

SQLError

Core

Returns additional error or
status information.

Obtaining information
about the data
source's system tables
(catalog functions)

SQLColumnPrivileges

Level 2

Returns a list of columns and
associated privileges for one
or more tables.

sQLColumns

Level 1

Returns the list of column
names in specified tables.

SQLForeignKeys

Level 2

Returns a list of column
names that comprise foreign
keys, if they exist for a
specified table.

SQLPrimaryKeys

Level 2

Returns the list of column
name(s) that comprise the
primary key for a table.

@ Computer Technology Research Corp.

Page 153 of 165

151

Appendix A. ODBC Function Summary

Obtaining information
about the data
source’s system tables
(catalog functions)
(Continued)

SQL Procedure
Columnns

output parameters, as well as
the columns that make up the
resuit set for the specified
procedures.

SQLProcedures

Level 2

Returns the list of procedure
names stored in a specific
data source.

SQLSpecialColumns

Level 1

Returns information about the
optimal set of columns that
uniquely identifies a row in a
specified table, or the
columns that are
autormnatically updated when
any value in the row is
updated by a transaction.

SQL Statistics

Level 1

Returns statistics about a
single table and the list of
indexes associated with the
table.

SQLTablePrivileges

Level 2

Returns a list of tables and
the privileges associated with
each table.

SQLTables

Level 1

Returns the list of table
names stored in a specific
data source.

Terminating a
Statement

SQLFreeStmt

Core

Ends statement processing
and closes the associated
cursor, discards panding
results, and, optionally, frees
all resources associated with
the statement handle.

SQl.Cancel

Core

Cancels an SQL statement.

SQLTransact

Core

Commits or rolls back a
transaction.

Terminating a
Connection

SQLDisconnect

Core

Closes the connection.

SQLFreeConnect

Core

Releases the connection
handle.

SQLFreeEnv

Core

Releases the environment
handle.

152

Page 154 of 165

© Computer Technology Research Corp.

Appendix B

MAPI-related Terms
-sociated Concepts, an

1. Common Mail Calls (CMC) — The %.400 AP Association (XAPIA) has
created a committee to define a standard messaging interface for user
applications. In its early stages, members consist of a subset of XAPTIA
members including IBM and Microsoft itself. This is a good example of
vendors “covering all bets,” as witnessed by Microsoft’s participation
while also promoting MAPL

1f CMC “bears fruit,” its specification will contend with VIM and Simple
MAPI. Microsoft has pledged to migrate from MAPI if CMC is
manifested with a substantive solution.

9 Distributed Office Support System (DISOSS) ~ IBM runs this package
under VMS and VSE mainframe operating systems. It handles E-mail
and related documents in server mode for a variety of clients. DISOSS
uses IBM’s SNA Distribution Services (SNADS) to transport mail and
documents between systems. It gupports Document Content Architecture
(DCA) and Document Interchange Architecture (DIA) for controlling
complex documents. DISOSS is being slowly supplanted by X.400
services as well as by IBM’s own APPC (LU 6.2) peer-to-peet protocols.

9. Electronic Data Interchange (EDI) — Business documents transmitted
over networks are increasingly following this international standard.
Particularly adaptable to transactions that use structured forms, EDI
provides standard formatting and data transport guidelines.

& Computer Technology Bassarch Corp

Page 155 of 165

Appendix B. MAPlrelated Terms, Associated Concepts, and Alternative Models

4. Enterprise Messaging Server (EMS) — Will function as a Windows NT
mail server. Messaging applications from third-party developers will
access EMS via MAPI or XAPIA’s X 400 specification. EMS is based on
X.400 messaging technology.

5. Internet Protocol (IP) — Many messaging methodologies operate over
TCP/IP networks, IP performs routing, as well as mandating record
formats of messages traversing such networks.

6. Message Handling Service (MHS) - Used by Novell to provide
messaging services in NetWare configurations. It communicates with
other messaging mechanisms, such as X.400, through third-party
gateways.

7. Multipurpose Internet Mail Extensions (MIME) - Allows a message
on the Internet to contain text, binary, or other formatted data. MIME
encodes this data into a format compatible with the Internet’s own
Simple Mail Transfer Protocol (SMTP).

8. NetWare Global Messaging (NGM) — Enables Novell to support four
messaging protocols on one NetWare server. Protocols supported are
SMTP, IBM’s SNADS, Novell’s own Standard Message Format used
with MHS, and the Unix standard. NGM also functions as a NetWare
Loadable Module.

9. NetWare Loadable Module (NLM) — A program running on a NetWare
server, it can do stand-alone tasks such as network monitoring. An NLM
can also perform as a server in a client/server system where it could be
managing E-mail processing.

10. Open Collaborative Environment (OCE) — Apple’s response to the
demand for workgroup computing includes messaging support, directory
services and related APIs. Closely associated with the Macintosh
operating system.

11. Open Messaging Interface (OMI) — A precursor to VIM, Lotus offered

this API as a vehicle for electronic messaging.

i

4 © Computer Technology Hesearch Corm.

(941

Page 156 of 165

Appendix B. MAP!-related Terms, Associated Concepts, and Atternative Models

12. Standard Message Format (SMF) - Novell’s API for NetWare’s MHS,
it has been steadily upgraded to support their more recent NGM service.

13. Simple Mail Transfer Protocol — SMTP has achieved standards
status in Internet and other Unix environments for support of electronic
messaging. The X.400 standard has begun to make inroads into its
heretofore widespread support.

14. SNA distribution Services — [BM’s message transport protocol for
SNA configurations allows supporting E-mail offerings to interact with
SNADS-compliant mainframes.

15. Service Provider Interface (SPI) — Microsoft provides this layer
between back-end service providers, such as database systems, and
Windows applications. This isolates service provider vagaries from the
application. SPI is an important element of WOSA.

16. Vendor Independent Messaging — VIM was spearheaded by Lotus to
support a cross-platform messaging APL It evolved from the OMI APL
and is able to access other services such as X.400 and MHS.

17. X.400 — An international standard for global messaging developed
by the Consultative Committee for International Telegraph and
Telephone (CCITT), it is not specific to any operating system or vendor
environment. It is the most widely supported of the Open Systems
Interconnect standards.

18. X500 — This CCITT standard is designed to provide directory
services for X.400. Its acceptance in the commercial marketplace will
directly impact the future success of X.400 as well.

© Computer Technology Research Corp. 155

Page 157 of 165

Appendix C
Windows for Workgroups

A Microsoft product that will play an important role in the future
evolution of WOSA is Windows for Workgroups (WEW). It is a
networking version of Windows 3.x, and may ultimately even approach
the staggering sales figures of Windows itself.

WEFW facilitates the introduction of networking to workgroup
environments, and simplifies the expansion of existing small networks.
It is clearly aimed at the relative novice, containing features which
eliminate the need for a technology guru when configuring and
operating a comparatively small local area network.

The “Smart Setup” module of WFW enables users of varying expertise
levels to install the product and get a network up and running. Smart
Setup provides intelligent defaults for networking software so that non-
technical users can manage the task of configuring network software.

Naturally, when arbitrary defaults are employed, some degree of
operational efficiency may be compromised. It depends on the nature of
the network configuration. The bottom line, however, is that casual
users can get a network started from scratch, and keep it running for
an indefinite period of time.

Organizations with an existing network can implement WEW as a
client. This will enable them to add new capabilities such as workgroup-
type applications, scheduling, E-mail, and network Dynamic Data
Exchange (DDE). The product is compatible with Microsoft LAN
Manager and Novell NetWare, and allows users to simultaneously
access both at the same time. WFW will also work on Banyan VINES.

Some of the new features offered by WEW 1include:

©® Computer Technology Research Corp. 157

Page 158 of 165

Appendix C. Windows for Workgroups

* Microsoft Mail — A full-featured E-mail service, Mail
allows users to read, compose, forward and reply to E-
mail messages, as well as to manage messages they
receive. It also allows users to send documents from
other business applications — including word processors
and spreadsheets, or OLE objects, such as sound
annotation — as part of a mail message that can be
directly opened and read by the recipient. Microsoft
Mail can be plugged into an existing mail system that
users may already have, providing an easy-to-use
graphical front end. For workgroups that need to
connect to other workgroups or access gateways to other
E-mail systems, Microsoft is separately providing Mail
extensions by which users can connect to other E—mail
systems and services.

* Schedule+ - A full-featured graphical scheduling
application, Microsoft Schedule+ allows users to
schedule group meetings and manage daily calendars
and task lists electronically. This minimizes the time it
takes to set up group meetings by providing shared
access to multiple online calendars.

* Network DDE - This feature allows users to create
compound documents that share data across the
network. For example, users can create reports by
importing spreadsheet charts from other users’
machines into their word processing documents. Live
links between documents automatically update any
information that changes in the original document.
These links can be created between any of the DDE-
aware applications currently shipping for Windows.

* Security —~ WFW strives to strike a balance between
ease of access and security. Users can make files, data
and printers available to others, so that people within
the workgroup can reach shared resources with the

158 © Computer Technology Research Corp.

Page 159 of 165

Appendix C. Windows for Workgroups

click of a button. Users can also restrict access 10
shared resources as desired, including requiring a
password for access. Other users on the system can
either be given full access to a directory, or granted
permission to read files, but not modify them in any
way. Users who want more sophisticated gecurity can
store important data on a server and protect access to
that data through security features of the server
operating system.

s Message Interface — As part of WOSA, WFW supports
the Simple MAPI interface in conjunction with
Microsoft Mail. Developing mail-enabled applications is
aided with Simple MAPI, because developers are free of
the complexity of a back-end messaging system. A
developer can, for example, write applications to route
forms electronically for approval, or to allow users to
delegate parts of a document to different individuals
and automatically assemble the finished document from
the completed parts.

e Improvements to Windows File Manager — WEW
includes improvements to Windows File Manager that
improves information sharing. A toolbar allows users to
move among multiple servers and directories to find
scattered corporate data, which simplifies information
access. WEFW loads Windows-based and Microsoft LAN
Manager networking coftware into protected mode
memory, freeing up more MS-DOS memory below 640K
for applications, zéfﬁﬁﬁai;e»&ﬁé»St3§~fegiéeai programs
(TSRs), and other network drivers.

® Computer Technology fessarch Corp. 159

Page 160 of 165

Appendix D

NT Versus the World

Microsoft Windows is the most widely-used PC-based GUI on the
market today. DOS, its underlying operating system, is considered
inadequate, however, for meeting the challenges of distributed
computing. This is not to claim DOS will disappear any time soon.

On the contrary, DOS and Windows are so firmly entrenched that they
will prosper well into the next century. There is 2 recognition by many
vendors and users, however, that new solutions are needed. Products
such as NT, 05/2, SCO Unix 3.2 and SCO Open Desktop from Santa
Cruz Operation, Solaris from SunSoft, and Unix System V, Release 4.2
from Unix System Laboratories and UNIVEL (the latter two being
Novell entities) represent new alternatives for the desktop.

They all offer a high degree of application compatibility, interoperability,
and network savvy. The relative merits of OS/2 have been discussed in
Chapter 11. Here, a comparison between Unix and NT is offered. This
information is based on data contained in a report published by Unix
International, and should be interpreted in that light.

e Availability — Unix for the desktop has been available
for several years from multiple vendors on virtually
every system architecture currently available. NT is a
more recent product, of course, reflecting Microsoft’s
vision for enterprisewide computing, at least at the
client/server level. NT 1s targeted for Intel, MIPS, and
DEC’s Alpha platforms.

e Pricing - Unix and NT are relatively close in initial
cost. It should be noted, however, that Microsoft has

© Computer Technology Research Corp. 161

Page 161 of 165

Appendix D. NT Versus the World

traditionally been very aggressive in their pricing
strategy. It is possible they may precipitously drop their
selling price at some point in the marketing cycle.

* Memory and Disk Requirements - There is no
significant difference in this area. In both cases, specific
resource needs are determined by characteristics of the
overall system being served.

* Functionality — Both Unix and NT offer multitasking,
multiprocessor support, and fault tolerant capabilities.
NT, however, lacks multiuser support.

* Networking -~ Desktop Unix supports Sun
Microsystem’s ubiquitous Network File System. NT will
avail itself of this de facto standard via third-party
solutions.

* Standards Compliance — Unix supports POSIX and
X/Open standards as an integral part of the operating
system. NT does not support X/Open’s Portability
Guide, and only follows POSIX 1003.1 dictates through
the use of a POSIX-compliant subsystem. Thus, NT
applications themselves are not POSIX-compliant. They
may set their own standard, however.

Six major vendors — Hewlett-Packard, IBM, SCO, Sun Microsystems,
Univel, and Unix System Laboratories — have banded together,
ostensibly to harmonize their various Unix versions, but more to oppose
a feared NT onslaught. They have declared their intention to build a
common desktop environment and create a new set of APIs to help
independent software developers write to the common desktop.

The diversity of interests represented by this group makes for strange
bedfellows. They are obviously driven by a fear that NT will effectively
replace whatever presence Unix has on the desktop. It is a well-justified
fear.

162 © Computer Technology Research Corp.

Page 162 of 165

Appendix E

Banking System Vendor
Council Contacts

The vendors participating in the development of the WOSA Extensions
for Financial Services are listed below, with a contact for each.

Andersen Consulting

Dan Steinman Phone: +1 312 507 7856
Chicago, L

Mark J. Allaby phone: +41 1 308 1555
Andersen Consulting AG Fax: +1 41 1308 1850

Binzmuhlestrasse 14
8050 Zurich, Switzerdand

DEC
Robert Waller Phone: +1 508 467 9746
Digital Equipment Corp.
200 Forest Street
Marlboro, MA 01752

Svante Burstrom Phone: +46 8 759 49 58
Retail Banking Group Fax: +46 8 739 86 76
Digital Equipment Corp. BCF1 AB

Box 904

175 29 Jarfalla, Sweden

Pedro Mufioz Phone: +44 71 831 8282
Marketing Manager Fax: +44 71 405 6477

Retail Banking, Europe
Digital Equipment Co. Limited
Enterprise House

190 High Holbormn

London WC1V 7BE, England

® Computer Technology Research Corp. 163

Page 163 of 165

Appendix E. Banking System Vendor Council Contacts

EDS Corporation

Bradley D. Hallin

Division V.P., Chief Technologist
EDS Corporation

LFI Division

5400 Legacy Drive MS: B5-2D-09
Plano, TX 75024

ICL PLC

Mike Shaw

Manager, Architecture and
Integration

ICL Financial Services Business
International House

292 High Street

Slough

Berkshire LS1 1NB, England

Microsoft Corporation

Tom Sherrard

Marketing Manager
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052-6399

Randi Bussin

Marketing Manager

Microsoft Europe

Tour Pacitic

Cedex 77

92977 Paris La Defense - France

NCR Corporation

C.R. (Bob) Lischer

Director, Engineering

Financial Systems Business Unit
NCR Corporation

Brown and Caldwell Streets
Dayton, OH 45479

Ing. C. Olivetti & C.S.p.A., and ISC-Bunker
Ramo: an Olivetti Company

Michael Ehrenberg
Director

Olivetti Advanced Finance
Development

2 Enterprise Drive
Shelton, CT 06484-4636

Phone: +1 214 604 4990
Fax: +1 214 604 1172

Phone: +44 753 555126
Fax: +44 753 555343

Phone: +1 206 936 4526

Fax: +1 206 936 7329

Internet email: tomsh@microsoft.com
CompuServe ID: 70673,2167

Phone: +33 1 46 35 10 01
Fax: +33 1 46 35 10 30
Internet email: randib@microsoft.com

Phone: +1 513 445 7775
Fax: +1 513 445 7191

Phione: +1 203 337 1598
Fax: +1 203 337 1667

164

@ Computer Technology Research Corp.

Page 164 of 165

Appendix E. Banking System Vendor Council Contacts

Siemens Nixdort
Ralph Mueller Phone: +49 69 6682 3554
Section Manager Fax: +49 69 6682 1021
Application Software
Banking and Insurance Division
Siemens Nixdorf
informationssysteme AG
Herriotstrasse 7
W-6000 Frankfurt 71, Germany

Petra Hirtz-Bokamper Phone: +49 5251 8 11396
Product Manager Fax: +49 5251 8 11381
Finance and Insurance

Division/Banking

Siemens Nixdort
Informationssysteme AG
Furstenallee 7

W-4790 Paderborn, Germany

Tandem Computers
Chip Greenlee Phone: +1 408 285 2110
Manager, Finance Industries Fax: +1 408 255 8067
Tandem Computers
19191 Vallco Parkway, LOC 4-26
Cupertino, CA 95014-2525

Unisys
Andrew Mellor Phone: +1 215 986 3426
Program Manager Fax: +1 215 986 6791
Unisys Corporation MS B120
Township Line and Jolly Road
Blue Bell, PA 19424

© Computer Technalogy Research Corp. 165

Page 165 of 165

